1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/raid/detect.h> 62 #include <linux/slab.h> 63 #include <linux/percpu-refcount.h> 64 #include <linux/part_stat.h> 65 66 #include <trace/events/block.h> 67 #include "md.h" 68 #include "md-bitmap.h" 69 #include "md-cluster.h" 70 71 #ifndef MODULE 72 static void autostart_arrays(int part); 73 #endif 74 75 /* pers_list is a list of registered personalities protected 76 * by pers_lock. 77 * pers_lock does extra service to protect accesses to 78 * mddev->thread when the mutex cannot be held. 79 */ 80 static LIST_HEAD(pers_list); 81 static DEFINE_SPINLOCK(pers_lock); 82 83 static struct kobj_type md_ktype; 84 85 struct md_cluster_operations *md_cluster_ops; 86 EXPORT_SYMBOL(md_cluster_ops); 87 static struct module *md_cluster_mod; 88 89 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 90 static struct workqueue_struct *md_wq; 91 static struct workqueue_struct *md_misc_wq; 92 93 static int remove_and_add_spares(struct mddev *mddev, 94 struct md_rdev *this); 95 static void mddev_detach(struct mddev *mddev); 96 97 /* 98 * Default number of read corrections we'll attempt on an rdev 99 * before ejecting it from the array. We divide the read error 100 * count by 2 for every hour elapsed between read errors. 101 */ 102 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 103 /* 104 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 105 * is 1000 KB/sec, so the extra system load does not show up that much. 106 * Increase it if you want to have more _guaranteed_ speed. Note that 107 * the RAID driver will use the maximum available bandwidth if the IO 108 * subsystem is idle. There is also an 'absolute maximum' reconstruction 109 * speed limit - in case reconstruction slows down your system despite 110 * idle IO detection. 111 * 112 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 113 * or /sys/block/mdX/md/sync_speed_{min,max} 114 */ 115 116 static int sysctl_speed_limit_min = 1000; 117 static int sysctl_speed_limit_max = 200000; 118 static inline int speed_min(struct mddev *mddev) 119 { 120 return mddev->sync_speed_min ? 121 mddev->sync_speed_min : sysctl_speed_limit_min; 122 } 123 124 static inline int speed_max(struct mddev *mddev) 125 { 126 return mddev->sync_speed_max ? 127 mddev->sync_speed_max : sysctl_speed_limit_max; 128 } 129 130 static void rdev_uninit_serial(struct md_rdev *rdev) 131 { 132 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 133 return; 134 135 kvfree(rdev->serial); 136 rdev->serial = NULL; 137 } 138 139 static void rdevs_uninit_serial(struct mddev *mddev) 140 { 141 struct md_rdev *rdev; 142 143 rdev_for_each(rdev, mddev) 144 rdev_uninit_serial(rdev); 145 } 146 147 static int rdev_init_serial(struct md_rdev *rdev) 148 { 149 /* serial_nums equals with BARRIER_BUCKETS_NR */ 150 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 151 struct serial_in_rdev *serial = NULL; 152 153 if (test_bit(CollisionCheck, &rdev->flags)) 154 return 0; 155 156 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 157 GFP_KERNEL); 158 if (!serial) 159 return -ENOMEM; 160 161 for (i = 0; i < serial_nums; i++) { 162 struct serial_in_rdev *serial_tmp = &serial[i]; 163 164 spin_lock_init(&serial_tmp->serial_lock); 165 serial_tmp->serial_rb = RB_ROOT_CACHED; 166 init_waitqueue_head(&serial_tmp->serial_io_wait); 167 } 168 169 rdev->serial = serial; 170 set_bit(CollisionCheck, &rdev->flags); 171 172 return 0; 173 } 174 175 static int rdevs_init_serial(struct mddev *mddev) 176 { 177 struct md_rdev *rdev; 178 int ret = 0; 179 180 rdev_for_each(rdev, mddev) { 181 ret = rdev_init_serial(rdev); 182 if (ret) 183 break; 184 } 185 186 /* Free all resources if pool is not existed */ 187 if (ret && !mddev->serial_info_pool) 188 rdevs_uninit_serial(mddev); 189 190 return ret; 191 } 192 193 /* 194 * rdev needs to enable serial stuffs if it meets the conditions: 195 * 1. it is multi-queue device flaged with writemostly. 196 * 2. the write-behind mode is enabled. 197 */ 198 static int rdev_need_serial(struct md_rdev *rdev) 199 { 200 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 201 rdev->bdev->bd_queue->nr_hw_queues != 1 && 202 test_bit(WriteMostly, &rdev->flags)); 203 } 204 205 /* 206 * Init resource for rdev(s), then create serial_info_pool if: 207 * 1. rdev is the first device which return true from rdev_enable_serial. 208 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 209 */ 210 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 211 bool is_suspend) 212 { 213 int ret = 0; 214 215 if (rdev && !rdev_need_serial(rdev) && 216 !test_bit(CollisionCheck, &rdev->flags)) 217 return; 218 219 if (!is_suspend) 220 mddev_suspend(mddev); 221 222 if (!rdev) 223 ret = rdevs_init_serial(mddev); 224 else 225 ret = rdev_init_serial(rdev); 226 if (ret) 227 goto abort; 228 229 if (mddev->serial_info_pool == NULL) { 230 unsigned int noio_flag; 231 232 noio_flag = memalloc_noio_save(); 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 memalloc_noio_restore(noio_flag); 237 if (!mddev->serial_info_pool) { 238 rdevs_uninit_serial(mddev); 239 pr_err("can't alloc memory pool for serialization\n"); 240 } 241 } 242 243 abort: 244 if (!is_suspend) 245 mddev_resume(mddev); 246 } 247 248 /* 249 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 250 * 1. rdev is the last device flaged with CollisionCheck. 251 * 2. when bitmap is destroyed while policy is not enabled. 252 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 253 */ 254 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 255 bool is_suspend) 256 { 257 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 258 return; 259 260 if (mddev->serial_info_pool) { 261 struct md_rdev *temp; 262 int num = 0; /* used to track if other rdevs need the pool */ 263 264 if (!is_suspend) 265 mddev_suspend(mddev); 266 rdev_for_each(temp, mddev) { 267 if (!rdev) { 268 if (!mddev->serialize_policy || 269 !rdev_need_serial(temp)) 270 rdev_uninit_serial(temp); 271 else 272 num++; 273 } else if (temp != rdev && 274 test_bit(CollisionCheck, &temp->flags)) 275 num++; 276 } 277 278 if (rdev) 279 rdev_uninit_serial(rdev); 280 281 if (num) 282 pr_info("The mempool could be used by other devices\n"); 283 else { 284 mempool_destroy(mddev->serial_info_pool); 285 mddev->serial_info_pool = NULL; 286 } 287 if (!is_suspend) 288 mddev_resume(mddev); 289 } 290 } 291 292 static struct ctl_table_header *raid_table_header; 293 294 static struct ctl_table raid_table[] = { 295 { 296 .procname = "speed_limit_min", 297 .data = &sysctl_speed_limit_min, 298 .maxlen = sizeof(int), 299 .mode = S_IRUGO|S_IWUSR, 300 .proc_handler = proc_dointvec, 301 }, 302 { 303 .procname = "speed_limit_max", 304 .data = &sysctl_speed_limit_max, 305 .maxlen = sizeof(int), 306 .mode = S_IRUGO|S_IWUSR, 307 .proc_handler = proc_dointvec, 308 }, 309 { } 310 }; 311 312 static struct ctl_table raid_dir_table[] = { 313 { 314 .procname = "raid", 315 .maxlen = 0, 316 .mode = S_IRUGO|S_IXUGO, 317 .child = raid_table, 318 }, 319 { } 320 }; 321 322 static struct ctl_table raid_root_table[] = { 323 { 324 .procname = "dev", 325 .maxlen = 0, 326 .mode = 0555, 327 .child = raid_dir_table, 328 }, 329 { } 330 }; 331 332 static const struct block_device_operations md_fops; 333 334 static int start_readonly; 335 336 /* 337 * The original mechanism for creating an md device is to create 338 * a device node in /dev and to open it. This causes races with device-close. 339 * The preferred method is to write to the "new_array" module parameter. 340 * This can avoid races. 341 * Setting create_on_open to false disables the original mechanism 342 * so all the races disappear. 343 */ 344 static bool create_on_open = true; 345 346 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 347 struct mddev *mddev) 348 { 349 if (!mddev || !bioset_initialized(&mddev->bio_set)) 350 return bio_alloc(gfp_mask, nr_iovecs); 351 352 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 353 } 354 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 355 356 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 357 { 358 if (!mddev || !bioset_initialized(&mddev->sync_set)) 359 return bio_alloc(GFP_NOIO, 1); 360 361 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 362 } 363 364 /* 365 * We have a system wide 'event count' that is incremented 366 * on any 'interesting' event, and readers of /proc/mdstat 367 * can use 'poll' or 'select' to find out when the event 368 * count increases. 369 * 370 * Events are: 371 * start array, stop array, error, add device, remove device, 372 * start build, activate spare 373 */ 374 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 375 static atomic_t md_event_count; 376 void md_new_event(struct mddev *mddev) 377 { 378 atomic_inc(&md_event_count); 379 wake_up(&md_event_waiters); 380 } 381 EXPORT_SYMBOL_GPL(md_new_event); 382 383 /* 384 * Enables to iterate over all existing md arrays 385 * all_mddevs_lock protects this list. 386 */ 387 static LIST_HEAD(all_mddevs); 388 static DEFINE_SPINLOCK(all_mddevs_lock); 389 390 /* 391 * iterates through all used mddevs in the system. 392 * We take care to grab the all_mddevs_lock whenever navigating 393 * the list, and to always hold a refcount when unlocked. 394 * Any code which breaks out of this loop while own 395 * a reference to the current mddev and must mddev_put it. 396 */ 397 #define for_each_mddev(_mddev,_tmp) \ 398 \ 399 for (({ spin_lock(&all_mddevs_lock); \ 400 _tmp = all_mddevs.next; \ 401 _mddev = NULL;}); \ 402 ({ if (_tmp != &all_mddevs) \ 403 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 404 spin_unlock(&all_mddevs_lock); \ 405 if (_mddev) mddev_put(_mddev); \ 406 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 407 _tmp != &all_mddevs;}); \ 408 ({ spin_lock(&all_mddevs_lock); \ 409 _tmp = _tmp->next;}) \ 410 ) 411 412 /* Rather than calling directly into the personality make_request function, 413 * IO requests come here first so that we can check if the device is 414 * being suspended pending a reconfiguration. 415 * We hold a refcount over the call to ->make_request. By the time that 416 * call has finished, the bio has been linked into some internal structure 417 * and so is visible to ->quiesce(), so we don't need the refcount any more. 418 */ 419 static bool is_suspended(struct mddev *mddev, struct bio *bio) 420 { 421 if (mddev->suspended) 422 return true; 423 if (bio_data_dir(bio) != WRITE) 424 return false; 425 if (mddev->suspend_lo >= mddev->suspend_hi) 426 return false; 427 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 428 return false; 429 if (bio_end_sector(bio) < mddev->suspend_lo) 430 return false; 431 return true; 432 } 433 434 void md_handle_request(struct mddev *mddev, struct bio *bio) 435 { 436 check_suspended: 437 rcu_read_lock(); 438 if (is_suspended(mddev, bio)) { 439 DEFINE_WAIT(__wait); 440 for (;;) { 441 prepare_to_wait(&mddev->sb_wait, &__wait, 442 TASK_UNINTERRUPTIBLE); 443 if (!is_suspended(mddev, bio)) 444 break; 445 rcu_read_unlock(); 446 schedule(); 447 rcu_read_lock(); 448 } 449 finish_wait(&mddev->sb_wait, &__wait); 450 } 451 atomic_inc(&mddev->active_io); 452 rcu_read_unlock(); 453 454 if (!mddev->pers->make_request(mddev, bio)) { 455 atomic_dec(&mddev->active_io); 456 wake_up(&mddev->sb_wait); 457 goto check_suspended; 458 } 459 460 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 461 wake_up(&mddev->sb_wait); 462 } 463 EXPORT_SYMBOL(md_handle_request); 464 465 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 466 { 467 const int rw = bio_data_dir(bio); 468 const int sgrp = op_stat_group(bio_op(bio)); 469 struct mddev *mddev = q->queuedata; 470 unsigned int sectors; 471 472 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 473 bio_io_error(bio); 474 return BLK_QC_T_NONE; 475 } 476 477 blk_queue_split(q, &bio); 478 479 if (mddev == NULL || mddev->pers == NULL) { 480 bio_io_error(bio); 481 return BLK_QC_T_NONE; 482 } 483 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 484 if (bio_sectors(bio) != 0) 485 bio->bi_status = BLK_STS_IOERR; 486 bio_endio(bio); 487 return BLK_QC_T_NONE; 488 } 489 490 /* 491 * save the sectors now since our bio can 492 * go away inside make_request 493 */ 494 sectors = bio_sectors(bio); 495 /* bio could be mergeable after passing to underlayer */ 496 bio->bi_opf &= ~REQ_NOMERGE; 497 498 md_handle_request(mddev, bio); 499 500 part_stat_lock(); 501 part_stat_inc(&mddev->gendisk->part0, ios[sgrp]); 502 part_stat_add(&mddev->gendisk->part0, sectors[sgrp], sectors); 503 part_stat_unlock(); 504 505 return BLK_QC_T_NONE; 506 } 507 508 /* mddev_suspend makes sure no new requests are submitted 509 * to the device, and that any requests that have been submitted 510 * are completely handled. 511 * Once mddev_detach() is called and completes, the module will be 512 * completely unused. 513 */ 514 void mddev_suspend(struct mddev *mddev) 515 { 516 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 517 lockdep_assert_held(&mddev->reconfig_mutex); 518 if (mddev->suspended++) 519 return; 520 synchronize_rcu(); 521 wake_up(&mddev->sb_wait); 522 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 523 smp_mb__after_atomic(); 524 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 525 mddev->pers->quiesce(mddev, 1); 526 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 527 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 528 529 del_timer_sync(&mddev->safemode_timer); 530 } 531 EXPORT_SYMBOL_GPL(mddev_suspend); 532 533 void mddev_resume(struct mddev *mddev) 534 { 535 lockdep_assert_held(&mddev->reconfig_mutex); 536 if (--mddev->suspended) 537 return; 538 wake_up(&mddev->sb_wait); 539 mddev->pers->quiesce(mddev, 0); 540 541 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 542 md_wakeup_thread(mddev->thread); 543 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 544 } 545 EXPORT_SYMBOL_GPL(mddev_resume); 546 547 int mddev_congested(struct mddev *mddev, int bits) 548 { 549 struct md_personality *pers = mddev->pers; 550 int ret = 0; 551 552 rcu_read_lock(); 553 if (mddev->suspended) 554 ret = 1; 555 else if (pers && pers->congested) 556 ret = pers->congested(mddev, bits); 557 rcu_read_unlock(); 558 return ret; 559 } 560 EXPORT_SYMBOL_GPL(mddev_congested); 561 static int md_congested(void *data, int bits) 562 { 563 struct mddev *mddev = data; 564 return mddev_congested(mddev, bits); 565 } 566 567 /* 568 * Generic flush handling for md 569 */ 570 571 static void md_end_flush(struct bio *bio) 572 { 573 struct md_rdev *rdev = bio->bi_private; 574 struct mddev *mddev = rdev->mddev; 575 576 rdev_dec_pending(rdev, mddev); 577 578 if (atomic_dec_and_test(&mddev->flush_pending)) { 579 /* The pre-request flush has finished */ 580 queue_work(md_wq, &mddev->flush_work); 581 } 582 bio_put(bio); 583 } 584 585 static void md_submit_flush_data(struct work_struct *ws); 586 587 static void submit_flushes(struct work_struct *ws) 588 { 589 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 590 struct md_rdev *rdev; 591 592 mddev->start_flush = ktime_get_boottime(); 593 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 594 atomic_set(&mddev->flush_pending, 1); 595 rcu_read_lock(); 596 rdev_for_each_rcu(rdev, mddev) 597 if (rdev->raid_disk >= 0 && 598 !test_bit(Faulty, &rdev->flags)) { 599 /* Take two references, one is dropped 600 * when request finishes, one after 601 * we reclaim rcu_read_lock 602 */ 603 struct bio *bi; 604 atomic_inc(&rdev->nr_pending); 605 atomic_inc(&rdev->nr_pending); 606 rcu_read_unlock(); 607 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 608 bi->bi_end_io = md_end_flush; 609 bi->bi_private = rdev; 610 bio_set_dev(bi, rdev->bdev); 611 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 612 atomic_inc(&mddev->flush_pending); 613 submit_bio(bi); 614 rcu_read_lock(); 615 rdev_dec_pending(rdev, mddev); 616 } 617 rcu_read_unlock(); 618 if (atomic_dec_and_test(&mddev->flush_pending)) 619 queue_work(md_wq, &mddev->flush_work); 620 } 621 622 static void md_submit_flush_data(struct work_struct *ws) 623 { 624 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 625 struct bio *bio = mddev->flush_bio; 626 627 /* 628 * must reset flush_bio before calling into md_handle_request to avoid a 629 * deadlock, because other bios passed md_handle_request suspend check 630 * could wait for this and below md_handle_request could wait for those 631 * bios because of suspend check 632 */ 633 mddev->last_flush = mddev->start_flush; 634 mddev->flush_bio = NULL; 635 wake_up(&mddev->sb_wait); 636 637 if (bio->bi_iter.bi_size == 0) { 638 /* an empty barrier - all done */ 639 bio_endio(bio); 640 } else { 641 bio->bi_opf &= ~REQ_PREFLUSH; 642 md_handle_request(mddev, bio); 643 } 644 } 645 646 /* 647 * Manages consolidation of flushes and submitting any flushes needed for 648 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 649 * being finished in another context. Returns false if the flushing is 650 * complete but still needs the I/O portion of the bio to be processed. 651 */ 652 bool md_flush_request(struct mddev *mddev, struct bio *bio) 653 { 654 ktime_t start = ktime_get_boottime(); 655 spin_lock_irq(&mddev->lock); 656 wait_event_lock_irq(mddev->sb_wait, 657 !mddev->flush_bio || 658 ktime_after(mddev->last_flush, start), 659 mddev->lock); 660 if (!ktime_after(mddev->last_flush, start)) { 661 WARN_ON(mddev->flush_bio); 662 mddev->flush_bio = bio; 663 bio = NULL; 664 } 665 spin_unlock_irq(&mddev->lock); 666 667 if (!bio) { 668 INIT_WORK(&mddev->flush_work, submit_flushes); 669 queue_work(md_wq, &mddev->flush_work); 670 } else { 671 /* flush was performed for some other bio while we waited. */ 672 if (bio->bi_iter.bi_size == 0) 673 /* an empty barrier - all done */ 674 bio_endio(bio); 675 else { 676 bio->bi_opf &= ~REQ_PREFLUSH; 677 return false; 678 } 679 } 680 return true; 681 } 682 EXPORT_SYMBOL(md_flush_request); 683 684 static inline struct mddev *mddev_get(struct mddev *mddev) 685 { 686 atomic_inc(&mddev->active); 687 return mddev; 688 } 689 690 static void mddev_delayed_delete(struct work_struct *ws); 691 692 static void mddev_put(struct mddev *mddev) 693 { 694 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 695 return; 696 if (!mddev->raid_disks && list_empty(&mddev->disks) && 697 mddev->ctime == 0 && !mddev->hold_active) { 698 /* Array is not configured at all, and not held active, 699 * so destroy it */ 700 list_del_init(&mddev->all_mddevs); 701 702 /* 703 * Call queue_work inside the spinlock so that 704 * flush_workqueue() after mddev_find will succeed in waiting 705 * for the work to be done. 706 */ 707 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 708 queue_work(md_misc_wq, &mddev->del_work); 709 } 710 spin_unlock(&all_mddevs_lock); 711 } 712 713 static void md_safemode_timeout(struct timer_list *t); 714 715 void mddev_init(struct mddev *mddev) 716 { 717 kobject_init(&mddev->kobj, &md_ktype); 718 mutex_init(&mddev->open_mutex); 719 mutex_init(&mddev->reconfig_mutex); 720 mutex_init(&mddev->bitmap_info.mutex); 721 INIT_LIST_HEAD(&mddev->disks); 722 INIT_LIST_HEAD(&mddev->all_mddevs); 723 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 724 atomic_set(&mddev->active, 1); 725 atomic_set(&mddev->openers, 0); 726 atomic_set(&mddev->active_io, 0); 727 spin_lock_init(&mddev->lock); 728 atomic_set(&mddev->flush_pending, 0); 729 init_waitqueue_head(&mddev->sb_wait); 730 init_waitqueue_head(&mddev->recovery_wait); 731 mddev->reshape_position = MaxSector; 732 mddev->reshape_backwards = 0; 733 mddev->last_sync_action = "none"; 734 mddev->resync_min = 0; 735 mddev->resync_max = MaxSector; 736 mddev->level = LEVEL_NONE; 737 } 738 EXPORT_SYMBOL_GPL(mddev_init); 739 740 static struct mddev *mddev_find(dev_t unit) 741 { 742 struct mddev *mddev, *new = NULL; 743 744 if (unit && MAJOR(unit) != MD_MAJOR) 745 unit &= ~((1<<MdpMinorShift)-1); 746 747 retry: 748 spin_lock(&all_mddevs_lock); 749 750 if (unit) { 751 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 752 if (mddev->unit == unit) { 753 mddev_get(mddev); 754 spin_unlock(&all_mddevs_lock); 755 kfree(new); 756 return mddev; 757 } 758 759 if (new) { 760 list_add(&new->all_mddevs, &all_mddevs); 761 spin_unlock(&all_mddevs_lock); 762 new->hold_active = UNTIL_IOCTL; 763 return new; 764 } 765 } else if (new) { 766 /* find an unused unit number */ 767 static int next_minor = 512; 768 int start = next_minor; 769 int is_free = 0; 770 int dev = 0; 771 while (!is_free) { 772 dev = MKDEV(MD_MAJOR, next_minor); 773 next_minor++; 774 if (next_minor > MINORMASK) 775 next_minor = 0; 776 if (next_minor == start) { 777 /* Oh dear, all in use. */ 778 spin_unlock(&all_mddevs_lock); 779 kfree(new); 780 return NULL; 781 } 782 783 is_free = 1; 784 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 785 if (mddev->unit == dev) { 786 is_free = 0; 787 break; 788 } 789 } 790 new->unit = dev; 791 new->md_minor = MINOR(dev); 792 new->hold_active = UNTIL_STOP; 793 list_add(&new->all_mddevs, &all_mddevs); 794 spin_unlock(&all_mddevs_lock); 795 return new; 796 } 797 spin_unlock(&all_mddevs_lock); 798 799 new = kzalloc(sizeof(*new), GFP_KERNEL); 800 if (!new) 801 return NULL; 802 803 new->unit = unit; 804 if (MAJOR(unit) == MD_MAJOR) 805 new->md_minor = MINOR(unit); 806 else 807 new->md_minor = MINOR(unit) >> MdpMinorShift; 808 809 mddev_init(new); 810 811 goto retry; 812 } 813 814 static struct attribute_group md_redundancy_group; 815 816 void mddev_unlock(struct mddev *mddev) 817 { 818 if (mddev->to_remove) { 819 /* These cannot be removed under reconfig_mutex as 820 * an access to the files will try to take reconfig_mutex 821 * while holding the file unremovable, which leads to 822 * a deadlock. 823 * So hold set sysfs_active while the remove in happeing, 824 * and anything else which might set ->to_remove or my 825 * otherwise change the sysfs namespace will fail with 826 * -EBUSY if sysfs_active is still set. 827 * We set sysfs_active under reconfig_mutex and elsewhere 828 * test it under the same mutex to ensure its correct value 829 * is seen. 830 */ 831 struct attribute_group *to_remove = mddev->to_remove; 832 mddev->to_remove = NULL; 833 mddev->sysfs_active = 1; 834 mutex_unlock(&mddev->reconfig_mutex); 835 836 if (mddev->kobj.sd) { 837 if (to_remove != &md_redundancy_group) 838 sysfs_remove_group(&mddev->kobj, to_remove); 839 if (mddev->pers == NULL || 840 mddev->pers->sync_request == NULL) { 841 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 842 if (mddev->sysfs_action) 843 sysfs_put(mddev->sysfs_action); 844 mddev->sysfs_action = NULL; 845 } 846 } 847 mddev->sysfs_active = 0; 848 } else 849 mutex_unlock(&mddev->reconfig_mutex); 850 851 /* As we've dropped the mutex we need a spinlock to 852 * make sure the thread doesn't disappear 853 */ 854 spin_lock(&pers_lock); 855 md_wakeup_thread(mddev->thread); 856 wake_up(&mddev->sb_wait); 857 spin_unlock(&pers_lock); 858 } 859 EXPORT_SYMBOL_GPL(mddev_unlock); 860 861 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 862 { 863 struct md_rdev *rdev; 864 865 rdev_for_each_rcu(rdev, mddev) 866 if (rdev->desc_nr == nr) 867 return rdev; 868 869 return NULL; 870 } 871 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 872 873 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 874 { 875 struct md_rdev *rdev; 876 877 rdev_for_each(rdev, mddev) 878 if (rdev->bdev->bd_dev == dev) 879 return rdev; 880 881 return NULL; 882 } 883 884 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 885 { 886 struct md_rdev *rdev; 887 888 rdev_for_each_rcu(rdev, mddev) 889 if (rdev->bdev->bd_dev == dev) 890 return rdev; 891 892 return NULL; 893 } 894 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 895 896 static struct md_personality *find_pers(int level, char *clevel) 897 { 898 struct md_personality *pers; 899 list_for_each_entry(pers, &pers_list, list) { 900 if (level != LEVEL_NONE && pers->level == level) 901 return pers; 902 if (strcmp(pers->name, clevel)==0) 903 return pers; 904 } 905 return NULL; 906 } 907 908 /* return the offset of the super block in 512byte sectors */ 909 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 910 { 911 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 912 return MD_NEW_SIZE_SECTORS(num_sectors); 913 } 914 915 static int alloc_disk_sb(struct md_rdev *rdev) 916 { 917 rdev->sb_page = alloc_page(GFP_KERNEL); 918 if (!rdev->sb_page) 919 return -ENOMEM; 920 return 0; 921 } 922 923 void md_rdev_clear(struct md_rdev *rdev) 924 { 925 if (rdev->sb_page) { 926 put_page(rdev->sb_page); 927 rdev->sb_loaded = 0; 928 rdev->sb_page = NULL; 929 rdev->sb_start = 0; 930 rdev->sectors = 0; 931 } 932 if (rdev->bb_page) { 933 put_page(rdev->bb_page); 934 rdev->bb_page = NULL; 935 } 936 badblocks_exit(&rdev->badblocks); 937 } 938 EXPORT_SYMBOL_GPL(md_rdev_clear); 939 940 static void super_written(struct bio *bio) 941 { 942 struct md_rdev *rdev = bio->bi_private; 943 struct mddev *mddev = rdev->mddev; 944 945 if (bio->bi_status) { 946 pr_err("md: super_written gets error=%d\n", bio->bi_status); 947 md_error(mddev, rdev); 948 if (!test_bit(Faulty, &rdev->flags) 949 && (bio->bi_opf & MD_FAILFAST)) { 950 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 951 set_bit(LastDev, &rdev->flags); 952 } 953 } else 954 clear_bit(LastDev, &rdev->flags); 955 956 if (atomic_dec_and_test(&mddev->pending_writes)) 957 wake_up(&mddev->sb_wait); 958 rdev_dec_pending(rdev, mddev); 959 bio_put(bio); 960 } 961 962 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 963 sector_t sector, int size, struct page *page) 964 { 965 /* write first size bytes of page to sector of rdev 966 * Increment mddev->pending_writes before returning 967 * and decrement it on completion, waking up sb_wait 968 * if zero is reached. 969 * If an error occurred, call md_error 970 */ 971 struct bio *bio; 972 int ff = 0; 973 974 if (!page) 975 return; 976 977 if (test_bit(Faulty, &rdev->flags)) 978 return; 979 980 bio = md_bio_alloc_sync(mddev); 981 982 atomic_inc(&rdev->nr_pending); 983 984 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 985 bio->bi_iter.bi_sector = sector; 986 bio_add_page(bio, page, size, 0); 987 bio->bi_private = rdev; 988 bio->bi_end_io = super_written; 989 990 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 991 test_bit(FailFast, &rdev->flags) && 992 !test_bit(LastDev, &rdev->flags)) 993 ff = MD_FAILFAST; 994 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 995 996 atomic_inc(&mddev->pending_writes); 997 submit_bio(bio); 998 } 999 1000 int md_super_wait(struct mddev *mddev) 1001 { 1002 /* wait for all superblock writes that were scheduled to complete */ 1003 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1004 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1005 return -EAGAIN; 1006 return 0; 1007 } 1008 1009 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1010 struct page *page, int op, int op_flags, bool metadata_op) 1011 { 1012 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 1013 int ret; 1014 1015 if (metadata_op && rdev->meta_bdev) 1016 bio_set_dev(bio, rdev->meta_bdev); 1017 else 1018 bio_set_dev(bio, rdev->bdev); 1019 bio_set_op_attrs(bio, op, op_flags); 1020 if (metadata_op) 1021 bio->bi_iter.bi_sector = sector + rdev->sb_start; 1022 else if (rdev->mddev->reshape_position != MaxSector && 1023 (rdev->mddev->reshape_backwards == 1024 (sector >= rdev->mddev->reshape_position))) 1025 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 1026 else 1027 bio->bi_iter.bi_sector = sector + rdev->data_offset; 1028 bio_add_page(bio, page, size, 0); 1029 1030 submit_bio_wait(bio); 1031 1032 ret = !bio->bi_status; 1033 bio_put(bio); 1034 return ret; 1035 } 1036 EXPORT_SYMBOL_GPL(sync_page_io); 1037 1038 static int read_disk_sb(struct md_rdev *rdev, int size) 1039 { 1040 char b[BDEVNAME_SIZE]; 1041 1042 if (rdev->sb_loaded) 1043 return 0; 1044 1045 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1046 goto fail; 1047 rdev->sb_loaded = 1; 1048 return 0; 1049 1050 fail: 1051 pr_err("md: disabled device %s, could not read superblock.\n", 1052 bdevname(rdev->bdev,b)); 1053 return -EINVAL; 1054 } 1055 1056 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1057 { 1058 return sb1->set_uuid0 == sb2->set_uuid0 && 1059 sb1->set_uuid1 == sb2->set_uuid1 && 1060 sb1->set_uuid2 == sb2->set_uuid2 && 1061 sb1->set_uuid3 == sb2->set_uuid3; 1062 } 1063 1064 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1065 { 1066 int ret; 1067 mdp_super_t *tmp1, *tmp2; 1068 1069 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1070 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1071 1072 if (!tmp1 || !tmp2) { 1073 ret = 0; 1074 goto abort; 1075 } 1076 1077 *tmp1 = *sb1; 1078 *tmp2 = *sb2; 1079 1080 /* 1081 * nr_disks is not constant 1082 */ 1083 tmp1->nr_disks = 0; 1084 tmp2->nr_disks = 0; 1085 1086 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1087 abort: 1088 kfree(tmp1); 1089 kfree(tmp2); 1090 return ret; 1091 } 1092 1093 static u32 md_csum_fold(u32 csum) 1094 { 1095 csum = (csum & 0xffff) + (csum >> 16); 1096 return (csum & 0xffff) + (csum >> 16); 1097 } 1098 1099 static unsigned int calc_sb_csum(mdp_super_t *sb) 1100 { 1101 u64 newcsum = 0; 1102 u32 *sb32 = (u32*)sb; 1103 int i; 1104 unsigned int disk_csum, csum; 1105 1106 disk_csum = sb->sb_csum; 1107 sb->sb_csum = 0; 1108 1109 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1110 newcsum += sb32[i]; 1111 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1112 1113 #ifdef CONFIG_ALPHA 1114 /* This used to use csum_partial, which was wrong for several 1115 * reasons including that different results are returned on 1116 * different architectures. It isn't critical that we get exactly 1117 * the same return value as before (we always csum_fold before 1118 * testing, and that removes any differences). However as we 1119 * know that csum_partial always returned a 16bit value on 1120 * alphas, do a fold to maximise conformity to previous behaviour. 1121 */ 1122 sb->sb_csum = md_csum_fold(disk_csum); 1123 #else 1124 sb->sb_csum = disk_csum; 1125 #endif 1126 return csum; 1127 } 1128 1129 /* 1130 * Handle superblock details. 1131 * We want to be able to handle multiple superblock formats 1132 * so we have a common interface to them all, and an array of 1133 * different handlers. 1134 * We rely on user-space to write the initial superblock, and support 1135 * reading and updating of superblocks. 1136 * Interface methods are: 1137 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1138 * loads and validates a superblock on dev. 1139 * if refdev != NULL, compare superblocks on both devices 1140 * Return: 1141 * 0 - dev has a superblock that is compatible with refdev 1142 * 1 - dev has a superblock that is compatible and newer than refdev 1143 * so dev should be used as the refdev in future 1144 * -EINVAL superblock incompatible or invalid 1145 * -othererror e.g. -EIO 1146 * 1147 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1148 * Verify that dev is acceptable into mddev. 1149 * The first time, mddev->raid_disks will be 0, and data from 1150 * dev should be merged in. Subsequent calls check that dev 1151 * is new enough. Return 0 or -EINVAL 1152 * 1153 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1154 * Update the superblock for rdev with data in mddev 1155 * This does not write to disc. 1156 * 1157 */ 1158 1159 struct super_type { 1160 char *name; 1161 struct module *owner; 1162 int (*load_super)(struct md_rdev *rdev, 1163 struct md_rdev *refdev, 1164 int minor_version); 1165 int (*validate_super)(struct mddev *mddev, 1166 struct md_rdev *rdev); 1167 void (*sync_super)(struct mddev *mddev, 1168 struct md_rdev *rdev); 1169 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1170 sector_t num_sectors); 1171 int (*allow_new_offset)(struct md_rdev *rdev, 1172 unsigned long long new_offset); 1173 }; 1174 1175 /* 1176 * Check that the given mddev has no bitmap. 1177 * 1178 * This function is called from the run method of all personalities that do not 1179 * support bitmaps. It prints an error message and returns non-zero if mddev 1180 * has a bitmap. Otherwise, it returns 0. 1181 * 1182 */ 1183 int md_check_no_bitmap(struct mddev *mddev) 1184 { 1185 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1186 return 0; 1187 pr_warn("%s: bitmaps are not supported for %s\n", 1188 mdname(mddev), mddev->pers->name); 1189 return 1; 1190 } 1191 EXPORT_SYMBOL(md_check_no_bitmap); 1192 1193 /* 1194 * load_super for 0.90.0 1195 */ 1196 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1197 { 1198 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1199 mdp_super_t *sb; 1200 int ret; 1201 bool spare_disk = true; 1202 1203 /* 1204 * Calculate the position of the superblock (512byte sectors), 1205 * it's at the end of the disk. 1206 * 1207 * It also happens to be a multiple of 4Kb. 1208 */ 1209 rdev->sb_start = calc_dev_sboffset(rdev); 1210 1211 ret = read_disk_sb(rdev, MD_SB_BYTES); 1212 if (ret) 1213 return ret; 1214 1215 ret = -EINVAL; 1216 1217 bdevname(rdev->bdev, b); 1218 sb = page_address(rdev->sb_page); 1219 1220 if (sb->md_magic != MD_SB_MAGIC) { 1221 pr_warn("md: invalid raid superblock magic on %s\n", b); 1222 goto abort; 1223 } 1224 1225 if (sb->major_version != 0 || 1226 sb->minor_version < 90 || 1227 sb->minor_version > 91) { 1228 pr_warn("Bad version number %d.%d on %s\n", 1229 sb->major_version, sb->minor_version, b); 1230 goto abort; 1231 } 1232 1233 if (sb->raid_disks <= 0) 1234 goto abort; 1235 1236 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1237 pr_warn("md: invalid superblock checksum on %s\n", b); 1238 goto abort; 1239 } 1240 1241 rdev->preferred_minor = sb->md_minor; 1242 rdev->data_offset = 0; 1243 rdev->new_data_offset = 0; 1244 rdev->sb_size = MD_SB_BYTES; 1245 rdev->badblocks.shift = -1; 1246 1247 if (sb->level == LEVEL_MULTIPATH) 1248 rdev->desc_nr = -1; 1249 else 1250 rdev->desc_nr = sb->this_disk.number; 1251 1252 /* not spare disk, or LEVEL_MULTIPATH */ 1253 if (sb->level == LEVEL_MULTIPATH || 1254 (rdev->desc_nr >= 0 && 1255 rdev->desc_nr < MD_SB_DISKS && 1256 sb->disks[rdev->desc_nr].state & 1257 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1258 spare_disk = false; 1259 1260 if (!refdev) { 1261 if (!spare_disk) 1262 ret = 1; 1263 else 1264 ret = 0; 1265 } else { 1266 __u64 ev1, ev2; 1267 mdp_super_t *refsb = page_address(refdev->sb_page); 1268 if (!md_uuid_equal(refsb, sb)) { 1269 pr_warn("md: %s has different UUID to %s\n", 1270 b, bdevname(refdev->bdev,b2)); 1271 goto abort; 1272 } 1273 if (!md_sb_equal(refsb, sb)) { 1274 pr_warn("md: %s has same UUID but different superblock to %s\n", 1275 b, bdevname(refdev->bdev, b2)); 1276 goto abort; 1277 } 1278 ev1 = md_event(sb); 1279 ev2 = md_event(refsb); 1280 1281 if (!spare_disk && ev1 > ev2) 1282 ret = 1; 1283 else 1284 ret = 0; 1285 } 1286 rdev->sectors = rdev->sb_start; 1287 /* Limit to 4TB as metadata cannot record more than that. 1288 * (not needed for Linear and RAID0 as metadata doesn't 1289 * record this size) 1290 */ 1291 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1292 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1293 1294 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1295 /* "this cannot possibly happen" ... */ 1296 ret = -EINVAL; 1297 1298 abort: 1299 return ret; 1300 } 1301 1302 /* 1303 * validate_super for 0.90.0 1304 */ 1305 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1306 { 1307 mdp_disk_t *desc; 1308 mdp_super_t *sb = page_address(rdev->sb_page); 1309 __u64 ev1 = md_event(sb); 1310 1311 rdev->raid_disk = -1; 1312 clear_bit(Faulty, &rdev->flags); 1313 clear_bit(In_sync, &rdev->flags); 1314 clear_bit(Bitmap_sync, &rdev->flags); 1315 clear_bit(WriteMostly, &rdev->flags); 1316 1317 if (mddev->raid_disks == 0) { 1318 mddev->major_version = 0; 1319 mddev->minor_version = sb->minor_version; 1320 mddev->patch_version = sb->patch_version; 1321 mddev->external = 0; 1322 mddev->chunk_sectors = sb->chunk_size >> 9; 1323 mddev->ctime = sb->ctime; 1324 mddev->utime = sb->utime; 1325 mddev->level = sb->level; 1326 mddev->clevel[0] = 0; 1327 mddev->layout = sb->layout; 1328 mddev->raid_disks = sb->raid_disks; 1329 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1330 mddev->events = ev1; 1331 mddev->bitmap_info.offset = 0; 1332 mddev->bitmap_info.space = 0; 1333 /* bitmap can use 60 K after the 4K superblocks */ 1334 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1335 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1336 mddev->reshape_backwards = 0; 1337 1338 if (mddev->minor_version >= 91) { 1339 mddev->reshape_position = sb->reshape_position; 1340 mddev->delta_disks = sb->delta_disks; 1341 mddev->new_level = sb->new_level; 1342 mddev->new_layout = sb->new_layout; 1343 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1344 if (mddev->delta_disks < 0) 1345 mddev->reshape_backwards = 1; 1346 } else { 1347 mddev->reshape_position = MaxSector; 1348 mddev->delta_disks = 0; 1349 mddev->new_level = mddev->level; 1350 mddev->new_layout = mddev->layout; 1351 mddev->new_chunk_sectors = mddev->chunk_sectors; 1352 } 1353 if (mddev->level == 0) 1354 mddev->layout = -1; 1355 1356 if (sb->state & (1<<MD_SB_CLEAN)) 1357 mddev->recovery_cp = MaxSector; 1358 else { 1359 if (sb->events_hi == sb->cp_events_hi && 1360 sb->events_lo == sb->cp_events_lo) { 1361 mddev->recovery_cp = sb->recovery_cp; 1362 } else 1363 mddev->recovery_cp = 0; 1364 } 1365 1366 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1367 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1368 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1369 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1370 1371 mddev->max_disks = MD_SB_DISKS; 1372 1373 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1374 mddev->bitmap_info.file == NULL) { 1375 mddev->bitmap_info.offset = 1376 mddev->bitmap_info.default_offset; 1377 mddev->bitmap_info.space = 1378 mddev->bitmap_info.default_space; 1379 } 1380 1381 } else if (mddev->pers == NULL) { 1382 /* Insist on good event counter while assembling, except 1383 * for spares (which don't need an event count) */ 1384 ++ev1; 1385 if (sb->disks[rdev->desc_nr].state & ( 1386 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1387 if (ev1 < mddev->events) 1388 return -EINVAL; 1389 } else if (mddev->bitmap) { 1390 /* if adding to array with a bitmap, then we can accept an 1391 * older device ... but not too old. 1392 */ 1393 if (ev1 < mddev->bitmap->events_cleared) 1394 return 0; 1395 if (ev1 < mddev->events) 1396 set_bit(Bitmap_sync, &rdev->flags); 1397 } else { 1398 if (ev1 < mddev->events) 1399 /* just a hot-add of a new device, leave raid_disk at -1 */ 1400 return 0; 1401 } 1402 1403 if (mddev->level != LEVEL_MULTIPATH) { 1404 desc = sb->disks + rdev->desc_nr; 1405 1406 if (desc->state & (1<<MD_DISK_FAULTY)) 1407 set_bit(Faulty, &rdev->flags); 1408 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1409 desc->raid_disk < mddev->raid_disks */) { 1410 set_bit(In_sync, &rdev->flags); 1411 rdev->raid_disk = desc->raid_disk; 1412 rdev->saved_raid_disk = desc->raid_disk; 1413 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1414 /* active but not in sync implies recovery up to 1415 * reshape position. We don't know exactly where 1416 * that is, so set to zero for now */ 1417 if (mddev->minor_version >= 91) { 1418 rdev->recovery_offset = 0; 1419 rdev->raid_disk = desc->raid_disk; 1420 } 1421 } 1422 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1423 set_bit(WriteMostly, &rdev->flags); 1424 if (desc->state & (1<<MD_DISK_FAILFAST)) 1425 set_bit(FailFast, &rdev->flags); 1426 } else /* MULTIPATH are always insync */ 1427 set_bit(In_sync, &rdev->flags); 1428 return 0; 1429 } 1430 1431 /* 1432 * sync_super for 0.90.0 1433 */ 1434 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1435 { 1436 mdp_super_t *sb; 1437 struct md_rdev *rdev2; 1438 int next_spare = mddev->raid_disks; 1439 1440 /* make rdev->sb match mddev data.. 1441 * 1442 * 1/ zero out disks 1443 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1444 * 3/ any empty disks < next_spare become removed 1445 * 1446 * disks[0] gets initialised to REMOVED because 1447 * we cannot be sure from other fields if it has 1448 * been initialised or not. 1449 */ 1450 int i; 1451 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1452 1453 rdev->sb_size = MD_SB_BYTES; 1454 1455 sb = page_address(rdev->sb_page); 1456 1457 memset(sb, 0, sizeof(*sb)); 1458 1459 sb->md_magic = MD_SB_MAGIC; 1460 sb->major_version = mddev->major_version; 1461 sb->patch_version = mddev->patch_version; 1462 sb->gvalid_words = 0; /* ignored */ 1463 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1464 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1465 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1466 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1467 1468 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1469 sb->level = mddev->level; 1470 sb->size = mddev->dev_sectors / 2; 1471 sb->raid_disks = mddev->raid_disks; 1472 sb->md_minor = mddev->md_minor; 1473 sb->not_persistent = 0; 1474 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1475 sb->state = 0; 1476 sb->events_hi = (mddev->events>>32); 1477 sb->events_lo = (u32)mddev->events; 1478 1479 if (mddev->reshape_position == MaxSector) 1480 sb->minor_version = 90; 1481 else { 1482 sb->minor_version = 91; 1483 sb->reshape_position = mddev->reshape_position; 1484 sb->new_level = mddev->new_level; 1485 sb->delta_disks = mddev->delta_disks; 1486 sb->new_layout = mddev->new_layout; 1487 sb->new_chunk = mddev->new_chunk_sectors << 9; 1488 } 1489 mddev->minor_version = sb->minor_version; 1490 if (mddev->in_sync) 1491 { 1492 sb->recovery_cp = mddev->recovery_cp; 1493 sb->cp_events_hi = (mddev->events>>32); 1494 sb->cp_events_lo = (u32)mddev->events; 1495 if (mddev->recovery_cp == MaxSector) 1496 sb->state = (1<< MD_SB_CLEAN); 1497 } else 1498 sb->recovery_cp = 0; 1499 1500 sb->layout = mddev->layout; 1501 sb->chunk_size = mddev->chunk_sectors << 9; 1502 1503 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1504 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1505 1506 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1507 rdev_for_each(rdev2, mddev) { 1508 mdp_disk_t *d; 1509 int desc_nr; 1510 int is_active = test_bit(In_sync, &rdev2->flags); 1511 1512 if (rdev2->raid_disk >= 0 && 1513 sb->minor_version >= 91) 1514 /* we have nowhere to store the recovery_offset, 1515 * but if it is not below the reshape_position, 1516 * we can piggy-back on that. 1517 */ 1518 is_active = 1; 1519 if (rdev2->raid_disk < 0 || 1520 test_bit(Faulty, &rdev2->flags)) 1521 is_active = 0; 1522 if (is_active) 1523 desc_nr = rdev2->raid_disk; 1524 else 1525 desc_nr = next_spare++; 1526 rdev2->desc_nr = desc_nr; 1527 d = &sb->disks[rdev2->desc_nr]; 1528 nr_disks++; 1529 d->number = rdev2->desc_nr; 1530 d->major = MAJOR(rdev2->bdev->bd_dev); 1531 d->minor = MINOR(rdev2->bdev->bd_dev); 1532 if (is_active) 1533 d->raid_disk = rdev2->raid_disk; 1534 else 1535 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1536 if (test_bit(Faulty, &rdev2->flags)) 1537 d->state = (1<<MD_DISK_FAULTY); 1538 else if (is_active) { 1539 d->state = (1<<MD_DISK_ACTIVE); 1540 if (test_bit(In_sync, &rdev2->flags)) 1541 d->state |= (1<<MD_DISK_SYNC); 1542 active++; 1543 working++; 1544 } else { 1545 d->state = 0; 1546 spare++; 1547 working++; 1548 } 1549 if (test_bit(WriteMostly, &rdev2->flags)) 1550 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1551 if (test_bit(FailFast, &rdev2->flags)) 1552 d->state |= (1<<MD_DISK_FAILFAST); 1553 } 1554 /* now set the "removed" and "faulty" bits on any missing devices */ 1555 for (i=0 ; i < mddev->raid_disks ; i++) { 1556 mdp_disk_t *d = &sb->disks[i]; 1557 if (d->state == 0 && d->number == 0) { 1558 d->number = i; 1559 d->raid_disk = i; 1560 d->state = (1<<MD_DISK_REMOVED); 1561 d->state |= (1<<MD_DISK_FAULTY); 1562 failed++; 1563 } 1564 } 1565 sb->nr_disks = nr_disks; 1566 sb->active_disks = active; 1567 sb->working_disks = working; 1568 sb->failed_disks = failed; 1569 sb->spare_disks = spare; 1570 1571 sb->this_disk = sb->disks[rdev->desc_nr]; 1572 sb->sb_csum = calc_sb_csum(sb); 1573 } 1574 1575 /* 1576 * rdev_size_change for 0.90.0 1577 */ 1578 static unsigned long long 1579 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1580 { 1581 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1582 return 0; /* component must fit device */ 1583 if (rdev->mddev->bitmap_info.offset) 1584 return 0; /* can't move bitmap */ 1585 rdev->sb_start = calc_dev_sboffset(rdev); 1586 if (!num_sectors || num_sectors > rdev->sb_start) 1587 num_sectors = rdev->sb_start; 1588 /* Limit to 4TB as metadata cannot record more than that. 1589 * 4TB == 2^32 KB, or 2*2^32 sectors. 1590 */ 1591 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1592 num_sectors = (sector_t)(2ULL << 32) - 2; 1593 do { 1594 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1595 rdev->sb_page); 1596 } while (md_super_wait(rdev->mddev) < 0); 1597 return num_sectors; 1598 } 1599 1600 static int 1601 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1602 { 1603 /* non-zero offset changes not possible with v0.90 */ 1604 return new_offset == 0; 1605 } 1606 1607 /* 1608 * version 1 superblock 1609 */ 1610 1611 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1612 { 1613 __le32 disk_csum; 1614 u32 csum; 1615 unsigned long long newcsum; 1616 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1617 __le32 *isuper = (__le32*)sb; 1618 1619 disk_csum = sb->sb_csum; 1620 sb->sb_csum = 0; 1621 newcsum = 0; 1622 for (; size >= 4; size -= 4) 1623 newcsum += le32_to_cpu(*isuper++); 1624 1625 if (size == 2) 1626 newcsum += le16_to_cpu(*(__le16*) isuper); 1627 1628 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1629 sb->sb_csum = disk_csum; 1630 return cpu_to_le32(csum); 1631 } 1632 1633 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1634 { 1635 struct mdp_superblock_1 *sb; 1636 int ret; 1637 sector_t sb_start; 1638 sector_t sectors; 1639 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1640 int bmask; 1641 bool spare_disk = true; 1642 1643 /* 1644 * Calculate the position of the superblock in 512byte sectors. 1645 * It is always aligned to a 4K boundary and 1646 * depeding on minor_version, it can be: 1647 * 0: At least 8K, but less than 12K, from end of device 1648 * 1: At start of device 1649 * 2: 4K from start of device. 1650 */ 1651 switch(minor_version) { 1652 case 0: 1653 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1654 sb_start -= 8*2; 1655 sb_start &= ~(sector_t)(4*2-1); 1656 break; 1657 case 1: 1658 sb_start = 0; 1659 break; 1660 case 2: 1661 sb_start = 8; 1662 break; 1663 default: 1664 return -EINVAL; 1665 } 1666 rdev->sb_start = sb_start; 1667 1668 /* superblock is rarely larger than 1K, but it can be larger, 1669 * and it is safe to read 4k, so we do that 1670 */ 1671 ret = read_disk_sb(rdev, 4096); 1672 if (ret) return ret; 1673 1674 sb = page_address(rdev->sb_page); 1675 1676 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1677 sb->major_version != cpu_to_le32(1) || 1678 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1679 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1680 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1681 return -EINVAL; 1682 1683 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1684 pr_warn("md: invalid superblock checksum on %s\n", 1685 bdevname(rdev->bdev,b)); 1686 return -EINVAL; 1687 } 1688 if (le64_to_cpu(sb->data_size) < 10) { 1689 pr_warn("md: data_size too small on %s\n", 1690 bdevname(rdev->bdev,b)); 1691 return -EINVAL; 1692 } 1693 if (sb->pad0 || 1694 sb->pad3[0] || 1695 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1696 /* Some padding is non-zero, might be a new feature */ 1697 return -EINVAL; 1698 1699 rdev->preferred_minor = 0xffff; 1700 rdev->data_offset = le64_to_cpu(sb->data_offset); 1701 rdev->new_data_offset = rdev->data_offset; 1702 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1703 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1704 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1705 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1706 1707 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1708 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1709 if (rdev->sb_size & bmask) 1710 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1711 1712 if (minor_version 1713 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1714 return -EINVAL; 1715 if (minor_version 1716 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1717 return -EINVAL; 1718 1719 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1720 rdev->desc_nr = -1; 1721 else 1722 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1723 1724 if (!rdev->bb_page) { 1725 rdev->bb_page = alloc_page(GFP_KERNEL); 1726 if (!rdev->bb_page) 1727 return -ENOMEM; 1728 } 1729 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1730 rdev->badblocks.count == 0) { 1731 /* need to load the bad block list. 1732 * Currently we limit it to one page. 1733 */ 1734 s32 offset; 1735 sector_t bb_sector; 1736 __le64 *bbp; 1737 int i; 1738 int sectors = le16_to_cpu(sb->bblog_size); 1739 if (sectors > (PAGE_SIZE / 512)) 1740 return -EINVAL; 1741 offset = le32_to_cpu(sb->bblog_offset); 1742 if (offset == 0) 1743 return -EINVAL; 1744 bb_sector = (long long)offset; 1745 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1746 rdev->bb_page, REQ_OP_READ, 0, true)) 1747 return -EIO; 1748 bbp = (__le64 *)page_address(rdev->bb_page); 1749 rdev->badblocks.shift = sb->bblog_shift; 1750 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1751 u64 bb = le64_to_cpu(*bbp); 1752 int count = bb & (0x3ff); 1753 u64 sector = bb >> 10; 1754 sector <<= sb->bblog_shift; 1755 count <<= sb->bblog_shift; 1756 if (bb + 1 == 0) 1757 break; 1758 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1759 return -EINVAL; 1760 } 1761 } else if (sb->bblog_offset != 0) 1762 rdev->badblocks.shift = 0; 1763 1764 if ((le32_to_cpu(sb->feature_map) & 1765 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1766 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1767 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1768 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1769 } 1770 1771 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1772 sb->level != 0) 1773 return -EINVAL; 1774 1775 /* not spare disk, or LEVEL_MULTIPATH */ 1776 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1777 (rdev->desc_nr >= 0 && 1778 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1779 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1780 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1781 spare_disk = false; 1782 1783 if (!refdev) { 1784 if (!spare_disk) 1785 ret = 1; 1786 else 1787 ret = 0; 1788 } else { 1789 __u64 ev1, ev2; 1790 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1791 1792 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1793 sb->level != refsb->level || 1794 sb->layout != refsb->layout || 1795 sb->chunksize != refsb->chunksize) { 1796 pr_warn("md: %s has strangely different superblock to %s\n", 1797 bdevname(rdev->bdev,b), 1798 bdevname(refdev->bdev,b2)); 1799 return -EINVAL; 1800 } 1801 ev1 = le64_to_cpu(sb->events); 1802 ev2 = le64_to_cpu(refsb->events); 1803 1804 if (!spare_disk && ev1 > ev2) 1805 ret = 1; 1806 else 1807 ret = 0; 1808 } 1809 if (minor_version) { 1810 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1811 sectors -= rdev->data_offset; 1812 } else 1813 sectors = rdev->sb_start; 1814 if (sectors < le64_to_cpu(sb->data_size)) 1815 return -EINVAL; 1816 rdev->sectors = le64_to_cpu(sb->data_size); 1817 return ret; 1818 } 1819 1820 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1821 { 1822 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1823 __u64 ev1 = le64_to_cpu(sb->events); 1824 1825 rdev->raid_disk = -1; 1826 clear_bit(Faulty, &rdev->flags); 1827 clear_bit(In_sync, &rdev->flags); 1828 clear_bit(Bitmap_sync, &rdev->flags); 1829 clear_bit(WriteMostly, &rdev->flags); 1830 1831 if (mddev->raid_disks == 0) { 1832 mddev->major_version = 1; 1833 mddev->patch_version = 0; 1834 mddev->external = 0; 1835 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1836 mddev->ctime = le64_to_cpu(sb->ctime); 1837 mddev->utime = le64_to_cpu(sb->utime); 1838 mddev->level = le32_to_cpu(sb->level); 1839 mddev->clevel[0] = 0; 1840 mddev->layout = le32_to_cpu(sb->layout); 1841 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1842 mddev->dev_sectors = le64_to_cpu(sb->size); 1843 mddev->events = ev1; 1844 mddev->bitmap_info.offset = 0; 1845 mddev->bitmap_info.space = 0; 1846 /* Default location for bitmap is 1K after superblock 1847 * using 3K - total of 4K 1848 */ 1849 mddev->bitmap_info.default_offset = 1024 >> 9; 1850 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1851 mddev->reshape_backwards = 0; 1852 1853 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1854 memcpy(mddev->uuid, sb->set_uuid, 16); 1855 1856 mddev->max_disks = (4096-256)/2; 1857 1858 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1859 mddev->bitmap_info.file == NULL) { 1860 mddev->bitmap_info.offset = 1861 (__s32)le32_to_cpu(sb->bitmap_offset); 1862 /* Metadata doesn't record how much space is available. 1863 * For 1.0, we assume we can use up to the superblock 1864 * if before, else to 4K beyond superblock. 1865 * For others, assume no change is possible. 1866 */ 1867 if (mddev->minor_version > 0) 1868 mddev->bitmap_info.space = 0; 1869 else if (mddev->bitmap_info.offset > 0) 1870 mddev->bitmap_info.space = 1871 8 - mddev->bitmap_info.offset; 1872 else 1873 mddev->bitmap_info.space = 1874 -mddev->bitmap_info.offset; 1875 } 1876 1877 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1878 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1879 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1880 mddev->new_level = le32_to_cpu(sb->new_level); 1881 mddev->new_layout = le32_to_cpu(sb->new_layout); 1882 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1883 if (mddev->delta_disks < 0 || 1884 (mddev->delta_disks == 0 && 1885 (le32_to_cpu(sb->feature_map) 1886 & MD_FEATURE_RESHAPE_BACKWARDS))) 1887 mddev->reshape_backwards = 1; 1888 } else { 1889 mddev->reshape_position = MaxSector; 1890 mddev->delta_disks = 0; 1891 mddev->new_level = mddev->level; 1892 mddev->new_layout = mddev->layout; 1893 mddev->new_chunk_sectors = mddev->chunk_sectors; 1894 } 1895 1896 if (mddev->level == 0 && 1897 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1898 mddev->layout = -1; 1899 1900 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1901 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1902 1903 if (le32_to_cpu(sb->feature_map) & 1904 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1905 if (le32_to_cpu(sb->feature_map) & 1906 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1907 return -EINVAL; 1908 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1909 (le32_to_cpu(sb->feature_map) & 1910 MD_FEATURE_MULTIPLE_PPLS)) 1911 return -EINVAL; 1912 set_bit(MD_HAS_PPL, &mddev->flags); 1913 } 1914 } else if (mddev->pers == NULL) { 1915 /* Insist of good event counter while assembling, except for 1916 * spares (which don't need an event count) */ 1917 ++ev1; 1918 if (rdev->desc_nr >= 0 && 1919 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1920 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1921 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1922 if (ev1 < mddev->events) 1923 return -EINVAL; 1924 } else if (mddev->bitmap) { 1925 /* If adding to array with a bitmap, then we can accept an 1926 * older device, but not too old. 1927 */ 1928 if (ev1 < mddev->bitmap->events_cleared) 1929 return 0; 1930 if (ev1 < mddev->events) 1931 set_bit(Bitmap_sync, &rdev->flags); 1932 } else { 1933 if (ev1 < mddev->events) 1934 /* just a hot-add of a new device, leave raid_disk at -1 */ 1935 return 0; 1936 } 1937 if (mddev->level != LEVEL_MULTIPATH) { 1938 int role; 1939 if (rdev->desc_nr < 0 || 1940 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1941 role = MD_DISK_ROLE_SPARE; 1942 rdev->desc_nr = -1; 1943 } else 1944 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1945 switch(role) { 1946 case MD_DISK_ROLE_SPARE: /* spare */ 1947 break; 1948 case MD_DISK_ROLE_FAULTY: /* faulty */ 1949 set_bit(Faulty, &rdev->flags); 1950 break; 1951 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1952 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1953 /* journal device without journal feature */ 1954 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1955 return -EINVAL; 1956 } 1957 set_bit(Journal, &rdev->flags); 1958 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1959 rdev->raid_disk = 0; 1960 break; 1961 default: 1962 rdev->saved_raid_disk = role; 1963 if ((le32_to_cpu(sb->feature_map) & 1964 MD_FEATURE_RECOVERY_OFFSET)) { 1965 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1966 if (!(le32_to_cpu(sb->feature_map) & 1967 MD_FEATURE_RECOVERY_BITMAP)) 1968 rdev->saved_raid_disk = -1; 1969 } else { 1970 /* 1971 * If the array is FROZEN, then the device can't 1972 * be in_sync with rest of array. 1973 */ 1974 if (!test_bit(MD_RECOVERY_FROZEN, 1975 &mddev->recovery)) 1976 set_bit(In_sync, &rdev->flags); 1977 } 1978 rdev->raid_disk = role; 1979 break; 1980 } 1981 if (sb->devflags & WriteMostly1) 1982 set_bit(WriteMostly, &rdev->flags); 1983 if (sb->devflags & FailFast1) 1984 set_bit(FailFast, &rdev->flags); 1985 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1986 set_bit(Replacement, &rdev->flags); 1987 } else /* MULTIPATH are always insync */ 1988 set_bit(In_sync, &rdev->flags); 1989 1990 return 0; 1991 } 1992 1993 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1994 { 1995 struct mdp_superblock_1 *sb; 1996 struct md_rdev *rdev2; 1997 int max_dev, i; 1998 /* make rdev->sb match mddev and rdev data. */ 1999 2000 sb = page_address(rdev->sb_page); 2001 2002 sb->feature_map = 0; 2003 sb->pad0 = 0; 2004 sb->recovery_offset = cpu_to_le64(0); 2005 memset(sb->pad3, 0, sizeof(sb->pad3)); 2006 2007 sb->utime = cpu_to_le64((__u64)mddev->utime); 2008 sb->events = cpu_to_le64(mddev->events); 2009 if (mddev->in_sync) 2010 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2011 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2012 sb->resync_offset = cpu_to_le64(MaxSector); 2013 else 2014 sb->resync_offset = cpu_to_le64(0); 2015 2016 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2017 2018 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2019 sb->size = cpu_to_le64(mddev->dev_sectors); 2020 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2021 sb->level = cpu_to_le32(mddev->level); 2022 sb->layout = cpu_to_le32(mddev->layout); 2023 if (test_bit(FailFast, &rdev->flags)) 2024 sb->devflags |= FailFast1; 2025 else 2026 sb->devflags &= ~FailFast1; 2027 2028 if (test_bit(WriteMostly, &rdev->flags)) 2029 sb->devflags |= WriteMostly1; 2030 else 2031 sb->devflags &= ~WriteMostly1; 2032 sb->data_offset = cpu_to_le64(rdev->data_offset); 2033 sb->data_size = cpu_to_le64(rdev->sectors); 2034 2035 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2036 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2037 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2038 } 2039 2040 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2041 !test_bit(In_sync, &rdev->flags)) { 2042 sb->feature_map |= 2043 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2044 sb->recovery_offset = 2045 cpu_to_le64(rdev->recovery_offset); 2046 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2047 sb->feature_map |= 2048 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2049 } 2050 /* Note: recovery_offset and journal_tail share space */ 2051 if (test_bit(Journal, &rdev->flags)) 2052 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2053 if (test_bit(Replacement, &rdev->flags)) 2054 sb->feature_map |= 2055 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2056 2057 if (mddev->reshape_position != MaxSector) { 2058 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2059 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2060 sb->new_layout = cpu_to_le32(mddev->new_layout); 2061 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2062 sb->new_level = cpu_to_le32(mddev->new_level); 2063 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2064 if (mddev->delta_disks == 0 && 2065 mddev->reshape_backwards) 2066 sb->feature_map 2067 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2068 if (rdev->new_data_offset != rdev->data_offset) { 2069 sb->feature_map 2070 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2071 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2072 - rdev->data_offset)); 2073 } 2074 } 2075 2076 if (mddev_is_clustered(mddev)) 2077 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2078 2079 if (rdev->badblocks.count == 0) 2080 /* Nothing to do for bad blocks*/ ; 2081 else if (sb->bblog_offset == 0) 2082 /* Cannot record bad blocks on this device */ 2083 md_error(mddev, rdev); 2084 else { 2085 struct badblocks *bb = &rdev->badblocks; 2086 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2087 u64 *p = bb->page; 2088 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2089 if (bb->changed) { 2090 unsigned seq; 2091 2092 retry: 2093 seq = read_seqbegin(&bb->lock); 2094 2095 memset(bbp, 0xff, PAGE_SIZE); 2096 2097 for (i = 0 ; i < bb->count ; i++) { 2098 u64 internal_bb = p[i]; 2099 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2100 | BB_LEN(internal_bb)); 2101 bbp[i] = cpu_to_le64(store_bb); 2102 } 2103 bb->changed = 0; 2104 if (read_seqretry(&bb->lock, seq)) 2105 goto retry; 2106 2107 bb->sector = (rdev->sb_start + 2108 (int)le32_to_cpu(sb->bblog_offset)); 2109 bb->size = le16_to_cpu(sb->bblog_size); 2110 } 2111 } 2112 2113 max_dev = 0; 2114 rdev_for_each(rdev2, mddev) 2115 if (rdev2->desc_nr+1 > max_dev) 2116 max_dev = rdev2->desc_nr+1; 2117 2118 if (max_dev > le32_to_cpu(sb->max_dev)) { 2119 int bmask; 2120 sb->max_dev = cpu_to_le32(max_dev); 2121 rdev->sb_size = max_dev * 2 + 256; 2122 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2123 if (rdev->sb_size & bmask) 2124 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2125 } else 2126 max_dev = le32_to_cpu(sb->max_dev); 2127 2128 for (i=0; i<max_dev;i++) 2129 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2130 2131 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2132 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2133 2134 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2135 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2136 sb->feature_map |= 2137 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2138 else 2139 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2140 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2141 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2142 } 2143 2144 rdev_for_each(rdev2, mddev) { 2145 i = rdev2->desc_nr; 2146 if (test_bit(Faulty, &rdev2->flags)) 2147 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2148 else if (test_bit(In_sync, &rdev2->flags)) 2149 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2150 else if (test_bit(Journal, &rdev2->flags)) 2151 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2152 else if (rdev2->raid_disk >= 0) 2153 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2154 else 2155 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2156 } 2157 2158 sb->sb_csum = calc_sb_1_csum(sb); 2159 } 2160 2161 static unsigned long long 2162 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2163 { 2164 struct mdp_superblock_1 *sb; 2165 sector_t max_sectors; 2166 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2167 return 0; /* component must fit device */ 2168 if (rdev->data_offset != rdev->new_data_offset) 2169 return 0; /* too confusing */ 2170 if (rdev->sb_start < rdev->data_offset) { 2171 /* minor versions 1 and 2; superblock before data */ 2172 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2173 max_sectors -= rdev->data_offset; 2174 if (!num_sectors || num_sectors > max_sectors) 2175 num_sectors = max_sectors; 2176 } else if (rdev->mddev->bitmap_info.offset) { 2177 /* minor version 0 with bitmap we can't move */ 2178 return 0; 2179 } else { 2180 /* minor version 0; superblock after data */ 2181 sector_t sb_start; 2182 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 2183 sb_start &= ~(sector_t)(4*2 - 1); 2184 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 2185 if (!num_sectors || num_sectors > max_sectors) 2186 num_sectors = max_sectors; 2187 rdev->sb_start = sb_start; 2188 } 2189 sb = page_address(rdev->sb_page); 2190 sb->data_size = cpu_to_le64(num_sectors); 2191 sb->super_offset = cpu_to_le64(rdev->sb_start); 2192 sb->sb_csum = calc_sb_1_csum(sb); 2193 do { 2194 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2195 rdev->sb_page); 2196 } while (md_super_wait(rdev->mddev) < 0); 2197 return num_sectors; 2198 2199 } 2200 2201 static int 2202 super_1_allow_new_offset(struct md_rdev *rdev, 2203 unsigned long long new_offset) 2204 { 2205 /* All necessary checks on new >= old have been done */ 2206 struct bitmap *bitmap; 2207 if (new_offset >= rdev->data_offset) 2208 return 1; 2209 2210 /* with 1.0 metadata, there is no metadata to tread on 2211 * so we can always move back */ 2212 if (rdev->mddev->minor_version == 0) 2213 return 1; 2214 2215 /* otherwise we must be sure not to step on 2216 * any metadata, so stay: 2217 * 36K beyond start of superblock 2218 * beyond end of badblocks 2219 * beyond write-intent bitmap 2220 */ 2221 if (rdev->sb_start + (32+4)*2 > new_offset) 2222 return 0; 2223 bitmap = rdev->mddev->bitmap; 2224 if (bitmap && !rdev->mddev->bitmap_info.file && 2225 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2226 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2227 return 0; 2228 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2229 return 0; 2230 2231 return 1; 2232 } 2233 2234 static struct super_type super_types[] = { 2235 [0] = { 2236 .name = "0.90.0", 2237 .owner = THIS_MODULE, 2238 .load_super = super_90_load, 2239 .validate_super = super_90_validate, 2240 .sync_super = super_90_sync, 2241 .rdev_size_change = super_90_rdev_size_change, 2242 .allow_new_offset = super_90_allow_new_offset, 2243 }, 2244 [1] = { 2245 .name = "md-1", 2246 .owner = THIS_MODULE, 2247 .load_super = super_1_load, 2248 .validate_super = super_1_validate, 2249 .sync_super = super_1_sync, 2250 .rdev_size_change = super_1_rdev_size_change, 2251 .allow_new_offset = super_1_allow_new_offset, 2252 }, 2253 }; 2254 2255 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2256 { 2257 if (mddev->sync_super) { 2258 mddev->sync_super(mddev, rdev); 2259 return; 2260 } 2261 2262 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2263 2264 super_types[mddev->major_version].sync_super(mddev, rdev); 2265 } 2266 2267 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2268 { 2269 struct md_rdev *rdev, *rdev2; 2270 2271 rcu_read_lock(); 2272 rdev_for_each_rcu(rdev, mddev1) { 2273 if (test_bit(Faulty, &rdev->flags) || 2274 test_bit(Journal, &rdev->flags) || 2275 rdev->raid_disk == -1) 2276 continue; 2277 rdev_for_each_rcu(rdev2, mddev2) { 2278 if (test_bit(Faulty, &rdev2->flags) || 2279 test_bit(Journal, &rdev2->flags) || 2280 rdev2->raid_disk == -1) 2281 continue; 2282 if (rdev->bdev->bd_contains == 2283 rdev2->bdev->bd_contains) { 2284 rcu_read_unlock(); 2285 return 1; 2286 } 2287 } 2288 } 2289 rcu_read_unlock(); 2290 return 0; 2291 } 2292 2293 static LIST_HEAD(pending_raid_disks); 2294 2295 /* 2296 * Try to register data integrity profile for an mddev 2297 * 2298 * This is called when an array is started and after a disk has been kicked 2299 * from the array. It only succeeds if all working and active component devices 2300 * are integrity capable with matching profiles. 2301 */ 2302 int md_integrity_register(struct mddev *mddev) 2303 { 2304 struct md_rdev *rdev, *reference = NULL; 2305 2306 if (list_empty(&mddev->disks)) 2307 return 0; /* nothing to do */ 2308 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2309 return 0; /* shouldn't register, or already is */ 2310 rdev_for_each(rdev, mddev) { 2311 /* skip spares and non-functional disks */ 2312 if (test_bit(Faulty, &rdev->flags)) 2313 continue; 2314 if (rdev->raid_disk < 0) 2315 continue; 2316 if (!reference) { 2317 /* Use the first rdev as the reference */ 2318 reference = rdev; 2319 continue; 2320 } 2321 /* does this rdev's profile match the reference profile? */ 2322 if (blk_integrity_compare(reference->bdev->bd_disk, 2323 rdev->bdev->bd_disk) < 0) 2324 return -EINVAL; 2325 } 2326 if (!reference || !bdev_get_integrity(reference->bdev)) 2327 return 0; 2328 /* 2329 * All component devices are integrity capable and have matching 2330 * profiles, register the common profile for the md device. 2331 */ 2332 blk_integrity_register(mddev->gendisk, 2333 bdev_get_integrity(reference->bdev)); 2334 2335 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2336 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2337 pr_err("md: failed to create integrity pool for %s\n", 2338 mdname(mddev)); 2339 return -EINVAL; 2340 } 2341 return 0; 2342 } 2343 EXPORT_SYMBOL(md_integrity_register); 2344 2345 /* 2346 * Attempt to add an rdev, but only if it is consistent with the current 2347 * integrity profile 2348 */ 2349 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2350 { 2351 struct blk_integrity *bi_mddev; 2352 char name[BDEVNAME_SIZE]; 2353 2354 if (!mddev->gendisk) 2355 return 0; 2356 2357 bi_mddev = blk_get_integrity(mddev->gendisk); 2358 2359 if (!bi_mddev) /* nothing to do */ 2360 return 0; 2361 2362 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2363 pr_err("%s: incompatible integrity profile for %s\n", 2364 mdname(mddev), bdevname(rdev->bdev, name)); 2365 return -ENXIO; 2366 } 2367 2368 return 0; 2369 } 2370 EXPORT_SYMBOL(md_integrity_add_rdev); 2371 2372 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2373 { 2374 char b[BDEVNAME_SIZE]; 2375 struct kobject *ko; 2376 int err; 2377 2378 /* prevent duplicates */ 2379 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2380 return -EEXIST; 2381 2382 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2383 mddev->pers) 2384 return -EROFS; 2385 2386 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2387 if (!test_bit(Journal, &rdev->flags) && 2388 rdev->sectors && 2389 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2390 if (mddev->pers) { 2391 /* Cannot change size, so fail 2392 * If mddev->level <= 0, then we don't care 2393 * about aligning sizes (e.g. linear) 2394 */ 2395 if (mddev->level > 0) 2396 return -ENOSPC; 2397 } else 2398 mddev->dev_sectors = rdev->sectors; 2399 } 2400 2401 /* Verify rdev->desc_nr is unique. 2402 * If it is -1, assign a free number, else 2403 * check number is not in use 2404 */ 2405 rcu_read_lock(); 2406 if (rdev->desc_nr < 0) { 2407 int choice = 0; 2408 if (mddev->pers) 2409 choice = mddev->raid_disks; 2410 while (md_find_rdev_nr_rcu(mddev, choice)) 2411 choice++; 2412 rdev->desc_nr = choice; 2413 } else { 2414 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2415 rcu_read_unlock(); 2416 return -EBUSY; 2417 } 2418 } 2419 rcu_read_unlock(); 2420 if (!test_bit(Journal, &rdev->flags) && 2421 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2422 pr_warn("md: %s: array is limited to %d devices\n", 2423 mdname(mddev), mddev->max_disks); 2424 return -EBUSY; 2425 } 2426 bdevname(rdev->bdev,b); 2427 strreplace(b, '/', '!'); 2428 2429 rdev->mddev = mddev; 2430 pr_debug("md: bind<%s>\n", b); 2431 2432 if (mddev->raid_disks) 2433 mddev_create_serial_pool(mddev, rdev, false); 2434 2435 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2436 goto fail; 2437 2438 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2439 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2440 /* failure here is OK */; 2441 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2442 2443 list_add_rcu(&rdev->same_set, &mddev->disks); 2444 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2445 2446 /* May as well allow recovery to be retried once */ 2447 mddev->recovery_disabled++; 2448 2449 return 0; 2450 2451 fail: 2452 pr_warn("md: failed to register dev-%s for %s\n", 2453 b, mdname(mddev)); 2454 return err; 2455 } 2456 2457 static void md_delayed_delete(struct work_struct *ws) 2458 { 2459 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2460 kobject_del(&rdev->kobj); 2461 kobject_put(&rdev->kobj); 2462 } 2463 2464 static void unbind_rdev_from_array(struct md_rdev *rdev) 2465 { 2466 char b[BDEVNAME_SIZE]; 2467 2468 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2469 list_del_rcu(&rdev->same_set); 2470 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2471 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2472 rdev->mddev = NULL; 2473 sysfs_remove_link(&rdev->kobj, "block"); 2474 sysfs_put(rdev->sysfs_state); 2475 rdev->sysfs_state = NULL; 2476 rdev->badblocks.count = 0; 2477 /* We need to delay this, otherwise we can deadlock when 2478 * writing to 'remove' to "dev/state". We also need 2479 * to delay it due to rcu usage. 2480 */ 2481 synchronize_rcu(); 2482 INIT_WORK(&rdev->del_work, md_delayed_delete); 2483 kobject_get(&rdev->kobj); 2484 queue_work(md_misc_wq, &rdev->del_work); 2485 } 2486 2487 /* 2488 * prevent the device from being mounted, repartitioned or 2489 * otherwise reused by a RAID array (or any other kernel 2490 * subsystem), by bd_claiming the device. 2491 */ 2492 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2493 { 2494 int err = 0; 2495 struct block_device *bdev; 2496 2497 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2498 shared ? (struct md_rdev *)lock_rdev : rdev); 2499 if (IS_ERR(bdev)) { 2500 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2501 MAJOR(dev), MINOR(dev)); 2502 return PTR_ERR(bdev); 2503 } 2504 rdev->bdev = bdev; 2505 return err; 2506 } 2507 2508 static void unlock_rdev(struct md_rdev *rdev) 2509 { 2510 struct block_device *bdev = rdev->bdev; 2511 rdev->bdev = NULL; 2512 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2513 } 2514 2515 void md_autodetect_dev(dev_t dev); 2516 2517 static void export_rdev(struct md_rdev *rdev) 2518 { 2519 char b[BDEVNAME_SIZE]; 2520 2521 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2522 md_rdev_clear(rdev); 2523 #ifndef MODULE 2524 if (test_bit(AutoDetected, &rdev->flags)) 2525 md_autodetect_dev(rdev->bdev->bd_dev); 2526 #endif 2527 unlock_rdev(rdev); 2528 kobject_put(&rdev->kobj); 2529 } 2530 2531 void md_kick_rdev_from_array(struct md_rdev *rdev) 2532 { 2533 unbind_rdev_from_array(rdev); 2534 export_rdev(rdev); 2535 } 2536 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2537 2538 static void export_array(struct mddev *mddev) 2539 { 2540 struct md_rdev *rdev; 2541 2542 while (!list_empty(&mddev->disks)) { 2543 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2544 same_set); 2545 md_kick_rdev_from_array(rdev); 2546 } 2547 mddev->raid_disks = 0; 2548 mddev->major_version = 0; 2549 } 2550 2551 static bool set_in_sync(struct mddev *mddev) 2552 { 2553 lockdep_assert_held(&mddev->lock); 2554 if (!mddev->in_sync) { 2555 mddev->sync_checkers++; 2556 spin_unlock(&mddev->lock); 2557 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2558 spin_lock(&mddev->lock); 2559 if (!mddev->in_sync && 2560 percpu_ref_is_zero(&mddev->writes_pending)) { 2561 mddev->in_sync = 1; 2562 /* 2563 * Ensure ->in_sync is visible before we clear 2564 * ->sync_checkers. 2565 */ 2566 smp_mb(); 2567 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2568 sysfs_notify_dirent_safe(mddev->sysfs_state); 2569 } 2570 if (--mddev->sync_checkers == 0) 2571 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2572 } 2573 if (mddev->safemode == 1) 2574 mddev->safemode = 0; 2575 return mddev->in_sync; 2576 } 2577 2578 static void sync_sbs(struct mddev *mddev, int nospares) 2579 { 2580 /* Update each superblock (in-memory image), but 2581 * if we are allowed to, skip spares which already 2582 * have the right event counter, or have one earlier 2583 * (which would mean they aren't being marked as dirty 2584 * with the rest of the array) 2585 */ 2586 struct md_rdev *rdev; 2587 rdev_for_each(rdev, mddev) { 2588 if (rdev->sb_events == mddev->events || 2589 (nospares && 2590 rdev->raid_disk < 0 && 2591 rdev->sb_events+1 == mddev->events)) { 2592 /* Don't update this superblock */ 2593 rdev->sb_loaded = 2; 2594 } else { 2595 sync_super(mddev, rdev); 2596 rdev->sb_loaded = 1; 2597 } 2598 } 2599 } 2600 2601 static bool does_sb_need_changing(struct mddev *mddev) 2602 { 2603 struct md_rdev *rdev; 2604 struct mdp_superblock_1 *sb; 2605 int role; 2606 2607 /* Find a good rdev */ 2608 rdev_for_each(rdev, mddev) 2609 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2610 break; 2611 2612 /* No good device found. */ 2613 if (!rdev) 2614 return false; 2615 2616 sb = page_address(rdev->sb_page); 2617 /* Check if a device has become faulty or a spare become active */ 2618 rdev_for_each(rdev, mddev) { 2619 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2620 /* Device activated? */ 2621 if (role == 0xffff && rdev->raid_disk >=0 && 2622 !test_bit(Faulty, &rdev->flags)) 2623 return true; 2624 /* Device turned faulty? */ 2625 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2626 return true; 2627 } 2628 2629 /* Check if any mddev parameters have changed */ 2630 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2631 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2632 (mddev->layout != le32_to_cpu(sb->layout)) || 2633 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2634 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2635 return true; 2636 2637 return false; 2638 } 2639 2640 void md_update_sb(struct mddev *mddev, int force_change) 2641 { 2642 struct md_rdev *rdev; 2643 int sync_req; 2644 int nospares = 0; 2645 int any_badblocks_changed = 0; 2646 int ret = -1; 2647 2648 if (mddev->ro) { 2649 if (force_change) 2650 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2651 return; 2652 } 2653 2654 repeat: 2655 if (mddev_is_clustered(mddev)) { 2656 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2657 force_change = 1; 2658 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2659 nospares = 1; 2660 ret = md_cluster_ops->metadata_update_start(mddev); 2661 /* Has someone else has updated the sb */ 2662 if (!does_sb_need_changing(mddev)) { 2663 if (ret == 0) 2664 md_cluster_ops->metadata_update_cancel(mddev); 2665 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2666 BIT(MD_SB_CHANGE_DEVS) | 2667 BIT(MD_SB_CHANGE_CLEAN)); 2668 return; 2669 } 2670 } 2671 2672 /* 2673 * First make sure individual recovery_offsets are correct 2674 * curr_resync_completed can only be used during recovery. 2675 * During reshape/resync it might use array-addresses rather 2676 * that device addresses. 2677 */ 2678 rdev_for_each(rdev, mddev) { 2679 if (rdev->raid_disk >= 0 && 2680 mddev->delta_disks >= 0 && 2681 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2682 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2683 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2684 !test_bit(Journal, &rdev->flags) && 2685 !test_bit(In_sync, &rdev->flags) && 2686 mddev->curr_resync_completed > rdev->recovery_offset) 2687 rdev->recovery_offset = mddev->curr_resync_completed; 2688 2689 } 2690 if (!mddev->persistent) { 2691 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2692 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2693 if (!mddev->external) { 2694 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2695 rdev_for_each(rdev, mddev) { 2696 if (rdev->badblocks.changed) { 2697 rdev->badblocks.changed = 0; 2698 ack_all_badblocks(&rdev->badblocks); 2699 md_error(mddev, rdev); 2700 } 2701 clear_bit(Blocked, &rdev->flags); 2702 clear_bit(BlockedBadBlocks, &rdev->flags); 2703 wake_up(&rdev->blocked_wait); 2704 } 2705 } 2706 wake_up(&mddev->sb_wait); 2707 return; 2708 } 2709 2710 spin_lock(&mddev->lock); 2711 2712 mddev->utime = ktime_get_real_seconds(); 2713 2714 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2715 force_change = 1; 2716 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2717 /* just a clean<-> dirty transition, possibly leave spares alone, 2718 * though if events isn't the right even/odd, we will have to do 2719 * spares after all 2720 */ 2721 nospares = 1; 2722 if (force_change) 2723 nospares = 0; 2724 if (mddev->degraded) 2725 /* If the array is degraded, then skipping spares is both 2726 * dangerous and fairly pointless. 2727 * Dangerous because a device that was removed from the array 2728 * might have a event_count that still looks up-to-date, 2729 * so it can be re-added without a resync. 2730 * Pointless because if there are any spares to skip, 2731 * then a recovery will happen and soon that array won't 2732 * be degraded any more and the spare can go back to sleep then. 2733 */ 2734 nospares = 0; 2735 2736 sync_req = mddev->in_sync; 2737 2738 /* If this is just a dirty<->clean transition, and the array is clean 2739 * and 'events' is odd, we can roll back to the previous clean state */ 2740 if (nospares 2741 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2742 && mddev->can_decrease_events 2743 && mddev->events != 1) { 2744 mddev->events--; 2745 mddev->can_decrease_events = 0; 2746 } else { 2747 /* otherwise we have to go forward and ... */ 2748 mddev->events ++; 2749 mddev->can_decrease_events = nospares; 2750 } 2751 2752 /* 2753 * This 64-bit counter should never wrap. 2754 * Either we are in around ~1 trillion A.C., assuming 2755 * 1 reboot per second, or we have a bug... 2756 */ 2757 WARN_ON(mddev->events == 0); 2758 2759 rdev_for_each(rdev, mddev) { 2760 if (rdev->badblocks.changed) 2761 any_badblocks_changed++; 2762 if (test_bit(Faulty, &rdev->flags)) 2763 set_bit(FaultRecorded, &rdev->flags); 2764 } 2765 2766 sync_sbs(mddev, nospares); 2767 spin_unlock(&mddev->lock); 2768 2769 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2770 mdname(mddev), mddev->in_sync); 2771 2772 if (mddev->queue) 2773 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2774 rewrite: 2775 md_bitmap_update_sb(mddev->bitmap); 2776 rdev_for_each(rdev, mddev) { 2777 char b[BDEVNAME_SIZE]; 2778 2779 if (rdev->sb_loaded != 1) 2780 continue; /* no noise on spare devices */ 2781 2782 if (!test_bit(Faulty, &rdev->flags)) { 2783 md_super_write(mddev,rdev, 2784 rdev->sb_start, rdev->sb_size, 2785 rdev->sb_page); 2786 pr_debug("md: (write) %s's sb offset: %llu\n", 2787 bdevname(rdev->bdev, b), 2788 (unsigned long long)rdev->sb_start); 2789 rdev->sb_events = mddev->events; 2790 if (rdev->badblocks.size) { 2791 md_super_write(mddev, rdev, 2792 rdev->badblocks.sector, 2793 rdev->badblocks.size << 9, 2794 rdev->bb_page); 2795 rdev->badblocks.size = 0; 2796 } 2797 2798 } else 2799 pr_debug("md: %s (skipping faulty)\n", 2800 bdevname(rdev->bdev, b)); 2801 2802 if (mddev->level == LEVEL_MULTIPATH) 2803 /* only need to write one superblock... */ 2804 break; 2805 } 2806 if (md_super_wait(mddev) < 0) 2807 goto rewrite; 2808 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2809 2810 if (mddev_is_clustered(mddev) && ret == 0) 2811 md_cluster_ops->metadata_update_finish(mddev); 2812 2813 if (mddev->in_sync != sync_req || 2814 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2815 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2816 /* have to write it out again */ 2817 goto repeat; 2818 wake_up(&mddev->sb_wait); 2819 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2820 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2821 2822 rdev_for_each(rdev, mddev) { 2823 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2824 clear_bit(Blocked, &rdev->flags); 2825 2826 if (any_badblocks_changed) 2827 ack_all_badblocks(&rdev->badblocks); 2828 clear_bit(BlockedBadBlocks, &rdev->flags); 2829 wake_up(&rdev->blocked_wait); 2830 } 2831 } 2832 EXPORT_SYMBOL(md_update_sb); 2833 2834 static int add_bound_rdev(struct md_rdev *rdev) 2835 { 2836 struct mddev *mddev = rdev->mddev; 2837 int err = 0; 2838 bool add_journal = test_bit(Journal, &rdev->flags); 2839 2840 if (!mddev->pers->hot_remove_disk || add_journal) { 2841 /* If there is hot_add_disk but no hot_remove_disk 2842 * then added disks for geometry changes, 2843 * and should be added immediately. 2844 */ 2845 super_types[mddev->major_version]. 2846 validate_super(mddev, rdev); 2847 if (add_journal) 2848 mddev_suspend(mddev); 2849 err = mddev->pers->hot_add_disk(mddev, rdev); 2850 if (add_journal) 2851 mddev_resume(mddev); 2852 if (err) { 2853 md_kick_rdev_from_array(rdev); 2854 return err; 2855 } 2856 } 2857 sysfs_notify_dirent_safe(rdev->sysfs_state); 2858 2859 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2860 if (mddev->degraded) 2861 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2862 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2863 md_new_event(mddev); 2864 md_wakeup_thread(mddev->thread); 2865 return 0; 2866 } 2867 2868 /* words written to sysfs files may, or may not, be \n terminated. 2869 * We want to accept with case. For this we use cmd_match. 2870 */ 2871 static int cmd_match(const char *cmd, const char *str) 2872 { 2873 /* See if cmd, written into a sysfs file, matches 2874 * str. They must either be the same, or cmd can 2875 * have a trailing newline 2876 */ 2877 while (*cmd && *str && *cmd == *str) { 2878 cmd++; 2879 str++; 2880 } 2881 if (*cmd == '\n') 2882 cmd++; 2883 if (*str || *cmd) 2884 return 0; 2885 return 1; 2886 } 2887 2888 struct rdev_sysfs_entry { 2889 struct attribute attr; 2890 ssize_t (*show)(struct md_rdev *, char *); 2891 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2892 }; 2893 2894 static ssize_t 2895 state_show(struct md_rdev *rdev, char *page) 2896 { 2897 char *sep = ","; 2898 size_t len = 0; 2899 unsigned long flags = READ_ONCE(rdev->flags); 2900 2901 if (test_bit(Faulty, &flags) || 2902 (!test_bit(ExternalBbl, &flags) && 2903 rdev->badblocks.unacked_exist)) 2904 len += sprintf(page+len, "faulty%s", sep); 2905 if (test_bit(In_sync, &flags)) 2906 len += sprintf(page+len, "in_sync%s", sep); 2907 if (test_bit(Journal, &flags)) 2908 len += sprintf(page+len, "journal%s", sep); 2909 if (test_bit(WriteMostly, &flags)) 2910 len += sprintf(page+len, "write_mostly%s", sep); 2911 if (test_bit(Blocked, &flags) || 2912 (rdev->badblocks.unacked_exist 2913 && !test_bit(Faulty, &flags))) 2914 len += sprintf(page+len, "blocked%s", sep); 2915 if (!test_bit(Faulty, &flags) && 2916 !test_bit(Journal, &flags) && 2917 !test_bit(In_sync, &flags)) 2918 len += sprintf(page+len, "spare%s", sep); 2919 if (test_bit(WriteErrorSeen, &flags)) 2920 len += sprintf(page+len, "write_error%s", sep); 2921 if (test_bit(WantReplacement, &flags)) 2922 len += sprintf(page+len, "want_replacement%s", sep); 2923 if (test_bit(Replacement, &flags)) 2924 len += sprintf(page+len, "replacement%s", sep); 2925 if (test_bit(ExternalBbl, &flags)) 2926 len += sprintf(page+len, "external_bbl%s", sep); 2927 if (test_bit(FailFast, &flags)) 2928 len += sprintf(page+len, "failfast%s", sep); 2929 2930 if (len) 2931 len -= strlen(sep); 2932 2933 return len+sprintf(page+len, "\n"); 2934 } 2935 2936 static ssize_t 2937 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2938 { 2939 /* can write 2940 * faulty - simulates an error 2941 * remove - disconnects the device 2942 * writemostly - sets write_mostly 2943 * -writemostly - clears write_mostly 2944 * blocked - sets the Blocked flags 2945 * -blocked - clears the Blocked and possibly simulates an error 2946 * insync - sets Insync providing device isn't active 2947 * -insync - clear Insync for a device with a slot assigned, 2948 * so that it gets rebuilt based on bitmap 2949 * write_error - sets WriteErrorSeen 2950 * -write_error - clears WriteErrorSeen 2951 * {,-}failfast - set/clear FailFast 2952 */ 2953 int err = -EINVAL; 2954 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2955 md_error(rdev->mddev, rdev); 2956 if (test_bit(Faulty, &rdev->flags)) 2957 err = 0; 2958 else 2959 err = -EBUSY; 2960 } else if (cmd_match(buf, "remove")) { 2961 if (rdev->mddev->pers) { 2962 clear_bit(Blocked, &rdev->flags); 2963 remove_and_add_spares(rdev->mddev, rdev); 2964 } 2965 if (rdev->raid_disk >= 0) 2966 err = -EBUSY; 2967 else { 2968 struct mddev *mddev = rdev->mddev; 2969 err = 0; 2970 if (mddev_is_clustered(mddev)) 2971 err = md_cluster_ops->remove_disk(mddev, rdev); 2972 2973 if (err == 0) { 2974 md_kick_rdev_from_array(rdev); 2975 if (mddev->pers) { 2976 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2977 md_wakeup_thread(mddev->thread); 2978 } 2979 md_new_event(mddev); 2980 } 2981 } 2982 } else if (cmd_match(buf, "writemostly")) { 2983 set_bit(WriteMostly, &rdev->flags); 2984 mddev_create_serial_pool(rdev->mddev, rdev, false); 2985 err = 0; 2986 } else if (cmd_match(buf, "-writemostly")) { 2987 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2988 clear_bit(WriteMostly, &rdev->flags); 2989 err = 0; 2990 } else if (cmd_match(buf, "blocked")) { 2991 set_bit(Blocked, &rdev->flags); 2992 err = 0; 2993 } else if (cmd_match(buf, "-blocked")) { 2994 if (!test_bit(Faulty, &rdev->flags) && 2995 !test_bit(ExternalBbl, &rdev->flags) && 2996 rdev->badblocks.unacked_exist) { 2997 /* metadata handler doesn't understand badblocks, 2998 * so we need to fail the device 2999 */ 3000 md_error(rdev->mddev, rdev); 3001 } 3002 clear_bit(Blocked, &rdev->flags); 3003 clear_bit(BlockedBadBlocks, &rdev->flags); 3004 wake_up(&rdev->blocked_wait); 3005 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3006 md_wakeup_thread(rdev->mddev->thread); 3007 3008 err = 0; 3009 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3010 set_bit(In_sync, &rdev->flags); 3011 err = 0; 3012 } else if (cmd_match(buf, "failfast")) { 3013 set_bit(FailFast, &rdev->flags); 3014 err = 0; 3015 } else if (cmd_match(buf, "-failfast")) { 3016 clear_bit(FailFast, &rdev->flags); 3017 err = 0; 3018 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3019 !test_bit(Journal, &rdev->flags)) { 3020 if (rdev->mddev->pers == NULL) { 3021 clear_bit(In_sync, &rdev->flags); 3022 rdev->saved_raid_disk = rdev->raid_disk; 3023 rdev->raid_disk = -1; 3024 err = 0; 3025 } 3026 } else if (cmd_match(buf, "write_error")) { 3027 set_bit(WriteErrorSeen, &rdev->flags); 3028 err = 0; 3029 } else if (cmd_match(buf, "-write_error")) { 3030 clear_bit(WriteErrorSeen, &rdev->flags); 3031 err = 0; 3032 } else if (cmd_match(buf, "want_replacement")) { 3033 /* Any non-spare device that is not a replacement can 3034 * become want_replacement at any time, but we then need to 3035 * check if recovery is needed. 3036 */ 3037 if (rdev->raid_disk >= 0 && 3038 !test_bit(Journal, &rdev->flags) && 3039 !test_bit(Replacement, &rdev->flags)) 3040 set_bit(WantReplacement, &rdev->flags); 3041 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3042 md_wakeup_thread(rdev->mddev->thread); 3043 err = 0; 3044 } else if (cmd_match(buf, "-want_replacement")) { 3045 /* Clearing 'want_replacement' is always allowed. 3046 * Once replacements starts it is too late though. 3047 */ 3048 err = 0; 3049 clear_bit(WantReplacement, &rdev->flags); 3050 } else if (cmd_match(buf, "replacement")) { 3051 /* Can only set a device as a replacement when array has not 3052 * yet been started. Once running, replacement is automatic 3053 * from spares, or by assigning 'slot'. 3054 */ 3055 if (rdev->mddev->pers) 3056 err = -EBUSY; 3057 else { 3058 set_bit(Replacement, &rdev->flags); 3059 err = 0; 3060 } 3061 } else if (cmd_match(buf, "-replacement")) { 3062 /* Similarly, can only clear Replacement before start */ 3063 if (rdev->mddev->pers) 3064 err = -EBUSY; 3065 else { 3066 clear_bit(Replacement, &rdev->flags); 3067 err = 0; 3068 } 3069 } else if (cmd_match(buf, "re-add")) { 3070 if (!rdev->mddev->pers) 3071 err = -EINVAL; 3072 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3073 rdev->saved_raid_disk >= 0) { 3074 /* clear_bit is performed _after_ all the devices 3075 * have their local Faulty bit cleared. If any writes 3076 * happen in the meantime in the local node, they 3077 * will land in the local bitmap, which will be synced 3078 * by this node eventually 3079 */ 3080 if (!mddev_is_clustered(rdev->mddev) || 3081 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3082 clear_bit(Faulty, &rdev->flags); 3083 err = add_bound_rdev(rdev); 3084 } 3085 } else 3086 err = -EBUSY; 3087 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3088 set_bit(ExternalBbl, &rdev->flags); 3089 rdev->badblocks.shift = 0; 3090 err = 0; 3091 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3092 clear_bit(ExternalBbl, &rdev->flags); 3093 err = 0; 3094 } 3095 if (!err) 3096 sysfs_notify_dirent_safe(rdev->sysfs_state); 3097 return err ? err : len; 3098 } 3099 static struct rdev_sysfs_entry rdev_state = 3100 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3101 3102 static ssize_t 3103 errors_show(struct md_rdev *rdev, char *page) 3104 { 3105 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3106 } 3107 3108 static ssize_t 3109 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3110 { 3111 unsigned int n; 3112 int rv; 3113 3114 rv = kstrtouint(buf, 10, &n); 3115 if (rv < 0) 3116 return rv; 3117 atomic_set(&rdev->corrected_errors, n); 3118 return len; 3119 } 3120 static struct rdev_sysfs_entry rdev_errors = 3121 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3122 3123 static ssize_t 3124 slot_show(struct md_rdev *rdev, char *page) 3125 { 3126 if (test_bit(Journal, &rdev->flags)) 3127 return sprintf(page, "journal\n"); 3128 else if (rdev->raid_disk < 0) 3129 return sprintf(page, "none\n"); 3130 else 3131 return sprintf(page, "%d\n", rdev->raid_disk); 3132 } 3133 3134 static ssize_t 3135 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3136 { 3137 int slot; 3138 int err; 3139 3140 if (test_bit(Journal, &rdev->flags)) 3141 return -EBUSY; 3142 if (strncmp(buf, "none", 4)==0) 3143 slot = -1; 3144 else { 3145 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3146 if (err < 0) 3147 return err; 3148 } 3149 if (rdev->mddev->pers && slot == -1) { 3150 /* Setting 'slot' on an active array requires also 3151 * updating the 'rd%d' link, and communicating 3152 * with the personality with ->hot_*_disk. 3153 * For now we only support removing 3154 * failed/spare devices. This normally happens automatically, 3155 * but not when the metadata is externally managed. 3156 */ 3157 if (rdev->raid_disk == -1) 3158 return -EEXIST; 3159 /* personality does all needed checks */ 3160 if (rdev->mddev->pers->hot_remove_disk == NULL) 3161 return -EINVAL; 3162 clear_bit(Blocked, &rdev->flags); 3163 remove_and_add_spares(rdev->mddev, rdev); 3164 if (rdev->raid_disk >= 0) 3165 return -EBUSY; 3166 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3167 md_wakeup_thread(rdev->mddev->thread); 3168 } else if (rdev->mddev->pers) { 3169 /* Activating a spare .. or possibly reactivating 3170 * if we ever get bitmaps working here. 3171 */ 3172 int err; 3173 3174 if (rdev->raid_disk != -1) 3175 return -EBUSY; 3176 3177 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3178 return -EBUSY; 3179 3180 if (rdev->mddev->pers->hot_add_disk == NULL) 3181 return -EINVAL; 3182 3183 if (slot >= rdev->mddev->raid_disks && 3184 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3185 return -ENOSPC; 3186 3187 rdev->raid_disk = slot; 3188 if (test_bit(In_sync, &rdev->flags)) 3189 rdev->saved_raid_disk = slot; 3190 else 3191 rdev->saved_raid_disk = -1; 3192 clear_bit(In_sync, &rdev->flags); 3193 clear_bit(Bitmap_sync, &rdev->flags); 3194 err = rdev->mddev->pers-> 3195 hot_add_disk(rdev->mddev, rdev); 3196 if (err) { 3197 rdev->raid_disk = -1; 3198 return err; 3199 } else 3200 sysfs_notify_dirent_safe(rdev->sysfs_state); 3201 if (sysfs_link_rdev(rdev->mddev, rdev)) 3202 /* failure here is OK */; 3203 /* don't wakeup anyone, leave that to userspace. */ 3204 } else { 3205 if (slot >= rdev->mddev->raid_disks && 3206 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3207 return -ENOSPC; 3208 rdev->raid_disk = slot; 3209 /* assume it is working */ 3210 clear_bit(Faulty, &rdev->flags); 3211 clear_bit(WriteMostly, &rdev->flags); 3212 set_bit(In_sync, &rdev->flags); 3213 sysfs_notify_dirent_safe(rdev->sysfs_state); 3214 } 3215 return len; 3216 } 3217 3218 static struct rdev_sysfs_entry rdev_slot = 3219 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3220 3221 static ssize_t 3222 offset_show(struct md_rdev *rdev, char *page) 3223 { 3224 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3225 } 3226 3227 static ssize_t 3228 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3229 { 3230 unsigned long long offset; 3231 if (kstrtoull(buf, 10, &offset) < 0) 3232 return -EINVAL; 3233 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3234 return -EBUSY; 3235 if (rdev->sectors && rdev->mddev->external) 3236 /* Must set offset before size, so overlap checks 3237 * can be sane */ 3238 return -EBUSY; 3239 rdev->data_offset = offset; 3240 rdev->new_data_offset = offset; 3241 return len; 3242 } 3243 3244 static struct rdev_sysfs_entry rdev_offset = 3245 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3246 3247 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3248 { 3249 return sprintf(page, "%llu\n", 3250 (unsigned long long)rdev->new_data_offset); 3251 } 3252 3253 static ssize_t new_offset_store(struct md_rdev *rdev, 3254 const char *buf, size_t len) 3255 { 3256 unsigned long long new_offset; 3257 struct mddev *mddev = rdev->mddev; 3258 3259 if (kstrtoull(buf, 10, &new_offset) < 0) 3260 return -EINVAL; 3261 3262 if (mddev->sync_thread || 3263 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3264 return -EBUSY; 3265 if (new_offset == rdev->data_offset) 3266 /* reset is always permitted */ 3267 ; 3268 else if (new_offset > rdev->data_offset) { 3269 /* must not push array size beyond rdev_sectors */ 3270 if (new_offset - rdev->data_offset 3271 + mddev->dev_sectors > rdev->sectors) 3272 return -E2BIG; 3273 } 3274 /* Metadata worries about other space details. */ 3275 3276 /* decreasing the offset is inconsistent with a backwards 3277 * reshape. 3278 */ 3279 if (new_offset < rdev->data_offset && 3280 mddev->reshape_backwards) 3281 return -EINVAL; 3282 /* Increasing offset is inconsistent with forwards 3283 * reshape. reshape_direction should be set to 3284 * 'backwards' first. 3285 */ 3286 if (new_offset > rdev->data_offset && 3287 !mddev->reshape_backwards) 3288 return -EINVAL; 3289 3290 if (mddev->pers && mddev->persistent && 3291 !super_types[mddev->major_version] 3292 .allow_new_offset(rdev, new_offset)) 3293 return -E2BIG; 3294 rdev->new_data_offset = new_offset; 3295 if (new_offset > rdev->data_offset) 3296 mddev->reshape_backwards = 1; 3297 else if (new_offset < rdev->data_offset) 3298 mddev->reshape_backwards = 0; 3299 3300 return len; 3301 } 3302 static struct rdev_sysfs_entry rdev_new_offset = 3303 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3304 3305 static ssize_t 3306 rdev_size_show(struct md_rdev *rdev, char *page) 3307 { 3308 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3309 } 3310 3311 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3312 { 3313 /* check if two start/length pairs overlap */ 3314 if (s1+l1 <= s2) 3315 return 0; 3316 if (s2+l2 <= s1) 3317 return 0; 3318 return 1; 3319 } 3320 3321 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3322 { 3323 unsigned long long blocks; 3324 sector_t new; 3325 3326 if (kstrtoull(buf, 10, &blocks) < 0) 3327 return -EINVAL; 3328 3329 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3330 return -EINVAL; /* sector conversion overflow */ 3331 3332 new = blocks * 2; 3333 if (new != blocks * 2) 3334 return -EINVAL; /* unsigned long long to sector_t overflow */ 3335 3336 *sectors = new; 3337 return 0; 3338 } 3339 3340 static ssize_t 3341 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3342 { 3343 struct mddev *my_mddev = rdev->mddev; 3344 sector_t oldsectors = rdev->sectors; 3345 sector_t sectors; 3346 3347 if (test_bit(Journal, &rdev->flags)) 3348 return -EBUSY; 3349 if (strict_blocks_to_sectors(buf, §ors) < 0) 3350 return -EINVAL; 3351 if (rdev->data_offset != rdev->new_data_offset) 3352 return -EINVAL; /* too confusing */ 3353 if (my_mddev->pers && rdev->raid_disk >= 0) { 3354 if (my_mddev->persistent) { 3355 sectors = super_types[my_mddev->major_version]. 3356 rdev_size_change(rdev, sectors); 3357 if (!sectors) 3358 return -EBUSY; 3359 } else if (!sectors) 3360 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3361 rdev->data_offset; 3362 if (!my_mddev->pers->resize) 3363 /* Cannot change size for RAID0 or Linear etc */ 3364 return -EINVAL; 3365 } 3366 if (sectors < my_mddev->dev_sectors) 3367 return -EINVAL; /* component must fit device */ 3368 3369 rdev->sectors = sectors; 3370 if (sectors > oldsectors && my_mddev->external) { 3371 /* Need to check that all other rdevs with the same 3372 * ->bdev do not overlap. 'rcu' is sufficient to walk 3373 * the rdev lists safely. 3374 * This check does not provide a hard guarantee, it 3375 * just helps avoid dangerous mistakes. 3376 */ 3377 struct mddev *mddev; 3378 int overlap = 0; 3379 struct list_head *tmp; 3380 3381 rcu_read_lock(); 3382 for_each_mddev(mddev, tmp) { 3383 struct md_rdev *rdev2; 3384 3385 rdev_for_each(rdev2, mddev) 3386 if (rdev->bdev == rdev2->bdev && 3387 rdev != rdev2 && 3388 overlaps(rdev->data_offset, rdev->sectors, 3389 rdev2->data_offset, 3390 rdev2->sectors)) { 3391 overlap = 1; 3392 break; 3393 } 3394 if (overlap) { 3395 mddev_put(mddev); 3396 break; 3397 } 3398 } 3399 rcu_read_unlock(); 3400 if (overlap) { 3401 /* Someone else could have slipped in a size 3402 * change here, but doing so is just silly. 3403 * We put oldsectors back because we *know* it is 3404 * safe, and trust userspace not to race with 3405 * itself 3406 */ 3407 rdev->sectors = oldsectors; 3408 return -EBUSY; 3409 } 3410 } 3411 return len; 3412 } 3413 3414 static struct rdev_sysfs_entry rdev_size = 3415 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3416 3417 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3418 { 3419 unsigned long long recovery_start = rdev->recovery_offset; 3420 3421 if (test_bit(In_sync, &rdev->flags) || 3422 recovery_start == MaxSector) 3423 return sprintf(page, "none\n"); 3424 3425 return sprintf(page, "%llu\n", recovery_start); 3426 } 3427 3428 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3429 { 3430 unsigned long long recovery_start; 3431 3432 if (cmd_match(buf, "none")) 3433 recovery_start = MaxSector; 3434 else if (kstrtoull(buf, 10, &recovery_start)) 3435 return -EINVAL; 3436 3437 if (rdev->mddev->pers && 3438 rdev->raid_disk >= 0) 3439 return -EBUSY; 3440 3441 rdev->recovery_offset = recovery_start; 3442 if (recovery_start == MaxSector) 3443 set_bit(In_sync, &rdev->flags); 3444 else 3445 clear_bit(In_sync, &rdev->flags); 3446 return len; 3447 } 3448 3449 static struct rdev_sysfs_entry rdev_recovery_start = 3450 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3451 3452 /* sysfs access to bad-blocks list. 3453 * We present two files. 3454 * 'bad-blocks' lists sector numbers and lengths of ranges that 3455 * are recorded as bad. The list is truncated to fit within 3456 * the one-page limit of sysfs. 3457 * Writing "sector length" to this file adds an acknowledged 3458 * bad block list. 3459 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3460 * been acknowledged. Writing to this file adds bad blocks 3461 * without acknowledging them. This is largely for testing. 3462 */ 3463 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3464 { 3465 return badblocks_show(&rdev->badblocks, page, 0); 3466 } 3467 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3468 { 3469 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3470 /* Maybe that ack was all we needed */ 3471 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3472 wake_up(&rdev->blocked_wait); 3473 return rv; 3474 } 3475 static struct rdev_sysfs_entry rdev_bad_blocks = 3476 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3477 3478 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3479 { 3480 return badblocks_show(&rdev->badblocks, page, 1); 3481 } 3482 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3483 { 3484 return badblocks_store(&rdev->badblocks, page, len, 1); 3485 } 3486 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3487 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3488 3489 static ssize_t 3490 ppl_sector_show(struct md_rdev *rdev, char *page) 3491 { 3492 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3493 } 3494 3495 static ssize_t 3496 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3497 { 3498 unsigned long long sector; 3499 3500 if (kstrtoull(buf, 10, §or) < 0) 3501 return -EINVAL; 3502 if (sector != (sector_t)sector) 3503 return -EINVAL; 3504 3505 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3506 rdev->raid_disk >= 0) 3507 return -EBUSY; 3508 3509 if (rdev->mddev->persistent) { 3510 if (rdev->mddev->major_version == 0) 3511 return -EINVAL; 3512 if ((sector > rdev->sb_start && 3513 sector - rdev->sb_start > S16_MAX) || 3514 (sector < rdev->sb_start && 3515 rdev->sb_start - sector > -S16_MIN)) 3516 return -EINVAL; 3517 rdev->ppl.offset = sector - rdev->sb_start; 3518 } else if (!rdev->mddev->external) { 3519 return -EBUSY; 3520 } 3521 rdev->ppl.sector = sector; 3522 return len; 3523 } 3524 3525 static struct rdev_sysfs_entry rdev_ppl_sector = 3526 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3527 3528 static ssize_t 3529 ppl_size_show(struct md_rdev *rdev, char *page) 3530 { 3531 return sprintf(page, "%u\n", rdev->ppl.size); 3532 } 3533 3534 static ssize_t 3535 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3536 { 3537 unsigned int size; 3538 3539 if (kstrtouint(buf, 10, &size) < 0) 3540 return -EINVAL; 3541 3542 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3543 rdev->raid_disk >= 0) 3544 return -EBUSY; 3545 3546 if (rdev->mddev->persistent) { 3547 if (rdev->mddev->major_version == 0) 3548 return -EINVAL; 3549 if (size > U16_MAX) 3550 return -EINVAL; 3551 } else if (!rdev->mddev->external) { 3552 return -EBUSY; 3553 } 3554 rdev->ppl.size = size; 3555 return len; 3556 } 3557 3558 static struct rdev_sysfs_entry rdev_ppl_size = 3559 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3560 3561 static struct attribute *rdev_default_attrs[] = { 3562 &rdev_state.attr, 3563 &rdev_errors.attr, 3564 &rdev_slot.attr, 3565 &rdev_offset.attr, 3566 &rdev_new_offset.attr, 3567 &rdev_size.attr, 3568 &rdev_recovery_start.attr, 3569 &rdev_bad_blocks.attr, 3570 &rdev_unack_bad_blocks.attr, 3571 &rdev_ppl_sector.attr, 3572 &rdev_ppl_size.attr, 3573 NULL, 3574 }; 3575 static ssize_t 3576 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3577 { 3578 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3579 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3580 3581 if (!entry->show) 3582 return -EIO; 3583 if (!rdev->mddev) 3584 return -ENODEV; 3585 return entry->show(rdev, page); 3586 } 3587 3588 static ssize_t 3589 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3590 const char *page, size_t length) 3591 { 3592 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3593 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3594 ssize_t rv; 3595 struct mddev *mddev = rdev->mddev; 3596 3597 if (!entry->store) 3598 return -EIO; 3599 if (!capable(CAP_SYS_ADMIN)) 3600 return -EACCES; 3601 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3602 if (!rv) { 3603 if (rdev->mddev == NULL) 3604 rv = -ENODEV; 3605 else 3606 rv = entry->store(rdev, page, length); 3607 mddev_unlock(mddev); 3608 } 3609 return rv; 3610 } 3611 3612 static void rdev_free(struct kobject *ko) 3613 { 3614 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3615 kfree(rdev); 3616 } 3617 static const struct sysfs_ops rdev_sysfs_ops = { 3618 .show = rdev_attr_show, 3619 .store = rdev_attr_store, 3620 }; 3621 static struct kobj_type rdev_ktype = { 3622 .release = rdev_free, 3623 .sysfs_ops = &rdev_sysfs_ops, 3624 .default_attrs = rdev_default_attrs, 3625 }; 3626 3627 int md_rdev_init(struct md_rdev *rdev) 3628 { 3629 rdev->desc_nr = -1; 3630 rdev->saved_raid_disk = -1; 3631 rdev->raid_disk = -1; 3632 rdev->flags = 0; 3633 rdev->data_offset = 0; 3634 rdev->new_data_offset = 0; 3635 rdev->sb_events = 0; 3636 rdev->last_read_error = 0; 3637 rdev->sb_loaded = 0; 3638 rdev->bb_page = NULL; 3639 atomic_set(&rdev->nr_pending, 0); 3640 atomic_set(&rdev->read_errors, 0); 3641 atomic_set(&rdev->corrected_errors, 0); 3642 3643 INIT_LIST_HEAD(&rdev->same_set); 3644 init_waitqueue_head(&rdev->blocked_wait); 3645 3646 /* Add space to store bad block list. 3647 * This reserves the space even on arrays where it cannot 3648 * be used - I wonder if that matters 3649 */ 3650 return badblocks_init(&rdev->badblocks, 0); 3651 } 3652 EXPORT_SYMBOL_GPL(md_rdev_init); 3653 /* 3654 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3655 * 3656 * mark the device faulty if: 3657 * 3658 * - the device is nonexistent (zero size) 3659 * - the device has no valid superblock 3660 * 3661 * a faulty rdev _never_ has rdev->sb set. 3662 */ 3663 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3664 { 3665 char b[BDEVNAME_SIZE]; 3666 int err; 3667 struct md_rdev *rdev; 3668 sector_t size; 3669 3670 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3671 if (!rdev) 3672 return ERR_PTR(-ENOMEM); 3673 3674 err = md_rdev_init(rdev); 3675 if (err) 3676 goto abort_free; 3677 err = alloc_disk_sb(rdev); 3678 if (err) 3679 goto abort_free; 3680 3681 err = lock_rdev(rdev, newdev, super_format == -2); 3682 if (err) 3683 goto abort_free; 3684 3685 kobject_init(&rdev->kobj, &rdev_ktype); 3686 3687 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3688 if (!size) { 3689 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3690 bdevname(rdev->bdev,b)); 3691 err = -EINVAL; 3692 goto abort_free; 3693 } 3694 3695 if (super_format >= 0) { 3696 err = super_types[super_format]. 3697 load_super(rdev, NULL, super_minor); 3698 if (err == -EINVAL) { 3699 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3700 bdevname(rdev->bdev,b), 3701 super_format, super_minor); 3702 goto abort_free; 3703 } 3704 if (err < 0) { 3705 pr_warn("md: could not read %s's sb, not importing!\n", 3706 bdevname(rdev->bdev,b)); 3707 goto abort_free; 3708 } 3709 } 3710 3711 return rdev; 3712 3713 abort_free: 3714 if (rdev->bdev) 3715 unlock_rdev(rdev); 3716 md_rdev_clear(rdev); 3717 kfree(rdev); 3718 return ERR_PTR(err); 3719 } 3720 3721 /* 3722 * Check a full RAID array for plausibility 3723 */ 3724 3725 static int analyze_sbs(struct mddev *mddev) 3726 { 3727 int i; 3728 struct md_rdev *rdev, *freshest, *tmp; 3729 char b[BDEVNAME_SIZE]; 3730 3731 freshest = NULL; 3732 rdev_for_each_safe(rdev, tmp, mddev) 3733 switch (super_types[mddev->major_version]. 3734 load_super(rdev, freshest, mddev->minor_version)) { 3735 case 1: 3736 freshest = rdev; 3737 break; 3738 case 0: 3739 break; 3740 default: 3741 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3742 bdevname(rdev->bdev,b)); 3743 md_kick_rdev_from_array(rdev); 3744 } 3745 3746 /* Cannot find a valid fresh disk */ 3747 if (!freshest) { 3748 pr_warn("md: cannot find a valid disk\n"); 3749 return -EINVAL; 3750 } 3751 3752 super_types[mddev->major_version]. 3753 validate_super(mddev, freshest); 3754 3755 i = 0; 3756 rdev_for_each_safe(rdev, tmp, mddev) { 3757 if (mddev->max_disks && 3758 (rdev->desc_nr >= mddev->max_disks || 3759 i > mddev->max_disks)) { 3760 pr_warn("md: %s: %s: only %d devices permitted\n", 3761 mdname(mddev), bdevname(rdev->bdev, b), 3762 mddev->max_disks); 3763 md_kick_rdev_from_array(rdev); 3764 continue; 3765 } 3766 if (rdev != freshest) { 3767 if (super_types[mddev->major_version]. 3768 validate_super(mddev, rdev)) { 3769 pr_warn("md: kicking non-fresh %s from array!\n", 3770 bdevname(rdev->bdev,b)); 3771 md_kick_rdev_from_array(rdev); 3772 continue; 3773 } 3774 } 3775 if (mddev->level == LEVEL_MULTIPATH) { 3776 rdev->desc_nr = i++; 3777 rdev->raid_disk = rdev->desc_nr; 3778 set_bit(In_sync, &rdev->flags); 3779 } else if (rdev->raid_disk >= 3780 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3781 !test_bit(Journal, &rdev->flags)) { 3782 rdev->raid_disk = -1; 3783 clear_bit(In_sync, &rdev->flags); 3784 } 3785 } 3786 3787 return 0; 3788 } 3789 3790 /* Read a fixed-point number. 3791 * Numbers in sysfs attributes should be in "standard" units where 3792 * possible, so time should be in seconds. 3793 * However we internally use a a much smaller unit such as 3794 * milliseconds or jiffies. 3795 * This function takes a decimal number with a possible fractional 3796 * component, and produces an integer which is the result of 3797 * multiplying that number by 10^'scale'. 3798 * all without any floating-point arithmetic. 3799 */ 3800 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3801 { 3802 unsigned long result = 0; 3803 long decimals = -1; 3804 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3805 if (*cp == '.') 3806 decimals = 0; 3807 else if (decimals < scale) { 3808 unsigned int value; 3809 value = *cp - '0'; 3810 result = result * 10 + value; 3811 if (decimals >= 0) 3812 decimals++; 3813 } 3814 cp++; 3815 } 3816 if (*cp == '\n') 3817 cp++; 3818 if (*cp) 3819 return -EINVAL; 3820 if (decimals < 0) 3821 decimals = 0; 3822 *res = result * int_pow(10, scale - decimals); 3823 return 0; 3824 } 3825 3826 static ssize_t 3827 safe_delay_show(struct mddev *mddev, char *page) 3828 { 3829 int msec = (mddev->safemode_delay*1000)/HZ; 3830 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3831 } 3832 static ssize_t 3833 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3834 { 3835 unsigned long msec; 3836 3837 if (mddev_is_clustered(mddev)) { 3838 pr_warn("md: Safemode is disabled for clustered mode\n"); 3839 return -EINVAL; 3840 } 3841 3842 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3843 return -EINVAL; 3844 if (msec == 0) 3845 mddev->safemode_delay = 0; 3846 else { 3847 unsigned long old_delay = mddev->safemode_delay; 3848 unsigned long new_delay = (msec*HZ)/1000; 3849 3850 if (new_delay == 0) 3851 new_delay = 1; 3852 mddev->safemode_delay = new_delay; 3853 if (new_delay < old_delay || old_delay == 0) 3854 mod_timer(&mddev->safemode_timer, jiffies+1); 3855 } 3856 return len; 3857 } 3858 static struct md_sysfs_entry md_safe_delay = 3859 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3860 3861 static ssize_t 3862 level_show(struct mddev *mddev, char *page) 3863 { 3864 struct md_personality *p; 3865 int ret; 3866 spin_lock(&mddev->lock); 3867 p = mddev->pers; 3868 if (p) 3869 ret = sprintf(page, "%s\n", p->name); 3870 else if (mddev->clevel[0]) 3871 ret = sprintf(page, "%s\n", mddev->clevel); 3872 else if (mddev->level != LEVEL_NONE) 3873 ret = sprintf(page, "%d\n", mddev->level); 3874 else 3875 ret = 0; 3876 spin_unlock(&mddev->lock); 3877 return ret; 3878 } 3879 3880 static ssize_t 3881 level_store(struct mddev *mddev, const char *buf, size_t len) 3882 { 3883 char clevel[16]; 3884 ssize_t rv; 3885 size_t slen = len; 3886 struct md_personality *pers, *oldpers; 3887 long level; 3888 void *priv, *oldpriv; 3889 struct md_rdev *rdev; 3890 3891 if (slen == 0 || slen >= sizeof(clevel)) 3892 return -EINVAL; 3893 3894 rv = mddev_lock(mddev); 3895 if (rv) 3896 return rv; 3897 3898 if (mddev->pers == NULL) { 3899 strncpy(mddev->clevel, buf, slen); 3900 if (mddev->clevel[slen-1] == '\n') 3901 slen--; 3902 mddev->clevel[slen] = 0; 3903 mddev->level = LEVEL_NONE; 3904 rv = len; 3905 goto out_unlock; 3906 } 3907 rv = -EROFS; 3908 if (mddev->ro) 3909 goto out_unlock; 3910 3911 /* request to change the personality. Need to ensure: 3912 * - array is not engaged in resync/recovery/reshape 3913 * - old personality can be suspended 3914 * - new personality will access other array. 3915 */ 3916 3917 rv = -EBUSY; 3918 if (mddev->sync_thread || 3919 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3920 mddev->reshape_position != MaxSector || 3921 mddev->sysfs_active) 3922 goto out_unlock; 3923 3924 rv = -EINVAL; 3925 if (!mddev->pers->quiesce) { 3926 pr_warn("md: %s: %s does not support online personality change\n", 3927 mdname(mddev), mddev->pers->name); 3928 goto out_unlock; 3929 } 3930 3931 /* Now find the new personality */ 3932 strncpy(clevel, buf, slen); 3933 if (clevel[slen-1] == '\n') 3934 slen--; 3935 clevel[slen] = 0; 3936 if (kstrtol(clevel, 10, &level)) 3937 level = LEVEL_NONE; 3938 3939 if (request_module("md-%s", clevel) != 0) 3940 request_module("md-level-%s", clevel); 3941 spin_lock(&pers_lock); 3942 pers = find_pers(level, clevel); 3943 if (!pers || !try_module_get(pers->owner)) { 3944 spin_unlock(&pers_lock); 3945 pr_warn("md: personality %s not loaded\n", clevel); 3946 rv = -EINVAL; 3947 goto out_unlock; 3948 } 3949 spin_unlock(&pers_lock); 3950 3951 if (pers == mddev->pers) { 3952 /* Nothing to do! */ 3953 module_put(pers->owner); 3954 rv = len; 3955 goto out_unlock; 3956 } 3957 if (!pers->takeover) { 3958 module_put(pers->owner); 3959 pr_warn("md: %s: %s does not support personality takeover\n", 3960 mdname(mddev), clevel); 3961 rv = -EINVAL; 3962 goto out_unlock; 3963 } 3964 3965 rdev_for_each(rdev, mddev) 3966 rdev->new_raid_disk = rdev->raid_disk; 3967 3968 /* ->takeover must set new_* and/or delta_disks 3969 * if it succeeds, and may set them when it fails. 3970 */ 3971 priv = pers->takeover(mddev); 3972 if (IS_ERR(priv)) { 3973 mddev->new_level = mddev->level; 3974 mddev->new_layout = mddev->layout; 3975 mddev->new_chunk_sectors = mddev->chunk_sectors; 3976 mddev->raid_disks -= mddev->delta_disks; 3977 mddev->delta_disks = 0; 3978 mddev->reshape_backwards = 0; 3979 module_put(pers->owner); 3980 pr_warn("md: %s: %s would not accept array\n", 3981 mdname(mddev), clevel); 3982 rv = PTR_ERR(priv); 3983 goto out_unlock; 3984 } 3985 3986 /* Looks like we have a winner */ 3987 mddev_suspend(mddev); 3988 mddev_detach(mddev); 3989 3990 spin_lock(&mddev->lock); 3991 oldpers = mddev->pers; 3992 oldpriv = mddev->private; 3993 mddev->pers = pers; 3994 mddev->private = priv; 3995 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3996 mddev->level = mddev->new_level; 3997 mddev->layout = mddev->new_layout; 3998 mddev->chunk_sectors = mddev->new_chunk_sectors; 3999 mddev->delta_disks = 0; 4000 mddev->reshape_backwards = 0; 4001 mddev->degraded = 0; 4002 spin_unlock(&mddev->lock); 4003 4004 if (oldpers->sync_request == NULL && 4005 mddev->external) { 4006 /* We are converting from a no-redundancy array 4007 * to a redundancy array and metadata is managed 4008 * externally so we need to be sure that writes 4009 * won't block due to a need to transition 4010 * clean->dirty 4011 * until external management is started. 4012 */ 4013 mddev->in_sync = 0; 4014 mddev->safemode_delay = 0; 4015 mddev->safemode = 0; 4016 } 4017 4018 oldpers->free(mddev, oldpriv); 4019 4020 if (oldpers->sync_request == NULL && 4021 pers->sync_request != NULL) { 4022 /* need to add the md_redundancy_group */ 4023 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4024 pr_warn("md: cannot register extra attributes for %s\n", 4025 mdname(mddev)); 4026 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4027 } 4028 if (oldpers->sync_request != NULL && 4029 pers->sync_request == NULL) { 4030 /* need to remove the md_redundancy_group */ 4031 if (mddev->to_remove == NULL) 4032 mddev->to_remove = &md_redundancy_group; 4033 } 4034 4035 module_put(oldpers->owner); 4036 4037 rdev_for_each(rdev, mddev) { 4038 if (rdev->raid_disk < 0) 4039 continue; 4040 if (rdev->new_raid_disk >= mddev->raid_disks) 4041 rdev->new_raid_disk = -1; 4042 if (rdev->new_raid_disk == rdev->raid_disk) 4043 continue; 4044 sysfs_unlink_rdev(mddev, rdev); 4045 } 4046 rdev_for_each(rdev, mddev) { 4047 if (rdev->raid_disk < 0) 4048 continue; 4049 if (rdev->new_raid_disk == rdev->raid_disk) 4050 continue; 4051 rdev->raid_disk = rdev->new_raid_disk; 4052 if (rdev->raid_disk < 0) 4053 clear_bit(In_sync, &rdev->flags); 4054 else { 4055 if (sysfs_link_rdev(mddev, rdev)) 4056 pr_warn("md: cannot register rd%d for %s after level change\n", 4057 rdev->raid_disk, mdname(mddev)); 4058 } 4059 } 4060 4061 if (pers->sync_request == NULL) { 4062 /* this is now an array without redundancy, so 4063 * it must always be in_sync 4064 */ 4065 mddev->in_sync = 1; 4066 del_timer_sync(&mddev->safemode_timer); 4067 } 4068 blk_set_stacking_limits(&mddev->queue->limits); 4069 pers->run(mddev); 4070 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4071 mddev_resume(mddev); 4072 if (!mddev->thread) 4073 md_update_sb(mddev, 1); 4074 sysfs_notify(&mddev->kobj, NULL, "level"); 4075 md_new_event(mddev); 4076 rv = len; 4077 out_unlock: 4078 mddev_unlock(mddev); 4079 return rv; 4080 } 4081 4082 static struct md_sysfs_entry md_level = 4083 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4084 4085 static ssize_t 4086 layout_show(struct mddev *mddev, char *page) 4087 { 4088 /* just a number, not meaningful for all levels */ 4089 if (mddev->reshape_position != MaxSector && 4090 mddev->layout != mddev->new_layout) 4091 return sprintf(page, "%d (%d)\n", 4092 mddev->new_layout, mddev->layout); 4093 return sprintf(page, "%d\n", mddev->layout); 4094 } 4095 4096 static ssize_t 4097 layout_store(struct mddev *mddev, const char *buf, size_t len) 4098 { 4099 unsigned int n; 4100 int err; 4101 4102 err = kstrtouint(buf, 10, &n); 4103 if (err < 0) 4104 return err; 4105 err = mddev_lock(mddev); 4106 if (err) 4107 return err; 4108 4109 if (mddev->pers) { 4110 if (mddev->pers->check_reshape == NULL) 4111 err = -EBUSY; 4112 else if (mddev->ro) 4113 err = -EROFS; 4114 else { 4115 mddev->new_layout = n; 4116 err = mddev->pers->check_reshape(mddev); 4117 if (err) 4118 mddev->new_layout = mddev->layout; 4119 } 4120 } else { 4121 mddev->new_layout = n; 4122 if (mddev->reshape_position == MaxSector) 4123 mddev->layout = n; 4124 } 4125 mddev_unlock(mddev); 4126 return err ?: len; 4127 } 4128 static struct md_sysfs_entry md_layout = 4129 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4130 4131 static ssize_t 4132 raid_disks_show(struct mddev *mddev, char *page) 4133 { 4134 if (mddev->raid_disks == 0) 4135 return 0; 4136 if (mddev->reshape_position != MaxSector && 4137 mddev->delta_disks != 0) 4138 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4139 mddev->raid_disks - mddev->delta_disks); 4140 return sprintf(page, "%d\n", mddev->raid_disks); 4141 } 4142 4143 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4144 4145 static ssize_t 4146 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4147 { 4148 unsigned int n; 4149 int err; 4150 4151 err = kstrtouint(buf, 10, &n); 4152 if (err < 0) 4153 return err; 4154 4155 err = mddev_lock(mddev); 4156 if (err) 4157 return err; 4158 if (mddev->pers) 4159 err = update_raid_disks(mddev, n); 4160 else if (mddev->reshape_position != MaxSector) { 4161 struct md_rdev *rdev; 4162 int olddisks = mddev->raid_disks - mddev->delta_disks; 4163 4164 err = -EINVAL; 4165 rdev_for_each(rdev, mddev) { 4166 if (olddisks < n && 4167 rdev->data_offset < rdev->new_data_offset) 4168 goto out_unlock; 4169 if (olddisks > n && 4170 rdev->data_offset > rdev->new_data_offset) 4171 goto out_unlock; 4172 } 4173 err = 0; 4174 mddev->delta_disks = n - olddisks; 4175 mddev->raid_disks = n; 4176 mddev->reshape_backwards = (mddev->delta_disks < 0); 4177 } else 4178 mddev->raid_disks = n; 4179 out_unlock: 4180 mddev_unlock(mddev); 4181 return err ? err : len; 4182 } 4183 static struct md_sysfs_entry md_raid_disks = 4184 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4185 4186 static ssize_t 4187 chunk_size_show(struct mddev *mddev, char *page) 4188 { 4189 if (mddev->reshape_position != MaxSector && 4190 mddev->chunk_sectors != mddev->new_chunk_sectors) 4191 return sprintf(page, "%d (%d)\n", 4192 mddev->new_chunk_sectors << 9, 4193 mddev->chunk_sectors << 9); 4194 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4195 } 4196 4197 static ssize_t 4198 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4199 { 4200 unsigned long n; 4201 int err; 4202 4203 err = kstrtoul(buf, 10, &n); 4204 if (err < 0) 4205 return err; 4206 4207 err = mddev_lock(mddev); 4208 if (err) 4209 return err; 4210 if (mddev->pers) { 4211 if (mddev->pers->check_reshape == NULL) 4212 err = -EBUSY; 4213 else if (mddev->ro) 4214 err = -EROFS; 4215 else { 4216 mddev->new_chunk_sectors = n >> 9; 4217 err = mddev->pers->check_reshape(mddev); 4218 if (err) 4219 mddev->new_chunk_sectors = mddev->chunk_sectors; 4220 } 4221 } else { 4222 mddev->new_chunk_sectors = n >> 9; 4223 if (mddev->reshape_position == MaxSector) 4224 mddev->chunk_sectors = n >> 9; 4225 } 4226 mddev_unlock(mddev); 4227 return err ?: len; 4228 } 4229 static struct md_sysfs_entry md_chunk_size = 4230 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4231 4232 static ssize_t 4233 resync_start_show(struct mddev *mddev, char *page) 4234 { 4235 if (mddev->recovery_cp == MaxSector) 4236 return sprintf(page, "none\n"); 4237 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4238 } 4239 4240 static ssize_t 4241 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4242 { 4243 unsigned long long n; 4244 int err; 4245 4246 if (cmd_match(buf, "none")) 4247 n = MaxSector; 4248 else { 4249 err = kstrtoull(buf, 10, &n); 4250 if (err < 0) 4251 return err; 4252 if (n != (sector_t)n) 4253 return -EINVAL; 4254 } 4255 4256 err = mddev_lock(mddev); 4257 if (err) 4258 return err; 4259 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4260 err = -EBUSY; 4261 4262 if (!err) { 4263 mddev->recovery_cp = n; 4264 if (mddev->pers) 4265 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4266 } 4267 mddev_unlock(mddev); 4268 return err ?: len; 4269 } 4270 static struct md_sysfs_entry md_resync_start = 4271 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4272 resync_start_show, resync_start_store); 4273 4274 /* 4275 * The array state can be: 4276 * 4277 * clear 4278 * No devices, no size, no level 4279 * Equivalent to STOP_ARRAY ioctl 4280 * inactive 4281 * May have some settings, but array is not active 4282 * all IO results in error 4283 * When written, doesn't tear down array, but just stops it 4284 * suspended (not supported yet) 4285 * All IO requests will block. The array can be reconfigured. 4286 * Writing this, if accepted, will block until array is quiescent 4287 * readonly 4288 * no resync can happen. no superblocks get written. 4289 * write requests fail 4290 * read-auto 4291 * like readonly, but behaves like 'clean' on a write request. 4292 * 4293 * clean - no pending writes, but otherwise active. 4294 * When written to inactive array, starts without resync 4295 * If a write request arrives then 4296 * if metadata is known, mark 'dirty' and switch to 'active'. 4297 * if not known, block and switch to write-pending 4298 * If written to an active array that has pending writes, then fails. 4299 * active 4300 * fully active: IO and resync can be happening. 4301 * When written to inactive array, starts with resync 4302 * 4303 * write-pending 4304 * clean, but writes are blocked waiting for 'active' to be written. 4305 * 4306 * active-idle 4307 * like active, but no writes have been seen for a while (100msec). 4308 * 4309 * broken 4310 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4311 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4312 * when a member is gone, so this state will at least alert the 4313 * user that something is wrong. 4314 */ 4315 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4316 write_pending, active_idle, broken, bad_word}; 4317 static char *array_states[] = { 4318 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4319 "write-pending", "active-idle", "broken", NULL }; 4320 4321 static int match_word(const char *word, char **list) 4322 { 4323 int n; 4324 for (n=0; list[n]; n++) 4325 if (cmd_match(word, list[n])) 4326 break; 4327 return n; 4328 } 4329 4330 static ssize_t 4331 array_state_show(struct mddev *mddev, char *page) 4332 { 4333 enum array_state st = inactive; 4334 4335 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4336 switch(mddev->ro) { 4337 case 1: 4338 st = readonly; 4339 break; 4340 case 2: 4341 st = read_auto; 4342 break; 4343 case 0: 4344 spin_lock(&mddev->lock); 4345 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4346 st = write_pending; 4347 else if (mddev->in_sync) 4348 st = clean; 4349 else if (mddev->safemode) 4350 st = active_idle; 4351 else 4352 st = active; 4353 spin_unlock(&mddev->lock); 4354 } 4355 4356 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4357 st = broken; 4358 } else { 4359 if (list_empty(&mddev->disks) && 4360 mddev->raid_disks == 0 && 4361 mddev->dev_sectors == 0) 4362 st = clear; 4363 else 4364 st = inactive; 4365 } 4366 return sprintf(page, "%s\n", array_states[st]); 4367 } 4368 4369 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4370 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4371 static int do_md_run(struct mddev *mddev); 4372 static int restart_array(struct mddev *mddev); 4373 4374 static ssize_t 4375 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4376 { 4377 int err = 0; 4378 enum array_state st = match_word(buf, array_states); 4379 4380 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4381 /* don't take reconfig_mutex when toggling between 4382 * clean and active 4383 */ 4384 spin_lock(&mddev->lock); 4385 if (st == active) { 4386 restart_array(mddev); 4387 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4388 md_wakeup_thread(mddev->thread); 4389 wake_up(&mddev->sb_wait); 4390 } else /* st == clean */ { 4391 restart_array(mddev); 4392 if (!set_in_sync(mddev)) 4393 err = -EBUSY; 4394 } 4395 if (!err) 4396 sysfs_notify_dirent_safe(mddev->sysfs_state); 4397 spin_unlock(&mddev->lock); 4398 return err ?: len; 4399 } 4400 err = mddev_lock(mddev); 4401 if (err) 4402 return err; 4403 err = -EINVAL; 4404 switch(st) { 4405 case bad_word: 4406 break; 4407 case clear: 4408 /* stopping an active array */ 4409 err = do_md_stop(mddev, 0, NULL); 4410 break; 4411 case inactive: 4412 /* stopping an active array */ 4413 if (mddev->pers) 4414 err = do_md_stop(mddev, 2, NULL); 4415 else 4416 err = 0; /* already inactive */ 4417 break; 4418 case suspended: 4419 break; /* not supported yet */ 4420 case readonly: 4421 if (mddev->pers) 4422 err = md_set_readonly(mddev, NULL); 4423 else { 4424 mddev->ro = 1; 4425 set_disk_ro(mddev->gendisk, 1); 4426 err = do_md_run(mddev); 4427 } 4428 break; 4429 case read_auto: 4430 if (mddev->pers) { 4431 if (mddev->ro == 0) 4432 err = md_set_readonly(mddev, NULL); 4433 else if (mddev->ro == 1) 4434 err = restart_array(mddev); 4435 if (err == 0) { 4436 mddev->ro = 2; 4437 set_disk_ro(mddev->gendisk, 0); 4438 } 4439 } else { 4440 mddev->ro = 2; 4441 err = do_md_run(mddev); 4442 } 4443 break; 4444 case clean: 4445 if (mddev->pers) { 4446 err = restart_array(mddev); 4447 if (err) 4448 break; 4449 spin_lock(&mddev->lock); 4450 if (!set_in_sync(mddev)) 4451 err = -EBUSY; 4452 spin_unlock(&mddev->lock); 4453 } else 4454 err = -EINVAL; 4455 break; 4456 case active: 4457 if (mddev->pers) { 4458 err = restart_array(mddev); 4459 if (err) 4460 break; 4461 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4462 wake_up(&mddev->sb_wait); 4463 err = 0; 4464 } else { 4465 mddev->ro = 0; 4466 set_disk_ro(mddev->gendisk, 0); 4467 err = do_md_run(mddev); 4468 } 4469 break; 4470 case write_pending: 4471 case active_idle: 4472 case broken: 4473 /* these cannot be set */ 4474 break; 4475 } 4476 4477 if (!err) { 4478 if (mddev->hold_active == UNTIL_IOCTL) 4479 mddev->hold_active = 0; 4480 sysfs_notify_dirent_safe(mddev->sysfs_state); 4481 } 4482 mddev_unlock(mddev); 4483 return err ?: len; 4484 } 4485 static struct md_sysfs_entry md_array_state = 4486 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4487 4488 static ssize_t 4489 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4490 return sprintf(page, "%d\n", 4491 atomic_read(&mddev->max_corr_read_errors)); 4492 } 4493 4494 static ssize_t 4495 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4496 { 4497 unsigned int n; 4498 int rv; 4499 4500 rv = kstrtouint(buf, 10, &n); 4501 if (rv < 0) 4502 return rv; 4503 atomic_set(&mddev->max_corr_read_errors, n); 4504 return len; 4505 } 4506 4507 static struct md_sysfs_entry max_corr_read_errors = 4508 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4509 max_corrected_read_errors_store); 4510 4511 static ssize_t 4512 null_show(struct mddev *mddev, char *page) 4513 { 4514 return -EINVAL; 4515 } 4516 4517 static ssize_t 4518 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4519 { 4520 /* buf must be %d:%d\n? giving major and minor numbers */ 4521 /* The new device is added to the array. 4522 * If the array has a persistent superblock, we read the 4523 * superblock to initialise info and check validity. 4524 * Otherwise, only checking done is that in bind_rdev_to_array, 4525 * which mainly checks size. 4526 */ 4527 char *e; 4528 int major = simple_strtoul(buf, &e, 10); 4529 int minor; 4530 dev_t dev; 4531 struct md_rdev *rdev; 4532 int err; 4533 4534 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4535 return -EINVAL; 4536 minor = simple_strtoul(e+1, &e, 10); 4537 if (*e && *e != '\n') 4538 return -EINVAL; 4539 dev = MKDEV(major, minor); 4540 if (major != MAJOR(dev) || 4541 minor != MINOR(dev)) 4542 return -EOVERFLOW; 4543 4544 flush_workqueue(md_misc_wq); 4545 4546 err = mddev_lock(mddev); 4547 if (err) 4548 return err; 4549 if (mddev->persistent) { 4550 rdev = md_import_device(dev, mddev->major_version, 4551 mddev->minor_version); 4552 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4553 struct md_rdev *rdev0 4554 = list_entry(mddev->disks.next, 4555 struct md_rdev, same_set); 4556 err = super_types[mddev->major_version] 4557 .load_super(rdev, rdev0, mddev->minor_version); 4558 if (err < 0) 4559 goto out; 4560 } 4561 } else if (mddev->external) 4562 rdev = md_import_device(dev, -2, -1); 4563 else 4564 rdev = md_import_device(dev, -1, -1); 4565 4566 if (IS_ERR(rdev)) { 4567 mddev_unlock(mddev); 4568 return PTR_ERR(rdev); 4569 } 4570 err = bind_rdev_to_array(rdev, mddev); 4571 out: 4572 if (err) 4573 export_rdev(rdev); 4574 mddev_unlock(mddev); 4575 if (!err) 4576 md_new_event(mddev); 4577 return err ? err : len; 4578 } 4579 4580 static struct md_sysfs_entry md_new_device = 4581 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4582 4583 static ssize_t 4584 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4585 { 4586 char *end; 4587 unsigned long chunk, end_chunk; 4588 int err; 4589 4590 err = mddev_lock(mddev); 4591 if (err) 4592 return err; 4593 if (!mddev->bitmap) 4594 goto out; 4595 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4596 while (*buf) { 4597 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4598 if (buf == end) break; 4599 if (*end == '-') { /* range */ 4600 buf = end + 1; 4601 end_chunk = simple_strtoul(buf, &end, 0); 4602 if (buf == end) break; 4603 } 4604 if (*end && !isspace(*end)) break; 4605 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4606 buf = skip_spaces(end); 4607 } 4608 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4609 out: 4610 mddev_unlock(mddev); 4611 return len; 4612 } 4613 4614 static struct md_sysfs_entry md_bitmap = 4615 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4616 4617 static ssize_t 4618 size_show(struct mddev *mddev, char *page) 4619 { 4620 return sprintf(page, "%llu\n", 4621 (unsigned long long)mddev->dev_sectors / 2); 4622 } 4623 4624 static int update_size(struct mddev *mddev, sector_t num_sectors); 4625 4626 static ssize_t 4627 size_store(struct mddev *mddev, const char *buf, size_t len) 4628 { 4629 /* If array is inactive, we can reduce the component size, but 4630 * not increase it (except from 0). 4631 * If array is active, we can try an on-line resize 4632 */ 4633 sector_t sectors; 4634 int err = strict_blocks_to_sectors(buf, §ors); 4635 4636 if (err < 0) 4637 return err; 4638 err = mddev_lock(mddev); 4639 if (err) 4640 return err; 4641 if (mddev->pers) { 4642 err = update_size(mddev, sectors); 4643 if (err == 0) 4644 md_update_sb(mddev, 1); 4645 } else { 4646 if (mddev->dev_sectors == 0 || 4647 mddev->dev_sectors > sectors) 4648 mddev->dev_sectors = sectors; 4649 else 4650 err = -ENOSPC; 4651 } 4652 mddev_unlock(mddev); 4653 return err ? err : len; 4654 } 4655 4656 static struct md_sysfs_entry md_size = 4657 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4658 4659 /* Metadata version. 4660 * This is one of 4661 * 'none' for arrays with no metadata (good luck...) 4662 * 'external' for arrays with externally managed metadata, 4663 * or N.M for internally known formats 4664 */ 4665 static ssize_t 4666 metadata_show(struct mddev *mddev, char *page) 4667 { 4668 if (mddev->persistent) 4669 return sprintf(page, "%d.%d\n", 4670 mddev->major_version, mddev->minor_version); 4671 else if (mddev->external) 4672 return sprintf(page, "external:%s\n", mddev->metadata_type); 4673 else 4674 return sprintf(page, "none\n"); 4675 } 4676 4677 static ssize_t 4678 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4679 { 4680 int major, minor; 4681 char *e; 4682 int err; 4683 /* Changing the details of 'external' metadata is 4684 * always permitted. Otherwise there must be 4685 * no devices attached to the array. 4686 */ 4687 4688 err = mddev_lock(mddev); 4689 if (err) 4690 return err; 4691 err = -EBUSY; 4692 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4693 ; 4694 else if (!list_empty(&mddev->disks)) 4695 goto out_unlock; 4696 4697 err = 0; 4698 if (cmd_match(buf, "none")) { 4699 mddev->persistent = 0; 4700 mddev->external = 0; 4701 mddev->major_version = 0; 4702 mddev->minor_version = 90; 4703 goto out_unlock; 4704 } 4705 if (strncmp(buf, "external:", 9) == 0) { 4706 size_t namelen = len-9; 4707 if (namelen >= sizeof(mddev->metadata_type)) 4708 namelen = sizeof(mddev->metadata_type)-1; 4709 strncpy(mddev->metadata_type, buf+9, namelen); 4710 mddev->metadata_type[namelen] = 0; 4711 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4712 mddev->metadata_type[--namelen] = 0; 4713 mddev->persistent = 0; 4714 mddev->external = 1; 4715 mddev->major_version = 0; 4716 mddev->minor_version = 90; 4717 goto out_unlock; 4718 } 4719 major = simple_strtoul(buf, &e, 10); 4720 err = -EINVAL; 4721 if (e==buf || *e != '.') 4722 goto out_unlock; 4723 buf = e+1; 4724 minor = simple_strtoul(buf, &e, 10); 4725 if (e==buf || (*e && *e != '\n') ) 4726 goto out_unlock; 4727 err = -ENOENT; 4728 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4729 goto out_unlock; 4730 mddev->major_version = major; 4731 mddev->minor_version = minor; 4732 mddev->persistent = 1; 4733 mddev->external = 0; 4734 err = 0; 4735 out_unlock: 4736 mddev_unlock(mddev); 4737 return err ?: len; 4738 } 4739 4740 static struct md_sysfs_entry md_metadata = 4741 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4742 4743 static ssize_t 4744 action_show(struct mddev *mddev, char *page) 4745 { 4746 char *type = "idle"; 4747 unsigned long recovery = mddev->recovery; 4748 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4749 type = "frozen"; 4750 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4751 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4752 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4753 type = "reshape"; 4754 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4755 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4756 type = "resync"; 4757 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4758 type = "check"; 4759 else 4760 type = "repair"; 4761 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4762 type = "recover"; 4763 else if (mddev->reshape_position != MaxSector) 4764 type = "reshape"; 4765 } 4766 return sprintf(page, "%s\n", type); 4767 } 4768 4769 static ssize_t 4770 action_store(struct mddev *mddev, const char *page, size_t len) 4771 { 4772 if (!mddev->pers || !mddev->pers->sync_request) 4773 return -EINVAL; 4774 4775 4776 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4777 if (cmd_match(page, "frozen")) 4778 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4779 else 4780 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4781 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4782 mddev_lock(mddev) == 0) { 4783 flush_workqueue(md_misc_wq); 4784 if (mddev->sync_thread) { 4785 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4786 md_reap_sync_thread(mddev); 4787 } 4788 mddev_unlock(mddev); 4789 } 4790 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4791 return -EBUSY; 4792 else if (cmd_match(page, "resync")) 4793 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4794 else if (cmd_match(page, "recover")) { 4795 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4796 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4797 } else if (cmd_match(page, "reshape")) { 4798 int err; 4799 if (mddev->pers->start_reshape == NULL) 4800 return -EINVAL; 4801 err = mddev_lock(mddev); 4802 if (!err) { 4803 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4804 err = -EBUSY; 4805 else { 4806 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4807 err = mddev->pers->start_reshape(mddev); 4808 } 4809 mddev_unlock(mddev); 4810 } 4811 if (err) 4812 return err; 4813 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4814 } else { 4815 if (cmd_match(page, "check")) 4816 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4817 else if (!cmd_match(page, "repair")) 4818 return -EINVAL; 4819 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4820 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4821 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4822 } 4823 if (mddev->ro == 2) { 4824 /* A write to sync_action is enough to justify 4825 * canceling read-auto mode 4826 */ 4827 mddev->ro = 0; 4828 md_wakeup_thread(mddev->sync_thread); 4829 } 4830 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4831 md_wakeup_thread(mddev->thread); 4832 sysfs_notify_dirent_safe(mddev->sysfs_action); 4833 return len; 4834 } 4835 4836 static struct md_sysfs_entry md_scan_mode = 4837 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4838 4839 static ssize_t 4840 last_sync_action_show(struct mddev *mddev, char *page) 4841 { 4842 return sprintf(page, "%s\n", mddev->last_sync_action); 4843 } 4844 4845 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4846 4847 static ssize_t 4848 mismatch_cnt_show(struct mddev *mddev, char *page) 4849 { 4850 return sprintf(page, "%llu\n", 4851 (unsigned long long) 4852 atomic64_read(&mddev->resync_mismatches)); 4853 } 4854 4855 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4856 4857 static ssize_t 4858 sync_min_show(struct mddev *mddev, char *page) 4859 { 4860 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4861 mddev->sync_speed_min ? "local": "system"); 4862 } 4863 4864 static ssize_t 4865 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4866 { 4867 unsigned int min; 4868 int rv; 4869 4870 if (strncmp(buf, "system", 6)==0) { 4871 min = 0; 4872 } else { 4873 rv = kstrtouint(buf, 10, &min); 4874 if (rv < 0) 4875 return rv; 4876 if (min == 0) 4877 return -EINVAL; 4878 } 4879 mddev->sync_speed_min = min; 4880 return len; 4881 } 4882 4883 static struct md_sysfs_entry md_sync_min = 4884 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4885 4886 static ssize_t 4887 sync_max_show(struct mddev *mddev, char *page) 4888 { 4889 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4890 mddev->sync_speed_max ? "local": "system"); 4891 } 4892 4893 static ssize_t 4894 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4895 { 4896 unsigned int max; 4897 int rv; 4898 4899 if (strncmp(buf, "system", 6)==0) { 4900 max = 0; 4901 } else { 4902 rv = kstrtouint(buf, 10, &max); 4903 if (rv < 0) 4904 return rv; 4905 if (max == 0) 4906 return -EINVAL; 4907 } 4908 mddev->sync_speed_max = max; 4909 return len; 4910 } 4911 4912 static struct md_sysfs_entry md_sync_max = 4913 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4914 4915 static ssize_t 4916 degraded_show(struct mddev *mddev, char *page) 4917 { 4918 return sprintf(page, "%d\n", mddev->degraded); 4919 } 4920 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4921 4922 static ssize_t 4923 sync_force_parallel_show(struct mddev *mddev, char *page) 4924 { 4925 return sprintf(page, "%d\n", mddev->parallel_resync); 4926 } 4927 4928 static ssize_t 4929 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4930 { 4931 long n; 4932 4933 if (kstrtol(buf, 10, &n)) 4934 return -EINVAL; 4935 4936 if (n != 0 && n != 1) 4937 return -EINVAL; 4938 4939 mddev->parallel_resync = n; 4940 4941 if (mddev->sync_thread) 4942 wake_up(&resync_wait); 4943 4944 return len; 4945 } 4946 4947 /* force parallel resync, even with shared block devices */ 4948 static struct md_sysfs_entry md_sync_force_parallel = 4949 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4950 sync_force_parallel_show, sync_force_parallel_store); 4951 4952 static ssize_t 4953 sync_speed_show(struct mddev *mddev, char *page) 4954 { 4955 unsigned long resync, dt, db; 4956 if (mddev->curr_resync == 0) 4957 return sprintf(page, "none\n"); 4958 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4959 dt = (jiffies - mddev->resync_mark) / HZ; 4960 if (!dt) dt++; 4961 db = resync - mddev->resync_mark_cnt; 4962 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4963 } 4964 4965 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4966 4967 static ssize_t 4968 sync_completed_show(struct mddev *mddev, char *page) 4969 { 4970 unsigned long long max_sectors, resync; 4971 4972 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4973 return sprintf(page, "none\n"); 4974 4975 if (mddev->curr_resync == 1 || 4976 mddev->curr_resync == 2) 4977 return sprintf(page, "delayed\n"); 4978 4979 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4980 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4981 max_sectors = mddev->resync_max_sectors; 4982 else 4983 max_sectors = mddev->dev_sectors; 4984 4985 resync = mddev->curr_resync_completed; 4986 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4987 } 4988 4989 static struct md_sysfs_entry md_sync_completed = 4990 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4991 4992 static ssize_t 4993 min_sync_show(struct mddev *mddev, char *page) 4994 { 4995 return sprintf(page, "%llu\n", 4996 (unsigned long long)mddev->resync_min); 4997 } 4998 static ssize_t 4999 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5000 { 5001 unsigned long long min; 5002 int err; 5003 5004 if (kstrtoull(buf, 10, &min)) 5005 return -EINVAL; 5006 5007 spin_lock(&mddev->lock); 5008 err = -EINVAL; 5009 if (min > mddev->resync_max) 5010 goto out_unlock; 5011 5012 err = -EBUSY; 5013 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5014 goto out_unlock; 5015 5016 /* Round down to multiple of 4K for safety */ 5017 mddev->resync_min = round_down(min, 8); 5018 err = 0; 5019 5020 out_unlock: 5021 spin_unlock(&mddev->lock); 5022 return err ?: len; 5023 } 5024 5025 static struct md_sysfs_entry md_min_sync = 5026 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5027 5028 static ssize_t 5029 max_sync_show(struct mddev *mddev, char *page) 5030 { 5031 if (mddev->resync_max == MaxSector) 5032 return sprintf(page, "max\n"); 5033 else 5034 return sprintf(page, "%llu\n", 5035 (unsigned long long)mddev->resync_max); 5036 } 5037 static ssize_t 5038 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5039 { 5040 int err; 5041 spin_lock(&mddev->lock); 5042 if (strncmp(buf, "max", 3) == 0) 5043 mddev->resync_max = MaxSector; 5044 else { 5045 unsigned long long max; 5046 int chunk; 5047 5048 err = -EINVAL; 5049 if (kstrtoull(buf, 10, &max)) 5050 goto out_unlock; 5051 if (max < mddev->resync_min) 5052 goto out_unlock; 5053 5054 err = -EBUSY; 5055 if (max < mddev->resync_max && 5056 mddev->ro == 0 && 5057 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5058 goto out_unlock; 5059 5060 /* Must be a multiple of chunk_size */ 5061 chunk = mddev->chunk_sectors; 5062 if (chunk) { 5063 sector_t temp = max; 5064 5065 err = -EINVAL; 5066 if (sector_div(temp, chunk)) 5067 goto out_unlock; 5068 } 5069 mddev->resync_max = max; 5070 } 5071 wake_up(&mddev->recovery_wait); 5072 err = 0; 5073 out_unlock: 5074 spin_unlock(&mddev->lock); 5075 return err ?: len; 5076 } 5077 5078 static struct md_sysfs_entry md_max_sync = 5079 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5080 5081 static ssize_t 5082 suspend_lo_show(struct mddev *mddev, char *page) 5083 { 5084 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5085 } 5086 5087 static ssize_t 5088 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5089 { 5090 unsigned long long new; 5091 int err; 5092 5093 err = kstrtoull(buf, 10, &new); 5094 if (err < 0) 5095 return err; 5096 if (new != (sector_t)new) 5097 return -EINVAL; 5098 5099 err = mddev_lock(mddev); 5100 if (err) 5101 return err; 5102 err = -EINVAL; 5103 if (mddev->pers == NULL || 5104 mddev->pers->quiesce == NULL) 5105 goto unlock; 5106 mddev_suspend(mddev); 5107 mddev->suspend_lo = new; 5108 mddev_resume(mddev); 5109 5110 err = 0; 5111 unlock: 5112 mddev_unlock(mddev); 5113 return err ?: len; 5114 } 5115 static struct md_sysfs_entry md_suspend_lo = 5116 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5117 5118 static ssize_t 5119 suspend_hi_show(struct mddev *mddev, char *page) 5120 { 5121 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5122 } 5123 5124 static ssize_t 5125 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5126 { 5127 unsigned long long new; 5128 int err; 5129 5130 err = kstrtoull(buf, 10, &new); 5131 if (err < 0) 5132 return err; 5133 if (new != (sector_t)new) 5134 return -EINVAL; 5135 5136 err = mddev_lock(mddev); 5137 if (err) 5138 return err; 5139 err = -EINVAL; 5140 if (mddev->pers == NULL) 5141 goto unlock; 5142 5143 mddev_suspend(mddev); 5144 mddev->suspend_hi = new; 5145 mddev_resume(mddev); 5146 5147 err = 0; 5148 unlock: 5149 mddev_unlock(mddev); 5150 return err ?: len; 5151 } 5152 static struct md_sysfs_entry md_suspend_hi = 5153 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5154 5155 static ssize_t 5156 reshape_position_show(struct mddev *mddev, char *page) 5157 { 5158 if (mddev->reshape_position != MaxSector) 5159 return sprintf(page, "%llu\n", 5160 (unsigned long long)mddev->reshape_position); 5161 strcpy(page, "none\n"); 5162 return 5; 5163 } 5164 5165 static ssize_t 5166 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5167 { 5168 struct md_rdev *rdev; 5169 unsigned long long new; 5170 int err; 5171 5172 err = kstrtoull(buf, 10, &new); 5173 if (err < 0) 5174 return err; 5175 if (new != (sector_t)new) 5176 return -EINVAL; 5177 err = mddev_lock(mddev); 5178 if (err) 5179 return err; 5180 err = -EBUSY; 5181 if (mddev->pers) 5182 goto unlock; 5183 mddev->reshape_position = new; 5184 mddev->delta_disks = 0; 5185 mddev->reshape_backwards = 0; 5186 mddev->new_level = mddev->level; 5187 mddev->new_layout = mddev->layout; 5188 mddev->new_chunk_sectors = mddev->chunk_sectors; 5189 rdev_for_each(rdev, mddev) 5190 rdev->new_data_offset = rdev->data_offset; 5191 err = 0; 5192 unlock: 5193 mddev_unlock(mddev); 5194 return err ?: len; 5195 } 5196 5197 static struct md_sysfs_entry md_reshape_position = 5198 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5199 reshape_position_store); 5200 5201 static ssize_t 5202 reshape_direction_show(struct mddev *mddev, char *page) 5203 { 5204 return sprintf(page, "%s\n", 5205 mddev->reshape_backwards ? "backwards" : "forwards"); 5206 } 5207 5208 static ssize_t 5209 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5210 { 5211 int backwards = 0; 5212 int err; 5213 5214 if (cmd_match(buf, "forwards")) 5215 backwards = 0; 5216 else if (cmd_match(buf, "backwards")) 5217 backwards = 1; 5218 else 5219 return -EINVAL; 5220 if (mddev->reshape_backwards == backwards) 5221 return len; 5222 5223 err = mddev_lock(mddev); 5224 if (err) 5225 return err; 5226 /* check if we are allowed to change */ 5227 if (mddev->delta_disks) 5228 err = -EBUSY; 5229 else if (mddev->persistent && 5230 mddev->major_version == 0) 5231 err = -EINVAL; 5232 else 5233 mddev->reshape_backwards = backwards; 5234 mddev_unlock(mddev); 5235 return err ?: len; 5236 } 5237 5238 static struct md_sysfs_entry md_reshape_direction = 5239 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5240 reshape_direction_store); 5241 5242 static ssize_t 5243 array_size_show(struct mddev *mddev, char *page) 5244 { 5245 if (mddev->external_size) 5246 return sprintf(page, "%llu\n", 5247 (unsigned long long)mddev->array_sectors/2); 5248 else 5249 return sprintf(page, "default\n"); 5250 } 5251 5252 static ssize_t 5253 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5254 { 5255 sector_t sectors; 5256 int err; 5257 5258 err = mddev_lock(mddev); 5259 if (err) 5260 return err; 5261 5262 /* cluster raid doesn't support change array_sectors */ 5263 if (mddev_is_clustered(mddev)) { 5264 mddev_unlock(mddev); 5265 return -EINVAL; 5266 } 5267 5268 if (strncmp(buf, "default", 7) == 0) { 5269 if (mddev->pers) 5270 sectors = mddev->pers->size(mddev, 0, 0); 5271 else 5272 sectors = mddev->array_sectors; 5273 5274 mddev->external_size = 0; 5275 } else { 5276 if (strict_blocks_to_sectors(buf, §ors) < 0) 5277 err = -EINVAL; 5278 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5279 err = -E2BIG; 5280 else 5281 mddev->external_size = 1; 5282 } 5283 5284 if (!err) { 5285 mddev->array_sectors = sectors; 5286 if (mddev->pers) { 5287 set_capacity(mddev->gendisk, mddev->array_sectors); 5288 revalidate_disk(mddev->gendisk); 5289 } 5290 } 5291 mddev_unlock(mddev); 5292 return err ?: len; 5293 } 5294 5295 static struct md_sysfs_entry md_array_size = 5296 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5297 array_size_store); 5298 5299 static ssize_t 5300 consistency_policy_show(struct mddev *mddev, char *page) 5301 { 5302 int ret; 5303 5304 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5305 ret = sprintf(page, "journal\n"); 5306 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5307 ret = sprintf(page, "ppl\n"); 5308 } else if (mddev->bitmap) { 5309 ret = sprintf(page, "bitmap\n"); 5310 } else if (mddev->pers) { 5311 if (mddev->pers->sync_request) 5312 ret = sprintf(page, "resync\n"); 5313 else 5314 ret = sprintf(page, "none\n"); 5315 } else { 5316 ret = sprintf(page, "unknown\n"); 5317 } 5318 5319 return ret; 5320 } 5321 5322 static ssize_t 5323 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5324 { 5325 int err = 0; 5326 5327 if (mddev->pers) { 5328 if (mddev->pers->change_consistency_policy) 5329 err = mddev->pers->change_consistency_policy(mddev, buf); 5330 else 5331 err = -EBUSY; 5332 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5333 set_bit(MD_HAS_PPL, &mddev->flags); 5334 } else { 5335 err = -EINVAL; 5336 } 5337 5338 return err ? err : len; 5339 } 5340 5341 static struct md_sysfs_entry md_consistency_policy = 5342 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5343 consistency_policy_store); 5344 5345 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5346 { 5347 return sprintf(page, "%d\n", mddev->fail_last_dev); 5348 } 5349 5350 /* 5351 * Setting fail_last_dev to true to allow last device to be forcibly removed 5352 * from RAID1/RAID10. 5353 */ 5354 static ssize_t 5355 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5356 { 5357 int ret; 5358 bool value; 5359 5360 ret = kstrtobool(buf, &value); 5361 if (ret) 5362 return ret; 5363 5364 if (value != mddev->fail_last_dev) 5365 mddev->fail_last_dev = value; 5366 5367 return len; 5368 } 5369 static struct md_sysfs_entry md_fail_last_dev = 5370 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5371 fail_last_dev_store); 5372 5373 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5374 { 5375 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5376 return sprintf(page, "n/a\n"); 5377 else 5378 return sprintf(page, "%d\n", mddev->serialize_policy); 5379 } 5380 5381 /* 5382 * Setting serialize_policy to true to enforce write IO is not reordered 5383 * for raid1. 5384 */ 5385 static ssize_t 5386 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5387 { 5388 int err; 5389 bool value; 5390 5391 err = kstrtobool(buf, &value); 5392 if (err) 5393 return err; 5394 5395 if (value == mddev->serialize_policy) 5396 return len; 5397 5398 err = mddev_lock(mddev); 5399 if (err) 5400 return err; 5401 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5402 pr_err("md: serialize_policy is only effective for raid1\n"); 5403 err = -EINVAL; 5404 goto unlock; 5405 } 5406 5407 mddev_suspend(mddev); 5408 if (value) 5409 mddev_create_serial_pool(mddev, NULL, true); 5410 else 5411 mddev_destroy_serial_pool(mddev, NULL, true); 5412 mddev->serialize_policy = value; 5413 mddev_resume(mddev); 5414 unlock: 5415 mddev_unlock(mddev); 5416 return err ?: len; 5417 } 5418 5419 static struct md_sysfs_entry md_serialize_policy = 5420 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5421 serialize_policy_store); 5422 5423 5424 static struct attribute *md_default_attrs[] = { 5425 &md_level.attr, 5426 &md_layout.attr, 5427 &md_raid_disks.attr, 5428 &md_chunk_size.attr, 5429 &md_size.attr, 5430 &md_resync_start.attr, 5431 &md_metadata.attr, 5432 &md_new_device.attr, 5433 &md_safe_delay.attr, 5434 &md_array_state.attr, 5435 &md_reshape_position.attr, 5436 &md_reshape_direction.attr, 5437 &md_array_size.attr, 5438 &max_corr_read_errors.attr, 5439 &md_consistency_policy.attr, 5440 &md_fail_last_dev.attr, 5441 &md_serialize_policy.attr, 5442 NULL, 5443 }; 5444 5445 static struct attribute *md_redundancy_attrs[] = { 5446 &md_scan_mode.attr, 5447 &md_last_scan_mode.attr, 5448 &md_mismatches.attr, 5449 &md_sync_min.attr, 5450 &md_sync_max.attr, 5451 &md_sync_speed.attr, 5452 &md_sync_force_parallel.attr, 5453 &md_sync_completed.attr, 5454 &md_min_sync.attr, 5455 &md_max_sync.attr, 5456 &md_suspend_lo.attr, 5457 &md_suspend_hi.attr, 5458 &md_bitmap.attr, 5459 &md_degraded.attr, 5460 NULL, 5461 }; 5462 static struct attribute_group md_redundancy_group = { 5463 .name = NULL, 5464 .attrs = md_redundancy_attrs, 5465 }; 5466 5467 static ssize_t 5468 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5469 { 5470 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5471 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5472 ssize_t rv; 5473 5474 if (!entry->show) 5475 return -EIO; 5476 spin_lock(&all_mddevs_lock); 5477 if (list_empty(&mddev->all_mddevs)) { 5478 spin_unlock(&all_mddevs_lock); 5479 return -EBUSY; 5480 } 5481 mddev_get(mddev); 5482 spin_unlock(&all_mddevs_lock); 5483 5484 rv = entry->show(mddev, page); 5485 mddev_put(mddev); 5486 return rv; 5487 } 5488 5489 static ssize_t 5490 md_attr_store(struct kobject *kobj, struct attribute *attr, 5491 const char *page, size_t length) 5492 { 5493 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5494 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5495 ssize_t rv; 5496 5497 if (!entry->store) 5498 return -EIO; 5499 if (!capable(CAP_SYS_ADMIN)) 5500 return -EACCES; 5501 spin_lock(&all_mddevs_lock); 5502 if (list_empty(&mddev->all_mddevs)) { 5503 spin_unlock(&all_mddevs_lock); 5504 return -EBUSY; 5505 } 5506 mddev_get(mddev); 5507 spin_unlock(&all_mddevs_lock); 5508 rv = entry->store(mddev, page, length); 5509 mddev_put(mddev); 5510 return rv; 5511 } 5512 5513 static void md_free(struct kobject *ko) 5514 { 5515 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5516 5517 if (mddev->sysfs_state) 5518 sysfs_put(mddev->sysfs_state); 5519 5520 if (mddev->gendisk) 5521 del_gendisk(mddev->gendisk); 5522 if (mddev->queue) 5523 blk_cleanup_queue(mddev->queue); 5524 if (mddev->gendisk) 5525 put_disk(mddev->gendisk); 5526 percpu_ref_exit(&mddev->writes_pending); 5527 5528 bioset_exit(&mddev->bio_set); 5529 bioset_exit(&mddev->sync_set); 5530 kfree(mddev); 5531 } 5532 5533 static const struct sysfs_ops md_sysfs_ops = { 5534 .show = md_attr_show, 5535 .store = md_attr_store, 5536 }; 5537 static struct kobj_type md_ktype = { 5538 .release = md_free, 5539 .sysfs_ops = &md_sysfs_ops, 5540 .default_attrs = md_default_attrs, 5541 }; 5542 5543 int mdp_major = 0; 5544 5545 static void mddev_delayed_delete(struct work_struct *ws) 5546 { 5547 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5548 5549 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5550 kobject_del(&mddev->kobj); 5551 kobject_put(&mddev->kobj); 5552 } 5553 5554 static void no_op(struct percpu_ref *r) {} 5555 5556 int mddev_init_writes_pending(struct mddev *mddev) 5557 { 5558 if (mddev->writes_pending.percpu_count_ptr) 5559 return 0; 5560 if (percpu_ref_init(&mddev->writes_pending, no_op, 5561 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5562 return -ENOMEM; 5563 /* We want to start with the refcount at zero */ 5564 percpu_ref_put(&mddev->writes_pending); 5565 return 0; 5566 } 5567 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5568 5569 static int md_alloc(dev_t dev, char *name) 5570 { 5571 /* 5572 * If dev is zero, name is the name of a device to allocate with 5573 * an arbitrary minor number. It will be "md_???" 5574 * If dev is non-zero it must be a device number with a MAJOR of 5575 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5576 * the device is being created by opening a node in /dev. 5577 * If "name" is not NULL, the device is being created by 5578 * writing to /sys/module/md_mod/parameters/new_array. 5579 */ 5580 static DEFINE_MUTEX(disks_mutex); 5581 struct mddev *mddev = mddev_find(dev); 5582 struct gendisk *disk; 5583 int partitioned; 5584 int shift; 5585 int unit; 5586 int error; 5587 5588 if (!mddev) 5589 return -ENODEV; 5590 5591 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5592 shift = partitioned ? MdpMinorShift : 0; 5593 unit = MINOR(mddev->unit) >> shift; 5594 5595 /* wait for any previous instance of this device to be 5596 * completely removed (mddev_delayed_delete). 5597 */ 5598 flush_workqueue(md_misc_wq); 5599 5600 mutex_lock(&disks_mutex); 5601 error = -EEXIST; 5602 if (mddev->gendisk) 5603 goto abort; 5604 5605 if (name && !dev) { 5606 /* Need to ensure that 'name' is not a duplicate. 5607 */ 5608 struct mddev *mddev2; 5609 spin_lock(&all_mddevs_lock); 5610 5611 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5612 if (mddev2->gendisk && 5613 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5614 spin_unlock(&all_mddevs_lock); 5615 goto abort; 5616 } 5617 spin_unlock(&all_mddevs_lock); 5618 } 5619 if (name && dev) 5620 /* 5621 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5622 */ 5623 mddev->hold_active = UNTIL_STOP; 5624 5625 error = -ENOMEM; 5626 mddev->queue = blk_alloc_queue(md_make_request, NUMA_NO_NODE); 5627 if (!mddev->queue) 5628 goto abort; 5629 mddev->queue->queuedata = mddev; 5630 5631 blk_set_stacking_limits(&mddev->queue->limits); 5632 5633 disk = alloc_disk(1 << shift); 5634 if (!disk) { 5635 blk_cleanup_queue(mddev->queue); 5636 mddev->queue = NULL; 5637 goto abort; 5638 } 5639 disk->major = MAJOR(mddev->unit); 5640 disk->first_minor = unit << shift; 5641 if (name) 5642 strcpy(disk->disk_name, name); 5643 else if (partitioned) 5644 sprintf(disk->disk_name, "md_d%d", unit); 5645 else 5646 sprintf(disk->disk_name, "md%d", unit); 5647 disk->fops = &md_fops; 5648 disk->private_data = mddev; 5649 disk->queue = mddev->queue; 5650 blk_queue_write_cache(mddev->queue, true, true); 5651 /* Allow extended partitions. This makes the 5652 * 'mdp' device redundant, but we can't really 5653 * remove it now. 5654 */ 5655 disk->flags |= GENHD_FL_EXT_DEVT; 5656 mddev->gendisk = disk; 5657 /* As soon as we call add_disk(), another thread could get 5658 * through to md_open, so make sure it doesn't get too far 5659 */ 5660 mutex_lock(&mddev->open_mutex); 5661 add_disk(disk); 5662 5663 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5664 if (error) { 5665 /* This isn't possible, but as kobject_init_and_add is marked 5666 * __must_check, we must do something with the result 5667 */ 5668 pr_debug("md: cannot register %s/md - name in use\n", 5669 disk->disk_name); 5670 error = 0; 5671 } 5672 if (mddev->kobj.sd && 5673 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5674 pr_debug("pointless warning\n"); 5675 mutex_unlock(&mddev->open_mutex); 5676 abort: 5677 mutex_unlock(&disks_mutex); 5678 if (!error && mddev->kobj.sd) { 5679 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5680 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5681 } 5682 mddev_put(mddev); 5683 return error; 5684 } 5685 5686 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5687 { 5688 if (create_on_open) 5689 md_alloc(dev, NULL); 5690 return NULL; 5691 } 5692 5693 static int add_named_array(const char *val, const struct kernel_param *kp) 5694 { 5695 /* 5696 * val must be "md_*" or "mdNNN". 5697 * For "md_*" we allocate an array with a large free minor number, and 5698 * set the name to val. val must not already be an active name. 5699 * For "mdNNN" we allocate an array with the minor number NNN 5700 * which must not already be in use. 5701 */ 5702 int len = strlen(val); 5703 char buf[DISK_NAME_LEN]; 5704 unsigned long devnum; 5705 5706 while (len && val[len-1] == '\n') 5707 len--; 5708 if (len >= DISK_NAME_LEN) 5709 return -E2BIG; 5710 strlcpy(buf, val, len+1); 5711 if (strncmp(buf, "md_", 3) == 0) 5712 return md_alloc(0, buf); 5713 if (strncmp(buf, "md", 2) == 0 && 5714 isdigit(buf[2]) && 5715 kstrtoul(buf+2, 10, &devnum) == 0 && 5716 devnum <= MINORMASK) 5717 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5718 5719 return -EINVAL; 5720 } 5721 5722 static void md_safemode_timeout(struct timer_list *t) 5723 { 5724 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5725 5726 mddev->safemode = 1; 5727 if (mddev->external) 5728 sysfs_notify_dirent_safe(mddev->sysfs_state); 5729 5730 md_wakeup_thread(mddev->thread); 5731 } 5732 5733 static int start_dirty_degraded; 5734 5735 int md_run(struct mddev *mddev) 5736 { 5737 int err; 5738 struct md_rdev *rdev; 5739 struct md_personality *pers; 5740 5741 if (list_empty(&mddev->disks)) 5742 /* cannot run an array with no devices.. */ 5743 return -EINVAL; 5744 5745 if (mddev->pers) 5746 return -EBUSY; 5747 /* Cannot run until previous stop completes properly */ 5748 if (mddev->sysfs_active) 5749 return -EBUSY; 5750 5751 /* 5752 * Analyze all RAID superblock(s) 5753 */ 5754 if (!mddev->raid_disks) { 5755 if (!mddev->persistent) 5756 return -EINVAL; 5757 err = analyze_sbs(mddev); 5758 if (err) 5759 return -EINVAL; 5760 } 5761 5762 if (mddev->level != LEVEL_NONE) 5763 request_module("md-level-%d", mddev->level); 5764 else if (mddev->clevel[0]) 5765 request_module("md-%s", mddev->clevel); 5766 5767 /* 5768 * Drop all container device buffers, from now on 5769 * the only valid external interface is through the md 5770 * device. 5771 */ 5772 mddev->has_superblocks = false; 5773 rdev_for_each(rdev, mddev) { 5774 if (test_bit(Faulty, &rdev->flags)) 5775 continue; 5776 sync_blockdev(rdev->bdev); 5777 invalidate_bdev(rdev->bdev); 5778 if (mddev->ro != 1 && 5779 (bdev_read_only(rdev->bdev) || 5780 bdev_read_only(rdev->meta_bdev))) { 5781 mddev->ro = 1; 5782 if (mddev->gendisk) 5783 set_disk_ro(mddev->gendisk, 1); 5784 } 5785 5786 if (rdev->sb_page) 5787 mddev->has_superblocks = true; 5788 5789 /* perform some consistency tests on the device. 5790 * We don't want the data to overlap the metadata, 5791 * Internal Bitmap issues have been handled elsewhere. 5792 */ 5793 if (rdev->meta_bdev) { 5794 /* Nothing to check */; 5795 } else if (rdev->data_offset < rdev->sb_start) { 5796 if (mddev->dev_sectors && 5797 rdev->data_offset + mddev->dev_sectors 5798 > rdev->sb_start) { 5799 pr_warn("md: %s: data overlaps metadata\n", 5800 mdname(mddev)); 5801 return -EINVAL; 5802 } 5803 } else { 5804 if (rdev->sb_start + rdev->sb_size/512 5805 > rdev->data_offset) { 5806 pr_warn("md: %s: metadata overlaps data\n", 5807 mdname(mddev)); 5808 return -EINVAL; 5809 } 5810 } 5811 sysfs_notify_dirent_safe(rdev->sysfs_state); 5812 } 5813 5814 if (!bioset_initialized(&mddev->bio_set)) { 5815 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5816 if (err) 5817 return err; 5818 } 5819 if (!bioset_initialized(&mddev->sync_set)) { 5820 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5821 if (err) 5822 return err; 5823 } 5824 5825 spin_lock(&pers_lock); 5826 pers = find_pers(mddev->level, mddev->clevel); 5827 if (!pers || !try_module_get(pers->owner)) { 5828 spin_unlock(&pers_lock); 5829 if (mddev->level != LEVEL_NONE) 5830 pr_warn("md: personality for level %d is not loaded!\n", 5831 mddev->level); 5832 else 5833 pr_warn("md: personality for level %s is not loaded!\n", 5834 mddev->clevel); 5835 err = -EINVAL; 5836 goto abort; 5837 } 5838 spin_unlock(&pers_lock); 5839 if (mddev->level != pers->level) { 5840 mddev->level = pers->level; 5841 mddev->new_level = pers->level; 5842 } 5843 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5844 5845 if (mddev->reshape_position != MaxSector && 5846 pers->start_reshape == NULL) { 5847 /* This personality cannot handle reshaping... */ 5848 module_put(pers->owner); 5849 err = -EINVAL; 5850 goto abort; 5851 } 5852 5853 if (pers->sync_request) { 5854 /* Warn if this is a potentially silly 5855 * configuration. 5856 */ 5857 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5858 struct md_rdev *rdev2; 5859 int warned = 0; 5860 5861 rdev_for_each(rdev, mddev) 5862 rdev_for_each(rdev2, mddev) { 5863 if (rdev < rdev2 && 5864 rdev->bdev->bd_contains == 5865 rdev2->bdev->bd_contains) { 5866 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5867 mdname(mddev), 5868 bdevname(rdev->bdev,b), 5869 bdevname(rdev2->bdev,b2)); 5870 warned = 1; 5871 } 5872 } 5873 5874 if (warned) 5875 pr_warn("True protection against single-disk failure might be compromised.\n"); 5876 } 5877 5878 mddev->recovery = 0; 5879 /* may be over-ridden by personality */ 5880 mddev->resync_max_sectors = mddev->dev_sectors; 5881 5882 mddev->ok_start_degraded = start_dirty_degraded; 5883 5884 if (start_readonly && mddev->ro == 0) 5885 mddev->ro = 2; /* read-only, but switch on first write */ 5886 5887 err = pers->run(mddev); 5888 if (err) 5889 pr_warn("md: pers->run() failed ...\n"); 5890 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5891 WARN_ONCE(!mddev->external_size, 5892 "%s: default size too small, but 'external_size' not in effect?\n", 5893 __func__); 5894 pr_warn("md: invalid array_size %llu > default size %llu\n", 5895 (unsigned long long)mddev->array_sectors / 2, 5896 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5897 err = -EINVAL; 5898 } 5899 if (err == 0 && pers->sync_request && 5900 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5901 struct bitmap *bitmap; 5902 5903 bitmap = md_bitmap_create(mddev, -1); 5904 if (IS_ERR(bitmap)) { 5905 err = PTR_ERR(bitmap); 5906 pr_warn("%s: failed to create bitmap (%d)\n", 5907 mdname(mddev), err); 5908 } else 5909 mddev->bitmap = bitmap; 5910 5911 } 5912 if (err) 5913 goto bitmap_abort; 5914 5915 if (mddev->bitmap_info.max_write_behind > 0) { 5916 bool create_pool = false; 5917 5918 rdev_for_each(rdev, mddev) { 5919 if (test_bit(WriteMostly, &rdev->flags) && 5920 rdev_init_serial(rdev)) 5921 create_pool = true; 5922 } 5923 if (create_pool && mddev->serial_info_pool == NULL) { 5924 mddev->serial_info_pool = 5925 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5926 sizeof(struct serial_info)); 5927 if (!mddev->serial_info_pool) { 5928 err = -ENOMEM; 5929 goto bitmap_abort; 5930 } 5931 } 5932 } 5933 5934 if (mddev->queue) { 5935 bool nonrot = true; 5936 5937 rdev_for_each(rdev, mddev) { 5938 if (rdev->raid_disk >= 0 && 5939 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5940 nonrot = false; 5941 break; 5942 } 5943 } 5944 if (mddev->degraded) 5945 nonrot = false; 5946 if (nonrot) 5947 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5948 else 5949 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5950 mddev->queue->backing_dev_info->congested_data = mddev; 5951 mddev->queue->backing_dev_info->congested_fn = md_congested; 5952 } 5953 if (pers->sync_request) { 5954 if (mddev->kobj.sd && 5955 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5956 pr_warn("md: cannot register extra attributes for %s\n", 5957 mdname(mddev)); 5958 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5959 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5960 mddev->ro = 0; 5961 5962 atomic_set(&mddev->max_corr_read_errors, 5963 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5964 mddev->safemode = 0; 5965 if (mddev_is_clustered(mddev)) 5966 mddev->safemode_delay = 0; 5967 else 5968 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5969 mddev->in_sync = 1; 5970 smp_wmb(); 5971 spin_lock(&mddev->lock); 5972 mddev->pers = pers; 5973 spin_unlock(&mddev->lock); 5974 rdev_for_each(rdev, mddev) 5975 if (rdev->raid_disk >= 0) 5976 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 5977 5978 if (mddev->degraded && !mddev->ro) 5979 /* This ensures that recovering status is reported immediately 5980 * via sysfs - until a lack of spares is confirmed. 5981 */ 5982 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5983 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5984 5985 if (mddev->sb_flags) 5986 md_update_sb(mddev, 0); 5987 5988 md_new_event(mddev); 5989 return 0; 5990 5991 bitmap_abort: 5992 mddev_detach(mddev); 5993 if (mddev->private) 5994 pers->free(mddev, mddev->private); 5995 mddev->private = NULL; 5996 module_put(pers->owner); 5997 md_bitmap_destroy(mddev); 5998 abort: 5999 bioset_exit(&mddev->bio_set); 6000 bioset_exit(&mddev->sync_set); 6001 return err; 6002 } 6003 EXPORT_SYMBOL_GPL(md_run); 6004 6005 static int do_md_run(struct mddev *mddev) 6006 { 6007 int err; 6008 6009 set_bit(MD_NOT_READY, &mddev->flags); 6010 err = md_run(mddev); 6011 if (err) 6012 goto out; 6013 err = md_bitmap_load(mddev); 6014 if (err) { 6015 md_bitmap_destroy(mddev); 6016 goto out; 6017 } 6018 6019 if (mddev_is_clustered(mddev)) 6020 md_allow_write(mddev); 6021 6022 /* run start up tasks that require md_thread */ 6023 md_start(mddev); 6024 6025 md_wakeup_thread(mddev->thread); 6026 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6027 6028 set_capacity(mddev->gendisk, mddev->array_sectors); 6029 revalidate_disk(mddev->gendisk); 6030 clear_bit(MD_NOT_READY, &mddev->flags); 6031 mddev->changed = 1; 6032 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6033 sysfs_notify_dirent_safe(mddev->sysfs_state); 6034 sysfs_notify_dirent_safe(mddev->sysfs_action); 6035 sysfs_notify(&mddev->kobj, NULL, "degraded"); 6036 out: 6037 clear_bit(MD_NOT_READY, &mddev->flags); 6038 return err; 6039 } 6040 6041 int md_start(struct mddev *mddev) 6042 { 6043 int ret = 0; 6044 6045 if (mddev->pers->start) { 6046 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6047 md_wakeup_thread(mddev->thread); 6048 ret = mddev->pers->start(mddev); 6049 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6050 md_wakeup_thread(mddev->sync_thread); 6051 } 6052 return ret; 6053 } 6054 EXPORT_SYMBOL_GPL(md_start); 6055 6056 static int restart_array(struct mddev *mddev) 6057 { 6058 struct gendisk *disk = mddev->gendisk; 6059 struct md_rdev *rdev; 6060 bool has_journal = false; 6061 bool has_readonly = false; 6062 6063 /* Complain if it has no devices */ 6064 if (list_empty(&mddev->disks)) 6065 return -ENXIO; 6066 if (!mddev->pers) 6067 return -EINVAL; 6068 if (!mddev->ro) 6069 return -EBUSY; 6070 6071 rcu_read_lock(); 6072 rdev_for_each_rcu(rdev, mddev) { 6073 if (test_bit(Journal, &rdev->flags) && 6074 !test_bit(Faulty, &rdev->flags)) 6075 has_journal = true; 6076 if (bdev_read_only(rdev->bdev)) 6077 has_readonly = true; 6078 } 6079 rcu_read_unlock(); 6080 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6081 /* Don't restart rw with journal missing/faulty */ 6082 return -EINVAL; 6083 if (has_readonly) 6084 return -EROFS; 6085 6086 mddev->safemode = 0; 6087 mddev->ro = 0; 6088 set_disk_ro(disk, 0); 6089 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6090 /* Kick recovery or resync if necessary */ 6091 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6092 md_wakeup_thread(mddev->thread); 6093 md_wakeup_thread(mddev->sync_thread); 6094 sysfs_notify_dirent_safe(mddev->sysfs_state); 6095 return 0; 6096 } 6097 6098 static void md_clean(struct mddev *mddev) 6099 { 6100 mddev->array_sectors = 0; 6101 mddev->external_size = 0; 6102 mddev->dev_sectors = 0; 6103 mddev->raid_disks = 0; 6104 mddev->recovery_cp = 0; 6105 mddev->resync_min = 0; 6106 mddev->resync_max = MaxSector; 6107 mddev->reshape_position = MaxSector; 6108 mddev->external = 0; 6109 mddev->persistent = 0; 6110 mddev->level = LEVEL_NONE; 6111 mddev->clevel[0] = 0; 6112 mddev->flags = 0; 6113 mddev->sb_flags = 0; 6114 mddev->ro = 0; 6115 mddev->metadata_type[0] = 0; 6116 mddev->chunk_sectors = 0; 6117 mddev->ctime = mddev->utime = 0; 6118 mddev->layout = 0; 6119 mddev->max_disks = 0; 6120 mddev->events = 0; 6121 mddev->can_decrease_events = 0; 6122 mddev->delta_disks = 0; 6123 mddev->reshape_backwards = 0; 6124 mddev->new_level = LEVEL_NONE; 6125 mddev->new_layout = 0; 6126 mddev->new_chunk_sectors = 0; 6127 mddev->curr_resync = 0; 6128 atomic64_set(&mddev->resync_mismatches, 0); 6129 mddev->suspend_lo = mddev->suspend_hi = 0; 6130 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6131 mddev->recovery = 0; 6132 mddev->in_sync = 0; 6133 mddev->changed = 0; 6134 mddev->degraded = 0; 6135 mddev->safemode = 0; 6136 mddev->private = NULL; 6137 mddev->cluster_info = NULL; 6138 mddev->bitmap_info.offset = 0; 6139 mddev->bitmap_info.default_offset = 0; 6140 mddev->bitmap_info.default_space = 0; 6141 mddev->bitmap_info.chunksize = 0; 6142 mddev->bitmap_info.daemon_sleep = 0; 6143 mddev->bitmap_info.max_write_behind = 0; 6144 mddev->bitmap_info.nodes = 0; 6145 } 6146 6147 static void __md_stop_writes(struct mddev *mddev) 6148 { 6149 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6150 flush_workqueue(md_misc_wq); 6151 if (mddev->sync_thread) { 6152 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6153 md_reap_sync_thread(mddev); 6154 } 6155 6156 del_timer_sync(&mddev->safemode_timer); 6157 6158 if (mddev->pers && mddev->pers->quiesce) { 6159 mddev->pers->quiesce(mddev, 1); 6160 mddev->pers->quiesce(mddev, 0); 6161 } 6162 md_bitmap_flush(mddev); 6163 6164 if (mddev->ro == 0 && 6165 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6166 mddev->sb_flags)) { 6167 /* mark array as shutdown cleanly */ 6168 if (!mddev_is_clustered(mddev)) 6169 mddev->in_sync = 1; 6170 md_update_sb(mddev, 1); 6171 } 6172 /* disable policy to guarantee rdevs free resources for serialization */ 6173 mddev->serialize_policy = 0; 6174 mddev_destroy_serial_pool(mddev, NULL, true); 6175 } 6176 6177 void md_stop_writes(struct mddev *mddev) 6178 { 6179 mddev_lock_nointr(mddev); 6180 __md_stop_writes(mddev); 6181 mddev_unlock(mddev); 6182 } 6183 EXPORT_SYMBOL_GPL(md_stop_writes); 6184 6185 static void mddev_detach(struct mddev *mddev) 6186 { 6187 md_bitmap_wait_behind_writes(mddev); 6188 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6189 mddev->pers->quiesce(mddev, 1); 6190 mddev->pers->quiesce(mddev, 0); 6191 } 6192 md_unregister_thread(&mddev->thread); 6193 if (mddev->queue) 6194 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6195 } 6196 6197 static void __md_stop(struct mddev *mddev) 6198 { 6199 struct md_personality *pers = mddev->pers; 6200 md_bitmap_destroy(mddev); 6201 mddev_detach(mddev); 6202 /* Ensure ->event_work is done */ 6203 flush_workqueue(md_misc_wq); 6204 spin_lock(&mddev->lock); 6205 mddev->pers = NULL; 6206 spin_unlock(&mddev->lock); 6207 pers->free(mddev, mddev->private); 6208 mddev->private = NULL; 6209 if (pers->sync_request && mddev->to_remove == NULL) 6210 mddev->to_remove = &md_redundancy_group; 6211 module_put(pers->owner); 6212 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6213 } 6214 6215 void md_stop(struct mddev *mddev) 6216 { 6217 /* stop the array and free an attached data structures. 6218 * This is called from dm-raid 6219 */ 6220 __md_stop(mddev); 6221 bioset_exit(&mddev->bio_set); 6222 bioset_exit(&mddev->sync_set); 6223 } 6224 6225 EXPORT_SYMBOL_GPL(md_stop); 6226 6227 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6228 { 6229 int err = 0; 6230 int did_freeze = 0; 6231 6232 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6233 did_freeze = 1; 6234 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6235 md_wakeup_thread(mddev->thread); 6236 } 6237 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6238 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6239 if (mddev->sync_thread) 6240 /* Thread might be blocked waiting for metadata update 6241 * which will now never happen */ 6242 wake_up_process(mddev->sync_thread->tsk); 6243 6244 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6245 return -EBUSY; 6246 mddev_unlock(mddev); 6247 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6248 &mddev->recovery)); 6249 wait_event(mddev->sb_wait, 6250 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6251 mddev_lock_nointr(mddev); 6252 6253 mutex_lock(&mddev->open_mutex); 6254 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6255 mddev->sync_thread || 6256 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6257 pr_warn("md: %s still in use.\n",mdname(mddev)); 6258 if (did_freeze) { 6259 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6260 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6261 md_wakeup_thread(mddev->thread); 6262 } 6263 err = -EBUSY; 6264 goto out; 6265 } 6266 if (mddev->pers) { 6267 __md_stop_writes(mddev); 6268 6269 err = -ENXIO; 6270 if (mddev->ro==1) 6271 goto out; 6272 mddev->ro = 1; 6273 set_disk_ro(mddev->gendisk, 1); 6274 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6275 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6276 md_wakeup_thread(mddev->thread); 6277 sysfs_notify_dirent_safe(mddev->sysfs_state); 6278 err = 0; 6279 } 6280 out: 6281 mutex_unlock(&mddev->open_mutex); 6282 return err; 6283 } 6284 6285 /* mode: 6286 * 0 - completely stop and dis-assemble array 6287 * 2 - stop but do not disassemble array 6288 */ 6289 static int do_md_stop(struct mddev *mddev, int mode, 6290 struct block_device *bdev) 6291 { 6292 struct gendisk *disk = mddev->gendisk; 6293 struct md_rdev *rdev; 6294 int did_freeze = 0; 6295 6296 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6297 did_freeze = 1; 6298 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6299 md_wakeup_thread(mddev->thread); 6300 } 6301 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6302 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6303 if (mddev->sync_thread) 6304 /* Thread might be blocked waiting for metadata update 6305 * which will now never happen */ 6306 wake_up_process(mddev->sync_thread->tsk); 6307 6308 mddev_unlock(mddev); 6309 wait_event(resync_wait, (mddev->sync_thread == NULL && 6310 !test_bit(MD_RECOVERY_RUNNING, 6311 &mddev->recovery))); 6312 mddev_lock_nointr(mddev); 6313 6314 mutex_lock(&mddev->open_mutex); 6315 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6316 mddev->sysfs_active || 6317 mddev->sync_thread || 6318 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6319 pr_warn("md: %s still in use.\n",mdname(mddev)); 6320 mutex_unlock(&mddev->open_mutex); 6321 if (did_freeze) { 6322 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6323 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6324 md_wakeup_thread(mddev->thread); 6325 } 6326 return -EBUSY; 6327 } 6328 if (mddev->pers) { 6329 if (mddev->ro) 6330 set_disk_ro(disk, 0); 6331 6332 __md_stop_writes(mddev); 6333 __md_stop(mddev); 6334 mddev->queue->backing_dev_info->congested_fn = NULL; 6335 6336 /* tell userspace to handle 'inactive' */ 6337 sysfs_notify_dirent_safe(mddev->sysfs_state); 6338 6339 rdev_for_each(rdev, mddev) 6340 if (rdev->raid_disk >= 0) 6341 sysfs_unlink_rdev(mddev, rdev); 6342 6343 set_capacity(disk, 0); 6344 mutex_unlock(&mddev->open_mutex); 6345 mddev->changed = 1; 6346 revalidate_disk(disk); 6347 6348 if (mddev->ro) 6349 mddev->ro = 0; 6350 } else 6351 mutex_unlock(&mddev->open_mutex); 6352 /* 6353 * Free resources if final stop 6354 */ 6355 if (mode == 0) { 6356 pr_info("md: %s stopped.\n", mdname(mddev)); 6357 6358 if (mddev->bitmap_info.file) { 6359 struct file *f = mddev->bitmap_info.file; 6360 spin_lock(&mddev->lock); 6361 mddev->bitmap_info.file = NULL; 6362 spin_unlock(&mddev->lock); 6363 fput(f); 6364 } 6365 mddev->bitmap_info.offset = 0; 6366 6367 export_array(mddev); 6368 6369 md_clean(mddev); 6370 if (mddev->hold_active == UNTIL_STOP) 6371 mddev->hold_active = 0; 6372 } 6373 md_new_event(mddev); 6374 sysfs_notify_dirent_safe(mddev->sysfs_state); 6375 return 0; 6376 } 6377 6378 #ifndef MODULE 6379 static void autorun_array(struct mddev *mddev) 6380 { 6381 struct md_rdev *rdev; 6382 int err; 6383 6384 if (list_empty(&mddev->disks)) 6385 return; 6386 6387 pr_info("md: running: "); 6388 6389 rdev_for_each(rdev, mddev) { 6390 char b[BDEVNAME_SIZE]; 6391 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6392 } 6393 pr_cont("\n"); 6394 6395 err = do_md_run(mddev); 6396 if (err) { 6397 pr_warn("md: do_md_run() returned %d\n", err); 6398 do_md_stop(mddev, 0, NULL); 6399 } 6400 } 6401 6402 /* 6403 * lets try to run arrays based on all disks that have arrived 6404 * until now. (those are in pending_raid_disks) 6405 * 6406 * the method: pick the first pending disk, collect all disks with 6407 * the same UUID, remove all from the pending list and put them into 6408 * the 'same_array' list. Then order this list based on superblock 6409 * update time (freshest comes first), kick out 'old' disks and 6410 * compare superblocks. If everything's fine then run it. 6411 * 6412 * If "unit" is allocated, then bump its reference count 6413 */ 6414 static void autorun_devices(int part) 6415 { 6416 struct md_rdev *rdev0, *rdev, *tmp; 6417 struct mddev *mddev; 6418 char b[BDEVNAME_SIZE]; 6419 6420 pr_info("md: autorun ...\n"); 6421 while (!list_empty(&pending_raid_disks)) { 6422 int unit; 6423 dev_t dev; 6424 LIST_HEAD(candidates); 6425 rdev0 = list_entry(pending_raid_disks.next, 6426 struct md_rdev, same_set); 6427 6428 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6429 INIT_LIST_HEAD(&candidates); 6430 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6431 if (super_90_load(rdev, rdev0, 0) >= 0) { 6432 pr_debug("md: adding %s ...\n", 6433 bdevname(rdev->bdev,b)); 6434 list_move(&rdev->same_set, &candidates); 6435 } 6436 /* 6437 * now we have a set of devices, with all of them having 6438 * mostly sane superblocks. It's time to allocate the 6439 * mddev. 6440 */ 6441 if (part) { 6442 dev = MKDEV(mdp_major, 6443 rdev0->preferred_minor << MdpMinorShift); 6444 unit = MINOR(dev) >> MdpMinorShift; 6445 } else { 6446 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6447 unit = MINOR(dev); 6448 } 6449 if (rdev0->preferred_minor != unit) { 6450 pr_warn("md: unit number in %s is bad: %d\n", 6451 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6452 break; 6453 } 6454 6455 md_probe(dev, NULL, NULL); 6456 mddev = mddev_find(dev); 6457 if (!mddev || !mddev->gendisk) { 6458 if (mddev) 6459 mddev_put(mddev); 6460 break; 6461 } 6462 if (mddev_lock(mddev)) 6463 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6464 else if (mddev->raid_disks || mddev->major_version 6465 || !list_empty(&mddev->disks)) { 6466 pr_warn("md: %s already running, cannot run %s\n", 6467 mdname(mddev), bdevname(rdev0->bdev,b)); 6468 mddev_unlock(mddev); 6469 } else { 6470 pr_debug("md: created %s\n", mdname(mddev)); 6471 mddev->persistent = 1; 6472 rdev_for_each_list(rdev, tmp, &candidates) { 6473 list_del_init(&rdev->same_set); 6474 if (bind_rdev_to_array(rdev, mddev)) 6475 export_rdev(rdev); 6476 } 6477 autorun_array(mddev); 6478 mddev_unlock(mddev); 6479 } 6480 /* on success, candidates will be empty, on error 6481 * it won't... 6482 */ 6483 rdev_for_each_list(rdev, tmp, &candidates) { 6484 list_del_init(&rdev->same_set); 6485 export_rdev(rdev); 6486 } 6487 mddev_put(mddev); 6488 } 6489 pr_info("md: ... autorun DONE.\n"); 6490 } 6491 #endif /* !MODULE */ 6492 6493 static int get_version(void __user *arg) 6494 { 6495 mdu_version_t ver; 6496 6497 ver.major = MD_MAJOR_VERSION; 6498 ver.minor = MD_MINOR_VERSION; 6499 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6500 6501 if (copy_to_user(arg, &ver, sizeof(ver))) 6502 return -EFAULT; 6503 6504 return 0; 6505 } 6506 6507 static int get_array_info(struct mddev *mddev, void __user *arg) 6508 { 6509 mdu_array_info_t info; 6510 int nr,working,insync,failed,spare; 6511 struct md_rdev *rdev; 6512 6513 nr = working = insync = failed = spare = 0; 6514 rcu_read_lock(); 6515 rdev_for_each_rcu(rdev, mddev) { 6516 nr++; 6517 if (test_bit(Faulty, &rdev->flags)) 6518 failed++; 6519 else { 6520 working++; 6521 if (test_bit(In_sync, &rdev->flags)) 6522 insync++; 6523 else if (test_bit(Journal, &rdev->flags)) 6524 /* TODO: add journal count to md_u.h */ 6525 ; 6526 else 6527 spare++; 6528 } 6529 } 6530 rcu_read_unlock(); 6531 6532 info.major_version = mddev->major_version; 6533 info.minor_version = mddev->minor_version; 6534 info.patch_version = MD_PATCHLEVEL_VERSION; 6535 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6536 info.level = mddev->level; 6537 info.size = mddev->dev_sectors / 2; 6538 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6539 info.size = -1; 6540 info.nr_disks = nr; 6541 info.raid_disks = mddev->raid_disks; 6542 info.md_minor = mddev->md_minor; 6543 info.not_persistent= !mddev->persistent; 6544 6545 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6546 info.state = 0; 6547 if (mddev->in_sync) 6548 info.state = (1<<MD_SB_CLEAN); 6549 if (mddev->bitmap && mddev->bitmap_info.offset) 6550 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6551 if (mddev_is_clustered(mddev)) 6552 info.state |= (1<<MD_SB_CLUSTERED); 6553 info.active_disks = insync; 6554 info.working_disks = working; 6555 info.failed_disks = failed; 6556 info.spare_disks = spare; 6557 6558 info.layout = mddev->layout; 6559 info.chunk_size = mddev->chunk_sectors << 9; 6560 6561 if (copy_to_user(arg, &info, sizeof(info))) 6562 return -EFAULT; 6563 6564 return 0; 6565 } 6566 6567 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6568 { 6569 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6570 char *ptr; 6571 int err; 6572 6573 file = kzalloc(sizeof(*file), GFP_NOIO); 6574 if (!file) 6575 return -ENOMEM; 6576 6577 err = 0; 6578 spin_lock(&mddev->lock); 6579 /* bitmap enabled */ 6580 if (mddev->bitmap_info.file) { 6581 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6582 sizeof(file->pathname)); 6583 if (IS_ERR(ptr)) 6584 err = PTR_ERR(ptr); 6585 else 6586 memmove(file->pathname, ptr, 6587 sizeof(file->pathname)-(ptr-file->pathname)); 6588 } 6589 spin_unlock(&mddev->lock); 6590 6591 if (err == 0 && 6592 copy_to_user(arg, file, sizeof(*file))) 6593 err = -EFAULT; 6594 6595 kfree(file); 6596 return err; 6597 } 6598 6599 static int get_disk_info(struct mddev *mddev, void __user * arg) 6600 { 6601 mdu_disk_info_t info; 6602 struct md_rdev *rdev; 6603 6604 if (copy_from_user(&info, arg, sizeof(info))) 6605 return -EFAULT; 6606 6607 rcu_read_lock(); 6608 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6609 if (rdev) { 6610 info.major = MAJOR(rdev->bdev->bd_dev); 6611 info.minor = MINOR(rdev->bdev->bd_dev); 6612 info.raid_disk = rdev->raid_disk; 6613 info.state = 0; 6614 if (test_bit(Faulty, &rdev->flags)) 6615 info.state |= (1<<MD_DISK_FAULTY); 6616 else if (test_bit(In_sync, &rdev->flags)) { 6617 info.state |= (1<<MD_DISK_ACTIVE); 6618 info.state |= (1<<MD_DISK_SYNC); 6619 } 6620 if (test_bit(Journal, &rdev->flags)) 6621 info.state |= (1<<MD_DISK_JOURNAL); 6622 if (test_bit(WriteMostly, &rdev->flags)) 6623 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6624 if (test_bit(FailFast, &rdev->flags)) 6625 info.state |= (1<<MD_DISK_FAILFAST); 6626 } else { 6627 info.major = info.minor = 0; 6628 info.raid_disk = -1; 6629 info.state = (1<<MD_DISK_REMOVED); 6630 } 6631 rcu_read_unlock(); 6632 6633 if (copy_to_user(arg, &info, sizeof(info))) 6634 return -EFAULT; 6635 6636 return 0; 6637 } 6638 6639 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6640 { 6641 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6642 struct md_rdev *rdev; 6643 dev_t dev = MKDEV(info->major,info->minor); 6644 6645 if (mddev_is_clustered(mddev) && 6646 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6647 pr_warn("%s: Cannot add to clustered mddev.\n", 6648 mdname(mddev)); 6649 return -EINVAL; 6650 } 6651 6652 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6653 return -EOVERFLOW; 6654 6655 if (!mddev->raid_disks) { 6656 int err; 6657 /* expecting a device which has a superblock */ 6658 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6659 if (IS_ERR(rdev)) { 6660 pr_warn("md: md_import_device returned %ld\n", 6661 PTR_ERR(rdev)); 6662 return PTR_ERR(rdev); 6663 } 6664 if (!list_empty(&mddev->disks)) { 6665 struct md_rdev *rdev0 6666 = list_entry(mddev->disks.next, 6667 struct md_rdev, same_set); 6668 err = super_types[mddev->major_version] 6669 .load_super(rdev, rdev0, mddev->minor_version); 6670 if (err < 0) { 6671 pr_warn("md: %s has different UUID to %s\n", 6672 bdevname(rdev->bdev,b), 6673 bdevname(rdev0->bdev,b2)); 6674 export_rdev(rdev); 6675 return -EINVAL; 6676 } 6677 } 6678 err = bind_rdev_to_array(rdev, mddev); 6679 if (err) 6680 export_rdev(rdev); 6681 return err; 6682 } 6683 6684 /* 6685 * add_new_disk can be used once the array is assembled 6686 * to add "hot spares". They must already have a superblock 6687 * written 6688 */ 6689 if (mddev->pers) { 6690 int err; 6691 if (!mddev->pers->hot_add_disk) { 6692 pr_warn("%s: personality does not support diskops!\n", 6693 mdname(mddev)); 6694 return -EINVAL; 6695 } 6696 if (mddev->persistent) 6697 rdev = md_import_device(dev, mddev->major_version, 6698 mddev->minor_version); 6699 else 6700 rdev = md_import_device(dev, -1, -1); 6701 if (IS_ERR(rdev)) { 6702 pr_warn("md: md_import_device returned %ld\n", 6703 PTR_ERR(rdev)); 6704 return PTR_ERR(rdev); 6705 } 6706 /* set saved_raid_disk if appropriate */ 6707 if (!mddev->persistent) { 6708 if (info->state & (1<<MD_DISK_SYNC) && 6709 info->raid_disk < mddev->raid_disks) { 6710 rdev->raid_disk = info->raid_disk; 6711 set_bit(In_sync, &rdev->flags); 6712 clear_bit(Bitmap_sync, &rdev->flags); 6713 } else 6714 rdev->raid_disk = -1; 6715 rdev->saved_raid_disk = rdev->raid_disk; 6716 } else 6717 super_types[mddev->major_version]. 6718 validate_super(mddev, rdev); 6719 if ((info->state & (1<<MD_DISK_SYNC)) && 6720 rdev->raid_disk != info->raid_disk) { 6721 /* This was a hot-add request, but events doesn't 6722 * match, so reject it. 6723 */ 6724 export_rdev(rdev); 6725 return -EINVAL; 6726 } 6727 6728 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6729 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6730 set_bit(WriteMostly, &rdev->flags); 6731 else 6732 clear_bit(WriteMostly, &rdev->flags); 6733 if (info->state & (1<<MD_DISK_FAILFAST)) 6734 set_bit(FailFast, &rdev->flags); 6735 else 6736 clear_bit(FailFast, &rdev->flags); 6737 6738 if (info->state & (1<<MD_DISK_JOURNAL)) { 6739 struct md_rdev *rdev2; 6740 bool has_journal = false; 6741 6742 /* make sure no existing journal disk */ 6743 rdev_for_each(rdev2, mddev) { 6744 if (test_bit(Journal, &rdev2->flags)) { 6745 has_journal = true; 6746 break; 6747 } 6748 } 6749 if (has_journal || mddev->bitmap) { 6750 export_rdev(rdev); 6751 return -EBUSY; 6752 } 6753 set_bit(Journal, &rdev->flags); 6754 } 6755 /* 6756 * check whether the device shows up in other nodes 6757 */ 6758 if (mddev_is_clustered(mddev)) { 6759 if (info->state & (1 << MD_DISK_CANDIDATE)) 6760 set_bit(Candidate, &rdev->flags); 6761 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6762 /* --add initiated by this node */ 6763 err = md_cluster_ops->add_new_disk(mddev, rdev); 6764 if (err) { 6765 export_rdev(rdev); 6766 return err; 6767 } 6768 } 6769 } 6770 6771 rdev->raid_disk = -1; 6772 err = bind_rdev_to_array(rdev, mddev); 6773 6774 if (err) 6775 export_rdev(rdev); 6776 6777 if (mddev_is_clustered(mddev)) { 6778 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6779 if (!err) { 6780 err = md_cluster_ops->new_disk_ack(mddev, 6781 err == 0); 6782 if (err) 6783 md_kick_rdev_from_array(rdev); 6784 } 6785 } else { 6786 if (err) 6787 md_cluster_ops->add_new_disk_cancel(mddev); 6788 else 6789 err = add_bound_rdev(rdev); 6790 } 6791 6792 } else if (!err) 6793 err = add_bound_rdev(rdev); 6794 6795 return err; 6796 } 6797 6798 /* otherwise, add_new_disk is only allowed 6799 * for major_version==0 superblocks 6800 */ 6801 if (mddev->major_version != 0) { 6802 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6803 return -EINVAL; 6804 } 6805 6806 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6807 int err; 6808 rdev = md_import_device(dev, -1, 0); 6809 if (IS_ERR(rdev)) { 6810 pr_warn("md: error, md_import_device() returned %ld\n", 6811 PTR_ERR(rdev)); 6812 return PTR_ERR(rdev); 6813 } 6814 rdev->desc_nr = info->number; 6815 if (info->raid_disk < mddev->raid_disks) 6816 rdev->raid_disk = info->raid_disk; 6817 else 6818 rdev->raid_disk = -1; 6819 6820 if (rdev->raid_disk < mddev->raid_disks) 6821 if (info->state & (1<<MD_DISK_SYNC)) 6822 set_bit(In_sync, &rdev->flags); 6823 6824 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6825 set_bit(WriteMostly, &rdev->flags); 6826 if (info->state & (1<<MD_DISK_FAILFAST)) 6827 set_bit(FailFast, &rdev->flags); 6828 6829 if (!mddev->persistent) { 6830 pr_debug("md: nonpersistent superblock ...\n"); 6831 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6832 } else 6833 rdev->sb_start = calc_dev_sboffset(rdev); 6834 rdev->sectors = rdev->sb_start; 6835 6836 err = bind_rdev_to_array(rdev, mddev); 6837 if (err) { 6838 export_rdev(rdev); 6839 return err; 6840 } 6841 } 6842 6843 return 0; 6844 } 6845 6846 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6847 { 6848 char b[BDEVNAME_SIZE]; 6849 struct md_rdev *rdev; 6850 6851 if (!mddev->pers) 6852 return -ENODEV; 6853 6854 rdev = find_rdev(mddev, dev); 6855 if (!rdev) 6856 return -ENXIO; 6857 6858 if (rdev->raid_disk < 0) 6859 goto kick_rdev; 6860 6861 clear_bit(Blocked, &rdev->flags); 6862 remove_and_add_spares(mddev, rdev); 6863 6864 if (rdev->raid_disk >= 0) 6865 goto busy; 6866 6867 kick_rdev: 6868 if (mddev_is_clustered(mddev)) 6869 md_cluster_ops->remove_disk(mddev, rdev); 6870 6871 md_kick_rdev_from_array(rdev); 6872 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6873 if (mddev->thread) 6874 md_wakeup_thread(mddev->thread); 6875 else 6876 md_update_sb(mddev, 1); 6877 md_new_event(mddev); 6878 6879 return 0; 6880 busy: 6881 pr_debug("md: cannot remove active disk %s from %s ...\n", 6882 bdevname(rdev->bdev,b), mdname(mddev)); 6883 return -EBUSY; 6884 } 6885 6886 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6887 { 6888 char b[BDEVNAME_SIZE]; 6889 int err; 6890 struct md_rdev *rdev; 6891 6892 if (!mddev->pers) 6893 return -ENODEV; 6894 6895 if (mddev->major_version != 0) { 6896 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6897 mdname(mddev)); 6898 return -EINVAL; 6899 } 6900 if (!mddev->pers->hot_add_disk) { 6901 pr_warn("%s: personality does not support diskops!\n", 6902 mdname(mddev)); 6903 return -EINVAL; 6904 } 6905 6906 rdev = md_import_device(dev, -1, 0); 6907 if (IS_ERR(rdev)) { 6908 pr_warn("md: error, md_import_device() returned %ld\n", 6909 PTR_ERR(rdev)); 6910 return -EINVAL; 6911 } 6912 6913 if (mddev->persistent) 6914 rdev->sb_start = calc_dev_sboffset(rdev); 6915 else 6916 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6917 6918 rdev->sectors = rdev->sb_start; 6919 6920 if (test_bit(Faulty, &rdev->flags)) { 6921 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6922 bdevname(rdev->bdev,b), mdname(mddev)); 6923 err = -EINVAL; 6924 goto abort_export; 6925 } 6926 6927 clear_bit(In_sync, &rdev->flags); 6928 rdev->desc_nr = -1; 6929 rdev->saved_raid_disk = -1; 6930 err = bind_rdev_to_array(rdev, mddev); 6931 if (err) 6932 goto abort_export; 6933 6934 /* 6935 * The rest should better be atomic, we can have disk failures 6936 * noticed in interrupt contexts ... 6937 */ 6938 6939 rdev->raid_disk = -1; 6940 6941 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6942 if (!mddev->thread) 6943 md_update_sb(mddev, 1); 6944 /* 6945 * Kick recovery, maybe this spare has to be added to the 6946 * array immediately. 6947 */ 6948 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6949 md_wakeup_thread(mddev->thread); 6950 md_new_event(mddev); 6951 return 0; 6952 6953 abort_export: 6954 export_rdev(rdev); 6955 return err; 6956 } 6957 6958 static int set_bitmap_file(struct mddev *mddev, int fd) 6959 { 6960 int err = 0; 6961 6962 if (mddev->pers) { 6963 if (!mddev->pers->quiesce || !mddev->thread) 6964 return -EBUSY; 6965 if (mddev->recovery || mddev->sync_thread) 6966 return -EBUSY; 6967 /* we should be able to change the bitmap.. */ 6968 } 6969 6970 if (fd >= 0) { 6971 struct inode *inode; 6972 struct file *f; 6973 6974 if (mddev->bitmap || mddev->bitmap_info.file) 6975 return -EEXIST; /* cannot add when bitmap is present */ 6976 f = fget(fd); 6977 6978 if (f == NULL) { 6979 pr_warn("%s: error: failed to get bitmap file\n", 6980 mdname(mddev)); 6981 return -EBADF; 6982 } 6983 6984 inode = f->f_mapping->host; 6985 if (!S_ISREG(inode->i_mode)) { 6986 pr_warn("%s: error: bitmap file must be a regular file\n", 6987 mdname(mddev)); 6988 err = -EBADF; 6989 } else if (!(f->f_mode & FMODE_WRITE)) { 6990 pr_warn("%s: error: bitmap file must open for write\n", 6991 mdname(mddev)); 6992 err = -EBADF; 6993 } else if (atomic_read(&inode->i_writecount) != 1) { 6994 pr_warn("%s: error: bitmap file is already in use\n", 6995 mdname(mddev)); 6996 err = -EBUSY; 6997 } 6998 if (err) { 6999 fput(f); 7000 return err; 7001 } 7002 mddev->bitmap_info.file = f; 7003 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7004 } else if (mddev->bitmap == NULL) 7005 return -ENOENT; /* cannot remove what isn't there */ 7006 err = 0; 7007 if (mddev->pers) { 7008 if (fd >= 0) { 7009 struct bitmap *bitmap; 7010 7011 bitmap = md_bitmap_create(mddev, -1); 7012 mddev_suspend(mddev); 7013 if (!IS_ERR(bitmap)) { 7014 mddev->bitmap = bitmap; 7015 err = md_bitmap_load(mddev); 7016 } else 7017 err = PTR_ERR(bitmap); 7018 if (err) { 7019 md_bitmap_destroy(mddev); 7020 fd = -1; 7021 } 7022 mddev_resume(mddev); 7023 } else if (fd < 0) { 7024 mddev_suspend(mddev); 7025 md_bitmap_destroy(mddev); 7026 mddev_resume(mddev); 7027 } 7028 } 7029 if (fd < 0) { 7030 struct file *f = mddev->bitmap_info.file; 7031 if (f) { 7032 spin_lock(&mddev->lock); 7033 mddev->bitmap_info.file = NULL; 7034 spin_unlock(&mddev->lock); 7035 fput(f); 7036 } 7037 } 7038 7039 return err; 7040 } 7041 7042 /* 7043 * set_array_info is used two different ways 7044 * The original usage is when creating a new array. 7045 * In this usage, raid_disks is > 0 and it together with 7046 * level, size, not_persistent,layout,chunksize determine the 7047 * shape of the array. 7048 * This will always create an array with a type-0.90.0 superblock. 7049 * The newer usage is when assembling an array. 7050 * In this case raid_disks will be 0, and the major_version field is 7051 * use to determine which style super-blocks are to be found on the devices. 7052 * The minor and patch _version numbers are also kept incase the 7053 * super_block handler wishes to interpret them. 7054 */ 7055 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 7056 { 7057 7058 if (info->raid_disks == 0) { 7059 /* just setting version number for superblock loading */ 7060 if (info->major_version < 0 || 7061 info->major_version >= ARRAY_SIZE(super_types) || 7062 super_types[info->major_version].name == NULL) { 7063 /* maybe try to auto-load a module? */ 7064 pr_warn("md: superblock version %d not known\n", 7065 info->major_version); 7066 return -EINVAL; 7067 } 7068 mddev->major_version = info->major_version; 7069 mddev->minor_version = info->minor_version; 7070 mddev->patch_version = info->patch_version; 7071 mddev->persistent = !info->not_persistent; 7072 /* ensure mddev_put doesn't delete this now that there 7073 * is some minimal configuration. 7074 */ 7075 mddev->ctime = ktime_get_real_seconds(); 7076 return 0; 7077 } 7078 mddev->major_version = MD_MAJOR_VERSION; 7079 mddev->minor_version = MD_MINOR_VERSION; 7080 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7081 mddev->ctime = ktime_get_real_seconds(); 7082 7083 mddev->level = info->level; 7084 mddev->clevel[0] = 0; 7085 mddev->dev_sectors = 2 * (sector_t)info->size; 7086 mddev->raid_disks = info->raid_disks; 7087 /* don't set md_minor, it is determined by which /dev/md* was 7088 * openned 7089 */ 7090 if (info->state & (1<<MD_SB_CLEAN)) 7091 mddev->recovery_cp = MaxSector; 7092 else 7093 mddev->recovery_cp = 0; 7094 mddev->persistent = ! info->not_persistent; 7095 mddev->external = 0; 7096 7097 mddev->layout = info->layout; 7098 if (mddev->level == 0) 7099 /* Cannot trust RAID0 layout info here */ 7100 mddev->layout = -1; 7101 mddev->chunk_sectors = info->chunk_size >> 9; 7102 7103 if (mddev->persistent) { 7104 mddev->max_disks = MD_SB_DISKS; 7105 mddev->flags = 0; 7106 mddev->sb_flags = 0; 7107 } 7108 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7109 7110 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7111 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7112 mddev->bitmap_info.offset = 0; 7113 7114 mddev->reshape_position = MaxSector; 7115 7116 /* 7117 * Generate a 128 bit UUID 7118 */ 7119 get_random_bytes(mddev->uuid, 16); 7120 7121 mddev->new_level = mddev->level; 7122 mddev->new_chunk_sectors = mddev->chunk_sectors; 7123 mddev->new_layout = mddev->layout; 7124 mddev->delta_disks = 0; 7125 mddev->reshape_backwards = 0; 7126 7127 return 0; 7128 } 7129 7130 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7131 { 7132 lockdep_assert_held(&mddev->reconfig_mutex); 7133 7134 if (mddev->external_size) 7135 return; 7136 7137 mddev->array_sectors = array_sectors; 7138 } 7139 EXPORT_SYMBOL(md_set_array_sectors); 7140 7141 static int update_size(struct mddev *mddev, sector_t num_sectors) 7142 { 7143 struct md_rdev *rdev; 7144 int rv; 7145 int fit = (num_sectors == 0); 7146 sector_t old_dev_sectors = mddev->dev_sectors; 7147 7148 if (mddev->pers->resize == NULL) 7149 return -EINVAL; 7150 /* The "num_sectors" is the number of sectors of each device that 7151 * is used. This can only make sense for arrays with redundancy. 7152 * linear and raid0 always use whatever space is available. We can only 7153 * consider changing this number if no resync or reconstruction is 7154 * happening, and if the new size is acceptable. It must fit before the 7155 * sb_start or, if that is <data_offset, it must fit before the size 7156 * of each device. If num_sectors is zero, we find the largest size 7157 * that fits. 7158 */ 7159 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7160 mddev->sync_thread) 7161 return -EBUSY; 7162 if (mddev->ro) 7163 return -EROFS; 7164 7165 rdev_for_each(rdev, mddev) { 7166 sector_t avail = rdev->sectors; 7167 7168 if (fit && (num_sectors == 0 || num_sectors > avail)) 7169 num_sectors = avail; 7170 if (avail < num_sectors) 7171 return -ENOSPC; 7172 } 7173 rv = mddev->pers->resize(mddev, num_sectors); 7174 if (!rv) { 7175 if (mddev_is_clustered(mddev)) 7176 md_cluster_ops->update_size(mddev, old_dev_sectors); 7177 else if (mddev->queue) { 7178 set_capacity(mddev->gendisk, mddev->array_sectors); 7179 revalidate_disk(mddev->gendisk); 7180 } 7181 } 7182 return rv; 7183 } 7184 7185 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7186 { 7187 int rv; 7188 struct md_rdev *rdev; 7189 /* change the number of raid disks */ 7190 if (mddev->pers->check_reshape == NULL) 7191 return -EINVAL; 7192 if (mddev->ro) 7193 return -EROFS; 7194 if (raid_disks <= 0 || 7195 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7196 return -EINVAL; 7197 if (mddev->sync_thread || 7198 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7199 mddev->reshape_position != MaxSector) 7200 return -EBUSY; 7201 7202 rdev_for_each(rdev, mddev) { 7203 if (mddev->raid_disks < raid_disks && 7204 rdev->data_offset < rdev->new_data_offset) 7205 return -EINVAL; 7206 if (mddev->raid_disks > raid_disks && 7207 rdev->data_offset > rdev->new_data_offset) 7208 return -EINVAL; 7209 } 7210 7211 mddev->delta_disks = raid_disks - mddev->raid_disks; 7212 if (mddev->delta_disks < 0) 7213 mddev->reshape_backwards = 1; 7214 else if (mddev->delta_disks > 0) 7215 mddev->reshape_backwards = 0; 7216 7217 rv = mddev->pers->check_reshape(mddev); 7218 if (rv < 0) { 7219 mddev->delta_disks = 0; 7220 mddev->reshape_backwards = 0; 7221 } 7222 return rv; 7223 } 7224 7225 /* 7226 * update_array_info is used to change the configuration of an 7227 * on-line array. 7228 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7229 * fields in the info are checked against the array. 7230 * Any differences that cannot be handled will cause an error. 7231 * Normally, only one change can be managed at a time. 7232 */ 7233 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7234 { 7235 int rv = 0; 7236 int cnt = 0; 7237 int state = 0; 7238 7239 /* calculate expected state,ignoring low bits */ 7240 if (mddev->bitmap && mddev->bitmap_info.offset) 7241 state |= (1 << MD_SB_BITMAP_PRESENT); 7242 7243 if (mddev->major_version != info->major_version || 7244 mddev->minor_version != info->minor_version || 7245 /* mddev->patch_version != info->patch_version || */ 7246 mddev->ctime != info->ctime || 7247 mddev->level != info->level || 7248 /* mddev->layout != info->layout || */ 7249 mddev->persistent != !info->not_persistent || 7250 mddev->chunk_sectors != info->chunk_size >> 9 || 7251 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7252 ((state^info->state) & 0xfffffe00) 7253 ) 7254 return -EINVAL; 7255 /* Check there is only one change */ 7256 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7257 cnt++; 7258 if (mddev->raid_disks != info->raid_disks) 7259 cnt++; 7260 if (mddev->layout != info->layout) 7261 cnt++; 7262 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7263 cnt++; 7264 if (cnt == 0) 7265 return 0; 7266 if (cnt > 1) 7267 return -EINVAL; 7268 7269 if (mddev->layout != info->layout) { 7270 /* Change layout 7271 * we don't need to do anything at the md level, the 7272 * personality will take care of it all. 7273 */ 7274 if (mddev->pers->check_reshape == NULL) 7275 return -EINVAL; 7276 else { 7277 mddev->new_layout = info->layout; 7278 rv = mddev->pers->check_reshape(mddev); 7279 if (rv) 7280 mddev->new_layout = mddev->layout; 7281 return rv; 7282 } 7283 } 7284 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7285 rv = update_size(mddev, (sector_t)info->size * 2); 7286 7287 if (mddev->raid_disks != info->raid_disks) 7288 rv = update_raid_disks(mddev, info->raid_disks); 7289 7290 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7291 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7292 rv = -EINVAL; 7293 goto err; 7294 } 7295 if (mddev->recovery || mddev->sync_thread) { 7296 rv = -EBUSY; 7297 goto err; 7298 } 7299 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7300 struct bitmap *bitmap; 7301 /* add the bitmap */ 7302 if (mddev->bitmap) { 7303 rv = -EEXIST; 7304 goto err; 7305 } 7306 if (mddev->bitmap_info.default_offset == 0) { 7307 rv = -EINVAL; 7308 goto err; 7309 } 7310 mddev->bitmap_info.offset = 7311 mddev->bitmap_info.default_offset; 7312 mddev->bitmap_info.space = 7313 mddev->bitmap_info.default_space; 7314 bitmap = md_bitmap_create(mddev, -1); 7315 mddev_suspend(mddev); 7316 if (!IS_ERR(bitmap)) { 7317 mddev->bitmap = bitmap; 7318 rv = md_bitmap_load(mddev); 7319 } else 7320 rv = PTR_ERR(bitmap); 7321 if (rv) 7322 md_bitmap_destroy(mddev); 7323 mddev_resume(mddev); 7324 } else { 7325 /* remove the bitmap */ 7326 if (!mddev->bitmap) { 7327 rv = -ENOENT; 7328 goto err; 7329 } 7330 if (mddev->bitmap->storage.file) { 7331 rv = -EINVAL; 7332 goto err; 7333 } 7334 if (mddev->bitmap_info.nodes) { 7335 /* hold PW on all the bitmap lock */ 7336 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7337 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7338 rv = -EPERM; 7339 md_cluster_ops->unlock_all_bitmaps(mddev); 7340 goto err; 7341 } 7342 7343 mddev->bitmap_info.nodes = 0; 7344 md_cluster_ops->leave(mddev); 7345 } 7346 mddev_suspend(mddev); 7347 md_bitmap_destroy(mddev); 7348 mddev_resume(mddev); 7349 mddev->bitmap_info.offset = 0; 7350 } 7351 } 7352 md_update_sb(mddev, 1); 7353 return rv; 7354 err: 7355 return rv; 7356 } 7357 7358 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7359 { 7360 struct md_rdev *rdev; 7361 int err = 0; 7362 7363 if (mddev->pers == NULL) 7364 return -ENODEV; 7365 7366 rcu_read_lock(); 7367 rdev = md_find_rdev_rcu(mddev, dev); 7368 if (!rdev) 7369 err = -ENODEV; 7370 else { 7371 md_error(mddev, rdev); 7372 if (!test_bit(Faulty, &rdev->flags)) 7373 err = -EBUSY; 7374 } 7375 rcu_read_unlock(); 7376 return err; 7377 } 7378 7379 /* 7380 * We have a problem here : there is no easy way to give a CHS 7381 * virtual geometry. We currently pretend that we have a 2 heads 7382 * 4 sectors (with a BIG number of cylinders...). This drives 7383 * dosfs just mad... ;-) 7384 */ 7385 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7386 { 7387 struct mddev *mddev = bdev->bd_disk->private_data; 7388 7389 geo->heads = 2; 7390 geo->sectors = 4; 7391 geo->cylinders = mddev->array_sectors / 8; 7392 return 0; 7393 } 7394 7395 static inline bool md_ioctl_valid(unsigned int cmd) 7396 { 7397 switch (cmd) { 7398 case ADD_NEW_DISK: 7399 case BLKROSET: 7400 case GET_ARRAY_INFO: 7401 case GET_BITMAP_FILE: 7402 case GET_DISK_INFO: 7403 case HOT_ADD_DISK: 7404 case HOT_REMOVE_DISK: 7405 case RAID_AUTORUN: 7406 case RAID_VERSION: 7407 case RESTART_ARRAY_RW: 7408 case RUN_ARRAY: 7409 case SET_ARRAY_INFO: 7410 case SET_BITMAP_FILE: 7411 case SET_DISK_FAULTY: 7412 case STOP_ARRAY: 7413 case STOP_ARRAY_RO: 7414 case CLUSTERED_DISK_NACK: 7415 return true; 7416 default: 7417 return false; 7418 } 7419 } 7420 7421 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7422 unsigned int cmd, unsigned long arg) 7423 { 7424 int err = 0; 7425 void __user *argp = (void __user *)arg; 7426 struct mddev *mddev = NULL; 7427 int ro; 7428 bool did_set_md_closing = false; 7429 7430 if (!md_ioctl_valid(cmd)) 7431 return -ENOTTY; 7432 7433 switch (cmd) { 7434 case RAID_VERSION: 7435 case GET_ARRAY_INFO: 7436 case GET_DISK_INFO: 7437 break; 7438 default: 7439 if (!capable(CAP_SYS_ADMIN)) 7440 return -EACCES; 7441 } 7442 7443 /* 7444 * Commands dealing with the RAID driver but not any 7445 * particular array: 7446 */ 7447 switch (cmd) { 7448 case RAID_VERSION: 7449 err = get_version(argp); 7450 goto out; 7451 7452 #ifndef MODULE 7453 case RAID_AUTORUN: 7454 err = 0; 7455 autostart_arrays(arg); 7456 goto out; 7457 #endif 7458 default:; 7459 } 7460 7461 /* 7462 * Commands creating/starting a new array: 7463 */ 7464 7465 mddev = bdev->bd_disk->private_data; 7466 7467 if (!mddev) { 7468 BUG(); 7469 goto out; 7470 } 7471 7472 /* Some actions do not requires the mutex */ 7473 switch (cmd) { 7474 case GET_ARRAY_INFO: 7475 if (!mddev->raid_disks && !mddev->external) 7476 err = -ENODEV; 7477 else 7478 err = get_array_info(mddev, argp); 7479 goto out; 7480 7481 case GET_DISK_INFO: 7482 if (!mddev->raid_disks && !mddev->external) 7483 err = -ENODEV; 7484 else 7485 err = get_disk_info(mddev, argp); 7486 goto out; 7487 7488 case SET_DISK_FAULTY: 7489 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7490 goto out; 7491 7492 case GET_BITMAP_FILE: 7493 err = get_bitmap_file(mddev, argp); 7494 goto out; 7495 7496 } 7497 7498 if (cmd == ADD_NEW_DISK) 7499 /* need to ensure md_delayed_delete() has completed */ 7500 flush_workqueue(md_misc_wq); 7501 7502 if (cmd == HOT_REMOVE_DISK) 7503 /* need to ensure recovery thread has run */ 7504 wait_event_interruptible_timeout(mddev->sb_wait, 7505 !test_bit(MD_RECOVERY_NEEDED, 7506 &mddev->recovery), 7507 msecs_to_jiffies(5000)); 7508 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7509 /* Need to flush page cache, and ensure no-one else opens 7510 * and writes 7511 */ 7512 mutex_lock(&mddev->open_mutex); 7513 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7514 mutex_unlock(&mddev->open_mutex); 7515 err = -EBUSY; 7516 goto out; 7517 } 7518 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7519 set_bit(MD_CLOSING, &mddev->flags); 7520 did_set_md_closing = true; 7521 mutex_unlock(&mddev->open_mutex); 7522 sync_blockdev(bdev); 7523 } 7524 err = mddev_lock(mddev); 7525 if (err) { 7526 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7527 err, cmd); 7528 goto out; 7529 } 7530 7531 if (cmd == SET_ARRAY_INFO) { 7532 mdu_array_info_t info; 7533 if (!arg) 7534 memset(&info, 0, sizeof(info)); 7535 else if (copy_from_user(&info, argp, sizeof(info))) { 7536 err = -EFAULT; 7537 goto unlock; 7538 } 7539 if (mddev->pers) { 7540 err = update_array_info(mddev, &info); 7541 if (err) { 7542 pr_warn("md: couldn't update array info. %d\n", err); 7543 goto unlock; 7544 } 7545 goto unlock; 7546 } 7547 if (!list_empty(&mddev->disks)) { 7548 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7549 err = -EBUSY; 7550 goto unlock; 7551 } 7552 if (mddev->raid_disks) { 7553 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7554 err = -EBUSY; 7555 goto unlock; 7556 } 7557 err = set_array_info(mddev, &info); 7558 if (err) { 7559 pr_warn("md: couldn't set array info. %d\n", err); 7560 goto unlock; 7561 } 7562 goto unlock; 7563 } 7564 7565 /* 7566 * Commands querying/configuring an existing array: 7567 */ 7568 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7569 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7570 if ((!mddev->raid_disks && !mddev->external) 7571 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7572 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7573 && cmd != GET_BITMAP_FILE) { 7574 err = -ENODEV; 7575 goto unlock; 7576 } 7577 7578 /* 7579 * Commands even a read-only array can execute: 7580 */ 7581 switch (cmd) { 7582 case RESTART_ARRAY_RW: 7583 err = restart_array(mddev); 7584 goto unlock; 7585 7586 case STOP_ARRAY: 7587 err = do_md_stop(mddev, 0, bdev); 7588 goto unlock; 7589 7590 case STOP_ARRAY_RO: 7591 err = md_set_readonly(mddev, bdev); 7592 goto unlock; 7593 7594 case HOT_REMOVE_DISK: 7595 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7596 goto unlock; 7597 7598 case ADD_NEW_DISK: 7599 /* We can support ADD_NEW_DISK on read-only arrays 7600 * only if we are re-adding a preexisting device. 7601 * So require mddev->pers and MD_DISK_SYNC. 7602 */ 7603 if (mddev->pers) { 7604 mdu_disk_info_t info; 7605 if (copy_from_user(&info, argp, sizeof(info))) 7606 err = -EFAULT; 7607 else if (!(info.state & (1<<MD_DISK_SYNC))) 7608 /* Need to clear read-only for this */ 7609 break; 7610 else 7611 err = add_new_disk(mddev, &info); 7612 goto unlock; 7613 } 7614 break; 7615 7616 case BLKROSET: 7617 if (get_user(ro, (int __user *)(arg))) { 7618 err = -EFAULT; 7619 goto unlock; 7620 } 7621 err = -EINVAL; 7622 7623 /* if the bdev is going readonly the value of mddev->ro 7624 * does not matter, no writes are coming 7625 */ 7626 if (ro) 7627 goto unlock; 7628 7629 /* are we are already prepared for writes? */ 7630 if (mddev->ro != 1) 7631 goto unlock; 7632 7633 /* transitioning to readauto need only happen for 7634 * arrays that call md_write_start 7635 */ 7636 if (mddev->pers) { 7637 err = restart_array(mddev); 7638 if (err == 0) { 7639 mddev->ro = 2; 7640 set_disk_ro(mddev->gendisk, 0); 7641 } 7642 } 7643 goto unlock; 7644 } 7645 7646 /* 7647 * The remaining ioctls are changing the state of the 7648 * superblock, so we do not allow them on read-only arrays. 7649 */ 7650 if (mddev->ro && mddev->pers) { 7651 if (mddev->ro == 2) { 7652 mddev->ro = 0; 7653 sysfs_notify_dirent_safe(mddev->sysfs_state); 7654 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7655 /* mddev_unlock will wake thread */ 7656 /* If a device failed while we were read-only, we 7657 * need to make sure the metadata is updated now. 7658 */ 7659 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7660 mddev_unlock(mddev); 7661 wait_event(mddev->sb_wait, 7662 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7663 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7664 mddev_lock_nointr(mddev); 7665 } 7666 } else { 7667 err = -EROFS; 7668 goto unlock; 7669 } 7670 } 7671 7672 switch (cmd) { 7673 case ADD_NEW_DISK: 7674 { 7675 mdu_disk_info_t info; 7676 if (copy_from_user(&info, argp, sizeof(info))) 7677 err = -EFAULT; 7678 else 7679 err = add_new_disk(mddev, &info); 7680 goto unlock; 7681 } 7682 7683 case CLUSTERED_DISK_NACK: 7684 if (mddev_is_clustered(mddev)) 7685 md_cluster_ops->new_disk_ack(mddev, false); 7686 else 7687 err = -EINVAL; 7688 goto unlock; 7689 7690 case HOT_ADD_DISK: 7691 err = hot_add_disk(mddev, new_decode_dev(arg)); 7692 goto unlock; 7693 7694 case RUN_ARRAY: 7695 err = do_md_run(mddev); 7696 goto unlock; 7697 7698 case SET_BITMAP_FILE: 7699 err = set_bitmap_file(mddev, (int)arg); 7700 goto unlock; 7701 7702 default: 7703 err = -EINVAL; 7704 goto unlock; 7705 } 7706 7707 unlock: 7708 if (mddev->hold_active == UNTIL_IOCTL && 7709 err != -EINVAL) 7710 mddev->hold_active = 0; 7711 mddev_unlock(mddev); 7712 out: 7713 if(did_set_md_closing) 7714 clear_bit(MD_CLOSING, &mddev->flags); 7715 return err; 7716 } 7717 #ifdef CONFIG_COMPAT 7718 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7719 unsigned int cmd, unsigned long arg) 7720 { 7721 switch (cmd) { 7722 case HOT_REMOVE_DISK: 7723 case HOT_ADD_DISK: 7724 case SET_DISK_FAULTY: 7725 case SET_BITMAP_FILE: 7726 /* These take in integer arg, do not convert */ 7727 break; 7728 default: 7729 arg = (unsigned long)compat_ptr(arg); 7730 break; 7731 } 7732 7733 return md_ioctl(bdev, mode, cmd, arg); 7734 } 7735 #endif /* CONFIG_COMPAT */ 7736 7737 static int md_open(struct block_device *bdev, fmode_t mode) 7738 { 7739 /* 7740 * Succeed if we can lock the mddev, which confirms that 7741 * it isn't being stopped right now. 7742 */ 7743 struct mddev *mddev = mddev_find(bdev->bd_dev); 7744 int err; 7745 7746 if (!mddev) 7747 return -ENODEV; 7748 7749 if (mddev->gendisk != bdev->bd_disk) { 7750 /* we are racing with mddev_put which is discarding this 7751 * bd_disk. 7752 */ 7753 mddev_put(mddev); 7754 /* Wait until bdev->bd_disk is definitely gone */ 7755 flush_workqueue(md_misc_wq); 7756 /* Then retry the open from the top */ 7757 return -ERESTARTSYS; 7758 } 7759 BUG_ON(mddev != bdev->bd_disk->private_data); 7760 7761 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7762 goto out; 7763 7764 if (test_bit(MD_CLOSING, &mddev->flags)) { 7765 mutex_unlock(&mddev->open_mutex); 7766 err = -ENODEV; 7767 goto out; 7768 } 7769 7770 err = 0; 7771 atomic_inc(&mddev->openers); 7772 mutex_unlock(&mddev->open_mutex); 7773 7774 check_disk_change(bdev); 7775 out: 7776 if (err) 7777 mddev_put(mddev); 7778 return err; 7779 } 7780 7781 static void md_release(struct gendisk *disk, fmode_t mode) 7782 { 7783 struct mddev *mddev = disk->private_data; 7784 7785 BUG_ON(!mddev); 7786 atomic_dec(&mddev->openers); 7787 mddev_put(mddev); 7788 } 7789 7790 static int md_media_changed(struct gendisk *disk) 7791 { 7792 struct mddev *mddev = disk->private_data; 7793 7794 return mddev->changed; 7795 } 7796 7797 static int md_revalidate(struct gendisk *disk) 7798 { 7799 struct mddev *mddev = disk->private_data; 7800 7801 mddev->changed = 0; 7802 return 0; 7803 } 7804 static const struct block_device_operations md_fops = 7805 { 7806 .owner = THIS_MODULE, 7807 .open = md_open, 7808 .release = md_release, 7809 .ioctl = md_ioctl, 7810 #ifdef CONFIG_COMPAT 7811 .compat_ioctl = md_compat_ioctl, 7812 #endif 7813 .getgeo = md_getgeo, 7814 .media_changed = md_media_changed, 7815 .revalidate_disk= md_revalidate, 7816 }; 7817 7818 static int md_thread(void *arg) 7819 { 7820 struct md_thread *thread = arg; 7821 7822 /* 7823 * md_thread is a 'system-thread', it's priority should be very 7824 * high. We avoid resource deadlocks individually in each 7825 * raid personality. (RAID5 does preallocation) We also use RR and 7826 * the very same RT priority as kswapd, thus we will never get 7827 * into a priority inversion deadlock. 7828 * 7829 * we definitely have to have equal or higher priority than 7830 * bdflush, otherwise bdflush will deadlock if there are too 7831 * many dirty RAID5 blocks. 7832 */ 7833 7834 allow_signal(SIGKILL); 7835 while (!kthread_should_stop()) { 7836 7837 /* We need to wait INTERRUPTIBLE so that 7838 * we don't add to the load-average. 7839 * That means we need to be sure no signals are 7840 * pending 7841 */ 7842 if (signal_pending(current)) 7843 flush_signals(current); 7844 7845 wait_event_interruptible_timeout 7846 (thread->wqueue, 7847 test_bit(THREAD_WAKEUP, &thread->flags) 7848 || kthread_should_stop() || kthread_should_park(), 7849 thread->timeout); 7850 7851 clear_bit(THREAD_WAKEUP, &thread->flags); 7852 if (kthread_should_park()) 7853 kthread_parkme(); 7854 if (!kthread_should_stop()) 7855 thread->run(thread); 7856 } 7857 7858 return 0; 7859 } 7860 7861 void md_wakeup_thread(struct md_thread *thread) 7862 { 7863 if (thread) { 7864 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7865 set_bit(THREAD_WAKEUP, &thread->flags); 7866 wake_up(&thread->wqueue); 7867 } 7868 } 7869 EXPORT_SYMBOL(md_wakeup_thread); 7870 7871 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7872 struct mddev *mddev, const char *name) 7873 { 7874 struct md_thread *thread; 7875 7876 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7877 if (!thread) 7878 return NULL; 7879 7880 init_waitqueue_head(&thread->wqueue); 7881 7882 thread->run = run; 7883 thread->mddev = mddev; 7884 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7885 thread->tsk = kthread_run(md_thread, thread, 7886 "%s_%s", 7887 mdname(thread->mddev), 7888 name); 7889 if (IS_ERR(thread->tsk)) { 7890 kfree(thread); 7891 return NULL; 7892 } 7893 return thread; 7894 } 7895 EXPORT_SYMBOL(md_register_thread); 7896 7897 void md_unregister_thread(struct md_thread **threadp) 7898 { 7899 struct md_thread *thread = *threadp; 7900 if (!thread) 7901 return; 7902 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7903 /* Locking ensures that mddev_unlock does not wake_up a 7904 * non-existent thread 7905 */ 7906 spin_lock(&pers_lock); 7907 *threadp = NULL; 7908 spin_unlock(&pers_lock); 7909 7910 kthread_stop(thread->tsk); 7911 kfree(thread); 7912 } 7913 EXPORT_SYMBOL(md_unregister_thread); 7914 7915 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7916 { 7917 if (!rdev || test_bit(Faulty, &rdev->flags)) 7918 return; 7919 7920 if (!mddev->pers || !mddev->pers->error_handler) 7921 return; 7922 mddev->pers->error_handler(mddev,rdev); 7923 if (mddev->degraded) 7924 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7925 sysfs_notify_dirent_safe(rdev->sysfs_state); 7926 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7927 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7928 md_wakeup_thread(mddev->thread); 7929 if (mddev->event_work.func) 7930 queue_work(md_misc_wq, &mddev->event_work); 7931 md_new_event(mddev); 7932 } 7933 EXPORT_SYMBOL(md_error); 7934 7935 /* seq_file implementation /proc/mdstat */ 7936 7937 static void status_unused(struct seq_file *seq) 7938 { 7939 int i = 0; 7940 struct md_rdev *rdev; 7941 7942 seq_printf(seq, "unused devices: "); 7943 7944 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7945 char b[BDEVNAME_SIZE]; 7946 i++; 7947 seq_printf(seq, "%s ", 7948 bdevname(rdev->bdev,b)); 7949 } 7950 if (!i) 7951 seq_printf(seq, "<none>"); 7952 7953 seq_printf(seq, "\n"); 7954 } 7955 7956 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7957 { 7958 sector_t max_sectors, resync, res; 7959 unsigned long dt, db = 0; 7960 sector_t rt, curr_mark_cnt, resync_mark_cnt; 7961 int scale, recovery_active; 7962 unsigned int per_milli; 7963 7964 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7965 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7966 max_sectors = mddev->resync_max_sectors; 7967 else 7968 max_sectors = mddev->dev_sectors; 7969 7970 resync = mddev->curr_resync; 7971 if (resync <= 3) { 7972 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7973 /* Still cleaning up */ 7974 resync = max_sectors; 7975 } else if (resync > max_sectors) 7976 resync = max_sectors; 7977 else 7978 resync -= atomic_read(&mddev->recovery_active); 7979 7980 if (resync == 0) { 7981 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 7982 struct md_rdev *rdev; 7983 7984 rdev_for_each(rdev, mddev) 7985 if (rdev->raid_disk >= 0 && 7986 !test_bit(Faulty, &rdev->flags) && 7987 rdev->recovery_offset != MaxSector && 7988 rdev->recovery_offset) { 7989 seq_printf(seq, "\trecover=REMOTE"); 7990 return 1; 7991 } 7992 if (mddev->reshape_position != MaxSector) 7993 seq_printf(seq, "\treshape=REMOTE"); 7994 else 7995 seq_printf(seq, "\tresync=REMOTE"); 7996 return 1; 7997 } 7998 if (mddev->recovery_cp < MaxSector) { 7999 seq_printf(seq, "\tresync=PENDING"); 8000 return 1; 8001 } 8002 return 0; 8003 } 8004 if (resync < 3) { 8005 seq_printf(seq, "\tresync=DELAYED"); 8006 return 1; 8007 } 8008 8009 WARN_ON(max_sectors == 0); 8010 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8011 * in a sector_t, and (max_sectors>>scale) will fit in a 8012 * u32, as those are the requirements for sector_div. 8013 * Thus 'scale' must be at least 10 8014 */ 8015 scale = 10; 8016 if (sizeof(sector_t) > sizeof(unsigned long)) { 8017 while ( max_sectors/2 > (1ULL<<(scale+32))) 8018 scale++; 8019 } 8020 res = (resync>>scale)*1000; 8021 sector_div(res, (u32)((max_sectors>>scale)+1)); 8022 8023 per_milli = res; 8024 { 8025 int i, x = per_milli/50, y = 20-x; 8026 seq_printf(seq, "["); 8027 for (i = 0; i < x; i++) 8028 seq_printf(seq, "="); 8029 seq_printf(seq, ">"); 8030 for (i = 0; i < y; i++) 8031 seq_printf(seq, "."); 8032 seq_printf(seq, "] "); 8033 } 8034 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8035 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8036 "reshape" : 8037 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8038 "check" : 8039 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8040 "resync" : "recovery"))), 8041 per_milli/10, per_milli % 10, 8042 (unsigned long long) resync/2, 8043 (unsigned long long) max_sectors/2); 8044 8045 /* 8046 * dt: time from mark until now 8047 * db: blocks written from mark until now 8048 * rt: remaining time 8049 * 8050 * rt is a sector_t, which is always 64bit now. We are keeping 8051 * the original algorithm, but it is not really necessary. 8052 * 8053 * Original algorithm: 8054 * So we divide before multiply in case it is 32bit and close 8055 * to the limit. 8056 * We scale the divisor (db) by 32 to avoid losing precision 8057 * near the end of resync when the number of remaining sectors 8058 * is close to 'db'. 8059 * We then divide rt by 32 after multiplying by db to compensate. 8060 * The '+1' avoids division by zero if db is very small. 8061 */ 8062 dt = ((jiffies - mddev->resync_mark) / HZ); 8063 if (!dt) dt++; 8064 8065 curr_mark_cnt = mddev->curr_mark_cnt; 8066 recovery_active = atomic_read(&mddev->recovery_active); 8067 resync_mark_cnt = mddev->resync_mark_cnt; 8068 8069 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8070 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8071 8072 rt = max_sectors - resync; /* number of remaining sectors */ 8073 rt = div64_u64(rt, db/32+1); 8074 rt *= dt; 8075 rt >>= 5; 8076 8077 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8078 ((unsigned long)rt % 60)/6); 8079 8080 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8081 return 1; 8082 } 8083 8084 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8085 { 8086 struct list_head *tmp; 8087 loff_t l = *pos; 8088 struct mddev *mddev; 8089 8090 if (l >= 0x10000) 8091 return NULL; 8092 if (!l--) 8093 /* header */ 8094 return (void*)1; 8095 8096 spin_lock(&all_mddevs_lock); 8097 list_for_each(tmp,&all_mddevs) 8098 if (!l--) { 8099 mddev = list_entry(tmp, struct mddev, all_mddevs); 8100 mddev_get(mddev); 8101 spin_unlock(&all_mddevs_lock); 8102 return mddev; 8103 } 8104 spin_unlock(&all_mddevs_lock); 8105 if (!l--) 8106 return (void*)2;/* tail */ 8107 return NULL; 8108 } 8109 8110 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8111 { 8112 struct list_head *tmp; 8113 struct mddev *next_mddev, *mddev = v; 8114 8115 ++*pos; 8116 if (v == (void*)2) 8117 return NULL; 8118 8119 spin_lock(&all_mddevs_lock); 8120 if (v == (void*)1) 8121 tmp = all_mddevs.next; 8122 else 8123 tmp = mddev->all_mddevs.next; 8124 if (tmp != &all_mddevs) 8125 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8126 else { 8127 next_mddev = (void*)2; 8128 *pos = 0x10000; 8129 } 8130 spin_unlock(&all_mddevs_lock); 8131 8132 if (v != (void*)1) 8133 mddev_put(mddev); 8134 return next_mddev; 8135 8136 } 8137 8138 static void md_seq_stop(struct seq_file *seq, void *v) 8139 { 8140 struct mddev *mddev = v; 8141 8142 if (mddev && v != (void*)1 && v != (void*)2) 8143 mddev_put(mddev); 8144 } 8145 8146 static int md_seq_show(struct seq_file *seq, void *v) 8147 { 8148 struct mddev *mddev = v; 8149 sector_t sectors; 8150 struct md_rdev *rdev; 8151 8152 if (v == (void*)1) { 8153 struct md_personality *pers; 8154 seq_printf(seq, "Personalities : "); 8155 spin_lock(&pers_lock); 8156 list_for_each_entry(pers, &pers_list, list) 8157 seq_printf(seq, "[%s] ", pers->name); 8158 8159 spin_unlock(&pers_lock); 8160 seq_printf(seq, "\n"); 8161 seq->poll_event = atomic_read(&md_event_count); 8162 return 0; 8163 } 8164 if (v == (void*)2) { 8165 status_unused(seq); 8166 return 0; 8167 } 8168 8169 spin_lock(&mddev->lock); 8170 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8171 seq_printf(seq, "%s : %sactive", mdname(mddev), 8172 mddev->pers ? "" : "in"); 8173 if (mddev->pers) { 8174 if (mddev->ro==1) 8175 seq_printf(seq, " (read-only)"); 8176 if (mddev->ro==2) 8177 seq_printf(seq, " (auto-read-only)"); 8178 seq_printf(seq, " %s", mddev->pers->name); 8179 } 8180 8181 sectors = 0; 8182 rcu_read_lock(); 8183 rdev_for_each_rcu(rdev, mddev) { 8184 char b[BDEVNAME_SIZE]; 8185 seq_printf(seq, " %s[%d]", 8186 bdevname(rdev->bdev,b), rdev->desc_nr); 8187 if (test_bit(WriteMostly, &rdev->flags)) 8188 seq_printf(seq, "(W)"); 8189 if (test_bit(Journal, &rdev->flags)) 8190 seq_printf(seq, "(J)"); 8191 if (test_bit(Faulty, &rdev->flags)) { 8192 seq_printf(seq, "(F)"); 8193 continue; 8194 } 8195 if (rdev->raid_disk < 0) 8196 seq_printf(seq, "(S)"); /* spare */ 8197 if (test_bit(Replacement, &rdev->flags)) 8198 seq_printf(seq, "(R)"); 8199 sectors += rdev->sectors; 8200 } 8201 rcu_read_unlock(); 8202 8203 if (!list_empty(&mddev->disks)) { 8204 if (mddev->pers) 8205 seq_printf(seq, "\n %llu blocks", 8206 (unsigned long long) 8207 mddev->array_sectors / 2); 8208 else 8209 seq_printf(seq, "\n %llu blocks", 8210 (unsigned long long)sectors / 2); 8211 } 8212 if (mddev->persistent) { 8213 if (mddev->major_version != 0 || 8214 mddev->minor_version != 90) { 8215 seq_printf(seq," super %d.%d", 8216 mddev->major_version, 8217 mddev->minor_version); 8218 } 8219 } else if (mddev->external) 8220 seq_printf(seq, " super external:%s", 8221 mddev->metadata_type); 8222 else 8223 seq_printf(seq, " super non-persistent"); 8224 8225 if (mddev->pers) { 8226 mddev->pers->status(seq, mddev); 8227 seq_printf(seq, "\n "); 8228 if (mddev->pers->sync_request) { 8229 if (status_resync(seq, mddev)) 8230 seq_printf(seq, "\n "); 8231 } 8232 } else 8233 seq_printf(seq, "\n "); 8234 8235 md_bitmap_status(seq, mddev->bitmap); 8236 8237 seq_printf(seq, "\n"); 8238 } 8239 spin_unlock(&mddev->lock); 8240 8241 return 0; 8242 } 8243 8244 static const struct seq_operations md_seq_ops = { 8245 .start = md_seq_start, 8246 .next = md_seq_next, 8247 .stop = md_seq_stop, 8248 .show = md_seq_show, 8249 }; 8250 8251 static int md_seq_open(struct inode *inode, struct file *file) 8252 { 8253 struct seq_file *seq; 8254 int error; 8255 8256 error = seq_open(file, &md_seq_ops); 8257 if (error) 8258 return error; 8259 8260 seq = file->private_data; 8261 seq->poll_event = atomic_read(&md_event_count); 8262 return error; 8263 } 8264 8265 static int md_unloading; 8266 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8267 { 8268 struct seq_file *seq = filp->private_data; 8269 __poll_t mask; 8270 8271 if (md_unloading) 8272 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8273 poll_wait(filp, &md_event_waiters, wait); 8274 8275 /* always allow read */ 8276 mask = EPOLLIN | EPOLLRDNORM; 8277 8278 if (seq->poll_event != atomic_read(&md_event_count)) 8279 mask |= EPOLLERR | EPOLLPRI; 8280 return mask; 8281 } 8282 8283 static const struct proc_ops mdstat_proc_ops = { 8284 .proc_open = md_seq_open, 8285 .proc_read = seq_read, 8286 .proc_lseek = seq_lseek, 8287 .proc_release = seq_release, 8288 .proc_poll = mdstat_poll, 8289 }; 8290 8291 int register_md_personality(struct md_personality *p) 8292 { 8293 pr_debug("md: %s personality registered for level %d\n", 8294 p->name, p->level); 8295 spin_lock(&pers_lock); 8296 list_add_tail(&p->list, &pers_list); 8297 spin_unlock(&pers_lock); 8298 return 0; 8299 } 8300 EXPORT_SYMBOL(register_md_personality); 8301 8302 int unregister_md_personality(struct md_personality *p) 8303 { 8304 pr_debug("md: %s personality unregistered\n", p->name); 8305 spin_lock(&pers_lock); 8306 list_del_init(&p->list); 8307 spin_unlock(&pers_lock); 8308 return 0; 8309 } 8310 EXPORT_SYMBOL(unregister_md_personality); 8311 8312 int register_md_cluster_operations(struct md_cluster_operations *ops, 8313 struct module *module) 8314 { 8315 int ret = 0; 8316 spin_lock(&pers_lock); 8317 if (md_cluster_ops != NULL) 8318 ret = -EALREADY; 8319 else { 8320 md_cluster_ops = ops; 8321 md_cluster_mod = module; 8322 } 8323 spin_unlock(&pers_lock); 8324 return ret; 8325 } 8326 EXPORT_SYMBOL(register_md_cluster_operations); 8327 8328 int unregister_md_cluster_operations(void) 8329 { 8330 spin_lock(&pers_lock); 8331 md_cluster_ops = NULL; 8332 spin_unlock(&pers_lock); 8333 return 0; 8334 } 8335 EXPORT_SYMBOL(unregister_md_cluster_operations); 8336 8337 int md_setup_cluster(struct mddev *mddev, int nodes) 8338 { 8339 if (!md_cluster_ops) 8340 request_module("md-cluster"); 8341 spin_lock(&pers_lock); 8342 /* ensure module won't be unloaded */ 8343 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8344 pr_warn("can't find md-cluster module or get it's reference.\n"); 8345 spin_unlock(&pers_lock); 8346 return -ENOENT; 8347 } 8348 spin_unlock(&pers_lock); 8349 8350 return md_cluster_ops->join(mddev, nodes); 8351 } 8352 8353 void md_cluster_stop(struct mddev *mddev) 8354 { 8355 if (!md_cluster_ops) 8356 return; 8357 md_cluster_ops->leave(mddev); 8358 module_put(md_cluster_mod); 8359 } 8360 8361 static int is_mddev_idle(struct mddev *mddev, int init) 8362 { 8363 struct md_rdev *rdev; 8364 int idle; 8365 int curr_events; 8366 8367 idle = 1; 8368 rcu_read_lock(); 8369 rdev_for_each_rcu(rdev, mddev) { 8370 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8371 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 8372 atomic_read(&disk->sync_io); 8373 /* sync IO will cause sync_io to increase before the disk_stats 8374 * as sync_io is counted when a request starts, and 8375 * disk_stats is counted when it completes. 8376 * So resync activity will cause curr_events to be smaller than 8377 * when there was no such activity. 8378 * non-sync IO will cause disk_stat to increase without 8379 * increasing sync_io so curr_events will (eventually) 8380 * be larger than it was before. Once it becomes 8381 * substantially larger, the test below will cause 8382 * the array to appear non-idle, and resync will slow 8383 * down. 8384 * If there is a lot of outstanding resync activity when 8385 * we set last_event to curr_events, then all that activity 8386 * completing might cause the array to appear non-idle 8387 * and resync will be slowed down even though there might 8388 * not have been non-resync activity. This will only 8389 * happen once though. 'last_events' will soon reflect 8390 * the state where there is little or no outstanding 8391 * resync requests, and further resync activity will 8392 * always make curr_events less than last_events. 8393 * 8394 */ 8395 if (init || curr_events - rdev->last_events > 64) { 8396 rdev->last_events = curr_events; 8397 idle = 0; 8398 } 8399 } 8400 rcu_read_unlock(); 8401 return idle; 8402 } 8403 8404 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8405 { 8406 /* another "blocks" (512byte) blocks have been synced */ 8407 atomic_sub(blocks, &mddev->recovery_active); 8408 wake_up(&mddev->recovery_wait); 8409 if (!ok) { 8410 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8411 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8412 md_wakeup_thread(mddev->thread); 8413 // stop recovery, signal do_sync .... 8414 } 8415 } 8416 EXPORT_SYMBOL(md_done_sync); 8417 8418 /* md_write_start(mddev, bi) 8419 * If we need to update some array metadata (e.g. 'active' flag 8420 * in superblock) before writing, schedule a superblock update 8421 * and wait for it to complete. 8422 * A return value of 'false' means that the write wasn't recorded 8423 * and cannot proceed as the array is being suspend. 8424 */ 8425 bool md_write_start(struct mddev *mddev, struct bio *bi) 8426 { 8427 int did_change = 0; 8428 8429 if (bio_data_dir(bi) != WRITE) 8430 return true; 8431 8432 BUG_ON(mddev->ro == 1); 8433 if (mddev->ro == 2) { 8434 /* need to switch to read/write */ 8435 mddev->ro = 0; 8436 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8437 md_wakeup_thread(mddev->thread); 8438 md_wakeup_thread(mddev->sync_thread); 8439 did_change = 1; 8440 } 8441 rcu_read_lock(); 8442 percpu_ref_get(&mddev->writes_pending); 8443 smp_mb(); /* Match smp_mb in set_in_sync() */ 8444 if (mddev->safemode == 1) 8445 mddev->safemode = 0; 8446 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8447 if (mddev->in_sync || mddev->sync_checkers) { 8448 spin_lock(&mddev->lock); 8449 if (mddev->in_sync) { 8450 mddev->in_sync = 0; 8451 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8452 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8453 md_wakeup_thread(mddev->thread); 8454 did_change = 1; 8455 } 8456 spin_unlock(&mddev->lock); 8457 } 8458 rcu_read_unlock(); 8459 if (did_change) 8460 sysfs_notify_dirent_safe(mddev->sysfs_state); 8461 if (!mddev->has_superblocks) 8462 return true; 8463 wait_event(mddev->sb_wait, 8464 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8465 mddev->suspended); 8466 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8467 percpu_ref_put(&mddev->writes_pending); 8468 return false; 8469 } 8470 return true; 8471 } 8472 EXPORT_SYMBOL(md_write_start); 8473 8474 /* md_write_inc can only be called when md_write_start() has 8475 * already been called at least once of the current request. 8476 * It increments the counter and is useful when a single request 8477 * is split into several parts. Each part causes an increment and 8478 * so needs a matching md_write_end(). 8479 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8480 * a spinlocked region. 8481 */ 8482 void md_write_inc(struct mddev *mddev, struct bio *bi) 8483 { 8484 if (bio_data_dir(bi) != WRITE) 8485 return; 8486 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8487 percpu_ref_get(&mddev->writes_pending); 8488 } 8489 EXPORT_SYMBOL(md_write_inc); 8490 8491 void md_write_end(struct mddev *mddev) 8492 { 8493 percpu_ref_put(&mddev->writes_pending); 8494 8495 if (mddev->safemode == 2) 8496 md_wakeup_thread(mddev->thread); 8497 else if (mddev->safemode_delay) 8498 /* The roundup() ensures this only performs locking once 8499 * every ->safemode_delay jiffies 8500 */ 8501 mod_timer(&mddev->safemode_timer, 8502 roundup(jiffies, mddev->safemode_delay) + 8503 mddev->safemode_delay); 8504 } 8505 8506 EXPORT_SYMBOL(md_write_end); 8507 8508 /* md_allow_write(mddev) 8509 * Calling this ensures that the array is marked 'active' so that writes 8510 * may proceed without blocking. It is important to call this before 8511 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8512 * Must be called with mddev_lock held. 8513 */ 8514 void md_allow_write(struct mddev *mddev) 8515 { 8516 if (!mddev->pers) 8517 return; 8518 if (mddev->ro) 8519 return; 8520 if (!mddev->pers->sync_request) 8521 return; 8522 8523 spin_lock(&mddev->lock); 8524 if (mddev->in_sync) { 8525 mddev->in_sync = 0; 8526 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8527 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8528 if (mddev->safemode_delay && 8529 mddev->safemode == 0) 8530 mddev->safemode = 1; 8531 spin_unlock(&mddev->lock); 8532 md_update_sb(mddev, 0); 8533 sysfs_notify_dirent_safe(mddev->sysfs_state); 8534 /* wait for the dirty state to be recorded in the metadata */ 8535 wait_event(mddev->sb_wait, 8536 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8537 } else 8538 spin_unlock(&mddev->lock); 8539 } 8540 EXPORT_SYMBOL_GPL(md_allow_write); 8541 8542 #define SYNC_MARKS 10 8543 #define SYNC_MARK_STEP (3*HZ) 8544 #define UPDATE_FREQUENCY (5*60*HZ) 8545 void md_do_sync(struct md_thread *thread) 8546 { 8547 struct mddev *mddev = thread->mddev; 8548 struct mddev *mddev2; 8549 unsigned int currspeed = 0, window; 8550 sector_t max_sectors,j, io_sectors, recovery_done; 8551 unsigned long mark[SYNC_MARKS]; 8552 unsigned long update_time; 8553 sector_t mark_cnt[SYNC_MARKS]; 8554 int last_mark,m; 8555 struct list_head *tmp; 8556 sector_t last_check; 8557 int skipped = 0; 8558 struct md_rdev *rdev; 8559 char *desc, *action = NULL; 8560 struct blk_plug plug; 8561 int ret; 8562 8563 /* just incase thread restarts... */ 8564 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8565 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8566 return; 8567 if (mddev->ro) {/* never try to sync a read-only array */ 8568 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8569 return; 8570 } 8571 8572 if (mddev_is_clustered(mddev)) { 8573 ret = md_cluster_ops->resync_start(mddev); 8574 if (ret) 8575 goto skip; 8576 8577 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8578 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8579 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8580 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8581 && ((unsigned long long)mddev->curr_resync_completed 8582 < (unsigned long long)mddev->resync_max_sectors)) 8583 goto skip; 8584 } 8585 8586 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8587 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8588 desc = "data-check"; 8589 action = "check"; 8590 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8591 desc = "requested-resync"; 8592 action = "repair"; 8593 } else 8594 desc = "resync"; 8595 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8596 desc = "reshape"; 8597 else 8598 desc = "recovery"; 8599 8600 mddev->last_sync_action = action ?: desc; 8601 8602 /* we overload curr_resync somewhat here. 8603 * 0 == not engaged in resync at all 8604 * 2 == checking that there is no conflict with another sync 8605 * 1 == like 2, but have yielded to allow conflicting resync to 8606 * commence 8607 * other == active in resync - this many blocks 8608 * 8609 * Before starting a resync we must have set curr_resync to 8610 * 2, and then checked that every "conflicting" array has curr_resync 8611 * less than ours. When we find one that is the same or higher 8612 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8613 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8614 * This will mean we have to start checking from the beginning again. 8615 * 8616 */ 8617 8618 do { 8619 int mddev2_minor = -1; 8620 mddev->curr_resync = 2; 8621 8622 try_again: 8623 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8624 goto skip; 8625 for_each_mddev(mddev2, tmp) { 8626 if (mddev2 == mddev) 8627 continue; 8628 if (!mddev->parallel_resync 8629 && mddev2->curr_resync 8630 && match_mddev_units(mddev, mddev2)) { 8631 DEFINE_WAIT(wq); 8632 if (mddev < mddev2 && mddev->curr_resync == 2) { 8633 /* arbitrarily yield */ 8634 mddev->curr_resync = 1; 8635 wake_up(&resync_wait); 8636 } 8637 if (mddev > mddev2 && mddev->curr_resync == 1) 8638 /* no need to wait here, we can wait the next 8639 * time 'round when curr_resync == 2 8640 */ 8641 continue; 8642 /* We need to wait 'interruptible' so as not to 8643 * contribute to the load average, and not to 8644 * be caught by 'softlockup' 8645 */ 8646 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8647 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8648 mddev2->curr_resync >= mddev->curr_resync) { 8649 if (mddev2_minor != mddev2->md_minor) { 8650 mddev2_minor = mddev2->md_minor; 8651 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8652 desc, mdname(mddev), 8653 mdname(mddev2)); 8654 } 8655 mddev_put(mddev2); 8656 if (signal_pending(current)) 8657 flush_signals(current); 8658 schedule(); 8659 finish_wait(&resync_wait, &wq); 8660 goto try_again; 8661 } 8662 finish_wait(&resync_wait, &wq); 8663 } 8664 } 8665 } while (mddev->curr_resync < 2); 8666 8667 j = 0; 8668 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8669 /* resync follows the size requested by the personality, 8670 * which defaults to physical size, but can be virtual size 8671 */ 8672 max_sectors = mddev->resync_max_sectors; 8673 atomic64_set(&mddev->resync_mismatches, 0); 8674 /* we don't use the checkpoint if there's a bitmap */ 8675 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8676 j = mddev->resync_min; 8677 else if (!mddev->bitmap) 8678 j = mddev->recovery_cp; 8679 8680 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8681 max_sectors = mddev->resync_max_sectors; 8682 /* 8683 * If the original node aborts reshaping then we continue the 8684 * reshaping, so set j again to avoid restart reshape from the 8685 * first beginning 8686 */ 8687 if (mddev_is_clustered(mddev) && 8688 mddev->reshape_position != MaxSector) 8689 j = mddev->reshape_position; 8690 } else { 8691 /* recovery follows the physical size of devices */ 8692 max_sectors = mddev->dev_sectors; 8693 j = MaxSector; 8694 rcu_read_lock(); 8695 rdev_for_each_rcu(rdev, mddev) 8696 if (rdev->raid_disk >= 0 && 8697 !test_bit(Journal, &rdev->flags) && 8698 !test_bit(Faulty, &rdev->flags) && 8699 !test_bit(In_sync, &rdev->flags) && 8700 rdev->recovery_offset < j) 8701 j = rdev->recovery_offset; 8702 rcu_read_unlock(); 8703 8704 /* If there is a bitmap, we need to make sure all 8705 * writes that started before we added a spare 8706 * complete before we start doing a recovery. 8707 * Otherwise the write might complete and (via 8708 * bitmap_endwrite) set a bit in the bitmap after the 8709 * recovery has checked that bit and skipped that 8710 * region. 8711 */ 8712 if (mddev->bitmap) { 8713 mddev->pers->quiesce(mddev, 1); 8714 mddev->pers->quiesce(mddev, 0); 8715 } 8716 } 8717 8718 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8719 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8720 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8721 speed_max(mddev), desc); 8722 8723 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8724 8725 io_sectors = 0; 8726 for (m = 0; m < SYNC_MARKS; m++) { 8727 mark[m] = jiffies; 8728 mark_cnt[m] = io_sectors; 8729 } 8730 last_mark = 0; 8731 mddev->resync_mark = mark[last_mark]; 8732 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8733 8734 /* 8735 * Tune reconstruction: 8736 */ 8737 window = 32 * (PAGE_SIZE / 512); 8738 pr_debug("md: using %dk window, over a total of %lluk.\n", 8739 window/2, (unsigned long long)max_sectors/2); 8740 8741 atomic_set(&mddev->recovery_active, 0); 8742 last_check = 0; 8743 8744 if (j>2) { 8745 pr_debug("md: resuming %s of %s from checkpoint.\n", 8746 desc, mdname(mddev)); 8747 mddev->curr_resync = j; 8748 } else 8749 mddev->curr_resync = 3; /* no longer delayed */ 8750 mddev->curr_resync_completed = j; 8751 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8752 md_new_event(mddev); 8753 update_time = jiffies; 8754 8755 blk_start_plug(&plug); 8756 while (j < max_sectors) { 8757 sector_t sectors; 8758 8759 skipped = 0; 8760 8761 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8762 ((mddev->curr_resync > mddev->curr_resync_completed && 8763 (mddev->curr_resync - mddev->curr_resync_completed) 8764 > (max_sectors >> 4)) || 8765 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8766 (j - mddev->curr_resync_completed)*2 8767 >= mddev->resync_max - mddev->curr_resync_completed || 8768 mddev->curr_resync_completed > mddev->resync_max 8769 )) { 8770 /* time to update curr_resync_completed */ 8771 wait_event(mddev->recovery_wait, 8772 atomic_read(&mddev->recovery_active) == 0); 8773 mddev->curr_resync_completed = j; 8774 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8775 j > mddev->recovery_cp) 8776 mddev->recovery_cp = j; 8777 update_time = jiffies; 8778 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8779 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8780 } 8781 8782 while (j >= mddev->resync_max && 8783 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8784 /* As this condition is controlled by user-space, 8785 * we can block indefinitely, so use '_interruptible' 8786 * to avoid triggering warnings. 8787 */ 8788 flush_signals(current); /* just in case */ 8789 wait_event_interruptible(mddev->recovery_wait, 8790 mddev->resync_max > j 8791 || test_bit(MD_RECOVERY_INTR, 8792 &mddev->recovery)); 8793 } 8794 8795 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8796 break; 8797 8798 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8799 if (sectors == 0) { 8800 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8801 break; 8802 } 8803 8804 if (!skipped) { /* actual IO requested */ 8805 io_sectors += sectors; 8806 atomic_add(sectors, &mddev->recovery_active); 8807 } 8808 8809 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8810 break; 8811 8812 j += sectors; 8813 if (j > max_sectors) 8814 /* when skipping, extra large numbers can be returned. */ 8815 j = max_sectors; 8816 if (j > 2) 8817 mddev->curr_resync = j; 8818 mddev->curr_mark_cnt = io_sectors; 8819 if (last_check == 0) 8820 /* this is the earliest that rebuild will be 8821 * visible in /proc/mdstat 8822 */ 8823 md_new_event(mddev); 8824 8825 if (last_check + window > io_sectors || j == max_sectors) 8826 continue; 8827 8828 last_check = io_sectors; 8829 repeat: 8830 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8831 /* step marks */ 8832 int next = (last_mark+1) % SYNC_MARKS; 8833 8834 mddev->resync_mark = mark[next]; 8835 mddev->resync_mark_cnt = mark_cnt[next]; 8836 mark[next] = jiffies; 8837 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8838 last_mark = next; 8839 } 8840 8841 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8842 break; 8843 8844 /* 8845 * this loop exits only if either when we are slower than 8846 * the 'hard' speed limit, or the system was IO-idle for 8847 * a jiffy. 8848 * the system might be non-idle CPU-wise, but we only care 8849 * about not overloading the IO subsystem. (things like an 8850 * e2fsck being done on the RAID array should execute fast) 8851 */ 8852 cond_resched(); 8853 8854 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8855 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8856 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8857 8858 if (currspeed > speed_min(mddev)) { 8859 if (currspeed > speed_max(mddev)) { 8860 msleep(500); 8861 goto repeat; 8862 } 8863 if (!is_mddev_idle(mddev, 0)) { 8864 /* 8865 * Give other IO more of a chance. 8866 * The faster the devices, the less we wait. 8867 */ 8868 wait_event(mddev->recovery_wait, 8869 !atomic_read(&mddev->recovery_active)); 8870 } 8871 } 8872 } 8873 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8874 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8875 ? "interrupted" : "done"); 8876 /* 8877 * this also signals 'finished resyncing' to md_stop 8878 */ 8879 blk_finish_plug(&plug); 8880 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8881 8882 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8883 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8884 mddev->curr_resync > 3) { 8885 mddev->curr_resync_completed = mddev->curr_resync; 8886 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8887 } 8888 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8889 8890 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8891 mddev->curr_resync > 3) { 8892 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8893 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8894 if (mddev->curr_resync >= mddev->recovery_cp) { 8895 pr_debug("md: checkpointing %s of %s.\n", 8896 desc, mdname(mddev)); 8897 if (test_bit(MD_RECOVERY_ERROR, 8898 &mddev->recovery)) 8899 mddev->recovery_cp = 8900 mddev->curr_resync_completed; 8901 else 8902 mddev->recovery_cp = 8903 mddev->curr_resync; 8904 } 8905 } else 8906 mddev->recovery_cp = MaxSector; 8907 } else { 8908 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8909 mddev->curr_resync = MaxSector; 8910 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8911 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8912 rcu_read_lock(); 8913 rdev_for_each_rcu(rdev, mddev) 8914 if (rdev->raid_disk >= 0 && 8915 mddev->delta_disks >= 0 && 8916 !test_bit(Journal, &rdev->flags) && 8917 !test_bit(Faulty, &rdev->flags) && 8918 !test_bit(In_sync, &rdev->flags) && 8919 rdev->recovery_offset < mddev->curr_resync) 8920 rdev->recovery_offset = mddev->curr_resync; 8921 rcu_read_unlock(); 8922 } 8923 } 8924 } 8925 skip: 8926 /* set CHANGE_PENDING here since maybe another update is needed, 8927 * so other nodes are informed. It should be harmless for normal 8928 * raid */ 8929 set_mask_bits(&mddev->sb_flags, 0, 8930 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8931 8932 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8933 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8934 mddev->delta_disks > 0 && 8935 mddev->pers->finish_reshape && 8936 mddev->pers->size && 8937 mddev->queue) { 8938 mddev_lock_nointr(mddev); 8939 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 8940 mddev_unlock(mddev); 8941 if (!mddev_is_clustered(mddev)) { 8942 set_capacity(mddev->gendisk, mddev->array_sectors); 8943 revalidate_disk(mddev->gendisk); 8944 } 8945 } 8946 8947 spin_lock(&mddev->lock); 8948 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8949 /* We completed so min/max setting can be forgotten if used. */ 8950 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8951 mddev->resync_min = 0; 8952 mddev->resync_max = MaxSector; 8953 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8954 mddev->resync_min = mddev->curr_resync_completed; 8955 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8956 mddev->curr_resync = 0; 8957 spin_unlock(&mddev->lock); 8958 8959 wake_up(&resync_wait); 8960 md_wakeup_thread(mddev->thread); 8961 return; 8962 } 8963 EXPORT_SYMBOL_GPL(md_do_sync); 8964 8965 static int remove_and_add_spares(struct mddev *mddev, 8966 struct md_rdev *this) 8967 { 8968 struct md_rdev *rdev; 8969 int spares = 0; 8970 int removed = 0; 8971 bool remove_some = false; 8972 8973 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8974 /* Mustn't remove devices when resync thread is running */ 8975 return 0; 8976 8977 rdev_for_each(rdev, mddev) { 8978 if ((this == NULL || rdev == this) && 8979 rdev->raid_disk >= 0 && 8980 !test_bit(Blocked, &rdev->flags) && 8981 test_bit(Faulty, &rdev->flags) && 8982 atomic_read(&rdev->nr_pending)==0) { 8983 /* Faulty non-Blocked devices with nr_pending == 0 8984 * never get nr_pending incremented, 8985 * never get Faulty cleared, and never get Blocked set. 8986 * So we can synchronize_rcu now rather than once per device 8987 */ 8988 remove_some = true; 8989 set_bit(RemoveSynchronized, &rdev->flags); 8990 } 8991 } 8992 8993 if (remove_some) 8994 synchronize_rcu(); 8995 rdev_for_each(rdev, mddev) { 8996 if ((this == NULL || rdev == this) && 8997 rdev->raid_disk >= 0 && 8998 !test_bit(Blocked, &rdev->flags) && 8999 ((test_bit(RemoveSynchronized, &rdev->flags) || 9000 (!test_bit(In_sync, &rdev->flags) && 9001 !test_bit(Journal, &rdev->flags))) && 9002 atomic_read(&rdev->nr_pending)==0)) { 9003 if (mddev->pers->hot_remove_disk( 9004 mddev, rdev) == 0) { 9005 sysfs_unlink_rdev(mddev, rdev); 9006 rdev->saved_raid_disk = rdev->raid_disk; 9007 rdev->raid_disk = -1; 9008 removed++; 9009 } 9010 } 9011 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9012 clear_bit(RemoveSynchronized, &rdev->flags); 9013 } 9014 9015 if (removed && mddev->kobj.sd) 9016 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9017 9018 if (this && removed) 9019 goto no_add; 9020 9021 rdev_for_each(rdev, mddev) { 9022 if (this && this != rdev) 9023 continue; 9024 if (test_bit(Candidate, &rdev->flags)) 9025 continue; 9026 if (rdev->raid_disk >= 0 && 9027 !test_bit(In_sync, &rdev->flags) && 9028 !test_bit(Journal, &rdev->flags) && 9029 !test_bit(Faulty, &rdev->flags)) 9030 spares++; 9031 if (rdev->raid_disk >= 0) 9032 continue; 9033 if (test_bit(Faulty, &rdev->flags)) 9034 continue; 9035 if (!test_bit(Journal, &rdev->flags)) { 9036 if (mddev->ro && 9037 ! (rdev->saved_raid_disk >= 0 && 9038 !test_bit(Bitmap_sync, &rdev->flags))) 9039 continue; 9040 9041 rdev->recovery_offset = 0; 9042 } 9043 if (mddev->pers-> 9044 hot_add_disk(mddev, rdev) == 0) { 9045 if (sysfs_link_rdev(mddev, rdev)) 9046 /* failure here is OK */; 9047 if (!test_bit(Journal, &rdev->flags)) 9048 spares++; 9049 md_new_event(mddev); 9050 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9051 } 9052 } 9053 no_add: 9054 if (removed) 9055 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9056 return spares; 9057 } 9058 9059 static void md_start_sync(struct work_struct *ws) 9060 { 9061 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9062 9063 mddev->sync_thread = md_register_thread(md_do_sync, 9064 mddev, 9065 "resync"); 9066 if (!mddev->sync_thread) { 9067 pr_warn("%s: could not start resync thread...\n", 9068 mdname(mddev)); 9069 /* leave the spares where they are, it shouldn't hurt */ 9070 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9071 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9072 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9073 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9074 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9075 wake_up(&resync_wait); 9076 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9077 &mddev->recovery)) 9078 if (mddev->sysfs_action) 9079 sysfs_notify_dirent_safe(mddev->sysfs_action); 9080 } else 9081 md_wakeup_thread(mddev->sync_thread); 9082 sysfs_notify_dirent_safe(mddev->sysfs_action); 9083 md_new_event(mddev); 9084 } 9085 9086 /* 9087 * This routine is regularly called by all per-raid-array threads to 9088 * deal with generic issues like resync and super-block update. 9089 * Raid personalities that don't have a thread (linear/raid0) do not 9090 * need this as they never do any recovery or update the superblock. 9091 * 9092 * It does not do any resync itself, but rather "forks" off other threads 9093 * to do that as needed. 9094 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9095 * "->recovery" and create a thread at ->sync_thread. 9096 * When the thread finishes it sets MD_RECOVERY_DONE 9097 * and wakeups up this thread which will reap the thread and finish up. 9098 * This thread also removes any faulty devices (with nr_pending == 0). 9099 * 9100 * The overall approach is: 9101 * 1/ if the superblock needs updating, update it. 9102 * 2/ If a recovery thread is running, don't do anything else. 9103 * 3/ If recovery has finished, clean up, possibly marking spares active. 9104 * 4/ If there are any faulty devices, remove them. 9105 * 5/ If array is degraded, try to add spares devices 9106 * 6/ If array has spares or is not in-sync, start a resync thread. 9107 */ 9108 void md_check_recovery(struct mddev *mddev) 9109 { 9110 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9111 /* Write superblock - thread that called mddev_suspend() 9112 * holds reconfig_mutex for us. 9113 */ 9114 set_bit(MD_UPDATING_SB, &mddev->flags); 9115 smp_mb__after_atomic(); 9116 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9117 md_update_sb(mddev, 0); 9118 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9119 wake_up(&mddev->sb_wait); 9120 } 9121 9122 if (mddev->suspended) 9123 return; 9124 9125 if (mddev->bitmap) 9126 md_bitmap_daemon_work(mddev); 9127 9128 if (signal_pending(current)) { 9129 if (mddev->pers->sync_request && !mddev->external) { 9130 pr_debug("md: %s in immediate safe mode\n", 9131 mdname(mddev)); 9132 mddev->safemode = 2; 9133 } 9134 flush_signals(current); 9135 } 9136 9137 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9138 return; 9139 if ( ! ( 9140 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9141 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9142 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9143 (mddev->external == 0 && mddev->safemode == 1) || 9144 (mddev->safemode == 2 9145 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9146 )) 9147 return; 9148 9149 if (mddev_trylock(mddev)) { 9150 int spares = 0; 9151 bool try_set_sync = mddev->safemode != 0; 9152 9153 if (!mddev->external && mddev->safemode == 1) 9154 mddev->safemode = 0; 9155 9156 if (mddev->ro) { 9157 struct md_rdev *rdev; 9158 if (!mddev->external && mddev->in_sync) 9159 /* 'Blocked' flag not needed as failed devices 9160 * will be recorded if array switched to read/write. 9161 * Leaving it set will prevent the device 9162 * from being removed. 9163 */ 9164 rdev_for_each(rdev, mddev) 9165 clear_bit(Blocked, &rdev->flags); 9166 /* On a read-only array we can: 9167 * - remove failed devices 9168 * - add already-in_sync devices if the array itself 9169 * is in-sync. 9170 * As we only add devices that are already in-sync, 9171 * we can activate the spares immediately. 9172 */ 9173 remove_and_add_spares(mddev, NULL); 9174 /* There is no thread, but we need to call 9175 * ->spare_active and clear saved_raid_disk 9176 */ 9177 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9178 md_reap_sync_thread(mddev); 9179 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9180 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9181 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9182 goto unlock; 9183 } 9184 9185 if (mddev_is_clustered(mddev)) { 9186 struct md_rdev *rdev; 9187 /* kick the device if another node issued a 9188 * remove disk. 9189 */ 9190 rdev_for_each(rdev, mddev) { 9191 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9192 rdev->raid_disk < 0) 9193 md_kick_rdev_from_array(rdev); 9194 } 9195 } 9196 9197 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9198 spin_lock(&mddev->lock); 9199 set_in_sync(mddev); 9200 spin_unlock(&mddev->lock); 9201 } 9202 9203 if (mddev->sb_flags) 9204 md_update_sb(mddev, 0); 9205 9206 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9207 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9208 /* resync/recovery still happening */ 9209 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9210 goto unlock; 9211 } 9212 if (mddev->sync_thread) { 9213 md_reap_sync_thread(mddev); 9214 goto unlock; 9215 } 9216 /* Set RUNNING before clearing NEEDED to avoid 9217 * any transients in the value of "sync_action". 9218 */ 9219 mddev->curr_resync_completed = 0; 9220 spin_lock(&mddev->lock); 9221 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9222 spin_unlock(&mddev->lock); 9223 /* Clear some bits that don't mean anything, but 9224 * might be left set 9225 */ 9226 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9227 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9228 9229 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9230 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9231 goto not_running; 9232 /* no recovery is running. 9233 * remove any failed drives, then 9234 * add spares if possible. 9235 * Spares are also removed and re-added, to allow 9236 * the personality to fail the re-add. 9237 */ 9238 9239 if (mddev->reshape_position != MaxSector) { 9240 if (mddev->pers->check_reshape == NULL || 9241 mddev->pers->check_reshape(mddev) != 0) 9242 /* Cannot proceed */ 9243 goto not_running; 9244 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9245 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9246 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9247 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9248 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9249 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9250 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9251 } else if (mddev->recovery_cp < MaxSector) { 9252 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9253 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9254 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9255 /* nothing to be done ... */ 9256 goto not_running; 9257 9258 if (mddev->pers->sync_request) { 9259 if (spares) { 9260 /* We are adding a device or devices to an array 9261 * which has the bitmap stored on all devices. 9262 * So make sure all bitmap pages get written 9263 */ 9264 md_bitmap_write_all(mddev->bitmap); 9265 } 9266 INIT_WORK(&mddev->del_work, md_start_sync); 9267 queue_work(md_misc_wq, &mddev->del_work); 9268 goto unlock; 9269 } 9270 not_running: 9271 if (!mddev->sync_thread) { 9272 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9273 wake_up(&resync_wait); 9274 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9275 &mddev->recovery)) 9276 if (mddev->sysfs_action) 9277 sysfs_notify_dirent_safe(mddev->sysfs_action); 9278 } 9279 unlock: 9280 wake_up(&mddev->sb_wait); 9281 mddev_unlock(mddev); 9282 } 9283 } 9284 EXPORT_SYMBOL(md_check_recovery); 9285 9286 void md_reap_sync_thread(struct mddev *mddev) 9287 { 9288 struct md_rdev *rdev; 9289 sector_t old_dev_sectors = mddev->dev_sectors; 9290 bool is_reshaped = false; 9291 9292 /* resync has finished, collect result */ 9293 md_unregister_thread(&mddev->sync_thread); 9294 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9295 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9296 mddev->degraded != mddev->raid_disks) { 9297 /* success...*/ 9298 /* activate any spares */ 9299 if (mddev->pers->spare_active(mddev)) { 9300 sysfs_notify(&mddev->kobj, NULL, 9301 "degraded"); 9302 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9303 } 9304 } 9305 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9306 mddev->pers->finish_reshape) { 9307 mddev->pers->finish_reshape(mddev); 9308 if (mddev_is_clustered(mddev)) 9309 is_reshaped = true; 9310 } 9311 9312 /* If array is no-longer degraded, then any saved_raid_disk 9313 * information must be scrapped. 9314 */ 9315 if (!mddev->degraded) 9316 rdev_for_each(rdev, mddev) 9317 rdev->saved_raid_disk = -1; 9318 9319 md_update_sb(mddev, 1); 9320 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9321 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9322 * clustered raid */ 9323 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9324 md_cluster_ops->resync_finish(mddev); 9325 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9326 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9327 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9328 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9329 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9330 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9331 /* 9332 * We call md_cluster_ops->update_size here because sync_size could 9333 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9334 * so it is time to update size across cluster. 9335 */ 9336 if (mddev_is_clustered(mddev) && is_reshaped 9337 && !test_bit(MD_CLOSING, &mddev->flags)) 9338 md_cluster_ops->update_size(mddev, old_dev_sectors); 9339 wake_up(&resync_wait); 9340 /* flag recovery needed just to double check */ 9341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9342 sysfs_notify_dirent_safe(mddev->sysfs_action); 9343 md_new_event(mddev); 9344 if (mddev->event_work.func) 9345 queue_work(md_misc_wq, &mddev->event_work); 9346 } 9347 EXPORT_SYMBOL(md_reap_sync_thread); 9348 9349 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9350 { 9351 sysfs_notify_dirent_safe(rdev->sysfs_state); 9352 wait_event_timeout(rdev->blocked_wait, 9353 !test_bit(Blocked, &rdev->flags) && 9354 !test_bit(BlockedBadBlocks, &rdev->flags), 9355 msecs_to_jiffies(5000)); 9356 rdev_dec_pending(rdev, mddev); 9357 } 9358 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9359 9360 void md_finish_reshape(struct mddev *mddev) 9361 { 9362 /* called be personality module when reshape completes. */ 9363 struct md_rdev *rdev; 9364 9365 rdev_for_each(rdev, mddev) { 9366 if (rdev->data_offset > rdev->new_data_offset) 9367 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9368 else 9369 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9370 rdev->data_offset = rdev->new_data_offset; 9371 } 9372 } 9373 EXPORT_SYMBOL(md_finish_reshape); 9374 9375 /* Bad block management */ 9376 9377 /* Returns 1 on success, 0 on failure */ 9378 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9379 int is_new) 9380 { 9381 struct mddev *mddev = rdev->mddev; 9382 int rv; 9383 if (is_new) 9384 s += rdev->new_data_offset; 9385 else 9386 s += rdev->data_offset; 9387 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9388 if (rv == 0) { 9389 /* Make sure they get written out promptly */ 9390 if (test_bit(ExternalBbl, &rdev->flags)) 9391 sysfs_notify(&rdev->kobj, NULL, 9392 "unacknowledged_bad_blocks"); 9393 sysfs_notify_dirent_safe(rdev->sysfs_state); 9394 set_mask_bits(&mddev->sb_flags, 0, 9395 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9396 md_wakeup_thread(rdev->mddev->thread); 9397 return 1; 9398 } else 9399 return 0; 9400 } 9401 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9402 9403 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9404 int is_new) 9405 { 9406 int rv; 9407 if (is_new) 9408 s += rdev->new_data_offset; 9409 else 9410 s += rdev->data_offset; 9411 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9412 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9413 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 9414 return rv; 9415 } 9416 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9417 9418 static int md_notify_reboot(struct notifier_block *this, 9419 unsigned long code, void *x) 9420 { 9421 struct list_head *tmp; 9422 struct mddev *mddev; 9423 int need_delay = 0; 9424 9425 for_each_mddev(mddev, tmp) { 9426 if (mddev_trylock(mddev)) { 9427 if (mddev->pers) 9428 __md_stop_writes(mddev); 9429 if (mddev->persistent) 9430 mddev->safemode = 2; 9431 mddev_unlock(mddev); 9432 } 9433 need_delay = 1; 9434 } 9435 /* 9436 * certain more exotic SCSI devices are known to be 9437 * volatile wrt too early system reboots. While the 9438 * right place to handle this issue is the given 9439 * driver, we do want to have a safe RAID driver ... 9440 */ 9441 if (need_delay) 9442 mdelay(1000*1); 9443 9444 return NOTIFY_DONE; 9445 } 9446 9447 static struct notifier_block md_notifier = { 9448 .notifier_call = md_notify_reboot, 9449 .next = NULL, 9450 .priority = INT_MAX, /* before any real devices */ 9451 }; 9452 9453 static void md_geninit(void) 9454 { 9455 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9456 9457 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9458 } 9459 9460 static int __init md_init(void) 9461 { 9462 int ret = -ENOMEM; 9463 9464 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9465 if (!md_wq) 9466 goto err_wq; 9467 9468 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9469 if (!md_misc_wq) 9470 goto err_misc_wq; 9471 9472 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9473 goto err_md; 9474 9475 if ((ret = register_blkdev(0, "mdp")) < 0) 9476 goto err_mdp; 9477 mdp_major = ret; 9478 9479 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9480 md_probe, NULL, NULL); 9481 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9482 md_probe, NULL, NULL); 9483 9484 register_reboot_notifier(&md_notifier); 9485 raid_table_header = register_sysctl_table(raid_root_table); 9486 9487 md_geninit(); 9488 return 0; 9489 9490 err_mdp: 9491 unregister_blkdev(MD_MAJOR, "md"); 9492 err_md: 9493 destroy_workqueue(md_misc_wq); 9494 err_misc_wq: 9495 destroy_workqueue(md_wq); 9496 err_wq: 9497 return ret; 9498 } 9499 9500 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9501 { 9502 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9503 struct md_rdev *rdev2; 9504 int role, ret; 9505 char b[BDEVNAME_SIZE]; 9506 9507 /* 9508 * If size is changed in another node then we need to 9509 * do resize as well. 9510 */ 9511 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9512 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9513 if (ret) 9514 pr_info("md-cluster: resize failed\n"); 9515 else 9516 md_bitmap_update_sb(mddev->bitmap); 9517 } 9518 9519 /* Check for change of roles in the active devices */ 9520 rdev_for_each(rdev2, mddev) { 9521 if (test_bit(Faulty, &rdev2->flags)) 9522 continue; 9523 9524 /* Check if the roles changed */ 9525 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9526 9527 if (test_bit(Candidate, &rdev2->flags)) { 9528 if (role == 0xfffe) { 9529 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9530 md_kick_rdev_from_array(rdev2); 9531 continue; 9532 } 9533 else 9534 clear_bit(Candidate, &rdev2->flags); 9535 } 9536 9537 if (role != rdev2->raid_disk) { 9538 /* 9539 * got activated except reshape is happening. 9540 */ 9541 if (rdev2->raid_disk == -1 && role != 0xffff && 9542 !(le32_to_cpu(sb->feature_map) & 9543 MD_FEATURE_RESHAPE_ACTIVE)) { 9544 rdev2->saved_raid_disk = role; 9545 ret = remove_and_add_spares(mddev, rdev2); 9546 pr_info("Activated spare: %s\n", 9547 bdevname(rdev2->bdev,b)); 9548 /* wakeup mddev->thread here, so array could 9549 * perform resync with the new activated disk */ 9550 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9551 md_wakeup_thread(mddev->thread); 9552 } 9553 /* device faulty 9554 * We just want to do the minimum to mark the disk 9555 * as faulty. The recovery is performed by the 9556 * one who initiated the error. 9557 */ 9558 if ((role == 0xfffe) || (role == 0xfffd)) { 9559 md_error(mddev, rdev2); 9560 clear_bit(Blocked, &rdev2->flags); 9561 } 9562 } 9563 } 9564 9565 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9566 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9567 9568 /* 9569 * Since mddev->delta_disks has already updated in update_raid_disks, 9570 * so it is time to check reshape. 9571 */ 9572 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9573 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9574 /* 9575 * reshape is happening in the remote node, we need to 9576 * update reshape_position and call start_reshape. 9577 */ 9578 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9579 if (mddev->pers->update_reshape_pos) 9580 mddev->pers->update_reshape_pos(mddev); 9581 if (mddev->pers->start_reshape) 9582 mddev->pers->start_reshape(mddev); 9583 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9584 mddev->reshape_position != MaxSector && 9585 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9586 /* reshape is just done in another node. */ 9587 mddev->reshape_position = MaxSector; 9588 if (mddev->pers->update_reshape_pos) 9589 mddev->pers->update_reshape_pos(mddev); 9590 } 9591 9592 /* Finally set the event to be up to date */ 9593 mddev->events = le64_to_cpu(sb->events); 9594 } 9595 9596 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9597 { 9598 int err; 9599 struct page *swapout = rdev->sb_page; 9600 struct mdp_superblock_1 *sb; 9601 9602 /* Store the sb page of the rdev in the swapout temporary 9603 * variable in case we err in the future 9604 */ 9605 rdev->sb_page = NULL; 9606 err = alloc_disk_sb(rdev); 9607 if (err == 0) { 9608 ClearPageUptodate(rdev->sb_page); 9609 rdev->sb_loaded = 0; 9610 err = super_types[mddev->major_version]. 9611 load_super(rdev, NULL, mddev->minor_version); 9612 } 9613 if (err < 0) { 9614 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9615 __func__, __LINE__, rdev->desc_nr, err); 9616 if (rdev->sb_page) 9617 put_page(rdev->sb_page); 9618 rdev->sb_page = swapout; 9619 rdev->sb_loaded = 1; 9620 return err; 9621 } 9622 9623 sb = page_address(rdev->sb_page); 9624 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9625 * is not set 9626 */ 9627 9628 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9629 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9630 9631 /* The other node finished recovery, call spare_active to set 9632 * device In_sync and mddev->degraded 9633 */ 9634 if (rdev->recovery_offset == MaxSector && 9635 !test_bit(In_sync, &rdev->flags) && 9636 mddev->pers->spare_active(mddev)) 9637 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9638 9639 put_page(swapout); 9640 return 0; 9641 } 9642 9643 void md_reload_sb(struct mddev *mddev, int nr) 9644 { 9645 struct md_rdev *rdev; 9646 int err; 9647 9648 /* Find the rdev */ 9649 rdev_for_each_rcu(rdev, mddev) { 9650 if (rdev->desc_nr == nr) 9651 break; 9652 } 9653 9654 if (!rdev || rdev->desc_nr != nr) { 9655 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9656 return; 9657 } 9658 9659 err = read_rdev(mddev, rdev); 9660 if (err < 0) 9661 return; 9662 9663 check_sb_changes(mddev, rdev); 9664 9665 /* Read all rdev's to update recovery_offset */ 9666 rdev_for_each_rcu(rdev, mddev) { 9667 if (!test_bit(Faulty, &rdev->flags)) 9668 read_rdev(mddev, rdev); 9669 } 9670 } 9671 EXPORT_SYMBOL(md_reload_sb); 9672 9673 #ifndef MODULE 9674 9675 /* 9676 * Searches all registered partitions for autorun RAID arrays 9677 * at boot time. 9678 */ 9679 9680 static DEFINE_MUTEX(detected_devices_mutex); 9681 static LIST_HEAD(all_detected_devices); 9682 struct detected_devices_node { 9683 struct list_head list; 9684 dev_t dev; 9685 }; 9686 9687 void md_autodetect_dev(dev_t dev) 9688 { 9689 struct detected_devices_node *node_detected_dev; 9690 9691 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9692 if (node_detected_dev) { 9693 node_detected_dev->dev = dev; 9694 mutex_lock(&detected_devices_mutex); 9695 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9696 mutex_unlock(&detected_devices_mutex); 9697 } 9698 } 9699 9700 static void autostart_arrays(int part) 9701 { 9702 struct md_rdev *rdev; 9703 struct detected_devices_node *node_detected_dev; 9704 dev_t dev; 9705 int i_scanned, i_passed; 9706 9707 i_scanned = 0; 9708 i_passed = 0; 9709 9710 pr_info("md: Autodetecting RAID arrays.\n"); 9711 9712 mutex_lock(&detected_devices_mutex); 9713 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9714 i_scanned++; 9715 node_detected_dev = list_entry(all_detected_devices.next, 9716 struct detected_devices_node, list); 9717 list_del(&node_detected_dev->list); 9718 dev = node_detected_dev->dev; 9719 kfree(node_detected_dev); 9720 mutex_unlock(&detected_devices_mutex); 9721 rdev = md_import_device(dev,0, 90); 9722 mutex_lock(&detected_devices_mutex); 9723 if (IS_ERR(rdev)) 9724 continue; 9725 9726 if (test_bit(Faulty, &rdev->flags)) 9727 continue; 9728 9729 set_bit(AutoDetected, &rdev->flags); 9730 list_add(&rdev->same_set, &pending_raid_disks); 9731 i_passed++; 9732 } 9733 mutex_unlock(&detected_devices_mutex); 9734 9735 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9736 9737 autorun_devices(part); 9738 } 9739 9740 #endif /* !MODULE */ 9741 9742 static __exit void md_exit(void) 9743 { 9744 struct mddev *mddev; 9745 struct list_head *tmp; 9746 int delay = 1; 9747 9748 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9749 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9750 9751 unregister_blkdev(MD_MAJOR,"md"); 9752 unregister_blkdev(mdp_major, "mdp"); 9753 unregister_reboot_notifier(&md_notifier); 9754 unregister_sysctl_table(raid_table_header); 9755 9756 /* We cannot unload the modules while some process is 9757 * waiting for us in select() or poll() - wake them up 9758 */ 9759 md_unloading = 1; 9760 while (waitqueue_active(&md_event_waiters)) { 9761 /* not safe to leave yet */ 9762 wake_up(&md_event_waiters); 9763 msleep(delay); 9764 delay += delay; 9765 } 9766 remove_proc_entry("mdstat", NULL); 9767 9768 for_each_mddev(mddev, tmp) { 9769 export_array(mddev); 9770 mddev->ctime = 0; 9771 mddev->hold_active = 0; 9772 /* 9773 * for_each_mddev() will call mddev_put() at the end of each 9774 * iteration. As the mddev is now fully clear, this will 9775 * schedule the mddev for destruction by a workqueue, and the 9776 * destroy_workqueue() below will wait for that to complete. 9777 */ 9778 } 9779 destroy_workqueue(md_misc_wq); 9780 destroy_workqueue(md_wq); 9781 } 9782 9783 subsys_initcall(md_init); 9784 module_exit(md_exit) 9785 9786 static int get_ro(char *buffer, const struct kernel_param *kp) 9787 { 9788 return sprintf(buffer, "%d", start_readonly); 9789 } 9790 static int set_ro(const char *val, const struct kernel_param *kp) 9791 { 9792 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9793 } 9794 9795 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9796 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9797 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9798 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9799 9800 MODULE_LICENSE("GPL"); 9801 MODULE_DESCRIPTION("MD RAID framework"); 9802 MODULE_ALIAS("md"); 9803 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9804