1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/buffer_head.h> /* for invalidate_bdev */ 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/hdreg.h> 43 #include <linux/proc_fs.h> 44 #include <linux/random.h> 45 #include <linux/reboot.h> 46 #include <linux/file.h> 47 #include <linux/delay.h> 48 #include <linux/raid/md_p.h> 49 #include <linux/raid/md_u.h> 50 #include "md.h" 51 #include "bitmap.h" 52 53 #define DEBUG 0 54 #define dprintk(x...) ((void)(DEBUG && printk(x))) 55 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 static LIST_HEAD(pers_list); 62 static DEFINE_SPINLOCK(pers_lock); 63 64 static void md_print_devices(void); 65 66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 67 68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 69 70 /* 71 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 72 * is 1000 KB/sec, so the extra system load does not show up that much. 73 * Increase it if you want to have more _guaranteed_ speed. Note that 74 * the RAID driver will use the maximum available bandwidth if the IO 75 * subsystem is idle. There is also an 'absolute maximum' reconstruction 76 * speed limit - in case reconstruction slows down your system despite 77 * idle IO detection. 78 * 79 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 80 * or /sys/block/mdX/md/sync_speed_{min,max} 81 */ 82 83 static int sysctl_speed_limit_min = 1000; 84 static int sysctl_speed_limit_max = 200000; 85 static inline int speed_min(mddev_t *mddev) 86 { 87 return mddev->sync_speed_min ? 88 mddev->sync_speed_min : sysctl_speed_limit_min; 89 } 90 91 static inline int speed_max(mddev_t *mddev) 92 { 93 return mddev->sync_speed_max ? 94 mddev->sync_speed_max : sysctl_speed_limit_max; 95 } 96 97 static struct ctl_table_header *raid_table_header; 98 99 static ctl_table raid_table[] = { 100 { 101 .procname = "speed_limit_min", 102 .data = &sysctl_speed_limit_min, 103 .maxlen = sizeof(int), 104 .mode = S_IRUGO|S_IWUSR, 105 .proc_handler = proc_dointvec, 106 }, 107 { 108 .procname = "speed_limit_max", 109 .data = &sysctl_speed_limit_max, 110 .maxlen = sizeof(int), 111 .mode = S_IRUGO|S_IWUSR, 112 .proc_handler = proc_dointvec, 113 }, 114 { } 115 }; 116 117 static ctl_table raid_dir_table[] = { 118 { 119 .procname = "raid", 120 .maxlen = 0, 121 .mode = S_IRUGO|S_IXUGO, 122 .child = raid_table, 123 }, 124 { } 125 }; 126 127 static ctl_table raid_root_table[] = { 128 { 129 .procname = "dev", 130 .maxlen = 0, 131 .mode = 0555, 132 .child = raid_dir_table, 133 }, 134 { } 135 }; 136 137 static const struct block_device_operations md_fops; 138 139 static int start_readonly; 140 141 /* 142 * We have a system wide 'event count' that is incremented 143 * on any 'interesting' event, and readers of /proc/mdstat 144 * can use 'poll' or 'select' to find out when the event 145 * count increases. 146 * 147 * Events are: 148 * start array, stop array, error, add device, remove device, 149 * start build, activate spare 150 */ 151 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 152 static atomic_t md_event_count; 153 void md_new_event(mddev_t *mddev) 154 { 155 atomic_inc(&md_event_count); 156 wake_up(&md_event_waiters); 157 } 158 EXPORT_SYMBOL_GPL(md_new_event); 159 160 /* Alternate version that can be called from interrupts 161 * when calling sysfs_notify isn't needed. 162 */ 163 static void md_new_event_inintr(mddev_t *mddev) 164 { 165 atomic_inc(&md_event_count); 166 wake_up(&md_event_waiters); 167 } 168 169 /* 170 * Enables to iterate over all existing md arrays 171 * all_mddevs_lock protects this list. 172 */ 173 static LIST_HEAD(all_mddevs); 174 static DEFINE_SPINLOCK(all_mddevs_lock); 175 176 177 /* 178 * iterates through all used mddevs in the system. 179 * We take care to grab the all_mddevs_lock whenever navigating 180 * the list, and to always hold a refcount when unlocked. 181 * Any code which breaks out of this loop while own 182 * a reference to the current mddev and must mddev_put it. 183 */ 184 #define for_each_mddev(mddev,tmp) \ 185 \ 186 for (({ spin_lock(&all_mddevs_lock); \ 187 tmp = all_mddevs.next; \ 188 mddev = NULL;}); \ 189 ({ if (tmp != &all_mddevs) \ 190 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 191 spin_unlock(&all_mddevs_lock); \ 192 if (mddev) mddev_put(mddev); \ 193 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 194 tmp != &all_mddevs;}); \ 195 ({ spin_lock(&all_mddevs_lock); \ 196 tmp = tmp->next;}) \ 197 ) 198 199 200 /* Rather than calling directly into the personality make_request function, 201 * IO requests come here first so that we can check if the device is 202 * being suspended pending a reconfiguration. 203 * We hold a refcount over the call to ->make_request. By the time that 204 * call has finished, the bio has been linked into some internal structure 205 * and so is visible to ->quiesce(), so we don't need the refcount any more. 206 */ 207 static int md_make_request(struct request_queue *q, struct bio *bio) 208 { 209 mddev_t *mddev = q->queuedata; 210 int rv; 211 if (mddev == NULL || mddev->pers == NULL) { 212 bio_io_error(bio); 213 return 0; 214 } 215 rcu_read_lock(); 216 if (mddev->suspended) { 217 DEFINE_WAIT(__wait); 218 for (;;) { 219 prepare_to_wait(&mddev->sb_wait, &__wait, 220 TASK_UNINTERRUPTIBLE); 221 if (!mddev->suspended) 222 break; 223 rcu_read_unlock(); 224 schedule(); 225 rcu_read_lock(); 226 } 227 finish_wait(&mddev->sb_wait, &__wait); 228 } 229 atomic_inc(&mddev->active_io); 230 rcu_read_unlock(); 231 rv = mddev->pers->make_request(q, bio); 232 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 233 wake_up(&mddev->sb_wait); 234 235 return rv; 236 } 237 238 static void mddev_suspend(mddev_t *mddev) 239 { 240 BUG_ON(mddev->suspended); 241 mddev->suspended = 1; 242 synchronize_rcu(); 243 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 244 mddev->pers->quiesce(mddev, 1); 245 md_unregister_thread(mddev->thread); 246 mddev->thread = NULL; 247 /* we now know that no code is executing in the personality module, 248 * except possibly the tail end of a ->bi_end_io function, but that 249 * is certain to complete before the module has a chance to get 250 * unloaded 251 */ 252 } 253 254 static void mddev_resume(mddev_t *mddev) 255 { 256 mddev->suspended = 0; 257 wake_up(&mddev->sb_wait); 258 mddev->pers->quiesce(mddev, 0); 259 } 260 261 int mddev_congested(mddev_t *mddev, int bits) 262 { 263 return mddev->suspended; 264 } 265 EXPORT_SYMBOL(mddev_congested); 266 267 268 static inline mddev_t *mddev_get(mddev_t *mddev) 269 { 270 atomic_inc(&mddev->active); 271 return mddev; 272 } 273 274 static void mddev_delayed_delete(struct work_struct *ws); 275 276 static void mddev_put(mddev_t *mddev) 277 { 278 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 279 return; 280 if (!mddev->raid_disks && list_empty(&mddev->disks) && 281 !mddev->hold_active) { 282 list_del(&mddev->all_mddevs); 283 if (mddev->gendisk) { 284 /* we did a probe so need to clean up. 285 * Call schedule_work inside the spinlock 286 * so that flush_scheduled_work() after 287 * mddev_find will succeed in waiting for the 288 * work to be done. 289 */ 290 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 291 schedule_work(&mddev->del_work); 292 } else 293 kfree(mddev); 294 } 295 spin_unlock(&all_mddevs_lock); 296 } 297 298 static mddev_t * mddev_find(dev_t unit) 299 { 300 mddev_t *mddev, *new = NULL; 301 302 retry: 303 spin_lock(&all_mddevs_lock); 304 305 if (unit) { 306 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 307 if (mddev->unit == unit) { 308 mddev_get(mddev); 309 spin_unlock(&all_mddevs_lock); 310 kfree(new); 311 return mddev; 312 } 313 314 if (new) { 315 list_add(&new->all_mddevs, &all_mddevs); 316 spin_unlock(&all_mddevs_lock); 317 new->hold_active = UNTIL_IOCTL; 318 return new; 319 } 320 } else if (new) { 321 /* find an unused unit number */ 322 static int next_minor = 512; 323 int start = next_minor; 324 int is_free = 0; 325 int dev = 0; 326 while (!is_free) { 327 dev = MKDEV(MD_MAJOR, next_minor); 328 next_minor++; 329 if (next_minor > MINORMASK) 330 next_minor = 0; 331 if (next_minor == start) { 332 /* Oh dear, all in use. */ 333 spin_unlock(&all_mddevs_lock); 334 kfree(new); 335 return NULL; 336 } 337 338 is_free = 1; 339 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 340 if (mddev->unit == dev) { 341 is_free = 0; 342 break; 343 } 344 } 345 new->unit = dev; 346 new->md_minor = MINOR(dev); 347 new->hold_active = UNTIL_STOP; 348 list_add(&new->all_mddevs, &all_mddevs); 349 spin_unlock(&all_mddevs_lock); 350 return new; 351 } 352 spin_unlock(&all_mddevs_lock); 353 354 new = kzalloc(sizeof(*new), GFP_KERNEL); 355 if (!new) 356 return NULL; 357 358 new->unit = unit; 359 if (MAJOR(unit) == MD_MAJOR) 360 new->md_minor = MINOR(unit); 361 else 362 new->md_minor = MINOR(unit) >> MdpMinorShift; 363 364 mutex_init(&new->open_mutex); 365 mutex_init(&new->reconfig_mutex); 366 INIT_LIST_HEAD(&new->disks); 367 INIT_LIST_HEAD(&new->all_mddevs); 368 init_timer(&new->safemode_timer); 369 atomic_set(&new->active, 1); 370 atomic_set(&new->openers, 0); 371 atomic_set(&new->active_io, 0); 372 spin_lock_init(&new->write_lock); 373 init_waitqueue_head(&new->sb_wait); 374 init_waitqueue_head(&new->recovery_wait); 375 new->reshape_position = MaxSector; 376 new->resync_min = 0; 377 new->resync_max = MaxSector; 378 new->level = LEVEL_NONE; 379 380 goto retry; 381 } 382 383 static inline int mddev_lock(mddev_t * mddev) 384 { 385 return mutex_lock_interruptible(&mddev->reconfig_mutex); 386 } 387 388 static inline int mddev_is_locked(mddev_t *mddev) 389 { 390 return mutex_is_locked(&mddev->reconfig_mutex); 391 } 392 393 static inline int mddev_trylock(mddev_t * mddev) 394 { 395 return mutex_trylock(&mddev->reconfig_mutex); 396 } 397 398 static inline void mddev_unlock(mddev_t * mddev) 399 { 400 mutex_unlock(&mddev->reconfig_mutex); 401 402 md_wakeup_thread(mddev->thread); 403 } 404 405 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 406 { 407 mdk_rdev_t *rdev; 408 409 list_for_each_entry(rdev, &mddev->disks, same_set) 410 if (rdev->desc_nr == nr) 411 return rdev; 412 413 return NULL; 414 } 415 416 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 417 { 418 mdk_rdev_t *rdev; 419 420 list_for_each_entry(rdev, &mddev->disks, same_set) 421 if (rdev->bdev->bd_dev == dev) 422 return rdev; 423 424 return NULL; 425 } 426 427 static struct mdk_personality *find_pers(int level, char *clevel) 428 { 429 struct mdk_personality *pers; 430 list_for_each_entry(pers, &pers_list, list) { 431 if (level != LEVEL_NONE && pers->level == level) 432 return pers; 433 if (strcmp(pers->name, clevel)==0) 434 return pers; 435 } 436 return NULL; 437 } 438 439 /* return the offset of the super block in 512byte sectors */ 440 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 441 { 442 sector_t num_sectors = bdev->bd_inode->i_size / 512; 443 return MD_NEW_SIZE_SECTORS(num_sectors); 444 } 445 446 static int alloc_disk_sb(mdk_rdev_t * rdev) 447 { 448 if (rdev->sb_page) 449 MD_BUG(); 450 451 rdev->sb_page = alloc_page(GFP_KERNEL); 452 if (!rdev->sb_page) { 453 printk(KERN_ALERT "md: out of memory.\n"); 454 return -ENOMEM; 455 } 456 457 return 0; 458 } 459 460 static void free_disk_sb(mdk_rdev_t * rdev) 461 { 462 if (rdev->sb_page) { 463 put_page(rdev->sb_page); 464 rdev->sb_loaded = 0; 465 rdev->sb_page = NULL; 466 rdev->sb_start = 0; 467 rdev->sectors = 0; 468 } 469 } 470 471 472 static void super_written(struct bio *bio, int error) 473 { 474 mdk_rdev_t *rdev = bio->bi_private; 475 mddev_t *mddev = rdev->mddev; 476 477 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 478 printk("md: super_written gets error=%d, uptodate=%d\n", 479 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 480 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 481 md_error(mddev, rdev); 482 } 483 484 if (atomic_dec_and_test(&mddev->pending_writes)) 485 wake_up(&mddev->sb_wait); 486 bio_put(bio); 487 } 488 489 static void super_written_barrier(struct bio *bio, int error) 490 { 491 struct bio *bio2 = bio->bi_private; 492 mdk_rdev_t *rdev = bio2->bi_private; 493 mddev_t *mddev = rdev->mddev; 494 495 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 496 error == -EOPNOTSUPP) { 497 unsigned long flags; 498 /* barriers don't appear to be supported :-( */ 499 set_bit(BarriersNotsupp, &rdev->flags); 500 mddev->barriers_work = 0; 501 spin_lock_irqsave(&mddev->write_lock, flags); 502 bio2->bi_next = mddev->biolist; 503 mddev->biolist = bio2; 504 spin_unlock_irqrestore(&mddev->write_lock, flags); 505 wake_up(&mddev->sb_wait); 506 bio_put(bio); 507 } else { 508 bio_put(bio2); 509 bio->bi_private = rdev; 510 super_written(bio, error); 511 } 512 } 513 514 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 515 sector_t sector, int size, struct page *page) 516 { 517 /* write first size bytes of page to sector of rdev 518 * Increment mddev->pending_writes before returning 519 * and decrement it on completion, waking up sb_wait 520 * if zero is reached. 521 * If an error occurred, call md_error 522 * 523 * As we might need to resubmit the request if BIO_RW_BARRIER 524 * causes ENOTSUPP, we allocate a spare bio... 525 */ 526 struct bio *bio = bio_alloc(GFP_NOIO, 1); 527 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG); 528 529 bio->bi_bdev = rdev->bdev; 530 bio->bi_sector = sector; 531 bio_add_page(bio, page, size, 0); 532 bio->bi_private = rdev; 533 bio->bi_end_io = super_written; 534 bio->bi_rw = rw; 535 536 atomic_inc(&mddev->pending_writes); 537 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 538 struct bio *rbio; 539 rw |= (1<<BIO_RW_BARRIER); 540 rbio = bio_clone(bio, GFP_NOIO); 541 rbio->bi_private = bio; 542 rbio->bi_end_io = super_written_barrier; 543 submit_bio(rw, rbio); 544 } else 545 submit_bio(rw, bio); 546 } 547 548 void md_super_wait(mddev_t *mddev) 549 { 550 /* wait for all superblock writes that were scheduled to complete. 551 * if any had to be retried (due to BARRIER problems), retry them 552 */ 553 DEFINE_WAIT(wq); 554 for(;;) { 555 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 556 if (atomic_read(&mddev->pending_writes)==0) 557 break; 558 while (mddev->biolist) { 559 struct bio *bio; 560 spin_lock_irq(&mddev->write_lock); 561 bio = mddev->biolist; 562 mddev->biolist = bio->bi_next ; 563 bio->bi_next = NULL; 564 spin_unlock_irq(&mddev->write_lock); 565 submit_bio(bio->bi_rw, bio); 566 } 567 schedule(); 568 } 569 finish_wait(&mddev->sb_wait, &wq); 570 } 571 572 static void bi_complete(struct bio *bio, int error) 573 { 574 complete((struct completion*)bio->bi_private); 575 } 576 577 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 578 struct page *page, int rw) 579 { 580 struct bio *bio = bio_alloc(GFP_NOIO, 1); 581 struct completion event; 582 int ret; 583 584 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG); 585 586 bio->bi_bdev = bdev; 587 bio->bi_sector = sector; 588 bio_add_page(bio, page, size, 0); 589 init_completion(&event); 590 bio->bi_private = &event; 591 bio->bi_end_io = bi_complete; 592 submit_bio(rw, bio); 593 wait_for_completion(&event); 594 595 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 596 bio_put(bio); 597 return ret; 598 } 599 EXPORT_SYMBOL_GPL(sync_page_io); 600 601 static int read_disk_sb(mdk_rdev_t * rdev, int size) 602 { 603 char b[BDEVNAME_SIZE]; 604 if (!rdev->sb_page) { 605 MD_BUG(); 606 return -EINVAL; 607 } 608 if (rdev->sb_loaded) 609 return 0; 610 611 612 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ)) 613 goto fail; 614 rdev->sb_loaded = 1; 615 return 0; 616 617 fail: 618 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 619 bdevname(rdev->bdev,b)); 620 return -EINVAL; 621 } 622 623 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 624 { 625 return sb1->set_uuid0 == sb2->set_uuid0 && 626 sb1->set_uuid1 == sb2->set_uuid1 && 627 sb1->set_uuid2 == sb2->set_uuid2 && 628 sb1->set_uuid3 == sb2->set_uuid3; 629 } 630 631 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 632 { 633 int ret; 634 mdp_super_t *tmp1, *tmp2; 635 636 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 637 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 638 639 if (!tmp1 || !tmp2) { 640 ret = 0; 641 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 642 goto abort; 643 } 644 645 *tmp1 = *sb1; 646 *tmp2 = *sb2; 647 648 /* 649 * nr_disks is not constant 650 */ 651 tmp1->nr_disks = 0; 652 tmp2->nr_disks = 0; 653 654 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 655 abort: 656 kfree(tmp1); 657 kfree(tmp2); 658 return ret; 659 } 660 661 662 static u32 md_csum_fold(u32 csum) 663 { 664 csum = (csum & 0xffff) + (csum >> 16); 665 return (csum & 0xffff) + (csum >> 16); 666 } 667 668 static unsigned int calc_sb_csum(mdp_super_t * sb) 669 { 670 u64 newcsum = 0; 671 u32 *sb32 = (u32*)sb; 672 int i; 673 unsigned int disk_csum, csum; 674 675 disk_csum = sb->sb_csum; 676 sb->sb_csum = 0; 677 678 for (i = 0; i < MD_SB_BYTES/4 ; i++) 679 newcsum += sb32[i]; 680 csum = (newcsum & 0xffffffff) + (newcsum>>32); 681 682 683 #ifdef CONFIG_ALPHA 684 /* This used to use csum_partial, which was wrong for several 685 * reasons including that different results are returned on 686 * different architectures. It isn't critical that we get exactly 687 * the same return value as before (we always csum_fold before 688 * testing, and that removes any differences). However as we 689 * know that csum_partial always returned a 16bit value on 690 * alphas, do a fold to maximise conformity to previous behaviour. 691 */ 692 sb->sb_csum = md_csum_fold(disk_csum); 693 #else 694 sb->sb_csum = disk_csum; 695 #endif 696 return csum; 697 } 698 699 700 /* 701 * Handle superblock details. 702 * We want to be able to handle multiple superblock formats 703 * so we have a common interface to them all, and an array of 704 * different handlers. 705 * We rely on user-space to write the initial superblock, and support 706 * reading and updating of superblocks. 707 * Interface methods are: 708 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 709 * loads and validates a superblock on dev. 710 * if refdev != NULL, compare superblocks on both devices 711 * Return: 712 * 0 - dev has a superblock that is compatible with refdev 713 * 1 - dev has a superblock that is compatible and newer than refdev 714 * so dev should be used as the refdev in future 715 * -EINVAL superblock incompatible or invalid 716 * -othererror e.g. -EIO 717 * 718 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 719 * Verify that dev is acceptable into mddev. 720 * The first time, mddev->raid_disks will be 0, and data from 721 * dev should be merged in. Subsequent calls check that dev 722 * is new enough. Return 0 or -EINVAL 723 * 724 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 725 * Update the superblock for rdev with data in mddev 726 * This does not write to disc. 727 * 728 */ 729 730 struct super_type { 731 char *name; 732 struct module *owner; 733 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 734 int minor_version); 735 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 736 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 737 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 738 sector_t num_sectors); 739 }; 740 741 /* 742 * Check that the given mddev has no bitmap. 743 * 744 * This function is called from the run method of all personalities that do not 745 * support bitmaps. It prints an error message and returns non-zero if mddev 746 * has a bitmap. Otherwise, it returns 0. 747 * 748 */ 749 int md_check_no_bitmap(mddev_t *mddev) 750 { 751 if (!mddev->bitmap_file && !mddev->bitmap_offset) 752 return 0; 753 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 754 mdname(mddev), mddev->pers->name); 755 return 1; 756 } 757 EXPORT_SYMBOL(md_check_no_bitmap); 758 759 /* 760 * load_super for 0.90.0 761 */ 762 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 763 { 764 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 765 mdp_super_t *sb; 766 int ret; 767 768 /* 769 * Calculate the position of the superblock (512byte sectors), 770 * it's at the end of the disk. 771 * 772 * It also happens to be a multiple of 4Kb. 773 */ 774 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 775 776 ret = read_disk_sb(rdev, MD_SB_BYTES); 777 if (ret) return ret; 778 779 ret = -EINVAL; 780 781 bdevname(rdev->bdev, b); 782 sb = (mdp_super_t*)page_address(rdev->sb_page); 783 784 if (sb->md_magic != MD_SB_MAGIC) { 785 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 786 b); 787 goto abort; 788 } 789 790 if (sb->major_version != 0 || 791 sb->minor_version < 90 || 792 sb->minor_version > 91) { 793 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 794 sb->major_version, sb->minor_version, 795 b); 796 goto abort; 797 } 798 799 if (sb->raid_disks <= 0) 800 goto abort; 801 802 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 803 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 804 b); 805 goto abort; 806 } 807 808 rdev->preferred_minor = sb->md_minor; 809 rdev->data_offset = 0; 810 rdev->sb_size = MD_SB_BYTES; 811 812 if (sb->level == LEVEL_MULTIPATH) 813 rdev->desc_nr = -1; 814 else 815 rdev->desc_nr = sb->this_disk.number; 816 817 if (!refdev) { 818 ret = 1; 819 } else { 820 __u64 ev1, ev2; 821 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 822 if (!uuid_equal(refsb, sb)) { 823 printk(KERN_WARNING "md: %s has different UUID to %s\n", 824 b, bdevname(refdev->bdev,b2)); 825 goto abort; 826 } 827 if (!sb_equal(refsb, sb)) { 828 printk(KERN_WARNING "md: %s has same UUID" 829 " but different superblock to %s\n", 830 b, bdevname(refdev->bdev, b2)); 831 goto abort; 832 } 833 ev1 = md_event(sb); 834 ev2 = md_event(refsb); 835 if (ev1 > ev2) 836 ret = 1; 837 else 838 ret = 0; 839 } 840 rdev->sectors = rdev->sb_start; 841 842 if (rdev->sectors < sb->size * 2 && sb->level > 1) 843 /* "this cannot possibly happen" ... */ 844 ret = -EINVAL; 845 846 abort: 847 return ret; 848 } 849 850 /* 851 * validate_super for 0.90.0 852 */ 853 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 854 { 855 mdp_disk_t *desc; 856 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 857 __u64 ev1 = md_event(sb); 858 859 rdev->raid_disk = -1; 860 clear_bit(Faulty, &rdev->flags); 861 clear_bit(In_sync, &rdev->flags); 862 clear_bit(WriteMostly, &rdev->flags); 863 clear_bit(BarriersNotsupp, &rdev->flags); 864 865 if (mddev->raid_disks == 0) { 866 mddev->major_version = 0; 867 mddev->minor_version = sb->minor_version; 868 mddev->patch_version = sb->patch_version; 869 mddev->external = 0; 870 mddev->chunk_sectors = sb->chunk_size >> 9; 871 mddev->ctime = sb->ctime; 872 mddev->utime = sb->utime; 873 mddev->level = sb->level; 874 mddev->clevel[0] = 0; 875 mddev->layout = sb->layout; 876 mddev->raid_disks = sb->raid_disks; 877 mddev->dev_sectors = sb->size * 2; 878 mddev->events = ev1; 879 mddev->bitmap_offset = 0; 880 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 881 882 if (mddev->minor_version >= 91) { 883 mddev->reshape_position = sb->reshape_position; 884 mddev->delta_disks = sb->delta_disks; 885 mddev->new_level = sb->new_level; 886 mddev->new_layout = sb->new_layout; 887 mddev->new_chunk_sectors = sb->new_chunk >> 9; 888 } else { 889 mddev->reshape_position = MaxSector; 890 mddev->delta_disks = 0; 891 mddev->new_level = mddev->level; 892 mddev->new_layout = mddev->layout; 893 mddev->new_chunk_sectors = mddev->chunk_sectors; 894 } 895 896 if (sb->state & (1<<MD_SB_CLEAN)) 897 mddev->recovery_cp = MaxSector; 898 else { 899 if (sb->events_hi == sb->cp_events_hi && 900 sb->events_lo == sb->cp_events_lo) { 901 mddev->recovery_cp = sb->recovery_cp; 902 } else 903 mddev->recovery_cp = 0; 904 } 905 906 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 907 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 908 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 909 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 910 911 mddev->max_disks = MD_SB_DISKS; 912 913 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 914 mddev->bitmap_file == NULL) 915 mddev->bitmap_offset = mddev->default_bitmap_offset; 916 917 } else if (mddev->pers == NULL) { 918 /* Insist on good event counter while assembling */ 919 ++ev1; 920 if (ev1 < mddev->events) 921 return -EINVAL; 922 } else if (mddev->bitmap) { 923 /* if adding to array with a bitmap, then we can accept an 924 * older device ... but not too old. 925 */ 926 if (ev1 < mddev->bitmap->events_cleared) 927 return 0; 928 } else { 929 if (ev1 < mddev->events) 930 /* just a hot-add of a new device, leave raid_disk at -1 */ 931 return 0; 932 } 933 934 if (mddev->level != LEVEL_MULTIPATH) { 935 desc = sb->disks + rdev->desc_nr; 936 937 if (desc->state & (1<<MD_DISK_FAULTY)) 938 set_bit(Faulty, &rdev->flags); 939 else if (desc->state & (1<<MD_DISK_SYNC) /* && 940 desc->raid_disk < mddev->raid_disks */) { 941 set_bit(In_sync, &rdev->flags); 942 rdev->raid_disk = desc->raid_disk; 943 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 944 /* active but not in sync implies recovery up to 945 * reshape position. We don't know exactly where 946 * that is, so set to zero for now */ 947 if (mddev->minor_version >= 91) { 948 rdev->recovery_offset = 0; 949 rdev->raid_disk = desc->raid_disk; 950 } 951 } 952 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 953 set_bit(WriteMostly, &rdev->flags); 954 } else /* MULTIPATH are always insync */ 955 set_bit(In_sync, &rdev->flags); 956 return 0; 957 } 958 959 /* 960 * sync_super for 0.90.0 961 */ 962 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 963 { 964 mdp_super_t *sb; 965 mdk_rdev_t *rdev2; 966 int next_spare = mddev->raid_disks; 967 968 969 /* make rdev->sb match mddev data.. 970 * 971 * 1/ zero out disks 972 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 973 * 3/ any empty disks < next_spare become removed 974 * 975 * disks[0] gets initialised to REMOVED because 976 * we cannot be sure from other fields if it has 977 * been initialised or not. 978 */ 979 int i; 980 int active=0, working=0,failed=0,spare=0,nr_disks=0; 981 982 rdev->sb_size = MD_SB_BYTES; 983 984 sb = (mdp_super_t*)page_address(rdev->sb_page); 985 986 memset(sb, 0, sizeof(*sb)); 987 988 sb->md_magic = MD_SB_MAGIC; 989 sb->major_version = mddev->major_version; 990 sb->patch_version = mddev->patch_version; 991 sb->gvalid_words = 0; /* ignored */ 992 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 993 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 994 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 995 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 996 997 sb->ctime = mddev->ctime; 998 sb->level = mddev->level; 999 sb->size = mddev->dev_sectors / 2; 1000 sb->raid_disks = mddev->raid_disks; 1001 sb->md_minor = mddev->md_minor; 1002 sb->not_persistent = 0; 1003 sb->utime = mddev->utime; 1004 sb->state = 0; 1005 sb->events_hi = (mddev->events>>32); 1006 sb->events_lo = (u32)mddev->events; 1007 1008 if (mddev->reshape_position == MaxSector) 1009 sb->minor_version = 90; 1010 else { 1011 sb->minor_version = 91; 1012 sb->reshape_position = mddev->reshape_position; 1013 sb->new_level = mddev->new_level; 1014 sb->delta_disks = mddev->delta_disks; 1015 sb->new_layout = mddev->new_layout; 1016 sb->new_chunk = mddev->new_chunk_sectors << 9; 1017 } 1018 mddev->minor_version = sb->minor_version; 1019 if (mddev->in_sync) 1020 { 1021 sb->recovery_cp = mddev->recovery_cp; 1022 sb->cp_events_hi = (mddev->events>>32); 1023 sb->cp_events_lo = (u32)mddev->events; 1024 if (mddev->recovery_cp == MaxSector) 1025 sb->state = (1<< MD_SB_CLEAN); 1026 } else 1027 sb->recovery_cp = 0; 1028 1029 sb->layout = mddev->layout; 1030 sb->chunk_size = mddev->chunk_sectors << 9; 1031 1032 if (mddev->bitmap && mddev->bitmap_file == NULL) 1033 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1034 1035 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1036 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1037 mdp_disk_t *d; 1038 int desc_nr; 1039 int is_active = test_bit(In_sync, &rdev2->flags); 1040 1041 if (rdev2->raid_disk >= 0 && 1042 sb->minor_version >= 91) 1043 /* we have nowhere to store the recovery_offset, 1044 * but if it is not below the reshape_position, 1045 * we can piggy-back on that. 1046 */ 1047 is_active = 1; 1048 if (rdev2->raid_disk < 0 || 1049 test_bit(Faulty, &rdev2->flags)) 1050 is_active = 0; 1051 if (is_active) 1052 desc_nr = rdev2->raid_disk; 1053 else 1054 desc_nr = next_spare++; 1055 rdev2->desc_nr = desc_nr; 1056 d = &sb->disks[rdev2->desc_nr]; 1057 nr_disks++; 1058 d->number = rdev2->desc_nr; 1059 d->major = MAJOR(rdev2->bdev->bd_dev); 1060 d->minor = MINOR(rdev2->bdev->bd_dev); 1061 if (is_active) 1062 d->raid_disk = rdev2->raid_disk; 1063 else 1064 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1065 if (test_bit(Faulty, &rdev2->flags)) 1066 d->state = (1<<MD_DISK_FAULTY); 1067 else if (is_active) { 1068 d->state = (1<<MD_DISK_ACTIVE); 1069 if (test_bit(In_sync, &rdev2->flags)) 1070 d->state |= (1<<MD_DISK_SYNC); 1071 active++; 1072 working++; 1073 } else { 1074 d->state = 0; 1075 spare++; 1076 working++; 1077 } 1078 if (test_bit(WriteMostly, &rdev2->flags)) 1079 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1080 } 1081 /* now set the "removed" and "faulty" bits on any missing devices */ 1082 for (i=0 ; i < mddev->raid_disks ; i++) { 1083 mdp_disk_t *d = &sb->disks[i]; 1084 if (d->state == 0 && d->number == 0) { 1085 d->number = i; 1086 d->raid_disk = i; 1087 d->state = (1<<MD_DISK_REMOVED); 1088 d->state |= (1<<MD_DISK_FAULTY); 1089 failed++; 1090 } 1091 } 1092 sb->nr_disks = nr_disks; 1093 sb->active_disks = active; 1094 sb->working_disks = working; 1095 sb->failed_disks = failed; 1096 sb->spare_disks = spare; 1097 1098 sb->this_disk = sb->disks[rdev->desc_nr]; 1099 sb->sb_csum = calc_sb_csum(sb); 1100 } 1101 1102 /* 1103 * rdev_size_change for 0.90.0 1104 */ 1105 static unsigned long long 1106 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1107 { 1108 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1109 return 0; /* component must fit device */ 1110 if (rdev->mddev->bitmap_offset) 1111 return 0; /* can't move bitmap */ 1112 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 1113 if (!num_sectors || num_sectors > rdev->sb_start) 1114 num_sectors = rdev->sb_start; 1115 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1116 rdev->sb_page); 1117 md_super_wait(rdev->mddev); 1118 return num_sectors / 2; /* kB for sysfs */ 1119 } 1120 1121 1122 /* 1123 * version 1 superblock 1124 */ 1125 1126 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1127 { 1128 __le32 disk_csum; 1129 u32 csum; 1130 unsigned long long newcsum; 1131 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1132 __le32 *isuper = (__le32*)sb; 1133 int i; 1134 1135 disk_csum = sb->sb_csum; 1136 sb->sb_csum = 0; 1137 newcsum = 0; 1138 for (i=0; size>=4; size -= 4 ) 1139 newcsum += le32_to_cpu(*isuper++); 1140 1141 if (size == 2) 1142 newcsum += le16_to_cpu(*(__le16*) isuper); 1143 1144 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1145 sb->sb_csum = disk_csum; 1146 return cpu_to_le32(csum); 1147 } 1148 1149 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1150 { 1151 struct mdp_superblock_1 *sb; 1152 int ret; 1153 sector_t sb_start; 1154 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1155 int bmask; 1156 1157 /* 1158 * Calculate the position of the superblock in 512byte sectors. 1159 * It is always aligned to a 4K boundary and 1160 * depeding on minor_version, it can be: 1161 * 0: At least 8K, but less than 12K, from end of device 1162 * 1: At start of device 1163 * 2: 4K from start of device. 1164 */ 1165 switch(minor_version) { 1166 case 0: 1167 sb_start = rdev->bdev->bd_inode->i_size >> 9; 1168 sb_start -= 8*2; 1169 sb_start &= ~(sector_t)(4*2-1); 1170 break; 1171 case 1: 1172 sb_start = 0; 1173 break; 1174 case 2: 1175 sb_start = 8; 1176 break; 1177 default: 1178 return -EINVAL; 1179 } 1180 rdev->sb_start = sb_start; 1181 1182 /* superblock is rarely larger than 1K, but it can be larger, 1183 * and it is safe to read 4k, so we do that 1184 */ 1185 ret = read_disk_sb(rdev, 4096); 1186 if (ret) return ret; 1187 1188 1189 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1190 1191 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1192 sb->major_version != cpu_to_le32(1) || 1193 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1194 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1195 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1196 return -EINVAL; 1197 1198 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1199 printk("md: invalid superblock checksum on %s\n", 1200 bdevname(rdev->bdev,b)); 1201 return -EINVAL; 1202 } 1203 if (le64_to_cpu(sb->data_size) < 10) { 1204 printk("md: data_size too small on %s\n", 1205 bdevname(rdev->bdev,b)); 1206 return -EINVAL; 1207 } 1208 1209 rdev->preferred_minor = 0xffff; 1210 rdev->data_offset = le64_to_cpu(sb->data_offset); 1211 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1212 1213 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1214 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1215 if (rdev->sb_size & bmask) 1216 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1217 1218 if (minor_version 1219 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1220 return -EINVAL; 1221 1222 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1223 rdev->desc_nr = -1; 1224 else 1225 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1226 1227 if (!refdev) { 1228 ret = 1; 1229 } else { 1230 __u64 ev1, ev2; 1231 struct mdp_superblock_1 *refsb = 1232 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1233 1234 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1235 sb->level != refsb->level || 1236 sb->layout != refsb->layout || 1237 sb->chunksize != refsb->chunksize) { 1238 printk(KERN_WARNING "md: %s has strangely different" 1239 " superblock to %s\n", 1240 bdevname(rdev->bdev,b), 1241 bdevname(refdev->bdev,b2)); 1242 return -EINVAL; 1243 } 1244 ev1 = le64_to_cpu(sb->events); 1245 ev2 = le64_to_cpu(refsb->events); 1246 1247 if (ev1 > ev2) 1248 ret = 1; 1249 else 1250 ret = 0; 1251 } 1252 if (minor_version) 1253 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) - 1254 le64_to_cpu(sb->data_offset); 1255 else 1256 rdev->sectors = rdev->sb_start; 1257 if (rdev->sectors < le64_to_cpu(sb->data_size)) 1258 return -EINVAL; 1259 rdev->sectors = le64_to_cpu(sb->data_size); 1260 if (le64_to_cpu(sb->size) > rdev->sectors) 1261 return -EINVAL; 1262 return ret; 1263 } 1264 1265 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1266 { 1267 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1268 __u64 ev1 = le64_to_cpu(sb->events); 1269 1270 rdev->raid_disk = -1; 1271 clear_bit(Faulty, &rdev->flags); 1272 clear_bit(In_sync, &rdev->flags); 1273 clear_bit(WriteMostly, &rdev->flags); 1274 clear_bit(BarriersNotsupp, &rdev->flags); 1275 1276 if (mddev->raid_disks == 0) { 1277 mddev->major_version = 1; 1278 mddev->patch_version = 0; 1279 mddev->external = 0; 1280 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1281 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1282 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1283 mddev->level = le32_to_cpu(sb->level); 1284 mddev->clevel[0] = 0; 1285 mddev->layout = le32_to_cpu(sb->layout); 1286 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1287 mddev->dev_sectors = le64_to_cpu(sb->size); 1288 mddev->events = ev1; 1289 mddev->bitmap_offset = 0; 1290 mddev->default_bitmap_offset = 1024 >> 9; 1291 1292 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1293 memcpy(mddev->uuid, sb->set_uuid, 16); 1294 1295 mddev->max_disks = (4096-256)/2; 1296 1297 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1298 mddev->bitmap_file == NULL ) 1299 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); 1300 1301 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1302 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1303 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1304 mddev->new_level = le32_to_cpu(sb->new_level); 1305 mddev->new_layout = le32_to_cpu(sb->new_layout); 1306 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1307 } else { 1308 mddev->reshape_position = MaxSector; 1309 mddev->delta_disks = 0; 1310 mddev->new_level = mddev->level; 1311 mddev->new_layout = mddev->layout; 1312 mddev->new_chunk_sectors = mddev->chunk_sectors; 1313 } 1314 1315 } else if (mddev->pers == NULL) { 1316 /* Insist of good event counter while assembling */ 1317 ++ev1; 1318 if (ev1 < mddev->events) 1319 return -EINVAL; 1320 } else if (mddev->bitmap) { 1321 /* If adding to array with a bitmap, then we can accept an 1322 * older device, but not too old. 1323 */ 1324 if (ev1 < mddev->bitmap->events_cleared) 1325 return 0; 1326 } else { 1327 if (ev1 < mddev->events) 1328 /* just a hot-add of a new device, leave raid_disk at -1 */ 1329 return 0; 1330 } 1331 if (mddev->level != LEVEL_MULTIPATH) { 1332 int role; 1333 if (rdev->desc_nr < 0 || 1334 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1335 role = 0xffff; 1336 rdev->desc_nr = -1; 1337 } else 1338 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1339 switch(role) { 1340 case 0xffff: /* spare */ 1341 break; 1342 case 0xfffe: /* faulty */ 1343 set_bit(Faulty, &rdev->flags); 1344 break; 1345 default: 1346 if ((le32_to_cpu(sb->feature_map) & 1347 MD_FEATURE_RECOVERY_OFFSET)) 1348 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1349 else 1350 set_bit(In_sync, &rdev->flags); 1351 rdev->raid_disk = role; 1352 break; 1353 } 1354 if (sb->devflags & WriteMostly1) 1355 set_bit(WriteMostly, &rdev->flags); 1356 } else /* MULTIPATH are always insync */ 1357 set_bit(In_sync, &rdev->flags); 1358 1359 return 0; 1360 } 1361 1362 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1363 { 1364 struct mdp_superblock_1 *sb; 1365 mdk_rdev_t *rdev2; 1366 int max_dev, i; 1367 /* make rdev->sb match mddev and rdev data. */ 1368 1369 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1370 1371 sb->feature_map = 0; 1372 sb->pad0 = 0; 1373 sb->recovery_offset = cpu_to_le64(0); 1374 memset(sb->pad1, 0, sizeof(sb->pad1)); 1375 memset(sb->pad2, 0, sizeof(sb->pad2)); 1376 memset(sb->pad3, 0, sizeof(sb->pad3)); 1377 1378 sb->utime = cpu_to_le64((__u64)mddev->utime); 1379 sb->events = cpu_to_le64(mddev->events); 1380 if (mddev->in_sync) 1381 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1382 else 1383 sb->resync_offset = cpu_to_le64(0); 1384 1385 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1386 1387 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1388 sb->size = cpu_to_le64(mddev->dev_sectors); 1389 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1390 sb->level = cpu_to_le32(mddev->level); 1391 sb->layout = cpu_to_le32(mddev->layout); 1392 1393 if (mddev->bitmap && mddev->bitmap_file == NULL) { 1394 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); 1395 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1396 } 1397 1398 if (rdev->raid_disk >= 0 && 1399 !test_bit(In_sync, &rdev->flags)) { 1400 if (rdev->recovery_offset > 0) { 1401 sb->feature_map |= 1402 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1403 sb->recovery_offset = 1404 cpu_to_le64(rdev->recovery_offset); 1405 } 1406 } 1407 1408 if (mddev->reshape_position != MaxSector) { 1409 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1410 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1411 sb->new_layout = cpu_to_le32(mddev->new_layout); 1412 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1413 sb->new_level = cpu_to_le32(mddev->new_level); 1414 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1415 } 1416 1417 max_dev = 0; 1418 list_for_each_entry(rdev2, &mddev->disks, same_set) 1419 if (rdev2->desc_nr+1 > max_dev) 1420 max_dev = rdev2->desc_nr+1; 1421 1422 if (max_dev > le32_to_cpu(sb->max_dev)) { 1423 int bmask; 1424 sb->max_dev = cpu_to_le32(max_dev); 1425 rdev->sb_size = max_dev * 2 + 256; 1426 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1427 if (rdev->sb_size & bmask) 1428 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1429 } 1430 for (i=0; i<max_dev;i++) 1431 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1432 1433 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1434 i = rdev2->desc_nr; 1435 if (test_bit(Faulty, &rdev2->flags)) 1436 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1437 else if (test_bit(In_sync, &rdev2->flags)) 1438 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1439 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0) 1440 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1441 else 1442 sb->dev_roles[i] = cpu_to_le16(0xffff); 1443 } 1444 1445 sb->sb_csum = calc_sb_1_csum(sb); 1446 } 1447 1448 static unsigned long long 1449 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1450 { 1451 struct mdp_superblock_1 *sb; 1452 sector_t max_sectors; 1453 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1454 return 0; /* component must fit device */ 1455 if (rdev->sb_start < rdev->data_offset) { 1456 /* minor versions 1 and 2; superblock before data */ 1457 max_sectors = rdev->bdev->bd_inode->i_size >> 9; 1458 max_sectors -= rdev->data_offset; 1459 if (!num_sectors || num_sectors > max_sectors) 1460 num_sectors = max_sectors; 1461 } else if (rdev->mddev->bitmap_offset) { 1462 /* minor version 0 with bitmap we can't move */ 1463 return 0; 1464 } else { 1465 /* minor version 0; superblock after data */ 1466 sector_t sb_start; 1467 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2; 1468 sb_start &= ~(sector_t)(4*2 - 1); 1469 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1470 if (!num_sectors || num_sectors > max_sectors) 1471 num_sectors = max_sectors; 1472 rdev->sb_start = sb_start; 1473 } 1474 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1475 sb->data_size = cpu_to_le64(num_sectors); 1476 sb->super_offset = rdev->sb_start; 1477 sb->sb_csum = calc_sb_1_csum(sb); 1478 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1479 rdev->sb_page); 1480 md_super_wait(rdev->mddev); 1481 return num_sectors / 2; /* kB for sysfs */ 1482 } 1483 1484 static struct super_type super_types[] = { 1485 [0] = { 1486 .name = "0.90.0", 1487 .owner = THIS_MODULE, 1488 .load_super = super_90_load, 1489 .validate_super = super_90_validate, 1490 .sync_super = super_90_sync, 1491 .rdev_size_change = super_90_rdev_size_change, 1492 }, 1493 [1] = { 1494 .name = "md-1", 1495 .owner = THIS_MODULE, 1496 .load_super = super_1_load, 1497 .validate_super = super_1_validate, 1498 .sync_super = super_1_sync, 1499 .rdev_size_change = super_1_rdev_size_change, 1500 }, 1501 }; 1502 1503 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1504 { 1505 mdk_rdev_t *rdev, *rdev2; 1506 1507 rcu_read_lock(); 1508 rdev_for_each_rcu(rdev, mddev1) 1509 rdev_for_each_rcu(rdev2, mddev2) 1510 if (rdev->bdev->bd_contains == 1511 rdev2->bdev->bd_contains) { 1512 rcu_read_unlock(); 1513 return 1; 1514 } 1515 rcu_read_unlock(); 1516 return 0; 1517 } 1518 1519 static LIST_HEAD(pending_raid_disks); 1520 1521 /* 1522 * Try to register data integrity profile for an mddev 1523 * 1524 * This is called when an array is started and after a disk has been kicked 1525 * from the array. It only succeeds if all working and active component devices 1526 * are integrity capable with matching profiles. 1527 */ 1528 int md_integrity_register(mddev_t *mddev) 1529 { 1530 mdk_rdev_t *rdev, *reference = NULL; 1531 1532 if (list_empty(&mddev->disks)) 1533 return 0; /* nothing to do */ 1534 if (blk_get_integrity(mddev->gendisk)) 1535 return 0; /* already registered */ 1536 list_for_each_entry(rdev, &mddev->disks, same_set) { 1537 /* skip spares and non-functional disks */ 1538 if (test_bit(Faulty, &rdev->flags)) 1539 continue; 1540 if (rdev->raid_disk < 0) 1541 continue; 1542 /* 1543 * If at least one rdev is not integrity capable, we can not 1544 * enable data integrity for the md device. 1545 */ 1546 if (!bdev_get_integrity(rdev->bdev)) 1547 return -EINVAL; 1548 if (!reference) { 1549 /* Use the first rdev as the reference */ 1550 reference = rdev; 1551 continue; 1552 } 1553 /* does this rdev's profile match the reference profile? */ 1554 if (blk_integrity_compare(reference->bdev->bd_disk, 1555 rdev->bdev->bd_disk) < 0) 1556 return -EINVAL; 1557 } 1558 /* 1559 * All component devices are integrity capable and have matching 1560 * profiles, register the common profile for the md device. 1561 */ 1562 if (blk_integrity_register(mddev->gendisk, 1563 bdev_get_integrity(reference->bdev)) != 0) { 1564 printk(KERN_ERR "md: failed to register integrity for %s\n", 1565 mdname(mddev)); 1566 return -EINVAL; 1567 } 1568 printk(KERN_NOTICE "md: data integrity on %s enabled\n", 1569 mdname(mddev)); 1570 return 0; 1571 } 1572 EXPORT_SYMBOL(md_integrity_register); 1573 1574 /* Disable data integrity if non-capable/non-matching disk is being added */ 1575 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 1576 { 1577 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 1578 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 1579 1580 if (!bi_mddev) /* nothing to do */ 1581 return; 1582 if (rdev->raid_disk < 0) /* skip spares */ 1583 return; 1584 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 1585 rdev->bdev->bd_disk) >= 0) 1586 return; 1587 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 1588 blk_integrity_unregister(mddev->gendisk); 1589 } 1590 EXPORT_SYMBOL(md_integrity_add_rdev); 1591 1592 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1593 { 1594 char b[BDEVNAME_SIZE]; 1595 struct kobject *ko; 1596 char *s; 1597 int err; 1598 1599 if (rdev->mddev) { 1600 MD_BUG(); 1601 return -EINVAL; 1602 } 1603 1604 /* prevent duplicates */ 1605 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1606 return -EEXIST; 1607 1608 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 1609 if (rdev->sectors && (mddev->dev_sectors == 0 || 1610 rdev->sectors < mddev->dev_sectors)) { 1611 if (mddev->pers) { 1612 /* Cannot change size, so fail 1613 * If mddev->level <= 0, then we don't care 1614 * about aligning sizes (e.g. linear) 1615 */ 1616 if (mddev->level > 0) 1617 return -ENOSPC; 1618 } else 1619 mddev->dev_sectors = rdev->sectors; 1620 } 1621 1622 /* Verify rdev->desc_nr is unique. 1623 * If it is -1, assign a free number, else 1624 * check number is not in use 1625 */ 1626 if (rdev->desc_nr < 0) { 1627 int choice = 0; 1628 if (mddev->pers) choice = mddev->raid_disks; 1629 while (find_rdev_nr(mddev, choice)) 1630 choice++; 1631 rdev->desc_nr = choice; 1632 } else { 1633 if (find_rdev_nr(mddev, rdev->desc_nr)) 1634 return -EBUSY; 1635 } 1636 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 1637 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 1638 mdname(mddev), mddev->max_disks); 1639 return -EBUSY; 1640 } 1641 bdevname(rdev->bdev,b); 1642 while ( (s=strchr(b, '/')) != NULL) 1643 *s = '!'; 1644 1645 rdev->mddev = mddev; 1646 printk(KERN_INFO "md: bind<%s>\n", b); 1647 1648 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1649 goto fail; 1650 1651 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 1652 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) { 1653 kobject_del(&rdev->kobj); 1654 goto fail; 1655 } 1656 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state"); 1657 1658 list_add_rcu(&rdev->same_set, &mddev->disks); 1659 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); 1660 1661 /* May as well allow recovery to be retried once */ 1662 mddev->recovery_disabled = 0; 1663 1664 return 0; 1665 1666 fail: 1667 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1668 b, mdname(mddev)); 1669 return err; 1670 } 1671 1672 static void md_delayed_delete(struct work_struct *ws) 1673 { 1674 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1675 kobject_del(&rdev->kobj); 1676 kobject_put(&rdev->kobj); 1677 } 1678 1679 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1680 { 1681 char b[BDEVNAME_SIZE]; 1682 if (!rdev->mddev) { 1683 MD_BUG(); 1684 return; 1685 } 1686 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1687 list_del_rcu(&rdev->same_set); 1688 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1689 rdev->mddev = NULL; 1690 sysfs_remove_link(&rdev->kobj, "block"); 1691 sysfs_put(rdev->sysfs_state); 1692 rdev->sysfs_state = NULL; 1693 /* We need to delay this, otherwise we can deadlock when 1694 * writing to 'remove' to "dev/state". We also need 1695 * to delay it due to rcu usage. 1696 */ 1697 synchronize_rcu(); 1698 INIT_WORK(&rdev->del_work, md_delayed_delete); 1699 kobject_get(&rdev->kobj); 1700 schedule_work(&rdev->del_work); 1701 } 1702 1703 /* 1704 * prevent the device from being mounted, repartitioned or 1705 * otherwise reused by a RAID array (or any other kernel 1706 * subsystem), by bd_claiming the device. 1707 */ 1708 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1709 { 1710 int err = 0; 1711 struct block_device *bdev; 1712 char b[BDEVNAME_SIZE]; 1713 1714 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1715 if (IS_ERR(bdev)) { 1716 printk(KERN_ERR "md: could not open %s.\n", 1717 __bdevname(dev, b)); 1718 return PTR_ERR(bdev); 1719 } 1720 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); 1721 if (err) { 1722 printk(KERN_ERR "md: could not bd_claim %s.\n", 1723 bdevname(bdev, b)); 1724 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1725 return err; 1726 } 1727 if (!shared) 1728 set_bit(AllReserved, &rdev->flags); 1729 rdev->bdev = bdev; 1730 return err; 1731 } 1732 1733 static void unlock_rdev(mdk_rdev_t *rdev) 1734 { 1735 struct block_device *bdev = rdev->bdev; 1736 rdev->bdev = NULL; 1737 if (!bdev) 1738 MD_BUG(); 1739 bd_release(bdev); 1740 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1741 } 1742 1743 void md_autodetect_dev(dev_t dev); 1744 1745 static void export_rdev(mdk_rdev_t * rdev) 1746 { 1747 char b[BDEVNAME_SIZE]; 1748 printk(KERN_INFO "md: export_rdev(%s)\n", 1749 bdevname(rdev->bdev,b)); 1750 if (rdev->mddev) 1751 MD_BUG(); 1752 free_disk_sb(rdev); 1753 #ifndef MODULE 1754 if (test_bit(AutoDetected, &rdev->flags)) 1755 md_autodetect_dev(rdev->bdev->bd_dev); 1756 #endif 1757 unlock_rdev(rdev); 1758 kobject_put(&rdev->kobj); 1759 } 1760 1761 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1762 { 1763 unbind_rdev_from_array(rdev); 1764 export_rdev(rdev); 1765 } 1766 1767 static void export_array(mddev_t *mddev) 1768 { 1769 mdk_rdev_t *rdev, *tmp; 1770 1771 rdev_for_each(rdev, tmp, mddev) { 1772 if (!rdev->mddev) { 1773 MD_BUG(); 1774 continue; 1775 } 1776 kick_rdev_from_array(rdev); 1777 } 1778 if (!list_empty(&mddev->disks)) 1779 MD_BUG(); 1780 mddev->raid_disks = 0; 1781 mddev->major_version = 0; 1782 } 1783 1784 static void print_desc(mdp_disk_t *desc) 1785 { 1786 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1787 desc->major,desc->minor,desc->raid_disk,desc->state); 1788 } 1789 1790 static void print_sb_90(mdp_super_t *sb) 1791 { 1792 int i; 1793 1794 printk(KERN_INFO 1795 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1796 sb->major_version, sb->minor_version, sb->patch_version, 1797 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1798 sb->ctime); 1799 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1800 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1801 sb->md_minor, sb->layout, sb->chunk_size); 1802 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1803 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1804 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1805 sb->failed_disks, sb->spare_disks, 1806 sb->sb_csum, (unsigned long)sb->events_lo); 1807 1808 printk(KERN_INFO); 1809 for (i = 0; i < MD_SB_DISKS; i++) { 1810 mdp_disk_t *desc; 1811 1812 desc = sb->disks + i; 1813 if (desc->number || desc->major || desc->minor || 1814 desc->raid_disk || (desc->state && (desc->state != 4))) { 1815 printk(" D %2d: ", i); 1816 print_desc(desc); 1817 } 1818 } 1819 printk(KERN_INFO "md: THIS: "); 1820 print_desc(&sb->this_disk); 1821 } 1822 1823 static void print_sb_1(struct mdp_superblock_1 *sb) 1824 { 1825 __u8 *uuid; 1826 1827 uuid = sb->set_uuid; 1828 printk(KERN_INFO 1829 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x" 1830 ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n" 1831 "md: Name: \"%s\" CT:%llu\n", 1832 le32_to_cpu(sb->major_version), 1833 le32_to_cpu(sb->feature_map), 1834 uuid[0], uuid[1], uuid[2], uuid[3], 1835 uuid[4], uuid[5], uuid[6], uuid[7], 1836 uuid[8], uuid[9], uuid[10], uuid[11], 1837 uuid[12], uuid[13], uuid[14], uuid[15], 1838 sb->set_name, 1839 (unsigned long long)le64_to_cpu(sb->ctime) 1840 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 1841 1842 uuid = sb->device_uuid; 1843 printk(KERN_INFO 1844 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 1845 " RO:%llu\n" 1846 "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x" 1847 ":%02x%02x%02x%02x%02x%02x\n" 1848 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 1849 "md: (MaxDev:%u) \n", 1850 le32_to_cpu(sb->level), 1851 (unsigned long long)le64_to_cpu(sb->size), 1852 le32_to_cpu(sb->raid_disks), 1853 le32_to_cpu(sb->layout), 1854 le32_to_cpu(sb->chunksize), 1855 (unsigned long long)le64_to_cpu(sb->data_offset), 1856 (unsigned long long)le64_to_cpu(sb->data_size), 1857 (unsigned long long)le64_to_cpu(sb->super_offset), 1858 (unsigned long long)le64_to_cpu(sb->recovery_offset), 1859 le32_to_cpu(sb->dev_number), 1860 uuid[0], uuid[1], uuid[2], uuid[3], 1861 uuid[4], uuid[5], uuid[6], uuid[7], 1862 uuid[8], uuid[9], uuid[10], uuid[11], 1863 uuid[12], uuid[13], uuid[14], uuid[15], 1864 sb->devflags, 1865 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 1866 (unsigned long long)le64_to_cpu(sb->events), 1867 (unsigned long long)le64_to_cpu(sb->resync_offset), 1868 le32_to_cpu(sb->sb_csum), 1869 le32_to_cpu(sb->max_dev) 1870 ); 1871 } 1872 1873 static void print_rdev(mdk_rdev_t *rdev, int major_version) 1874 { 1875 char b[BDEVNAME_SIZE]; 1876 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 1877 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 1878 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 1879 rdev->desc_nr); 1880 if (rdev->sb_loaded) { 1881 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 1882 switch (major_version) { 1883 case 0: 1884 print_sb_90((mdp_super_t*)page_address(rdev->sb_page)); 1885 break; 1886 case 1: 1887 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page)); 1888 break; 1889 } 1890 } else 1891 printk(KERN_INFO "md: no rdev superblock!\n"); 1892 } 1893 1894 static void md_print_devices(void) 1895 { 1896 struct list_head *tmp; 1897 mdk_rdev_t *rdev; 1898 mddev_t *mddev; 1899 char b[BDEVNAME_SIZE]; 1900 1901 printk("\n"); 1902 printk("md: **********************************\n"); 1903 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 1904 printk("md: **********************************\n"); 1905 for_each_mddev(mddev, tmp) { 1906 1907 if (mddev->bitmap) 1908 bitmap_print_sb(mddev->bitmap); 1909 else 1910 printk("%s: ", mdname(mddev)); 1911 list_for_each_entry(rdev, &mddev->disks, same_set) 1912 printk("<%s>", bdevname(rdev->bdev,b)); 1913 printk("\n"); 1914 1915 list_for_each_entry(rdev, &mddev->disks, same_set) 1916 print_rdev(rdev, mddev->major_version); 1917 } 1918 printk("md: **********************************\n"); 1919 printk("\n"); 1920 } 1921 1922 1923 static void sync_sbs(mddev_t * mddev, int nospares) 1924 { 1925 /* Update each superblock (in-memory image), but 1926 * if we are allowed to, skip spares which already 1927 * have the right event counter, or have one earlier 1928 * (which would mean they aren't being marked as dirty 1929 * with the rest of the array) 1930 */ 1931 mdk_rdev_t *rdev; 1932 1933 /* First make sure individual recovery_offsets are correct */ 1934 list_for_each_entry(rdev, &mddev->disks, same_set) { 1935 if (rdev->raid_disk >= 0 && 1936 !test_bit(In_sync, &rdev->flags) && 1937 mddev->curr_resync_completed > rdev->recovery_offset) 1938 rdev->recovery_offset = mddev->curr_resync_completed; 1939 1940 } 1941 list_for_each_entry(rdev, &mddev->disks, same_set) { 1942 if (rdev->sb_events == mddev->events || 1943 (nospares && 1944 rdev->raid_disk < 0 && 1945 (rdev->sb_events&1)==0 && 1946 rdev->sb_events+1 == mddev->events)) { 1947 /* Don't update this superblock */ 1948 rdev->sb_loaded = 2; 1949 } else { 1950 super_types[mddev->major_version]. 1951 sync_super(mddev, rdev); 1952 rdev->sb_loaded = 1; 1953 } 1954 } 1955 } 1956 1957 static void md_update_sb(mddev_t * mddev, int force_change) 1958 { 1959 mdk_rdev_t *rdev; 1960 int sync_req; 1961 int nospares = 0; 1962 1963 mddev->utime = get_seconds(); 1964 if (mddev->external) 1965 return; 1966 repeat: 1967 spin_lock_irq(&mddev->write_lock); 1968 1969 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1970 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 1971 force_change = 1; 1972 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 1973 /* just a clean<-> dirty transition, possibly leave spares alone, 1974 * though if events isn't the right even/odd, we will have to do 1975 * spares after all 1976 */ 1977 nospares = 1; 1978 if (force_change) 1979 nospares = 0; 1980 if (mddev->degraded) 1981 /* If the array is degraded, then skipping spares is both 1982 * dangerous and fairly pointless. 1983 * Dangerous because a device that was removed from the array 1984 * might have a event_count that still looks up-to-date, 1985 * so it can be re-added without a resync. 1986 * Pointless because if there are any spares to skip, 1987 * then a recovery will happen and soon that array won't 1988 * be degraded any more and the spare can go back to sleep then. 1989 */ 1990 nospares = 0; 1991 1992 sync_req = mddev->in_sync; 1993 1994 /* If this is just a dirty<->clean transition, and the array is clean 1995 * and 'events' is odd, we can roll back to the previous clean state */ 1996 if (nospares 1997 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 1998 && (mddev->events & 1) 1999 && mddev->events != 1) 2000 mddev->events--; 2001 else { 2002 /* otherwise we have to go forward and ... */ 2003 mddev->events ++; 2004 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ 2005 /* .. if the array isn't clean, an 'even' event must also go 2006 * to spares. */ 2007 if ((mddev->events&1)==0) 2008 nospares = 0; 2009 } else { 2010 /* otherwise an 'odd' event must go to spares */ 2011 if ((mddev->events&1)) 2012 nospares = 0; 2013 } 2014 } 2015 2016 if (!mddev->events) { 2017 /* 2018 * oops, this 64-bit counter should never wrap. 2019 * Either we are in around ~1 trillion A.C., assuming 2020 * 1 reboot per second, or we have a bug: 2021 */ 2022 MD_BUG(); 2023 mddev->events --; 2024 } 2025 2026 /* 2027 * do not write anything to disk if using 2028 * nonpersistent superblocks 2029 */ 2030 if (!mddev->persistent) { 2031 if (!mddev->external) 2032 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2033 2034 spin_unlock_irq(&mddev->write_lock); 2035 wake_up(&mddev->sb_wait); 2036 return; 2037 } 2038 sync_sbs(mddev, nospares); 2039 spin_unlock_irq(&mddev->write_lock); 2040 2041 dprintk(KERN_INFO 2042 "md: updating %s RAID superblock on device (in sync %d)\n", 2043 mdname(mddev),mddev->in_sync); 2044 2045 bitmap_update_sb(mddev->bitmap); 2046 list_for_each_entry(rdev, &mddev->disks, same_set) { 2047 char b[BDEVNAME_SIZE]; 2048 dprintk(KERN_INFO "md: "); 2049 if (rdev->sb_loaded != 1) 2050 continue; /* no noise on spare devices */ 2051 if (test_bit(Faulty, &rdev->flags)) 2052 dprintk("(skipping faulty "); 2053 2054 dprintk("%s ", bdevname(rdev->bdev,b)); 2055 if (!test_bit(Faulty, &rdev->flags)) { 2056 md_super_write(mddev,rdev, 2057 rdev->sb_start, rdev->sb_size, 2058 rdev->sb_page); 2059 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 2060 bdevname(rdev->bdev,b), 2061 (unsigned long long)rdev->sb_start); 2062 rdev->sb_events = mddev->events; 2063 2064 } else 2065 dprintk(")\n"); 2066 if (mddev->level == LEVEL_MULTIPATH) 2067 /* only need to write one superblock... */ 2068 break; 2069 } 2070 md_super_wait(mddev); 2071 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2072 2073 spin_lock_irq(&mddev->write_lock); 2074 if (mddev->in_sync != sync_req || 2075 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2076 /* have to write it out again */ 2077 spin_unlock_irq(&mddev->write_lock); 2078 goto repeat; 2079 } 2080 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2081 spin_unlock_irq(&mddev->write_lock); 2082 wake_up(&mddev->sb_wait); 2083 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2084 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2085 2086 } 2087 2088 /* words written to sysfs files may, or may not, be \n terminated. 2089 * We want to accept with case. For this we use cmd_match. 2090 */ 2091 static int cmd_match(const char *cmd, const char *str) 2092 { 2093 /* See if cmd, written into a sysfs file, matches 2094 * str. They must either be the same, or cmd can 2095 * have a trailing newline 2096 */ 2097 while (*cmd && *str && *cmd == *str) { 2098 cmd++; 2099 str++; 2100 } 2101 if (*cmd == '\n') 2102 cmd++; 2103 if (*str || *cmd) 2104 return 0; 2105 return 1; 2106 } 2107 2108 struct rdev_sysfs_entry { 2109 struct attribute attr; 2110 ssize_t (*show)(mdk_rdev_t *, char *); 2111 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 2112 }; 2113 2114 static ssize_t 2115 state_show(mdk_rdev_t *rdev, char *page) 2116 { 2117 char *sep = ""; 2118 size_t len = 0; 2119 2120 if (test_bit(Faulty, &rdev->flags)) { 2121 len+= sprintf(page+len, "%sfaulty",sep); 2122 sep = ","; 2123 } 2124 if (test_bit(In_sync, &rdev->flags)) { 2125 len += sprintf(page+len, "%sin_sync",sep); 2126 sep = ","; 2127 } 2128 if (test_bit(WriteMostly, &rdev->flags)) { 2129 len += sprintf(page+len, "%swrite_mostly",sep); 2130 sep = ","; 2131 } 2132 if (test_bit(Blocked, &rdev->flags)) { 2133 len += sprintf(page+len, "%sblocked", sep); 2134 sep = ","; 2135 } 2136 if (!test_bit(Faulty, &rdev->flags) && 2137 !test_bit(In_sync, &rdev->flags)) { 2138 len += sprintf(page+len, "%sspare", sep); 2139 sep = ","; 2140 } 2141 return len+sprintf(page+len, "\n"); 2142 } 2143 2144 static ssize_t 2145 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2146 { 2147 /* can write 2148 * faulty - simulates and error 2149 * remove - disconnects the device 2150 * writemostly - sets write_mostly 2151 * -writemostly - clears write_mostly 2152 * blocked - sets the Blocked flag 2153 * -blocked - clears the Blocked flag 2154 * insync - sets Insync providing device isn't active 2155 */ 2156 int err = -EINVAL; 2157 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2158 md_error(rdev->mddev, rdev); 2159 err = 0; 2160 } else if (cmd_match(buf, "remove")) { 2161 if (rdev->raid_disk >= 0) 2162 err = -EBUSY; 2163 else { 2164 mddev_t *mddev = rdev->mddev; 2165 kick_rdev_from_array(rdev); 2166 if (mddev->pers) 2167 md_update_sb(mddev, 1); 2168 md_new_event(mddev); 2169 err = 0; 2170 } 2171 } else if (cmd_match(buf, "writemostly")) { 2172 set_bit(WriteMostly, &rdev->flags); 2173 err = 0; 2174 } else if (cmd_match(buf, "-writemostly")) { 2175 clear_bit(WriteMostly, &rdev->flags); 2176 err = 0; 2177 } else if (cmd_match(buf, "blocked")) { 2178 set_bit(Blocked, &rdev->flags); 2179 err = 0; 2180 } else if (cmd_match(buf, "-blocked")) { 2181 clear_bit(Blocked, &rdev->flags); 2182 wake_up(&rdev->blocked_wait); 2183 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2184 md_wakeup_thread(rdev->mddev->thread); 2185 2186 err = 0; 2187 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2188 set_bit(In_sync, &rdev->flags); 2189 err = 0; 2190 } 2191 if (!err && rdev->sysfs_state) 2192 sysfs_notify_dirent(rdev->sysfs_state); 2193 return err ? err : len; 2194 } 2195 static struct rdev_sysfs_entry rdev_state = 2196 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2197 2198 static ssize_t 2199 errors_show(mdk_rdev_t *rdev, char *page) 2200 { 2201 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2202 } 2203 2204 static ssize_t 2205 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2206 { 2207 char *e; 2208 unsigned long n = simple_strtoul(buf, &e, 10); 2209 if (*buf && (*e == 0 || *e == '\n')) { 2210 atomic_set(&rdev->corrected_errors, n); 2211 return len; 2212 } 2213 return -EINVAL; 2214 } 2215 static struct rdev_sysfs_entry rdev_errors = 2216 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2217 2218 static ssize_t 2219 slot_show(mdk_rdev_t *rdev, char *page) 2220 { 2221 if (rdev->raid_disk < 0) 2222 return sprintf(page, "none\n"); 2223 else 2224 return sprintf(page, "%d\n", rdev->raid_disk); 2225 } 2226 2227 static ssize_t 2228 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2229 { 2230 char *e; 2231 int err; 2232 char nm[20]; 2233 int slot = simple_strtoul(buf, &e, 10); 2234 if (strncmp(buf, "none", 4)==0) 2235 slot = -1; 2236 else if (e==buf || (*e && *e!= '\n')) 2237 return -EINVAL; 2238 if (rdev->mddev->pers && slot == -1) { 2239 /* Setting 'slot' on an active array requires also 2240 * updating the 'rd%d' link, and communicating 2241 * with the personality with ->hot_*_disk. 2242 * For now we only support removing 2243 * failed/spare devices. This normally happens automatically, 2244 * but not when the metadata is externally managed. 2245 */ 2246 if (rdev->raid_disk == -1) 2247 return -EEXIST; 2248 /* personality does all needed checks */ 2249 if (rdev->mddev->pers->hot_add_disk == NULL) 2250 return -EINVAL; 2251 err = rdev->mddev->pers-> 2252 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2253 if (err) 2254 return err; 2255 sprintf(nm, "rd%d", rdev->raid_disk); 2256 sysfs_remove_link(&rdev->mddev->kobj, nm); 2257 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2258 md_wakeup_thread(rdev->mddev->thread); 2259 } else if (rdev->mddev->pers) { 2260 mdk_rdev_t *rdev2; 2261 /* Activating a spare .. or possibly reactivating 2262 * if we ever get bitmaps working here. 2263 */ 2264 2265 if (rdev->raid_disk != -1) 2266 return -EBUSY; 2267 2268 if (rdev->mddev->pers->hot_add_disk == NULL) 2269 return -EINVAL; 2270 2271 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) 2272 if (rdev2->raid_disk == slot) 2273 return -EEXIST; 2274 2275 rdev->raid_disk = slot; 2276 if (test_bit(In_sync, &rdev->flags)) 2277 rdev->saved_raid_disk = slot; 2278 else 2279 rdev->saved_raid_disk = -1; 2280 err = rdev->mddev->pers-> 2281 hot_add_disk(rdev->mddev, rdev); 2282 if (err) { 2283 rdev->raid_disk = -1; 2284 return err; 2285 } else 2286 sysfs_notify_dirent(rdev->sysfs_state); 2287 sprintf(nm, "rd%d", rdev->raid_disk); 2288 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2289 printk(KERN_WARNING 2290 "md: cannot register " 2291 "%s for %s\n", 2292 nm, mdname(rdev->mddev)); 2293 2294 /* don't wakeup anyone, leave that to userspace. */ 2295 } else { 2296 if (slot >= rdev->mddev->raid_disks) 2297 return -ENOSPC; 2298 rdev->raid_disk = slot; 2299 /* assume it is working */ 2300 clear_bit(Faulty, &rdev->flags); 2301 clear_bit(WriteMostly, &rdev->flags); 2302 set_bit(In_sync, &rdev->flags); 2303 sysfs_notify_dirent(rdev->sysfs_state); 2304 } 2305 return len; 2306 } 2307 2308 2309 static struct rdev_sysfs_entry rdev_slot = 2310 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2311 2312 static ssize_t 2313 offset_show(mdk_rdev_t *rdev, char *page) 2314 { 2315 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2316 } 2317 2318 static ssize_t 2319 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2320 { 2321 char *e; 2322 unsigned long long offset = simple_strtoull(buf, &e, 10); 2323 if (e==buf || (*e && *e != '\n')) 2324 return -EINVAL; 2325 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2326 return -EBUSY; 2327 if (rdev->sectors && rdev->mddev->external) 2328 /* Must set offset before size, so overlap checks 2329 * can be sane */ 2330 return -EBUSY; 2331 rdev->data_offset = offset; 2332 return len; 2333 } 2334 2335 static struct rdev_sysfs_entry rdev_offset = 2336 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2337 2338 static ssize_t 2339 rdev_size_show(mdk_rdev_t *rdev, char *page) 2340 { 2341 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2342 } 2343 2344 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2345 { 2346 /* check if two start/length pairs overlap */ 2347 if (s1+l1 <= s2) 2348 return 0; 2349 if (s2+l2 <= s1) 2350 return 0; 2351 return 1; 2352 } 2353 2354 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2355 { 2356 unsigned long long blocks; 2357 sector_t new; 2358 2359 if (strict_strtoull(buf, 10, &blocks) < 0) 2360 return -EINVAL; 2361 2362 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2363 return -EINVAL; /* sector conversion overflow */ 2364 2365 new = blocks * 2; 2366 if (new != blocks * 2) 2367 return -EINVAL; /* unsigned long long to sector_t overflow */ 2368 2369 *sectors = new; 2370 return 0; 2371 } 2372 2373 static ssize_t 2374 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2375 { 2376 mddev_t *my_mddev = rdev->mddev; 2377 sector_t oldsectors = rdev->sectors; 2378 sector_t sectors; 2379 2380 if (strict_blocks_to_sectors(buf, §ors) < 0) 2381 return -EINVAL; 2382 if (my_mddev->pers && rdev->raid_disk >= 0) { 2383 if (my_mddev->persistent) { 2384 sectors = super_types[my_mddev->major_version]. 2385 rdev_size_change(rdev, sectors); 2386 if (!sectors) 2387 return -EBUSY; 2388 } else if (!sectors) 2389 sectors = (rdev->bdev->bd_inode->i_size >> 9) - 2390 rdev->data_offset; 2391 } 2392 if (sectors < my_mddev->dev_sectors) 2393 return -EINVAL; /* component must fit device */ 2394 2395 rdev->sectors = sectors; 2396 if (sectors > oldsectors && my_mddev->external) { 2397 /* need to check that all other rdevs with the same ->bdev 2398 * do not overlap. We need to unlock the mddev to avoid 2399 * a deadlock. We have already changed rdev->sectors, and if 2400 * we have to change it back, we will have the lock again. 2401 */ 2402 mddev_t *mddev; 2403 int overlap = 0; 2404 struct list_head *tmp; 2405 2406 mddev_unlock(my_mddev); 2407 for_each_mddev(mddev, tmp) { 2408 mdk_rdev_t *rdev2; 2409 2410 mddev_lock(mddev); 2411 list_for_each_entry(rdev2, &mddev->disks, same_set) 2412 if (test_bit(AllReserved, &rdev2->flags) || 2413 (rdev->bdev == rdev2->bdev && 2414 rdev != rdev2 && 2415 overlaps(rdev->data_offset, rdev->sectors, 2416 rdev2->data_offset, 2417 rdev2->sectors))) { 2418 overlap = 1; 2419 break; 2420 } 2421 mddev_unlock(mddev); 2422 if (overlap) { 2423 mddev_put(mddev); 2424 break; 2425 } 2426 } 2427 mddev_lock(my_mddev); 2428 if (overlap) { 2429 /* Someone else could have slipped in a size 2430 * change here, but doing so is just silly. 2431 * We put oldsectors back because we *know* it is 2432 * safe, and trust userspace not to race with 2433 * itself 2434 */ 2435 rdev->sectors = oldsectors; 2436 return -EBUSY; 2437 } 2438 } 2439 return len; 2440 } 2441 2442 static struct rdev_sysfs_entry rdev_size = 2443 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2444 2445 static struct attribute *rdev_default_attrs[] = { 2446 &rdev_state.attr, 2447 &rdev_errors.attr, 2448 &rdev_slot.attr, 2449 &rdev_offset.attr, 2450 &rdev_size.attr, 2451 NULL, 2452 }; 2453 static ssize_t 2454 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2455 { 2456 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2457 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2458 mddev_t *mddev = rdev->mddev; 2459 ssize_t rv; 2460 2461 if (!entry->show) 2462 return -EIO; 2463 2464 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2465 if (!rv) { 2466 if (rdev->mddev == NULL) 2467 rv = -EBUSY; 2468 else 2469 rv = entry->show(rdev, page); 2470 mddev_unlock(mddev); 2471 } 2472 return rv; 2473 } 2474 2475 static ssize_t 2476 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2477 const char *page, size_t length) 2478 { 2479 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2480 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2481 ssize_t rv; 2482 mddev_t *mddev = rdev->mddev; 2483 2484 if (!entry->store) 2485 return -EIO; 2486 if (!capable(CAP_SYS_ADMIN)) 2487 return -EACCES; 2488 rv = mddev ? mddev_lock(mddev): -EBUSY; 2489 if (!rv) { 2490 if (rdev->mddev == NULL) 2491 rv = -EBUSY; 2492 else 2493 rv = entry->store(rdev, page, length); 2494 mddev_unlock(mddev); 2495 } 2496 return rv; 2497 } 2498 2499 static void rdev_free(struct kobject *ko) 2500 { 2501 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2502 kfree(rdev); 2503 } 2504 static struct sysfs_ops rdev_sysfs_ops = { 2505 .show = rdev_attr_show, 2506 .store = rdev_attr_store, 2507 }; 2508 static struct kobj_type rdev_ktype = { 2509 .release = rdev_free, 2510 .sysfs_ops = &rdev_sysfs_ops, 2511 .default_attrs = rdev_default_attrs, 2512 }; 2513 2514 /* 2515 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2516 * 2517 * mark the device faulty if: 2518 * 2519 * - the device is nonexistent (zero size) 2520 * - the device has no valid superblock 2521 * 2522 * a faulty rdev _never_ has rdev->sb set. 2523 */ 2524 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2525 { 2526 char b[BDEVNAME_SIZE]; 2527 int err; 2528 mdk_rdev_t *rdev; 2529 sector_t size; 2530 2531 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2532 if (!rdev) { 2533 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2534 return ERR_PTR(-ENOMEM); 2535 } 2536 2537 if ((err = alloc_disk_sb(rdev))) 2538 goto abort_free; 2539 2540 err = lock_rdev(rdev, newdev, super_format == -2); 2541 if (err) 2542 goto abort_free; 2543 2544 kobject_init(&rdev->kobj, &rdev_ktype); 2545 2546 rdev->desc_nr = -1; 2547 rdev->saved_raid_disk = -1; 2548 rdev->raid_disk = -1; 2549 rdev->flags = 0; 2550 rdev->data_offset = 0; 2551 rdev->sb_events = 0; 2552 atomic_set(&rdev->nr_pending, 0); 2553 atomic_set(&rdev->read_errors, 0); 2554 atomic_set(&rdev->corrected_errors, 0); 2555 2556 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2557 if (!size) { 2558 printk(KERN_WARNING 2559 "md: %s has zero or unknown size, marking faulty!\n", 2560 bdevname(rdev->bdev,b)); 2561 err = -EINVAL; 2562 goto abort_free; 2563 } 2564 2565 if (super_format >= 0) { 2566 err = super_types[super_format]. 2567 load_super(rdev, NULL, super_minor); 2568 if (err == -EINVAL) { 2569 printk(KERN_WARNING 2570 "md: %s does not have a valid v%d.%d " 2571 "superblock, not importing!\n", 2572 bdevname(rdev->bdev,b), 2573 super_format, super_minor); 2574 goto abort_free; 2575 } 2576 if (err < 0) { 2577 printk(KERN_WARNING 2578 "md: could not read %s's sb, not importing!\n", 2579 bdevname(rdev->bdev,b)); 2580 goto abort_free; 2581 } 2582 } 2583 2584 INIT_LIST_HEAD(&rdev->same_set); 2585 init_waitqueue_head(&rdev->blocked_wait); 2586 2587 return rdev; 2588 2589 abort_free: 2590 if (rdev->sb_page) { 2591 if (rdev->bdev) 2592 unlock_rdev(rdev); 2593 free_disk_sb(rdev); 2594 } 2595 kfree(rdev); 2596 return ERR_PTR(err); 2597 } 2598 2599 /* 2600 * Check a full RAID array for plausibility 2601 */ 2602 2603 2604 static void analyze_sbs(mddev_t * mddev) 2605 { 2606 int i; 2607 mdk_rdev_t *rdev, *freshest, *tmp; 2608 char b[BDEVNAME_SIZE]; 2609 2610 freshest = NULL; 2611 rdev_for_each(rdev, tmp, mddev) 2612 switch (super_types[mddev->major_version]. 2613 load_super(rdev, freshest, mddev->minor_version)) { 2614 case 1: 2615 freshest = rdev; 2616 break; 2617 case 0: 2618 break; 2619 default: 2620 printk( KERN_ERR \ 2621 "md: fatal superblock inconsistency in %s" 2622 " -- removing from array\n", 2623 bdevname(rdev->bdev,b)); 2624 kick_rdev_from_array(rdev); 2625 } 2626 2627 2628 super_types[mddev->major_version]. 2629 validate_super(mddev, freshest); 2630 2631 i = 0; 2632 rdev_for_each(rdev, tmp, mddev) { 2633 if (rdev->desc_nr >= mddev->max_disks || 2634 i > mddev->max_disks) { 2635 printk(KERN_WARNING 2636 "md: %s: %s: only %d devices permitted\n", 2637 mdname(mddev), bdevname(rdev->bdev, b), 2638 mddev->max_disks); 2639 kick_rdev_from_array(rdev); 2640 continue; 2641 } 2642 if (rdev != freshest) 2643 if (super_types[mddev->major_version]. 2644 validate_super(mddev, rdev)) { 2645 printk(KERN_WARNING "md: kicking non-fresh %s" 2646 " from array!\n", 2647 bdevname(rdev->bdev,b)); 2648 kick_rdev_from_array(rdev); 2649 continue; 2650 } 2651 if (mddev->level == LEVEL_MULTIPATH) { 2652 rdev->desc_nr = i++; 2653 rdev->raid_disk = rdev->desc_nr; 2654 set_bit(In_sync, &rdev->flags); 2655 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 2656 rdev->raid_disk = -1; 2657 clear_bit(In_sync, &rdev->flags); 2658 } 2659 } 2660 } 2661 2662 static void md_safemode_timeout(unsigned long data); 2663 2664 static ssize_t 2665 safe_delay_show(mddev_t *mddev, char *page) 2666 { 2667 int msec = (mddev->safemode_delay*1000)/HZ; 2668 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2669 } 2670 static ssize_t 2671 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2672 { 2673 int scale=1; 2674 int dot=0; 2675 int i; 2676 unsigned long msec; 2677 char buf[30]; 2678 2679 /* remove a period, and count digits after it */ 2680 if (len >= sizeof(buf)) 2681 return -EINVAL; 2682 strlcpy(buf, cbuf, sizeof(buf)); 2683 for (i=0; i<len; i++) { 2684 if (dot) { 2685 if (isdigit(buf[i])) { 2686 buf[i-1] = buf[i]; 2687 scale *= 10; 2688 } 2689 buf[i] = 0; 2690 } else if (buf[i] == '.') { 2691 dot=1; 2692 buf[i] = 0; 2693 } 2694 } 2695 if (strict_strtoul(buf, 10, &msec) < 0) 2696 return -EINVAL; 2697 msec = (msec * 1000) / scale; 2698 if (msec == 0) 2699 mddev->safemode_delay = 0; 2700 else { 2701 unsigned long old_delay = mddev->safemode_delay; 2702 mddev->safemode_delay = (msec*HZ)/1000; 2703 if (mddev->safemode_delay == 0) 2704 mddev->safemode_delay = 1; 2705 if (mddev->safemode_delay < old_delay) 2706 md_safemode_timeout((unsigned long)mddev); 2707 } 2708 return len; 2709 } 2710 static struct md_sysfs_entry md_safe_delay = 2711 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2712 2713 static ssize_t 2714 level_show(mddev_t *mddev, char *page) 2715 { 2716 struct mdk_personality *p = mddev->pers; 2717 if (p) 2718 return sprintf(page, "%s\n", p->name); 2719 else if (mddev->clevel[0]) 2720 return sprintf(page, "%s\n", mddev->clevel); 2721 else if (mddev->level != LEVEL_NONE) 2722 return sprintf(page, "%d\n", mddev->level); 2723 else 2724 return 0; 2725 } 2726 2727 static ssize_t 2728 level_store(mddev_t *mddev, const char *buf, size_t len) 2729 { 2730 char level[16]; 2731 ssize_t rv = len; 2732 struct mdk_personality *pers; 2733 void *priv; 2734 mdk_rdev_t *rdev; 2735 2736 if (mddev->pers == NULL) { 2737 if (len == 0) 2738 return 0; 2739 if (len >= sizeof(mddev->clevel)) 2740 return -ENOSPC; 2741 strncpy(mddev->clevel, buf, len); 2742 if (mddev->clevel[len-1] == '\n') 2743 len--; 2744 mddev->clevel[len] = 0; 2745 mddev->level = LEVEL_NONE; 2746 return rv; 2747 } 2748 2749 /* request to change the personality. Need to ensure: 2750 * - array is not engaged in resync/recovery/reshape 2751 * - old personality can be suspended 2752 * - new personality will access other array. 2753 */ 2754 2755 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 2756 return -EBUSY; 2757 2758 if (!mddev->pers->quiesce) { 2759 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 2760 mdname(mddev), mddev->pers->name); 2761 return -EINVAL; 2762 } 2763 2764 /* Now find the new personality */ 2765 if (len == 0 || len >= sizeof(level)) 2766 return -EINVAL; 2767 strncpy(level, buf, len); 2768 if (level[len-1] == '\n') 2769 len--; 2770 level[len] = 0; 2771 2772 request_module("md-%s", level); 2773 spin_lock(&pers_lock); 2774 pers = find_pers(LEVEL_NONE, level); 2775 if (!pers || !try_module_get(pers->owner)) { 2776 spin_unlock(&pers_lock); 2777 printk(KERN_WARNING "md: personality %s not loaded\n", level); 2778 return -EINVAL; 2779 } 2780 spin_unlock(&pers_lock); 2781 2782 if (pers == mddev->pers) { 2783 /* Nothing to do! */ 2784 module_put(pers->owner); 2785 return rv; 2786 } 2787 if (!pers->takeover) { 2788 module_put(pers->owner); 2789 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 2790 mdname(mddev), level); 2791 return -EINVAL; 2792 } 2793 2794 /* ->takeover must set new_* and/or delta_disks 2795 * if it succeeds, and may set them when it fails. 2796 */ 2797 priv = pers->takeover(mddev); 2798 if (IS_ERR(priv)) { 2799 mddev->new_level = mddev->level; 2800 mddev->new_layout = mddev->layout; 2801 mddev->new_chunk_sectors = mddev->chunk_sectors; 2802 mddev->raid_disks -= mddev->delta_disks; 2803 mddev->delta_disks = 0; 2804 module_put(pers->owner); 2805 printk(KERN_WARNING "md: %s: %s would not accept array\n", 2806 mdname(mddev), level); 2807 return PTR_ERR(priv); 2808 } 2809 2810 /* Looks like we have a winner */ 2811 mddev_suspend(mddev); 2812 mddev->pers->stop(mddev); 2813 module_put(mddev->pers->owner); 2814 /* Invalidate devices that are now superfluous */ 2815 list_for_each_entry(rdev, &mddev->disks, same_set) 2816 if (rdev->raid_disk >= mddev->raid_disks) { 2817 rdev->raid_disk = -1; 2818 clear_bit(In_sync, &rdev->flags); 2819 } 2820 mddev->pers = pers; 2821 mddev->private = priv; 2822 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 2823 mddev->level = mddev->new_level; 2824 mddev->layout = mddev->new_layout; 2825 mddev->chunk_sectors = mddev->new_chunk_sectors; 2826 mddev->delta_disks = 0; 2827 pers->run(mddev); 2828 mddev_resume(mddev); 2829 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2830 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2831 md_wakeup_thread(mddev->thread); 2832 return rv; 2833 } 2834 2835 static struct md_sysfs_entry md_level = 2836 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 2837 2838 2839 static ssize_t 2840 layout_show(mddev_t *mddev, char *page) 2841 { 2842 /* just a number, not meaningful for all levels */ 2843 if (mddev->reshape_position != MaxSector && 2844 mddev->layout != mddev->new_layout) 2845 return sprintf(page, "%d (%d)\n", 2846 mddev->new_layout, mddev->layout); 2847 return sprintf(page, "%d\n", mddev->layout); 2848 } 2849 2850 static ssize_t 2851 layout_store(mddev_t *mddev, const char *buf, size_t len) 2852 { 2853 char *e; 2854 unsigned long n = simple_strtoul(buf, &e, 10); 2855 2856 if (!*buf || (*e && *e != '\n')) 2857 return -EINVAL; 2858 2859 if (mddev->pers) { 2860 int err; 2861 if (mddev->pers->check_reshape == NULL) 2862 return -EBUSY; 2863 mddev->new_layout = n; 2864 err = mddev->pers->check_reshape(mddev); 2865 if (err) { 2866 mddev->new_layout = mddev->layout; 2867 return err; 2868 } 2869 } else { 2870 mddev->new_layout = n; 2871 if (mddev->reshape_position == MaxSector) 2872 mddev->layout = n; 2873 } 2874 return len; 2875 } 2876 static struct md_sysfs_entry md_layout = 2877 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 2878 2879 2880 static ssize_t 2881 raid_disks_show(mddev_t *mddev, char *page) 2882 { 2883 if (mddev->raid_disks == 0) 2884 return 0; 2885 if (mddev->reshape_position != MaxSector && 2886 mddev->delta_disks != 0) 2887 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 2888 mddev->raid_disks - mddev->delta_disks); 2889 return sprintf(page, "%d\n", mddev->raid_disks); 2890 } 2891 2892 static int update_raid_disks(mddev_t *mddev, int raid_disks); 2893 2894 static ssize_t 2895 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 2896 { 2897 char *e; 2898 int rv = 0; 2899 unsigned long n = simple_strtoul(buf, &e, 10); 2900 2901 if (!*buf || (*e && *e != '\n')) 2902 return -EINVAL; 2903 2904 if (mddev->pers) 2905 rv = update_raid_disks(mddev, n); 2906 else if (mddev->reshape_position != MaxSector) { 2907 int olddisks = mddev->raid_disks - mddev->delta_disks; 2908 mddev->delta_disks = n - olddisks; 2909 mddev->raid_disks = n; 2910 } else 2911 mddev->raid_disks = n; 2912 return rv ? rv : len; 2913 } 2914 static struct md_sysfs_entry md_raid_disks = 2915 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 2916 2917 static ssize_t 2918 chunk_size_show(mddev_t *mddev, char *page) 2919 { 2920 if (mddev->reshape_position != MaxSector && 2921 mddev->chunk_sectors != mddev->new_chunk_sectors) 2922 return sprintf(page, "%d (%d)\n", 2923 mddev->new_chunk_sectors << 9, 2924 mddev->chunk_sectors << 9); 2925 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 2926 } 2927 2928 static ssize_t 2929 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 2930 { 2931 char *e; 2932 unsigned long n = simple_strtoul(buf, &e, 10); 2933 2934 if (!*buf || (*e && *e != '\n')) 2935 return -EINVAL; 2936 2937 if (mddev->pers) { 2938 int err; 2939 if (mddev->pers->check_reshape == NULL) 2940 return -EBUSY; 2941 mddev->new_chunk_sectors = n >> 9; 2942 err = mddev->pers->check_reshape(mddev); 2943 if (err) { 2944 mddev->new_chunk_sectors = mddev->chunk_sectors; 2945 return err; 2946 } 2947 } else { 2948 mddev->new_chunk_sectors = n >> 9; 2949 if (mddev->reshape_position == MaxSector) 2950 mddev->chunk_sectors = n >> 9; 2951 } 2952 return len; 2953 } 2954 static struct md_sysfs_entry md_chunk_size = 2955 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 2956 2957 static ssize_t 2958 resync_start_show(mddev_t *mddev, char *page) 2959 { 2960 if (mddev->recovery_cp == MaxSector) 2961 return sprintf(page, "none\n"); 2962 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 2963 } 2964 2965 static ssize_t 2966 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 2967 { 2968 char *e; 2969 unsigned long long n = simple_strtoull(buf, &e, 10); 2970 2971 if (mddev->pers) 2972 return -EBUSY; 2973 if (!*buf || (*e && *e != '\n')) 2974 return -EINVAL; 2975 2976 mddev->recovery_cp = n; 2977 return len; 2978 } 2979 static struct md_sysfs_entry md_resync_start = 2980 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 2981 2982 /* 2983 * The array state can be: 2984 * 2985 * clear 2986 * No devices, no size, no level 2987 * Equivalent to STOP_ARRAY ioctl 2988 * inactive 2989 * May have some settings, but array is not active 2990 * all IO results in error 2991 * When written, doesn't tear down array, but just stops it 2992 * suspended (not supported yet) 2993 * All IO requests will block. The array can be reconfigured. 2994 * Writing this, if accepted, will block until array is quiescent 2995 * readonly 2996 * no resync can happen. no superblocks get written. 2997 * write requests fail 2998 * read-auto 2999 * like readonly, but behaves like 'clean' on a write request. 3000 * 3001 * clean - no pending writes, but otherwise active. 3002 * When written to inactive array, starts without resync 3003 * If a write request arrives then 3004 * if metadata is known, mark 'dirty' and switch to 'active'. 3005 * if not known, block and switch to write-pending 3006 * If written to an active array that has pending writes, then fails. 3007 * active 3008 * fully active: IO and resync can be happening. 3009 * When written to inactive array, starts with resync 3010 * 3011 * write-pending 3012 * clean, but writes are blocked waiting for 'active' to be written. 3013 * 3014 * active-idle 3015 * like active, but no writes have been seen for a while (100msec). 3016 * 3017 */ 3018 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3019 write_pending, active_idle, bad_word}; 3020 static char *array_states[] = { 3021 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3022 "write-pending", "active-idle", NULL }; 3023 3024 static int match_word(const char *word, char **list) 3025 { 3026 int n; 3027 for (n=0; list[n]; n++) 3028 if (cmd_match(word, list[n])) 3029 break; 3030 return n; 3031 } 3032 3033 static ssize_t 3034 array_state_show(mddev_t *mddev, char *page) 3035 { 3036 enum array_state st = inactive; 3037 3038 if (mddev->pers) 3039 switch(mddev->ro) { 3040 case 1: 3041 st = readonly; 3042 break; 3043 case 2: 3044 st = read_auto; 3045 break; 3046 case 0: 3047 if (mddev->in_sync) 3048 st = clean; 3049 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 3050 st = write_pending; 3051 else if (mddev->safemode) 3052 st = active_idle; 3053 else 3054 st = active; 3055 } 3056 else { 3057 if (list_empty(&mddev->disks) && 3058 mddev->raid_disks == 0 && 3059 mddev->dev_sectors == 0) 3060 st = clear; 3061 else 3062 st = inactive; 3063 } 3064 return sprintf(page, "%s\n", array_states[st]); 3065 } 3066 3067 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 3068 static int do_md_run(mddev_t * mddev); 3069 static int restart_array(mddev_t *mddev); 3070 3071 static ssize_t 3072 array_state_store(mddev_t *mddev, const char *buf, size_t len) 3073 { 3074 int err = -EINVAL; 3075 enum array_state st = match_word(buf, array_states); 3076 switch(st) { 3077 case bad_word: 3078 break; 3079 case clear: 3080 /* stopping an active array */ 3081 if (atomic_read(&mddev->openers) > 0) 3082 return -EBUSY; 3083 err = do_md_stop(mddev, 0, 0); 3084 break; 3085 case inactive: 3086 /* stopping an active array */ 3087 if (mddev->pers) { 3088 if (atomic_read(&mddev->openers) > 0) 3089 return -EBUSY; 3090 err = do_md_stop(mddev, 2, 0); 3091 } else 3092 err = 0; /* already inactive */ 3093 break; 3094 case suspended: 3095 break; /* not supported yet */ 3096 case readonly: 3097 if (mddev->pers) 3098 err = do_md_stop(mddev, 1, 0); 3099 else { 3100 mddev->ro = 1; 3101 set_disk_ro(mddev->gendisk, 1); 3102 err = do_md_run(mddev); 3103 } 3104 break; 3105 case read_auto: 3106 if (mddev->pers) { 3107 if (mddev->ro == 0) 3108 err = do_md_stop(mddev, 1, 0); 3109 else if (mddev->ro == 1) 3110 err = restart_array(mddev); 3111 if (err == 0) { 3112 mddev->ro = 2; 3113 set_disk_ro(mddev->gendisk, 0); 3114 } 3115 } else { 3116 mddev->ro = 2; 3117 err = do_md_run(mddev); 3118 } 3119 break; 3120 case clean: 3121 if (mddev->pers) { 3122 restart_array(mddev); 3123 spin_lock_irq(&mddev->write_lock); 3124 if (atomic_read(&mddev->writes_pending) == 0) { 3125 if (mddev->in_sync == 0) { 3126 mddev->in_sync = 1; 3127 if (mddev->safemode == 1) 3128 mddev->safemode = 0; 3129 if (mddev->persistent) 3130 set_bit(MD_CHANGE_CLEAN, 3131 &mddev->flags); 3132 } 3133 err = 0; 3134 } else 3135 err = -EBUSY; 3136 spin_unlock_irq(&mddev->write_lock); 3137 } else 3138 err = -EINVAL; 3139 break; 3140 case active: 3141 if (mddev->pers) { 3142 restart_array(mddev); 3143 if (mddev->external) 3144 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 3145 wake_up(&mddev->sb_wait); 3146 err = 0; 3147 } else { 3148 mddev->ro = 0; 3149 set_disk_ro(mddev->gendisk, 0); 3150 err = do_md_run(mddev); 3151 } 3152 break; 3153 case write_pending: 3154 case active_idle: 3155 /* these cannot be set */ 3156 break; 3157 } 3158 if (err) 3159 return err; 3160 else { 3161 sysfs_notify_dirent(mddev->sysfs_state); 3162 return len; 3163 } 3164 } 3165 static struct md_sysfs_entry md_array_state = 3166 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3167 3168 static ssize_t 3169 null_show(mddev_t *mddev, char *page) 3170 { 3171 return -EINVAL; 3172 } 3173 3174 static ssize_t 3175 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 3176 { 3177 /* buf must be %d:%d\n? giving major and minor numbers */ 3178 /* The new device is added to the array. 3179 * If the array has a persistent superblock, we read the 3180 * superblock to initialise info and check validity. 3181 * Otherwise, only checking done is that in bind_rdev_to_array, 3182 * which mainly checks size. 3183 */ 3184 char *e; 3185 int major = simple_strtoul(buf, &e, 10); 3186 int minor; 3187 dev_t dev; 3188 mdk_rdev_t *rdev; 3189 int err; 3190 3191 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3192 return -EINVAL; 3193 minor = simple_strtoul(e+1, &e, 10); 3194 if (*e && *e != '\n') 3195 return -EINVAL; 3196 dev = MKDEV(major, minor); 3197 if (major != MAJOR(dev) || 3198 minor != MINOR(dev)) 3199 return -EOVERFLOW; 3200 3201 3202 if (mddev->persistent) { 3203 rdev = md_import_device(dev, mddev->major_version, 3204 mddev->minor_version); 3205 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3206 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3207 mdk_rdev_t, same_set); 3208 err = super_types[mddev->major_version] 3209 .load_super(rdev, rdev0, mddev->minor_version); 3210 if (err < 0) 3211 goto out; 3212 } 3213 } else if (mddev->external) 3214 rdev = md_import_device(dev, -2, -1); 3215 else 3216 rdev = md_import_device(dev, -1, -1); 3217 3218 if (IS_ERR(rdev)) 3219 return PTR_ERR(rdev); 3220 err = bind_rdev_to_array(rdev, mddev); 3221 out: 3222 if (err) 3223 export_rdev(rdev); 3224 return err ? err : len; 3225 } 3226 3227 static struct md_sysfs_entry md_new_device = 3228 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3229 3230 static ssize_t 3231 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 3232 { 3233 char *end; 3234 unsigned long chunk, end_chunk; 3235 3236 if (!mddev->bitmap) 3237 goto out; 3238 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3239 while (*buf) { 3240 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3241 if (buf == end) break; 3242 if (*end == '-') { /* range */ 3243 buf = end + 1; 3244 end_chunk = simple_strtoul(buf, &end, 0); 3245 if (buf == end) break; 3246 } 3247 if (*end && !isspace(*end)) break; 3248 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3249 buf = end; 3250 while (isspace(*buf)) buf++; 3251 } 3252 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3253 out: 3254 return len; 3255 } 3256 3257 static struct md_sysfs_entry md_bitmap = 3258 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3259 3260 static ssize_t 3261 size_show(mddev_t *mddev, char *page) 3262 { 3263 return sprintf(page, "%llu\n", 3264 (unsigned long long)mddev->dev_sectors / 2); 3265 } 3266 3267 static int update_size(mddev_t *mddev, sector_t num_sectors); 3268 3269 static ssize_t 3270 size_store(mddev_t *mddev, const char *buf, size_t len) 3271 { 3272 /* If array is inactive, we can reduce the component size, but 3273 * not increase it (except from 0). 3274 * If array is active, we can try an on-line resize 3275 */ 3276 sector_t sectors; 3277 int err = strict_blocks_to_sectors(buf, §ors); 3278 3279 if (err < 0) 3280 return err; 3281 if (mddev->pers) { 3282 err = update_size(mddev, sectors); 3283 md_update_sb(mddev, 1); 3284 } else { 3285 if (mddev->dev_sectors == 0 || 3286 mddev->dev_sectors > sectors) 3287 mddev->dev_sectors = sectors; 3288 else 3289 err = -ENOSPC; 3290 } 3291 return err ? err : len; 3292 } 3293 3294 static struct md_sysfs_entry md_size = 3295 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 3296 3297 3298 /* Metdata version. 3299 * This is one of 3300 * 'none' for arrays with no metadata (good luck...) 3301 * 'external' for arrays with externally managed metadata, 3302 * or N.M for internally known formats 3303 */ 3304 static ssize_t 3305 metadata_show(mddev_t *mddev, char *page) 3306 { 3307 if (mddev->persistent) 3308 return sprintf(page, "%d.%d\n", 3309 mddev->major_version, mddev->minor_version); 3310 else if (mddev->external) 3311 return sprintf(page, "external:%s\n", mddev->metadata_type); 3312 else 3313 return sprintf(page, "none\n"); 3314 } 3315 3316 static ssize_t 3317 metadata_store(mddev_t *mddev, const char *buf, size_t len) 3318 { 3319 int major, minor; 3320 char *e; 3321 /* Changing the details of 'external' metadata is 3322 * always permitted. Otherwise there must be 3323 * no devices attached to the array. 3324 */ 3325 if (mddev->external && strncmp(buf, "external:", 9) == 0) 3326 ; 3327 else if (!list_empty(&mddev->disks)) 3328 return -EBUSY; 3329 3330 if (cmd_match(buf, "none")) { 3331 mddev->persistent = 0; 3332 mddev->external = 0; 3333 mddev->major_version = 0; 3334 mddev->minor_version = 90; 3335 return len; 3336 } 3337 if (strncmp(buf, "external:", 9) == 0) { 3338 size_t namelen = len-9; 3339 if (namelen >= sizeof(mddev->metadata_type)) 3340 namelen = sizeof(mddev->metadata_type)-1; 3341 strncpy(mddev->metadata_type, buf+9, namelen); 3342 mddev->metadata_type[namelen] = 0; 3343 if (namelen && mddev->metadata_type[namelen-1] == '\n') 3344 mddev->metadata_type[--namelen] = 0; 3345 mddev->persistent = 0; 3346 mddev->external = 1; 3347 mddev->major_version = 0; 3348 mddev->minor_version = 90; 3349 return len; 3350 } 3351 major = simple_strtoul(buf, &e, 10); 3352 if (e==buf || *e != '.') 3353 return -EINVAL; 3354 buf = e+1; 3355 minor = simple_strtoul(buf, &e, 10); 3356 if (e==buf || (*e && *e != '\n') ) 3357 return -EINVAL; 3358 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 3359 return -ENOENT; 3360 mddev->major_version = major; 3361 mddev->minor_version = minor; 3362 mddev->persistent = 1; 3363 mddev->external = 0; 3364 return len; 3365 } 3366 3367 static struct md_sysfs_entry md_metadata = 3368 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 3369 3370 static ssize_t 3371 action_show(mddev_t *mddev, char *page) 3372 { 3373 char *type = "idle"; 3374 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3375 type = "frozen"; 3376 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3377 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 3378 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3379 type = "reshape"; 3380 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3381 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3382 type = "resync"; 3383 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3384 type = "check"; 3385 else 3386 type = "repair"; 3387 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3388 type = "recover"; 3389 } 3390 return sprintf(page, "%s\n", type); 3391 } 3392 3393 static ssize_t 3394 action_store(mddev_t *mddev, const char *page, size_t len) 3395 { 3396 if (!mddev->pers || !mddev->pers->sync_request) 3397 return -EINVAL; 3398 3399 if (cmd_match(page, "frozen")) 3400 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3401 else 3402 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3403 3404 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 3405 if (mddev->sync_thread) { 3406 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3407 md_unregister_thread(mddev->sync_thread); 3408 mddev->sync_thread = NULL; 3409 mddev->recovery = 0; 3410 } 3411 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3412 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3413 return -EBUSY; 3414 else if (cmd_match(page, "resync")) 3415 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3416 else if (cmd_match(page, "recover")) { 3417 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3418 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3419 } else if (cmd_match(page, "reshape")) { 3420 int err; 3421 if (mddev->pers->start_reshape == NULL) 3422 return -EINVAL; 3423 err = mddev->pers->start_reshape(mddev); 3424 if (err) 3425 return err; 3426 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3427 } else { 3428 if (cmd_match(page, "check")) 3429 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3430 else if (!cmd_match(page, "repair")) 3431 return -EINVAL; 3432 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3433 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3434 } 3435 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3436 md_wakeup_thread(mddev->thread); 3437 sysfs_notify_dirent(mddev->sysfs_action); 3438 return len; 3439 } 3440 3441 static ssize_t 3442 mismatch_cnt_show(mddev_t *mddev, char *page) 3443 { 3444 return sprintf(page, "%llu\n", 3445 (unsigned long long) mddev->resync_mismatches); 3446 } 3447 3448 static struct md_sysfs_entry md_scan_mode = 3449 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3450 3451 3452 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3453 3454 static ssize_t 3455 sync_min_show(mddev_t *mddev, char *page) 3456 { 3457 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3458 mddev->sync_speed_min ? "local": "system"); 3459 } 3460 3461 static ssize_t 3462 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3463 { 3464 int min; 3465 char *e; 3466 if (strncmp(buf, "system", 6)==0) { 3467 mddev->sync_speed_min = 0; 3468 return len; 3469 } 3470 min = simple_strtoul(buf, &e, 10); 3471 if (buf == e || (*e && *e != '\n') || min <= 0) 3472 return -EINVAL; 3473 mddev->sync_speed_min = min; 3474 return len; 3475 } 3476 3477 static struct md_sysfs_entry md_sync_min = 3478 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3479 3480 static ssize_t 3481 sync_max_show(mddev_t *mddev, char *page) 3482 { 3483 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3484 mddev->sync_speed_max ? "local": "system"); 3485 } 3486 3487 static ssize_t 3488 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3489 { 3490 int max; 3491 char *e; 3492 if (strncmp(buf, "system", 6)==0) { 3493 mddev->sync_speed_max = 0; 3494 return len; 3495 } 3496 max = simple_strtoul(buf, &e, 10); 3497 if (buf == e || (*e && *e != '\n') || max <= 0) 3498 return -EINVAL; 3499 mddev->sync_speed_max = max; 3500 return len; 3501 } 3502 3503 static struct md_sysfs_entry md_sync_max = 3504 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3505 3506 static ssize_t 3507 degraded_show(mddev_t *mddev, char *page) 3508 { 3509 return sprintf(page, "%d\n", mddev->degraded); 3510 } 3511 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3512 3513 static ssize_t 3514 sync_force_parallel_show(mddev_t *mddev, char *page) 3515 { 3516 return sprintf(page, "%d\n", mddev->parallel_resync); 3517 } 3518 3519 static ssize_t 3520 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3521 { 3522 long n; 3523 3524 if (strict_strtol(buf, 10, &n)) 3525 return -EINVAL; 3526 3527 if (n != 0 && n != 1) 3528 return -EINVAL; 3529 3530 mddev->parallel_resync = n; 3531 3532 if (mddev->sync_thread) 3533 wake_up(&resync_wait); 3534 3535 return len; 3536 } 3537 3538 /* force parallel resync, even with shared block devices */ 3539 static struct md_sysfs_entry md_sync_force_parallel = 3540 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3541 sync_force_parallel_show, sync_force_parallel_store); 3542 3543 static ssize_t 3544 sync_speed_show(mddev_t *mddev, char *page) 3545 { 3546 unsigned long resync, dt, db; 3547 if (mddev->curr_resync == 0) 3548 return sprintf(page, "none\n"); 3549 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3550 dt = (jiffies - mddev->resync_mark) / HZ; 3551 if (!dt) dt++; 3552 db = resync - mddev->resync_mark_cnt; 3553 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3554 } 3555 3556 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3557 3558 static ssize_t 3559 sync_completed_show(mddev_t *mddev, char *page) 3560 { 3561 unsigned long max_sectors, resync; 3562 3563 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3564 return sprintf(page, "none\n"); 3565 3566 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3567 max_sectors = mddev->resync_max_sectors; 3568 else 3569 max_sectors = mddev->dev_sectors; 3570 3571 resync = mddev->curr_resync_completed; 3572 return sprintf(page, "%lu / %lu\n", resync, max_sectors); 3573 } 3574 3575 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3576 3577 static ssize_t 3578 min_sync_show(mddev_t *mddev, char *page) 3579 { 3580 return sprintf(page, "%llu\n", 3581 (unsigned long long)mddev->resync_min); 3582 } 3583 static ssize_t 3584 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3585 { 3586 unsigned long long min; 3587 if (strict_strtoull(buf, 10, &min)) 3588 return -EINVAL; 3589 if (min > mddev->resync_max) 3590 return -EINVAL; 3591 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3592 return -EBUSY; 3593 3594 /* Must be a multiple of chunk_size */ 3595 if (mddev->chunk_sectors) { 3596 sector_t temp = min; 3597 if (sector_div(temp, mddev->chunk_sectors)) 3598 return -EINVAL; 3599 } 3600 mddev->resync_min = min; 3601 3602 return len; 3603 } 3604 3605 static struct md_sysfs_entry md_min_sync = 3606 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3607 3608 static ssize_t 3609 max_sync_show(mddev_t *mddev, char *page) 3610 { 3611 if (mddev->resync_max == MaxSector) 3612 return sprintf(page, "max\n"); 3613 else 3614 return sprintf(page, "%llu\n", 3615 (unsigned long long)mddev->resync_max); 3616 } 3617 static ssize_t 3618 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3619 { 3620 if (strncmp(buf, "max", 3) == 0) 3621 mddev->resync_max = MaxSector; 3622 else { 3623 unsigned long long max; 3624 if (strict_strtoull(buf, 10, &max)) 3625 return -EINVAL; 3626 if (max < mddev->resync_min) 3627 return -EINVAL; 3628 if (max < mddev->resync_max && 3629 mddev->ro == 0 && 3630 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3631 return -EBUSY; 3632 3633 /* Must be a multiple of chunk_size */ 3634 if (mddev->chunk_sectors) { 3635 sector_t temp = max; 3636 if (sector_div(temp, mddev->chunk_sectors)) 3637 return -EINVAL; 3638 } 3639 mddev->resync_max = max; 3640 } 3641 wake_up(&mddev->recovery_wait); 3642 return len; 3643 } 3644 3645 static struct md_sysfs_entry md_max_sync = 3646 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 3647 3648 static ssize_t 3649 suspend_lo_show(mddev_t *mddev, char *page) 3650 { 3651 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 3652 } 3653 3654 static ssize_t 3655 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 3656 { 3657 char *e; 3658 unsigned long long new = simple_strtoull(buf, &e, 10); 3659 3660 if (mddev->pers == NULL || 3661 mddev->pers->quiesce == NULL) 3662 return -EINVAL; 3663 if (buf == e || (*e && *e != '\n')) 3664 return -EINVAL; 3665 if (new >= mddev->suspend_hi || 3666 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 3667 mddev->suspend_lo = new; 3668 mddev->pers->quiesce(mddev, 2); 3669 return len; 3670 } else 3671 return -EINVAL; 3672 } 3673 static struct md_sysfs_entry md_suspend_lo = 3674 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 3675 3676 3677 static ssize_t 3678 suspend_hi_show(mddev_t *mddev, char *page) 3679 { 3680 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 3681 } 3682 3683 static ssize_t 3684 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 3685 { 3686 char *e; 3687 unsigned long long new = simple_strtoull(buf, &e, 10); 3688 3689 if (mddev->pers == NULL || 3690 mddev->pers->quiesce == NULL) 3691 return -EINVAL; 3692 if (buf == e || (*e && *e != '\n')) 3693 return -EINVAL; 3694 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 3695 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 3696 mddev->suspend_hi = new; 3697 mddev->pers->quiesce(mddev, 1); 3698 mddev->pers->quiesce(mddev, 0); 3699 return len; 3700 } else 3701 return -EINVAL; 3702 } 3703 static struct md_sysfs_entry md_suspend_hi = 3704 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 3705 3706 static ssize_t 3707 reshape_position_show(mddev_t *mddev, char *page) 3708 { 3709 if (mddev->reshape_position != MaxSector) 3710 return sprintf(page, "%llu\n", 3711 (unsigned long long)mddev->reshape_position); 3712 strcpy(page, "none\n"); 3713 return 5; 3714 } 3715 3716 static ssize_t 3717 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 3718 { 3719 char *e; 3720 unsigned long long new = simple_strtoull(buf, &e, 10); 3721 if (mddev->pers) 3722 return -EBUSY; 3723 if (buf == e || (*e && *e != '\n')) 3724 return -EINVAL; 3725 mddev->reshape_position = new; 3726 mddev->delta_disks = 0; 3727 mddev->new_level = mddev->level; 3728 mddev->new_layout = mddev->layout; 3729 mddev->new_chunk_sectors = mddev->chunk_sectors; 3730 return len; 3731 } 3732 3733 static struct md_sysfs_entry md_reshape_position = 3734 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 3735 reshape_position_store); 3736 3737 static ssize_t 3738 array_size_show(mddev_t *mddev, char *page) 3739 { 3740 if (mddev->external_size) 3741 return sprintf(page, "%llu\n", 3742 (unsigned long long)mddev->array_sectors/2); 3743 else 3744 return sprintf(page, "default\n"); 3745 } 3746 3747 static ssize_t 3748 array_size_store(mddev_t *mddev, const char *buf, size_t len) 3749 { 3750 sector_t sectors; 3751 3752 if (strncmp(buf, "default", 7) == 0) { 3753 if (mddev->pers) 3754 sectors = mddev->pers->size(mddev, 0, 0); 3755 else 3756 sectors = mddev->array_sectors; 3757 3758 mddev->external_size = 0; 3759 } else { 3760 if (strict_blocks_to_sectors(buf, §ors) < 0) 3761 return -EINVAL; 3762 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 3763 return -E2BIG; 3764 3765 mddev->external_size = 1; 3766 } 3767 3768 mddev->array_sectors = sectors; 3769 set_capacity(mddev->gendisk, mddev->array_sectors); 3770 if (mddev->pers) 3771 revalidate_disk(mddev->gendisk); 3772 3773 return len; 3774 } 3775 3776 static struct md_sysfs_entry md_array_size = 3777 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 3778 array_size_store); 3779 3780 static struct attribute *md_default_attrs[] = { 3781 &md_level.attr, 3782 &md_layout.attr, 3783 &md_raid_disks.attr, 3784 &md_chunk_size.attr, 3785 &md_size.attr, 3786 &md_resync_start.attr, 3787 &md_metadata.attr, 3788 &md_new_device.attr, 3789 &md_safe_delay.attr, 3790 &md_array_state.attr, 3791 &md_reshape_position.attr, 3792 &md_array_size.attr, 3793 NULL, 3794 }; 3795 3796 static struct attribute *md_redundancy_attrs[] = { 3797 &md_scan_mode.attr, 3798 &md_mismatches.attr, 3799 &md_sync_min.attr, 3800 &md_sync_max.attr, 3801 &md_sync_speed.attr, 3802 &md_sync_force_parallel.attr, 3803 &md_sync_completed.attr, 3804 &md_min_sync.attr, 3805 &md_max_sync.attr, 3806 &md_suspend_lo.attr, 3807 &md_suspend_hi.attr, 3808 &md_bitmap.attr, 3809 &md_degraded.attr, 3810 NULL, 3811 }; 3812 static struct attribute_group md_redundancy_group = { 3813 .name = NULL, 3814 .attrs = md_redundancy_attrs, 3815 }; 3816 3817 3818 static ssize_t 3819 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3820 { 3821 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3822 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3823 ssize_t rv; 3824 3825 if (!entry->show) 3826 return -EIO; 3827 rv = mddev_lock(mddev); 3828 if (!rv) { 3829 rv = entry->show(mddev, page); 3830 mddev_unlock(mddev); 3831 } 3832 return rv; 3833 } 3834 3835 static ssize_t 3836 md_attr_store(struct kobject *kobj, struct attribute *attr, 3837 const char *page, size_t length) 3838 { 3839 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3840 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3841 ssize_t rv; 3842 3843 if (!entry->store) 3844 return -EIO; 3845 if (!capable(CAP_SYS_ADMIN)) 3846 return -EACCES; 3847 rv = mddev_lock(mddev); 3848 if (mddev->hold_active == UNTIL_IOCTL) 3849 mddev->hold_active = 0; 3850 if (!rv) { 3851 rv = entry->store(mddev, page, length); 3852 mddev_unlock(mddev); 3853 } 3854 return rv; 3855 } 3856 3857 static void md_free(struct kobject *ko) 3858 { 3859 mddev_t *mddev = container_of(ko, mddev_t, kobj); 3860 3861 if (mddev->sysfs_state) 3862 sysfs_put(mddev->sysfs_state); 3863 3864 if (mddev->gendisk) { 3865 del_gendisk(mddev->gendisk); 3866 put_disk(mddev->gendisk); 3867 } 3868 if (mddev->queue) 3869 blk_cleanup_queue(mddev->queue); 3870 3871 kfree(mddev); 3872 } 3873 3874 static struct sysfs_ops md_sysfs_ops = { 3875 .show = md_attr_show, 3876 .store = md_attr_store, 3877 }; 3878 static struct kobj_type md_ktype = { 3879 .release = md_free, 3880 .sysfs_ops = &md_sysfs_ops, 3881 .default_attrs = md_default_attrs, 3882 }; 3883 3884 int mdp_major = 0; 3885 3886 static void mddev_delayed_delete(struct work_struct *ws) 3887 { 3888 mddev_t *mddev = container_of(ws, mddev_t, del_work); 3889 3890 if (mddev->private == &md_redundancy_group) { 3891 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 3892 if (mddev->sysfs_action) 3893 sysfs_put(mddev->sysfs_action); 3894 mddev->sysfs_action = NULL; 3895 mddev->private = NULL; 3896 } 3897 kobject_del(&mddev->kobj); 3898 kobject_put(&mddev->kobj); 3899 } 3900 3901 static int md_alloc(dev_t dev, char *name) 3902 { 3903 static DEFINE_MUTEX(disks_mutex); 3904 mddev_t *mddev = mddev_find(dev); 3905 struct gendisk *disk; 3906 int partitioned; 3907 int shift; 3908 int unit; 3909 int error; 3910 3911 if (!mddev) 3912 return -ENODEV; 3913 3914 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 3915 shift = partitioned ? MdpMinorShift : 0; 3916 unit = MINOR(mddev->unit) >> shift; 3917 3918 /* wait for any previous instance if this device 3919 * to be completed removed (mddev_delayed_delete). 3920 */ 3921 flush_scheduled_work(); 3922 3923 mutex_lock(&disks_mutex); 3924 error = -EEXIST; 3925 if (mddev->gendisk) 3926 goto abort; 3927 3928 if (name) { 3929 /* Need to ensure that 'name' is not a duplicate. 3930 */ 3931 mddev_t *mddev2; 3932 spin_lock(&all_mddevs_lock); 3933 3934 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 3935 if (mddev2->gendisk && 3936 strcmp(mddev2->gendisk->disk_name, name) == 0) { 3937 spin_unlock(&all_mddevs_lock); 3938 goto abort; 3939 } 3940 spin_unlock(&all_mddevs_lock); 3941 } 3942 3943 error = -ENOMEM; 3944 mddev->queue = blk_alloc_queue(GFP_KERNEL); 3945 if (!mddev->queue) 3946 goto abort; 3947 mddev->queue->queuedata = mddev; 3948 3949 /* Can be unlocked because the queue is new: no concurrency */ 3950 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue); 3951 3952 blk_queue_make_request(mddev->queue, md_make_request); 3953 3954 disk = alloc_disk(1 << shift); 3955 if (!disk) { 3956 blk_cleanup_queue(mddev->queue); 3957 mddev->queue = NULL; 3958 goto abort; 3959 } 3960 disk->major = MAJOR(mddev->unit); 3961 disk->first_minor = unit << shift; 3962 if (name) 3963 strcpy(disk->disk_name, name); 3964 else if (partitioned) 3965 sprintf(disk->disk_name, "md_d%d", unit); 3966 else 3967 sprintf(disk->disk_name, "md%d", unit); 3968 disk->fops = &md_fops; 3969 disk->private_data = mddev; 3970 disk->queue = mddev->queue; 3971 /* Allow extended partitions. This makes the 3972 * 'mdp' device redundant, but we can't really 3973 * remove it now. 3974 */ 3975 disk->flags |= GENHD_FL_EXT_DEVT; 3976 add_disk(disk); 3977 mddev->gendisk = disk; 3978 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 3979 &disk_to_dev(disk)->kobj, "%s", "md"); 3980 if (error) { 3981 /* This isn't possible, but as kobject_init_and_add is marked 3982 * __must_check, we must do something with the result 3983 */ 3984 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 3985 disk->disk_name); 3986 error = 0; 3987 } 3988 abort: 3989 mutex_unlock(&disks_mutex); 3990 if (!error) { 3991 kobject_uevent(&mddev->kobj, KOBJ_ADD); 3992 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state"); 3993 } 3994 mddev_put(mddev); 3995 return error; 3996 } 3997 3998 static struct kobject *md_probe(dev_t dev, int *part, void *data) 3999 { 4000 md_alloc(dev, NULL); 4001 return NULL; 4002 } 4003 4004 static int add_named_array(const char *val, struct kernel_param *kp) 4005 { 4006 /* val must be "md_*" where * is not all digits. 4007 * We allocate an array with a large free minor number, and 4008 * set the name to val. val must not already be an active name. 4009 */ 4010 int len = strlen(val); 4011 char buf[DISK_NAME_LEN]; 4012 4013 while (len && val[len-1] == '\n') 4014 len--; 4015 if (len >= DISK_NAME_LEN) 4016 return -E2BIG; 4017 strlcpy(buf, val, len+1); 4018 if (strncmp(buf, "md_", 3) != 0) 4019 return -EINVAL; 4020 return md_alloc(0, buf); 4021 } 4022 4023 static void md_safemode_timeout(unsigned long data) 4024 { 4025 mddev_t *mddev = (mddev_t *) data; 4026 4027 if (!atomic_read(&mddev->writes_pending)) { 4028 mddev->safemode = 1; 4029 if (mddev->external) 4030 sysfs_notify_dirent(mddev->sysfs_state); 4031 } 4032 md_wakeup_thread(mddev->thread); 4033 } 4034 4035 static int start_dirty_degraded; 4036 4037 static int do_md_run(mddev_t * mddev) 4038 { 4039 int err; 4040 mdk_rdev_t *rdev; 4041 struct gendisk *disk; 4042 struct mdk_personality *pers; 4043 4044 if (list_empty(&mddev->disks)) 4045 /* cannot run an array with no devices.. */ 4046 return -EINVAL; 4047 4048 if (mddev->pers) 4049 return -EBUSY; 4050 4051 /* 4052 * Analyze all RAID superblock(s) 4053 */ 4054 if (!mddev->raid_disks) { 4055 if (!mddev->persistent) 4056 return -EINVAL; 4057 analyze_sbs(mddev); 4058 } 4059 4060 if (mddev->level != LEVEL_NONE) 4061 request_module("md-level-%d", mddev->level); 4062 else if (mddev->clevel[0]) 4063 request_module("md-%s", mddev->clevel); 4064 4065 /* 4066 * Drop all container device buffers, from now on 4067 * the only valid external interface is through the md 4068 * device. 4069 */ 4070 list_for_each_entry(rdev, &mddev->disks, same_set) { 4071 if (test_bit(Faulty, &rdev->flags)) 4072 continue; 4073 sync_blockdev(rdev->bdev); 4074 invalidate_bdev(rdev->bdev); 4075 4076 /* perform some consistency tests on the device. 4077 * We don't want the data to overlap the metadata, 4078 * Internal Bitmap issues have been handled elsewhere. 4079 */ 4080 if (rdev->data_offset < rdev->sb_start) { 4081 if (mddev->dev_sectors && 4082 rdev->data_offset + mddev->dev_sectors 4083 > rdev->sb_start) { 4084 printk("md: %s: data overlaps metadata\n", 4085 mdname(mddev)); 4086 return -EINVAL; 4087 } 4088 } else { 4089 if (rdev->sb_start + rdev->sb_size/512 4090 > rdev->data_offset) { 4091 printk("md: %s: metadata overlaps data\n", 4092 mdname(mddev)); 4093 return -EINVAL; 4094 } 4095 } 4096 sysfs_notify_dirent(rdev->sysfs_state); 4097 } 4098 4099 md_probe(mddev->unit, NULL, NULL); 4100 disk = mddev->gendisk; 4101 if (!disk) 4102 return -ENOMEM; 4103 4104 spin_lock(&pers_lock); 4105 pers = find_pers(mddev->level, mddev->clevel); 4106 if (!pers || !try_module_get(pers->owner)) { 4107 spin_unlock(&pers_lock); 4108 if (mddev->level != LEVEL_NONE) 4109 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4110 mddev->level); 4111 else 4112 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4113 mddev->clevel); 4114 return -EINVAL; 4115 } 4116 mddev->pers = pers; 4117 spin_unlock(&pers_lock); 4118 if (mddev->level != pers->level) { 4119 mddev->level = pers->level; 4120 mddev->new_level = pers->level; 4121 } 4122 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4123 4124 if (mddev->reshape_position != MaxSector && 4125 pers->start_reshape == NULL) { 4126 /* This personality cannot handle reshaping... */ 4127 mddev->pers = NULL; 4128 module_put(pers->owner); 4129 return -EINVAL; 4130 } 4131 4132 if (pers->sync_request) { 4133 /* Warn if this is a potentially silly 4134 * configuration. 4135 */ 4136 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4137 mdk_rdev_t *rdev2; 4138 int warned = 0; 4139 4140 list_for_each_entry(rdev, &mddev->disks, same_set) 4141 list_for_each_entry(rdev2, &mddev->disks, same_set) { 4142 if (rdev < rdev2 && 4143 rdev->bdev->bd_contains == 4144 rdev2->bdev->bd_contains) { 4145 printk(KERN_WARNING 4146 "%s: WARNING: %s appears to be" 4147 " on the same physical disk as" 4148 " %s.\n", 4149 mdname(mddev), 4150 bdevname(rdev->bdev,b), 4151 bdevname(rdev2->bdev,b2)); 4152 warned = 1; 4153 } 4154 } 4155 4156 if (warned) 4157 printk(KERN_WARNING 4158 "True protection against single-disk" 4159 " failure might be compromised.\n"); 4160 } 4161 4162 mddev->recovery = 0; 4163 /* may be over-ridden by personality */ 4164 mddev->resync_max_sectors = mddev->dev_sectors; 4165 4166 mddev->barriers_work = 1; 4167 mddev->ok_start_degraded = start_dirty_degraded; 4168 4169 if (start_readonly) 4170 mddev->ro = 2; /* read-only, but switch on first write */ 4171 4172 err = mddev->pers->run(mddev); 4173 if (err) 4174 printk(KERN_ERR "md: pers->run() failed ...\n"); 4175 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 4176 WARN_ONCE(!mddev->external_size, "%s: default size too small," 4177 " but 'external_size' not in effect?\n", __func__); 4178 printk(KERN_ERR 4179 "md: invalid array_size %llu > default size %llu\n", 4180 (unsigned long long)mddev->array_sectors / 2, 4181 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 4182 err = -EINVAL; 4183 mddev->pers->stop(mddev); 4184 } 4185 if (err == 0 && mddev->pers->sync_request) { 4186 err = bitmap_create(mddev); 4187 if (err) { 4188 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 4189 mdname(mddev), err); 4190 mddev->pers->stop(mddev); 4191 } 4192 } 4193 if (err) { 4194 module_put(mddev->pers->owner); 4195 mddev->pers = NULL; 4196 bitmap_destroy(mddev); 4197 return err; 4198 } 4199 if (mddev->pers->sync_request) { 4200 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4201 printk(KERN_WARNING 4202 "md: cannot register extra attributes for %s\n", 4203 mdname(mddev)); 4204 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4205 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 4206 mddev->ro = 0; 4207 4208 atomic_set(&mddev->writes_pending,0); 4209 mddev->safemode = 0; 4210 mddev->safemode_timer.function = md_safemode_timeout; 4211 mddev->safemode_timer.data = (unsigned long) mddev; 4212 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 4213 mddev->in_sync = 1; 4214 4215 list_for_each_entry(rdev, &mddev->disks, same_set) 4216 if (rdev->raid_disk >= 0) { 4217 char nm[20]; 4218 sprintf(nm, "rd%d", rdev->raid_disk); 4219 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 4220 printk("md: cannot register %s for %s\n", 4221 nm, mdname(mddev)); 4222 } 4223 4224 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4225 4226 if (mddev->flags) 4227 md_update_sb(mddev, 0); 4228 4229 set_capacity(disk, mddev->array_sectors); 4230 4231 /* If there is a partially-recovered drive we need to 4232 * start recovery here. If we leave it to md_check_recovery, 4233 * it will remove the drives and not do the right thing 4234 */ 4235 if (mddev->degraded && !mddev->sync_thread) { 4236 int spares = 0; 4237 list_for_each_entry(rdev, &mddev->disks, same_set) 4238 if (rdev->raid_disk >= 0 && 4239 !test_bit(In_sync, &rdev->flags) && 4240 !test_bit(Faulty, &rdev->flags)) 4241 /* complete an interrupted recovery */ 4242 spares++; 4243 if (spares && mddev->pers->sync_request) { 4244 mddev->recovery = 0; 4245 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4246 mddev->sync_thread = md_register_thread(md_do_sync, 4247 mddev, 4248 "resync"); 4249 if (!mddev->sync_thread) { 4250 printk(KERN_ERR "%s: could not start resync" 4251 " thread...\n", 4252 mdname(mddev)); 4253 /* leave the spares where they are, it shouldn't hurt */ 4254 mddev->recovery = 0; 4255 } 4256 } 4257 } 4258 md_wakeup_thread(mddev->thread); 4259 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 4260 4261 revalidate_disk(mddev->gendisk); 4262 mddev->changed = 1; 4263 md_new_event(mddev); 4264 sysfs_notify_dirent(mddev->sysfs_state); 4265 if (mddev->sysfs_action) 4266 sysfs_notify_dirent(mddev->sysfs_action); 4267 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4268 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4269 return 0; 4270 } 4271 4272 static int restart_array(mddev_t *mddev) 4273 { 4274 struct gendisk *disk = mddev->gendisk; 4275 4276 /* Complain if it has no devices */ 4277 if (list_empty(&mddev->disks)) 4278 return -ENXIO; 4279 if (!mddev->pers) 4280 return -EINVAL; 4281 if (!mddev->ro) 4282 return -EBUSY; 4283 mddev->safemode = 0; 4284 mddev->ro = 0; 4285 set_disk_ro(disk, 0); 4286 printk(KERN_INFO "md: %s switched to read-write mode.\n", 4287 mdname(mddev)); 4288 /* Kick recovery or resync if necessary */ 4289 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4290 md_wakeup_thread(mddev->thread); 4291 md_wakeup_thread(mddev->sync_thread); 4292 sysfs_notify_dirent(mddev->sysfs_state); 4293 return 0; 4294 } 4295 4296 /* similar to deny_write_access, but accounts for our holding a reference 4297 * to the file ourselves */ 4298 static int deny_bitmap_write_access(struct file * file) 4299 { 4300 struct inode *inode = file->f_mapping->host; 4301 4302 spin_lock(&inode->i_lock); 4303 if (atomic_read(&inode->i_writecount) > 1) { 4304 spin_unlock(&inode->i_lock); 4305 return -ETXTBSY; 4306 } 4307 atomic_set(&inode->i_writecount, -1); 4308 spin_unlock(&inode->i_lock); 4309 4310 return 0; 4311 } 4312 4313 static void restore_bitmap_write_access(struct file *file) 4314 { 4315 struct inode *inode = file->f_mapping->host; 4316 4317 spin_lock(&inode->i_lock); 4318 atomic_set(&inode->i_writecount, 1); 4319 spin_unlock(&inode->i_lock); 4320 } 4321 4322 /* mode: 4323 * 0 - completely stop and dis-assemble array 4324 * 1 - switch to readonly 4325 * 2 - stop but do not disassemble array 4326 */ 4327 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 4328 { 4329 int err = 0; 4330 struct gendisk *disk = mddev->gendisk; 4331 mdk_rdev_t *rdev; 4332 4333 mutex_lock(&mddev->open_mutex); 4334 if (atomic_read(&mddev->openers) > is_open) { 4335 printk("md: %s still in use.\n",mdname(mddev)); 4336 err = -EBUSY; 4337 } else if (mddev->pers) { 4338 4339 if (mddev->sync_thread) { 4340 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4341 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4342 md_unregister_thread(mddev->sync_thread); 4343 mddev->sync_thread = NULL; 4344 } 4345 4346 del_timer_sync(&mddev->safemode_timer); 4347 4348 switch(mode) { 4349 case 1: /* readonly */ 4350 err = -ENXIO; 4351 if (mddev->ro==1) 4352 goto out; 4353 mddev->ro = 1; 4354 break; 4355 case 0: /* disassemble */ 4356 case 2: /* stop */ 4357 bitmap_flush(mddev); 4358 md_super_wait(mddev); 4359 if (mddev->ro) 4360 set_disk_ro(disk, 0); 4361 4362 mddev->pers->stop(mddev); 4363 mddev->queue->merge_bvec_fn = NULL; 4364 mddev->queue->unplug_fn = NULL; 4365 mddev->queue->backing_dev_info.congested_fn = NULL; 4366 module_put(mddev->pers->owner); 4367 if (mddev->pers->sync_request) 4368 mddev->private = &md_redundancy_group; 4369 mddev->pers = NULL; 4370 /* tell userspace to handle 'inactive' */ 4371 sysfs_notify_dirent(mddev->sysfs_state); 4372 4373 list_for_each_entry(rdev, &mddev->disks, same_set) 4374 if (rdev->raid_disk >= 0) { 4375 char nm[20]; 4376 sprintf(nm, "rd%d", rdev->raid_disk); 4377 sysfs_remove_link(&mddev->kobj, nm); 4378 } 4379 4380 set_capacity(disk, 0); 4381 mddev->changed = 1; 4382 4383 if (mddev->ro) 4384 mddev->ro = 0; 4385 } 4386 if (!mddev->in_sync || mddev->flags) { 4387 /* mark array as shutdown cleanly */ 4388 mddev->in_sync = 1; 4389 md_update_sb(mddev, 1); 4390 } 4391 if (mode == 1) 4392 set_disk_ro(disk, 1); 4393 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4394 err = 0; 4395 } 4396 out: 4397 mutex_unlock(&mddev->open_mutex); 4398 if (err) 4399 return err; 4400 /* 4401 * Free resources if final stop 4402 */ 4403 if (mode == 0) { 4404 4405 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 4406 4407 bitmap_destroy(mddev); 4408 if (mddev->bitmap_file) { 4409 restore_bitmap_write_access(mddev->bitmap_file); 4410 fput(mddev->bitmap_file); 4411 mddev->bitmap_file = NULL; 4412 } 4413 mddev->bitmap_offset = 0; 4414 4415 /* make sure all md_delayed_delete calls have finished */ 4416 flush_scheduled_work(); 4417 4418 export_array(mddev); 4419 4420 mddev->array_sectors = 0; 4421 mddev->external_size = 0; 4422 mddev->dev_sectors = 0; 4423 mddev->raid_disks = 0; 4424 mddev->recovery_cp = 0; 4425 mddev->resync_min = 0; 4426 mddev->resync_max = MaxSector; 4427 mddev->reshape_position = MaxSector; 4428 mddev->external = 0; 4429 mddev->persistent = 0; 4430 mddev->level = LEVEL_NONE; 4431 mddev->clevel[0] = 0; 4432 mddev->flags = 0; 4433 mddev->ro = 0; 4434 mddev->metadata_type[0] = 0; 4435 mddev->chunk_sectors = 0; 4436 mddev->ctime = mddev->utime = 0; 4437 mddev->layout = 0; 4438 mddev->max_disks = 0; 4439 mddev->events = 0; 4440 mddev->delta_disks = 0; 4441 mddev->new_level = LEVEL_NONE; 4442 mddev->new_layout = 0; 4443 mddev->new_chunk_sectors = 0; 4444 mddev->curr_resync = 0; 4445 mddev->resync_mismatches = 0; 4446 mddev->suspend_lo = mddev->suspend_hi = 0; 4447 mddev->sync_speed_min = mddev->sync_speed_max = 0; 4448 mddev->recovery = 0; 4449 mddev->in_sync = 0; 4450 mddev->changed = 0; 4451 mddev->degraded = 0; 4452 mddev->barriers_work = 0; 4453 mddev->safemode = 0; 4454 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4455 if (mddev->hold_active == UNTIL_STOP) 4456 mddev->hold_active = 0; 4457 4458 } else if (mddev->pers) 4459 printk(KERN_INFO "md: %s switched to read-only mode.\n", 4460 mdname(mddev)); 4461 err = 0; 4462 blk_integrity_unregister(disk); 4463 md_new_event(mddev); 4464 sysfs_notify_dirent(mddev->sysfs_state); 4465 return err; 4466 } 4467 4468 #ifndef MODULE 4469 static void autorun_array(mddev_t *mddev) 4470 { 4471 mdk_rdev_t *rdev; 4472 int err; 4473 4474 if (list_empty(&mddev->disks)) 4475 return; 4476 4477 printk(KERN_INFO "md: running: "); 4478 4479 list_for_each_entry(rdev, &mddev->disks, same_set) { 4480 char b[BDEVNAME_SIZE]; 4481 printk("<%s>", bdevname(rdev->bdev,b)); 4482 } 4483 printk("\n"); 4484 4485 err = do_md_run(mddev); 4486 if (err) { 4487 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 4488 do_md_stop(mddev, 0, 0); 4489 } 4490 } 4491 4492 /* 4493 * lets try to run arrays based on all disks that have arrived 4494 * until now. (those are in pending_raid_disks) 4495 * 4496 * the method: pick the first pending disk, collect all disks with 4497 * the same UUID, remove all from the pending list and put them into 4498 * the 'same_array' list. Then order this list based on superblock 4499 * update time (freshest comes first), kick out 'old' disks and 4500 * compare superblocks. If everything's fine then run it. 4501 * 4502 * If "unit" is allocated, then bump its reference count 4503 */ 4504 static void autorun_devices(int part) 4505 { 4506 mdk_rdev_t *rdev0, *rdev, *tmp; 4507 mddev_t *mddev; 4508 char b[BDEVNAME_SIZE]; 4509 4510 printk(KERN_INFO "md: autorun ...\n"); 4511 while (!list_empty(&pending_raid_disks)) { 4512 int unit; 4513 dev_t dev; 4514 LIST_HEAD(candidates); 4515 rdev0 = list_entry(pending_raid_disks.next, 4516 mdk_rdev_t, same_set); 4517 4518 printk(KERN_INFO "md: considering %s ...\n", 4519 bdevname(rdev0->bdev,b)); 4520 INIT_LIST_HEAD(&candidates); 4521 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 4522 if (super_90_load(rdev, rdev0, 0) >= 0) { 4523 printk(KERN_INFO "md: adding %s ...\n", 4524 bdevname(rdev->bdev,b)); 4525 list_move(&rdev->same_set, &candidates); 4526 } 4527 /* 4528 * now we have a set of devices, with all of them having 4529 * mostly sane superblocks. It's time to allocate the 4530 * mddev. 4531 */ 4532 if (part) { 4533 dev = MKDEV(mdp_major, 4534 rdev0->preferred_minor << MdpMinorShift); 4535 unit = MINOR(dev) >> MdpMinorShift; 4536 } else { 4537 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4538 unit = MINOR(dev); 4539 } 4540 if (rdev0->preferred_minor != unit) { 4541 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4542 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4543 break; 4544 } 4545 4546 md_probe(dev, NULL, NULL); 4547 mddev = mddev_find(dev); 4548 if (!mddev || !mddev->gendisk) { 4549 if (mddev) 4550 mddev_put(mddev); 4551 printk(KERN_ERR 4552 "md: cannot allocate memory for md drive.\n"); 4553 break; 4554 } 4555 if (mddev_lock(mddev)) 4556 printk(KERN_WARNING "md: %s locked, cannot run\n", 4557 mdname(mddev)); 4558 else if (mddev->raid_disks || mddev->major_version 4559 || !list_empty(&mddev->disks)) { 4560 printk(KERN_WARNING 4561 "md: %s already running, cannot run %s\n", 4562 mdname(mddev), bdevname(rdev0->bdev,b)); 4563 mddev_unlock(mddev); 4564 } else { 4565 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4566 mddev->persistent = 1; 4567 rdev_for_each_list(rdev, tmp, &candidates) { 4568 list_del_init(&rdev->same_set); 4569 if (bind_rdev_to_array(rdev, mddev)) 4570 export_rdev(rdev); 4571 } 4572 autorun_array(mddev); 4573 mddev_unlock(mddev); 4574 } 4575 /* on success, candidates will be empty, on error 4576 * it won't... 4577 */ 4578 rdev_for_each_list(rdev, tmp, &candidates) { 4579 list_del_init(&rdev->same_set); 4580 export_rdev(rdev); 4581 } 4582 mddev_put(mddev); 4583 } 4584 printk(KERN_INFO "md: ... autorun DONE.\n"); 4585 } 4586 #endif /* !MODULE */ 4587 4588 static int get_version(void __user * arg) 4589 { 4590 mdu_version_t ver; 4591 4592 ver.major = MD_MAJOR_VERSION; 4593 ver.minor = MD_MINOR_VERSION; 4594 ver.patchlevel = MD_PATCHLEVEL_VERSION; 4595 4596 if (copy_to_user(arg, &ver, sizeof(ver))) 4597 return -EFAULT; 4598 4599 return 0; 4600 } 4601 4602 static int get_array_info(mddev_t * mddev, void __user * arg) 4603 { 4604 mdu_array_info_t info; 4605 int nr,working,insync,failed,spare; 4606 mdk_rdev_t *rdev; 4607 4608 nr=working=insync=failed=spare=0; 4609 list_for_each_entry(rdev, &mddev->disks, same_set) { 4610 nr++; 4611 if (test_bit(Faulty, &rdev->flags)) 4612 failed++; 4613 else { 4614 working++; 4615 if (test_bit(In_sync, &rdev->flags)) 4616 insync++; 4617 else 4618 spare++; 4619 } 4620 } 4621 4622 info.major_version = mddev->major_version; 4623 info.minor_version = mddev->minor_version; 4624 info.patch_version = MD_PATCHLEVEL_VERSION; 4625 info.ctime = mddev->ctime; 4626 info.level = mddev->level; 4627 info.size = mddev->dev_sectors / 2; 4628 if (info.size != mddev->dev_sectors / 2) /* overflow */ 4629 info.size = -1; 4630 info.nr_disks = nr; 4631 info.raid_disks = mddev->raid_disks; 4632 info.md_minor = mddev->md_minor; 4633 info.not_persistent= !mddev->persistent; 4634 4635 info.utime = mddev->utime; 4636 info.state = 0; 4637 if (mddev->in_sync) 4638 info.state = (1<<MD_SB_CLEAN); 4639 if (mddev->bitmap && mddev->bitmap_offset) 4640 info.state = (1<<MD_SB_BITMAP_PRESENT); 4641 info.active_disks = insync; 4642 info.working_disks = working; 4643 info.failed_disks = failed; 4644 info.spare_disks = spare; 4645 4646 info.layout = mddev->layout; 4647 info.chunk_size = mddev->chunk_sectors << 9; 4648 4649 if (copy_to_user(arg, &info, sizeof(info))) 4650 return -EFAULT; 4651 4652 return 0; 4653 } 4654 4655 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 4656 { 4657 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 4658 char *ptr, *buf = NULL; 4659 int err = -ENOMEM; 4660 4661 if (md_allow_write(mddev)) 4662 file = kmalloc(sizeof(*file), GFP_NOIO); 4663 else 4664 file = kmalloc(sizeof(*file), GFP_KERNEL); 4665 4666 if (!file) 4667 goto out; 4668 4669 /* bitmap disabled, zero the first byte and copy out */ 4670 if (!mddev->bitmap || !mddev->bitmap->file) { 4671 file->pathname[0] = '\0'; 4672 goto copy_out; 4673 } 4674 4675 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 4676 if (!buf) 4677 goto out; 4678 4679 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 4680 if (IS_ERR(ptr)) 4681 goto out; 4682 4683 strcpy(file->pathname, ptr); 4684 4685 copy_out: 4686 err = 0; 4687 if (copy_to_user(arg, file, sizeof(*file))) 4688 err = -EFAULT; 4689 out: 4690 kfree(buf); 4691 kfree(file); 4692 return err; 4693 } 4694 4695 static int get_disk_info(mddev_t * mddev, void __user * arg) 4696 { 4697 mdu_disk_info_t info; 4698 mdk_rdev_t *rdev; 4699 4700 if (copy_from_user(&info, arg, sizeof(info))) 4701 return -EFAULT; 4702 4703 rdev = find_rdev_nr(mddev, info.number); 4704 if (rdev) { 4705 info.major = MAJOR(rdev->bdev->bd_dev); 4706 info.minor = MINOR(rdev->bdev->bd_dev); 4707 info.raid_disk = rdev->raid_disk; 4708 info.state = 0; 4709 if (test_bit(Faulty, &rdev->flags)) 4710 info.state |= (1<<MD_DISK_FAULTY); 4711 else if (test_bit(In_sync, &rdev->flags)) { 4712 info.state |= (1<<MD_DISK_ACTIVE); 4713 info.state |= (1<<MD_DISK_SYNC); 4714 } 4715 if (test_bit(WriteMostly, &rdev->flags)) 4716 info.state |= (1<<MD_DISK_WRITEMOSTLY); 4717 } else { 4718 info.major = info.minor = 0; 4719 info.raid_disk = -1; 4720 info.state = (1<<MD_DISK_REMOVED); 4721 } 4722 4723 if (copy_to_user(arg, &info, sizeof(info))) 4724 return -EFAULT; 4725 4726 return 0; 4727 } 4728 4729 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 4730 { 4731 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4732 mdk_rdev_t *rdev; 4733 dev_t dev = MKDEV(info->major,info->minor); 4734 4735 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 4736 return -EOVERFLOW; 4737 4738 if (!mddev->raid_disks) { 4739 int err; 4740 /* expecting a device which has a superblock */ 4741 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 4742 if (IS_ERR(rdev)) { 4743 printk(KERN_WARNING 4744 "md: md_import_device returned %ld\n", 4745 PTR_ERR(rdev)); 4746 return PTR_ERR(rdev); 4747 } 4748 if (!list_empty(&mddev->disks)) { 4749 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 4750 mdk_rdev_t, same_set); 4751 err = super_types[mddev->major_version] 4752 .load_super(rdev, rdev0, mddev->minor_version); 4753 if (err < 0) { 4754 printk(KERN_WARNING 4755 "md: %s has different UUID to %s\n", 4756 bdevname(rdev->bdev,b), 4757 bdevname(rdev0->bdev,b2)); 4758 export_rdev(rdev); 4759 return -EINVAL; 4760 } 4761 } 4762 err = bind_rdev_to_array(rdev, mddev); 4763 if (err) 4764 export_rdev(rdev); 4765 return err; 4766 } 4767 4768 /* 4769 * add_new_disk can be used once the array is assembled 4770 * to add "hot spares". They must already have a superblock 4771 * written 4772 */ 4773 if (mddev->pers) { 4774 int err; 4775 if (!mddev->pers->hot_add_disk) { 4776 printk(KERN_WARNING 4777 "%s: personality does not support diskops!\n", 4778 mdname(mddev)); 4779 return -EINVAL; 4780 } 4781 if (mddev->persistent) 4782 rdev = md_import_device(dev, mddev->major_version, 4783 mddev->minor_version); 4784 else 4785 rdev = md_import_device(dev, -1, -1); 4786 if (IS_ERR(rdev)) { 4787 printk(KERN_WARNING 4788 "md: md_import_device returned %ld\n", 4789 PTR_ERR(rdev)); 4790 return PTR_ERR(rdev); 4791 } 4792 /* set save_raid_disk if appropriate */ 4793 if (!mddev->persistent) { 4794 if (info->state & (1<<MD_DISK_SYNC) && 4795 info->raid_disk < mddev->raid_disks) 4796 rdev->raid_disk = info->raid_disk; 4797 else 4798 rdev->raid_disk = -1; 4799 } else 4800 super_types[mddev->major_version]. 4801 validate_super(mddev, rdev); 4802 rdev->saved_raid_disk = rdev->raid_disk; 4803 4804 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 4805 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 4806 set_bit(WriteMostly, &rdev->flags); 4807 else 4808 clear_bit(WriteMostly, &rdev->flags); 4809 4810 rdev->raid_disk = -1; 4811 err = bind_rdev_to_array(rdev, mddev); 4812 if (!err && !mddev->pers->hot_remove_disk) { 4813 /* If there is hot_add_disk but no hot_remove_disk 4814 * then added disks for geometry changes, 4815 * and should be added immediately. 4816 */ 4817 super_types[mddev->major_version]. 4818 validate_super(mddev, rdev); 4819 err = mddev->pers->hot_add_disk(mddev, rdev); 4820 if (err) 4821 unbind_rdev_from_array(rdev); 4822 } 4823 if (err) 4824 export_rdev(rdev); 4825 else 4826 sysfs_notify_dirent(rdev->sysfs_state); 4827 4828 md_update_sb(mddev, 1); 4829 if (mddev->degraded) 4830 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4831 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4832 md_wakeup_thread(mddev->thread); 4833 return err; 4834 } 4835 4836 /* otherwise, add_new_disk is only allowed 4837 * for major_version==0 superblocks 4838 */ 4839 if (mddev->major_version != 0) { 4840 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 4841 mdname(mddev)); 4842 return -EINVAL; 4843 } 4844 4845 if (!(info->state & (1<<MD_DISK_FAULTY))) { 4846 int err; 4847 rdev = md_import_device(dev, -1, 0); 4848 if (IS_ERR(rdev)) { 4849 printk(KERN_WARNING 4850 "md: error, md_import_device() returned %ld\n", 4851 PTR_ERR(rdev)); 4852 return PTR_ERR(rdev); 4853 } 4854 rdev->desc_nr = info->number; 4855 if (info->raid_disk < mddev->raid_disks) 4856 rdev->raid_disk = info->raid_disk; 4857 else 4858 rdev->raid_disk = -1; 4859 4860 if (rdev->raid_disk < mddev->raid_disks) 4861 if (info->state & (1<<MD_DISK_SYNC)) 4862 set_bit(In_sync, &rdev->flags); 4863 4864 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 4865 set_bit(WriteMostly, &rdev->flags); 4866 4867 if (!mddev->persistent) { 4868 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 4869 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 4870 } else 4871 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 4872 rdev->sectors = rdev->sb_start; 4873 4874 err = bind_rdev_to_array(rdev, mddev); 4875 if (err) { 4876 export_rdev(rdev); 4877 return err; 4878 } 4879 } 4880 4881 return 0; 4882 } 4883 4884 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 4885 { 4886 char b[BDEVNAME_SIZE]; 4887 mdk_rdev_t *rdev; 4888 4889 rdev = find_rdev(mddev, dev); 4890 if (!rdev) 4891 return -ENXIO; 4892 4893 if (rdev->raid_disk >= 0) 4894 goto busy; 4895 4896 kick_rdev_from_array(rdev); 4897 md_update_sb(mddev, 1); 4898 md_new_event(mddev); 4899 4900 return 0; 4901 busy: 4902 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 4903 bdevname(rdev->bdev,b), mdname(mddev)); 4904 return -EBUSY; 4905 } 4906 4907 static int hot_add_disk(mddev_t * mddev, dev_t dev) 4908 { 4909 char b[BDEVNAME_SIZE]; 4910 int err; 4911 mdk_rdev_t *rdev; 4912 4913 if (!mddev->pers) 4914 return -ENODEV; 4915 4916 if (mddev->major_version != 0) { 4917 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 4918 " version-0 superblocks.\n", 4919 mdname(mddev)); 4920 return -EINVAL; 4921 } 4922 if (!mddev->pers->hot_add_disk) { 4923 printk(KERN_WARNING 4924 "%s: personality does not support diskops!\n", 4925 mdname(mddev)); 4926 return -EINVAL; 4927 } 4928 4929 rdev = md_import_device(dev, -1, 0); 4930 if (IS_ERR(rdev)) { 4931 printk(KERN_WARNING 4932 "md: error, md_import_device() returned %ld\n", 4933 PTR_ERR(rdev)); 4934 return -EINVAL; 4935 } 4936 4937 if (mddev->persistent) 4938 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 4939 else 4940 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 4941 4942 rdev->sectors = rdev->sb_start; 4943 4944 if (test_bit(Faulty, &rdev->flags)) { 4945 printk(KERN_WARNING 4946 "md: can not hot-add faulty %s disk to %s!\n", 4947 bdevname(rdev->bdev,b), mdname(mddev)); 4948 err = -EINVAL; 4949 goto abort_export; 4950 } 4951 clear_bit(In_sync, &rdev->flags); 4952 rdev->desc_nr = -1; 4953 rdev->saved_raid_disk = -1; 4954 err = bind_rdev_to_array(rdev, mddev); 4955 if (err) 4956 goto abort_export; 4957 4958 /* 4959 * The rest should better be atomic, we can have disk failures 4960 * noticed in interrupt contexts ... 4961 */ 4962 4963 rdev->raid_disk = -1; 4964 4965 md_update_sb(mddev, 1); 4966 4967 /* 4968 * Kick recovery, maybe this spare has to be added to the 4969 * array immediately. 4970 */ 4971 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4972 md_wakeup_thread(mddev->thread); 4973 md_new_event(mddev); 4974 return 0; 4975 4976 abort_export: 4977 export_rdev(rdev); 4978 return err; 4979 } 4980 4981 static int set_bitmap_file(mddev_t *mddev, int fd) 4982 { 4983 int err; 4984 4985 if (mddev->pers) { 4986 if (!mddev->pers->quiesce) 4987 return -EBUSY; 4988 if (mddev->recovery || mddev->sync_thread) 4989 return -EBUSY; 4990 /* we should be able to change the bitmap.. */ 4991 } 4992 4993 4994 if (fd >= 0) { 4995 if (mddev->bitmap) 4996 return -EEXIST; /* cannot add when bitmap is present */ 4997 mddev->bitmap_file = fget(fd); 4998 4999 if (mddev->bitmap_file == NULL) { 5000 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5001 mdname(mddev)); 5002 return -EBADF; 5003 } 5004 5005 err = deny_bitmap_write_access(mddev->bitmap_file); 5006 if (err) { 5007 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5008 mdname(mddev)); 5009 fput(mddev->bitmap_file); 5010 mddev->bitmap_file = NULL; 5011 return err; 5012 } 5013 mddev->bitmap_offset = 0; /* file overrides offset */ 5014 } else if (mddev->bitmap == NULL) 5015 return -ENOENT; /* cannot remove what isn't there */ 5016 err = 0; 5017 if (mddev->pers) { 5018 mddev->pers->quiesce(mddev, 1); 5019 if (fd >= 0) 5020 err = bitmap_create(mddev); 5021 if (fd < 0 || err) { 5022 bitmap_destroy(mddev); 5023 fd = -1; /* make sure to put the file */ 5024 } 5025 mddev->pers->quiesce(mddev, 0); 5026 } 5027 if (fd < 0) { 5028 if (mddev->bitmap_file) { 5029 restore_bitmap_write_access(mddev->bitmap_file); 5030 fput(mddev->bitmap_file); 5031 } 5032 mddev->bitmap_file = NULL; 5033 } 5034 5035 return err; 5036 } 5037 5038 /* 5039 * set_array_info is used two different ways 5040 * The original usage is when creating a new array. 5041 * In this usage, raid_disks is > 0 and it together with 5042 * level, size, not_persistent,layout,chunksize determine the 5043 * shape of the array. 5044 * This will always create an array with a type-0.90.0 superblock. 5045 * The newer usage is when assembling an array. 5046 * In this case raid_disks will be 0, and the major_version field is 5047 * use to determine which style super-blocks are to be found on the devices. 5048 * The minor and patch _version numbers are also kept incase the 5049 * super_block handler wishes to interpret them. 5050 */ 5051 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 5052 { 5053 5054 if (info->raid_disks == 0) { 5055 /* just setting version number for superblock loading */ 5056 if (info->major_version < 0 || 5057 info->major_version >= ARRAY_SIZE(super_types) || 5058 super_types[info->major_version].name == NULL) { 5059 /* maybe try to auto-load a module? */ 5060 printk(KERN_INFO 5061 "md: superblock version %d not known\n", 5062 info->major_version); 5063 return -EINVAL; 5064 } 5065 mddev->major_version = info->major_version; 5066 mddev->minor_version = info->minor_version; 5067 mddev->patch_version = info->patch_version; 5068 mddev->persistent = !info->not_persistent; 5069 return 0; 5070 } 5071 mddev->major_version = MD_MAJOR_VERSION; 5072 mddev->minor_version = MD_MINOR_VERSION; 5073 mddev->patch_version = MD_PATCHLEVEL_VERSION; 5074 mddev->ctime = get_seconds(); 5075 5076 mddev->level = info->level; 5077 mddev->clevel[0] = 0; 5078 mddev->dev_sectors = 2 * (sector_t)info->size; 5079 mddev->raid_disks = info->raid_disks; 5080 /* don't set md_minor, it is determined by which /dev/md* was 5081 * openned 5082 */ 5083 if (info->state & (1<<MD_SB_CLEAN)) 5084 mddev->recovery_cp = MaxSector; 5085 else 5086 mddev->recovery_cp = 0; 5087 mddev->persistent = ! info->not_persistent; 5088 mddev->external = 0; 5089 5090 mddev->layout = info->layout; 5091 mddev->chunk_sectors = info->chunk_size >> 9; 5092 5093 mddev->max_disks = MD_SB_DISKS; 5094 5095 if (mddev->persistent) 5096 mddev->flags = 0; 5097 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5098 5099 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 5100 mddev->bitmap_offset = 0; 5101 5102 mddev->reshape_position = MaxSector; 5103 5104 /* 5105 * Generate a 128 bit UUID 5106 */ 5107 get_random_bytes(mddev->uuid, 16); 5108 5109 mddev->new_level = mddev->level; 5110 mddev->new_chunk_sectors = mddev->chunk_sectors; 5111 mddev->new_layout = mddev->layout; 5112 mddev->delta_disks = 0; 5113 5114 return 0; 5115 } 5116 5117 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors) 5118 { 5119 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 5120 5121 if (mddev->external_size) 5122 return; 5123 5124 mddev->array_sectors = array_sectors; 5125 } 5126 EXPORT_SYMBOL(md_set_array_sectors); 5127 5128 static int update_size(mddev_t *mddev, sector_t num_sectors) 5129 { 5130 mdk_rdev_t *rdev; 5131 int rv; 5132 int fit = (num_sectors == 0); 5133 5134 if (mddev->pers->resize == NULL) 5135 return -EINVAL; 5136 /* The "num_sectors" is the number of sectors of each device that 5137 * is used. This can only make sense for arrays with redundancy. 5138 * linear and raid0 always use whatever space is available. We can only 5139 * consider changing this number if no resync or reconstruction is 5140 * happening, and if the new size is acceptable. It must fit before the 5141 * sb_start or, if that is <data_offset, it must fit before the size 5142 * of each device. If num_sectors is zero, we find the largest size 5143 * that fits. 5144 5145 */ 5146 if (mddev->sync_thread) 5147 return -EBUSY; 5148 if (mddev->bitmap) 5149 /* Sorry, cannot grow a bitmap yet, just remove it, 5150 * grow, and re-add. 5151 */ 5152 return -EBUSY; 5153 list_for_each_entry(rdev, &mddev->disks, same_set) { 5154 sector_t avail = rdev->sectors; 5155 5156 if (fit && (num_sectors == 0 || num_sectors > avail)) 5157 num_sectors = avail; 5158 if (avail < num_sectors) 5159 return -ENOSPC; 5160 } 5161 rv = mddev->pers->resize(mddev, num_sectors); 5162 if (!rv) 5163 revalidate_disk(mddev->gendisk); 5164 return rv; 5165 } 5166 5167 static int update_raid_disks(mddev_t *mddev, int raid_disks) 5168 { 5169 int rv; 5170 /* change the number of raid disks */ 5171 if (mddev->pers->check_reshape == NULL) 5172 return -EINVAL; 5173 if (raid_disks <= 0 || 5174 raid_disks >= mddev->max_disks) 5175 return -EINVAL; 5176 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 5177 return -EBUSY; 5178 mddev->delta_disks = raid_disks - mddev->raid_disks; 5179 5180 rv = mddev->pers->check_reshape(mddev); 5181 return rv; 5182 } 5183 5184 5185 /* 5186 * update_array_info is used to change the configuration of an 5187 * on-line array. 5188 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 5189 * fields in the info are checked against the array. 5190 * Any differences that cannot be handled will cause an error. 5191 * Normally, only one change can be managed at a time. 5192 */ 5193 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 5194 { 5195 int rv = 0; 5196 int cnt = 0; 5197 int state = 0; 5198 5199 /* calculate expected state,ignoring low bits */ 5200 if (mddev->bitmap && mddev->bitmap_offset) 5201 state |= (1 << MD_SB_BITMAP_PRESENT); 5202 5203 if (mddev->major_version != info->major_version || 5204 mddev->minor_version != info->minor_version || 5205 /* mddev->patch_version != info->patch_version || */ 5206 mddev->ctime != info->ctime || 5207 mddev->level != info->level || 5208 /* mddev->layout != info->layout || */ 5209 !mddev->persistent != info->not_persistent|| 5210 mddev->chunk_sectors != info->chunk_size >> 9 || 5211 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 5212 ((state^info->state) & 0xfffffe00) 5213 ) 5214 return -EINVAL; 5215 /* Check there is only one change */ 5216 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5217 cnt++; 5218 if (mddev->raid_disks != info->raid_disks) 5219 cnt++; 5220 if (mddev->layout != info->layout) 5221 cnt++; 5222 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 5223 cnt++; 5224 if (cnt == 0) 5225 return 0; 5226 if (cnt > 1) 5227 return -EINVAL; 5228 5229 if (mddev->layout != info->layout) { 5230 /* Change layout 5231 * we don't need to do anything at the md level, the 5232 * personality will take care of it all. 5233 */ 5234 if (mddev->pers->check_reshape == NULL) 5235 return -EINVAL; 5236 else { 5237 mddev->new_layout = info->layout; 5238 rv = mddev->pers->check_reshape(mddev); 5239 if (rv) 5240 mddev->new_layout = mddev->layout; 5241 return rv; 5242 } 5243 } 5244 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5245 rv = update_size(mddev, (sector_t)info->size * 2); 5246 5247 if (mddev->raid_disks != info->raid_disks) 5248 rv = update_raid_disks(mddev, info->raid_disks); 5249 5250 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 5251 if (mddev->pers->quiesce == NULL) 5252 return -EINVAL; 5253 if (mddev->recovery || mddev->sync_thread) 5254 return -EBUSY; 5255 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 5256 /* add the bitmap */ 5257 if (mddev->bitmap) 5258 return -EEXIST; 5259 if (mddev->default_bitmap_offset == 0) 5260 return -EINVAL; 5261 mddev->bitmap_offset = mddev->default_bitmap_offset; 5262 mddev->pers->quiesce(mddev, 1); 5263 rv = bitmap_create(mddev); 5264 if (rv) 5265 bitmap_destroy(mddev); 5266 mddev->pers->quiesce(mddev, 0); 5267 } else { 5268 /* remove the bitmap */ 5269 if (!mddev->bitmap) 5270 return -ENOENT; 5271 if (mddev->bitmap->file) 5272 return -EINVAL; 5273 mddev->pers->quiesce(mddev, 1); 5274 bitmap_destroy(mddev); 5275 mddev->pers->quiesce(mddev, 0); 5276 mddev->bitmap_offset = 0; 5277 } 5278 } 5279 md_update_sb(mddev, 1); 5280 return rv; 5281 } 5282 5283 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 5284 { 5285 mdk_rdev_t *rdev; 5286 5287 if (mddev->pers == NULL) 5288 return -ENODEV; 5289 5290 rdev = find_rdev(mddev, dev); 5291 if (!rdev) 5292 return -ENODEV; 5293 5294 md_error(mddev, rdev); 5295 return 0; 5296 } 5297 5298 /* 5299 * We have a problem here : there is no easy way to give a CHS 5300 * virtual geometry. We currently pretend that we have a 2 heads 5301 * 4 sectors (with a BIG number of cylinders...). This drives 5302 * dosfs just mad... ;-) 5303 */ 5304 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 5305 { 5306 mddev_t *mddev = bdev->bd_disk->private_data; 5307 5308 geo->heads = 2; 5309 geo->sectors = 4; 5310 geo->cylinders = get_capacity(mddev->gendisk) / 8; 5311 return 0; 5312 } 5313 5314 static int md_ioctl(struct block_device *bdev, fmode_t mode, 5315 unsigned int cmd, unsigned long arg) 5316 { 5317 int err = 0; 5318 void __user *argp = (void __user *)arg; 5319 mddev_t *mddev = NULL; 5320 5321 if (!capable(CAP_SYS_ADMIN)) 5322 return -EACCES; 5323 5324 /* 5325 * Commands dealing with the RAID driver but not any 5326 * particular array: 5327 */ 5328 switch (cmd) 5329 { 5330 case RAID_VERSION: 5331 err = get_version(argp); 5332 goto done; 5333 5334 case PRINT_RAID_DEBUG: 5335 err = 0; 5336 md_print_devices(); 5337 goto done; 5338 5339 #ifndef MODULE 5340 case RAID_AUTORUN: 5341 err = 0; 5342 autostart_arrays(arg); 5343 goto done; 5344 #endif 5345 default:; 5346 } 5347 5348 /* 5349 * Commands creating/starting a new array: 5350 */ 5351 5352 mddev = bdev->bd_disk->private_data; 5353 5354 if (!mddev) { 5355 BUG(); 5356 goto abort; 5357 } 5358 5359 err = mddev_lock(mddev); 5360 if (err) { 5361 printk(KERN_INFO 5362 "md: ioctl lock interrupted, reason %d, cmd %d\n", 5363 err, cmd); 5364 goto abort; 5365 } 5366 5367 switch (cmd) 5368 { 5369 case SET_ARRAY_INFO: 5370 { 5371 mdu_array_info_t info; 5372 if (!arg) 5373 memset(&info, 0, sizeof(info)); 5374 else if (copy_from_user(&info, argp, sizeof(info))) { 5375 err = -EFAULT; 5376 goto abort_unlock; 5377 } 5378 if (mddev->pers) { 5379 err = update_array_info(mddev, &info); 5380 if (err) { 5381 printk(KERN_WARNING "md: couldn't update" 5382 " array info. %d\n", err); 5383 goto abort_unlock; 5384 } 5385 goto done_unlock; 5386 } 5387 if (!list_empty(&mddev->disks)) { 5388 printk(KERN_WARNING 5389 "md: array %s already has disks!\n", 5390 mdname(mddev)); 5391 err = -EBUSY; 5392 goto abort_unlock; 5393 } 5394 if (mddev->raid_disks) { 5395 printk(KERN_WARNING 5396 "md: array %s already initialised!\n", 5397 mdname(mddev)); 5398 err = -EBUSY; 5399 goto abort_unlock; 5400 } 5401 err = set_array_info(mddev, &info); 5402 if (err) { 5403 printk(KERN_WARNING "md: couldn't set" 5404 " array info. %d\n", err); 5405 goto abort_unlock; 5406 } 5407 } 5408 goto done_unlock; 5409 5410 default:; 5411 } 5412 5413 /* 5414 * Commands querying/configuring an existing array: 5415 */ 5416 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 5417 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 5418 if ((!mddev->raid_disks && !mddev->external) 5419 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 5420 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 5421 && cmd != GET_BITMAP_FILE) { 5422 err = -ENODEV; 5423 goto abort_unlock; 5424 } 5425 5426 /* 5427 * Commands even a read-only array can execute: 5428 */ 5429 switch (cmd) 5430 { 5431 case GET_ARRAY_INFO: 5432 err = get_array_info(mddev, argp); 5433 goto done_unlock; 5434 5435 case GET_BITMAP_FILE: 5436 err = get_bitmap_file(mddev, argp); 5437 goto done_unlock; 5438 5439 case GET_DISK_INFO: 5440 err = get_disk_info(mddev, argp); 5441 goto done_unlock; 5442 5443 case RESTART_ARRAY_RW: 5444 err = restart_array(mddev); 5445 goto done_unlock; 5446 5447 case STOP_ARRAY: 5448 err = do_md_stop(mddev, 0, 1); 5449 goto done_unlock; 5450 5451 case STOP_ARRAY_RO: 5452 err = do_md_stop(mddev, 1, 1); 5453 goto done_unlock; 5454 5455 } 5456 5457 /* 5458 * The remaining ioctls are changing the state of the 5459 * superblock, so we do not allow them on read-only arrays. 5460 * However non-MD ioctls (e.g. get-size) will still come through 5461 * here and hit the 'default' below, so only disallow 5462 * 'md' ioctls, and switch to rw mode if started auto-readonly. 5463 */ 5464 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 5465 if (mddev->ro == 2) { 5466 mddev->ro = 0; 5467 sysfs_notify_dirent(mddev->sysfs_state); 5468 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5469 md_wakeup_thread(mddev->thread); 5470 } else { 5471 err = -EROFS; 5472 goto abort_unlock; 5473 } 5474 } 5475 5476 switch (cmd) 5477 { 5478 case ADD_NEW_DISK: 5479 { 5480 mdu_disk_info_t info; 5481 if (copy_from_user(&info, argp, sizeof(info))) 5482 err = -EFAULT; 5483 else 5484 err = add_new_disk(mddev, &info); 5485 goto done_unlock; 5486 } 5487 5488 case HOT_REMOVE_DISK: 5489 err = hot_remove_disk(mddev, new_decode_dev(arg)); 5490 goto done_unlock; 5491 5492 case HOT_ADD_DISK: 5493 err = hot_add_disk(mddev, new_decode_dev(arg)); 5494 goto done_unlock; 5495 5496 case SET_DISK_FAULTY: 5497 err = set_disk_faulty(mddev, new_decode_dev(arg)); 5498 goto done_unlock; 5499 5500 case RUN_ARRAY: 5501 err = do_md_run(mddev); 5502 goto done_unlock; 5503 5504 case SET_BITMAP_FILE: 5505 err = set_bitmap_file(mddev, (int)arg); 5506 goto done_unlock; 5507 5508 default: 5509 err = -EINVAL; 5510 goto abort_unlock; 5511 } 5512 5513 done_unlock: 5514 abort_unlock: 5515 if (mddev->hold_active == UNTIL_IOCTL && 5516 err != -EINVAL) 5517 mddev->hold_active = 0; 5518 mddev_unlock(mddev); 5519 5520 return err; 5521 done: 5522 if (err) 5523 MD_BUG(); 5524 abort: 5525 return err; 5526 } 5527 5528 static int md_open(struct block_device *bdev, fmode_t mode) 5529 { 5530 /* 5531 * Succeed if we can lock the mddev, which confirms that 5532 * it isn't being stopped right now. 5533 */ 5534 mddev_t *mddev = mddev_find(bdev->bd_dev); 5535 int err; 5536 5537 if (mddev->gendisk != bdev->bd_disk) { 5538 /* we are racing with mddev_put which is discarding this 5539 * bd_disk. 5540 */ 5541 mddev_put(mddev); 5542 /* Wait until bdev->bd_disk is definitely gone */ 5543 flush_scheduled_work(); 5544 /* Then retry the open from the top */ 5545 return -ERESTARTSYS; 5546 } 5547 BUG_ON(mddev != bdev->bd_disk->private_data); 5548 5549 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 5550 goto out; 5551 5552 err = 0; 5553 atomic_inc(&mddev->openers); 5554 mutex_unlock(&mddev->open_mutex); 5555 5556 check_disk_change(bdev); 5557 out: 5558 return err; 5559 } 5560 5561 static int md_release(struct gendisk *disk, fmode_t mode) 5562 { 5563 mddev_t *mddev = disk->private_data; 5564 5565 BUG_ON(!mddev); 5566 atomic_dec(&mddev->openers); 5567 mddev_put(mddev); 5568 5569 return 0; 5570 } 5571 5572 static int md_media_changed(struct gendisk *disk) 5573 { 5574 mddev_t *mddev = disk->private_data; 5575 5576 return mddev->changed; 5577 } 5578 5579 static int md_revalidate(struct gendisk *disk) 5580 { 5581 mddev_t *mddev = disk->private_data; 5582 5583 mddev->changed = 0; 5584 return 0; 5585 } 5586 static const struct block_device_operations md_fops = 5587 { 5588 .owner = THIS_MODULE, 5589 .open = md_open, 5590 .release = md_release, 5591 .ioctl = md_ioctl, 5592 .getgeo = md_getgeo, 5593 .media_changed = md_media_changed, 5594 .revalidate_disk= md_revalidate, 5595 }; 5596 5597 static int md_thread(void * arg) 5598 { 5599 mdk_thread_t *thread = arg; 5600 5601 /* 5602 * md_thread is a 'system-thread', it's priority should be very 5603 * high. We avoid resource deadlocks individually in each 5604 * raid personality. (RAID5 does preallocation) We also use RR and 5605 * the very same RT priority as kswapd, thus we will never get 5606 * into a priority inversion deadlock. 5607 * 5608 * we definitely have to have equal or higher priority than 5609 * bdflush, otherwise bdflush will deadlock if there are too 5610 * many dirty RAID5 blocks. 5611 */ 5612 5613 allow_signal(SIGKILL); 5614 while (!kthread_should_stop()) { 5615 5616 /* We need to wait INTERRUPTIBLE so that 5617 * we don't add to the load-average. 5618 * That means we need to be sure no signals are 5619 * pending 5620 */ 5621 if (signal_pending(current)) 5622 flush_signals(current); 5623 5624 wait_event_interruptible_timeout 5625 (thread->wqueue, 5626 test_bit(THREAD_WAKEUP, &thread->flags) 5627 || kthread_should_stop(), 5628 thread->timeout); 5629 5630 clear_bit(THREAD_WAKEUP, &thread->flags); 5631 5632 thread->run(thread->mddev); 5633 } 5634 5635 return 0; 5636 } 5637 5638 void md_wakeup_thread(mdk_thread_t *thread) 5639 { 5640 if (thread) { 5641 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 5642 set_bit(THREAD_WAKEUP, &thread->flags); 5643 wake_up(&thread->wqueue); 5644 } 5645 } 5646 5647 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 5648 const char *name) 5649 { 5650 mdk_thread_t *thread; 5651 5652 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 5653 if (!thread) 5654 return NULL; 5655 5656 init_waitqueue_head(&thread->wqueue); 5657 5658 thread->run = run; 5659 thread->mddev = mddev; 5660 thread->timeout = MAX_SCHEDULE_TIMEOUT; 5661 thread->tsk = kthread_run(md_thread, thread, 5662 "%s_%s", 5663 mdname(thread->mddev), 5664 name ?: mddev->pers->name); 5665 if (IS_ERR(thread->tsk)) { 5666 kfree(thread); 5667 return NULL; 5668 } 5669 return thread; 5670 } 5671 5672 void md_unregister_thread(mdk_thread_t *thread) 5673 { 5674 if (!thread) 5675 return; 5676 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 5677 5678 kthread_stop(thread->tsk); 5679 kfree(thread); 5680 } 5681 5682 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 5683 { 5684 if (!mddev) { 5685 MD_BUG(); 5686 return; 5687 } 5688 5689 if (!rdev || test_bit(Faulty, &rdev->flags)) 5690 return; 5691 5692 if (mddev->external) 5693 set_bit(Blocked, &rdev->flags); 5694 /* 5695 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 5696 mdname(mddev), 5697 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 5698 __builtin_return_address(0),__builtin_return_address(1), 5699 __builtin_return_address(2),__builtin_return_address(3)); 5700 */ 5701 if (!mddev->pers) 5702 return; 5703 if (!mddev->pers->error_handler) 5704 return; 5705 mddev->pers->error_handler(mddev,rdev); 5706 if (mddev->degraded) 5707 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5708 set_bit(StateChanged, &rdev->flags); 5709 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5710 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5711 md_wakeup_thread(mddev->thread); 5712 md_new_event_inintr(mddev); 5713 } 5714 5715 /* seq_file implementation /proc/mdstat */ 5716 5717 static void status_unused(struct seq_file *seq) 5718 { 5719 int i = 0; 5720 mdk_rdev_t *rdev; 5721 5722 seq_printf(seq, "unused devices: "); 5723 5724 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 5725 char b[BDEVNAME_SIZE]; 5726 i++; 5727 seq_printf(seq, "%s ", 5728 bdevname(rdev->bdev,b)); 5729 } 5730 if (!i) 5731 seq_printf(seq, "<none>"); 5732 5733 seq_printf(seq, "\n"); 5734 } 5735 5736 5737 static void status_resync(struct seq_file *seq, mddev_t * mddev) 5738 { 5739 sector_t max_sectors, resync, res; 5740 unsigned long dt, db; 5741 sector_t rt; 5742 int scale; 5743 unsigned int per_milli; 5744 5745 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 5746 5747 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5748 max_sectors = mddev->resync_max_sectors; 5749 else 5750 max_sectors = mddev->dev_sectors; 5751 5752 /* 5753 * Should not happen. 5754 */ 5755 if (!max_sectors) { 5756 MD_BUG(); 5757 return; 5758 } 5759 /* Pick 'scale' such that (resync>>scale)*1000 will fit 5760 * in a sector_t, and (max_sectors>>scale) will fit in a 5761 * u32, as those are the requirements for sector_div. 5762 * Thus 'scale' must be at least 10 5763 */ 5764 scale = 10; 5765 if (sizeof(sector_t) > sizeof(unsigned long)) { 5766 while ( max_sectors/2 > (1ULL<<(scale+32))) 5767 scale++; 5768 } 5769 res = (resync>>scale)*1000; 5770 sector_div(res, (u32)((max_sectors>>scale)+1)); 5771 5772 per_milli = res; 5773 { 5774 int i, x = per_milli/50, y = 20-x; 5775 seq_printf(seq, "["); 5776 for (i = 0; i < x; i++) 5777 seq_printf(seq, "="); 5778 seq_printf(seq, ">"); 5779 for (i = 0; i < y; i++) 5780 seq_printf(seq, "."); 5781 seq_printf(seq, "] "); 5782 } 5783 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 5784 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 5785 "reshape" : 5786 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 5787 "check" : 5788 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 5789 "resync" : "recovery"))), 5790 per_milli/10, per_milli % 10, 5791 (unsigned long long) resync/2, 5792 (unsigned long long) max_sectors/2); 5793 5794 /* 5795 * dt: time from mark until now 5796 * db: blocks written from mark until now 5797 * rt: remaining time 5798 * 5799 * rt is a sector_t, so could be 32bit or 64bit. 5800 * So we divide before multiply in case it is 32bit and close 5801 * to the limit. 5802 * We scale the divisor (db) by 32 to avoid loosing precision 5803 * near the end of resync when the number of remaining sectors 5804 * is close to 'db'. 5805 * We then divide rt by 32 after multiplying by db to compensate. 5806 * The '+1' avoids division by zero if db is very small. 5807 */ 5808 dt = ((jiffies - mddev->resync_mark) / HZ); 5809 if (!dt) dt++; 5810 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 5811 - mddev->resync_mark_cnt; 5812 5813 rt = max_sectors - resync; /* number of remaining sectors */ 5814 sector_div(rt, db/32+1); 5815 rt *= dt; 5816 rt >>= 5; 5817 5818 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 5819 ((unsigned long)rt % 60)/6); 5820 5821 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 5822 } 5823 5824 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 5825 { 5826 struct list_head *tmp; 5827 loff_t l = *pos; 5828 mddev_t *mddev; 5829 5830 if (l >= 0x10000) 5831 return NULL; 5832 if (!l--) 5833 /* header */ 5834 return (void*)1; 5835 5836 spin_lock(&all_mddevs_lock); 5837 list_for_each(tmp,&all_mddevs) 5838 if (!l--) { 5839 mddev = list_entry(tmp, mddev_t, all_mddevs); 5840 mddev_get(mddev); 5841 spin_unlock(&all_mddevs_lock); 5842 return mddev; 5843 } 5844 spin_unlock(&all_mddevs_lock); 5845 if (!l--) 5846 return (void*)2;/* tail */ 5847 return NULL; 5848 } 5849 5850 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 5851 { 5852 struct list_head *tmp; 5853 mddev_t *next_mddev, *mddev = v; 5854 5855 ++*pos; 5856 if (v == (void*)2) 5857 return NULL; 5858 5859 spin_lock(&all_mddevs_lock); 5860 if (v == (void*)1) 5861 tmp = all_mddevs.next; 5862 else 5863 tmp = mddev->all_mddevs.next; 5864 if (tmp != &all_mddevs) 5865 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 5866 else { 5867 next_mddev = (void*)2; 5868 *pos = 0x10000; 5869 } 5870 spin_unlock(&all_mddevs_lock); 5871 5872 if (v != (void*)1) 5873 mddev_put(mddev); 5874 return next_mddev; 5875 5876 } 5877 5878 static void md_seq_stop(struct seq_file *seq, void *v) 5879 { 5880 mddev_t *mddev = v; 5881 5882 if (mddev && v != (void*)1 && v != (void*)2) 5883 mddev_put(mddev); 5884 } 5885 5886 struct mdstat_info { 5887 int event; 5888 }; 5889 5890 static int md_seq_show(struct seq_file *seq, void *v) 5891 { 5892 mddev_t *mddev = v; 5893 sector_t sectors; 5894 mdk_rdev_t *rdev; 5895 struct mdstat_info *mi = seq->private; 5896 struct bitmap *bitmap; 5897 5898 if (v == (void*)1) { 5899 struct mdk_personality *pers; 5900 seq_printf(seq, "Personalities : "); 5901 spin_lock(&pers_lock); 5902 list_for_each_entry(pers, &pers_list, list) 5903 seq_printf(seq, "[%s] ", pers->name); 5904 5905 spin_unlock(&pers_lock); 5906 seq_printf(seq, "\n"); 5907 mi->event = atomic_read(&md_event_count); 5908 return 0; 5909 } 5910 if (v == (void*)2) { 5911 status_unused(seq); 5912 return 0; 5913 } 5914 5915 if (mddev_lock(mddev) < 0) 5916 return -EINTR; 5917 5918 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 5919 seq_printf(seq, "%s : %sactive", mdname(mddev), 5920 mddev->pers ? "" : "in"); 5921 if (mddev->pers) { 5922 if (mddev->ro==1) 5923 seq_printf(seq, " (read-only)"); 5924 if (mddev->ro==2) 5925 seq_printf(seq, " (auto-read-only)"); 5926 seq_printf(seq, " %s", mddev->pers->name); 5927 } 5928 5929 sectors = 0; 5930 list_for_each_entry(rdev, &mddev->disks, same_set) { 5931 char b[BDEVNAME_SIZE]; 5932 seq_printf(seq, " %s[%d]", 5933 bdevname(rdev->bdev,b), rdev->desc_nr); 5934 if (test_bit(WriteMostly, &rdev->flags)) 5935 seq_printf(seq, "(W)"); 5936 if (test_bit(Faulty, &rdev->flags)) { 5937 seq_printf(seq, "(F)"); 5938 continue; 5939 } else if (rdev->raid_disk < 0) 5940 seq_printf(seq, "(S)"); /* spare */ 5941 sectors += rdev->sectors; 5942 } 5943 5944 if (!list_empty(&mddev->disks)) { 5945 if (mddev->pers) 5946 seq_printf(seq, "\n %llu blocks", 5947 (unsigned long long) 5948 mddev->array_sectors / 2); 5949 else 5950 seq_printf(seq, "\n %llu blocks", 5951 (unsigned long long)sectors / 2); 5952 } 5953 if (mddev->persistent) { 5954 if (mddev->major_version != 0 || 5955 mddev->minor_version != 90) { 5956 seq_printf(seq," super %d.%d", 5957 mddev->major_version, 5958 mddev->minor_version); 5959 } 5960 } else if (mddev->external) 5961 seq_printf(seq, " super external:%s", 5962 mddev->metadata_type); 5963 else 5964 seq_printf(seq, " super non-persistent"); 5965 5966 if (mddev->pers) { 5967 mddev->pers->status(seq, mddev); 5968 seq_printf(seq, "\n "); 5969 if (mddev->pers->sync_request) { 5970 if (mddev->curr_resync > 2) { 5971 status_resync(seq, mddev); 5972 seq_printf(seq, "\n "); 5973 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 5974 seq_printf(seq, "\tresync=DELAYED\n "); 5975 else if (mddev->recovery_cp < MaxSector) 5976 seq_printf(seq, "\tresync=PENDING\n "); 5977 } 5978 } else 5979 seq_printf(seq, "\n "); 5980 5981 if ((bitmap = mddev->bitmap)) { 5982 unsigned long chunk_kb; 5983 unsigned long flags; 5984 spin_lock_irqsave(&bitmap->lock, flags); 5985 chunk_kb = bitmap->chunksize >> 10; 5986 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 5987 "%lu%s chunk", 5988 bitmap->pages - bitmap->missing_pages, 5989 bitmap->pages, 5990 (bitmap->pages - bitmap->missing_pages) 5991 << (PAGE_SHIFT - 10), 5992 chunk_kb ? chunk_kb : bitmap->chunksize, 5993 chunk_kb ? "KB" : "B"); 5994 if (bitmap->file) { 5995 seq_printf(seq, ", file: "); 5996 seq_path(seq, &bitmap->file->f_path, " \t\n"); 5997 } 5998 5999 seq_printf(seq, "\n"); 6000 spin_unlock_irqrestore(&bitmap->lock, flags); 6001 } 6002 6003 seq_printf(seq, "\n"); 6004 } 6005 mddev_unlock(mddev); 6006 6007 return 0; 6008 } 6009 6010 static const struct seq_operations md_seq_ops = { 6011 .start = md_seq_start, 6012 .next = md_seq_next, 6013 .stop = md_seq_stop, 6014 .show = md_seq_show, 6015 }; 6016 6017 static int md_seq_open(struct inode *inode, struct file *file) 6018 { 6019 int error; 6020 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 6021 if (mi == NULL) 6022 return -ENOMEM; 6023 6024 error = seq_open(file, &md_seq_ops); 6025 if (error) 6026 kfree(mi); 6027 else { 6028 struct seq_file *p = file->private_data; 6029 p->private = mi; 6030 mi->event = atomic_read(&md_event_count); 6031 } 6032 return error; 6033 } 6034 6035 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 6036 { 6037 struct seq_file *m = filp->private_data; 6038 struct mdstat_info *mi = m->private; 6039 int mask; 6040 6041 poll_wait(filp, &md_event_waiters, wait); 6042 6043 /* always allow read */ 6044 mask = POLLIN | POLLRDNORM; 6045 6046 if (mi->event != atomic_read(&md_event_count)) 6047 mask |= POLLERR | POLLPRI; 6048 return mask; 6049 } 6050 6051 static const struct file_operations md_seq_fops = { 6052 .owner = THIS_MODULE, 6053 .open = md_seq_open, 6054 .read = seq_read, 6055 .llseek = seq_lseek, 6056 .release = seq_release_private, 6057 .poll = mdstat_poll, 6058 }; 6059 6060 int register_md_personality(struct mdk_personality *p) 6061 { 6062 spin_lock(&pers_lock); 6063 list_add_tail(&p->list, &pers_list); 6064 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 6065 spin_unlock(&pers_lock); 6066 return 0; 6067 } 6068 6069 int unregister_md_personality(struct mdk_personality *p) 6070 { 6071 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 6072 spin_lock(&pers_lock); 6073 list_del_init(&p->list); 6074 spin_unlock(&pers_lock); 6075 return 0; 6076 } 6077 6078 static int is_mddev_idle(mddev_t *mddev, int init) 6079 { 6080 mdk_rdev_t * rdev; 6081 int idle; 6082 int curr_events; 6083 6084 idle = 1; 6085 rcu_read_lock(); 6086 rdev_for_each_rcu(rdev, mddev) { 6087 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 6088 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 6089 (int)part_stat_read(&disk->part0, sectors[1]) - 6090 atomic_read(&disk->sync_io); 6091 /* sync IO will cause sync_io to increase before the disk_stats 6092 * as sync_io is counted when a request starts, and 6093 * disk_stats is counted when it completes. 6094 * So resync activity will cause curr_events to be smaller than 6095 * when there was no such activity. 6096 * non-sync IO will cause disk_stat to increase without 6097 * increasing sync_io so curr_events will (eventually) 6098 * be larger than it was before. Once it becomes 6099 * substantially larger, the test below will cause 6100 * the array to appear non-idle, and resync will slow 6101 * down. 6102 * If there is a lot of outstanding resync activity when 6103 * we set last_event to curr_events, then all that activity 6104 * completing might cause the array to appear non-idle 6105 * and resync will be slowed down even though there might 6106 * not have been non-resync activity. This will only 6107 * happen once though. 'last_events' will soon reflect 6108 * the state where there is little or no outstanding 6109 * resync requests, and further resync activity will 6110 * always make curr_events less than last_events. 6111 * 6112 */ 6113 if (init || curr_events - rdev->last_events > 64) { 6114 rdev->last_events = curr_events; 6115 idle = 0; 6116 } 6117 } 6118 rcu_read_unlock(); 6119 return idle; 6120 } 6121 6122 void md_done_sync(mddev_t *mddev, int blocks, int ok) 6123 { 6124 /* another "blocks" (512byte) blocks have been synced */ 6125 atomic_sub(blocks, &mddev->recovery_active); 6126 wake_up(&mddev->recovery_wait); 6127 if (!ok) { 6128 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6129 md_wakeup_thread(mddev->thread); 6130 // stop recovery, signal do_sync .... 6131 } 6132 } 6133 6134 6135 /* md_write_start(mddev, bi) 6136 * If we need to update some array metadata (e.g. 'active' flag 6137 * in superblock) before writing, schedule a superblock update 6138 * and wait for it to complete. 6139 */ 6140 void md_write_start(mddev_t *mddev, struct bio *bi) 6141 { 6142 int did_change = 0; 6143 if (bio_data_dir(bi) != WRITE) 6144 return; 6145 6146 BUG_ON(mddev->ro == 1); 6147 if (mddev->ro == 2) { 6148 /* need to switch to read/write */ 6149 mddev->ro = 0; 6150 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6151 md_wakeup_thread(mddev->thread); 6152 md_wakeup_thread(mddev->sync_thread); 6153 did_change = 1; 6154 } 6155 atomic_inc(&mddev->writes_pending); 6156 if (mddev->safemode == 1) 6157 mddev->safemode = 0; 6158 if (mddev->in_sync) { 6159 spin_lock_irq(&mddev->write_lock); 6160 if (mddev->in_sync) { 6161 mddev->in_sync = 0; 6162 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6163 md_wakeup_thread(mddev->thread); 6164 did_change = 1; 6165 } 6166 spin_unlock_irq(&mddev->write_lock); 6167 } 6168 if (did_change) 6169 sysfs_notify_dirent(mddev->sysfs_state); 6170 wait_event(mddev->sb_wait, 6171 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) && 6172 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6173 } 6174 6175 void md_write_end(mddev_t *mddev) 6176 { 6177 if (atomic_dec_and_test(&mddev->writes_pending)) { 6178 if (mddev->safemode == 2) 6179 md_wakeup_thread(mddev->thread); 6180 else if (mddev->safemode_delay) 6181 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 6182 } 6183 } 6184 6185 /* md_allow_write(mddev) 6186 * Calling this ensures that the array is marked 'active' so that writes 6187 * may proceed without blocking. It is important to call this before 6188 * attempting a GFP_KERNEL allocation while holding the mddev lock. 6189 * Must be called with mddev_lock held. 6190 * 6191 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 6192 * is dropped, so return -EAGAIN after notifying userspace. 6193 */ 6194 int md_allow_write(mddev_t *mddev) 6195 { 6196 if (!mddev->pers) 6197 return 0; 6198 if (mddev->ro) 6199 return 0; 6200 if (!mddev->pers->sync_request) 6201 return 0; 6202 6203 spin_lock_irq(&mddev->write_lock); 6204 if (mddev->in_sync) { 6205 mddev->in_sync = 0; 6206 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6207 if (mddev->safemode_delay && 6208 mddev->safemode == 0) 6209 mddev->safemode = 1; 6210 spin_unlock_irq(&mddev->write_lock); 6211 md_update_sb(mddev, 0); 6212 sysfs_notify_dirent(mddev->sysfs_state); 6213 } else 6214 spin_unlock_irq(&mddev->write_lock); 6215 6216 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 6217 return -EAGAIN; 6218 else 6219 return 0; 6220 } 6221 EXPORT_SYMBOL_GPL(md_allow_write); 6222 6223 #define SYNC_MARKS 10 6224 #define SYNC_MARK_STEP (3*HZ) 6225 void md_do_sync(mddev_t *mddev) 6226 { 6227 mddev_t *mddev2; 6228 unsigned int currspeed = 0, 6229 window; 6230 sector_t max_sectors,j, io_sectors; 6231 unsigned long mark[SYNC_MARKS]; 6232 sector_t mark_cnt[SYNC_MARKS]; 6233 int last_mark,m; 6234 struct list_head *tmp; 6235 sector_t last_check; 6236 int skipped = 0; 6237 mdk_rdev_t *rdev; 6238 char *desc; 6239 6240 /* just incase thread restarts... */ 6241 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 6242 return; 6243 if (mddev->ro) /* never try to sync a read-only array */ 6244 return; 6245 6246 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6247 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 6248 desc = "data-check"; 6249 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6250 desc = "requested-resync"; 6251 else 6252 desc = "resync"; 6253 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6254 desc = "reshape"; 6255 else 6256 desc = "recovery"; 6257 6258 /* we overload curr_resync somewhat here. 6259 * 0 == not engaged in resync at all 6260 * 2 == checking that there is no conflict with another sync 6261 * 1 == like 2, but have yielded to allow conflicting resync to 6262 * commense 6263 * other == active in resync - this many blocks 6264 * 6265 * Before starting a resync we must have set curr_resync to 6266 * 2, and then checked that every "conflicting" array has curr_resync 6267 * less than ours. When we find one that is the same or higher 6268 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 6269 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 6270 * This will mean we have to start checking from the beginning again. 6271 * 6272 */ 6273 6274 do { 6275 mddev->curr_resync = 2; 6276 6277 try_again: 6278 if (kthread_should_stop()) { 6279 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6280 goto skip; 6281 } 6282 for_each_mddev(mddev2, tmp) { 6283 if (mddev2 == mddev) 6284 continue; 6285 if (!mddev->parallel_resync 6286 && mddev2->curr_resync 6287 && match_mddev_units(mddev, mddev2)) { 6288 DEFINE_WAIT(wq); 6289 if (mddev < mddev2 && mddev->curr_resync == 2) { 6290 /* arbitrarily yield */ 6291 mddev->curr_resync = 1; 6292 wake_up(&resync_wait); 6293 } 6294 if (mddev > mddev2 && mddev->curr_resync == 1) 6295 /* no need to wait here, we can wait the next 6296 * time 'round when curr_resync == 2 6297 */ 6298 continue; 6299 /* We need to wait 'interruptible' so as not to 6300 * contribute to the load average, and not to 6301 * be caught by 'softlockup' 6302 */ 6303 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 6304 if (!kthread_should_stop() && 6305 mddev2->curr_resync >= mddev->curr_resync) { 6306 printk(KERN_INFO "md: delaying %s of %s" 6307 " until %s has finished (they" 6308 " share one or more physical units)\n", 6309 desc, mdname(mddev), mdname(mddev2)); 6310 mddev_put(mddev2); 6311 if (signal_pending(current)) 6312 flush_signals(current); 6313 schedule(); 6314 finish_wait(&resync_wait, &wq); 6315 goto try_again; 6316 } 6317 finish_wait(&resync_wait, &wq); 6318 } 6319 } 6320 } while (mddev->curr_resync < 2); 6321 6322 j = 0; 6323 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6324 /* resync follows the size requested by the personality, 6325 * which defaults to physical size, but can be virtual size 6326 */ 6327 max_sectors = mddev->resync_max_sectors; 6328 mddev->resync_mismatches = 0; 6329 /* we don't use the checkpoint if there's a bitmap */ 6330 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6331 j = mddev->resync_min; 6332 else if (!mddev->bitmap) 6333 j = mddev->recovery_cp; 6334 6335 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6336 max_sectors = mddev->dev_sectors; 6337 else { 6338 /* recovery follows the physical size of devices */ 6339 max_sectors = mddev->dev_sectors; 6340 j = MaxSector; 6341 list_for_each_entry(rdev, &mddev->disks, same_set) 6342 if (rdev->raid_disk >= 0 && 6343 !test_bit(Faulty, &rdev->flags) && 6344 !test_bit(In_sync, &rdev->flags) && 6345 rdev->recovery_offset < j) 6346 j = rdev->recovery_offset; 6347 } 6348 6349 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 6350 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 6351 " %d KB/sec/disk.\n", speed_min(mddev)); 6352 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 6353 "(but not more than %d KB/sec) for %s.\n", 6354 speed_max(mddev), desc); 6355 6356 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 6357 6358 io_sectors = 0; 6359 for (m = 0; m < SYNC_MARKS; m++) { 6360 mark[m] = jiffies; 6361 mark_cnt[m] = io_sectors; 6362 } 6363 last_mark = 0; 6364 mddev->resync_mark = mark[last_mark]; 6365 mddev->resync_mark_cnt = mark_cnt[last_mark]; 6366 6367 /* 6368 * Tune reconstruction: 6369 */ 6370 window = 32*(PAGE_SIZE/512); 6371 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 6372 window/2,(unsigned long long) max_sectors/2); 6373 6374 atomic_set(&mddev->recovery_active, 0); 6375 last_check = 0; 6376 6377 if (j>2) { 6378 printk(KERN_INFO 6379 "md: resuming %s of %s from checkpoint.\n", 6380 desc, mdname(mddev)); 6381 mddev->curr_resync = j; 6382 } 6383 6384 while (j < max_sectors) { 6385 sector_t sectors; 6386 6387 skipped = 0; 6388 6389 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 6390 ((mddev->curr_resync > mddev->curr_resync_completed && 6391 (mddev->curr_resync - mddev->curr_resync_completed) 6392 > (max_sectors >> 4)) || 6393 (j - mddev->curr_resync_completed)*2 6394 >= mddev->resync_max - mddev->curr_resync_completed 6395 )) { 6396 /* time to update curr_resync_completed */ 6397 blk_unplug(mddev->queue); 6398 wait_event(mddev->recovery_wait, 6399 atomic_read(&mddev->recovery_active) == 0); 6400 mddev->curr_resync_completed = 6401 mddev->curr_resync; 6402 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6403 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6404 } 6405 6406 while (j >= mddev->resync_max && !kthread_should_stop()) { 6407 /* As this condition is controlled by user-space, 6408 * we can block indefinitely, so use '_interruptible' 6409 * to avoid triggering warnings. 6410 */ 6411 flush_signals(current); /* just in case */ 6412 wait_event_interruptible(mddev->recovery_wait, 6413 mddev->resync_max > j 6414 || kthread_should_stop()); 6415 } 6416 6417 if (kthread_should_stop()) 6418 goto interrupted; 6419 6420 sectors = mddev->pers->sync_request(mddev, j, &skipped, 6421 currspeed < speed_min(mddev)); 6422 if (sectors == 0) { 6423 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6424 goto out; 6425 } 6426 6427 if (!skipped) { /* actual IO requested */ 6428 io_sectors += sectors; 6429 atomic_add(sectors, &mddev->recovery_active); 6430 } 6431 6432 j += sectors; 6433 if (j>1) mddev->curr_resync = j; 6434 mddev->curr_mark_cnt = io_sectors; 6435 if (last_check == 0) 6436 /* this is the earliers that rebuilt will be 6437 * visible in /proc/mdstat 6438 */ 6439 md_new_event(mddev); 6440 6441 if (last_check + window > io_sectors || j == max_sectors) 6442 continue; 6443 6444 last_check = io_sectors; 6445 6446 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6447 break; 6448 6449 repeat: 6450 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 6451 /* step marks */ 6452 int next = (last_mark+1) % SYNC_MARKS; 6453 6454 mddev->resync_mark = mark[next]; 6455 mddev->resync_mark_cnt = mark_cnt[next]; 6456 mark[next] = jiffies; 6457 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 6458 last_mark = next; 6459 } 6460 6461 6462 if (kthread_should_stop()) 6463 goto interrupted; 6464 6465 6466 /* 6467 * this loop exits only if either when we are slower than 6468 * the 'hard' speed limit, or the system was IO-idle for 6469 * a jiffy. 6470 * the system might be non-idle CPU-wise, but we only care 6471 * about not overloading the IO subsystem. (things like an 6472 * e2fsck being done on the RAID array should execute fast) 6473 */ 6474 blk_unplug(mddev->queue); 6475 cond_resched(); 6476 6477 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 6478 /((jiffies-mddev->resync_mark)/HZ +1) +1; 6479 6480 if (currspeed > speed_min(mddev)) { 6481 if ((currspeed > speed_max(mddev)) || 6482 !is_mddev_idle(mddev, 0)) { 6483 msleep(500); 6484 goto repeat; 6485 } 6486 } 6487 } 6488 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 6489 /* 6490 * this also signals 'finished resyncing' to md_stop 6491 */ 6492 out: 6493 blk_unplug(mddev->queue); 6494 6495 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 6496 6497 /* tell personality that we are finished */ 6498 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 6499 6500 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 6501 mddev->curr_resync > 2) { 6502 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6503 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6504 if (mddev->curr_resync >= mddev->recovery_cp) { 6505 printk(KERN_INFO 6506 "md: checkpointing %s of %s.\n", 6507 desc, mdname(mddev)); 6508 mddev->recovery_cp = mddev->curr_resync; 6509 } 6510 } else 6511 mddev->recovery_cp = MaxSector; 6512 } else { 6513 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6514 mddev->curr_resync = MaxSector; 6515 list_for_each_entry(rdev, &mddev->disks, same_set) 6516 if (rdev->raid_disk >= 0 && 6517 !test_bit(Faulty, &rdev->flags) && 6518 !test_bit(In_sync, &rdev->flags) && 6519 rdev->recovery_offset < mddev->curr_resync) 6520 rdev->recovery_offset = mddev->curr_resync; 6521 } 6522 } 6523 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6524 6525 skip: 6526 mddev->curr_resync = 0; 6527 mddev->curr_resync_completed = 0; 6528 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6529 /* We completed so max setting can be forgotten. */ 6530 mddev->resync_max = MaxSector; 6531 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6532 wake_up(&resync_wait); 6533 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 6534 md_wakeup_thread(mddev->thread); 6535 return; 6536 6537 interrupted: 6538 /* 6539 * got a signal, exit. 6540 */ 6541 printk(KERN_INFO 6542 "md: md_do_sync() got signal ... exiting\n"); 6543 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6544 goto out; 6545 6546 } 6547 EXPORT_SYMBOL_GPL(md_do_sync); 6548 6549 6550 static int remove_and_add_spares(mddev_t *mddev) 6551 { 6552 mdk_rdev_t *rdev; 6553 int spares = 0; 6554 6555 mddev->curr_resync_completed = 0; 6556 6557 list_for_each_entry(rdev, &mddev->disks, same_set) 6558 if (rdev->raid_disk >= 0 && 6559 !test_bit(Blocked, &rdev->flags) && 6560 (test_bit(Faulty, &rdev->flags) || 6561 ! test_bit(In_sync, &rdev->flags)) && 6562 atomic_read(&rdev->nr_pending)==0) { 6563 if (mddev->pers->hot_remove_disk( 6564 mddev, rdev->raid_disk)==0) { 6565 char nm[20]; 6566 sprintf(nm,"rd%d", rdev->raid_disk); 6567 sysfs_remove_link(&mddev->kobj, nm); 6568 rdev->raid_disk = -1; 6569 } 6570 } 6571 6572 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) { 6573 list_for_each_entry(rdev, &mddev->disks, same_set) { 6574 if (rdev->raid_disk >= 0 && 6575 !test_bit(In_sync, &rdev->flags) && 6576 !test_bit(Blocked, &rdev->flags)) 6577 spares++; 6578 if (rdev->raid_disk < 0 6579 && !test_bit(Faulty, &rdev->flags)) { 6580 rdev->recovery_offset = 0; 6581 if (mddev->pers-> 6582 hot_add_disk(mddev, rdev) == 0) { 6583 char nm[20]; 6584 sprintf(nm, "rd%d", rdev->raid_disk); 6585 if (sysfs_create_link(&mddev->kobj, 6586 &rdev->kobj, nm)) 6587 printk(KERN_WARNING 6588 "md: cannot register " 6589 "%s for %s\n", 6590 nm, mdname(mddev)); 6591 spares++; 6592 md_new_event(mddev); 6593 } else 6594 break; 6595 } 6596 } 6597 } 6598 return spares; 6599 } 6600 /* 6601 * This routine is regularly called by all per-raid-array threads to 6602 * deal with generic issues like resync and super-block update. 6603 * Raid personalities that don't have a thread (linear/raid0) do not 6604 * need this as they never do any recovery or update the superblock. 6605 * 6606 * It does not do any resync itself, but rather "forks" off other threads 6607 * to do that as needed. 6608 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 6609 * "->recovery" and create a thread at ->sync_thread. 6610 * When the thread finishes it sets MD_RECOVERY_DONE 6611 * and wakeups up this thread which will reap the thread and finish up. 6612 * This thread also removes any faulty devices (with nr_pending == 0). 6613 * 6614 * The overall approach is: 6615 * 1/ if the superblock needs updating, update it. 6616 * 2/ If a recovery thread is running, don't do anything else. 6617 * 3/ If recovery has finished, clean up, possibly marking spares active. 6618 * 4/ If there are any faulty devices, remove them. 6619 * 5/ If array is degraded, try to add spares devices 6620 * 6/ If array has spares or is not in-sync, start a resync thread. 6621 */ 6622 void md_check_recovery(mddev_t *mddev) 6623 { 6624 mdk_rdev_t *rdev; 6625 6626 6627 if (mddev->bitmap) 6628 bitmap_daemon_work(mddev->bitmap); 6629 6630 if (mddev->ro) 6631 return; 6632 6633 if (signal_pending(current)) { 6634 if (mddev->pers->sync_request && !mddev->external) { 6635 printk(KERN_INFO "md: %s in immediate safe mode\n", 6636 mdname(mddev)); 6637 mddev->safemode = 2; 6638 } 6639 flush_signals(current); 6640 } 6641 6642 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 6643 return; 6644 if ( ! ( 6645 (mddev->flags && !mddev->external) || 6646 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 6647 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 6648 (mddev->external == 0 && mddev->safemode == 1) || 6649 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 6650 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 6651 )) 6652 return; 6653 6654 if (mddev_trylock(mddev)) { 6655 int spares = 0; 6656 6657 if (mddev->ro) { 6658 /* Only thing we do on a ro array is remove 6659 * failed devices. 6660 */ 6661 remove_and_add_spares(mddev); 6662 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6663 goto unlock; 6664 } 6665 6666 if (!mddev->external) { 6667 int did_change = 0; 6668 spin_lock_irq(&mddev->write_lock); 6669 if (mddev->safemode && 6670 !atomic_read(&mddev->writes_pending) && 6671 !mddev->in_sync && 6672 mddev->recovery_cp == MaxSector) { 6673 mddev->in_sync = 1; 6674 did_change = 1; 6675 if (mddev->persistent) 6676 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6677 } 6678 if (mddev->safemode == 1) 6679 mddev->safemode = 0; 6680 spin_unlock_irq(&mddev->write_lock); 6681 if (did_change) 6682 sysfs_notify_dirent(mddev->sysfs_state); 6683 } 6684 6685 if (mddev->flags) 6686 md_update_sb(mddev, 0); 6687 6688 list_for_each_entry(rdev, &mddev->disks, same_set) 6689 if (test_and_clear_bit(StateChanged, &rdev->flags)) 6690 sysfs_notify_dirent(rdev->sysfs_state); 6691 6692 6693 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 6694 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 6695 /* resync/recovery still happening */ 6696 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6697 goto unlock; 6698 } 6699 if (mddev->sync_thread) { 6700 /* resync has finished, collect result */ 6701 md_unregister_thread(mddev->sync_thread); 6702 mddev->sync_thread = NULL; 6703 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 6704 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 6705 /* success...*/ 6706 /* activate any spares */ 6707 if (mddev->pers->spare_active(mddev)) 6708 sysfs_notify(&mddev->kobj, NULL, 6709 "degraded"); 6710 } 6711 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 6712 mddev->pers->finish_reshape) 6713 mddev->pers->finish_reshape(mddev); 6714 md_update_sb(mddev, 1); 6715 6716 /* if array is no-longer degraded, then any saved_raid_disk 6717 * information must be scrapped 6718 */ 6719 if (!mddev->degraded) 6720 list_for_each_entry(rdev, &mddev->disks, same_set) 6721 rdev->saved_raid_disk = -1; 6722 6723 mddev->recovery = 0; 6724 /* flag recovery needed just to double check */ 6725 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6726 sysfs_notify_dirent(mddev->sysfs_action); 6727 md_new_event(mddev); 6728 goto unlock; 6729 } 6730 /* Set RUNNING before clearing NEEDED to avoid 6731 * any transients in the value of "sync_action". 6732 */ 6733 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6734 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6735 /* Clear some bits that don't mean anything, but 6736 * might be left set 6737 */ 6738 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 6739 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 6740 6741 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 6742 goto unlock; 6743 /* no recovery is running. 6744 * remove any failed drives, then 6745 * add spares if possible. 6746 * Spare are also removed and re-added, to allow 6747 * the personality to fail the re-add. 6748 */ 6749 6750 if (mddev->reshape_position != MaxSector) { 6751 if (mddev->pers->check_reshape == NULL || 6752 mddev->pers->check_reshape(mddev) != 0) 6753 /* Cannot proceed */ 6754 goto unlock; 6755 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6756 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6757 } else if ((spares = remove_and_add_spares(mddev))) { 6758 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6759 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6760 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 6761 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6762 } else if (mddev->recovery_cp < MaxSector) { 6763 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6764 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6765 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6766 /* nothing to be done ... */ 6767 goto unlock; 6768 6769 if (mddev->pers->sync_request) { 6770 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 6771 /* We are adding a device or devices to an array 6772 * which has the bitmap stored on all devices. 6773 * So make sure all bitmap pages get written 6774 */ 6775 bitmap_write_all(mddev->bitmap); 6776 } 6777 mddev->sync_thread = md_register_thread(md_do_sync, 6778 mddev, 6779 "resync"); 6780 if (!mddev->sync_thread) { 6781 printk(KERN_ERR "%s: could not start resync" 6782 " thread...\n", 6783 mdname(mddev)); 6784 /* leave the spares where they are, it shouldn't hurt */ 6785 mddev->recovery = 0; 6786 } else 6787 md_wakeup_thread(mddev->sync_thread); 6788 sysfs_notify_dirent(mddev->sysfs_action); 6789 md_new_event(mddev); 6790 } 6791 unlock: 6792 if (!mddev->sync_thread) { 6793 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6794 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 6795 &mddev->recovery)) 6796 if (mddev->sysfs_action) 6797 sysfs_notify_dirent(mddev->sysfs_action); 6798 } 6799 mddev_unlock(mddev); 6800 } 6801 } 6802 6803 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 6804 { 6805 sysfs_notify_dirent(rdev->sysfs_state); 6806 wait_event_timeout(rdev->blocked_wait, 6807 !test_bit(Blocked, &rdev->flags), 6808 msecs_to_jiffies(5000)); 6809 rdev_dec_pending(rdev, mddev); 6810 } 6811 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 6812 6813 static int md_notify_reboot(struct notifier_block *this, 6814 unsigned long code, void *x) 6815 { 6816 struct list_head *tmp; 6817 mddev_t *mddev; 6818 6819 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 6820 6821 printk(KERN_INFO "md: stopping all md devices.\n"); 6822 6823 for_each_mddev(mddev, tmp) 6824 if (mddev_trylock(mddev)) { 6825 /* Force a switch to readonly even array 6826 * appears to still be in use. Hence 6827 * the '100'. 6828 */ 6829 do_md_stop(mddev, 1, 100); 6830 mddev_unlock(mddev); 6831 } 6832 /* 6833 * certain more exotic SCSI devices are known to be 6834 * volatile wrt too early system reboots. While the 6835 * right place to handle this issue is the given 6836 * driver, we do want to have a safe RAID driver ... 6837 */ 6838 mdelay(1000*1); 6839 } 6840 return NOTIFY_DONE; 6841 } 6842 6843 static struct notifier_block md_notifier = { 6844 .notifier_call = md_notify_reboot, 6845 .next = NULL, 6846 .priority = INT_MAX, /* before any real devices */ 6847 }; 6848 6849 static void md_geninit(void) 6850 { 6851 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 6852 6853 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 6854 } 6855 6856 static int __init md_init(void) 6857 { 6858 if (register_blkdev(MD_MAJOR, "md")) 6859 return -1; 6860 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 6861 unregister_blkdev(MD_MAJOR, "md"); 6862 return -1; 6863 } 6864 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 6865 md_probe, NULL, NULL); 6866 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 6867 md_probe, NULL, NULL); 6868 6869 register_reboot_notifier(&md_notifier); 6870 raid_table_header = register_sysctl_table(raid_root_table); 6871 6872 md_geninit(); 6873 return 0; 6874 } 6875 6876 6877 #ifndef MODULE 6878 6879 /* 6880 * Searches all registered partitions for autorun RAID arrays 6881 * at boot time. 6882 */ 6883 6884 static LIST_HEAD(all_detected_devices); 6885 struct detected_devices_node { 6886 struct list_head list; 6887 dev_t dev; 6888 }; 6889 6890 void md_autodetect_dev(dev_t dev) 6891 { 6892 struct detected_devices_node *node_detected_dev; 6893 6894 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 6895 if (node_detected_dev) { 6896 node_detected_dev->dev = dev; 6897 list_add_tail(&node_detected_dev->list, &all_detected_devices); 6898 } else { 6899 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 6900 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 6901 } 6902 } 6903 6904 6905 static void autostart_arrays(int part) 6906 { 6907 mdk_rdev_t *rdev; 6908 struct detected_devices_node *node_detected_dev; 6909 dev_t dev; 6910 int i_scanned, i_passed; 6911 6912 i_scanned = 0; 6913 i_passed = 0; 6914 6915 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 6916 6917 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 6918 i_scanned++; 6919 node_detected_dev = list_entry(all_detected_devices.next, 6920 struct detected_devices_node, list); 6921 list_del(&node_detected_dev->list); 6922 dev = node_detected_dev->dev; 6923 kfree(node_detected_dev); 6924 rdev = md_import_device(dev,0, 90); 6925 if (IS_ERR(rdev)) 6926 continue; 6927 6928 if (test_bit(Faulty, &rdev->flags)) { 6929 MD_BUG(); 6930 continue; 6931 } 6932 set_bit(AutoDetected, &rdev->flags); 6933 list_add(&rdev->same_set, &pending_raid_disks); 6934 i_passed++; 6935 } 6936 6937 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 6938 i_scanned, i_passed); 6939 6940 autorun_devices(part); 6941 } 6942 6943 #endif /* !MODULE */ 6944 6945 static __exit void md_exit(void) 6946 { 6947 mddev_t *mddev; 6948 struct list_head *tmp; 6949 6950 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 6951 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 6952 6953 unregister_blkdev(MD_MAJOR,"md"); 6954 unregister_blkdev(mdp_major, "mdp"); 6955 unregister_reboot_notifier(&md_notifier); 6956 unregister_sysctl_table(raid_table_header); 6957 remove_proc_entry("mdstat", NULL); 6958 for_each_mddev(mddev, tmp) { 6959 export_array(mddev); 6960 mddev->hold_active = 0; 6961 } 6962 } 6963 6964 subsys_initcall(md_init); 6965 module_exit(md_exit) 6966 6967 static int get_ro(char *buffer, struct kernel_param *kp) 6968 { 6969 return sprintf(buffer, "%d", start_readonly); 6970 } 6971 static int set_ro(const char *val, struct kernel_param *kp) 6972 { 6973 char *e; 6974 int num = simple_strtoul(val, &e, 10); 6975 if (*val && (*e == '\0' || *e == '\n')) { 6976 start_readonly = num; 6977 return 0; 6978 } 6979 return -EINVAL; 6980 } 6981 6982 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 6983 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 6984 6985 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 6986 6987 EXPORT_SYMBOL(register_md_personality); 6988 EXPORT_SYMBOL(unregister_md_personality); 6989 EXPORT_SYMBOL(md_error); 6990 EXPORT_SYMBOL(md_done_sync); 6991 EXPORT_SYMBOL(md_write_start); 6992 EXPORT_SYMBOL(md_write_end); 6993 EXPORT_SYMBOL(md_register_thread); 6994 EXPORT_SYMBOL(md_unregister_thread); 6995 EXPORT_SYMBOL(md_wakeup_thread); 6996 EXPORT_SYMBOL(md_check_recovery); 6997 MODULE_LICENSE("GPL"); 6998 MODULE_ALIAS("md"); 6999 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 7000