1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 static struct workqueue_struct *md_rdev_misc_wq; 91 92 static int remove_and_add_spares(struct mddev *mddev, 93 struct md_rdev *this); 94 static void mddev_detach(struct mddev *mddev); 95 96 /* 97 * Default number of read corrections we'll attempt on an rdev 98 * before ejecting it from the array. We divide the read error 99 * count by 2 for every hour elapsed between read errors. 100 */ 101 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 102 /* Default safemode delay: 200 msec */ 103 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 104 /* 105 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 106 * is 1000 KB/sec, so the extra system load does not show up that much. 107 * Increase it if you want to have more _guaranteed_ speed. Note that 108 * the RAID driver will use the maximum available bandwidth if the IO 109 * subsystem is idle. There is also an 'absolute maximum' reconstruction 110 * speed limit - in case reconstruction slows down your system despite 111 * idle IO detection. 112 * 113 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 114 * or /sys/block/mdX/md/sync_speed_{min,max} 115 */ 116 117 static int sysctl_speed_limit_min = 1000; 118 static int sysctl_speed_limit_max = 200000; 119 static inline int speed_min(struct mddev *mddev) 120 { 121 return mddev->sync_speed_min ? 122 mddev->sync_speed_min : sysctl_speed_limit_min; 123 } 124 125 static inline int speed_max(struct mddev *mddev) 126 { 127 return mddev->sync_speed_max ? 128 mddev->sync_speed_max : sysctl_speed_limit_max; 129 } 130 131 static void rdev_uninit_serial(struct md_rdev *rdev) 132 { 133 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 134 return; 135 136 kvfree(rdev->serial); 137 rdev->serial = NULL; 138 } 139 140 static void rdevs_uninit_serial(struct mddev *mddev) 141 { 142 struct md_rdev *rdev; 143 144 rdev_for_each(rdev, mddev) 145 rdev_uninit_serial(rdev); 146 } 147 148 static int rdev_init_serial(struct md_rdev *rdev) 149 { 150 /* serial_nums equals with BARRIER_BUCKETS_NR */ 151 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 152 struct serial_in_rdev *serial = NULL; 153 154 if (test_bit(CollisionCheck, &rdev->flags)) 155 return 0; 156 157 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 158 GFP_KERNEL); 159 if (!serial) 160 return -ENOMEM; 161 162 for (i = 0; i < serial_nums; i++) { 163 struct serial_in_rdev *serial_tmp = &serial[i]; 164 165 spin_lock_init(&serial_tmp->serial_lock); 166 serial_tmp->serial_rb = RB_ROOT_CACHED; 167 init_waitqueue_head(&serial_tmp->serial_io_wait); 168 } 169 170 rdev->serial = serial; 171 set_bit(CollisionCheck, &rdev->flags); 172 173 return 0; 174 } 175 176 static int rdevs_init_serial(struct mddev *mddev) 177 { 178 struct md_rdev *rdev; 179 int ret = 0; 180 181 rdev_for_each(rdev, mddev) { 182 ret = rdev_init_serial(rdev); 183 if (ret) 184 break; 185 } 186 187 /* Free all resources if pool is not existed */ 188 if (ret && !mddev->serial_info_pool) 189 rdevs_uninit_serial(mddev); 190 191 return ret; 192 } 193 194 /* 195 * rdev needs to enable serial stuffs if it meets the conditions: 196 * 1. it is multi-queue device flaged with writemostly. 197 * 2. the write-behind mode is enabled. 198 */ 199 static int rdev_need_serial(struct md_rdev *rdev) 200 { 201 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 202 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 203 test_bit(WriteMostly, &rdev->flags)); 204 } 205 206 /* 207 * Init resource for rdev(s), then create serial_info_pool if: 208 * 1. rdev is the first device which return true from rdev_enable_serial. 209 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 210 */ 211 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 212 bool is_suspend) 213 { 214 int ret = 0; 215 216 if (rdev && !rdev_need_serial(rdev) && 217 !test_bit(CollisionCheck, &rdev->flags)) 218 return; 219 220 if (!is_suspend) 221 mddev_suspend(mddev); 222 223 if (!rdev) 224 ret = rdevs_init_serial(mddev); 225 else 226 ret = rdev_init_serial(rdev); 227 if (ret) 228 goto abort; 229 230 if (mddev->serial_info_pool == NULL) { 231 /* 232 * already in memalloc noio context by 233 * mddev_suspend() 234 */ 235 mddev->serial_info_pool = 236 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 237 sizeof(struct serial_info)); 238 if (!mddev->serial_info_pool) { 239 rdevs_uninit_serial(mddev); 240 pr_err("can't alloc memory pool for serialization\n"); 241 } 242 } 243 244 abort: 245 if (!is_suspend) 246 mddev_resume(mddev); 247 } 248 249 /* 250 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 251 * 1. rdev is the last device flaged with CollisionCheck. 252 * 2. when bitmap is destroyed while policy is not enabled. 253 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 254 */ 255 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 256 bool is_suspend) 257 { 258 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 259 return; 260 261 if (mddev->serial_info_pool) { 262 struct md_rdev *temp; 263 int num = 0; /* used to track if other rdevs need the pool */ 264 265 if (!is_suspend) 266 mddev_suspend(mddev); 267 rdev_for_each(temp, mddev) { 268 if (!rdev) { 269 if (!mddev->serialize_policy || 270 !rdev_need_serial(temp)) 271 rdev_uninit_serial(temp); 272 else 273 num++; 274 } else if (temp != rdev && 275 test_bit(CollisionCheck, &temp->flags)) 276 num++; 277 } 278 279 if (rdev) 280 rdev_uninit_serial(rdev); 281 282 if (num) 283 pr_info("The mempool could be used by other devices\n"); 284 else { 285 mempool_destroy(mddev->serial_info_pool); 286 mddev->serial_info_pool = NULL; 287 } 288 if (!is_suspend) 289 mddev_resume(mddev); 290 } 291 } 292 293 static struct ctl_table_header *raid_table_header; 294 295 static struct ctl_table raid_table[] = { 296 { 297 .procname = "speed_limit_min", 298 .data = &sysctl_speed_limit_min, 299 .maxlen = sizeof(int), 300 .mode = S_IRUGO|S_IWUSR, 301 .proc_handler = proc_dointvec, 302 }, 303 { 304 .procname = "speed_limit_max", 305 .data = &sysctl_speed_limit_max, 306 .maxlen = sizeof(int), 307 .mode = S_IRUGO|S_IWUSR, 308 .proc_handler = proc_dointvec, 309 }, 310 { } 311 }; 312 313 static struct ctl_table raid_dir_table[] = { 314 { 315 .procname = "raid", 316 .maxlen = 0, 317 .mode = S_IRUGO|S_IXUGO, 318 .child = raid_table, 319 }, 320 { } 321 }; 322 323 static struct ctl_table raid_root_table[] = { 324 { 325 .procname = "dev", 326 .maxlen = 0, 327 .mode = 0555, 328 .child = raid_dir_table, 329 }, 330 { } 331 }; 332 333 static int start_readonly; 334 335 /* 336 * The original mechanism for creating an md device is to create 337 * a device node in /dev and to open it. This causes races with device-close. 338 * The preferred method is to write to the "new_array" module parameter. 339 * This can avoid races. 340 * Setting create_on_open to false disables the original mechanism 341 * so all the races disappear. 342 */ 343 static bool create_on_open = true; 344 345 /* 346 * We have a system wide 'event count' that is incremented 347 * on any 'interesting' event, and readers of /proc/mdstat 348 * can use 'poll' or 'select' to find out when the event 349 * count increases. 350 * 351 * Events are: 352 * start array, stop array, error, add device, remove device, 353 * start build, activate spare 354 */ 355 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 356 static atomic_t md_event_count; 357 void md_new_event(void) 358 { 359 atomic_inc(&md_event_count); 360 wake_up(&md_event_waiters); 361 } 362 EXPORT_SYMBOL_GPL(md_new_event); 363 364 /* 365 * Enables to iterate over all existing md arrays 366 * all_mddevs_lock protects this list. 367 */ 368 static LIST_HEAD(all_mddevs); 369 static DEFINE_SPINLOCK(all_mddevs_lock); 370 371 /* Rather than calling directly into the personality make_request function, 372 * IO requests come here first so that we can check if the device is 373 * being suspended pending a reconfiguration. 374 * We hold a refcount over the call to ->make_request. By the time that 375 * call has finished, the bio has been linked into some internal structure 376 * and so is visible to ->quiesce(), so we don't need the refcount any more. 377 */ 378 static bool is_suspended(struct mddev *mddev, struct bio *bio) 379 { 380 if (mddev->suspended) 381 return true; 382 if (bio_data_dir(bio) != WRITE) 383 return false; 384 if (mddev->suspend_lo >= mddev->suspend_hi) 385 return false; 386 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 387 return false; 388 if (bio_end_sector(bio) < mddev->suspend_lo) 389 return false; 390 return true; 391 } 392 393 void md_handle_request(struct mddev *mddev, struct bio *bio) 394 { 395 check_suspended: 396 rcu_read_lock(); 397 if (is_suspended(mddev, bio)) { 398 DEFINE_WAIT(__wait); 399 /* Bail out if REQ_NOWAIT is set for the bio */ 400 if (bio->bi_opf & REQ_NOWAIT) { 401 rcu_read_unlock(); 402 bio_wouldblock_error(bio); 403 return; 404 } 405 for (;;) { 406 prepare_to_wait(&mddev->sb_wait, &__wait, 407 TASK_UNINTERRUPTIBLE); 408 if (!is_suspended(mddev, bio)) 409 break; 410 rcu_read_unlock(); 411 schedule(); 412 rcu_read_lock(); 413 } 414 finish_wait(&mddev->sb_wait, &__wait); 415 } 416 atomic_inc(&mddev->active_io); 417 rcu_read_unlock(); 418 419 if (!mddev->pers->make_request(mddev, bio)) { 420 atomic_dec(&mddev->active_io); 421 wake_up(&mddev->sb_wait); 422 goto check_suspended; 423 } 424 425 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 426 wake_up(&mddev->sb_wait); 427 } 428 EXPORT_SYMBOL(md_handle_request); 429 430 static void md_submit_bio(struct bio *bio) 431 { 432 const int rw = bio_data_dir(bio); 433 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 434 435 if (mddev == NULL || mddev->pers == NULL) { 436 bio_io_error(bio); 437 return; 438 } 439 440 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 441 bio_io_error(bio); 442 return; 443 } 444 445 bio = bio_split_to_limits(bio); 446 447 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 448 if (bio_sectors(bio) != 0) 449 bio->bi_status = BLK_STS_IOERR; 450 bio_endio(bio); 451 return; 452 } 453 454 /* bio could be mergeable after passing to underlayer */ 455 bio->bi_opf &= ~REQ_NOMERGE; 456 457 md_handle_request(mddev, bio); 458 } 459 460 /* mddev_suspend makes sure no new requests are submitted 461 * to the device, and that any requests that have been submitted 462 * are completely handled. 463 * Once mddev_detach() is called and completes, the module will be 464 * completely unused. 465 */ 466 void mddev_suspend(struct mddev *mddev) 467 { 468 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 469 lockdep_assert_held(&mddev->reconfig_mutex); 470 if (mddev->suspended++) 471 return; 472 synchronize_rcu(); 473 wake_up(&mddev->sb_wait); 474 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 475 smp_mb__after_atomic(); 476 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 477 mddev->pers->quiesce(mddev, 1); 478 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 479 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 480 481 del_timer_sync(&mddev->safemode_timer); 482 /* restrict memory reclaim I/O during raid array is suspend */ 483 mddev->noio_flag = memalloc_noio_save(); 484 } 485 EXPORT_SYMBOL_GPL(mddev_suspend); 486 487 void mddev_resume(struct mddev *mddev) 488 { 489 /* entred the memalloc scope from mddev_suspend() */ 490 memalloc_noio_restore(mddev->noio_flag); 491 lockdep_assert_held(&mddev->reconfig_mutex); 492 if (--mddev->suspended) 493 return; 494 wake_up(&mddev->sb_wait); 495 mddev->pers->quiesce(mddev, 0); 496 497 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 498 md_wakeup_thread(mddev->thread); 499 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 500 } 501 EXPORT_SYMBOL_GPL(mddev_resume); 502 503 /* 504 * Generic flush handling for md 505 */ 506 507 static void md_end_flush(struct bio *bio) 508 { 509 struct md_rdev *rdev = bio->bi_private; 510 struct mddev *mddev = rdev->mddev; 511 512 rdev_dec_pending(rdev, mddev); 513 514 if (atomic_dec_and_test(&mddev->flush_pending)) { 515 /* The pre-request flush has finished */ 516 queue_work(md_wq, &mddev->flush_work); 517 } 518 bio_put(bio); 519 } 520 521 static void md_submit_flush_data(struct work_struct *ws); 522 523 static void submit_flushes(struct work_struct *ws) 524 { 525 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 526 struct md_rdev *rdev; 527 528 mddev->start_flush = ktime_get_boottime(); 529 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 530 atomic_set(&mddev->flush_pending, 1); 531 rcu_read_lock(); 532 rdev_for_each_rcu(rdev, mddev) 533 if (rdev->raid_disk >= 0 && 534 !test_bit(Faulty, &rdev->flags)) { 535 /* Take two references, one is dropped 536 * when request finishes, one after 537 * we reclaim rcu_read_lock 538 */ 539 struct bio *bi; 540 atomic_inc(&rdev->nr_pending); 541 atomic_inc(&rdev->nr_pending); 542 rcu_read_unlock(); 543 bi = bio_alloc_bioset(rdev->bdev, 0, 544 REQ_OP_WRITE | REQ_PREFLUSH, 545 GFP_NOIO, &mddev->bio_set); 546 bi->bi_end_io = md_end_flush; 547 bi->bi_private = rdev; 548 atomic_inc(&mddev->flush_pending); 549 submit_bio(bi); 550 rcu_read_lock(); 551 rdev_dec_pending(rdev, mddev); 552 } 553 rcu_read_unlock(); 554 if (atomic_dec_and_test(&mddev->flush_pending)) 555 queue_work(md_wq, &mddev->flush_work); 556 } 557 558 static void md_submit_flush_data(struct work_struct *ws) 559 { 560 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 561 struct bio *bio = mddev->flush_bio; 562 563 /* 564 * must reset flush_bio before calling into md_handle_request to avoid a 565 * deadlock, because other bios passed md_handle_request suspend check 566 * could wait for this and below md_handle_request could wait for those 567 * bios because of suspend check 568 */ 569 spin_lock_irq(&mddev->lock); 570 mddev->prev_flush_start = mddev->start_flush; 571 mddev->flush_bio = NULL; 572 spin_unlock_irq(&mddev->lock); 573 wake_up(&mddev->sb_wait); 574 575 if (bio->bi_iter.bi_size == 0) { 576 /* an empty barrier - all done */ 577 bio_endio(bio); 578 } else { 579 bio->bi_opf &= ~REQ_PREFLUSH; 580 md_handle_request(mddev, bio); 581 } 582 } 583 584 /* 585 * Manages consolidation of flushes and submitting any flushes needed for 586 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 587 * being finished in another context. Returns false if the flushing is 588 * complete but still needs the I/O portion of the bio to be processed. 589 */ 590 bool md_flush_request(struct mddev *mddev, struct bio *bio) 591 { 592 ktime_t req_start = ktime_get_boottime(); 593 spin_lock_irq(&mddev->lock); 594 /* flush requests wait until ongoing flush completes, 595 * hence coalescing all the pending requests. 596 */ 597 wait_event_lock_irq(mddev->sb_wait, 598 !mddev->flush_bio || 599 ktime_before(req_start, mddev->prev_flush_start), 600 mddev->lock); 601 /* new request after previous flush is completed */ 602 if (ktime_after(req_start, mddev->prev_flush_start)) { 603 WARN_ON(mddev->flush_bio); 604 mddev->flush_bio = bio; 605 bio = NULL; 606 } 607 spin_unlock_irq(&mddev->lock); 608 609 if (!bio) { 610 INIT_WORK(&mddev->flush_work, submit_flushes); 611 queue_work(md_wq, &mddev->flush_work); 612 } else { 613 /* flush was performed for some other bio while we waited. */ 614 if (bio->bi_iter.bi_size == 0) 615 /* an empty barrier - all done */ 616 bio_endio(bio); 617 else { 618 bio->bi_opf &= ~REQ_PREFLUSH; 619 return false; 620 } 621 } 622 return true; 623 } 624 EXPORT_SYMBOL(md_flush_request); 625 626 static inline struct mddev *mddev_get(struct mddev *mddev) 627 { 628 lockdep_assert_held(&all_mddevs_lock); 629 630 if (test_bit(MD_DELETED, &mddev->flags)) 631 return NULL; 632 atomic_inc(&mddev->active); 633 return mddev; 634 } 635 636 static void mddev_delayed_delete(struct work_struct *ws); 637 638 void mddev_put(struct mddev *mddev) 639 { 640 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 641 return; 642 if (!mddev->raid_disks && list_empty(&mddev->disks) && 643 mddev->ctime == 0 && !mddev->hold_active) { 644 /* Array is not configured at all, and not held active, 645 * so destroy it */ 646 set_bit(MD_DELETED, &mddev->flags); 647 648 /* 649 * Call queue_work inside the spinlock so that 650 * flush_workqueue() after mddev_find will succeed in waiting 651 * for the work to be done. 652 */ 653 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 654 queue_work(md_misc_wq, &mddev->del_work); 655 } 656 spin_unlock(&all_mddevs_lock); 657 } 658 659 static void md_safemode_timeout(struct timer_list *t); 660 661 void mddev_init(struct mddev *mddev) 662 { 663 mutex_init(&mddev->open_mutex); 664 mutex_init(&mddev->reconfig_mutex); 665 mutex_init(&mddev->bitmap_info.mutex); 666 INIT_LIST_HEAD(&mddev->disks); 667 INIT_LIST_HEAD(&mddev->all_mddevs); 668 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 669 atomic_set(&mddev->active, 1); 670 atomic_set(&mddev->openers, 0); 671 atomic_set(&mddev->active_io, 0); 672 spin_lock_init(&mddev->lock); 673 atomic_set(&mddev->flush_pending, 0); 674 init_waitqueue_head(&mddev->sb_wait); 675 init_waitqueue_head(&mddev->recovery_wait); 676 mddev->reshape_position = MaxSector; 677 mddev->reshape_backwards = 0; 678 mddev->last_sync_action = "none"; 679 mddev->resync_min = 0; 680 mddev->resync_max = MaxSector; 681 mddev->level = LEVEL_NONE; 682 } 683 EXPORT_SYMBOL_GPL(mddev_init); 684 685 static struct mddev *mddev_find_locked(dev_t unit) 686 { 687 struct mddev *mddev; 688 689 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 690 if (mddev->unit == unit) 691 return mddev; 692 693 return NULL; 694 } 695 696 /* find an unused unit number */ 697 static dev_t mddev_alloc_unit(void) 698 { 699 static int next_minor = 512; 700 int start = next_minor; 701 bool is_free = 0; 702 dev_t dev = 0; 703 704 while (!is_free) { 705 dev = MKDEV(MD_MAJOR, next_minor); 706 next_minor++; 707 if (next_minor > MINORMASK) 708 next_minor = 0; 709 if (next_minor == start) 710 return 0; /* Oh dear, all in use. */ 711 is_free = !mddev_find_locked(dev); 712 } 713 714 return dev; 715 } 716 717 static struct mddev *mddev_alloc(dev_t unit) 718 { 719 struct mddev *new; 720 int error; 721 722 if (unit && MAJOR(unit) != MD_MAJOR) 723 unit &= ~((1 << MdpMinorShift) - 1); 724 725 new = kzalloc(sizeof(*new), GFP_KERNEL); 726 if (!new) 727 return ERR_PTR(-ENOMEM); 728 mddev_init(new); 729 730 spin_lock(&all_mddevs_lock); 731 if (unit) { 732 error = -EEXIST; 733 if (mddev_find_locked(unit)) 734 goto out_free_new; 735 new->unit = unit; 736 if (MAJOR(unit) == MD_MAJOR) 737 new->md_minor = MINOR(unit); 738 else 739 new->md_minor = MINOR(unit) >> MdpMinorShift; 740 new->hold_active = UNTIL_IOCTL; 741 } else { 742 error = -ENODEV; 743 new->unit = mddev_alloc_unit(); 744 if (!new->unit) 745 goto out_free_new; 746 new->md_minor = MINOR(new->unit); 747 new->hold_active = UNTIL_STOP; 748 } 749 750 list_add(&new->all_mddevs, &all_mddevs); 751 spin_unlock(&all_mddevs_lock); 752 return new; 753 out_free_new: 754 spin_unlock(&all_mddevs_lock); 755 kfree(new); 756 return ERR_PTR(error); 757 } 758 759 static void mddev_free(struct mddev *mddev) 760 { 761 spin_lock(&all_mddevs_lock); 762 list_del(&mddev->all_mddevs); 763 spin_unlock(&all_mddevs_lock); 764 765 kfree(mddev); 766 } 767 768 static const struct attribute_group md_redundancy_group; 769 770 void mddev_unlock(struct mddev *mddev) 771 { 772 if (mddev->to_remove) { 773 /* These cannot be removed under reconfig_mutex as 774 * an access to the files will try to take reconfig_mutex 775 * while holding the file unremovable, which leads to 776 * a deadlock. 777 * So hold set sysfs_active while the remove in happeing, 778 * and anything else which might set ->to_remove or my 779 * otherwise change the sysfs namespace will fail with 780 * -EBUSY if sysfs_active is still set. 781 * We set sysfs_active under reconfig_mutex and elsewhere 782 * test it under the same mutex to ensure its correct value 783 * is seen. 784 */ 785 const struct attribute_group *to_remove = mddev->to_remove; 786 mddev->to_remove = NULL; 787 mddev->sysfs_active = 1; 788 mutex_unlock(&mddev->reconfig_mutex); 789 790 if (mddev->kobj.sd) { 791 if (to_remove != &md_redundancy_group) 792 sysfs_remove_group(&mddev->kobj, to_remove); 793 if (mddev->pers == NULL || 794 mddev->pers->sync_request == NULL) { 795 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 796 if (mddev->sysfs_action) 797 sysfs_put(mddev->sysfs_action); 798 if (mddev->sysfs_completed) 799 sysfs_put(mddev->sysfs_completed); 800 if (mddev->sysfs_degraded) 801 sysfs_put(mddev->sysfs_degraded); 802 mddev->sysfs_action = NULL; 803 mddev->sysfs_completed = NULL; 804 mddev->sysfs_degraded = NULL; 805 } 806 } 807 mddev->sysfs_active = 0; 808 } else 809 mutex_unlock(&mddev->reconfig_mutex); 810 811 /* As we've dropped the mutex we need a spinlock to 812 * make sure the thread doesn't disappear 813 */ 814 spin_lock(&pers_lock); 815 md_wakeup_thread(mddev->thread); 816 wake_up(&mddev->sb_wait); 817 spin_unlock(&pers_lock); 818 } 819 EXPORT_SYMBOL_GPL(mddev_unlock); 820 821 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 822 { 823 struct md_rdev *rdev; 824 825 rdev_for_each_rcu(rdev, mddev) 826 if (rdev->desc_nr == nr) 827 return rdev; 828 829 return NULL; 830 } 831 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 832 833 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 834 { 835 struct md_rdev *rdev; 836 837 rdev_for_each(rdev, mddev) 838 if (rdev->bdev->bd_dev == dev) 839 return rdev; 840 841 return NULL; 842 } 843 844 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 845 { 846 struct md_rdev *rdev; 847 848 rdev_for_each_rcu(rdev, mddev) 849 if (rdev->bdev->bd_dev == dev) 850 return rdev; 851 852 return NULL; 853 } 854 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 855 856 static struct md_personality *find_pers(int level, char *clevel) 857 { 858 struct md_personality *pers; 859 list_for_each_entry(pers, &pers_list, list) { 860 if (level != LEVEL_NONE && pers->level == level) 861 return pers; 862 if (strcmp(pers->name, clevel)==0) 863 return pers; 864 } 865 return NULL; 866 } 867 868 /* return the offset of the super block in 512byte sectors */ 869 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 870 { 871 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 872 } 873 874 static int alloc_disk_sb(struct md_rdev *rdev) 875 { 876 rdev->sb_page = alloc_page(GFP_KERNEL); 877 if (!rdev->sb_page) 878 return -ENOMEM; 879 return 0; 880 } 881 882 void md_rdev_clear(struct md_rdev *rdev) 883 { 884 if (rdev->sb_page) { 885 put_page(rdev->sb_page); 886 rdev->sb_loaded = 0; 887 rdev->sb_page = NULL; 888 rdev->sb_start = 0; 889 rdev->sectors = 0; 890 } 891 if (rdev->bb_page) { 892 put_page(rdev->bb_page); 893 rdev->bb_page = NULL; 894 } 895 badblocks_exit(&rdev->badblocks); 896 } 897 EXPORT_SYMBOL_GPL(md_rdev_clear); 898 899 static void super_written(struct bio *bio) 900 { 901 struct md_rdev *rdev = bio->bi_private; 902 struct mddev *mddev = rdev->mddev; 903 904 if (bio->bi_status) { 905 pr_err("md: %s gets error=%d\n", __func__, 906 blk_status_to_errno(bio->bi_status)); 907 md_error(mddev, rdev); 908 if (!test_bit(Faulty, &rdev->flags) 909 && (bio->bi_opf & MD_FAILFAST)) { 910 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 911 set_bit(LastDev, &rdev->flags); 912 } 913 } else 914 clear_bit(LastDev, &rdev->flags); 915 916 if (atomic_dec_and_test(&mddev->pending_writes)) 917 wake_up(&mddev->sb_wait); 918 rdev_dec_pending(rdev, mddev); 919 bio_put(bio); 920 } 921 922 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 923 sector_t sector, int size, struct page *page) 924 { 925 /* write first size bytes of page to sector of rdev 926 * Increment mddev->pending_writes before returning 927 * and decrement it on completion, waking up sb_wait 928 * if zero is reached. 929 * If an error occurred, call md_error 930 */ 931 struct bio *bio; 932 933 if (!page) 934 return; 935 936 if (test_bit(Faulty, &rdev->flags)) 937 return; 938 939 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 940 1, 941 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 942 GFP_NOIO, &mddev->sync_set); 943 944 atomic_inc(&rdev->nr_pending); 945 946 bio->bi_iter.bi_sector = sector; 947 bio_add_page(bio, page, size, 0); 948 bio->bi_private = rdev; 949 bio->bi_end_io = super_written; 950 951 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 952 test_bit(FailFast, &rdev->flags) && 953 !test_bit(LastDev, &rdev->flags)) 954 bio->bi_opf |= MD_FAILFAST; 955 956 atomic_inc(&mddev->pending_writes); 957 submit_bio(bio); 958 } 959 960 int md_super_wait(struct mddev *mddev) 961 { 962 /* wait for all superblock writes that were scheduled to complete */ 963 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 964 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 965 return -EAGAIN; 966 return 0; 967 } 968 969 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 970 struct page *page, blk_opf_t opf, bool metadata_op) 971 { 972 struct bio bio; 973 struct bio_vec bvec; 974 975 if (metadata_op && rdev->meta_bdev) 976 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 977 else 978 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 979 980 if (metadata_op) 981 bio.bi_iter.bi_sector = sector + rdev->sb_start; 982 else if (rdev->mddev->reshape_position != MaxSector && 983 (rdev->mddev->reshape_backwards == 984 (sector >= rdev->mddev->reshape_position))) 985 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 986 else 987 bio.bi_iter.bi_sector = sector + rdev->data_offset; 988 bio_add_page(&bio, page, size, 0); 989 990 submit_bio_wait(&bio); 991 992 return !bio.bi_status; 993 } 994 EXPORT_SYMBOL_GPL(sync_page_io); 995 996 static int read_disk_sb(struct md_rdev *rdev, int size) 997 { 998 if (rdev->sb_loaded) 999 return 0; 1000 1001 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1002 goto fail; 1003 rdev->sb_loaded = 1; 1004 return 0; 1005 1006 fail: 1007 pr_err("md: disabled device %pg, could not read superblock.\n", 1008 rdev->bdev); 1009 return -EINVAL; 1010 } 1011 1012 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1013 { 1014 return sb1->set_uuid0 == sb2->set_uuid0 && 1015 sb1->set_uuid1 == sb2->set_uuid1 && 1016 sb1->set_uuid2 == sb2->set_uuid2 && 1017 sb1->set_uuid3 == sb2->set_uuid3; 1018 } 1019 1020 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1021 { 1022 int ret; 1023 mdp_super_t *tmp1, *tmp2; 1024 1025 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1026 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1027 1028 if (!tmp1 || !tmp2) { 1029 ret = 0; 1030 goto abort; 1031 } 1032 1033 *tmp1 = *sb1; 1034 *tmp2 = *sb2; 1035 1036 /* 1037 * nr_disks is not constant 1038 */ 1039 tmp1->nr_disks = 0; 1040 tmp2->nr_disks = 0; 1041 1042 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1043 abort: 1044 kfree(tmp1); 1045 kfree(tmp2); 1046 return ret; 1047 } 1048 1049 static u32 md_csum_fold(u32 csum) 1050 { 1051 csum = (csum & 0xffff) + (csum >> 16); 1052 return (csum & 0xffff) + (csum >> 16); 1053 } 1054 1055 static unsigned int calc_sb_csum(mdp_super_t *sb) 1056 { 1057 u64 newcsum = 0; 1058 u32 *sb32 = (u32*)sb; 1059 int i; 1060 unsigned int disk_csum, csum; 1061 1062 disk_csum = sb->sb_csum; 1063 sb->sb_csum = 0; 1064 1065 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1066 newcsum += sb32[i]; 1067 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1068 1069 #ifdef CONFIG_ALPHA 1070 /* This used to use csum_partial, which was wrong for several 1071 * reasons including that different results are returned on 1072 * different architectures. It isn't critical that we get exactly 1073 * the same return value as before (we always csum_fold before 1074 * testing, and that removes any differences). However as we 1075 * know that csum_partial always returned a 16bit value on 1076 * alphas, do a fold to maximise conformity to previous behaviour. 1077 */ 1078 sb->sb_csum = md_csum_fold(disk_csum); 1079 #else 1080 sb->sb_csum = disk_csum; 1081 #endif 1082 return csum; 1083 } 1084 1085 /* 1086 * Handle superblock details. 1087 * We want to be able to handle multiple superblock formats 1088 * so we have a common interface to them all, and an array of 1089 * different handlers. 1090 * We rely on user-space to write the initial superblock, and support 1091 * reading and updating of superblocks. 1092 * Interface methods are: 1093 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1094 * loads and validates a superblock on dev. 1095 * if refdev != NULL, compare superblocks on both devices 1096 * Return: 1097 * 0 - dev has a superblock that is compatible with refdev 1098 * 1 - dev has a superblock that is compatible and newer than refdev 1099 * so dev should be used as the refdev in future 1100 * -EINVAL superblock incompatible or invalid 1101 * -othererror e.g. -EIO 1102 * 1103 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1104 * Verify that dev is acceptable into mddev. 1105 * The first time, mddev->raid_disks will be 0, and data from 1106 * dev should be merged in. Subsequent calls check that dev 1107 * is new enough. Return 0 or -EINVAL 1108 * 1109 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1110 * Update the superblock for rdev with data in mddev 1111 * This does not write to disc. 1112 * 1113 */ 1114 1115 struct super_type { 1116 char *name; 1117 struct module *owner; 1118 int (*load_super)(struct md_rdev *rdev, 1119 struct md_rdev *refdev, 1120 int minor_version); 1121 int (*validate_super)(struct mddev *mddev, 1122 struct md_rdev *rdev); 1123 void (*sync_super)(struct mddev *mddev, 1124 struct md_rdev *rdev); 1125 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1126 sector_t num_sectors); 1127 int (*allow_new_offset)(struct md_rdev *rdev, 1128 unsigned long long new_offset); 1129 }; 1130 1131 /* 1132 * Check that the given mddev has no bitmap. 1133 * 1134 * This function is called from the run method of all personalities that do not 1135 * support bitmaps. It prints an error message and returns non-zero if mddev 1136 * has a bitmap. Otherwise, it returns 0. 1137 * 1138 */ 1139 int md_check_no_bitmap(struct mddev *mddev) 1140 { 1141 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1142 return 0; 1143 pr_warn("%s: bitmaps are not supported for %s\n", 1144 mdname(mddev), mddev->pers->name); 1145 return 1; 1146 } 1147 EXPORT_SYMBOL(md_check_no_bitmap); 1148 1149 /* 1150 * load_super for 0.90.0 1151 */ 1152 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1153 { 1154 mdp_super_t *sb; 1155 int ret; 1156 bool spare_disk = true; 1157 1158 /* 1159 * Calculate the position of the superblock (512byte sectors), 1160 * it's at the end of the disk. 1161 * 1162 * It also happens to be a multiple of 4Kb. 1163 */ 1164 rdev->sb_start = calc_dev_sboffset(rdev); 1165 1166 ret = read_disk_sb(rdev, MD_SB_BYTES); 1167 if (ret) 1168 return ret; 1169 1170 ret = -EINVAL; 1171 1172 sb = page_address(rdev->sb_page); 1173 1174 if (sb->md_magic != MD_SB_MAGIC) { 1175 pr_warn("md: invalid raid superblock magic on %pg\n", 1176 rdev->bdev); 1177 goto abort; 1178 } 1179 1180 if (sb->major_version != 0 || 1181 sb->minor_version < 90 || 1182 sb->minor_version > 91) { 1183 pr_warn("Bad version number %d.%d on %pg\n", 1184 sb->major_version, sb->minor_version, rdev->bdev); 1185 goto abort; 1186 } 1187 1188 if (sb->raid_disks <= 0) 1189 goto abort; 1190 1191 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1192 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1193 goto abort; 1194 } 1195 1196 rdev->preferred_minor = sb->md_minor; 1197 rdev->data_offset = 0; 1198 rdev->new_data_offset = 0; 1199 rdev->sb_size = MD_SB_BYTES; 1200 rdev->badblocks.shift = -1; 1201 1202 if (sb->level == LEVEL_MULTIPATH) 1203 rdev->desc_nr = -1; 1204 else 1205 rdev->desc_nr = sb->this_disk.number; 1206 1207 /* not spare disk, or LEVEL_MULTIPATH */ 1208 if (sb->level == LEVEL_MULTIPATH || 1209 (rdev->desc_nr >= 0 && 1210 rdev->desc_nr < MD_SB_DISKS && 1211 sb->disks[rdev->desc_nr].state & 1212 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1213 spare_disk = false; 1214 1215 if (!refdev) { 1216 if (!spare_disk) 1217 ret = 1; 1218 else 1219 ret = 0; 1220 } else { 1221 __u64 ev1, ev2; 1222 mdp_super_t *refsb = page_address(refdev->sb_page); 1223 if (!md_uuid_equal(refsb, sb)) { 1224 pr_warn("md: %pg has different UUID to %pg\n", 1225 rdev->bdev, refdev->bdev); 1226 goto abort; 1227 } 1228 if (!md_sb_equal(refsb, sb)) { 1229 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1230 rdev->bdev, refdev->bdev); 1231 goto abort; 1232 } 1233 ev1 = md_event(sb); 1234 ev2 = md_event(refsb); 1235 1236 if (!spare_disk && ev1 > ev2) 1237 ret = 1; 1238 else 1239 ret = 0; 1240 } 1241 rdev->sectors = rdev->sb_start; 1242 /* Limit to 4TB as metadata cannot record more than that. 1243 * (not needed for Linear and RAID0 as metadata doesn't 1244 * record this size) 1245 */ 1246 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1247 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1248 1249 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1250 /* "this cannot possibly happen" ... */ 1251 ret = -EINVAL; 1252 1253 abort: 1254 return ret; 1255 } 1256 1257 /* 1258 * validate_super for 0.90.0 1259 */ 1260 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1261 { 1262 mdp_disk_t *desc; 1263 mdp_super_t *sb = page_address(rdev->sb_page); 1264 __u64 ev1 = md_event(sb); 1265 1266 rdev->raid_disk = -1; 1267 clear_bit(Faulty, &rdev->flags); 1268 clear_bit(In_sync, &rdev->flags); 1269 clear_bit(Bitmap_sync, &rdev->flags); 1270 clear_bit(WriteMostly, &rdev->flags); 1271 1272 if (mddev->raid_disks == 0) { 1273 mddev->major_version = 0; 1274 mddev->minor_version = sb->minor_version; 1275 mddev->patch_version = sb->patch_version; 1276 mddev->external = 0; 1277 mddev->chunk_sectors = sb->chunk_size >> 9; 1278 mddev->ctime = sb->ctime; 1279 mddev->utime = sb->utime; 1280 mddev->level = sb->level; 1281 mddev->clevel[0] = 0; 1282 mddev->layout = sb->layout; 1283 mddev->raid_disks = sb->raid_disks; 1284 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1285 mddev->events = ev1; 1286 mddev->bitmap_info.offset = 0; 1287 mddev->bitmap_info.space = 0; 1288 /* bitmap can use 60 K after the 4K superblocks */ 1289 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1290 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1291 mddev->reshape_backwards = 0; 1292 1293 if (mddev->minor_version >= 91) { 1294 mddev->reshape_position = sb->reshape_position; 1295 mddev->delta_disks = sb->delta_disks; 1296 mddev->new_level = sb->new_level; 1297 mddev->new_layout = sb->new_layout; 1298 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1299 if (mddev->delta_disks < 0) 1300 mddev->reshape_backwards = 1; 1301 } else { 1302 mddev->reshape_position = MaxSector; 1303 mddev->delta_disks = 0; 1304 mddev->new_level = mddev->level; 1305 mddev->new_layout = mddev->layout; 1306 mddev->new_chunk_sectors = mddev->chunk_sectors; 1307 } 1308 if (mddev->level == 0) 1309 mddev->layout = -1; 1310 1311 if (sb->state & (1<<MD_SB_CLEAN)) 1312 mddev->recovery_cp = MaxSector; 1313 else { 1314 if (sb->events_hi == sb->cp_events_hi && 1315 sb->events_lo == sb->cp_events_lo) { 1316 mddev->recovery_cp = sb->recovery_cp; 1317 } else 1318 mddev->recovery_cp = 0; 1319 } 1320 1321 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1322 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1323 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1324 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1325 1326 mddev->max_disks = MD_SB_DISKS; 1327 1328 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1329 mddev->bitmap_info.file == NULL) { 1330 mddev->bitmap_info.offset = 1331 mddev->bitmap_info.default_offset; 1332 mddev->bitmap_info.space = 1333 mddev->bitmap_info.default_space; 1334 } 1335 1336 } else if (mddev->pers == NULL) { 1337 /* Insist on good event counter while assembling, except 1338 * for spares (which don't need an event count) */ 1339 ++ev1; 1340 if (sb->disks[rdev->desc_nr].state & ( 1341 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1342 if (ev1 < mddev->events) 1343 return -EINVAL; 1344 } else if (mddev->bitmap) { 1345 /* if adding to array with a bitmap, then we can accept an 1346 * older device ... but not too old. 1347 */ 1348 if (ev1 < mddev->bitmap->events_cleared) 1349 return 0; 1350 if (ev1 < mddev->events) 1351 set_bit(Bitmap_sync, &rdev->flags); 1352 } else { 1353 if (ev1 < mddev->events) 1354 /* just a hot-add of a new device, leave raid_disk at -1 */ 1355 return 0; 1356 } 1357 1358 if (mddev->level != LEVEL_MULTIPATH) { 1359 desc = sb->disks + rdev->desc_nr; 1360 1361 if (desc->state & (1<<MD_DISK_FAULTY)) 1362 set_bit(Faulty, &rdev->flags); 1363 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1364 desc->raid_disk < mddev->raid_disks */) { 1365 set_bit(In_sync, &rdev->flags); 1366 rdev->raid_disk = desc->raid_disk; 1367 rdev->saved_raid_disk = desc->raid_disk; 1368 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1369 /* active but not in sync implies recovery up to 1370 * reshape position. We don't know exactly where 1371 * that is, so set to zero for now */ 1372 if (mddev->minor_version >= 91) { 1373 rdev->recovery_offset = 0; 1374 rdev->raid_disk = desc->raid_disk; 1375 } 1376 } 1377 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1378 set_bit(WriteMostly, &rdev->flags); 1379 if (desc->state & (1<<MD_DISK_FAILFAST)) 1380 set_bit(FailFast, &rdev->flags); 1381 } else /* MULTIPATH are always insync */ 1382 set_bit(In_sync, &rdev->flags); 1383 return 0; 1384 } 1385 1386 /* 1387 * sync_super for 0.90.0 1388 */ 1389 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1390 { 1391 mdp_super_t *sb; 1392 struct md_rdev *rdev2; 1393 int next_spare = mddev->raid_disks; 1394 1395 /* make rdev->sb match mddev data.. 1396 * 1397 * 1/ zero out disks 1398 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1399 * 3/ any empty disks < next_spare become removed 1400 * 1401 * disks[0] gets initialised to REMOVED because 1402 * we cannot be sure from other fields if it has 1403 * been initialised or not. 1404 */ 1405 int i; 1406 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1407 1408 rdev->sb_size = MD_SB_BYTES; 1409 1410 sb = page_address(rdev->sb_page); 1411 1412 memset(sb, 0, sizeof(*sb)); 1413 1414 sb->md_magic = MD_SB_MAGIC; 1415 sb->major_version = mddev->major_version; 1416 sb->patch_version = mddev->patch_version; 1417 sb->gvalid_words = 0; /* ignored */ 1418 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1419 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1420 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1421 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1422 1423 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1424 sb->level = mddev->level; 1425 sb->size = mddev->dev_sectors / 2; 1426 sb->raid_disks = mddev->raid_disks; 1427 sb->md_minor = mddev->md_minor; 1428 sb->not_persistent = 0; 1429 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1430 sb->state = 0; 1431 sb->events_hi = (mddev->events>>32); 1432 sb->events_lo = (u32)mddev->events; 1433 1434 if (mddev->reshape_position == MaxSector) 1435 sb->minor_version = 90; 1436 else { 1437 sb->minor_version = 91; 1438 sb->reshape_position = mddev->reshape_position; 1439 sb->new_level = mddev->new_level; 1440 sb->delta_disks = mddev->delta_disks; 1441 sb->new_layout = mddev->new_layout; 1442 sb->new_chunk = mddev->new_chunk_sectors << 9; 1443 } 1444 mddev->minor_version = sb->minor_version; 1445 if (mddev->in_sync) 1446 { 1447 sb->recovery_cp = mddev->recovery_cp; 1448 sb->cp_events_hi = (mddev->events>>32); 1449 sb->cp_events_lo = (u32)mddev->events; 1450 if (mddev->recovery_cp == MaxSector) 1451 sb->state = (1<< MD_SB_CLEAN); 1452 } else 1453 sb->recovery_cp = 0; 1454 1455 sb->layout = mddev->layout; 1456 sb->chunk_size = mddev->chunk_sectors << 9; 1457 1458 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1459 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1460 1461 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1462 rdev_for_each(rdev2, mddev) { 1463 mdp_disk_t *d; 1464 int desc_nr; 1465 int is_active = test_bit(In_sync, &rdev2->flags); 1466 1467 if (rdev2->raid_disk >= 0 && 1468 sb->minor_version >= 91) 1469 /* we have nowhere to store the recovery_offset, 1470 * but if it is not below the reshape_position, 1471 * we can piggy-back on that. 1472 */ 1473 is_active = 1; 1474 if (rdev2->raid_disk < 0 || 1475 test_bit(Faulty, &rdev2->flags)) 1476 is_active = 0; 1477 if (is_active) 1478 desc_nr = rdev2->raid_disk; 1479 else 1480 desc_nr = next_spare++; 1481 rdev2->desc_nr = desc_nr; 1482 d = &sb->disks[rdev2->desc_nr]; 1483 nr_disks++; 1484 d->number = rdev2->desc_nr; 1485 d->major = MAJOR(rdev2->bdev->bd_dev); 1486 d->minor = MINOR(rdev2->bdev->bd_dev); 1487 if (is_active) 1488 d->raid_disk = rdev2->raid_disk; 1489 else 1490 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1491 if (test_bit(Faulty, &rdev2->flags)) 1492 d->state = (1<<MD_DISK_FAULTY); 1493 else if (is_active) { 1494 d->state = (1<<MD_DISK_ACTIVE); 1495 if (test_bit(In_sync, &rdev2->flags)) 1496 d->state |= (1<<MD_DISK_SYNC); 1497 active++; 1498 working++; 1499 } else { 1500 d->state = 0; 1501 spare++; 1502 working++; 1503 } 1504 if (test_bit(WriteMostly, &rdev2->flags)) 1505 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1506 if (test_bit(FailFast, &rdev2->flags)) 1507 d->state |= (1<<MD_DISK_FAILFAST); 1508 } 1509 /* now set the "removed" and "faulty" bits on any missing devices */ 1510 for (i=0 ; i < mddev->raid_disks ; i++) { 1511 mdp_disk_t *d = &sb->disks[i]; 1512 if (d->state == 0 && d->number == 0) { 1513 d->number = i; 1514 d->raid_disk = i; 1515 d->state = (1<<MD_DISK_REMOVED); 1516 d->state |= (1<<MD_DISK_FAULTY); 1517 failed++; 1518 } 1519 } 1520 sb->nr_disks = nr_disks; 1521 sb->active_disks = active; 1522 sb->working_disks = working; 1523 sb->failed_disks = failed; 1524 sb->spare_disks = spare; 1525 1526 sb->this_disk = sb->disks[rdev->desc_nr]; 1527 sb->sb_csum = calc_sb_csum(sb); 1528 } 1529 1530 /* 1531 * rdev_size_change for 0.90.0 1532 */ 1533 static unsigned long long 1534 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1535 { 1536 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1537 return 0; /* component must fit device */ 1538 if (rdev->mddev->bitmap_info.offset) 1539 return 0; /* can't move bitmap */ 1540 rdev->sb_start = calc_dev_sboffset(rdev); 1541 if (!num_sectors || num_sectors > rdev->sb_start) 1542 num_sectors = rdev->sb_start; 1543 /* Limit to 4TB as metadata cannot record more than that. 1544 * 4TB == 2^32 KB, or 2*2^32 sectors. 1545 */ 1546 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1547 num_sectors = (sector_t)(2ULL << 32) - 2; 1548 do { 1549 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1550 rdev->sb_page); 1551 } while (md_super_wait(rdev->mddev) < 0); 1552 return num_sectors; 1553 } 1554 1555 static int 1556 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1557 { 1558 /* non-zero offset changes not possible with v0.90 */ 1559 return new_offset == 0; 1560 } 1561 1562 /* 1563 * version 1 superblock 1564 */ 1565 1566 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1567 { 1568 __le32 disk_csum; 1569 u32 csum; 1570 unsigned long long newcsum; 1571 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1572 __le32 *isuper = (__le32*)sb; 1573 1574 disk_csum = sb->sb_csum; 1575 sb->sb_csum = 0; 1576 newcsum = 0; 1577 for (; size >= 4; size -= 4) 1578 newcsum += le32_to_cpu(*isuper++); 1579 1580 if (size == 2) 1581 newcsum += le16_to_cpu(*(__le16*) isuper); 1582 1583 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1584 sb->sb_csum = disk_csum; 1585 return cpu_to_le32(csum); 1586 } 1587 1588 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1589 { 1590 struct mdp_superblock_1 *sb; 1591 int ret; 1592 sector_t sb_start; 1593 sector_t sectors; 1594 int bmask; 1595 bool spare_disk = true; 1596 1597 /* 1598 * Calculate the position of the superblock in 512byte sectors. 1599 * It is always aligned to a 4K boundary and 1600 * depeding on minor_version, it can be: 1601 * 0: At least 8K, but less than 12K, from end of device 1602 * 1: At start of device 1603 * 2: 4K from start of device. 1604 */ 1605 switch(minor_version) { 1606 case 0: 1607 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1608 sb_start &= ~(sector_t)(4*2-1); 1609 break; 1610 case 1: 1611 sb_start = 0; 1612 break; 1613 case 2: 1614 sb_start = 8; 1615 break; 1616 default: 1617 return -EINVAL; 1618 } 1619 rdev->sb_start = sb_start; 1620 1621 /* superblock is rarely larger than 1K, but it can be larger, 1622 * and it is safe to read 4k, so we do that 1623 */ 1624 ret = read_disk_sb(rdev, 4096); 1625 if (ret) return ret; 1626 1627 sb = page_address(rdev->sb_page); 1628 1629 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1630 sb->major_version != cpu_to_le32(1) || 1631 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1632 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1633 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1634 return -EINVAL; 1635 1636 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1637 pr_warn("md: invalid superblock checksum on %pg\n", 1638 rdev->bdev); 1639 return -EINVAL; 1640 } 1641 if (le64_to_cpu(sb->data_size) < 10) { 1642 pr_warn("md: data_size too small on %pg\n", 1643 rdev->bdev); 1644 return -EINVAL; 1645 } 1646 if (sb->pad0 || 1647 sb->pad3[0] || 1648 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1649 /* Some padding is non-zero, might be a new feature */ 1650 return -EINVAL; 1651 1652 rdev->preferred_minor = 0xffff; 1653 rdev->data_offset = le64_to_cpu(sb->data_offset); 1654 rdev->new_data_offset = rdev->data_offset; 1655 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1656 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1657 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1658 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1659 1660 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1661 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1662 if (rdev->sb_size & bmask) 1663 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1664 1665 if (minor_version 1666 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1667 return -EINVAL; 1668 if (minor_version 1669 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1670 return -EINVAL; 1671 1672 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1673 rdev->desc_nr = -1; 1674 else 1675 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1676 1677 if (!rdev->bb_page) { 1678 rdev->bb_page = alloc_page(GFP_KERNEL); 1679 if (!rdev->bb_page) 1680 return -ENOMEM; 1681 } 1682 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1683 rdev->badblocks.count == 0) { 1684 /* need to load the bad block list. 1685 * Currently we limit it to one page. 1686 */ 1687 s32 offset; 1688 sector_t bb_sector; 1689 __le64 *bbp; 1690 int i; 1691 int sectors = le16_to_cpu(sb->bblog_size); 1692 if (sectors > (PAGE_SIZE / 512)) 1693 return -EINVAL; 1694 offset = le32_to_cpu(sb->bblog_offset); 1695 if (offset == 0) 1696 return -EINVAL; 1697 bb_sector = (long long)offset; 1698 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1699 rdev->bb_page, REQ_OP_READ, true)) 1700 return -EIO; 1701 bbp = (__le64 *)page_address(rdev->bb_page); 1702 rdev->badblocks.shift = sb->bblog_shift; 1703 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1704 u64 bb = le64_to_cpu(*bbp); 1705 int count = bb & (0x3ff); 1706 u64 sector = bb >> 10; 1707 sector <<= sb->bblog_shift; 1708 count <<= sb->bblog_shift; 1709 if (bb + 1 == 0) 1710 break; 1711 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1712 return -EINVAL; 1713 } 1714 } else if (sb->bblog_offset != 0) 1715 rdev->badblocks.shift = 0; 1716 1717 if ((le32_to_cpu(sb->feature_map) & 1718 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1719 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1720 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1721 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1722 } 1723 1724 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1725 sb->level != 0) 1726 return -EINVAL; 1727 1728 /* not spare disk, or LEVEL_MULTIPATH */ 1729 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1730 (rdev->desc_nr >= 0 && 1731 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1732 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1733 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1734 spare_disk = false; 1735 1736 if (!refdev) { 1737 if (!spare_disk) 1738 ret = 1; 1739 else 1740 ret = 0; 1741 } else { 1742 __u64 ev1, ev2; 1743 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1744 1745 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1746 sb->level != refsb->level || 1747 sb->layout != refsb->layout || 1748 sb->chunksize != refsb->chunksize) { 1749 pr_warn("md: %pg has strangely different superblock to %pg\n", 1750 rdev->bdev, 1751 refdev->bdev); 1752 return -EINVAL; 1753 } 1754 ev1 = le64_to_cpu(sb->events); 1755 ev2 = le64_to_cpu(refsb->events); 1756 1757 if (!spare_disk && ev1 > ev2) 1758 ret = 1; 1759 else 1760 ret = 0; 1761 } 1762 if (minor_version) 1763 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1764 else 1765 sectors = rdev->sb_start; 1766 if (sectors < le64_to_cpu(sb->data_size)) 1767 return -EINVAL; 1768 rdev->sectors = le64_to_cpu(sb->data_size); 1769 return ret; 1770 } 1771 1772 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1773 { 1774 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1775 __u64 ev1 = le64_to_cpu(sb->events); 1776 1777 rdev->raid_disk = -1; 1778 clear_bit(Faulty, &rdev->flags); 1779 clear_bit(In_sync, &rdev->flags); 1780 clear_bit(Bitmap_sync, &rdev->flags); 1781 clear_bit(WriteMostly, &rdev->flags); 1782 1783 if (mddev->raid_disks == 0) { 1784 mddev->major_version = 1; 1785 mddev->patch_version = 0; 1786 mddev->external = 0; 1787 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1788 mddev->ctime = le64_to_cpu(sb->ctime); 1789 mddev->utime = le64_to_cpu(sb->utime); 1790 mddev->level = le32_to_cpu(sb->level); 1791 mddev->clevel[0] = 0; 1792 mddev->layout = le32_to_cpu(sb->layout); 1793 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1794 mddev->dev_sectors = le64_to_cpu(sb->size); 1795 mddev->events = ev1; 1796 mddev->bitmap_info.offset = 0; 1797 mddev->bitmap_info.space = 0; 1798 /* Default location for bitmap is 1K after superblock 1799 * using 3K - total of 4K 1800 */ 1801 mddev->bitmap_info.default_offset = 1024 >> 9; 1802 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1803 mddev->reshape_backwards = 0; 1804 1805 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1806 memcpy(mddev->uuid, sb->set_uuid, 16); 1807 1808 mddev->max_disks = (4096-256)/2; 1809 1810 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1811 mddev->bitmap_info.file == NULL) { 1812 mddev->bitmap_info.offset = 1813 (__s32)le32_to_cpu(sb->bitmap_offset); 1814 /* Metadata doesn't record how much space is available. 1815 * For 1.0, we assume we can use up to the superblock 1816 * if before, else to 4K beyond superblock. 1817 * For others, assume no change is possible. 1818 */ 1819 if (mddev->minor_version > 0) 1820 mddev->bitmap_info.space = 0; 1821 else if (mddev->bitmap_info.offset > 0) 1822 mddev->bitmap_info.space = 1823 8 - mddev->bitmap_info.offset; 1824 else 1825 mddev->bitmap_info.space = 1826 -mddev->bitmap_info.offset; 1827 } 1828 1829 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1830 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1831 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1832 mddev->new_level = le32_to_cpu(sb->new_level); 1833 mddev->new_layout = le32_to_cpu(sb->new_layout); 1834 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1835 if (mddev->delta_disks < 0 || 1836 (mddev->delta_disks == 0 && 1837 (le32_to_cpu(sb->feature_map) 1838 & MD_FEATURE_RESHAPE_BACKWARDS))) 1839 mddev->reshape_backwards = 1; 1840 } else { 1841 mddev->reshape_position = MaxSector; 1842 mddev->delta_disks = 0; 1843 mddev->new_level = mddev->level; 1844 mddev->new_layout = mddev->layout; 1845 mddev->new_chunk_sectors = mddev->chunk_sectors; 1846 } 1847 1848 if (mddev->level == 0 && 1849 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1850 mddev->layout = -1; 1851 1852 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1853 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1854 1855 if (le32_to_cpu(sb->feature_map) & 1856 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1857 if (le32_to_cpu(sb->feature_map) & 1858 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1859 return -EINVAL; 1860 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1861 (le32_to_cpu(sb->feature_map) & 1862 MD_FEATURE_MULTIPLE_PPLS)) 1863 return -EINVAL; 1864 set_bit(MD_HAS_PPL, &mddev->flags); 1865 } 1866 } else if (mddev->pers == NULL) { 1867 /* Insist of good event counter while assembling, except for 1868 * spares (which don't need an event count) */ 1869 ++ev1; 1870 if (rdev->desc_nr >= 0 && 1871 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1872 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1873 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1874 if (ev1 < mddev->events) 1875 return -EINVAL; 1876 } else if (mddev->bitmap) { 1877 /* If adding to array with a bitmap, then we can accept an 1878 * older device, but not too old. 1879 */ 1880 if (ev1 < mddev->bitmap->events_cleared) 1881 return 0; 1882 if (ev1 < mddev->events) 1883 set_bit(Bitmap_sync, &rdev->flags); 1884 } else { 1885 if (ev1 < mddev->events) 1886 /* just a hot-add of a new device, leave raid_disk at -1 */ 1887 return 0; 1888 } 1889 if (mddev->level != LEVEL_MULTIPATH) { 1890 int role; 1891 if (rdev->desc_nr < 0 || 1892 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1893 role = MD_DISK_ROLE_SPARE; 1894 rdev->desc_nr = -1; 1895 } else 1896 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1897 switch(role) { 1898 case MD_DISK_ROLE_SPARE: /* spare */ 1899 break; 1900 case MD_DISK_ROLE_FAULTY: /* faulty */ 1901 set_bit(Faulty, &rdev->flags); 1902 break; 1903 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1904 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1905 /* journal device without journal feature */ 1906 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1907 return -EINVAL; 1908 } 1909 set_bit(Journal, &rdev->flags); 1910 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1911 rdev->raid_disk = 0; 1912 break; 1913 default: 1914 rdev->saved_raid_disk = role; 1915 if ((le32_to_cpu(sb->feature_map) & 1916 MD_FEATURE_RECOVERY_OFFSET)) { 1917 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1918 if (!(le32_to_cpu(sb->feature_map) & 1919 MD_FEATURE_RECOVERY_BITMAP)) 1920 rdev->saved_raid_disk = -1; 1921 } else { 1922 /* 1923 * If the array is FROZEN, then the device can't 1924 * be in_sync with rest of array. 1925 */ 1926 if (!test_bit(MD_RECOVERY_FROZEN, 1927 &mddev->recovery)) 1928 set_bit(In_sync, &rdev->flags); 1929 } 1930 rdev->raid_disk = role; 1931 break; 1932 } 1933 if (sb->devflags & WriteMostly1) 1934 set_bit(WriteMostly, &rdev->flags); 1935 if (sb->devflags & FailFast1) 1936 set_bit(FailFast, &rdev->flags); 1937 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1938 set_bit(Replacement, &rdev->flags); 1939 } else /* MULTIPATH are always insync */ 1940 set_bit(In_sync, &rdev->flags); 1941 1942 return 0; 1943 } 1944 1945 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1946 { 1947 struct mdp_superblock_1 *sb; 1948 struct md_rdev *rdev2; 1949 int max_dev, i; 1950 /* make rdev->sb match mddev and rdev data. */ 1951 1952 sb = page_address(rdev->sb_page); 1953 1954 sb->feature_map = 0; 1955 sb->pad0 = 0; 1956 sb->recovery_offset = cpu_to_le64(0); 1957 memset(sb->pad3, 0, sizeof(sb->pad3)); 1958 1959 sb->utime = cpu_to_le64((__u64)mddev->utime); 1960 sb->events = cpu_to_le64(mddev->events); 1961 if (mddev->in_sync) 1962 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1963 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1964 sb->resync_offset = cpu_to_le64(MaxSector); 1965 else 1966 sb->resync_offset = cpu_to_le64(0); 1967 1968 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1969 1970 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1971 sb->size = cpu_to_le64(mddev->dev_sectors); 1972 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1973 sb->level = cpu_to_le32(mddev->level); 1974 sb->layout = cpu_to_le32(mddev->layout); 1975 if (test_bit(FailFast, &rdev->flags)) 1976 sb->devflags |= FailFast1; 1977 else 1978 sb->devflags &= ~FailFast1; 1979 1980 if (test_bit(WriteMostly, &rdev->flags)) 1981 sb->devflags |= WriteMostly1; 1982 else 1983 sb->devflags &= ~WriteMostly1; 1984 sb->data_offset = cpu_to_le64(rdev->data_offset); 1985 sb->data_size = cpu_to_le64(rdev->sectors); 1986 1987 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1988 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1989 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1990 } 1991 1992 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1993 !test_bit(In_sync, &rdev->flags)) { 1994 sb->feature_map |= 1995 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1996 sb->recovery_offset = 1997 cpu_to_le64(rdev->recovery_offset); 1998 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1999 sb->feature_map |= 2000 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2001 } 2002 /* Note: recovery_offset and journal_tail share space */ 2003 if (test_bit(Journal, &rdev->flags)) 2004 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2005 if (test_bit(Replacement, &rdev->flags)) 2006 sb->feature_map |= 2007 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2008 2009 if (mddev->reshape_position != MaxSector) { 2010 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2011 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2012 sb->new_layout = cpu_to_le32(mddev->new_layout); 2013 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2014 sb->new_level = cpu_to_le32(mddev->new_level); 2015 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2016 if (mddev->delta_disks == 0 && 2017 mddev->reshape_backwards) 2018 sb->feature_map 2019 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2020 if (rdev->new_data_offset != rdev->data_offset) { 2021 sb->feature_map 2022 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2023 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2024 - rdev->data_offset)); 2025 } 2026 } 2027 2028 if (mddev_is_clustered(mddev)) 2029 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2030 2031 if (rdev->badblocks.count == 0) 2032 /* Nothing to do for bad blocks*/ ; 2033 else if (sb->bblog_offset == 0) 2034 /* Cannot record bad blocks on this device */ 2035 md_error(mddev, rdev); 2036 else { 2037 struct badblocks *bb = &rdev->badblocks; 2038 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2039 u64 *p = bb->page; 2040 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2041 if (bb->changed) { 2042 unsigned seq; 2043 2044 retry: 2045 seq = read_seqbegin(&bb->lock); 2046 2047 memset(bbp, 0xff, PAGE_SIZE); 2048 2049 for (i = 0 ; i < bb->count ; i++) { 2050 u64 internal_bb = p[i]; 2051 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2052 | BB_LEN(internal_bb)); 2053 bbp[i] = cpu_to_le64(store_bb); 2054 } 2055 bb->changed = 0; 2056 if (read_seqretry(&bb->lock, seq)) 2057 goto retry; 2058 2059 bb->sector = (rdev->sb_start + 2060 (int)le32_to_cpu(sb->bblog_offset)); 2061 bb->size = le16_to_cpu(sb->bblog_size); 2062 } 2063 } 2064 2065 max_dev = 0; 2066 rdev_for_each(rdev2, mddev) 2067 if (rdev2->desc_nr+1 > max_dev) 2068 max_dev = rdev2->desc_nr+1; 2069 2070 if (max_dev > le32_to_cpu(sb->max_dev)) { 2071 int bmask; 2072 sb->max_dev = cpu_to_le32(max_dev); 2073 rdev->sb_size = max_dev * 2 + 256; 2074 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2075 if (rdev->sb_size & bmask) 2076 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2077 } else 2078 max_dev = le32_to_cpu(sb->max_dev); 2079 2080 for (i=0; i<max_dev;i++) 2081 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2082 2083 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2084 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2085 2086 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2087 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2088 sb->feature_map |= 2089 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2090 else 2091 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2092 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2093 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2094 } 2095 2096 rdev_for_each(rdev2, mddev) { 2097 i = rdev2->desc_nr; 2098 if (test_bit(Faulty, &rdev2->flags)) 2099 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2100 else if (test_bit(In_sync, &rdev2->flags)) 2101 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2102 else if (test_bit(Journal, &rdev2->flags)) 2103 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2104 else if (rdev2->raid_disk >= 0) 2105 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2106 else 2107 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2108 } 2109 2110 sb->sb_csum = calc_sb_1_csum(sb); 2111 } 2112 2113 static sector_t super_1_choose_bm_space(sector_t dev_size) 2114 { 2115 sector_t bm_space; 2116 2117 /* if the device is bigger than 8Gig, save 64k for bitmap 2118 * usage, if bigger than 200Gig, save 128k 2119 */ 2120 if (dev_size < 64*2) 2121 bm_space = 0; 2122 else if (dev_size - 64*2 >= 200*1024*1024*2) 2123 bm_space = 128*2; 2124 else if (dev_size - 4*2 > 8*1024*1024*2) 2125 bm_space = 64*2; 2126 else 2127 bm_space = 4*2; 2128 return bm_space; 2129 } 2130 2131 static unsigned long long 2132 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2133 { 2134 struct mdp_superblock_1 *sb; 2135 sector_t max_sectors; 2136 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2137 return 0; /* component must fit device */ 2138 if (rdev->data_offset != rdev->new_data_offset) 2139 return 0; /* too confusing */ 2140 if (rdev->sb_start < rdev->data_offset) { 2141 /* minor versions 1 and 2; superblock before data */ 2142 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2143 if (!num_sectors || num_sectors > max_sectors) 2144 num_sectors = max_sectors; 2145 } else if (rdev->mddev->bitmap_info.offset) { 2146 /* minor version 0 with bitmap we can't move */ 2147 return 0; 2148 } else { 2149 /* minor version 0; superblock after data */ 2150 sector_t sb_start, bm_space; 2151 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2152 2153 /* 8K is for superblock */ 2154 sb_start = dev_size - 8*2; 2155 sb_start &= ~(sector_t)(4*2 - 1); 2156 2157 bm_space = super_1_choose_bm_space(dev_size); 2158 2159 /* Space that can be used to store date needs to decrease 2160 * superblock bitmap space and bad block space(4K) 2161 */ 2162 max_sectors = sb_start - bm_space - 4*2; 2163 2164 if (!num_sectors || num_sectors > max_sectors) 2165 num_sectors = max_sectors; 2166 rdev->sb_start = sb_start; 2167 } 2168 sb = page_address(rdev->sb_page); 2169 sb->data_size = cpu_to_le64(num_sectors); 2170 sb->super_offset = cpu_to_le64(rdev->sb_start); 2171 sb->sb_csum = calc_sb_1_csum(sb); 2172 do { 2173 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2174 rdev->sb_page); 2175 } while (md_super_wait(rdev->mddev) < 0); 2176 return num_sectors; 2177 2178 } 2179 2180 static int 2181 super_1_allow_new_offset(struct md_rdev *rdev, 2182 unsigned long long new_offset) 2183 { 2184 /* All necessary checks on new >= old have been done */ 2185 struct bitmap *bitmap; 2186 if (new_offset >= rdev->data_offset) 2187 return 1; 2188 2189 /* with 1.0 metadata, there is no metadata to tread on 2190 * so we can always move back */ 2191 if (rdev->mddev->minor_version == 0) 2192 return 1; 2193 2194 /* otherwise we must be sure not to step on 2195 * any metadata, so stay: 2196 * 36K beyond start of superblock 2197 * beyond end of badblocks 2198 * beyond write-intent bitmap 2199 */ 2200 if (rdev->sb_start + (32+4)*2 > new_offset) 2201 return 0; 2202 bitmap = rdev->mddev->bitmap; 2203 if (bitmap && !rdev->mddev->bitmap_info.file && 2204 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2205 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2206 return 0; 2207 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2208 return 0; 2209 2210 return 1; 2211 } 2212 2213 static struct super_type super_types[] = { 2214 [0] = { 2215 .name = "0.90.0", 2216 .owner = THIS_MODULE, 2217 .load_super = super_90_load, 2218 .validate_super = super_90_validate, 2219 .sync_super = super_90_sync, 2220 .rdev_size_change = super_90_rdev_size_change, 2221 .allow_new_offset = super_90_allow_new_offset, 2222 }, 2223 [1] = { 2224 .name = "md-1", 2225 .owner = THIS_MODULE, 2226 .load_super = super_1_load, 2227 .validate_super = super_1_validate, 2228 .sync_super = super_1_sync, 2229 .rdev_size_change = super_1_rdev_size_change, 2230 .allow_new_offset = super_1_allow_new_offset, 2231 }, 2232 }; 2233 2234 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2235 { 2236 if (mddev->sync_super) { 2237 mddev->sync_super(mddev, rdev); 2238 return; 2239 } 2240 2241 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2242 2243 super_types[mddev->major_version].sync_super(mddev, rdev); 2244 } 2245 2246 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2247 { 2248 struct md_rdev *rdev, *rdev2; 2249 2250 rcu_read_lock(); 2251 rdev_for_each_rcu(rdev, mddev1) { 2252 if (test_bit(Faulty, &rdev->flags) || 2253 test_bit(Journal, &rdev->flags) || 2254 rdev->raid_disk == -1) 2255 continue; 2256 rdev_for_each_rcu(rdev2, mddev2) { 2257 if (test_bit(Faulty, &rdev2->flags) || 2258 test_bit(Journal, &rdev2->flags) || 2259 rdev2->raid_disk == -1) 2260 continue; 2261 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2262 rcu_read_unlock(); 2263 return 1; 2264 } 2265 } 2266 } 2267 rcu_read_unlock(); 2268 return 0; 2269 } 2270 2271 static LIST_HEAD(pending_raid_disks); 2272 2273 /* 2274 * Try to register data integrity profile for an mddev 2275 * 2276 * This is called when an array is started and after a disk has been kicked 2277 * from the array. It only succeeds if all working and active component devices 2278 * are integrity capable with matching profiles. 2279 */ 2280 int md_integrity_register(struct mddev *mddev) 2281 { 2282 struct md_rdev *rdev, *reference = NULL; 2283 2284 if (list_empty(&mddev->disks)) 2285 return 0; /* nothing to do */ 2286 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2287 return 0; /* shouldn't register, or already is */ 2288 rdev_for_each(rdev, mddev) { 2289 /* skip spares and non-functional disks */ 2290 if (test_bit(Faulty, &rdev->flags)) 2291 continue; 2292 if (rdev->raid_disk < 0) 2293 continue; 2294 if (!reference) { 2295 /* Use the first rdev as the reference */ 2296 reference = rdev; 2297 continue; 2298 } 2299 /* does this rdev's profile match the reference profile? */ 2300 if (blk_integrity_compare(reference->bdev->bd_disk, 2301 rdev->bdev->bd_disk) < 0) 2302 return -EINVAL; 2303 } 2304 if (!reference || !bdev_get_integrity(reference->bdev)) 2305 return 0; 2306 /* 2307 * All component devices are integrity capable and have matching 2308 * profiles, register the common profile for the md device. 2309 */ 2310 blk_integrity_register(mddev->gendisk, 2311 bdev_get_integrity(reference->bdev)); 2312 2313 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2314 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2315 (mddev->level != 1 && mddev->level != 10 && 2316 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2317 /* 2318 * No need to handle the failure of bioset_integrity_create, 2319 * because the function is called by md_run() -> pers->run(), 2320 * md_run calls bioset_exit -> bioset_integrity_free in case 2321 * of failure case. 2322 */ 2323 pr_err("md: failed to create integrity pool for %s\n", 2324 mdname(mddev)); 2325 return -EINVAL; 2326 } 2327 return 0; 2328 } 2329 EXPORT_SYMBOL(md_integrity_register); 2330 2331 /* 2332 * Attempt to add an rdev, but only if it is consistent with the current 2333 * integrity profile 2334 */ 2335 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2336 { 2337 struct blk_integrity *bi_mddev; 2338 2339 if (!mddev->gendisk) 2340 return 0; 2341 2342 bi_mddev = blk_get_integrity(mddev->gendisk); 2343 2344 if (!bi_mddev) /* nothing to do */ 2345 return 0; 2346 2347 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2348 pr_err("%s: incompatible integrity profile for %pg\n", 2349 mdname(mddev), rdev->bdev); 2350 return -ENXIO; 2351 } 2352 2353 return 0; 2354 } 2355 EXPORT_SYMBOL(md_integrity_add_rdev); 2356 2357 static bool rdev_read_only(struct md_rdev *rdev) 2358 { 2359 return bdev_read_only(rdev->bdev) || 2360 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2361 } 2362 2363 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2364 { 2365 char b[BDEVNAME_SIZE]; 2366 int err; 2367 2368 /* prevent duplicates */ 2369 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2370 return -EEXIST; 2371 2372 if (rdev_read_only(rdev) && mddev->pers) 2373 return -EROFS; 2374 2375 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2376 if (!test_bit(Journal, &rdev->flags) && 2377 rdev->sectors && 2378 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2379 if (mddev->pers) { 2380 /* Cannot change size, so fail 2381 * If mddev->level <= 0, then we don't care 2382 * about aligning sizes (e.g. linear) 2383 */ 2384 if (mddev->level > 0) 2385 return -ENOSPC; 2386 } else 2387 mddev->dev_sectors = rdev->sectors; 2388 } 2389 2390 /* Verify rdev->desc_nr is unique. 2391 * If it is -1, assign a free number, else 2392 * check number is not in use 2393 */ 2394 rcu_read_lock(); 2395 if (rdev->desc_nr < 0) { 2396 int choice = 0; 2397 if (mddev->pers) 2398 choice = mddev->raid_disks; 2399 while (md_find_rdev_nr_rcu(mddev, choice)) 2400 choice++; 2401 rdev->desc_nr = choice; 2402 } else { 2403 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2404 rcu_read_unlock(); 2405 return -EBUSY; 2406 } 2407 } 2408 rcu_read_unlock(); 2409 if (!test_bit(Journal, &rdev->flags) && 2410 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2411 pr_warn("md: %s: array is limited to %d devices\n", 2412 mdname(mddev), mddev->max_disks); 2413 return -EBUSY; 2414 } 2415 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2416 strreplace(b, '/', '!'); 2417 2418 rdev->mddev = mddev; 2419 pr_debug("md: bind<%s>\n", b); 2420 2421 if (mddev->raid_disks) 2422 mddev_create_serial_pool(mddev, rdev, false); 2423 2424 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2425 goto fail; 2426 2427 /* failure here is OK */ 2428 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2429 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2430 rdev->sysfs_unack_badblocks = 2431 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2432 rdev->sysfs_badblocks = 2433 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2434 2435 list_add_rcu(&rdev->same_set, &mddev->disks); 2436 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2437 2438 /* May as well allow recovery to be retried once */ 2439 mddev->recovery_disabled++; 2440 2441 return 0; 2442 2443 fail: 2444 pr_warn("md: failed to register dev-%s for %s\n", 2445 b, mdname(mddev)); 2446 return err; 2447 } 2448 2449 static void rdev_delayed_delete(struct work_struct *ws) 2450 { 2451 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2452 kobject_del(&rdev->kobj); 2453 kobject_put(&rdev->kobj); 2454 } 2455 2456 static void unbind_rdev_from_array(struct md_rdev *rdev) 2457 { 2458 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2459 list_del_rcu(&rdev->same_set); 2460 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2461 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2462 rdev->mddev = NULL; 2463 sysfs_remove_link(&rdev->kobj, "block"); 2464 sysfs_put(rdev->sysfs_state); 2465 sysfs_put(rdev->sysfs_unack_badblocks); 2466 sysfs_put(rdev->sysfs_badblocks); 2467 rdev->sysfs_state = NULL; 2468 rdev->sysfs_unack_badblocks = NULL; 2469 rdev->sysfs_badblocks = NULL; 2470 rdev->badblocks.count = 0; 2471 /* We need to delay this, otherwise we can deadlock when 2472 * writing to 'remove' to "dev/state". We also need 2473 * to delay it due to rcu usage. 2474 */ 2475 synchronize_rcu(); 2476 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2477 kobject_get(&rdev->kobj); 2478 queue_work(md_rdev_misc_wq, &rdev->del_work); 2479 } 2480 2481 /* 2482 * prevent the device from being mounted, repartitioned or 2483 * otherwise reused by a RAID array (or any other kernel 2484 * subsystem), by bd_claiming the device. 2485 */ 2486 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2487 { 2488 int err = 0; 2489 struct block_device *bdev; 2490 2491 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2492 shared ? (struct md_rdev *)lock_rdev : rdev); 2493 if (IS_ERR(bdev)) { 2494 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2495 MAJOR(dev), MINOR(dev)); 2496 return PTR_ERR(bdev); 2497 } 2498 rdev->bdev = bdev; 2499 return err; 2500 } 2501 2502 static void unlock_rdev(struct md_rdev *rdev) 2503 { 2504 struct block_device *bdev = rdev->bdev; 2505 rdev->bdev = NULL; 2506 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2507 } 2508 2509 void md_autodetect_dev(dev_t dev); 2510 2511 static void export_rdev(struct md_rdev *rdev) 2512 { 2513 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2514 md_rdev_clear(rdev); 2515 #ifndef MODULE 2516 if (test_bit(AutoDetected, &rdev->flags)) 2517 md_autodetect_dev(rdev->bdev->bd_dev); 2518 #endif 2519 unlock_rdev(rdev); 2520 kobject_put(&rdev->kobj); 2521 } 2522 2523 void md_kick_rdev_from_array(struct md_rdev *rdev) 2524 { 2525 unbind_rdev_from_array(rdev); 2526 export_rdev(rdev); 2527 } 2528 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2529 2530 static void export_array(struct mddev *mddev) 2531 { 2532 struct md_rdev *rdev; 2533 2534 while (!list_empty(&mddev->disks)) { 2535 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2536 same_set); 2537 md_kick_rdev_from_array(rdev); 2538 } 2539 mddev->raid_disks = 0; 2540 mddev->major_version = 0; 2541 } 2542 2543 static bool set_in_sync(struct mddev *mddev) 2544 { 2545 lockdep_assert_held(&mddev->lock); 2546 if (!mddev->in_sync) { 2547 mddev->sync_checkers++; 2548 spin_unlock(&mddev->lock); 2549 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2550 spin_lock(&mddev->lock); 2551 if (!mddev->in_sync && 2552 percpu_ref_is_zero(&mddev->writes_pending)) { 2553 mddev->in_sync = 1; 2554 /* 2555 * Ensure ->in_sync is visible before we clear 2556 * ->sync_checkers. 2557 */ 2558 smp_mb(); 2559 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2560 sysfs_notify_dirent_safe(mddev->sysfs_state); 2561 } 2562 if (--mddev->sync_checkers == 0) 2563 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2564 } 2565 if (mddev->safemode == 1) 2566 mddev->safemode = 0; 2567 return mddev->in_sync; 2568 } 2569 2570 static void sync_sbs(struct mddev *mddev, int nospares) 2571 { 2572 /* Update each superblock (in-memory image), but 2573 * if we are allowed to, skip spares which already 2574 * have the right event counter, or have one earlier 2575 * (which would mean they aren't being marked as dirty 2576 * with the rest of the array) 2577 */ 2578 struct md_rdev *rdev; 2579 rdev_for_each(rdev, mddev) { 2580 if (rdev->sb_events == mddev->events || 2581 (nospares && 2582 rdev->raid_disk < 0 && 2583 rdev->sb_events+1 == mddev->events)) { 2584 /* Don't update this superblock */ 2585 rdev->sb_loaded = 2; 2586 } else { 2587 sync_super(mddev, rdev); 2588 rdev->sb_loaded = 1; 2589 } 2590 } 2591 } 2592 2593 static bool does_sb_need_changing(struct mddev *mddev) 2594 { 2595 struct md_rdev *rdev = NULL, *iter; 2596 struct mdp_superblock_1 *sb; 2597 int role; 2598 2599 /* Find a good rdev */ 2600 rdev_for_each(iter, mddev) 2601 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2602 rdev = iter; 2603 break; 2604 } 2605 2606 /* No good device found. */ 2607 if (!rdev) 2608 return false; 2609 2610 sb = page_address(rdev->sb_page); 2611 /* Check if a device has become faulty or a spare become active */ 2612 rdev_for_each(rdev, mddev) { 2613 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2614 /* Device activated? */ 2615 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2616 !test_bit(Faulty, &rdev->flags)) 2617 return true; 2618 /* Device turned faulty? */ 2619 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2620 return true; 2621 } 2622 2623 /* Check if any mddev parameters have changed */ 2624 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2625 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2626 (mddev->layout != le32_to_cpu(sb->layout)) || 2627 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2628 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2629 return true; 2630 2631 return false; 2632 } 2633 2634 void md_update_sb(struct mddev *mddev, int force_change) 2635 { 2636 struct md_rdev *rdev; 2637 int sync_req; 2638 int nospares = 0; 2639 int any_badblocks_changed = 0; 2640 int ret = -1; 2641 2642 if (mddev->ro) { 2643 if (force_change) 2644 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2645 return; 2646 } 2647 2648 repeat: 2649 if (mddev_is_clustered(mddev)) { 2650 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2651 force_change = 1; 2652 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2653 nospares = 1; 2654 ret = md_cluster_ops->metadata_update_start(mddev); 2655 /* Has someone else has updated the sb */ 2656 if (!does_sb_need_changing(mddev)) { 2657 if (ret == 0) 2658 md_cluster_ops->metadata_update_cancel(mddev); 2659 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2660 BIT(MD_SB_CHANGE_DEVS) | 2661 BIT(MD_SB_CHANGE_CLEAN)); 2662 return; 2663 } 2664 } 2665 2666 /* 2667 * First make sure individual recovery_offsets are correct 2668 * curr_resync_completed can only be used during recovery. 2669 * During reshape/resync it might use array-addresses rather 2670 * that device addresses. 2671 */ 2672 rdev_for_each(rdev, mddev) { 2673 if (rdev->raid_disk >= 0 && 2674 mddev->delta_disks >= 0 && 2675 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2676 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2677 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2678 !test_bit(Journal, &rdev->flags) && 2679 !test_bit(In_sync, &rdev->flags) && 2680 mddev->curr_resync_completed > rdev->recovery_offset) 2681 rdev->recovery_offset = mddev->curr_resync_completed; 2682 2683 } 2684 if (!mddev->persistent) { 2685 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2686 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2687 if (!mddev->external) { 2688 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2689 rdev_for_each(rdev, mddev) { 2690 if (rdev->badblocks.changed) { 2691 rdev->badblocks.changed = 0; 2692 ack_all_badblocks(&rdev->badblocks); 2693 md_error(mddev, rdev); 2694 } 2695 clear_bit(Blocked, &rdev->flags); 2696 clear_bit(BlockedBadBlocks, &rdev->flags); 2697 wake_up(&rdev->blocked_wait); 2698 } 2699 } 2700 wake_up(&mddev->sb_wait); 2701 return; 2702 } 2703 2704 spin_lock(&mddev->lock); 2705 2706 mddev->utime = ktime_get_real_seconds(); 2707 2708 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2709 force_change = 1; 2710 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2711 /* just a clean<-> dirty transition, possibly leave spares alone, 2712 * though if events isn't the right even/odd, we will have to do 2713 * spares after all 2714 */ 2715 nospares = 1; 2716 if (force_change) 2717 nospares = 0; 2718 if (mddev->degraded) 2719 /* If the array is degraded, then skipping spares is both 2720 * dangerous and fairly pointless. 2721 * Dangerous because a device that was removed from the array 2722 * might have a event_count that still looks up-to-date, 2723 * so it can be re-added without a resync. 2724 * Pointless because if there are any spares to skip, 2725 * then a recovery will happen and soon that array won't 2726 * be degraded any more and the spare can go back to sleep then. 2727 */ 2728 nospares = 0; 2729 2730 sync_req = mddev->in_sync; 2731 2732 /* If this is just a dirty<->clean transition, and the array is clean 2733 * and 'events' is odd, we can roll back to the previous clean state */ 2734 if (nospares 2735 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2736 && mddev->can_decrease_events 2737 && mddev->events != 1) { 2738 mddev->events--; 2739 mddev->can_decrease_events = 0; 2740 } else { 2741 /* otherwise we have to go forward and ... */ 2742 mddev->events ++; 2743 mddev->can_decrease_events = nospares; 2744 } 2745 2746 /* 2747 * This 64-bit counter should never wrap. 2748 * Either we are in around ~1 trillion A.C., assuming 2749 * 1 reboot per second, or we have a bug... 2750 */ 2751 WARN_ON(mddev->events == 0); 2752 2753 rdev_for_each(rdev, mddev) { 2754 if (rdev->badblocks.changed) 2755 any_badblocks_changed++; 2756 if (test_bit(Faulty, &rdev->flags)) 2757 set_bit(FaultRecorded, &rdev->flags); 2758 } 2759 2760 sync_sbs(mddev, nospares); 2761 spin_unlock(&mddev->lock); 2762 2763 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2764 mdname(mddev), mddev->in_sync); 2765 2766 if (mddev->queue) 2767 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2768 rewrite: 2769 md_bitmap_update_sb(mddev->bitmap); 2770 rdev_for_each(rdev, mddev) { 2771 if (rdev->sb_loaded != 1) 2772 continue; /* no noise on spare devices */ 2773 2774 if (!test_bit(Faulty, &rdev->flags)) { 2775 md_super_write(mddev,rdev, 2776 rdev->sb_start, rdev->sb_size, 2777 rdev->sb_page); 2778 pr_debug("md: (write) %pg's sb offset: %llu\n", 2779 rdev->bdev, 2780 (unsigned long long)rdev->sb_start); 2781 rdev->sb_events = mddev->events; 2782 if (rdev->badblocks.size) { 2783 md_super_write(mddev, rdev, 2784 rdev->badblocks.sector, 2785 rdev->badblocks.size << 9, 2786 rdev->bb_page); 2787 rdev->badblocks.size = 0; 2788 } 2789 2790 } else 2791 pr_debug("md: %pg (skipping faulty)\n", 2792 rdev->bdev); 2793 2794 if (mddev->level == LEVEL_MULTIPATH) 2795 /* only need to write one superblock... */ 2796 break; 2797 } 2798 if (md_super_wait(mddev) < 0) 2799 goto rewrite; 2800 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2801 2802 if (mddev_is_clustered(mddev) && ret == 0) 2803 md_cluster_ops->metadata_update_finish(mddev); 2804 2805 if (mddev->in_sync != sync_req || 2806 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2807 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2808 /* have to write it out again */ 2809 goto repeat; 2810 wake_up(&mddev->sb_wait); 2811 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2812 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2813 2814 rdev_for_each(rdev, mddev) { 2815 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2816 clear_bit(Blocked, &rdev->flags); 2817 2818 if (any_badblocks_changed) 2819 ack_all_badblocks(&rdev->badblocks); 2820 clear_bit(BlockedBadBlocks, &rdev->flags); 2821 wake_up(&rdev->blocked_wait); 2822 } 2823 } 2824 EXPORT_SYMBOL(md_update_sb); 2825 2826 static int add_bound_rdev(struct md_rdev *rdev) 2827 { 2828 struct mddev *mddev = rdev->mddev; 2829 int err = 0; 2830 bool add_journal = test_bit(Journal, &rdev->flags); 2831 2832 if (!mddev->pers->hot_remove_disk || add_journal) { 2833 /* If there is hot_add_disk but no hot_remove_disk 2834 * then added disks for geometry changes, 2835 * and should be added immediately. 2836 */ 2837 super_types[mddev->major_version]. 2838 validate_super(mddev, rdev); 2839 if (add_journal) 2840 mddev_suspend(mddev); 2841 err = mddev->pers->hot_add_disk(mddev, rdev); 2842 if (add_journal) 2843 mddev_resume(mddev); 2844 if (err) { 2845 md_kick_rdev_from_array(rdev); 2846 return err; 2847 } 2848 } 2849 sysfs_notify_dirent_safe(rdev->sysfs_state); 2850 2851 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2852 if (mddev->degraded) 2853 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2854 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2855 md_new_event(); 2856 md_wakeup_thread(mddev->thread); 2857 return 0; 2858 } 2859 2860 /* words written to sysfs files may, or may not, be \n terminated. 2861 * We want to accept with case. For this we use cmd_match. 2862 */ 2863 static int cmd_match(const char *cmd, const char *str) 2864 { 2865 /* See if cmd, written into a sysfs file, matches 2866 * str. They must either be the same, or cmd can 2867 * have a trailing newline 2868 */ 2869 while (*cmd && *str && *cmd == *str) { 2870 cmd++; 2871 str++; 2872 } 2873 if (*cmd == '\n') 2874 cmd++; 2875 if (*str || *cmd) 2876 return 0; 2877 return 1; 2878 } 2879 2880 struct rdev_sysfs_entry { 2881 struct attribute attr; 2882 ssize_t (*show)(struct md_rdev *, char *); 2883 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2884 }; 2885 2886 static ssize_t 2887 state_show(struct md_rdev *rdev, char *page) 2888 { 2889 char *sep = ","; 2890 size_t len = 0; 2891 unsigned long flags = READ_ONCE(rdev->flags); 2892 2893 if (test_bit(Faulty, &flags) || 2894 (!test_bit(ExternalBbl, &flags) && 2895 rdev->badblocks.unacked_exist)) 2896 len += sprintf(page+len, "faulty%s", sep); 2897 if (test_bit(In_sync, &flags)) 2898 len += sprintf(page+len, "in_sync%s", sep); 2899 if (test_bit(Journal, &flags)) 2900 len += sprintf(page+len, "journal%s", sep); 2901 if (test_bit(WriteMostly, &flags)) 2902 len += sprintf(page+len, "write_mostly%s", sep); 2903 if (test_bit(Blocked, &flags) || 2904 (rdev->badblocks.unacked_exist 2905 && !test_bit(Faulty, &flags))) 2906 len += sprintf(page+len, "blocked%s", sep); 2907 if (!test_bit(Faulty, &flags) && 2908 !test_bit(Journal, &flags) && 2909 !test_bit(In_sync, &flags)) 2910 len += sprintf(page+len, "spare%s", sep); 2911 if (test_bit(WriteErrorSeen, &flags)) 2912 len += sprintf(page+len, "write_error%s", sep); 2913 if (test_bit(WantReplacement, &flags)) 2914 len += sprintf(page+len, "want_replacement%s", sep); 2915 if (test_bit(Replacement, &flags)) 2916 len += sprintf(page+len, "replacement%s", sep); 2917 if (test_bit(ExternalBbl, &flags)) 2918 len += sprintf(page+len, "external_bbl%s", sep); 2919 if (test_bit(FailFast, &flags)) 2920 len += sprintf(page+len, "failfast%s", sep); 2921 2922 if (len) 2923 len -= strlen(sep); 2924 2925 return len+sprintf(page+len, "\n"); 2926 } 2927 2928 static ssize_t 2929 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2930 { 2931 /* can write 2932 * faulty - simulates an error 2933 * remove - disconnects the device 2934 * writemostly - sets write_mostly 2935 * -writemostly - clears write_mostly 2936 * blocked - sets the Blocked flags 2937 * -blocked - clears the Blocked and possibly simulates an error 2938 * insync - sets Insync providing device isn't active 2939 * -insync - clear Insync for a device with a slot assigned, 2940 * so that it gets rebuilt based on bitmap 2941 * write_error - sets WriteErrorSeen 2942 * -write_error - clears WriteErrorSeen 2943 * {,-}failfast - set/clear FailFast 2944 */ 2945 2946 struct mddev *mddev = rdev->mddev; 2947 int err = -EINVAL; 2948 bool need_update_sb = false; 2949 2950 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2951 md_error(rdev->mddev, rdev); 2952 2953 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2954 err = -EBUSY; 2955 else 2956 err = 0; 2957 } else if (cmd_match(buf, "remove")) { 2958 if (rdev->mddev->pers) { 2959 clear_bit(Blocked, &rdev->flags); 2960 remove_and_add_spares(rdev->mddev, rdev); 2961 } 2962 if (rdev->raid_disk >= 0) 2963 err = -EBUSY; 2964 else { 2965 err = 0; 2966 if (mddev_is_clustered(mddev)) 2967 err = md_cluster_ops->remove_disk(mddev, rdev); 2968 2969 if (err == 0) { 2970 md_kick_rdev_from_array(rdev); 2971 if (mddev->pers) { 2972 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2973 md_wakeup_thread(mddev->thread); 2974 } 2975 md_new_event(); 2976 } 2977 } 2978 } else if (cmd_match(buf, "writemostly")) { 2979 set_bit(WriteMostly, &rdev->flags); 2980 mddev_create_serial_pool(rdev->mddev, rdev, false); 2981 need_update_sb = true; 2982 err = 0; 2983 } else if (cmd_match(buf, "-writemostly")) { 2984 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2985 clear_bit(WriteMostly, &rdev->flags); 2986 need_update_sb = true; 2987 err = 0; 2988 } else if (cmd_match(buf, "blocked")) { 2989 set_bit(Blocked, &rdev->flags); 2990 err = 0; 2991 } else if (cmd_match(buf, "-blocked")) { 2992 if (!test_bit(Faulty, &rdev->flags) && 2993 !test_bit(ExternalBbl, &rdev->flags) && 2994 rdev->badblocks.unacked_exist) { 2995 /* metadata handler doesn't understand badblocks, 2996 * so we need to fail the device 2997 */ 2998 md_error(rdev->mddev, rdev); 2999 } 3000 clear_bit(Blocked, &rdev->flags); 3001 clear_bit(BlockedBadBlocks, &rdev->flags); 3002 wake_up(&rdev->blocked_wait); 3003 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3004 md_wakeup_thread(rdev->mddev->thread); 3005 3006 err = 0; 3007 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3008 set_bit(In_sync, &rdev->flags); 3009 err = 0; 3010 } else if (cmd_match(buf, "failfast")) { 3011 set_bit(FailFast, &rdev->flags); 3012 need_update_sb = true; 3013 err = 0; 3014 } else if (cmd_match(buf, "-failfast")) { 3015 clear_bit(FailFast, &rdev->flags); 3016 need_update_sb = true; 3017 err = 0; 3018 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3019 !test_bit(Journal, &rdev->flags)) { 3020 if (rdev->mddev->pers == NULL) { 3021 clear_bit(In_sync, &rdev->flags); 3022 rdev->saved_raid_disk = rdev->raid_disk; 3023 rdev->raid_disk = -1; 3024 err = 0; 3025 } 3026 } else if (cmd_match(buf, "write_error")) { 3027 set_bit(WriteErrorSeen, &rdev->flags); 3028 err = 0; 3029 } else if (cmd_match(buf, "-write_error")) { 3030 clear_bit(WriteErrorSeen, &rdev->flags); 3031 err = 0; 3032 } else if (cmd_match(buf, "want_replacement")) { 3033 /* Any non-spare device that is not a replacement can 3034 * become want_replacement at any time, but we then need to 3035 * check if recovery is needed. 3036 */ 3037 if (rdev->raid_disk >= 0 && 3038 !test_bit(Journal, &rdev->flags) && 3039 !test_bit(Replacement, &rdev->flags)) 3040 set_bit(WantReplacement, &rdev->flags); 3041 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3042 md_wakeup_thread(rdev->mddev->thread); 3043 err = 0; 3044 } else if (cmd_match(buf, "-want_replacement")) { 3045 /* Clearing 'want_replacement' is always allowed. 3046 * Once replacements starts it is too late though. 3047 */ 3048 err = 0; 3049 clear_bit(WantReplacement, &rdev->flags); 3050 } else if (cmd_match(buf, "replacement")) { 3051 /* Can only set a device as a replacement when array has not 3052 * yet been started. Once running, replacement is automatic 3053 * from spares, or by assigning 'slot'. 3054 */ 3055 if (rdev->mddev->pers) 3056 err = -EBUSY; 3057 else { 3058 set_bit(Replacement, &rdev->flags); 3059 err = 0; 3060 } 3061 } else if (cmd_match(buf, "-replacement")) { 3062 /* Similarly, can only clear Replacement before start */ 3063 if (rdev->mddev->pers) 3064 err = -EBUSY; 3065 else { 3066 clear_bit(Replacement, &rdev->flags); 3067 err = 0; 3068 } 3069 } else if (cmd_match(buf, "re-add")) { 3070 if (!rdev->mddev->pers) 3071 err = -EINVAL; 3072 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3073 rdev->saved_raid_disk >= 0) { 3074 /* clear_bit is performed _after_ all the devices 3075 * have their local Faulty bit cleared. If any writes 3076 * happen in the meantime in the local node, they 3077 * will land in the local bitmap, which will be synced 3078 * by this node eventually 3079 */ 3080 if (!mddev_is_clustered(rdev->mddev) || 3081 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3082 clear_bit(Faulty, &rdev->flags); 3083 err = add_bound_rdev(rdev); 3084 } 3085 } else 3086 err = -EBUSY; 3087 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3088 set_bit(ExternalBbl, &rdev->flags); 3089 rdev->badblocks.shift = 0; 3090 err = 0; 3091 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3092 clear_bit(ExternalBbl, &rdev->flags); 3093 err = 0; 3094 } 3095 if (need_update_sb) 3096 md_update_sb(mddev, 1); 3097 if (!err) 3098 sysfs_notify_dirent_safe(rdev->sysfs_state); 3099 return err ? err : len; 3100 } 3101 static struct rdev_sysfs_entry rdev_state = 3102 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3103 3104 static ssize_t 3105 errors_show(struct md_rdev *rdev, char *page) 3106 { 3107 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3108 } 3109 3110 static ssize_t 3111 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3112 { 3113 unsigned int n; 3114 int rv; 3115 3116 rv = kstrtouint(buf, 10, &n); 3117 if (rv < 0) 3118 return rv; 3119 atomic_set(&rdev->corrected_errors, n); 3120 return len; 3121 } 3122 static struct rdev_sysfs_entry rdev_errors = 3123 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3124 3125 static ssize_t 3126 slot_show(struct md_rdev *rdev, char *page) 3127 { 3128 if (test_bit(Journal, &rdev->flags)) 3129 return sprintf(page, "journal\n"); 3130 else if (rdev->raid_disk < 0) 3131 return sprintf(page, "none\n"); 3132 else 3133 return sprintf(page, "%d\n", rdev->raid_disk); 3134 } 3135 3136 static ssize_t 3137 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3138 { 3139 int slot; 3140 int err; 3141 3142 if (test_bit(Journal, &rdev->flags)) 3143 return -EBUSY; 3144 if (strncmp(buf, "none", 4)==0) 3145 slot = -1; 3146 else { 3147 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3148 if (err < 0) 3149 return err; 3150 } 3151 if (rdev->mddev->pers && slot == -1) { 3152 /* Setting 'slot' on an active array requires also 3153 * updating the 'rd%d' link, and communicating 3154 * with the personality with ->hot_*_disk. 3155 * For now we only support removing 3156 * failed/spare devices. This normally happens automatically, 3157 * but not when the metadata is externally managed. 3158 */ 3159 if (rdev->raid_disk == -1) 3160 return -EEXIST; 3161 /* personality does all needed checks */ 3162 if (rdev->mddev->pers->hot_remove_disk == NULL) 3163 return -EINVAL; 3164 clear_bit(Blocked, &rdev->flags); 3165 remove_and_add_spares(rdev->mddev, rdev); 3166 if (rdev->raid_disk >= 0) 3167 return -EBUSY; 3168 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3169 md_wakeup_thread(rdev->mddev->thread); 3170 } else if (rdev->mddev->pers) { 3171 /* Activating a spare .. or possibly reactivating 3172 * if we ever get bitmaps working here. 3173 */ 3174 int err; 3175 3176 if (rdev->raid_disk != -1) 3177 return -EBUSY; 3178 3179 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3180 return -EBUSY; 3181 3182 if (rdev->mddev->pers->hot_add_disk == NULL) 3183 return -EINVAL; 3184 3185 if (slot >= rdev->mddev->raid_disks && 3186 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3187 return -ENOSPC; 3188 3189 rdev->raid_disk = slot; 3190 if (test_bit(In_sync, &rdev->flags)) 3191 rdev->saved_raid_disk = slot; 3192 else 3193 rdev->saved_raid_disk = -1; 3194 clear_bit(In_sync, &rdev->flags); 3195 clear_bit(Bitmap_sync, &rdev->flags); 3196 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3197 if (err) { 3198 rdev->raid_disk = -1; 3199 return err; 3200 } else 3201 sysfs_notify_dirent_safe(rdev->sysfs_state); 3202 /* failure here is OK */; 3203 sysfs_link_rdev(rdev->mddev, rdev); 3204 /* don't wakeup anyone, leave that to userspace. */ 3205 } else { 3206 if (slot >= rdev->mddev->raid_disks && 3207 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3208 return -ENOSPC; 3209 rdev->raid_disk = slot; 3210 /* assume it is working */ 3211 clear_bit(Faulty, &rdev->flags); 3212 clear_bit(WriteMostly, &rdev->flags); 3213 set_bit(In_sync, &rdev->flags); 3214 sysfs_notify_dirent_safe(rdev->sysfs_state); 3215 } 3216 return len; 3217 } 3218 3219 static struct rdev_sysfs_entry rdev_slot = 3220 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3221 3222 static ssize_t 3223 offset_show(struct md_rdev *rdev, char *page) 3224 { 3225 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3226 } 3227 3228 static ssize_t 3229 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3230 { 3231 unsigned long long offset; 3232 if (kstrtoull(buf, 10, &offset) < 0) 3233 return -EINVAL; 3234 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3235 return -EBUSY; 3236 if (rdev->sectors && rdev->mddev->external) 3237 /* Must set offset before size, so overlap checks 3238 * can be sane */ 3239 return -EBUSY; 3240 rdev->data_offset = offset; 3241 rdev->new_data_offset = offset; 3242 return len; 3243 } 3244 3245 static struct rdev_sysfs_entry rdev_offset = 3246 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3247 3248 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3249 { 3250 return sprintf(page, "%llu\n", 3251 (unsigned long long)rdev->new_data_offset); 3252 } 3253 3254 static ssize_t new_offset_store(struct md_rdev *rdev, 3255 const char *buf, size_t len) 3256 { 3257 unsigned long long new_offset; 3258 struct mddev *mddev = rdev->mddev; 3259 3260 if (kstrtoull(buf, 10, &new_offset) < 0) 3261 return -EINVAL; 3262 3263 if (mddev->sync_thread || 3264 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3265 return -EBUSY; 3266 if (new_offset == rdev->data_offset) 3267 /* reset is always permitted */ 3268 ; 3269 else if (new_offset > rdev->data_offset) { 3270 /* must not push array size beyond rdev_sectors */ 3271 if (new_offset - rdev->data_offset 3272 + mddev->dev_sectors > rdev->sectors) 3273 return -E2BIG; 3274 } 3275 /* Metadata worries about other space details. */ 3276 3277 /* decreasing the offset is inconsistent with a backwards 3278 * reshape. 3279 */ 3280 if (new_offset < rdev->data_offset && 3281 mddev->reshape_backwards) 3282 return -EINVAL; 3283 /* Increasing offset is inconsistent with forwards 3284 * reshape. reshape_direction should be set to 3285 * 'backwards' first. 3286 */ 3287 if (new_offset > rdev->data_offset && 3288 !mddev->reshape_backwards) 3289 return -EINVAL; 3290 3291 if (mddev->pers && mddev->persistent && 3292 !super_types[mddev->major_version] 3293 .allow_new_offset(rdev, new_offset)) 3294 return -E2BIG; 3295 rdev->new_data_offset = new_offset; 3296 if (new_offset > rdev->data_offset) 3297 mddev->reshape_backwards = 1; 3298 else if (new_offset < rdev->data_offset) 3299 mddev->reshape_backwards = 0; 3300 3301 return len; 3302 } 3303 static struct rdev_sysfs_entry rdev_new_offset = 3304 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3305 3306 static ssize_t 3307 rdev_size_show(struct md_rdev *rdev, char *page) 3308 { 3309 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3310 } 3311 3312 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3313 { 3314 /* check if two start/length pairs overlap */ 3315 if (a->data_offset + a->sectors <= b->data_offset) 3316 return false; 3317 if (b->data_offset + b->sectors <= a->data_offset) 3318 return false; 3319 return true; 3320 } 3321 3322 static bool md_rdev_overlaps(struct md_rdev *rdev) 3323 { 3324 struct mddev *mddev; 3325 struct md_rdev *rdev2; 3326 3327 spin_lock(&all_mddevs_lock); 3328 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3329 if (test_bit(MD_DELETED, &mddev->flags)) 3330 continue; 3331 rdev_for_each(rdev2, mddev) { 3332 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3333 md_rdevs_overlap(rdev, rdev2)) { 3334 spin_unlock(&all_mddevs_lock); 3335 return true; 3336 } 3337 } 3338 } 3339 spin_unlock(&all_mddevs_lock); 3340 return false; 3341 } 3342 3343 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3344 { 3345 unsigned long long blocks; 3346 sector_t new; 3347 3348 if (kstrtoull(buf, 10, &blocks) < 0) 3349 return -EINVAL; 3350 3351 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3352 return -EINVAL; /* sector conversion overflow */ 3353 3354 new = blocks * 2; 3355 if (new != blocks * 2) 3356 return -EINVAL; /* unsigned long long to sector_t overflow */ 3357 3358 *sectors = new; 3359 return 0; 3360 } 3361 3362 static ssize_t 3363 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3364 { 3365 struct mddev *my_mddev = rdev->mddev; 3366 sector_t oldsectors = rdev->sectors; 3367 sector_t sectors; 3368 3369 if (test_bit(Journal, &rdev->flags)) 3370 return -EBUSY; 3371 if (strict_blocks_to_sectors(buf, §ors) < 0) 3372 return -EINVAL; 3373 if (rdev->data_offset != rdev->new_data_offset) 3374 return -EINVAL; /* too confusing */ 3375 if (my_mddev->pers && rdev->raid_disk >= 0) { 3376 if (my_mddev->persistent) { 3377 sectors = super_types[my_mddev->major_version]. 3378 rdev_size_change(rdev, sectors); 3379 if (!sectors) 3380 return -EBUSY; 3381 } else if (!sectors) 3382 sectors = bdev_nr_sectors(rdev->bdev) - 3383 rdev->data_offset; 3384 if (!my_mddev->pers->resize) 3385 /* Cannot change size for RAID0 or Linear etc */ 3386 return -EINVAL; 3387 } 3388 if (sectors < my_mddev->dev_sectors) 3389 return -EINVAL; /* component must fit device */ 3390 3391 rdev->sectors = sectors; 3392 3393 /* 3394 * Check that all other rdevs with the same bdev do not overlap. This 3395 * check does not provide a hard guarantee, it just helps avoid 3396 * dangerous mistakes. 3397 */ 3398 if (sectors > oldsectors && my_mddev->external && 3399 md_rdev_overlaps(rdev)) { 3400 /* 3401 * Someone else could have slipped in a size change here, but 3402 * doing so is just silly. We put oldsectors back because we 3403 * know it is safe, and trust userspace not to race with itself. 3404 */ 3405 rdev->sectors = oldsectors; 3406 return -EBUSY; 3407 } 3408 return len; 3409 } 3410 3411 static struct rdev_sysfs_entry rdev_size = 3412 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3413 3414 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3415 { 3416 unsigned long long recovery_start = rdev->recovery_offset; 3417 3418 if (test_bit(In_sync, &rdev->flags) || 3419 recovery_start == MaxSector) 3420 return sprintf(page, "none\n"); 3421 3422 return sprintf(page, "%llu\n", recovery_start); 3423 } 3424 3425 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3426 { 3427 unsigned long long recovery_start; 3428 3429 if (cmd_match(buf, "none")) 3430 recovery_start = MaxSector; 3431 else if (kstrtoull(buf, 10, &recovery_start)) 3432 return -EINVAL; 3433 3434 if (rdev->mddev->pers && 3435 rdev->raid_disk >= 0) 3436 return -EBUSY; 3437 3438 rdev->recovery_offset = recovery_start; 3439 if (recovery_start == MaxSector) 3440 set_bit(In_sync, &rdev->flags); 3441 else 3442 clear_bit(In_sync, &rdev->flags); 3443 return len; 3444 } 3445 3446 static struct rdev_sysfs_entry rdev_recovery_start = 3447 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3448 3449 /* sysfs access to bad-blocks list. 3450 * We present two files. 3451 * 'bad-blocks' lists sector numbers and lengths of ranges that 3452 * are recorded as bad. The list is truncated to fit within 3453 * the one-page limit of sysfs. 3454 * Writing "sector length" to this file adds an acknowledged 3455 * bad block list. 3456 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3457 * been acknowledged. Writing to this file adds bad blocks 3458 * without acknowledging them. This is largely for testing. 3459 */ 3460 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3461 { 3462 return badblocks_show(&rdev->badblocks, page, 0); 3463 } 3464 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3465 { 3466 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3467 /* Maybe that ack was all we needed */ 3468 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3469 wake_up(&rdev->blocked_wait); 3470 return rv; 3471 } 3472 static struct rdev_sysfs_entry rdev_bad_blocks = 3473 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3474 3475 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3476 { 3477 return badblocks_show(&rdev->badblocks, page, 1); 3478 } 3479 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3480 { 3481 return badblocks_store(&rdev->badblocks, page, len, 1); 3482 } 3483 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3484 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3485 3486 static ssize_t 3487 ppl_sector_show(struct md_rdev *rdev, char *page) 3488 { 3489 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3490 } 3491 3492 static ssize_t 3493 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3494 { 3495 unsigned long long sector; 3496 3497 if (kstrtoull(buf, 10, §or) < 0) 3498 return -EINVAL; 3499 if (sector != (sector_t)sector) 3500 return -EINVAL; 3501 3502 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3503 rdev->raid_disk >= 0) 3504 return -EBUSY; 3505 3506 if (rdev->mddev->persistent) { 3507 if (rdev->mddev->major_version == 0) 3508 return -EINVAL; 3509 if ((sector > rdev->sb_start && 3510 sector - rdev->sb_start > S16_MAX) || 3511 (sector < rdev->sb_start && 3512 rdev->sb_start - sector > -S16_MIN)) 3513 return -EINVAL; 3514 rdev->ppl.offset = sector - rdev->sb_start; 3515 } else if (!rdev->mddev->external) { 3516 return -EBUSY; 3517 } 3518 rdev->ppl.sector = sector; 3519 return len; 3520 } 3521 3522 static struct rdev_sysfs_entry rdev_ppl_sector = 3523 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3524 3525 static ssize_t 3526 ppl_size_show(struct md_rdev *rdev, char *page) 3527 { 3528 return sprintf(page, "%u\n", rdev->ppl.size); 3529 } 3530 3531 static ssize_t 3532 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3533 { 3534 unsigned int size; 3535 3536 if (kstrtouint(buf, 10, &size) < 0) 3537 return -EINVAL; 3538 3539 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3540 rdev->raid_disk >= 0) 3541 return -EBUSY; 3542 3543 if (rdev->mddev->persistent) { 3544 if (rdev->mddev->major_version == 0) 3545 return -EINVAL; 3546 if (size > U16_MAX) 3547 return -EINVAL; 3548 } else if (!rdev->mddev->external) { 3549 return -EBUSY; 3550 } 3551 rdev->ppl.size = size; 3552 return len; 3553 } 3554 3555 static struct rdev_sysfs_entry rdev_ppl_size = 3556 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3557 3558 static struct attribute *rdev_default_attrs[] = { 3559 &rdev_state.attr, 3560 &rdev_errors.attr, 3561 &rdev_slot.attr, 3562 &rdev_offset.attr, 3563 &rdev_new_offset.attr, 3564 &rdev_size.attr, 3565 &rdev_recovery_start.attr, 3566 &rdev_bad_blocks.attr, 3567 &rdev_unack_bad_blocks.attr, 3568 &rdev_ppl_sector.attr, 3569 &rdev_ppl_size.attr, 3570 NULL, 3571 }; 3572 ATTRIBUTE_GROUPS(rdev_default); 3573 static ssize_t 3574 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3575 { 3576 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3577 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3578 3579 if (!entry->show) 3580 return -EIO; 3581 if (!rdev->mddev) 3582 return -ENODEV; 3583 return entry->show(rdev, page); 3584 } 3585 3586 static ssize_t 3587 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3588 const char *page, size_t length) 3589 { 3590 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3591 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3592 ssize_t rv; 3593 struct mddev *mddev = rdev->mddev; 3594 3595 if (!entry->store) 3596 return -EIO; 3597 if (!capable(CAP_SYS_ADMIN)) 3598 return -EACCES; 3599 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3600 if (!rv) { 3601 if (rdev->mddev == NULL) 3602 rv = -ENODEV; 3603 else 3604 rv = entry->store(rdev, page, length); 3605 mddev_unlock(mddev); 3606 } 3607 return rv; 3608 } 3609 3610 static void rdev_free(struct kobject *ko) 3611 { 3612 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3613 kfree(rdev); 3614 } 3615 static const struct sysfs_ops rdev_sysfs_ops = { 3616 .show = rdev_attr_show, 3617 .store = rdev_attr_store, 3618 }; 3619 static struct kobj_type rdev_ktype = { 3620 .release = rdev_free, 3621 .sysfs_ops = &rdev_sysfs_ops, 3622 .default_groups = rdev_default_groups, 3623 }; 3624 3625 int md_rdev_init(struct md_rdev *rdev) 3626 { 3627 rdev->desc_nr = -1; 3628 rdev->saved_raid_disk = -1; 3629 rdev->raid_disk = -1; 3630 rdev->flags = 0; 3631 rdev->data_offset = 0; 3632 rdev->new_data_offset = 0; 3633 rdev->sb_events = 0; 3634 rdev->last_read_error = 0; 3635 rdev->sb_loaded = 0; 3636 rdev->bb_page = NULL; 3637 atomic_set(&rdev->nr_pending, 0); 3638 atomic_set(&rdev->read_errors, 0); 3639 atomic_set(&rdev->corrected_errors, 0); 3640 3641 INIT_LIST_HEAD(&rdev->same_set); 3642 init_waitqueue_head(&rdev->blocked_wait); 3643 3644 /* Add space to store bad block list. 3645 * This reserves the space even on arrays where it cannot 3646 * be used - I wonder if that matters 3647 */ 3648 return badblocks_init(&rdev->badblocks, 0); 3649 } 3650 EXPORT_SYMBOL_GPL(md_rdev_init); 3651 /* 3652 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3653 * 3654 * mark the device faulty if: 3655 * 3656 * - the device is nonexistent (zero size) 3657 * - the device has no valid superblock 3658 * 3659 * a faulty rdev _never_ has rdev->sb set. 3660 */ 3661 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3662 { 3663 int err; 3664 struct md_rdev *rdev; 3665 sector_t size; 3666 3667 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3668 if (!rdev) 3669 return ERR_PTR(-ENOMEM); 3670 3671 err = md_rdev_init(rdev); 3672 if (err) 3673 goto abort_free; 3674 err = alloc_disk_sb(rdev); 3675 if (err) 3676 goto abort_free; 3677 3678 err = lock_rdev(rdev, newdev, super_format == -2); 3679 if (err) 3680 goto abort_free; 3681 3682 kobject_init(&rdev->kobj, &rdev_ktype); 3683 3684 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3685 if (!size) { 3686 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3687 rdev->bdev); 3688 err = -EINVAL; 3689 goto abort_free; 3690 } 3691 3692 if (super_format >= 0) { 3693 err = super_types[super_format]. 3694 load_super(rdev, NULL, super_minor); 3695 if (err == -EINVAL) { 3696 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3697 rdev->bdev, 3698 super_format, super_minor); 3699 goto abort_free; 3700 } 3701 if (err < 0) { 3702 pr_warn("md: could not read %pg's sb, not importing!\n", 3703 rdev->bdev); 3704 goto abort_free; 3705 } 3706 } 3707 3708 return rdev; 3709 3710 abort_free: 3711 if (rdev->bdev) 3712 unlock_rdev(rdev); 3713 md_rdev_clear(rdev); 3714 kfree(rdev); 3715 return ERR_PTR(err); 3716 } 3717 3718 /* 3719 * Check a full RAID array for plausibility 3720 */ 3721 3722 static int analyze_sbs(struct mddev *mddev) 3723 { 3724 int i; 3725 struct md_rdev *rdev, *freshest, *tmp; 3726 3727 freshest = NULL; 3728 rdev_for_each_safe(rdev, tmp, mddev) 3729 switch (super_types[mddev->major_version]. 3730 load_super(rdev, freshest, mddev->minor_version)) { 3731 case 1: 3732 freshest = rdev; 3733 break; 3734 case 0: 3735 break; 3736 default: 3737 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3738 rdev->bdev); 3739 md_kick_rdev_from_array(rdev); 3740 } 3741 3742 /* Cannot find a valid fresh disk */ 3743 if (!freshest) { 3744 pr_warn("md: cannot find a valid disk\n"); 3745 return -EINVAL; 3746 } 3747 3748 super_types[mddev->major_version]. 3749 validate_super(mddev, freshest); 3750 3751 i = 0; 3752 rdev_for_each_safe(rdev, tmp, mddev) { 3753 if (mddev->max_disks && 3754 (rdev->desc_nr >= mddev->max_disks || 3755 i > mddev->max_disks)) { 3756 pr_warn("md: %s: %pg: only %d devices permitted\n", 3757 mdname(mddev), rdev->bdev, 3758 mddev->max_disks); 3759 md_kick_rdev_from_array(rdev); 3760 continue; 3761 } 3762 if (rdev != freshest) { 3763 if (super_types[mddev->major_version]. 3764 validate_super(mddev, rdev)) { 3765 pr_warn("md: kicking non-fresh %pg from array!\n", 3766 rdev->bdev); 3767 md_kick_rdev_from_array(rdev); 3768 continue; 3769 } 3770 } 3771 if (mddev->level == LEVEL_MULTIPATH) { 3772 rdev->desc_nr = i++; 3773 rdev->raid_disk = rdev->desc_nr; 3774 set_bit(In_sync, &rdev->flags); 3775 } else if (rdev->raid_disk >= 3776 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3777 !test_bit(Journal, &rdev->flags)) { 3778 rdev->raid_disk = -1; 3779 clear_bit(In_sync, &rdev->flags); 3780 } 3781 } 3782 3783 return 0; 3784 } 3785 3786 /* Read a fixed-point number. 3787 * Numbers in sysfs attributes should be in "standard" units where 3788 * possible, so time should be in seconds. 3789 * However we internally use a a much smaller unit such as 3790 * milliseconds or jiffies. 3791 * This function takes a decimal number with a possible fractional 3792 * component, and produces an integer which is the result of 3793 * multiplying that number by 10^'scale'. 3794 * all without any floating-point arithmetic. 3795 */ 3796 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3797 { 3798 unsigned long result = 0; 3799 long decimals = -1; 3800 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3801 if (*cp == '.') 3802 decimals = 0; 3803 else if (decimals < scale) { 3804 unsigned int value; 3805 value = *cp - '0'; 3806 result = result * 10 + value; 3807 if (decimals >= 0) 3808 decimals++; 3809 } 3810 cp++; 3811 } 3812 if (*cp == '\n') 3813 cp++; 3814 if (*cp) 3815 return -EINVAL; 3816 if (decimals < 0) 3817 decimals = 0; 3818 *res = result * int_pow(10, scale - decimals); 3819 return 0; 3820 } 3821 3822 static ssize_t 3823 safe_delay_show(struct mddev *mddev, char *page) 3824 { 3825 int msec = (mddev->safemode_delay*1000)/HZ; 3826 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3827 } 3828 static ssize_t 3829 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3830 { 3831 unsigned long msec; 3832 3833 if (mddev_is_clustered(mddev)) { 3834 pr_warn("md: Safemode is disabled for clustered mode\n"); 3835 return -EINVAL; 3836 } 3837 3838 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3839 return -EINVAL; 3840 if (msec == 0) 3841 mddev->safemode_delay = 0; 3842 else { 3843 unsigned long old_delay = mddev->safemode_delay; 3844 unsigned long new_delay = (msec*HZ)/1000; 3845 3846 if (new_delay == 0) 3847 new_delay = 1; 3848 mddev->safemode_delay = new_delay; 3849 if (new_delay < old_delay || old_delay == 0) 3850 mod_timer(&mddev->safemode_timer, jiffies+1); 3851 } 3852 return len; 3853 } 3854 static struct md_sysfs_entry md_safe_delay = 3855 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3856 3857 static ssize_t 3858 level_show(struct mddev *mddev, char *page) 3859 { 3860 struct md_personality *p; 3861 int ret; 3862 spin_lock(&mddev->lock); 3863 p = mddev->pers; 3864 if (p) 3865 ret = sprintf(page, "%s\n", p->name); 3866 else if (mddev->clevel[0]) 3867 ret = sprintf(page, "%s\n", mddev->clevel); 3868 else if (mddev->level != LEVEL_NONE) 3869 ret = sprintf(page, "%d\n", mddev->level); 3870 else 3871 ret = 0; 3872 spin_unlock(&mddev->lock); 3873 return ret; 3874 } 3875 3876 static ssize_t 3877 level_store(struct mddev *mddev, const char *buf, size_t len) 3878 { 3879 char clevel[16]; 3880 ssize_t rv; 3881 size_t slen = len; 3882 struct md_personality *pers, *oldpers; 3883 long level; 3884 void *priv, *oldpriv; 3885 struct md_rdev *rdev; 3886 3887 if (slen == 0 || slen >= sizeof(clevel)) 3888 return -EINVAL; 3889 3890 rv = mddev_lock(mddev); 3891 if (rv) 3892 return rv; 3893 3894 if (mddev->pers == NULL) { 3895 strncpy(mddev->clevel, buf, slen); 3896 if (mddev->clevel[slen-1] == '\n') 3897 slen--; 3898 mddev->clevel[slen] = 0; 3899 mddev->level = LEVEL_NONE; 3900 rv = len; 3901 goto out_unlock; 3902 } 3903 rv = -EROFS; 3904 if (mddev->ro) 3905 goto out_unlock; 3906 3907 /* request to change the personality. Need to ensure: 3908 * - array is not engaged in resync/recovery/reshape 3909 * - old personality can be suspended 3910 * - new personality will access other array. 3911 */ 3912 3913 rv = -EBUSY; 3914 if (mddev->sync_thread || 3915 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3916 mddev->reshape_position != MaxSector || 3917 mddev->sysfs_active) 3918 goto out_unlock; 3919 3920 rv = -EINVAL; 3921 if (!mddev->pers->quiesce) { 3922 pr_warn("md: %s: %s does not support online personality change\n", 3923 mdname(mddev), mddev->pers->name); 3924 goto out_unlock; 3925 } 3926 3927 /* Now find the new personality */ 3928 strncpy(clevel, buf, slen); 3929 if (clevel[slen-1] == '\n') 3930 slen--; 3931 clevel[slen] = 0; 3932 if (kstrtol(clevel, 10, &level)) 3933 level = LEVEL_NONE; 3934 3935 if (request_module("md-%s", clevel) != 0) 3936 request_module("md-level-%s", clevel); 3937 spin_lock(&pers_lock); 3938 pers = find_pers(level, clevel); 3939 if (!pers || !try_module_get(pers->owner)) { 3940 spin_unlock(&pers_lock); 3941 pr_warn("md: personality %s not loaded\n", clevel); 3942 rv = -EINVAL; 3943 goto out_unlock; 3944 } 3945 spin_unlock(&pers_lock); 3946 3947 if (pers == mddev->pers) { 3948 /* Nothing to do! */ 3949 module_put(pers->owner); 3950 rv = len; 3951 goto out_unlock; 3952 } 3953 if (!pers->takeover) { 3954 module_put(pers->owner); 3955 pr_warn("md: %s: %s does not support personality takeover\n", 3956 mdname(mddev), clevel); 3957 rv = -EINVAL; 3958 goto out_unlock; 3959 } 3960 3961 rdev_for_each(rdev, mddev) 3962 rdev->new_raid_disk = rdev->raid_disk; 3963 3964 /* ->takeover must set new_* and/or delta_disks 3965 * if it succeeds, and may set them when it fails. 3966 */ 3967 priv = pers->takeover(mddev); 3968 if (IS_ERR(priv)) { 3969 mddev->new_level = mddev->level; 3970 mddev->new_layout = mddev->layout; 3971 mddev->new_chunk_sectors = mddev->chunk_sectors; 3972 mddev->raid_disks -= mddev->delta_disks; 3973 mddev->delta_disks = 0; 3974 mddev->reshape_backwards = 0; 3975 module_put(pers->owner); 3976 pr_warn("md: %s: %s would not accept array\n", 3977 mdname(mddev), clevel); 3978 rv = PTR_ERR(priv); 3979 goto out_unlock; 3980 } 3981 3982 /* Looks like we have a winner */ 3983 mddev_suspend(mddev); 3984 mddev_detach(mddev); 3985 3986 spin_lock(&mddev->lock); 3987 oldpers = mddev->pers; 3988 oldpriv = mddev->private; 3989 mddev->pers = pers; 3990 mddev->private = priv; 3991 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3992 mddev->level = mddev->new_level; 3993 mddev->layout = mddev->new_layout; 3994 mddev->chunk_sectors = mddev->new_chunk_sectors; 3995 mddev->delta_disks = 0; 3996 mddev->reshape_backwards = 0; 3997 mddev->degraded = 0; 3998 spin_unlock(&mddev->lock); 3999 4000 if (oldpers->sync_request == NULL && 4001 mddev->external) { 4002 /* We are converting from a no-redundancy array 4003 * to a redundancy array and metadata is managed 4004 * externally so we need to be sure that writes 4005 * won't block due to a need to transition 4006 * clean->dirty 4007 * until external management is started. 4008 */ 4009 mddev->in_sync = 0; 4010 mddev->safemode_delay = 0; 4011 mddev->safemode = 0; 4012 } 4013 4014 oldpers->free(mddev, oldpriv); 4015 4016 if (oldpers->sync_request == NULL && 4017 pers->sync_request != NULL) { 4018 /* need to add the md_redundancy_group */ 4019 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4020 pr_warn("md: cannot register extra attributes for %s\n", 4021 mdname(mddev)); 4022 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4023 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4024 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4025 } 4026 if (oldpers->sync_request != NULL && 4027 pers->sync_request == NULL) { 4028 /* need to remove the md_redundancy_group */ 4029 if (mddev->to_remove == NULL) 4030 mddev->to_remove = &md_redundancy_group; 4031 } 4032 4033 module_put(oldpers->owner); 4034 4035 rdev_for_each(rdev, mddev) { 4036 if (rdev->raid_disk < 0) 4037 continue; 4038 if (rdev->new_raid_disk >= mddev->raid_disks) 4039 rdev->new_raid_disk = -1; 4040 if (rdev->new_raid_disk == rdev->raid_disk) 4041 continue; 4042 sysfs_unlink_rdev(mddev, rdev); 4043 } 4044 rdev_for_each(rdev, mddev) { 4045 if (rdev->raid_disk < 0) 4046 continue; 4047 if (rdev->new_raid_disk == rdev->raid_disk) 4048 continue; 4049 rdev->raid_disk = rdev->new_raid_disk; 4050 if (rdev->raid_disk < 0) 4051 clear_bit(In_sync, &rdev->flags); 4052 else { 4053 if (sysfs_link_rdev(mddev, rdev)) 4054 pr_warn("md: cannot register rd%d for %s after level change\n", 4055 rdev->raid_disk, mdname(mddev)); 4056 } 4057 } 4058 4059 if (pers->sync_request == NULL) { 4060 /* this is now an array without redundancy, so 4061 * it must always be in_sync 4062 */ 4063 mddev->in_sync = 1; 4064 del_timer_sync(&mddev->safemode_timer); 4065 } 4066 blk_set_stacking_limits(&mddev->queue->limits); 4067 pers->run(mddev); 4068 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4069 mddev_resume(mddev); 4070 if (!mddev->thread) 4071 md_update_sb(mddev, 1); 4072 sysfs_notify_dirent_safe(mddev->sysfs_level); 4073 md_new_event(); 4074 rv = len; 4075 out_unlock: 4076 mddev_unlock(mddev); 4077 return rv; 4078 } 4079 4080 static struct md_sysfs_entry md_level = 4081 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4082 4083 static ssize_t 4084 layout_show(struct mddev *mddev, char *page) 4085 { 4086 /* just a number, not meaningful for all levels */ 4087 if (mddev->reshape_position != MaxSector && 4088 mddev->layout != mddev->new_layout) 4089 return sprintf(page, "%d (%d)\n", 4090 mddev->new_layout, mddev->layout); 4091 return sprintf(page, "%d\n", mddev->layout); 4092 } 4093 4094 static ssize_t 4095 layout_store(struct mddev *mddev, const char *buf, size_t len) 4096 { 4097 unsigned int n; 4098 int err; 4099 4100 err = kstrtouint(buf, 10, &n); 4101 if (err < 0) 4102 return err; 4103 err = mddev_lock(mddev); 4104 if (err) 4105 return err; 4106 4107 if (mddev->pers) { 4108 if (mddev->pers->check_reshape == NULL) 4109 err = -EBUSY; 4110 else if (mddev->ro) 4111 err = -EROFS; 4112 else { 4113 mddev->new_layout = n; 4114 err = mddev->pers->check_reshape(mddev); 4115 if (err) 4116 mddev->new_layout = mddev->layout; 4117 } 4118 } else { 4119 mddev->new_layout = n; 4120 if (mddev->reshape_position == MaxSector) 4121 mddev->layout = n; 4122 } 4123 mddev_unlock(mddev); 4124 return err ?: len; 4125 } 4126 static struct md_sysfs_entry md_layout = 4127 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4128 4129 static ssize_t 4130 raid_disks_show(struct mddev *mddev, char *page) 4131 { 4132 if (mddev->raid_disks == 0) 4133 return 0; 4134 if (mddev->reshape_position != MaxSector && 4135 mddev->delta_disks != 0) 4136 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4137 mddev->raid_disks - mddev->delta_disks); 4138 return sprintf(page, "%d\n", mddev->raid_disks); 4139 } 4140 4141 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4142 4143 static ssize_t 4144 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4145 { 4146 unsigned int n; 4147 int err; 4148 4149 err = kstrtouint(buf, 10, &n); 4150 if (err < 0) 4151 return err; 4152 4153 err = mddev_lock(mddev); 4154 if (err) 4155 return err; 4156 if (mddev->pers) 4157 err = update_raid_disks(mddev, n); 4158 else if (mddev->reshape_position != MaxSector) { 4159 struct md_rdev *rdev; 4160 int olddisks = mddev->raid_disks - mddev->delta_disks; 4161 4162 err = -EINVAL; 4163 rdev_for_each(rdev, mddev) { 4164 if (olddisks < n && 4165 rdev->data_offset < rdev->new_data_offset) 4166 goto out_unlock; 4167 if (olddisks > n && 4168 rdev->data_offset > rdev->new_data_offset) 4169 goto out_unlock; 4170 } 4171 err = 0; 4172 mddev->delta_disks = n - olddisks; 4173 mddev->raid_disks = n; 4174 mddev->reshape_backwards = (mddev->delta_disks < 0); 4175 } else 4176 mddev->raid_disks = n; 4177 out_unlock: 4178 mddev_unlock(mddev); 4179 return err ? err : len; 4180 } 4181 static struct md_sysfs_entry md_raid_disks = 4182 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4183 4184 static ssize_t 4185 uuid_show(struct mddev *mddev, char *page) 4186 { 4187 return sprintf(page, "%pU\n", mddev->uuid); 4188 } 4189 static struct md_sysfs_entry md_uuid = 4190 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4191 4192 static ssize_t 4193 chunk_size_show(struct mddev *mddev, char *page) 4194 { 4195 if (mddev->reshape_position != MaxSector && 4196 mddev->chunk_sectors != mddev->new_chunk_sectors) 4197 return sprintf(page, "%d (%d)\n", 4198 mddev->new_chunk_sectors << 9, 4199 mddev->chunk_sectors << 9); 4200 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4201 } 4202 4203 static ssize_t 4204 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4205 { 4206 unsigned long n; 4207 int err; 4208 4209 err = kstrtoul(buf, 10, &n); 4210 if (err < 0) 4211 return err; 4212 4213 err = mddev_lock(mddev); 4214 if (err) 4215 return err; 4216 if (mddev->pers) { 4217 if (mddev->pers->check_reshape == NULL) 4218 err = -EBUSY; 4219 else if (mddev->ro) 4220 err = -EROFS; 4221 else { 4222 mddev->new_chunk_sectors = n >> 9; 4223 err = mddev->pers->check_reshape(mddev); 4224 if (err) 4225 mddev->new_chunk_sectors = mddev->chunk_sectors; 4226 } 4227 } else { 4228 mddev->new_chunk_sectors = n >> 9; 4229 if (mddev->reshape_position == MaxSector) 4230 mddev->chunk_sectors = n >> 9; 4231 } 4232 mddev_unlock(mddev); 4233 return err ?: len; 4234 } 4235 static struct md_sysfs_entry md_chunk_size = 4236 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4237 4238 static ssize_t 4239 resync_start_show(struct mddev *mddev, char *page) 4240 { 4241 if (mddev->recovery_cp == MaxSector) 4242 return sprintf(page, "none\n"); 4243 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4244 } 4245 4246 static ssize_t 4247 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4248 { 4249 unsigned long long n; 4250 int err; 4251 4252 if (cmd_match(buf, "none")) 4253 n = MaxSector; 4254 else { 4255 err = kstrtoull(buf, 10, &n); 4256 if (err < 0) 4257 return err; 4258 if (n != (sector_t)n) 4259 return -EINVAL; 4260 } 4261 4262 err = mddev_lock(mddev); 4263 if (err) 4264 return err; 4265 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4266 err = -EBUSY; 4267 4268 if (!err) { 4269 mddev->recovery_cp = n; 4270 if (mddev->pers) 4271 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4272 } 4273 mddev_unlock(mddev); 4274 return err ?: len; 4275 } 4276 static struct md_sysfs_entry md_resync_start = 4277 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4278 resync_start_show, resync_start_store); 4279 4280 /* 4281 * The array state can be: 4282 * 4283 * clear 4284 * No devices, no size, no level 4285 * Equivalent to STOP_ARRAY ioctl 4286 * inactive 4287 * May have some settings, but array is not active 4288 * all IO results in error 4289 * When written, doesn't tear down array, but just stops it 4290 * suspended (not supported yet) 4291 * All IO requests will block. The array can be reconfigured. 4292 * Writing this, if accepted, will block until array is quiescent 4293 * readonly 4294 * no resync can happen. no superblocks get written. 4295 * write requests fail 4296 * read-auto 4297 * like readonly, but behaves like 'clean' on a write request. 4298 * 4299 * clean - no pending writes, but otherwise active. 4300 * When written to inactive array, starts without resync 4301 * If a write request arrives then 4302 * if metadata is known, mark 'dirty' and switch to 'active'. 4303 * if not known, block and switch to write-pending 4304 * If written to an active array that has pending writes, then fails. 4305 * active 4306 * fully active: IO and resync can be happening. 4307 * When written to inactive array, starts with resync 4308 * 4309 * write-pending 4310 * clean, but writes are blocked waiting for 'active' to be written. 4311 * 4312 * active-idle 4313 * like active, but no writes have been seen for a while (100msec). 4314 * 4315 * broken 4316 * Array is failed. It's useful because mounted-arrays aren't stopped 4317 * when array is failed, so this state will at least alert the user that 4318 * something is wrong. 4319 */ 4320 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4321 write_pending, active_idle, broken, bad_word}; 4322 static char *array_states[] = { 4323 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4324 "write-pending", "active-idle", "broken", NULL }; 4325 4326 static int match_word(const char *word, char **list) 4327 { 4328 int n; 4329 for (n=0; list[n]; n++) 4330 if (cmd_match(word, list[n])) 4331 break; 4332 return n; 4333 } 4334 4335 static ssize_t 4336 array_state_show(struct mddev *mddev, char *page) 4337 { 4338 enum array_state st = inactive; 4339 4340 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4341 switch(mddev->ro) { 4342 case 1: 4343 st = readonly; 4344 break; 4345 case 2: 4346 st = read_auto; 4347 break; 4348 case 0: 4349 spin_lock(&mddev->lock); 4350 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4351 st = write_pending; 4352 else if (mddev->in_sync) 4353 st = clean; 4354 else if (mddev->safemode) 4355 st = active_idle; 4356 else 4357 st = active; 4358 spin_unlock(&mddev->lock); 4359 } 4360 4361 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4362 st = broken; 4363 } else { 4364 if (list_empty(&mddev->disks) && 4365 mddev->raid_disks == 0 && 4366 mddev->dev_sectors == 0) 4367 st = clear; 4368 else 4369 st = inactive; 4370 } 4371 return sprintf(page, "%s\n", array_states[st]); 4372 } 4373 4374 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4375 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4376 static int restart_array(struct mddev *mddev); 4377 4378 static ssize_t 4379 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4380 { 4381 int err = 0; 4382 enum array_state st = match_word(buf, array_states); 4383 4384 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4385 /* don't take reconfig_mutex when toggling between 4386 * clean and active 4387 */ 4388 spin_lock(&mddev->lock); 4389 if (st == active) { 4390 restart_array(mddev); 4391 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4392 md_wakeup_thread(mddev->thread); 4393 wake_up(&mddev->sb_wait); 4394 } else /* st == clean */ { 4395 restart_array(mddev); 4396 if (!set_in_sync(mddev)) 4397 err = -EBUSY; 4398 } 4399 if (!err) 4400 sysfs_notify_dirent_safe(mddev->sysfs_state); 4401 spin_unlock(&mddev->lock); 4402 return err ?: len; 4403 } 4404 err = mddev_lock(mddev); 4405 if (err) 4406 return err; 4407 err = -EINVAL; 4408 switch(st) { 4409 case bad_word: 4410 break; 4411 case clear: 4412 /* stopping an active array */ 4413 err = do_md_stop(mddev, 0, NULL); 4414 break; 4415 case inactive: 4416 /* stopping an active array */ 4417 if (mddev->pers) 4418 err = do_md_stop(mddev, 2, NULL); 4419 else 4420 err = 0; /* already inactive */ 4421 break; 4422 case suspended: 4423 break; /* not supported yet */ 4424 case readonly: 4425 if (mddev->pers) 4426 err = md_set_readonly(mddev, NULL); 4427 else { 4428 mddev->ro = 1; 4429 set_disk_ro(mddev->gendisk, 1); 4430 err = do_md_run(mddev); 4431 } 4432 break; 4433 case read_auto: 4434 if (mddev->pers) { 4435 if (mddev->ro == 0) 4436 err = md_set_readonly(mddev, NULL); 4437 else if (mddev->ro == 1) 4438 err = restart_array(mddev); 4439 if (err == 0) { 4440 mddev->ro = 2; 4441 set_disk_ro(mddev->gendisk, 0); 4442 } 4443 } else { 4444 mddev->ro = 2; 4445 err = do_md_run(mddev); 4446 } 4447 break; 4448 case clean: 4449 if (mddev->pers) { 4450 err = restart_array(mddev); 4451 if (err) 4452 break; 4453 spin_lock(&mddev->lock); 4454 if (!set_in_sync(mddev)) 4455 err = -EBUSY; 4456 spin_unlock(&mddev->lock); 4457 } else 4458 err = -EINVAL; 4459 break; 4460 case active: 4461 if (mddev->pers) { 4462 err = restart_array(mddev); 4463 if (err) 4464 break; 4465 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4466 wake_up(&mddev->sb_wait); 4467 err = 0; 4468 } else { 4469 mddev->ro = 0; 4470 set_disk_ro(mddev->gendisk, 0); 4471 err = do_md_run(mddev); 4472 } 4473 break; 4474 case write_pending: 4475 case active_idle: 4476 case broken: 4477 /* these cannot be set */ 4478 break; 4479 } 4480 4481 if (!err) { 4482 if (mddev->hold_active == UNTIL_IOCTL) 4483 mddev->hold_active = 0; 4484 sysfs_notify_dirent_safe(mddev->sysfs_state); 4485 } 4486 mddev_unlock(mddev); 4487 return err ?: len; 4488 } 4489 static struct md_sysfs_entry md_array_state = 4490 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4491 4492 static ssize_t 4493 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4494 return sprintf(page, "%d\n", 4495 atomic_read(&mddev->max_corr_read_errors)); 4496 } 4497 4498 static ssize_t 4499 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4500 { 4501 unsigned int n; 4502 int rv; 4503 4504 rv = kstrtouint(buf, 10, &n); 4505 if (rv < 0) 4506 return rv; 4507 atomic_set(&mddev->max_corr_read_errors, n); 4508 return len; 4509 } 4510 4511 static struct md_sysfs_entry max_corr_read_errors = 4512 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4513 max_corrected_read_errors_store); 4514 4515 static ssize_t 4516 null_show(struct mddev *mddev, char *page) 4517 { 4518 return -EINVAL; 4519 } 4520 4521 /* need to ensure rdev_delayed_delete() has completed */ 4522 static void flush_rdev_wq(struct mddev *mddev) 4523 { 4524 struct md_rdev *rdev; 4525 4526 rcu_read_lock(); 4527 rdev_for_each_rcu(rdev, mddev) 4528 if (work_pending(&rdev->del_work)) { 4529 flush_workqueue(md_rdev_misc_wq); 4530 break; 4531 } 4532 rcu_read_unlock(); 4533 } 4534 4535 static ssize_t 4536 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4537 { 4538 /* buf must be %d:%d\n? giving major and minor numbers */ 4539 /* The new device is added to the array. 4540 * If the array has a persistent superblock, we read the 4541 * superblock to initialise info and check validity. 4542 * Otherwise, only checking done is that in bind_rdev_to_array, 4543 * which mainly checks size. 4544 */ 4545 char *e; 4546 int major = simple_strtoul(buf, &e, 10); 4547 int minor; 4548 dev_t dev; 4549 struct md_rdev *rdev; 4550 int err; 4551 4552 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4553 return -EINVAL; 4554 minor = simple_strtoul(e+1, &e, 10); 4555 if (*e && *e != '\n') 4556 return -EINVAL; 4557 dev = MKDEV(major, minor); 4558 if (major != MAJOR(dev) || 4559 minor != MINOR(dev)) 4560 return -EOVERFLOW; 4561 4562 flush_rdev_wq(mddev); 4563 err = mddev_lock(mddev); 4564 if (err) 4565 return err; 4566 if (mddev->persistent) { 4567 rdev = md_import_device(dev, mddev->major_version, 4568 mddev->minor_version); 4569 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4570 struct md_rdev *rdev0 4571 = list_entry(mddev->disks.next, 4572 struct md_rdev, same_set); 4573 err = super_types[mddev->major_version] 4574 .load_super(rdev, rdev0, mddev->minor_version); 4575 if (err < 0) 4576 goto out; 4577 } 4578 } else if (mddev->external) 4579 rdev = md_import_device(dev, -2, -1); 4580 else 4581 rdev = md_import_device(dev, -1, -1); 4582 4583 if (IS_ERR(rdev)) { 4584 mddev_unlock(mddev); 4585 return PTR_ERR(rdev); 4586 } 4587 err = bind_rdev_to_array(rdev, mddev); 4588 out: 4589 if (err) 4590 export_rdev(rdev); 4591 mddev_unlock(mddev); 4592 if (!err) 4593 md_new_event(); 4594 return err ? err : len; 4595 } 4596 4597 static struct md_sysfs_entry md_new_device = 4598 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4599 4600 static ssize_t 4601 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4602 { 4603 char *end; 4604 unsigned long chunk, end_chunk; 4605 int err; 4606 4607 err = mddev_lock(mddev); 4608 if (err) 4609 return err; 4610 if (!mddev->bitmap) 4611 goto out; 4612 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4613 while (*buf) { 4614 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4615 if (buf == end) break; 4616 if (*end == '-') { /* range */ 4617 buf = end + 1; 4618 end_chunk = simple_strtoul(buf, &end, 0); 4619 if (buf == end) break; 4620 } 4621 if (*end && !isspace(*end)) break; 4622 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4623 buf = skip_spaces(end); 4624 } 4625 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4626 out: 4627 mddev_unlock(mddev); 4628 return len; 4629 } 4630 4631 static struct md_sysfs_entry md_bitmap = 4632 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4633 4634 static ssize_t 4635 size_show(struct mddev *mddev, char *page) 4636 { 4637 return sprintf(page, "%llu\n", 4638 (unsigned long long)mddev->dev_sectors / 2); 4639 } 4640 4641 static int update_size(struct mddev *mddev, sector_t num_sectors); 4642 4643 static ssize_t 4644 size_store(struct mddev *mddev, const char *buf, size_t len) 4645 { 4646 /* If array is inactive, we can reduce the component size, but 4647 * not increase it (except from 0). 4648 * If array is active, we can try an on-line resize 4649 */ 4650 sector_t sectors; 4651 int err = strict_blocks_to_sectors(buf, §ors); 4652 4653 if (err < 0) 4654 return err; 4655 err = mddev_lock(mddev); 4656 if (err) 4657 return err; 4658 if (mddev->pers) { 4659 err = update_size(mddev, sectors); 4660 if (err == 0) 4661 md_update_sb(mddev, 1); 4662 } else { 4663 if (mddev->dev_sectors == 0 || 4664 mddev->dev_sectors > sectors) 4665 mddev->dev_sectors = sectors; 4666 else 4667 err = -ENOSPC; 4668 } 4669 mddev_unlock(mddev); 4670 return err ? err : len; 4671 } 4672 4673 static struct md_sysfs_entry md_size = 4674 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4675 4676 /* Metadata version. 4677 * This is one of 4678 * 'none' for arrays with no metadata (good luck...) 4679 * 'external' for arrays with externally managed metadata, 4680 * or N.M for internally known formats 4681 */ 4682 static ssize_t 4683 metadata_show(struct mddev *mddev, char *page) 4684 { 4685 if (mddev->persistent) 4686 return sprintf(page, "%d.%d\n", 4687 mddev->major_version, mddev->minor_version); 4688 else if (mddev->external) 4689 return sprintf(page, "external:%s\n", mddev->metadata_type); 4690 else 4691 return sprintf(page, "none\n"); 4692 } 4693 4694 static ssize_t 4695 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4696 { 4697 int major, minor; 4698 char *e; 4699 int err; 4700 /* Changing the details of 'external' metadata is 4701 * always permitted. Otherwise there must be 4702 * no devices attached to the array. 4703 */ 4704 4705 err = mddev_lock(mddev); 4706 if (err) 4707 return err; 4708 err = -EBUSY; 4709 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4710 ; 4711 else if (!list_empty(&mddev->disks)) 4712 goto out_unlock; 4713 4714 err = 0; 4715 if (cmd_match(buf, "none")) { 4716 mddev->persistent = 0; 4717 mddev->external = 0; 4718 mddev->major_version = 0; 4719 mddev->minor_version = 90; 4720 goto out_unlock; 4721 } 4722 if (strncmp(buf, "external:", 9) == 0) { 4723 size_t namelen = len-9; 4724 if (namelen >= sizeof(mddev->metadata_type)) 4725 namelen = sizeof(mddev->metadata_type)-1; 4726 strncpy(mddev->metadata_type, buf+9, namelen); 4727 mddev->metadata_type[namelen] = 0; 4728 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4729 mddev->metadata_type[--namelen] = 0; 4730 mddev->persistent = 0; 4731 mddev->external = 1; 4732 mddev->major_version = 0; 4733 mddev->minor_version = 90; 4734 goto out_unlock; 4735 } 4736 major = simple_strtoul(buf, &e, 10); 4737 err = -EINVAL; 4738 if (e==buf || *e != '.') 4739 goto out_unlock; 4740 buf = e+1; 4741 minor = simple_strtoul(buf, &e, 10); 4742 if (e==buf || (*e && *e != '\n') ) 4743 goto out_unlock; 4744 err = -ENOENT; 4745 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4746 goto out_unlock; 4747 mddev->major_version = major; 4748 mddev->minor_version = minor; 4749 mddev->persistent = 1; 4750 mddev->external = 0; 4751 err = 0; 4752 out_unlock: 4753 mddev_unlock(mddev); 4754 return err ?: len; 4755 } 4756 4757 static struct md_sysfs_entry md_metadata = 4758 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4759 4760 static ssize_t 4761 action_show(struct mddev *mddev, char *page) 4762 { 4763 char *type = "idle"; 4764 unsigned long recovery = mddev->recovery; 4765 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4766 type = "frozen"; 4767 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4768 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4769 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4770 type = "reshape"; 4771 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4772 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4773 type = "resync"; 4774 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4775 type = "check"; 4776 else 4777 type = "repair"; 4778 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4779 type = "recover"; 4780 else if (mddev->reshape_position != MaxSector) 4781 type = "reshape"; 4782 } 4783 return sprintf(page, "%s\n", type); 4784 } 4785 4786 static ssize_t 4787 action_store(struct mddev *mddev, const char *page, size_t len) 4788 { 4789 if (!mddev->pers || !mddev->pers->sync_request) 4790 return -EINVAL; 4791 4792 4793 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4794 if (cmd_match(page, "frozen")) 4795 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4796 else 4797 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4798 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4799 mddev_lock(mddev) == 0) { 4800 if (work_pending(&mddev->del_work)) 4801 flush_workqueue(md_misc_wq); 4802 if (mddev->sync_thread) { 4803 sector_t save_rp = mddev->reshape_position; 4804 4805 mddev_unlock(mddev); 4806 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4807 md_unregister_thread(&mddev->sync_thread); 4808 mddev_lock_nointr(mddev); 4809 /* 4810 * set RECOVERY_INTR again and restore reshape 4811 * position in case others changed them after 4812 * got lock, eg, reshape_position_store and 4813 * md_check_recovery. 4814 */ 4815 mddev->reshape_position = save_rp; 4816 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4817 md_reap_sync_thread(mddev); 4818 } 4819 mddev_unlock(mddev); 4820 } 4821 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4822 return -EBUSY; 4823 else if (cmd_match(page, "resync")) 4824 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4825 else if (cmd_match(page, "recover")) { 4826 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4827 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4828 } else if (cmd_match(page, "reshape")) { 4829 int err; 4830 if (mddev->pers->start_reshape == NULL) 4831 return -EINVAL; 4832 err = mddev_lock(mddev); 4833 if (!err) { 4834 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4835 err = -EBUSY; 4836 else { 4837 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4838 err = mddev->pers->start_reshape(mddev); 4839 } 4840 mddev_unlock(mddev); 4841 } 4842 if (err) 4843 return err; 4844 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4845 } else { 4846 if (cmd_match(page, "check")) 4847 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4848 else if (!cmd_match(page, "repair")) 4849 return -EINVAL; 4850 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4851 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4852 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4853 } 4854 if (mddev->ro == 2) { 4855 /* A write to sync_action is enough to justify 4856 * canceling read-auto mode 4857 */ 4858 mddev->ro = 0; 4859 md_wakeup_thread(mddev->sync_thread); 4860 } 4861 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4862 md_wakeup_thread(mddev->thread); 4863 sysfs_notify_dirent_safe(mddev->sysfs_action); 4864 return len; 4865 } 4866 4867 static struct md_sysfs_entry md_scan_mode = 4868 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4869 4870 static ssize_t 4871 last_sync_action_show(struct mddev *mddev, char *page) 4872 { 4873 return sprintf(page, "%s\n", mddev->last_sync_action); 4874 } 4875 4876 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4877 4878 static ssize_t 4879 mismatch_cnt_show(struct mddev *mddev, char *page) 4880 { 4881 return sprintf(page, "%llu\n", 4882 (unsigned long long) 4883 atomic64_read(&mddev->resync_mismatches)); 4884 } 4885 4886 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4887 4888 static ssize_t 4889 sync_min_show(struct mddev *mddev, char *page) 4890 { 4891 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4892 mddev->sync_speed_min ? "local": "system"); 4893 } 4894 4895 static ssize_t 4896 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4897 { 4898 unsigned int min; 4899 int rv; 4900 4901 if (strncmp(buf, "system", 6)==0) { 4902 min = 0; 4903 } else { 4904 rv = kstrtouint(buf, 10, &min); 4905 if (rv < 0) 4906 return rv; 4907 if (min == 0) 4908 return -EINVAL; 4909 } 4910 mddev->sync_speed_min = min; 4911 return len; 4912 } 4913 4914 static struct md_sysfs_entry md_sync_min = 4915 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4916 4917 static ssize_t 4918 sync_max_show(struct mddev *mddev, char *page) 4919 { 4920 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4921 mddev->sync_speed_max ? "local": "system"); 4922 } 4923 4924 static ssize_t 4925 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4926 { 4927 unsigned int max; 4928 int rv; 4929 4930 if (strncmp(buf, "system", 6)==0) { 4931 max = 0; 4932 } else { 4933 rv = kstrtouint(buf, 10, &max); 4934 if (rv < 0) 4935 return rv; 4936 if (max == 0) 4937 return -EINVAL; 4938 } 4939 mddev->sync_speed_max = max; 4940 return len; 4941 } 4942 4943 static struct md_sysfs_entry md_sync_max = 4944 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4945 4946 static ssize_t 4947 degraded_show(struct mddev *mddev, char *page) 4948 { 4949 return sprintf(page, "%d\n", mddev->degraded); 4950 } 4951 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4952 4953 static ssize_t 4954 sync_force_parallel_show(struct mddev *mddev, char *page) 4955 { 4956 return sprintf(page, "%d\n", mddev->parallel_resync); 4957 } 4958 4959 static ssize_t 4960 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4961 { 4962 long n; 4963 4964 if (kstrtol(buf, 10, &n)) 4965 return -EINVAL; 4966 4967 if (n != 0 && n != 1) 4968 return -EINVAL; 4969 4970 mddev->parallel_resync = n; 4971 4972 if (mddev->sync_thread) 4973 wake_up(&resync_wait); 4974 4975 return len; 4976 } 4977 4978 /* force parallel resync, even with shared block devices */ 4979 static struct md_sysfs_entry md_sync_force_parallel = 4980 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4981 sync_force_parallel_show, sync_force_parallel_store); 4982 4983 static ssize_t 4984 sync_speed_show(struct mddev *mddev, char *page) 4985 { 4986 unsigned long resync, dt, db; 4987 if (mddev->curr_resync == MD_RESYNC_NONE) 4988 return sprintf(page, "none\n"); 4989 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4990 dt = (jiffies - mddev->resync_mark) / HZ; 4991 if (!dt) dt++; 4992 db = resync - mddev->resync_mark_cnt; 4993 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4994 } 4995 4996 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4997 4998 static ssize_t 4999 sync_completed_show(struct mddev *mddev, char *page) 5000 { 5001 unsigned long long max_sectors, resync; 5002 5003 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5004 return sprintf(page, "none\n"); 5005 5006 if (mddev->curr_resync == MD_RESYNC_YIELDED || 5007 mddev->curr_resync == MD_RESYNC_DELAYED) 5008 return sprintf(page, "delayed\n"); 5009 5010 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5011 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5012 max_sectors = mddev->resync_max_sectors; 5013 else 5014 max_sectors = mddev->dev_sectors; 5015 5016 resync = mddev->curr_resync_completed; 5017 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5018 } 5019 5020 static struct md_sysfs_entry md_sync_completed = 5021 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5022 5023 static ssize_t 5024 min_sync_show(struct mddev *mddev, char *page) 5025 { 5026 return sprintf(page, "%llu\n", 5027 (unsigned long long)mddev->resync_min); 5028 } 5029 static ssize_t 5030 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5031 { 5032 unsigned long long min; 5033 int err; 5034 5035 if (kstrtoull(buf, 10, &min)) 5036 return -EINVAL; 5037 5038 spin_lock(&mddev->lock); 5039 err = -EINVAL; 5040 if (min > mddev->resync_max) 5041 goto out_unlock; 5042 5043 err = -EBUSY; 5044 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5045 goto out_unlock; 5046 5047 /* Round down to multiple of 4K for safety */ 5048 mddev->resync_min = round_down(min, 8); 5049 err = 0; 5050 5051 out_unlock: 5052 spin_unlock(&mddev->lock); 5053 return err ?: len; 5054 } 5055 5056 static struct md_sysfs_entry md_min_sync = 5057 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5058 5059 static ssize_t 5060 max_sync_show(struct mddev *mddev, char *page) 5061 { 5062 if (mddev->resync_max == MaxSector) 5063 return sprintf(page, "max\n"); 5064 else 5065 return sprintf(page, "%llu\n", 5066 (unsigned long long)mddev->resync_max); 5067 } 5068 static ssize_t 5069 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5070 { 5071 int err; 5072 spin_lock(&mddev->lock); 5073 if (strncmp(buf, "max", 3) == 0) 5074 mddev->resync_max = MaxSector; 5075 else { 5076 unsigned long long max; 5077 int chunk; 5078 5079 err = -EINVAL; 5080 if (kstrtoull(buf, 10, &max)) 5081 goto out_unlock; 5082 if (max < mddev->resync_min) 5083 goto out_unlock; 5084 5085 err = -EBUSY; 5086 if (max < mddev->resync_max && 5087 mddev->ro == 0 && 5088 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5089 goto out_unlock; 5090 5091 /* Must be a multiple of chunk_size */ 5092 chunk = mddev->chunk_sectors; 5093 if (chunk) { 5094 sector_t temp = max; 5095 5096 err = -EINVAL; 5097 if (sector_div(temp, chunk)) 5098 goto out_unlock; 5099 } 5100 mddev->resync_max = max; 5101 } 5102 wake_up(&mddev->recovery_wait); 5103 err = 0; 5104 out_unlock: 5105 spin_unlock(&mddev->lock); 5106 return err ?: len; 5107 } 5108 5109 static struct md_sysfs_entry md_max_sync = 5110 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5111 5112 static ssize_t 5113 suspend_lo_show(struct mddev *mddev, char *page) 5114 { 5115 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5116 } 5117 5118 static ssize_t 5119 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5120 { 5121 unsigned long long new; 5122 int err; 5123 5124 err = kstrtoull(buf, 10, &new); 5125 if (err < 0) 5126 return err; 5127 if (new != (sector_t)new) 5128 return -EINVAL; 5129 5130 err = mddev_lock(mddev); 5131 if (err) 5132 return err; 5133 err = -EINVAL; 5134 if (mddev->pers == NULL || 5135 mddev->pers->quiesce == NULL) 5136 goto unlock; 5137 mddev_suspend(mddev); 5138 mddev->suspend_lo = new; 5139 mddev_resume(mddev); 5140 5141 err = 0; 5142 unlock: 5143 mddev_unlock(mddev); 5144 return err ?: len; 5145 } 5146 static struct md_sysfs_entry md_suspend_lo = 5147 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5148 5149 static ssize_t 5150 suspend_hi_show(struct mddev *mddev, char *page) 5151 { 5152 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5153 } 5154 5155 static ssize_t 5156 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5157 { 5158 unsigned long long new; 5159 int err; 5160 5161 err = kstrtoull(buf, 10, &new); 5162 if (err < 0) 5163 return err; 5164 if (new != (sector_t)new) 5165 return -EINVAL; 5166 5167 err = mddev_lock(mddev); 5168 if (err) 5169 return err; 5170 err = -EINVAL; 5171 if (mddev->pers == NULL) 5172 goto unlock; 5173 5174 mddev_suspend(mddev); 5175 mddev->suspend_hi = new; 5176 mddev_resume(mddev); 5177 5178 err = 0; 5179 unlock: 5180 mddev_unlock(mddev); 5181 return err ?: len; 5182 } 5183 static struct md_sysfs_entry md_suspend_hi = 5184 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5185 5186 static ssize_t 5187 reshape_position_show(struct mddev *mddev, char *page) 5188 { 5189 if (mddev->reshape_position != MaxSector) 5190 return sprintf(page, "%llu\n", 5191 (unsigned long long)mddev->reshape_position); 5192 strcpy(page, "none\n"); 5193 return 5; 5194 } 5195 5196 static ssize_t 5197 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5198 { 5199 struct md_rdev *rdev; 5200 unsigned long long new; 5201 int err; 5202 5203 err = kstrtoull(buf, 10, &new); 5204 if (err < 0) 5205 return err; 5206 if (new != (sector_t)new) 5207 return -EINVAL; 5208 err = mddev_lock(mddev); 5209 if (err) 5210 return err; 5211 err = -EBUSY; 5212 if (mddev->pers) 5213 goto unlock; 5214 mddev->reshape_position = new; 5215 mddev->delta_disks = 0; 5216 mddev->reshape_backwards = 0; 5217 mddev->new_level = mddev->level; 5218 mddev->new_layout = mddev->layout; 5219 mddev->new_chunk_sectors = mddev->chunk_sectors; 5220 rdev_for_each(rdev, mddev) 5221 rdev->new_data_offset = rdev->data_offset; 5222 err = 0; 5223 unlock: 5224 mddev_unlock(mddev); 5225 return err ?: len; 5226 } 5227 5228 static struct md_sysfs_entry md_reshape_position = 5229 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5230 reshape_position_store); 5231 5232 static ssize_t 5233 reshape_direction_show(struct mddev *mddev, char *page) 5234 { 5235 return sprintf(page, "%s\n", 5236 mddev->reshape_backwards ? "backwards" : "forwards"); 5237 } 5238 5239 static ssize_t 5240 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5241 { 5242 int backwards = 0; 5243 int err; 5244 5245 if (cmd_match(buf, "forwards")) 5246 backwards = 0; 5247 else if (cmd_match(buf, "backwards")) 5248 backwards = 1; 5249 else 5250 return -EINVAL; 5251 if (mddev->reshape_backwards == backwards) 5252 return len; 5253 5254 err = mddev_lock(mddev); 5255 if (err) 5256 return err; 5257 /* check if we are allowed to change */ 5258 if (mddev->delta_disks) 5259 err = -EBUSY; 5260 else if (mddev->persistent && 5261 mddev->major_version == 0) 5262 err = -EINVAL; 5263 else 5264 mddev->reshape_backwards = backwards; 5265 mddev_unlock(mddev); 5266 return err ?: len; 5267 } 5268 5269 static struct md_sysfs_entry md_reshape_direction = 5270 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5271 reshape_direction_store); 5272 5273 static ssize_t 5274 array_size_show(struct mddev *mddev, char *page) 5275 { 5276 if (mddev->external_size) 5277 return sprintf(page, "%llu\n", 5278 (unsigned long long)mddev->array_sectors/2); 5279 else 5280 return sprintf(page, "default\n"); 5281 } 5282 5283 static ssize_t 5284 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5285 { 5286 sector_t sectors; 5287 int err; 5288 5289 err = mddev_lock(mddev); 5290 if (err) 5291 return err; 5292 5293 /* cluster raid doesn't support change array_sectors */ 5294 if (mddev_is_clustered(mddev)) { 5295 mddev_unlock(mddev); 5296 return -EINVAL; 5297 } 5298 5299 if (strncmp(buf, "default", 7) == 0) { 5300 if (mddev->pers) 5301 sectors = mddev->pers->size(mddev, 0, 0); 5302 else 5303 sectors = mddev->array_sectors; 5304 5305 mddev->external_size = 0; 5306 } else { 5307 if (strict_blocks_to_sectors(buf, §ors) < 0) 5308 err = -EINVAL; 5309 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5310 err = -E2BIG; 5311 else 5312 mddev->external_size = 1; 5313 } 5314 5315 if (!err) { 5316 mddev->array_sectors = sectors; 5317 if (mddev->pers) 5318 set_capacity_and_notify(mddev->gendisk, 5319 mddev->array_sectors); 5320 } 5321 mddev_unlock(mddev); 5322 return err ?: len; 5323 } 5324 5325 static struct md_sysfs_entry md_array_size = 5326 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5327 array_size_store); 5328 5329 static ssize_t 5330 consistency_policy_show(struct mddev *mddev, char *page) 5331 { 5332 int ret; 5333 5334 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5335 ret = sprintf(page, "journal\n"); 5336 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5337 ret = sprintf(page, "ppl\n"); 5338 } else if (mddev->bitmap) { 5339 ret = sprintf(page, "bitmap\n"); 5340 } else if (mddev->pers) { 5341 if (mddev->pers->sync_request) 5342 ret = sprintf(page, "resync\n"); 5343 else 5344 ret = sprintf(page, "none\n"); 5345 } else { 5346 ret = sprintf(page, "unknown\n"); 5347 } 5348 5349 return ret; 5350 } 5351 5352 static ssize_t 5353 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5354 { 5355 int err = 0; 5356 5357 if (mddev->pers) { 5358 if (mddev->pers->change_consistency_policy) 5359 err = mddev->pers->change_consistency_policy(mddev, buf); 5360 else 5361 err = -EBUSY; 5362 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5363 set_bit(MD_HAS_PPL, &mddev->flags); 5364 } else { 5365 err = -EINVAL; 5366 } 5367 5368 return err ? err : len; 5369 } 5370 5371 static struct md_sysfs_entry md_consistency_policy = 5372 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5373 consistency_policy_store); 5374 5375 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5376 { 5377 return sprintf(page, "%d\n", mddev->fail_last_dev); 5378 } 5379 5380 /* 5381 * Setting fail_last_dev to true to allow last device to be forcibly removed 5382 * from RAID1/RAID10. 5383 */ 5384 static ssize_t 5385 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5386 { 5387 int ret; 5388 bool value; 5389 5390 ret = kstrtobool(buf, &value); 5391 if (ret) 5392 return ret; 5393 5394 if (value != mddev->fail_last_dev) 5395 mddev->fail_last_dev = value; 5396 5397 return len; 5398 } 5399 static struct md_sysfs_entry md_fail_last_dev = 5400 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5401 fail_last_dev_store); 5402 5403 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5404 { 5405 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5406 return sprintf(page, "n/a\n"); 5407 else 5408 return sprintf(page, "%d\n", mddev->serialize_policy); 5409 } 5410 5411 /* 5412 * Setting serialize_policy to true to enforce write IO is not reordered 5413 * for raid1. 5414 */ 5415 static ssize_t 5416 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5417 { 5418 int err; 5419 bool value; 5420 5421 err = kstrtobool(buf, &value); 5422 if (err) 5423 return err; 5424 5425 if (value == mddev->serialize_policy) 5426 return len; 5427 5428 err = mddev_lock(mddev); 5429 if (err) 5430 return err; 5431 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5432 pr_err("md: serialize_policy is only effective for raid1\n"); 5433 err = -EINVAL; 5434 goto unlock; 5435 } 5436 5437 mddev_suspend(mddev); 5438 if (value) 5439 mddev_create_serial_pool(mddev, NULL, true); 5440 else 5441 mddev_destroy_serial_pool(mddev, NULL, true); 5442 mddev->serialize_policy = value; 5443 mddev_resume(mddev); 5444 unlock: 5445 mddev_unlock(mddev); 5446 return err ?: len; 5447 } 5448 5449 static struct md_sysfs_entry md_serialize_policy = 5450 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5451 serialize_policy_store); 5452 5453 5454 static struct attribute *md_default_attrs[] = { 5455 &md_level.attr, 5456 &md_layout.attr, 5457 &md_raid_disks.attr, 5458 &md_uuid.attr, 5459 &md_chunk_size.attr, 5460 &md_size.attr, 5461 &md_resync_start.attr, 5462 &md_metadata.attr, 5463 &md_new_device.attr, 5464 &md_safe_delay.attr, 5465 &md_array_state.attr, 5466 &md_reshape_position.attr, 5467 &md_reshape_direction.attr, 5468 &md_array_size.attr, 5469 &max_corr_read_errors.attr, 5470 &md_consistency_policy.attr, 5471 &md_fail_last_dev.attr, 5472 &md_serialize_policy.attr, 5473 NULL, 5474 }; 5475 5476 static const struct attribute_group md_default_group = { 5477 .attrs = md_default_attrs, 5478 }; 5479 5480 static struct attribute *md_redundancy_attrs[] = { 5481 &md_scan_mode.attr, 5482 &md_last_scan_mode.attr, 5483 &md_mismatches.attr, 5484 &md_sync_min.attr, 5485 &md_sync_max.attr, 5486 &md_sync_speed.attr, 5487 &md_sync_force_parallel.attr, 5488 &md_sync_completed.attr, 5489 &md_min_sync.attr, 5490 &md_max_sync.attr, 5491 &md_suspend_lo.attr, 5492 &md_suspend_hi.attr, 5493 &md_bitmap.attr, 5494 &md_degraded.attr, 5495 NULL, 5496 }; 5497 static const struct attribute_group md_redundancy_group = { 5498 .name = NULL, 5499 .attrs = md_redundancy_attrs, 5500 }; 5501 5502 static const struct attribute_group *md_attr_groups[] = { 5503 &md_default_group, 5504 &md_bitmap_group, 5505 NULL, 5506 }; 5507 5508 static ssize_t 5509 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5510 { 5511 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5512 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5513 ssize_t rv; 5514 5515 if (!entry->show) 5516 return -EIO; 5517 spin_lock(&all_mddevs_lock); 5518 if (!mddev_get(mddev)) { 5519 spin_unlock(&all_mddevs_lock); 5520 return -EBUSY; 5521 } 5522 spin_unlock(&all_mddevs_lock); 5523 5524 rv = entry->show(mddev, page); 5525 mddev_put(mddev); 5526 return rv; 5527 } 5528 5529 static ssize_t 5530 md_attr_store(struct kobject *kobj, struct attribute *attr, 5531 const char *page, size_t length) 5532 { 5533 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5534 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5535 ssize_t rv; 5536 5537 if (!entry->store) 5538 return -EIO; 5539 if (!capable(CAP_SYS_ADMIN)) 5540 return -EACCES; 5541 spin_lock(&all_mddevs_lock); 5542 if (!mddev_get(mddev)) { 5543 spin_unlock(&all_mddevs_lock); 5544 return -EBUSY; 5545 } 5546 spin_unlock(&all_mddevs_lock); 5547 rv = entry->store(mddev, page, length); 5548 mddev_put(mddev); 5549 return rv; 5550 } 5551 5552 static void md_kobj_release(struct kobject *ko) 5553 { 5554 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5555 5556 if (mddev->sysfs_state) 5557 sysfs_put(mddev->sysfs_state); 5558 if (mddev->sysfs_level) 5559 sysfs_put(mddev->sysfs_level); 5560 5561 del_gendisk(mddev->gendisk); 5562 put_disk(mddev->gendisk); 5563 } 5564 5565 static const struct sysfs_ops md_sysfs_ops = { 5566 .show = md_attr_show, 5567 .store = md_attr_store, 5568 }; 5569 static struct kobj_type md_ktype = { 5570 .release = md_kobj_release, 5571 .sysfs_ops = &md_sysfs_ops, 5572 .default_groups = md_attr_groups, 5573 }; 5574 5575 int mdp_major = 0; 5576 5577 static void mddev_delayed_delete(struct work_struct *ws) 5578 { 5579 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5580 5581 kobject_put(&mddev->kobj); 5582 } 5583 5584 static void no_op(struct percpu_ref *r) {} 5585 5586 int mddev_init_writes_pending(struct mddev *mddev) 5587 { 5588 if (mddev->writes_pending.percpu_count_ptr) 5589 return 0; 5590 if (percpu_ref_init(&mddev->writes_pending, no_op, 5591 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5592 return -ENOMEM; 5593 /* We want to start with the refcount at zero */ 5594 percpu_ref_put(&mddev->writes_pending); 5595 return 0; 5596 } 5597 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5598 5599 struct mddev *md_alloc(dev_t dev, char *name) 5600 { 5601 /* 5602 * If dev is zero, name is the name of a device to allocate with 5603 * an arbitrary minor number. It will be "md_???" 5604 * If dev is non-zero it must be a device number with a MAJOR of 5605 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5606 * the device is being created by opening a node in /dev. 5607 * If "name" is not NULL, the device is being created by 5608 * writing to /sys/module/md_mod/parameters/new_array. 5609 */ 5610 static DEFINE_MUTEX(disks_mutex); 5611 struct mddev *mddev; 5612 struct gendisk *disk; 5613 int partitioned; 5614 int shift; 5615 int unit; 5616 int error ; 5617 5618 /* 5619 * Wait for any previous instance of this device to be completely 5620 * removed (mddev_delayed_delete). 5621 */ 5622 flush_workqueue(md_misc_wq); 5623 5624 mutex_lock(&disks_mutex); 5625 mddev = mddev_alloc(dev); 5626 if (IS_ERR(mddev)) { 5627 error = PTR_ERR(mddev); 5628 goto out_unlock; 5629 } 5630 5631 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5632 shift = partitioned ? MdpMinorShift : 0; 5633 unit = MINOR(mddev->unit) >> shift; 5634 5635 if (name && !dev) { 5636 /* Need to ensure that 'name' is not a duplicate. 5637 */ 5638 struct mddev *mddev2; 5639 spin_lock(&all_mddevs_lock); 5640 5641 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5642 if (mddev2->gendisk && 5643 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5644 spin_unlock(&all_mddevs_lock); 5645 error = -EEXIST; 5646 goto out_free_mddev; 5647 } 5648 spin_unlock(&all_mddevs_lock); 5649 } 5650 if (name && dev) 5651 /* 5652 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5653 */ 5654 mddev->hold_active = UNTIL_STOP; 5655 5656 error = -ENOMEM; 5657 disk = blk_alloc_disk(NUMA_NO_NODE); 5658 if (!disk) 5659 goto out_free_mddev; 5660 5661 disk->major = MAJOR(mddev->unit); 5662 disk->first_minor = unit << shift; 5663 disk->minors = 1 << shift; 5664 if (name) 5665 strcpy(disk->disk_name, name); 5666 else if (partitioned) 5667 sprintf(disk->disk_name, "md_d%d", unit); 5668 else 5669 sprintf(disk->disk_name, "md%d", unit); 5670 disk->fops = &md_fops; 5671 disk->private_data = mddev; 5672 5673 mddev->queue = disk->queue; 5674 blk_set_stacking_limits(&mddev->queue->limits); 5675 blk_queue_write_cache(mddev->queue, true, true); 5676 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5677 mddev->gendisk = disk; 5678 error = add_disk(disk); 5679 if (error) 5680 goto out_put_disk; 5681 5682 kobject_init(&mddev->kobj, &md_ktype); 5683 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5684 if (error) { 5685 /* 5686 * The disk is already live at this point. Clear the hold flag 5687 * and let mddev_put take care of the deletion, as it isn't any 5688 * different from a normal close on last release now. 5689 */ 5690 mddev->hold_active = 0; 5691 mutex_unlock(&disks_mutex); 5692 mddev_put(mddev); 5693 return ERR_PTR(error); 5694 } 5695 5696 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5697 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5698 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5699 mutex_unlock(&disks_mutex); 5700 return mddev; 5701 5702 out_put_disk: 5703 put_disk(disk); 5704 out_free_mddev: 5705 mddev_free(mddev); 5706 out_unlock: 5707 mutex_unlock(&disks_mutex); 5708 return ERR_PTR(error); 5709 } 5710 5711 static int md_alloc_and_put(dev_t dev, char *name) 5712 { 5713 struct mddev *mddev = md_alloc(dev, name); 5714 5715 if (IS_ERR(mddev)) 5716 return PTR_ERR(mddev); 5717 mddev_put(mddev); 5718 return 0; 5719 } 5720 5721 static void md_probe(dev_t dev) 5722 { 5723 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5724 return; 5725 if (create_on_open) 5726 md_alloc_and_put(dev, NULL); 5727 } 5728 5729 static int add_named_array(const char *val, const struct kernel_param *kp) 5730 { 5731 /* 5732 * val must be "md_*" or "mdNNN". 5733 * For "md_*" we allocate an array with a large free minor number, and 5734 * set the name to val. val must not already be an active name. 5735 * For "mdNNN" we allocate an array with the minor number NNN 5736 * which must not already be in use. 5737 */ 5738 int len = strlen(val); 5739 char buf[DISK_NAME_LEN]; 5740 unsigned long devnum; 5741 5742 while (len && val[len-1] == '\n') 5743 len--; 5744 if (len >= DISK_NAME_LEN) 5745 return -E2BIG; 5746 strscpy(buf, val, len+1); 5747 if (strncmp(buf, "md_", 3) == 0) 5748 return md_alloc_and_put(0, buf); 5749 if (strncmp(buf, "md", 2) == 0 && 5750 isdigit(buf[2]) && 5751 kstrtoul(buf+2, 10, &devnum) == 0 && 5752 devnum <= MINORMASK) 5753 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5754 5755 return -EINVAL; 5756 } 5757 5758 static void md_safemode_timeout(struct timer_list *t) 5759 { 5760 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5761 5762 mddev->safemode = 1; 5763 if (mddev->external) 5764 sysfs_notify_dirent_safe(mddev->sysfs_state); 5765 5766 md_wakeup_thread(mddev->thread); 5767 } 5768 5769 static int start_dirty_degraded; 5770 5771 int md_run(struct mddev *mddev) 5772 { 5773 int err; 5774 struct md_rdev *rdev; 5775 struct md_personality *pers; 5776 bool nowait = true; 5777 5778 if (list_empty(&mddev->disks)) 5779 /* cannot run an array with no devices.. */ 5780 return -EINVAL; 5781 5782 if (mddev->pers) 5783 return -EBUSY; 5784 /* Cannot run until previous stop completes properly */ 5785 if (mddev->sysfs_active) 5786 return -EBUSY; 5787 5788 /* 5789 * Analyze all RAID superblock(s) 5790 */ 5791 if (!mddev->raid_disks) { 5792 if (!mddev->persistent) 5793 return -EINVAL; 5794 err = analyze_sbs(mddev); 5795 if (err) 5796 return -EINVAL; 5797 } 5798 5799 if (mddev->level != LEVEL_NONE) 5800 request_module("md-level-%d", mddev->level); 5801 else if (mddev->clevel[0]) 5802 request_module("md-%s", mddev->clevel); 5803 5804 /* 5805 * Drop all container device buffers, from now on 5806 * the only valid external interface is through the md 5807 * device. 5808 */ 5809 mddev->has_superblocks = false; 5810 rdev_for_each(rdev, mddev) { 5811 if (test_bit(Faulty, &rdev->flags)) 5812 continue; 5813 sync_blockdev(rdev->bdev); 5814 invalidate_bdev(rdev->bdev); 5815 if (mddev->ro != 1 && rdev_read_only(rdev)) { 5816 mddev->ro = 1; 5817 if (mddev->gendisk) 5818 set_disk_ro(mddev->gendisk, 1); 5819 } 5820 5821 if (rdev->sb_page) 5822 mddev->has_superblocks = true; 5823 5824 /* perform some consistency tests on the device. 5825 * We don't want the data to overlap the metadata, 5826 * Internal Bitmap issues have been handled elsewhere. 5827 */ 5828 if (rdev->meta_bdev) { 5829 /* Nothing to check */; 5830 } else if (rdev->data_offset < rdev->sb_start) { 5831 if (mddev->dev_sectors && 5832 rdev->data_offset + mddev->dev_sectors 5833 > rdev->sb_start) { 5834 pr_warn("md: %s: data overlaps metadata\n", 5835 mdname(mddev)); 5836 return -EINVAL; 5837 } 5838 } else { 5839 if (rdev->sb_start + rdev->sb_size/512 5840 > rdev->data_offset) { 5841 pr_warn("md: %s: metadata overlaps data\n", 5842 mdname(mddev)); 5843 return -EINVAL; 5844 } 5845 } 5846 sysfs_notify_dirent_safe(rdev->sysfs_state); 5847 nowait = nowait && blk_queue_nowait(bdev_get_queue(rdev->bdev)); 5848 } 5849 5850 if (!bioset_initialized(&mddev->bio_set)) { 5851 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5852 if (err) 5853 return err; 5854 } 5855 if (!bioset_initialized(&mddev->sync_set)) { 5856 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5857 if (err) 5858 goto exit_bio_set; 5859 } 5860 5861 spin_lock(&pers_lock); 5862 pers = find_pers(mddev->level, mddev->clevel); 5863 if (!pers || !try_module_get(pers->owner)) { 5864 spin_unlock(&pers_lock); 5865 if (mddev->level != LEVEL_NONE) 5866 pr_warn("md: personality for level %d is not loaded!\n", 5867 mddev->level); 5868 else 5869 pr_warn("md: personality for level %s is not loaded!\n", 5870 mddev->clevel); 5871 err = -EINVAL; 5872 goto abort; 5873 } 5874 spin_unlock(&pers_lock); 5875 if (mddev->level != pers->level) { 5876 mddev->level = pers->level; 5877 mddev->new_level = pers->level; 5878 } 5879 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5880 5881 if (mddev->reshape_position != MaxSector && 5882 pers->start_reshape == NULL) { 5883 /* This personality cannot handle reshaping... */ 5884 module_put(pers->owner); 5885 err = -EINVAL; 5886 goto abort; 5887 } 5888 5889 if (pers->sync_request) { 5890 /* Warn if this is a potentially silly 5891 * configuration. 5892 */ 5893 struct md_rdev *rdev2; 5894 int warned = 0; 5895 5896 rdev_for_each(rdev, mddev) 5897 rdev_for_each(rdev2, mddev) { 5898 if (rdev < rdev2 && 5899 rdev->bdev->bd_disk == 5900 rdev2->bdev->bd_disk) { 5901 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5902 mdname(mddev), 5903 rdev->bdev, 5904 rdev2->bdev); 5905 warned = 1; 5906 } 5907 } 5908 5909 if (warned) 5910 pr_warn("True protection against single-disk failure might be compromised.\n"); 5911 } 5912 5913 mddev->recovery = 0; 5914 /* may be over-ridden by personality */ 5915 mddev->resync_max_sectors = mddev->dev_sectors; 5916 5917 mddev->ok_start_degraded = start_dirty_degraded; 5918 5919 if (start_readonly && mddev->ro == 0) 5920 mddev->ro = 2; /* read-only, but switch on first write */ 5921 5922 err = pers->run(mddev); 5923 if (err) 5924 pr_warn("md: pers->run() failed ...\n"); 5925 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5926 WARN_ONCE(!mddev->external_size, 5927 "%s: default size too small, but 'external_size' not in effect?\n", 5928 __func__); 5929 pr_warn("md: invalid array_size %llu > default size %llu\n", 5930 (unsigned long long)mddev->array_sectors / 2, 5931 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5932 err = -EINVAL; 5933 } 5934 if (err == 0 && pers->sync_request && 5935 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5936 struct bitmap *bitmap; 5937 5938 bitmap = md_bitmap_create(mddev, -1); 5939 if (IS_ERR(bitmap)) { 5940 err = PTR_ERR(bitmap); 5941 pr_warn("%s: failed to create bitmap (%d)\n", 5942 mdname(mddev), err); 5943 } else 5944 mddev->bitmap = bitmap; 5945 5946 } 5947 if (err) 5948 goto bitmap_abort; 5949 5950 if (mddev->bitmap_info.max_write_behind > 0) { 5951 bool create_pool = false; 5952 5953 rdev_for_each(rdev, mddev) { 5954 if (test_bit(WriteMostly, &rdev->flags) && 5955 rdev_init_serial(rdev)) 5956 create_pool = true; 5957 } 5958 if (create_pool && mddev->serial_info_pool == NULL) { 5959 mddev->serial_info_pool = 5960 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5961 sizeof(struct serial_info)); 5962 if (!mddev->serial_info_pool) { 5963 err = -ENOMEM; 5964 goto bitmap_abort; 5965 } 5966 } 5967 } 5968 5969 if (mddev->queue) { 5970 bool nonrot = true; 5971 5972 rdev_for_each(rdev, mddev) { 5973 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 5974 nonrot = false; 5975 break; 5976 } 5977 } 5978 if (mddev->degraded) 5979 nonrot = false; 5980 if (nonrot) 5981 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5982 else 5983 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5984 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 5985 5986 /* Set the NOWAIT flags if all underlying devices support it */ 5987 if (nowait) 5988 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 5989 } 5990 if (pers->sync_request) { 5991 if (mddev->kobj.sd && 5992 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5993 pr_warn("md: cannot register extra attributes for %s\n", 5994 mdname(mddev)); 5995 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5996 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 5997 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 5998 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5999 mddev->ro = 0; 6000 6001 atomic_set(&mddev->max_corr_read_errors, 6002 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6003 mddev->safemode = 0; 6004 if (mddev_is_clustered(mddev)) 6005 mddev->safemode_delay = 0; 6006 else 6007 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6008 mddev->in_sync = 1; 6009 smp_wmb(); 6010 spin_lock(&mddev->lock); 6011 mddev->pers = pers; 6012 spin_unlock(&mddev->lock); 6013 rdev_for_each(rdev, mddev) 6014 if (rdev->raid_disk >= 0) 6015 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6016 6017 if (mddev->degraded && !mddev->ro) 6018 /* This ensures that recovering status is reported immediately 6019 * via sysfs - until a lack of spares is confirmed. 6020 */ 6021 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6022 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6023 6024 if (mddev->sb_flags) 6025 md_update_sb(mddev, 0); 6026 6027 md_new_event(); 6028 return 0; 6029 6030 bitmap_abort: 6031 mddev_detach(mddev); 6032 if (mddev->private) 6033 pers->free(mddev, mddev->private); 6034 mddev->private = NULL; 6035 module_put(pers->owner); 6036 md_bitmap_destroy(mddev); 6037 abort: 6038 bioset_exit(&mddev->sync_set); 6039 exit_bio_set: 6040 bioset_exit(&mddev->bio_set); 6041 return err; 6042 } 6043 EXPORT_SYMBOL_GPL(md_run); 6044 6045 int do_md_run(struct mddev *mddev) 6046 { 6047 int err; 6048 6049 set_bit(MD_NOT_READY, &mddev->flags); 6050 err = md_run(mddev); 6051 if (err) 6052 goto out; 6053 err = md_bitmap_load(mddev); 6054 if (err) { 6055 md_bitmap_destroy(mddev); 6056 goto out; 6057 } 6058 6059 if (mddev_is_clustered(mddev)) 6060 md_allow_write(mddev); 6061 6062 /* run start up tasks that require md_thread */ 6063 md_start(mddev); 6064 6065 md_wakeup_thread(mddev->thread); 6066 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6067 6068 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6069 clear_bit(MD_NOT_READY, &mddev->flags); 6070 mddev->changed = 1; 6071 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6072 sysfs_notify_dirent_safe(mddev->sysfs_state); 6073 sysfs_notify_dirent_safe(mddev->sysfs_action); 6074 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6075 out: 6076 clear_bit(MD_NOT_READY, &mddev->flags); 6077 return err; 6078 } 6079 6080 int md_start(struct mddev *mddev) 6081 { 6082 int ret = 0; 6083 6084 if (mddev->pers->start) { 6085 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6086 md_wakeup_thread(mddev->thread); 6087 ret = mddev->pers->start(mddev); 6088 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6089 md_wakeup_thread(mddev->sync_thread); 6090 } 6091 return ret; 6092 } 6093 EXPORT_SYMBOL_GPL(md_start); 6094 6095 static int restart_array(struct mddev *mddev) 6096 { 6097 struct gendisk *disk = mddev->gendisk; 6098 struct md_rdev *rdev; 6099 bool has_journal = false; 6100 bool has_readonly = false; 6101 6102 /* Complain if it has no devices */ 6103 if (list_empty(&mddev->disks)) 6104 return -ENXIO; 6105 if (!mddev->pers) 6106 return -EINVAL; 6107 if (!mddev->ro) 6108 return -EBUSY; 6109 6110 rcu_read_lock(); 6111 rdev_for_each_rcu(rdev, mddev) { 6112 if (test_bit(Journal, &rdev->flags) && 6113 !test_bit(Faulty, &rdev->flags)) 6114 has_journal = true; 6115 if (rdev_read_only(rdev)) 6116 has_readonly = true; 6117 } 6118 rcu_read_unlock(); 6119 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6120 /* Don't restart rw with journal missing/faulty */ 6121 return -EINVAL; 6122 if (has_readonly) 6123 return -EROFS; 6124 6125 mddev->safemode = 0; 6126 mddev->ro = 0; 6127 set_disk_ro(disk, 0); 6128 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6129 /* Kick recovery or resync if necessary */ 6130 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6131 md_wakeup_thread(mddev->thread); 6132 md_wakeup_thread(mddev->sync_thread); 6133 sysfs_notify_dirent_safe(mddev->sysfs_state); 6134 return 0; 6135 } 6136 6137 static void md_clean(struct mddev *mddev) 6138 { 6139 mddev->array_sectors = 0; 6140 mddev->external_size = 0; 6141 mddev->dev_sectors = 0; 6142 mddev->raid_disks = 0; 6143 mddev->recovery_cp = 0; 6144 mddev->resync_min = 0; 6145 mddev->resync_max = MaxSector; 6146 mddev->reshape_position = MaxSector; 6147 mddev->external = 0; 6148 mddev->persistent = 0; 6149 mddev->level = LEVEL_NONE; 6150 mddev->clevel[0] = 0; 6151 mddev->flags = 0; 6152 mddev->sb_flags = 0; 6153 mddev->ro = 0; 6154 mddev->metadata_type[0] = 0; 6155 mddev->chunk_sectors = 0; 6156 mddev->ctime = mddev->utime = 0; 6157 mddev->layout = 0; 6158 mddev->max_disks = 0; 6159 mddev->events = 0; 6160 mddev->can_decrease_events = 0; 6161 mddev->delta_disks = 0; 6162 mddev->reshape_backwards = 0; 6163 mddev->new_level = LEVEL_NONE; 6164 mddev->new_layout = 0; 6165 mddev->new_chunk_sectors = 0; 6166 mddev->curr_resync = 0; 6167 atomic64_set(&mddev->resync_mismatches, 0); 6168 mddev->suspend_lo = mddev->suspend_hi = 0; 6169 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6170 mddev->recovery = 0; 6171 mddev->in_sync = 0; 6172 mddev->changed = 0; 6173 mddev->degraded = 0; 6174 mddev->safemode = 0; 6175 mddev->private = NULL; 6176 mddev->cluster_info = NULL; 6177 mddev->bitmap_info.offset = 0; 6178 mddev->bitmap_info.default_offset = 0; 6179 mddev->bitmap_info.default_space = 0; 6180 mddev->bitmap_info.chunksize = 0; 6181 mddev->bitmap_info.daemon_sleep = 0; 6182 mddev->bitmap_info.max_write_behind = 0; 6183 mddev->bitmap_info.nodes = 0; 6184 } 6185 6186 static void __md_stop_writes(struct mddev *mddev) 6187 { 6188 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6189 if (work_pending(&mddev->del_work)) 6190 flush_workqueue(md_misc_wq); 6191 if (mddev->sync_thread) { 6192 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6193 md_unregister_thread(&mddev->sync_thread); 6194 md_reap_sync_thread(mddev); 6195 } 6196 6197 del_timer_sync(&mddev->safemode_timer); 6198 6199 if (mddev->pers && mddev->pers->quiesce) { 6200 mddev->pers->quiesce(mddev, 1); 6201 mddev->pers->quiesce(mddev, 0); 6202 } 6203 md_bitmap_flush(mddev); 6204 6205 if (mddev->ro == 0 && 6206 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6207 mddev->sb_flags)) { 6208 /* mark array as shutdown cleanly */ 6209 if (!mddev_is_clustered(mddev)) 6210 mddev->in_sync = 1; 6211 md_update_sb(mddev, 1); 6212 } 6213 /* disable policy to guarantee rdevs free resources for serialization */ 6214 mddev->serialize_policy = 0; 6215 mddev_destroy_serial_pool(mddev, NULL, true); 6216 } 6217 6218 void md_stop_writes(struct mddev *mddev) 6219 { 6220 mddev_lock_nointr(mddev); 6221 __md_stop_writes(mddev); 6222 mddev_unlock(mddev); 6223 } 6224 EXPORT_SYMBOL_GPL(md_stop_writes); 6225 6226 static void mddev_detach(struct mddev *mddev) 6227 { 6228 md_bitmap_wait_behind_writes(mddev); 6229 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6230 mddev->pers->quiesce(mddev, 1); 6231 mddev->pers->quiesce(mddev, 0); 6232 } 6233 md_unregister_thread(&mddev->thread); 6234 if (mddev->queue) 6235 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6236 } 6237 6238 static void __md_stop(struct mddev *mddev) 6239 { 6240 struct md_personality *pers = mddev->pers; 6241 mddev_detach(mddev); 6242 /* Ensure ->event_work is done */ 6243 if (mddev->event_work.func) 6244 flush_workqueue(md_misc_wq); 6245 md_bitmap_destroy(mddev); 6246 spin_lock(&mddev->lock); 6247 mddev->pers = NULL; 6248 spin_unlock(&mddev->lock); 6249 if (mddev->private) 6250 pers->free(mddev, mddev->private); 6251 mddev->private = NULL; 6252 if (pers->sync_request && mddev->to_remove == NULL) 6253 mddev->to_remove = &md_redundancy_group; 6254 module_put(pers->owner); 6255 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6256 } 6257 6258 void md_stop(struct mddev *mddev) 6259 { 6260 /* stop the array and free an attached data structures. 6261 * This is called from dm-raid 6262 */ 6263 __md_stop(mddev); 6264 bioset_exit(&mddev->bio_set); 6265 bioset_exit(&mddev->sync_set); 6266 } 6267 6268 EXPORT_SYMBOL_GPL(md_stop); 6269 6270 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6271 { 6272 int err = 0; 6273 int did_freeze = 0; 6274 6275 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6276 did_freeze = 1; 6277 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6278 md_wakeup_thread(mddev->thread); 6279 } 6280 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6281 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6282 if (mddev->sync_thread) 6283 /* Thread might be blocked waiting for metadata update 6284 * which will now never happen */ 6285 wake_up_process(mddev->sync_thread->tsk); 6286 6287 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6288 return -EBUSY; 6289 mddev_unlock(mddev); 6290 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6291 &mddev->recovery)); 6292 wait_event(mddev->sb_wait, 6293 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6294 mddev_lock_nointr(mddev); 6295 6296 mutex_lock(&mddev->open_mutex); 6297 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6298 mddev->sync_thread || 6299 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6300 pr_warn("md: %s still in use.\n",mdname(mddev)); 6301 if (did_freeze) { 6302 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6303 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6304 md_wakeup_thread(mddev->thread); 6305 } 6306 err = -EBUSY; 6307 goto out; 6308 } 6309 if (mddev->pers) { 6310 __md_stop_writes(mddev); 6311 6312 err = -ENXIO; 6313 if (mddev->ro==1) 6314 goto out; 6315 mddev->ro = 1; 6316 set_disk_ro(mddev->gendisk, 1); 6317 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6318 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6319 md_wakeup_thread(mddev->thread); 6320 sysfs_notify_dirent_safe(mddev->sysfs_state); 6321 err = 0; 6322 } 6323 out: 6324 mutex_unlock(&mddev->open_mutex); 6325 return err; 6326 } 6327 6328 /* mode: 6329 * 0 - completely stop and dis-assemble array 6330 * 2 - stop but do not disassemble array 6331 */ 6332 static int do_md_stop(struct mddev *mddev, int mode, 6333 struct block_device *bdev) 6334 { 6335 struct gendisk *disk = mddev->gendisk; 6336 struct md_rdev *rdev; 6337 int did_freeze = 0; 6338 6339 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6340 did_freeze = 1; 6341 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6342 md_wakeup_thread(mddev->thread); 6343 } 6344 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6345 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6346 if (mddev->sync_thread) 6347 /* Thread might be blocked waiting for metadata update 6348 * which will now never happen */ 6349 wake_up_process(mddev->sync_thread->tsk); 6350 6351 mddev_unlock(mddev); 6352 wait_event(resync_wait, (mddev->sync_thread == NULL && 6353 !test_bit(MD_RECOVERY_RUNNING, 6354 &mddev->recovery))); 6355 mddev_lock_nointr(mddev); 6356 6357 mutex_lock(&mddev->open_mutex); 6358 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6359 mddev->sysfs_active || 6360 mddev->sync_thread || 6361 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6362 pr_warn("md: %s still in use.\n",mdname(mddev)); 6363 mutex_unlock(&mddev->open_mutex); 6364 if (did_freeze) { 6365 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6366 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6367 md_wakeup_thread(mddev->thread); 6368 } 6369 return -EBUSY; 6370 } 6371 if (mddev->pers) { 6372 if (mddev->ro) 6373 set_disk_ro(disk, 0); 6374 6375 __md_stop_writes(mddev); 6376 __md_stop(mddev); 6377 6378 /* tell userspace to handle 'inactive' */ 6379 sysfs_notify_dirent_safe(mddev->sysfs_state); 6380 6381 rdev_for_each(rdev, mddev) 6382 if (rdev->raid_disk >= 0) 6383 sysfs_unlink_rdev(mddev, rdev); 6384 6385 set_capacity_and_notify(disk, 0); 6386 mutex_unlock(&mddev->open_mutex); 6387 mddev->changed = 1; 6388 6389 if (mddev->ro) 6390 mddev->ro = 0; 6391 } else 6392 mutex_unlock(&mddev->open_mutex); 6393 /* 6394 * Free resources if final stop 6395 */ 6396 if (mode == 0) { 6397 pr_info("md: %s stopped.\n", mdname(mddev)); 6398 6399 if (mddev->bitmap_info.file) { 6400 struct file *f = mddev->bitmap_info.file; 6401 spin_lock(&mddev->lock); 6402 mddev->bitmap_info.file = NULL; 6403 spin_unlock(&mddev->lock); 6404 fput(f); 6405 } 6406 mddev->bitmap_info.offset = 0; 6407 6408 export_array(mddev); 6409 6410 md_clean(mddev); 6411 if (mddev->hold_active == UNTIL_STOP) 6412 mddev->hold_active = 0; 6413 } 6414 md_new_event(); 6415 sysfs_notify_dirent_safe(mddev->sysfs_state); 6416 return 0; 6417 } 6418 6419 #ifndef MODULE 6420 static void autorun_array(struct mddev *mddev) 6421 { 6422 struct md_rdev *rdev; 6423 int err; 6424 6425 if (list_empty(&mddev->disks)) 6426 return; 6427 6428 pr_info("md: running: "); 6429 6430 rdev_for_each(rdev, mddev) { 6431 pr_cont("<%pg>", rdev->bdev); 6432 } 6433 pr_cont("\n"); 6434 6435 err = do_md_run(mddev); 6436 if (err) { 6437 pr_warn("md: do_md_run() returned %d\n", err); 6438 do_md_stop(mddev, 0, NULL); 6439 } 6440 } 6441 6442 /* 6443 * lets try to run arrays based on all disks that have arrived 6444 * until now. (those are in pending_raid_disks) 6445 * 6446 * the method: pick the first pending disk, collect all disks with 6447 * the same UUID, remove all from the pending list and put them into 6448 * the 'same_array' list. Then order this list based on superblock 6449 * update time (freshest comes first), kick out 'old' disks and 6450 * compare superblocks. If everything's fine then run it. 6451 * 6452 * If "unit" is allocated, then bump its reference count 6453 */ 6454 static void autorun_devices(int part) 6455 { 6456 struct md_rdev *rdev0, *rdev, *tmp; 6457 struct mddev *mddev; 6458 6459 pr_info("md: autorun ...\n"); 6460 while (!list_empty(&pending_raid_disks)) { 6461 int unit; 6462 dev_t dev; 6463 LIST_HEAD(candidates); 6464 rdev0 = list_entry(pending_raid_disks.next, 6465 struct md_rdev, same_set); 6466 6467 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6468 INIT_LIST_HEAD(&candidates); 6469 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6470 if (super_90_load(rdev, rdev0, 0) >= 0) { 6471 pr_debug("md: adding %pg ...\n", 6472 rdev->bdev); 6473 list_move(&rdev->same_set, &candidates); 6474 } 6475 /* 6476 * now we have a set of devices, with all of them having 6477 * mostly sane superblocks. It's time to allocate the 6478 * mddev. 6479 */ 6480 if (part) { 6481 dev = MKDEV(mdp_major, 6482 rdev0->preferred_minor << MdpMinorShift); 6483 unit = MINOR(dev) >> MdpMinorShift; 6484 } else { 6485 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6486 unit = MINOR(dev); 6487 } 6488 if (rdev0->preferred_minor != unit) { 6489 pr_warn("md: unit number in %pg is bad: %d\n", 6490 rdev0->bdev, rdev0->preferred_minor); 6491 break; 6492 } 6493 6494 mddev = md_alloc(dev, NULL); 6495 if (IS_ERR(mddev)) 6496 break; 6497 6498 if (mddev_lock(mddev)) 6499 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6500 else if (mddev->raid_disks || mddev->major_version 6501 || !list_empty(&mddev->disks)) { 6502 pr_warn("md: %s already running, cannot run %pg\n", 6503 mdname(mddev), rdev0->bdev); 6504 mddev_unlock(mddev); 6505 } else { 6506 pr_debug("md: created %s\n", mdname(mddev)); 6507 mddev->persistent = 1; 6508 rdev_for_each_list(rdev, tmp, &candidates) { 6509 list_del_init(&rdev->same_set); 6510 if (bind_rdev_to_array(rdev, mddev)) 6511 export_rdev(rdev); 6512 } 6513 autorun_array(mddev); 6514 mddev_unlock(mddev); 6515 } 6516 /* on success, candidates will be empty, on error 6517 * it won't... 6518 */ 6519 rdev_for_each_list(rdev, tmp, &candidates) { 6520 list_del_init(&rdev->same_set); 6521 export_rdev(rdev); 6522 } 6523 mddev_put(mddev); 6524 } 6525 pr_info("md: ... autorun DONE.\n"); 6526 } 6527 #endif /* !MODULE */ 6528 6529 static int get_version(void __user *arg) 6530 { 6531 mdu_version_t ver; 6532 6533 ver.major = MD_MAJOR_VERSION; 6534 ver.minor = MD_MINOR_VERSION; 6535 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6536 6537 if (copy_to_user(arg, &ver, sizeof(ver))) 6538 return -EFAULT; 6539 6540 return 0; 6541 } 6542 6543 static int get_array_info(struct mddev *mddev, void __user *arg) 6544 { 6545 mdu_array_info_t info; 6546 int nr,working,insync,failed,spare; 6547 struct md_rdev *rdev; 6548 6549 nr = working = insync = failed = spare = 0; 6550 rcu_read_lock(); 6551 rdev_for_each_rcu(rdev, mddev) { 6552 nr++; 6553 if (test_bit(Faulty, &rdev->flags)) 6554 failed++; 6555 else { 6556 working++; 6557 if (test_bit(In_sync, &rdev->flags)) 6558 insync++; 6559 else if (test_bit(Journal, &rdev->flags)) 6560 /* TODO: add journal count to md_u.h */ 6561 ; 6562 else 6563 spare++; 6564 } 6565 } 6566 rcu_read_unlock(); 6567 6568 info.major_version = mddev->major_version; 6569 info.minor_version = mddev->minor_version; 6570 info.patch_version = MD_PATCHLEVEL_VERSION; 6571 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6572 info.level = mddev->level; 6573 info.size = mddev->dev_sectors / 2; 6574 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6575 info.size = -1; 6576 info.nr_disks = nr; 6577 info.raid_disks = mddev->raid_disks; 6578 info.md_minor = mddev->md_minor; 6579 info.not_persistent= !mddev->persistent; 6580 6581 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6582 info.state = 0; 6583 if (mddev->in_sync) 6584 info.state = (1<<MD_SB_CLEAN); 6585 if (mddev->bitmap && mddev->bitmap_info.offset) 6586 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6587 if (mddev_is_clustered(mddev)) 6588 info.state |= (1<<MD_SB_CLUSTERED); 6589 info.active_disks = insync; 6590 info.working_disks = working; 6591 info.failed_disks = failed; 6592 info.spare_disks = spare; 6593 6594 info.layout = mddev->layout; 6595 info.chunk_size = mddev->chunk_sectors << 9; 6596 6597 if (copy_to_user(arg, &info, sizeof(info))) 6598 return -EFAULT; 6599 6600 return 0; 6601 } 6602 6603 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6604 { 6605 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6606 char *ptr; 6607 int err; 6608 6609 file = kzalloc(sizeof(*file), GFP_NOIO); 6610 if (!file) 6611 return -ENOMEM; 6612 6613 err = 0; 6614 spin_lock(&mddev->lock); 6615 /* bitmap enabled */ 6616 if (mddev->bitmap_info.file) { 6617 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6618 sizeof(file->pathname)); 6619 if (IS_ERR(ptr)) 6620 err = PTR_ERR(ptr); 6621 else 6622 memmove(file->pathname, ptr, 6623 sizeof(file->pathname)-(ptr-file->pathname)); 6624 } 6625 spin_unlock(&mddev->lock); 6626 6627 if (err == 0 && 6628 copy_to_user(arg, file, sizeof(*file))) 6629 err = -EFAULT; 6630 6631 kfree(file); 6632 return err; 6633 } 6634 6635 static int get_disk_info(struct mddev *mddev, void __user * arg) 6636 { 6637 mdu_disk_info_t info; 6638 struct md_rdev *rdev; 6639 6640 if (copy_from_user(&info, arg, sizeof(info))) 6641 return -EFAULT; 6642 6643 rcu_read_lock(); 6644 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6645 if (rdev) { 6646 info.major = MAJOR(rdev->bdev->bd_dev); 6647 info.minor = MINOR(rdev->bdev->bd_dev); 6648 info.raid_disk = rdev->raid_disk; 6649 info.state = 0; 6650 if (test_bit(Faulty, &rdev->flags)) 6651 info.state |= (1<<MD_DISK_FAULTY); 6652 else if (test_bit(In_sync, &rdev->flags)) { 6653 info.state |= (1<<MD_DISK_ACTIVE); 6654 info.state |= (1<<MD_DISK_SYNC); 6655 } 6656 if (test_bit(Journal, &rdev->flags)) 6657 info.state |= (1<<MD_DISK_JOURNAL); 6658 if (test_bit(WriteMostly, &rdev->flags)) 6659 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6660 if (test_bit(FailFast, &rdev->flags)) 6661 info.state |= (1<<MD_DISK_FAILFAST); 6662 } else { 6663 info.major = info.minor = 0; 6664 info.raid_disk = -1; 6665 info.state = (1<<MD_DISK_REMOVED); 6666 } 6667 rcu_read_unlock(); 6668 6669 if (copy_to_user(arg, &info, sizeof(info))) 6670 return -EFAULT; 6671 6672 return 0; 6673 } 6674 6675 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6676 { 6677 struct md_rdev *rdev; 6678 dev_t dev = MKDEV(info->major,info->minor); 6679 6680 if (mddev_is_clustered(mddev) && 6681 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6682 pr_warn("%s: Cannot add to clustered mddev.\n", 6683 mdname(mddev)); 6684 return -EINVAL; 6685 } 6686 6687 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6688 return -EOVERFLOW; 6689 6690 if (!mddev->raid_disks) { 6691 int err; 6692 /* expecting a device which has a superblock */ 6693 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6694 if (IS_ERR(rdev)) { 6695 pr_warn("md: md_import_device returned %ld\n", 6696 PTR_ERR(rdev)); 6697 return PTR_ERR(rdev); 6698 } 6699 if (!list_empty(&mddev->disks)) { 6700 struct md_rdev *rdev0 6701 = list_entry(mddev->disks.next, 6702 struct md_rdev, same_set); 6703 err = super_types[mddev->major_version] 6704 .load_super(rdev, rdev0, mddev->minor_version); 6705 if (err < 0) { 6706 pr_warn("md: %pg has different UUID to %pg\n", 6707 rdev->bdev, 6708 rdev0->bdev); 6709 export_rdev(rdev); 6710 return -EINVAL; 6711 } 6712 } 6713 err = bind_rdev_to_array(rdev, mddev); 6714 if (err) 6715 export_rdev(rdev); 6716 return err; 6717 } 6718 6719 /* 6720 * md_add_new_disk can be used once the array is assembled 6721 * to add "hot spares". They must already have a superblock 6722 * written 6723 */ 6724 if (mddev->pers) { 6725 int err; 6726 if (!mddev->pers->hot_add_disk) { 6727 pr_warn("%s: personality does not support diskops!\n", 6728 mdname(mddev)); 6729 return -EINVAL; 6730 } 6731 if (mddev->persistent) 6732 rdev = md_import_device(dev, mddev->major_version, 6733 mddev->minor_version); 6734 else 6735 rdev = md_import_device(dev, -1, -1); 6736 if (IS_ERR(rdev)) { 6737 pr_warn("md: md_import_device returned %ld\n", 6738 PTR_ERR(rdev)); 6739 return PTR_ERR(rdev); 6740 } 6741 /* set saved_raid_disk if appropriate */ 6742 if (!mddev->persistent) { 6743 if (info->state & (1<<MD_DISK_SYNC) && 6744 info->raid_disk < mddev->raid_disks) { 6745 rdev->raid_disk = info->raid_disk; 6746 set_bit(In_sync, &rdev->flags); 6747 clear_bit(Bitmap_sync, &rdev->flags); 6748 } else 6749 rdev->raid_disk = -1; 6750 rdev->saved_raid_disk = rdev->raid_disk; 6751 } else 6752 super_types[mddev->major_version]. 6753 validate_super(mddev, rdev); 6754 if ((info->state & (1<<MD_DISK_SYNC)) && 6755 rdev->raid_disk != info->raid_disk) { 6756 /* This was a hot-add request, but events doesn't 6757 * match, so reject it. 6758 */ 6759 export_rdev(rdev); 6760 return -EINVAL; 6761 } 6762 6763 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6764 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6765 set_bit(WriteMostly, &rdev->flags); 6766 else 6767 clear_bit(WriteMostly, &rdev->flags); 6768 if (info->state & (1<<MD_DISK_FAILFAST)) 6769 set_bit(FailFast, &rdev->flags); 6770 else 6771 clear_bit(FailFast, &rdev->flags); 6772 6773 if (info->state & (1<<MD_DISK_JOURNAL)) { 6774 struct md_rdev *rdev2; 6775 bool has_journal = false; 6776 6777 /* make sure no existing journal disk */ 6778 rdev_for_each(rdev2, mddev) { 6779 if (test_bit(Journal, &rdev2->flags)) { 6780 has_journal = true; 6781 break; 6782 } 6783 } 6784 if (has_journal || mddev->bitmap) { 6785 export_rdev(rdev); 6786 return -EBUSY; 6787 } 6788 set_bit(Journal, &rdev->flags); 6789 } 6790 /* 6791 * check whether the device shows up in other nodes 6792 */ 6793 if (mddev_is_clustered(mddev)) { 6794 if (info->state & (1 << MD_DISK_CANDIDATE)) 6795 set_bit(Candidate, &rdev->flags); 6796 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6797 /* --add initiated by this node */ 6798 err = md_cluster_ops->add_new_disk(mddev, rdev); 6799 if (err) { 6800 export_rdev(rdev); 6801 return err; 6802 } 6803 } 6804 } 6805 6806 rdev->raid_disk = -1; 6807 err = bind_rdev_to_array(rdev, mddev); 6808 6809 if (err) 6810 export_rdev(rdev); 6811 6812 if (mddev_is_clustered(mddev)) { 6813 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6814 if (!err) { 6815 err = md_cluster_ops->new_disk_ack(mddev, 6816 err == 0); 6817 if (err) 6818 md_kick_rdev_from_array(rdev); 6819 } 6820 } else { 6821 if (err) 6822 md_cluster_ops->add_new_disk_cancel(mddev); 6823 else 6824 err = add_bound_rdev(rdev); 6825 } 6826 6827 } else if (!err) 6828 err = add_bound_rdev(rdev); 6829 6830 return err; 6831 } 6832 6833 /* otherwise, md_add_new_disk is only allowed 6834 * for major_version==0 superblocks 6835 */ 6836 if (mddev->major_version != 0) { 6837 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6838 return -EINVAL; 6839 } 6840 6841 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6842 int err; 6843 rdev = md_import_device(dev, -1, 0); 6844 if (IS_ERR(rdev)) { 6845 pr_warn("md: error, md_import_device() returned %ld\n", 6846 PTR_ERR(rdev)); 6847 return PTR_ERR(rdev); 6848 } 6849 rdev->desc_nr = info->number; 6850 if (info->raid_disk < mddev->raid_disks) 6851 rdev->raid_disk = info->raid_disk; 6852 else 6853 rdev->raid_disk = -1; 6854 6855 if (rdev->raid_disk < mddev->raid_disks) 6856 if (info->state & (1<<MD_DISK_SYNC)) 6857 set_bit(In_sync, &rdev->flags); 6858 6859 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6860 set_bit(WriteMostly, &rdev->flags); 6861 if (info->state & (1<<MD_DISK_FAILFAST)) 6862 set_bit(FailFast, &rdev->flags); 6863 6864 if (!mddev->persistent) { 6865 pr_debug("md: nonpersistent superblock ...\n"); 6866 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6867 } else 6868 rdev->sb_start = calc_dev_sboffset(rdev); 6869 rdev->sectors = rdev->sb_start; 6870 6871 err = bind_rdev_to_array(rdev, mddev); 6872 if (err) { 6873 export_rdev(rdev); 6874 return err; 6875 } 6876 } 6877 6878 return 0; 6879 } 6880 6881 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6882 { 6883 struct md_rdev *rdev; 6884 6885 if (!mddev->pers) 6886 return -ENODEV; 6887 6888 rdev = find_rdev(mddev, dev); 6889 if (!rdev) 6890 return -ENXIO; 6891 6892 if (rdev->raid_disk < 0) 6893 goto kick_rdev; 6894 6895 clear_bit(Blocked, &rdev->flags); 6896 remove_and_add_spares(mddev, rdev); 6897 6898 if (rdev->raid_disk >= 0) 6899 goto busy; 6900 6901 kick_rdev: 6902 if (mddev_is_clustered(mddev)) { 6903 if (md_cluster_ops->remove_disk(mddev, rdev)) 6904 goto busy; 6905 } 6906 6907 md_kick_rdev_from_array(rdev); 6908 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6909 if (mddev->thread) 6910 md_wakeup_thread(mddev->thread); 6911 else 6912 md_update_sb(mddev, 1); 6913 md_new_event(); 6914 6915 return 0; 6916 busy: 6917 pr_debug("md: cannot remove active disk %pg from %s ...\n", 6918 rdev->bdev, mdname(mddev)); 6919 return -EBUSY; 6920 } 6921 6922 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6923 { 6924 int err; 6925 struct md_rdev *rdev; 6926 6927 if (!mddev->pers) 6928 return -ENODEV; 6929 6930 if (mddev->major_version != 0) { 6931 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6932 mdname(mddev)); 6933 return -EINVAL; 6934 } 6935 if (!mddev->pers->hot_add_disk) { 6936 pr_warn("%s: personality does not support diskops!\n", 6937 mdname(mddev)); 6938 return -EINVAL; 6939 } 6940 6941 rdev = md_import_device(dev, -1, 0); 6942 if (IS_ERR(rdev)) { 6943 pr_warn("md: error, md_import_device() returned %ld\n", 6944 PTR_ERR(rdev)); 6945 return -EINVAL; 6946 } 6947 6948 if (mddev->persistent) 6949 rdev->sb_start = calc_dev_sboffset(rdev); 6950 else 6951 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6952 6953 rdev->sectors = rdev->sb_start; 6954 6955 if (test_bit(Faulty, &rdev->flags)) { 6956 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 6957 rdev->bdev, mdname(mddev)); 6958 err = -EINVAL; 6959 goto abort_export; 6960 } 6961 6962 clear_bit(In_sync, &rdev->flags); 6963 rdev->desc_nr = -1; 6964 rdev->saved_raid_disk = -1; 6965 err = bind_rdev_to_array(rdev, mddev); 6966 if (err) 6967 goto abort_export; 6968 6969 /* 6970 * The rest should better be atomic, we can have disk failures 6971 * noticed in interrupt contexts ... 6972 */ 6973 6974 rdev->raid_disk = -1; 6975 6976 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6977 if (!mddev->thread) 6978 md_update_sb(mddev, 1); 6979 /* 6980 * If the new disk does not support REQ_NOWAIT, 6981 * disable on the whole MD. 6982 */ 6983 if (!blk_queue_nowait(bdev_get_queue(rdev->bdev))) { 6984 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 6985 mdname(mddev), rdev->bdev); 6986 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 6987 } 6988 /* 6989 * Kick recovery, maybe this spare has to be added to the 6990 * array immediately. 6991 */ 6992 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6993 md_wakeup_thread(mddev->thread); 6994 md_new_event(); 6995 return 0; 6996 6997 abort_export: 6998 export_rdev(rdev); 6999 return err; 7000 } 7001 7002 static int set_bitmap_file(struct mddev *mddev, int fd) 7003 { 7004 int err = 0; 7005 7006 if (mddev->pers) { 7007 if (!mddev->pers->quiesce || !mddev->thread) 7008 return -EBUSY; 7009 if (mddev->recovery || mddev->sync_thread) 7010 return -EBUSY; 7011 /* we should be able to change the bitmap.. */ 7012 } 7013 7014 if (fd >= 0) { 7015 struct inode *inode; 7016 struct file *f; 7017 7018 if (mddev->bitmap || mddev->bitmap_info.file) 7019 return -EEXIST; /* cannot add when bitmap is present */ 7020 f = fget(fd); 7021 7022 if (f == NULL) { 7023 pr_warn("%s: error: failed to get bitmap file\n", 7024 mdname(mddev)); 7025 return -EBADF; 7026 } 7027 7028 inode = f->f_mapping->host; 7029 if (!S_ISREG(inode->i_mode)) { 7030 pr_warn("%s: error: bitmap file must be a regular file\n", 7031 mdname(mddev)); 7032 err = -EBADF; 7033 } else if (!(f->f_mode & FMODE_WRITE)) { 7034 pr_warn("%s: error: bitmap file must open for write\n", 7035 mdname(mddev)); 7036 err = -EBADF; 7037 } else if (atomic_read(&inode->i_writecount) != 1) { 7038 pr_warn("%s: error: bitmap file is already in use\n", 7039 mdname(mddev)); 7040 err = -EBUSY; 7041 } 7042 if (err) { 7043 fput(f); 7044 return err; 7045 } 7046 mddev->bitmap_info.file = f; 7047 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7048 } else if (mddev->bitmap == NULL) 7049 return -ENOENT; /* cannot remove what isn't there */ 7050 err = 0; 7051 if (mddev->pers) { 7052 if (fd >= 0) { 7053 struct bitmap *bitmap; 7054 7055 bitmap = md_bitmap_create(mddev, -1); 7056 mddev_suspend(mddev); 7057 if (!IS_ERR(bitmap)) { 7058 mddev->bitmap = bitmap; 7059 err = md_bitmap_load(mddev); 7060 } else 7061 err = PTR_ERR(bitmap); 7062 if (err) { 7063 md_bitmap_destroy(mddev); 7064 fd = -1; 7065 } 7066 mddev_resume(mddev); 7067 } else if (fd < 0) { 7068 mddev_suspend(mddev); 7069 md_bitmap_destroy(mddev); 7070 mddev_resume(mddev); 7071 } 7072 } 7073 if (fd < 0) { 7074 struct file *f = mddev->bitmap_info.file; 7075 if (f) { 7076 spin_lock(&mddev->lock); 7077 mddev->bitmap_info.file = NULL; 7078 spin_unlock(&mddev->lock); 7079 fput(f); 7080 } 7081 } 7082 7083 return err; 7084 } 7085 7086 /* 7087 * md_set_array_info is used two different ways 7088 * The original usage is when creating a new array. 7089 * In this usage, raid_disks is > 0 and it together with 7090 * level, size, not_persistent,layout,chunksize determine the 7091 * shape of the array. 7092 * This will always create an array with a type-0.90.0 superblock. 7093 * The newer usage is when assembling an array. 7094 * In this case raid_disks will be 0, and the major_version field is 7095 * use to determine which style super-blocks are to be found on the devices. 7096 * The minor and patch _version numbers are also kept incase the 7097 * super_block handler wishes to interpret them. 7098 */ 7099 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7100 { 7101 if (info->raid_disks == 0) { 7102 /* just setting version number for superblock loading */ 7103 if (info->major_version < 0 || 7104 info->major_version >= ARRAY_SIZE(super_types) || 7105 super_types[info->major_version].name == NULL) { 7106 /* maybe try to auto-load a module? */ 7107 pr_warn("md: superblock version %d not known\n", 7108 info->major_version); 7109 return -EINVAL; 7110 } 7111 mddev->major_version = info->major_version; 7112 mddev->minor_version = info->minor_version; 7113 mddev->patch_version = info->patch_version; 7114 mddev->persistent = !info->not_persistent; 7115 /* ensure mddev_put doesn't delete this now that there 7116 * is some minimal configuration. 7117 */ 7118 mddev->ctime = ktime_get_real_seconds(); 7119 return 0; 7120 } 7121 mddev->major_version = MD_MAJOR_VERSION; 7122 mddev->minor_version = MD_MINOR_VERSION; 7123 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7124 mddev->ctime = ktime_get_real_seconds(); 7125 7126 mddev->level = info->level; 7127 mddev->clevel[0] = 0; 7128 mddev->dev_sectors = 2 * (sector_t)info->size; 7129 mddev->raid_disks = info->raid_disks; 7130 /* don't set md_minor, it is determined by which /dev/md* was 7131 * openned 7132 */ 7133 if (info->state & (1<<MD_SB_CLEAN)) 7134 mddev->recovery_cp = MaxSector; 7135 else 7136 mddev->recovery_cp = 0; 7137 mddev->persistent = ! info->not_persistent; 7138 mddev->external = 0; 7139 7140 mddev->layout = info->layout; 7141 if (mddev->level == 0) 7142 /* Cannot trust RAID0 layout info here */ 7143 mddev->layout = -1; 7144 mddev->chunk_sectors = info->chunk_size >> 9; 7145 7146 if (mddev->persistent) { 7147 mddev->max_disks = MD_SB_DISKS; 7148 mddev->flags = 0; 7149 mddev->sb_flags = 0; 7150 } 7151 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7152 7153 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7154 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7155 mddev->bitmap_info.offset = 0; 7156 7157 mddev->reshape_position = MaxSector; 7158 7159 /* 7160 * Generate a 128 bit UUID 7161 */ 7162 get_random_bytes(mddev->uuid, 16); 7163 7164 mddev->new_level = mddev->level; 7165 mddev->new_chunk_sectors = mddev->chunk_sectors; 7166 mddev->new_layout = mddev->layout; 7167 mddev->delta_disks = 0; 7168 mddev->reshape_backwards = 0; 7169 7170 return 0; 7171 } 7172 7173 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7174 { 7175 lockdep_assert_held(&mddev->reconfig_mutex); 7176 7177 if (mddev->external_size) 7178 return; 7179 7180 mddev->array_sectors = array_sectors; 7181 } 7182 EXPORT_SYMBOL(md_set_array_sectors); 7183 7184 static int update_size(struct mddev *mddev, sector_t num_sectors) 7185 { 7186 struct md_rdev *rdev; 7187 int rv; 7188 int fit = (num_sectors == 0); 7189 sector_t old_dev_sectors = mddev->dev_sectors; 7190 7191 if (mddev->pers->resize == NULL) 7192 return -EINVAL; 7193 /* The "num_sectors" is the number of sectors of each device that 7194 * is used. This can only make sense for arrays with redundancy. 7195 * linear and raid0 always use whatever space is available. We can only 7196 * consider changing this number if no resync or reconstruction is 7197 * happening, and if the new size is acceptable. It must fit before the 7198 * sb_start or, if that is <data_offset, it must fit before the size 7199 * of each device. If num_sectors is zero, we find the largest size 7200 * that fits. 7201 */ 7202 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7203 mddev->sync_thread) 7204 return -EBUSY; 7205 if (mddev->ro) 7206 return -EROFS; 7207 7208 rdev_for_each(rdev, mddev) { 7209 sector_t avail = rdev->sectors; 7210 7211 if (fit && (num_sectors == 0 || num_sectors > avail)) 7212 num_sectors = avail; 7213 if (avail < num_sectors) 7214 return -ENOSPC; 7215 } 7216 rv = mddev->pers->resize(mddev, num_sectors); 7217 if (!rv) { 7218 if (mddev_is_clustered(mddev)) 7219 md_cluster_ops->update_size(mddev, old_dev_sectors); 7220 else if (mddev->queue) { 7221 set_capacity_and_notify(mddev->gendisk, 7222 mddev->array_sectors); 7223 } 7224 } 7225 return rv; 7226 } 7227 7228 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7229 { 7230 int rv; 7231 struct md_rdev *rdev; 7232 /* change the number of raid disks */ 7233 if (mddev->pers->check_reshape == NULL) 7234 return -EINVAL; 7235 if (mddev->ro) 7236 return -EROFS; 7237 if (raid_disks <= 0 || 7238 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7239 return -EINVAL; 7240 if (mddev->sync_thread || 7241 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7242 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7243 mddev->reshape_position != MaxSector) 7244 return -EBUSY; 7245 7246 rdev_for_each(rdev, mddev) { 7247 if (mddev->raid_disks < raid_disks && 7248 rdev->data_offset < rdev->new_data_offset) 7249 return -EINVAL; 7250 if (mddev->raid_disks > raid_disks && 7251 rdev->data_offset > rdev->new_data_offset) 7252 return -EINVAL; 7253 } 7254 7255 mddev->delta_disks = raid_disks - mddev->raid_disks; 7256 if (mddev->delta_disks < 0) 7257 mddev->reshape_backwards = 1; 7258 else if (mddev->delta_disks > 0) 7259 mddev->reshape_backwards = 0; 7260 7261 rv = mddev->pers->check_reshape(mddev); 7262 if (rv < 0) { 7263 mddev->delta_disks = 0; 7264 mddev->reshape_backwards = 0; 7265 } 7266 return rv; 7267 } 7268 7269 /* 7270 * update_array_info is used to change the configuration of an 7271 * on-line array. 7272 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7273 * fields in the info are checked against the array. 7274 * Any differences that cannot be handled will cause an error. 7275 * Normally, only one change can be managed at a time. 7276 */ 7277 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7278 { 7279 int rv = 0; 7280 int cnt = 0; 7281 int state = 0; 7282 7283 /* calculate expected state,ignoring low bits */ 7284 if (mddev->bitmap && mddev->bitmap_info.offset) 7285 state |= (1 << MD_SB_BITMAP_PRESENT); 7286 7287 if (mddev->major_version != info->major_version || 7288 mddev->minor_version != info->minor_version || 7289 /* mddev->patch_version != info->patch_version || */ 7290 mddev->ctime != info->ctime || 7291 mddev->level != info->level || 7292 /* mddev->layout != info->layout || */ 7293 mddev->persistent != !info->not_persistent || 7294 mddev->chunk_sectors != info->chunk_size >> 9 || 7295 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7296 ((state^info->state) & 0xfffffe00) 7297 ) 7298 return -EINVAL; 7299 /* Check there is only one change */ 7300 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7301 cnt++; 7302 if (mddev->raid_disks != info->raid_disks) 7303 cnt++; 7304 if (mddev->layout != info->layout) 7305 cnt++; 7306 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7307 cnt++; 7308 if (cnt == 0) 7309 return 0; 7310 if (cnt > 1) 7311 return -EINVAL; 7312 7313 if (mddev->layout != info->layout) { 7314 /* Change layout 7315 * we don't need to do anything at the md level, the 7316 * personality will take care of it all. 7317 */ 7318 if (mddev->pers->check_reshape == NULL) 7319 return -EINVAL; 7320 else { 7321 mddev->new_layout = info->layout; 7322 rv = mddev->pers->check_reshape(mddev); 7323 if (rv) 7324 mddev->new_layout = mddev->layout; 7325 return rv; 7326 } 7327 } 7328 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7329 rv = update_size(mddev, (sector_t)info->size * 2); 7330 7331 if (mddev->raid_disks != info->raid_disks) 7332 rv = update_raid_disks(mddev, info->raid_disks); 7333 7334 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7335 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7336 rv = -EINVAL; 7337 goto err; 7338 } 7339 if (mddev->recovery || mddev->sync_thread) { 7340 rv = -EBUSY; 7341 goto err; 7342 } 7343 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7344 struct bitmap *bitmap; 7345 /* add the bitmap */ 7346 if (mddev->bitmap) { 7347 rv = -EEXIST; 7348 goto err; 7349 } 7350 if (mddev->bitmap_info.default_offset == 0) { 7351 rv = -EINVAL; 7352 goto err; 7353 } 7354 mddev->bitmap_info.offset = 7355 mddev->bitmap_info.default_offset; 7356 mddev->bitmap_info.space = 7357 mddev->bitmap_info.default_space; 7358 bitmap = md_bitmap_create(mddev, -1); 7359 mddev_suspend(mddev); 7360 if (!IS_ERR(bitmap)) { 7361 mddev->bitmap = bitmap; 7362 rv = md_bitmap_load(mddev); 7363 } else 7364 rv = PTR_ERR(bitmap); 7365 if (rv) 7366 md_bitmap_destroy(mddev); 7367 mddev_resume(mddev); 7368 } else { 7369 /* remove the bitmap */ 7370 if (!mddev->bitmap) { 7371 rv = -ENOENT; 7372 goto err; 7373 } 7374 if (mddev->bitmap->storage.file) { 7375 rv = -EINVAL; 7376 goto err; 7377 } 7378 if (mddev->bitmap_info.nodes) { 7379 /* hold PW on all the bitmap lock */ 7380 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7381 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7382 rv = -EPERM; 7383 md_cluster_ops->unlock_all_bitmaps(mddev); 7384 goto err; 7385 } 7386 7387 mddev->bitmap_info.nodes = 0; 7388 md_cluster_ops->leave(mddev); 7389 module_put(md_cluster_mod); 7390 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7391 } 7392 mddev_suspend(mddev); 7393 md_bitmap_destroy(mddev); 7394 mddev_resume(mddev); 7395 mddev->bitmap_info.offset = 0; 7396 } 7397 } 7398 md_update_sb(mddev, 1); 7399 return rv; 7400 err: 7401 return rv; 7402 } 7403 7404 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7405 { 7406 struct md_rdev *rdev; 7407 int err = 0; 7408 7409 if (mddev->pers == NULL) 7410 return -ENODEV; 7411 7412 rcu_read_lock(); 7413 rdev = md_find_rdev_rcu(mddev, dev); 7414 if (!rdev) 7415 err = -ENODEV; 7416 else { 7417 md_error(mddev, rdev); 7418 if (test_bit(MD_BROKEN, &mddev->flags)) 7419 err = -EBUSY; 7420 } 7421 rcu_read_unlock(); 7422 return err; 7423 } 7424 7425 /* 7426 * We have a problem here : there is no easy way to give a CHS 7427 * virtual geometry. We currently pretend that we have a 2 heads 7428 * 4 sectors (with a BIG number of cylinders...). This drives 7429 * dosfs just mad... ;-) 7430 */ 7431 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7432 { 7433 struct mddev *mddev = bdev->bd_disk->private_data; 7434 7435 geo->heads = 2; 7436 geo->sectors = 4; 7437 geo->cylinders = mddev->array_sectors / 8; 7438 return 0; 7439 } 7440 7441 static inline bool md_ioctl_valid(unsigned int cmd) 7442 { 7443 switch (cmd) { 7444 case ADD_NEW_DISK: 7445 case GET_ARRAY_INFO: 7446 case GET_BITMAP_FILE: 7447 case GET_DISK_INFO: 7448 case HOT_ADD_DISK: 7449 case HOT_REMOVE_DISK: 7450 case RAID_VERSION: 7451 case RESTART_ARRAY_RW: 7452 case RUN_ARRAY: 7453 case SET_ARRAY_INFO: 7454 case SET_BITMAP_FILE: 7455 case SET_DISK_FAULTY: 7456 case STOP_ARRAY: 7457 case STOP_ARRAY_RO: 7458 case CLUSTERED_DISK_NACK: 7459 return true; 7460 default: 7461 return false; 7462 } 7463 } 7464 7465 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7466 unsigned int cmd, unsigned long arg) 7467 { 7468 int err = 0; 7469 void __user *argp = (void __user *)arg; 7470 struct mddev *mddev = NULL; 7471 bool did_set_md_closing = false; 7472 7473 if (!md_ioctl_valid(cmd)) 7474 return -ENOTTY; 7475 7476 switch (cmd) { 7477 case RAID_VERSION: 7478 case GET_ARRAY_INFO: 7479 case GET_DISK_INFO: 7480 break; 7481 default: 7482 if (!capable(CAP_SYS_ADMIN)) 7483 return -EACCES; 7484 } 7485 7486 /* 7487 * Commands dealing with the RAID driver but not any 7488 * particular array: 7489 */ 7490 switch (cmd) { 7491 case RAID_VERSION: 7492 err = get_version(argp); 7493 goto out; 7494 default:; 7495 } 7496 7497 /* 7498 * Commands creating/starting a new array: 7499 */ 7500 7501 mddev = bdev->bd_disk->private_data; 7502 7503 if (!mddev) { 7504 BUG(); 7505 goto out; 7506 } 7507 7508 /* Some actions do not requires the mutex */ 7509 switch (cmd) { 7510 case GET_ARRAY_INFO: 7511 if (!mddev->raid_disks && !mddev->external) 7512 err = -ENODEV; 7513 else 7514 err = get_array_info(mddev, argp); 7515 goto out; 7516 7517 case GET_DISK_INFO: 7518 if (!mddev->raid_disks && !mddev->external) 7519 err = -ENODEV; 7520 else 7521 err = get_disk_info(mddev, argp); 7522 goto out; 7523 7524 case SET_DISK_FAULTY: 7525 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7526 goto out; 7527 7528 case GET_BITMAP_FILE: 7529 err = get_bitmap_file(mddev, argp); 7530 goto out; 7531 7532 } 7533 7534 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7535 flush_rdev_wq(mddev); 7536 7537 if (cmd == HOT_REMOVE_DISK) 7538 /* need to ensure recovery thread has run */ 7539 wait_event_interruptible_timeout(mddev->sb_wait, 7540 !test_bit(MD_RECOVERY_NEEDED, 7541 &mddev->recovery), 7542 msecs_to_jiffies(5000)); 7543 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7544 /* Need to flush page cache, and ensure no-one else opens 7545 * and writes 7546 */ 7547 mutex_lock(&mddev->open_mutex); 7548 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7549 mutex_unlock(&mddev->open_mutex); 7550 err = -EBUSY; 7551 goto out; 7552 } 7553 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7554 mutex_unlock(&mddev->open_mutex); 7555 err = -EBUSY; 7556 goto out; 7557 } 7558 did_set_md_closing = true; 7559 mutex_unlock(&mddev->open_mutex); 7560 sync_blockdev(bdev); 7561 } 7562 err = mddev_lock(mddev); 7563 if (err) { 7564 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7565 err, cmd); 7566 goto out; 7567 } 7568 7569 if (cmd == SET_ARRAY_INFO) { 7570 mdu_array_info_t info; 7571 if (!arg) 7572 memset(&info, 0, sizeof(info)); 7573 else if (copy_from_user(&info, argp, sizeof(info))) { 7574 err = -EFAULT; 7575 goto unlock; 7576 } 7577 if (mddev->pers) { 7578 err = update_array_info(mddev, &info); 7579 if (err) { 7580 pr_warn("md: couldn't update array info. %d\n", err); 7581 goto unlock; 7582 } 7583 goto unlock; 7584 } 7585 if (!list_empty(&mddev->disks)) { 7586 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7587 err = -EBUSY; 7588 goto unlock; 7589 } 7590 if (mddev->raid_disks) { 7591 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7592 err = -EBUSY; 7593 goto unlock; 7594 } 7595 err = md_set_array_info(mddev, &info); 7596 if (err) { 7597 pr_warn("md: couldn't set array info. %d\n", err); 7598 goto unlock; 7599 } 7600 goto unlock; 7601 } 7602 7603 /* 7604 * Commands querying/configuring an existing array: 7605 */ 7606 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7607 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7608 if ((!mddev->raid_disks && !mddev->external) 7609 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7610 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7611 && cmd != GET_BITMAP_FILE) { 7612 err = -ENODEV; 7613 goto unlock; 7614 } 7615 7616 /* 7617 * Commands even a read-only array can execute: 7618 */ 7619 switch (cmd) { 7620 case RESTART_ARRAY_RW: 7621 err = restart_array(mddev); 7622 goto unlock; 7623 7624 case STOP_ARRAY: 7625 err = do_md_stop(mddev, 0, bdev); 7626 goto unlock; 7627 7628 case STOP_ARRAY_RO: 7629 err = md_set_readonly(mddev, bdev); 7630 goto unlock; 7631 7632 case HOT_REMOVE_DISK: 7633 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7634 goto unlock; 7635 7636 case ADD_NEW_DISK: 7637 /* We can support ADD_NEW_DISK on read-only arrays 7638 * only if we are re-adding a preexisting device. 7639 * So require mddev->pers and MD_DISK_SYNC. 7640 */ 7641 if (mddev->pers) { 7642 mdu_disk_info_t info; 7643 if (copy_from_user(&info, argp, sizeof(info))) 7644 err = -EFAULT; 7645 else if (!(info.state & (1<<MD_DISK_SYNC))) 7646 /* Need to clear read-only for this */ 7647 break; 7648 else 7649 err = md_add_new_disk(mddev, &info); 7650 goto unlock; 7651 } 7652 break; 7653 } 7654 7655 /* 7656 * The remaining ioctls are changing the state of the 7657 * superblock, so we do not allow them on read-only arrays. 7658 */ 7659 if (mddev->ro && mddev->pers) { 7660 if (mddev->ro == 2) { 7661 mddev->ro = 0; 7662 sysfs_notify_dirent_safe(mddev->sysfs_state); 7663 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7664 /* mddev_unlock will wake thread */ 7665 /* If a device failed while we were read-only, we 7666 * need to make sure the metadata is updated now. 7667 */ 7668 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7669 mddev_unlock(mddev); 7670 wait_event(mddev->sb_wait, 7671 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7672 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7673 mddev_lock_nointr(mddev); 7674 } 7675 } else { 7676 err = -EROFS; 7677 goto unlock; 7678 } 7679 } 7680 7681 switch (cmd) { 7682 case ADD_NEW_DISK: 7683 { 7684 mdu_disk_info_t info; 7685 if (copy_from_user(&info, argp, sizeof(info))) 7686 err = -EFAULT; 7687 else 7688 err = md_add_new_disk(mddev, &info); 7689 goto unlock; 7690 } 7691 7692 case CLUSTERED_DISK_NACK: 7693 if (mddev_is_clustered(mddev)) 7694 md_cluster_ops->new_disk_ack(mddev, false); 7695 else 7696 err = -EINVAL; 7697 goto unlock; 7698 7699 case HOT_ADD_DISK: 7700 err = hot_add_disk(mddev, new_decode_dev(arg)); 7701 goto unlock; 7702 7703 case RUN_ARRAY: 7704 err = do_md_run(mddev); 7705 goto unlock; 7706 7707 case SET_BITMAP_FILE: 7708 err = set_bitmap_file(mddev, (int)arg); 7709 goto unlock; 7710 7711 default: 7712 err = -EINVAL; 7713 goto unlock; 7714 } 7715 7716 unlock: 7717 if (mddev->hold_active == UNTIL_IOCTL && 7718 err != -EINVAL) 7719 mddev->hold_active = 0; 7720 mddev_unlock(mddev); 7721 out: 7722 if(did_set_md_closing) 7723 clear_bit(MD_CLOSING, &mddev->flags); 7724 return err; 7725 } 7726 #ifdef CONFIG_COMPAT 7727 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7728 unsigned int cmd, unsigned long arg) 7729 { 7730 switch (cmd) { 7731 case HOT_REMOVE_DISK: 7732 case HOT_ADD_DISK: 7733 case SET_DISK_FAULTY: 7734 case SET_BITMAP_FILE: 7735 /* These take in integer arg, do not convert */ 7736 break; 7737 default: 7738 arg = (unsigned long)compat_ptr(arg); 7739 break; 7740 } 7741 7742 return md_ioctl(bdev, mode, cmd, arg); 7743 } 7744 #endif /* CONFIG_COMPAT */ 7745 7746 static int md_set_read_only(struct block_device *bdev, bool ro) 7747 { 7748 struct mddev *mddev = bdev->bd_disk->private_data; 7749 int err; 7750 7751 err = mddev_lock(mddev); 7752 if (err) 7753 return err; 7754 7755 if (!mddev->raid_disks && !mddev->external) { 7756 err = -ENODEV; 7757 goto out_unlock; 7758 } 7759 7760 /* 7761 * Transitioning to read-auto need only happen for arrays that call 7762 * md_write_start and which are not ready for writes yet. 7763 */ 7764 if (!ro && mddev->ro == 1 && mddev->pers) { 7765 err = restart_array(mddev); 7766 if (err) 7767 goto out_unlock; 7768 mddev->ro = 2; 7769 } 7770 7771 out_unlock: 7772 mddev_unlock(mddev); 7773 return err; 7774 } 7775 7776 static int md_open(struct block_device *bdev, fmode_t mode) 7777 { 7778 struct mddev *mddev; 7779 int err; 7780 7781 spin_lock(&all_mddevs_lock); 7782 mddev = mddev_get(bdev->bd_disk->private_data); 7783 spin_unlock(&all_mddevs_lock); 7784 if (!mddev) 7785 return -ENODEV; 7786 7787 err = mutex_lock_interruptible(&mddev->open_mutex); 7788 if (err) 7789 goto out; 7790 7791 err = -ENODEV; 7792 if (test_bit(MD_CLOSING, &mddev->flags)) 7793 goto out_unlock; 7794 7795 atomic_inc(&mddev->openers); 7796 mutex_unlock(&mddev->open_mutex); 7797 7798 bdev_check_media_change(bdev); 7799 return 0; 7800 7801 out_unlock: 7802 mutex_unlock(&mddev->open_mutex); 7803 out: 7804 mddev_put(mddev); 7805 return err; 7806 } 7807 7808 static void md_release(struct gendisk *disk, fmode_t mode) 7809 { 7810 struct mddev *mddev = disk->private_data; 7811 7812 BUG_ON(!mddev); 7813 atomic_dec(&mddev->openers); 7814 mddev_put(mddev); 7815 } 7816 7817 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7818 { 7819 struct mddev *mddev = disk->private_data; 7820 unsigned int ret = 0; 7821 7822 if (mddev->changed) 7823 ret = DISK_EVENT_MEDIA_CHANGE; 7824 mddev->changed = 0; 7825 return ret; 7826 } 7827 7828 static void md_free_disk(struct gendisk *disk) 7829 { 7830 struct mddev *mddev = disk->private_data; 7831 7832 percpu_ref_exit(&mddev->writes_pending); 7833 bioset_exit(&mddev->bio_set); 7834 bioset_exit(&mddev->sync_set); 7835 7836 mddev_free(mddev); 7837 } 7838 7839 const struct block_device_operations md_fops = 7840 { 7841 .owner = THIS_MODULE, 7842 .submit_bio = md_submit_bio, 7843 .open = md_open, 7844 .release = md_release, 7845 .ioctl = md_ioctl, 7846 #ifdef CONFIG_COMPAT 7847 .compat_ioctl = md_compat_ioctl, 7848 #endif 7849 .getgeo = md_getgeo, 7850 .check_events = md_check_events, 7851 .set_read_only = md_set_read_only, 7852 .free_disk = md_free_disk, 7853 }; 7854 7855 static int md_thread(void *arg) 7856 { 7857 struct md_thread *thread = arg; 7858 7859 /* 7860 * md_thread is a 'system-thread', it's priority should be very 7861 * high. We avoid resource deadlocks individually in each 7862 * raid personality. (RAID5 does preallocation) We also use RR and 7863 * the very same RT priority as kswapd, thus we will never get 7864 * into a priority inversion deadlock. 7865 * 7866 * we definitely have to have equal or higher priority than 7867 * bdflush, otherwise bdflush will deadlock if there are too 7868 * many dirty RAID5 blocks. 7869 */ 7870 7871 allow_signal(SIGKILL); 7872 while (!kthread_should_stop()) { 7873 7874 /* We need to wait INTERRUPTIBLE so that 7875 * we don't add to the load-average. 7876 * That means we need to be sure no signals are 7877 * pending 7878 */ 7879 if (signal_pending(current)) 7880 flush_signals(current); 7881 7882 wait_event_interruptible_timeout 7883 (thread->wqueue, 7884 test_bit(THREAD_WAKEUP, &thread->flags) 7885 || kthread_should_stop() || kthread_should_park(), 7886 thread->timeout); 7887 7888 clear_bit(THREAD_WAKEUP, &thread->flags); 7889 if (kthread_should_park()) 7890 kthread_parkme(); 7891 if (!kthread_should_stop()) 7892 thread->run(thread); 7893 } 7894 7895 return 0; 7896 } 7897 7898 void md_wakeup_thread(struct md_thread *thread) 7899 { 7900 if (thread) { 7901 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7902 set_bit(THREAD_WAKEUP, &thread->flags); 7903 wake_up(&thread->wqueue); 7904 } 7905 } 7906 EXPORT_SYMBOL(md_wakeup_thread); 7907 7908 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7909 struct mddev *mddev, const char *name) 7910 { 7911 struct md_thread *thread; 7912 7913 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7914 if (!thread) 7915 return NULL; 7916 7917 init_waitqueue_head(&thread->wqueue); 7918 7919 thread->run = run; 7920 thread->mddev = mddev; 7921 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7922 thread->tsk = kthread_run(md_thread, thread, 7923 "%s_%s", 7924 mdname(thread->mddev), 7925 name); 7926 if (IS_ERR(thread->tsk)) { 7927 kfree(thread); 7928 return NULL; 7929 } 7930 return thread; 7931 } 7932 EXPORT_SYMBOL(md_register_thread); 7933 7934 void md_unregister_thread(struct md_thread **threadp) 7935 { 7936 struct md_thread *thread; 7937 7938 /* 7939 * Locking ensures that mddev_unlock does not wake_up a 7940 * non-existent thread 7941 */ 7942 spin_lock(&pers_lock); 7943 thread = *threadp; 7944 if (!thread) { 7945 spin_unlock(&pers_lock); 7946 return; 7947 } 7948 *threadp = NULL; 7949 spin_unlock(&pers_lock); 7950 7951 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7952 kthread_stop(thread->tsk); 7953 kfree(thread); 7954 } 7955 EXPORT_SYMBOL(md_unregister_thread); 7956 7957 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7958 { 7959 if (!rdev || test_bit(Faulty, &rdev->flags)) 7960 return; 7961 7962 if (!mddev->pers || !mddev->pers->error_handler) 7963 return; 7964 mddev->pers->error_handler(mddev, rdev); 7965 7966 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 7967 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7968 sysfs_notify_dirent_safe(rdev->sysfs_state); 7969 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7970 if (!test_bit(MD_BROKEN, &mddev->flags)) { 7971 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7972 md_wakeup_thread(mddev->thread); 7973 } 7974 if (mddev->event_work.func) 7975 queue_work(md_misc_wq, &mddev->event_work); 7976 md_new_event(); 7977 } 7978 EXPORT_SYMBOL(md_error); 7979 7980 /* seq_file implementation /proc/mdstat */ 7981 7982 static void status_unused(struct seq_file *seq) 7983 { 7984 int i = 0; 7985 struct md_rdev *rdev; 7986 7987 seq_printf(seq, "unused devices: "); 7988 7989 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7990 i++; 7991 seq_printf(seq, "%pg ", rdev->bdev); 7992 } 7993 if (!i) 7994 seq_printf(seq, "<none>"); 7995 7996 seq_printf(seq, "\n"); 7997 } 7998 7999 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8000 { 8001 sector_t max_sectors, resync, res; 8002 unsigned long dt, db = 0; 8003 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8004 int scale, recovery_active; 8005 unsigned int per_milli; 8006 8007 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8008 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8009 max_sectors = mddev->resync_max_sectors; 8010 else 8011 max_sectors = mddev->dev_sectors; 8012 8013 resync = mddev->curr_resync; 8014 if (resync < MD_RESYNC_ACTIVE) { 8015 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8016 /* Still cleaning up */ 8017 resync = max_sectors; 8018 } else if (resync > max_sectors) { 8019 resync = max_sectors; 8020 } else { 8021 resync -= atomic_read(&mddev->recovery_active); 8022 if (resync < MD_RESYNC_ACTIVE) { 8023 /* 8024 * Resync has started, but the subtraction has 8025 * yielded one of the special values. Force it 8026 * to active to ensure the status reports an 8027 * active resync. 8028 */ 8029 resync = MD_RESYNC_ACTIVE; 8030 } 8031 } 8032 8033 if (resync == MD_RESYNC_NONE) { 8034 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8035 struct md_rdev *rdev; 8036 8037 rdev_for_each(rdev, mddev) 8038 if (rdev->raid_disk >= 0 && 8039 !test_bit(Faulty, &rdev->flags) && 8040 rdev->recovery_offset != MaxSector && 8041 rdev->recovery_offset) { 8042 seq_printf(seq, "\trecover=REMOTE"); 8043 return 1; 8044 } 8045 if (mddev->reshape_position != MaxSector) 8046 seq_printf(seq, "\treshape=REMOTE"); 8047 else 8048 seq_printf(seq, "\tresync=REMOTE"); 8049 return 1; 8050 } 8051 if (mddev->recovery_cp < MaxSector) { 8052 seq_printf(seq, "\tresync=PENDING"); 8053 return 1; 8054 } 8055 return 0; 8056 } 8057 if (resync < MD_RESYNC_ACTIVE) { 8058 seq_printf(seq, "\tresync=DELAYED"); 8059 return 1; 8060 } 8061 8062 WARN_ON(max_sectors == 0); 8063 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8064 * in a sector_t, and (max_sectors>>scale) will fit in a 8065 * u32, as those are the requirements for sector_div. 8066 * Thus 'scale' must be at least 10 8067 */ 8068 scale = 10; 8069 if (sizeof(sector_t) > sizeof(unsigned long)) { 8070 while ( max_sectors/2 > (1ULL<<(scale+32))) 8071 scale++; 8072 } 8073 res = (resync>>scale)*1000; 8074 sector_div(res, (u32)((max_sectors>>scale)+1)); 8075 8076 per_milli = res; 8077 { 8078 int i, x = per_milli/50, y = 20-x; 8079 seq_printf(seq, "["); 8080 for (i = 0; i < x; i++) 8081 seq_printf(seq, "="); 8082 seq_printf(seq, ">"); 8083 for (i = 0; i < y; i++) 8084 seq_printf(seq, "."); 8085 seq_printf(seq, "] "); 8086 } 8087 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8088 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8089 "reshape" : 8090 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8091 "check" : 8092 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8093 "resync" : "recovery"))), 8094 per_milli/10, per_milli % 10, 8095 (unsigned long long) resync/2, 8096 (unsigned long long) max_sectors/2); 8097 8098 /* 8099 * dt: time from mark until now 8100 * db: blocks written from mark until now 8101 * rt: remaining time 8102 * 8103 * rt is a sector_t, which is always 64bit now. We are keeping 8104 * the original algorithm, but it is not really necessary. 8105 * 8106 * Original algorithm: 8107 * So we divide before multiply in case it is 32bit and close 8108 * to the limit. 8109 * We scale the divisor (db) by 32 to avoid losing precision 8110 * near the end of resync when the number of remaining sectors 8111 * is close to 'db'. 8112 * We then divide rt by 32 after multiplying by db to compensate. 8113 * The '+1' avoids division by zero if db is very small. 8114 */ 8115 dt = ((jiffies - mddev->resync_mark) / HZ); 8116 if (!dt) dt++; 8117 8118 curr_mark_cnt = mddev->curr_mark_cnt; 8119 recovery_active = atomic_read(&mddev->recovery_active); 8120 resync_mark_cnt = mddev->resync_mark_cnt; 8121 8122 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8123 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8124 8125 rt = max_sectors - resync; /* number of remaining sectors */ 8126 rt = div64_u64(rt, db/32+1); 8127 rt *= dt; 8128 rt >>= 5; 8129 8130 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8131 ((unsigned long)rt % 60)/6); 8132 8133 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8134 return 1; 8135 } 8136 8137 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8138 { 8139 struct list_head *tmp; 8140 loff_t l = *pos; 8141 struct mddev *mddev; 8142 8143 if (l == 0x10000) { 8144 ++*pos; 8145 return (void *)2; 8146 } 8147 if (l > 0x10000) 8148 return NULL; 8149 if (!l--) 8150 /* header */ 8151 return (void*)1; 8152 8153 spin_lock(&all_mddevs_lock); 8154 list_for_each(tmp,&all_mddevs) 8155 if (!l--) { 8156 mddev = list_entry(tmp, struct mddev, all_mddevs); 8157 mddev_get(mddev); 8158 if (!mddev_get(mddev)) 8159 continue; 8160 spin_unlock(&all_mddevs_lock); 8161 return mddev; 8162 } 8163 spin_unlock(&all_mddevs_lock); 8164 if (!l--) 8165 return (void*)2;/* tail */ 8166 return NULL; 8167 } 8168 8169 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8170 { 8171 struct list_head *tmp; 8172 struct mddev *next_mddev, *mddev = v; 8173 struct mddev *to_put = NULL; 8174 8175 ++*pos; 8176 if (v == (void*)2) 8177 return NULL; 8178 8179 spin_lock(&all_mddevs_lock); 8180 if (v == (void*)1) { 8181 tmp = all_mddevs.next; 8182 } else { 8183 to_put = mddev; 8184 tmp = mddev->all_mddevs.next; 8185 } 8186 8187 for (;;) { 8188 if (tmp == &all_mddevs) { 8189 next_mddev = (void*)2; 8190 *pos = 0x10000; 8191 break; 8192 } 8193 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8194 if (mddev_get(next_mddev)) 8195 break; 8196 mddev = next_mddev; 8197 tmp = mddev->all_mddevs.next; 8198 } 8199 spin_unlock(&all_mddevs_lock); 8200 8201 if (to_put) 8202 mddev_put(mddev); 8203 return next_mddev; 8204 8205 } 8206 8207 static void md_seq_stop(struct seq_file *seq, void *v) 8208 { 8209 struct mddev *mddev = v; 8210 8211 if (mddev && v != (void*)1 && v != (void*)2) 8212 mddev_put(mddev); 8213 } 8214 8215 static int md_seq_show(struct seq_file *seq, void *v) 8216 { 8217 struct mddev *mddev = v; 8218 sector_t sectors; 8219 struct md_rdev *rdev; 8220 8221 if (v == (void*)1) { 8222 struct md_personality *pers; 8223 seq_printf(seq, "Personalities : "); 8224 spin_lock(&pers_lock); 8225 list_for_each_entry(pers, &pers_list, list) 8226 seq_printf(seq, "[%s] ", pers->name); 8227 8228 spin_unlock(&pers_lock); 8229 seq_printf(seq, "\n"); 8230 seq->poll_event = atomic_read(&md_event_count); 8231 return 0; 8232 } 8233 if (v == (void*)2) { 8234 status_unused(seq); 8235 return 0; 8236 } 8237 8238 spin_lock(&mddev->lock); 8239 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8240 seq_printf(seq, "%s : %sactive", mdname(mddev), 8241 mddev->pers ? "" : "in"); 8242 if (mddev->pers) { 8243 if (mddev->ro==1) 8244 seq_printf(seq, " (read-only)"); 8245 if (mddev->ro==2) 8246 seq_printf(seq, " (auto-read-only)"); 8247 seq_printf(seq, " %s", mddev->pers->name); 8248 } 8249 8250 sectors = 0; 8251 rcu_read_lock(); 8252 rdev_for_each_rcu(rdev, mddev) { 8253 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8254 8255 if (test_bit(WriteMostly, &rdev->flags)) 8256 seq_printf(seq, "(W)"); 8257 if (test_bit(Journal, &rdev->flags)) 8258 seq_printf(seq, "(J)"); 8259 if (test_bit(Faulty, &rdev->flags)) { 8260 seq_printf(seq, "(F)"); 8261 continue; 8262 } 8263 if (rdev->raid_disk < 0) 8264 seq_printf(seq, "(S)"); /* spare */ 8265 if (test_bit(Replacement, &rdev->flags)) 8266 seq_printf(seq, "(R)"); 8267 sectors += rdev->sectors; 8268 } 8269 rcu_read_unlock(); 8270 8271 if (!list_empty(&mddev->disks)) { 8272 if (mddev->pers) 8273 seq_printf(seq, "\n %llu blocks", 8274 (unsigned long long) 8275 mddev->array_sectors / 2); 8276 else 8277 seq_printf(seq, "\n %llu blocks", 8278 (unsigned long long)sectors / 2); 8279 } 8280 if (mddev->persistent) { 8281 if (mddev->major_version != 0 || 8282 mddev->minor_version != 90) { 8283 seq_printf(seq," super %d.%d", 8284 mddev->major_version, 8285 mddev->minor_version); 8286 } 8287 } else if (mddev->external) 8288 seq_printf(seq, " super external:%s", 8289 mddev->metadata_type); 8290 else 8291 seq_printf(seq, " super non-persistent"); 8292 8293 if (mddev->pers) { 8294 mddev->pers->status(seq, mddev); 8295 seq_printf(seq, "\n "); 8296 if (mddev->pers->sync_request) { 8297 if (status_resync(seq, mddev)) 8298 seq_printf(seq, "\n "); 8299 } 8300 } else 8301 seq_printf(seq, "\n "); 8302 8303 md_bitmap_status(seq, mddev->bitmap); 8304 8305 seq_printf(seq, "\n"); 8306 } 8307 spin_unlock(&mddev->lock); 8308 8309 return 0; 8310 } 8311 8312 static const struct seq_operations md_seq_ops = { 8313 .start = md_seq_start, 8314 .next = md_seq_next, 8315 .stop = md_seq_stop, 8316 .show = md_seq_show, 8317 }; 8318 8319 static int md_seq_open(struct inode *inode, struct file *file) 8320 { 8321 struct seq_file *seq; 8322 int error; 8323 8324 error = seq_open(file, &md_seq_ops); 8325 if (error) 8326 return error; 8327 8328 seq = file->private_data; 8329 seq->poll_event = atomic_read(&md_event_count); 8330 return error; 8331 } 8332 8333 static int md_unloading; 8334 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8335 { 8336 struct seq_file *seq = filp->private_data; 8337 __poll_t mask; 8338 8339 if (md_unloading) 8340 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8341 poll_wait(filp, &md_event_waiters, wait); 8342 8343 /* always allow read */ 8344 mask = EPOLLIN | EPOLLRDNORM; 8345 8346 if (seq->poll_event != atomic_read(&md_event_count)) 8347 mask |= EPOLLERR | EPOLLPRI; 8348 return mask; 8349 } 8350 8351 static const struct proc_ops mdstat_proc_ops = { 8352 .proc_open = md_seq_open, 8353 .proc_read = seq_read, 8354 .proc_lseek = seq_lseek, 8355 .proc_release = seq_release, 8356 .proc_poll = mdstat_poll, 8357 }; 8358 8359 int register_md_personality(struct md_personality *p) 8360 { 8361 pr_debug("md: %s personality registered for level %d\n", 8362 p->name, p->level); 8363 spin_lock(&pers_lock); 8364 list_add_tail(&p->list, &pers_list); 8365 spin_unlock(&pers_lock); 8366 return 0; 8367 } 8368 EXPORT_SYMBOL(register_md_personality); 8369 8370 int unregister_md_personality(struct md_personality *p) 8371 { 8372 pr_debug("md: %s personality unregistered\n", p->name); 8373 spin_lock(&pers_lock); 8374 list_del_init(&p->list); 8375 spin_unlock(&pers_lock); 8376 return 0; 8377 } 8378 EXPORT_SYMBOL(unregister_md_personality); 8379 8380 int register_md_cluster_operations(struct md_cluster_operations *ops, 8381 struct module *module) 8382 { 8383 int ret = 0; 8384 spin_lock(&pers_lock); 8385 if (md_cluster_ops != NULL) 8386 ret = -EALREADY; 8387 else { 8388 md_cluster_ops = ops; 8389 md_cluster_mod = module; 8390 } 8391 spin_unlock(&pers_lock); 8392 return ret; 8393 } 8394 EXPORT_SYMBOL(register_md_cluster_operations); 8395 8396 int unregister_md_cluster_operations(void) 8397 { 8398 spin_lock(&pers_lock); 8399 md_cluster_ops = NULL; 8400 spin_unlock(&pers_lock); 8401 return 0; 8402 } 8403 EXPORT_SYMBOL(unregister_md_cluster_operations); 8404 8405 int md_setup_cluster(struct mddev *mddev, int nodes) 8406 { 8407 int ret; 8408 if (!md_cluster_ops) 8409 request_module("md-cluster"); 8410 spin_lock(&pers_lock); 8411 /* ensure module won't be unloaded */ 8412 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8413 pr_warn("can't find md-cluster module or get its reference.\n"); 8414 spin_unlock(&pers_lock); 8415 return -ENOENT; 8416 } 8417 spin_unlock(&pers_lock); 8418 8419 ret = md_cluster_ops->join(mddev, nodes); 8420 if (!ret) 8421 mddev->safemode_delay = 0; 8422 return ret; 8423 } 8424 8425 void md_cluster_stop(struct mddev *mddev) 8426 { 8427 if (!md_cluster_ops) 8428 return; 8429 md_cluster_ops->leave(mddev); 8430 module_put(md_cluster_mod); 8431 } 8432 8433 static int is_mddev_idle(struct mddev *mddev, int init) 8434 { 8435 struct md_rdev *rdev; 8436 int idle; 8437 int curr_events; 8438 8439 idle = 1; 8440 rcu_read_lock(); 8441 rdev_for_each_rcu(rdev, mddev) { 8442 struct gendisk *disk = rdev->bdev->bd_disk; 8443 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8444 atomic_read(&disk->sync_io); 8445 /* sync IO will cause sync_io to increase before the disk_stats 8446 * as sync_io is counted when a request starts, and 8447 * disk_stats is counted when it completes. 8448 * So resync activity will cause curr_events to be smaller than 8449 * when there was no such activity. 8450 * non-sync IO will cause disk_stat to increase without 8451 * increasing sync_io so curr_events will (eventually) 8452 * be larger than it was before. Once it becomes 8453 * substantially larger, the test below will cause 8454 * the array to appear non-idle, and resync will slow 8455 * down. 8456 * If there is a lot of outstanding resync activity when 8457 * we set last_event to curr_events, then all that activity 8458 * completing might cause the array to appear non-idle 8459 * and resync will be slowed down even though there might 8460 * not have been non-resync activity. This will only 8461 * happen once though. 'last_events' will soon reflect 8462 * the state where there is little or no outstanding 8463 * resync requests, and further resync activity will 8464 * always make curr_events less than last_events. 8465 * 8466 */ 8467 if (init || curr_events - rdev->last_events > 64) { 8468 rdev->last_events = curr_events; 8469 idle = 0; 8470 } 8471 } 8472 rcu_read_unlock(); 8473 return idle; 8474 } 8475 8476 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8477 { 8478 /* another "blocks" (512byte) blocks have been synced */ 8479 atomic_sub(blocks, &mddev->recovery_active); 8480 wake_up(&mddev->recovery_wait); 8481 if (!ok) { 8482 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8483 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8484 md_wakeup_thread(mddev->thread); 8485 // stop recovery, signal do_sync .... 8486 } 8487 } 8488 EXPORT_SYMBOL(md_done_sync); 8489 8490 /* md_write_start(mddev, bi) 8491 * If we need to update some array metadata (e.g. 'active' flag 8492 * in superblock) before writing, schedule a superblock update 8493 * and wait for it to complete. 8494 * A return value of 'false' means that the write wasn't recorded 8495 * and cannot proceed as the array is being suspend. 8496 */ 8497 bool md_write_start(struct mddev *mddev, struct bio *bi) 8498 { 8499 int did_change = 0; 8500 8501 if (bio_data_dir(bi) != WRITE) 8502 return true; 8503 8504 BUG_ON(mddev->ro == 1); 8505 if (mddev->ro == 2) { 8506 /* need to switch to read/write */ 8507 mddev->ro = 0; 8508 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8509 md_wakeup_thread(mddev->thread); 8510 md_wakeup_thread(mddev->sync_thread); 8511 did_change = 1; 8512 } 8513 rcu_read_lock(); 8514 percpu_ref_get(&mddev->writes_pending); 8515 smp_mb(); /* Match smp_mb in set_in_sync() */ 8516 if (mddev->safemode == 1) 8517 mddev->safemode = 0; 8518 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8519 if (mddev->in_sync || mddev->sync_checkers) { 8520 spin_lock(&mddev->lock); 8521 if (mddev->in_sync) { 8522 mddev->in_sync = 0; 8523 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8524 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8525 md_wakeup_thread(mddev->thread); 8526 did_change = 1; 8527 } 8528 spin_unlock(&mddev->lock); 8529 } 8530 rcu_read_unlock(); 8531 if (did_change) 8532 sysfs_notify_dirent_safe(mddev->sysfs_state); 8533 if (!mddev->has_superblocks) 8534 return true; 8535 wait_event(mddev->sb_wait, 8536 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8537 mddev->suspended); 8538 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8539 percpu_ref_put(&mddev->writes_pending); 8540 return false; 8541 } 8542 return true; 8543 } 8544 EXPORT_SYMBOL(md_write_start); 8545 8546 /* md_write_inc can only be called when md_write_start() has 8547 * already been called at least once of the current request. 8548 * It increments the counter and is useful when a single request 8549 * is split into several parts. Each part causes an increment and 8550 * so needs a matching md_write_end(). 8551 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8552 * a spinlocked region. 8553 */ 8554 void md_write_inc(struct mddev *mddev, struct bio *bi) 8555 { 8556 if (bio_data_dir(bi) != WRITE) 8557 return; 8558 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8559 percpu_ref_get(&mddev->writes_pending); 8560 } 8561 EXPORT_SYMBOL(md_write_inc); 8562 8563 void md_write_end(struct mddev *mddev) 8564 { 8565 percpu_ref_put(&mddev->writes_pending); 8566 8567 if (mddev->safemode == 2) 8568 md_wakeup_thread(mddev->thread); 8569 else if (mddev->safemode_delay) 8570 /* The roundup() ensures this only performs locking once 8571 * every ->safemode_delay jiffies 8572 */ 8573 mod_timer(&mddev->safemode_timer, 8574 roundup(jiffies, mddev->safemode_delay) + 8575 mddev->safemode_delay); 8576 } 8577 8578 EXPORT_SYMBOL(md_write_end); 8579 8580 /* This is used by raid0 and raid10 */ 8581 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8582 struct bio *bio, sector_t start, sector_t size) 8583 { 8584 struct bio *discard_bio = NULL; 8585 8586 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8587 &discard_bio) || !discard_bio) 8588 return; 8589 8590 bio_chain(discard_bio, bio); 8591 bio_clone_blkg_association(discard_bio, bio); 8592 if (mddev->gendisk) 8593 trace_block_bio_remap(discard_bio, 8594 disk_devt(mddev->gendisk), 8595 bio->bi_iter.bi_sector); 8596 submit_bio_noacct(discard_bio); 8597 } 8598 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8599 8600 int acct_bioset_init(struct mddev *mddev) 8601 { 8602 int err = 0; 8603 8604 if (!bioset_initialized(&mddev->io_acct_set)) 8605 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 8606 offsetof(struct md_io_acct, bio_clone), 0); 8607 return err; 8608 } 8609 EXPORT_SYMBOL_GPL(acct_bioset_init); 8610 8611 void acct_bioset_exit(struct mddev *mddev) 8612 { 8613 bioset_exit(&mddev->io_acct_set); 8614 } 8615 EXPORT_SYMBOL_GPL(acct_bioset_exit); 8616 8617 static void md_end_io_acct(struct bio *bio) 8618 { 8619 struct md_io_acct *md_io_acct = bio->bi_private; 8620 struct bio *orig_bio = md_io_acct->orig_bio; 8621 8622 orig_bio->bi_status = bio->bi_status; 8623 8624 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8625 bio_put(bio); 8626 bio_endio(orig_bio); 8627 } 8628 8629 /* 8630 * Used by personalities that don't already clone the bio and thus can't 8631 * easily add the timestamp to their extended bio structure. 8632 */ 8633 void md_account_bio(struct mddev *mddev, struct bio **bio) 8634 { 8635 struct block_device *bdev = (*bio)->bi_bdev; 8636 struct md_io_acct *md_io_acct; 8637 struct bio *clone; 8638 8639 if (!blk_queue_io_stat(bdev->bd_disk->queue)) 8640 return; 8641 8642 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set); 8643 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8644 md_io_acct->orig_bio = *bio; 8645 md_io_acct->start_time = bio_start_io_acct(*bio); 8646 8647 clone->bi_end_io = md_end_io_acct; 8648 clone->bi_private = md_io_acct; 8649 *bio = clone; 8650 } 8651 EXPORT_SYMBOL_GPL(md_account_bio); 8652 8653 /* md_allow_write(mddev) 8654 * Calling this ensures that the array is marked 'active' so that writes 8655 * may proceed without blocking. It is important to call this before 8656 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8657 * Must be called with mddev_lock held. 8658 */ 8659 void md_allow_write(struct mddev *mddev) 8660 { 8661 if (!mddev->pers) 8662 return; 8663 if (mddev->ro) 8664 return; 8665 if (!mddev->pers->sync_request) 8666 return; 8667 8668 spin_lock(&mddev->lock); 8669 if (mddev->in_sync) { 8670 mddev->in_sync = 0; 8671 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8672 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8673 if (mddev->safemode_delay && 8674 mddev->safemode == 0) 8675 mddev->safemode = 1; 8676 spin_unlock(&mddev->lock); 8677 md_update_sb(mddev, 0); 8678 sysfs_notify_dirent_safe(mddev->sysfs_state); 8679 /* wait for the dirty state to be recorded in the metadata */ 8680 wait_event(mddev->sb_wait, 8681 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8682 } else 8683 spin_unlock(&mddev->lock); 8684 } 8685 EXPORT_SYMBOL_GPL(md_allow_write); 8686 8687 #define SYNC_MARKS 10 8688 #define SYNC_MARK_STEP (3*HZ) 8689 #define UPDATE_FREQUENCY (5*60*HZ) 8690 void md_do_sync(struct md_thread *thread) 8691 { 8692 struct mddev *mddev = thread->mddev; 8693 struct mddev *mddev2; 8694 unsigned int currspeed = 0, window; 8695 sector_t max_sectors,j, io_sectors, recovery_done; 8696 unsigned long mark[SYNC_MARKS]; 8697 unsigned long update_time; 8698 sector_t mark_cnt[SYNC_MARKS]; 8699 int last_mark,m; 8700 sector_t last_check; 8701 int skipped = 0; 8702 struct md_rdev *rdev; 8703 char *desc, *action = NULL; 8704 struct blk_plug plug; 8705 int ret; 8706 8707 /* just incase thread restarts... */ 8708 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8709 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8710 return; 8711 if (mddev->ro) {/* never try to sync a read-only array */ 8712 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8713 return; 8714 } 8715 8716 if (mddev_is_clustered(mddev)) { 8717 ret = md_cluster_ops->resync_start(mddev); 8718 if (ret) 8719 goto skip; 8720 8721 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8722 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8723 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8724 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8725 && ((unsigned long long)mddev->curr_resync_completed 8726 < (unsigned long long)mddev->resync_max_sectors)) 8727 goto skip; 8728 } 8729 8730 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8731 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8732 desc = "data-check"; 8733 action = "check"; 8734 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8735 desc = "requested-resync"; 8736 action = "repair"; 8737 } else 8738 desc = "resync"; 8739 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8740 desc = "reshape"; 8741 else 8742 desc = "recovery"; 8743 8744 mddev->last_sync_action = action ?: desc; 8745 8746 /* 8747 * Before starting a resync we must have set curr_resync to 8748 * 2, and then checked that every "conflicting" array has curr_resync 8749 * less than ours. When we find one that is the same or higher 8750 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8751 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8752 * This will mean we have to start checking from the beginning again. 8753 * 8754 */ 8755 8756 do { 8757 int mddev2_minor = -1; 8758 mddev->curr_resync = MD_RESYNC_DELAYED; 8759 8760 try_again: 8761 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8762 goto skip; 8763 spin_lock(&all_mddevs_lock); 8764 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8765 if (test_bit(MD_DELETED, &mddev2->flags)) 8766 continue; 8767 if (mddev2 == mddev) 8768 continue; 8769 if (!mddev->parallel_resync 8770 && mddev2->curr_resync 8771 && match_mddev_units(mddev, mddev2)) { 8772 DEFINE_WAIT(wq); 8773 if (mddev < mddev2 && 8774 mddev->curr_resync == MD_RESYNC_DELAYED) { 8775 /* arbitrarily yield */ 8776 mddev->curr_resync = MD_RESYNC_YIELDED; 8777 wake_up(&resync_wait); 8778 } 8779 if (mddev > mddev2 && 8780 mddev->curr_resync == MD_RESYNC_YIELDED) 8781 /* no need to wait here, we can wait the next 8782 * time 'round when curr_resync == 2 8783 */ 8784 continue; 8785 /* We need to wait 'interruptible' so as not to 8786 * contribute to the load average, and not to 8787 * be caught by 'softlockup' 8788 */ 8789 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8790 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8791 mddev2->curr_resync >= mddev->curr_resync) { 8792 if (mddev2_minor != mddev2->md_minor) { 8793 mddev2_minor = mddev2->md_minor; 8794 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8795 desc, mdname(mddev), 8796 mdname(mddev2)); 8797 } 8798 spin_unlock(&all_mddevs_lock); 8799 8800 if (signal_pending(current)) 8801 flush_signals(current); 8802 schedule(); 8803 finish_wait(&resync_wait, &wq); 8804 goto try_again; 8805 } 8806 finish_wait(&resync_wait, &wq); 8807 } 8808 } 8809 spin_unlock(&all_mddevs_lock); 8810 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8811 8812 j = 0; 8813 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8814 /* resync follows the size requested by the personality, 8815 * which defaults to physical size, but can be virtual size 8816 */ 8817 max_sectors = mddev->resync_max_sectors; 8818 atomic64_set(&mddev->resync_mismatches, 0); 8819 /* we don't use the checkpoint if there's a bitmap */ 8820 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8821 j = mddev->resync_min; 8822 else if (!mddev->bitmap) 8823 j = mddev->recovery_cp; 8824 8825 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8826 max_sectors = mddev->resync_max_sectors; 8827 /* 8828 * If the original node aborts reshaping then we continue the 8829 * reshaping, so set j again to avoid restart reshape from the 8830 * first beginning 8831 */ 8832 if (mddev_is_clustered(mddev) && 8833 mddev->reshape_position != MaxSector) 8834 j = mddev->reshape_position; 8835 } else { 8836 /* recovery follows the physical size of devices */ 8837 max_sectors = mddev->dev_sectors; 8838 j = MaxSector; 8839 rcu_read_lock(); 8840 rdev_for_each_rcu(rdev, mddev) 8841 if (rdev->raid_disk >= 0 && 8842 !test_bit(Journal, &rdev->flags) && 8843 !test_bit(Faulty, &rdev->flags) && 8844 !test_bit(In_sync, &rdev->flags) && 8845 rdev->recovery_offset < j) 8846 j = rdev->recovery_offset; 8847 rcu_read_unlock(); 8848 8849 /* If there is a bitmap, we need to make sure all 8850 * writes that started before we added a spare 8851 * complete before we start doing a recovery. 8852 * Otherwise the write might complete and (via 8853 * bitmap_endwrite) set a bit in the bitmap after the 8854 * recovery has checked that bit and skipped that 8855 * region. 8856 */ 8857 if (mddev->bitmap) { 8858 mddev->pers->quiesce(mddev, 1); 8859 mddev->pers->quiesce(mddev, 0); 8860 } 8861 } 8862 8863 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8864 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8865 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8866 speed_max(mddev), desc); 8867 8868 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8869 8870 io_sectors = 0; 8871 for (m = 0; m < SYNC_MARKS; m++) { 8872 mark[m] = jiffies; 8873 mark_cnt[m] = io_sectors; 8874 } 8875 last_mark = 0; 8876 mddev->resync_mark = mark[last_mark]; 8877 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8878 8879 /* 8880 * Tune reconstruction: 8881 */ 8882 window = 32 * (PAGE_SIZE / 512); 8883 pr_debug("md: using %dk window, over a total of %lluk.\n", 8884 window/2, (unsigned long long)max_sectors/2); 8885 8886 atomic_set(&mddev->recovery_active, 0); 8887 last_check = 0; 8888 8889 if (j>2) { 8890 pr_debug("md: resuming %s of %s from checkpoint.\n", 8891 desc, mdname(mddev)); 8892 mddev->curr_resync = j; 8893 } else 8894 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8895 mddev->curr_resync_completed = j; 8896 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8897 md_new_event(); 8898 update_time = jiffies; 8899 8900 blk_start_plug(&plug); 8901 while (j < max_sectors) { 8902 sector_t sectors; 8903 8904 skipped = 0; 8905 8906 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8907 ((mddev->curr_resync > mddev->curr_resync_completed && 8908 (mddev->curr_resync - mddev->curr_resync_completed) 8909 > (max_sectors >> 4)) || 8910 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8911 (j - mddev->curr_resync_completed)*2 8912 >= mddev->resync_max - mddev->curr_resync_completed || 8913 mddev->curr_resync_completed > mddev->resync_max 8914 )) { 8915 /* time to update curr_resync_completed */ 8916 wait_event(mddev->recovery_wait, 8917 atomic_read(&mddev->recovery_active) == 0); 8918 mddev->curr_resync_completed = j; 8919 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8920 j > mddev->recovery_cp) 8921 mddev->recovery_cp = j; 8922 update_time = jiffies; 8923 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8924 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8925 } 8926 8927 while (j >= mddev->resync_max && 8928 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8929 /* As this condition is controlled by user-space, 8930 * we can block indefinitely, so use '_interruptible' 8931 * to avoid triggering warnings. 8932 */ 8933 flush_signals(current); /* just in case */ 8934 wait_event_interruptible(mddev->recovery_wait, 8935 mddev->resync_max > j 8936 || test_bit(MD_RECOVERY_INTR, 8937 &mddev->recovery)); 8938 } 8939 8940 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8941 break; 8942 8943 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8944 if (sectors == 0) { 8945 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8946 break; 8947 } 8948 8949 if (!skipped) { /* actual IO requested */ 8950 io_sectors += sectors; 8951 atomic_add(sectors, &mddev->recovery_active); 8952 } 8953 8954 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8955 break; 8956 8957 j += sectors; 8958 if (j > max_sectors) 8959 /* when skipping, extra large numbers can be returned. */ 8960 j = max_sectors; 8961 if (j > 2) 8962 mddev->curr_resync = j; 8963 mddev->curr_mark_cnt = io_sectors; 8964 if (last_check == 0) 8965 /* this is the earliest that rebuild will be 8966 * visible in /proc/mdstat 8967 */ 8968 md_new_event(); 8969 8970 if (last_check + window > io_sectors || j == max_sectors) 8971 continue; 8972 8973 last_check = io_sectors; 8974 repeat: 8975 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8976 /* step marks */ 8977 int next = (last_mark+1) % SYNC_MARKS; 8978 8979 mddev->resync_mark = mark[next]; 8980 mddev->resync_mark_cnt = mark_cnt[next]; 8981 mark[next] = jiffies; 8982 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8983 last_mark = next; 8984 } 8985 8986 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8987 break; 8988 8989 /* 8990 * this loop exits only if either when we are slower than 8991 * the 'hard' speed limit, or the system was IO-idle for 8992 * a jiffy. 8993 * the system might be non-idle CPU-wise, but we only care 8994 * about not overloading the IO subsystem. (things like an 8995 * e2fsck being done on the RAID array should execute fast) 8996 */ 8997 cond_resched(); 8998 8999 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9000 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9001 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9002 9003 if (currspeed > speed_min(mddev)) { 9004 if (currspeed > speed_max(mddev)) { 9005 msleep(500); 9006 goto repeat; 9007 } 9008 if (!is_mddev_idle(mddev, 0)) { 9009 /* 9010 * Give other IO more of a chance. 9011 * The faster the devices, the less we wait. 9012 */ 9013 wait_event(mddev->recovery_wait, 9014 !atomic_read(&mddev->recovery_active)); 9015 } 9016 } 9017 } 9018 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9019 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9020 ? "interrupted" : "done"); 9021 /* 9022 * this also signals 'finished resyncing' to md_stop 9023 */ 9024 blk_finish_plug(&plug); 9025 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9026 9027 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9028 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9029 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9030 mddev->curr_resync_completed = mddev->curr_resync; 9031 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9032 } 9033 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9034 9035 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9036 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9037 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9038 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9039 if (mddev->curr_resync >= mddev->recovery_cp) { 9040 pr_debug("md: checkpointing %s of %s.\n", 9041 desc, mdname(mddev)); 9042 if (test_bit(MD_RECOVERY_ERROR, 9043 &mddev->recovery)) 9044 mddev->recovery_cp = 9045 mddev->curr_resync_completed; 9046 else 9047 mddev->recovery_cp = 9048 mddev->curr_resync; 9049 } 9050 } else 9051 mddev->recovery_cp = MaxSector; 9052 } else { 9053 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9054 mddev->curr_resync = MaxSector; 9055 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9056 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9057 rcu_read_lock(); 9058 rdev_for_each_rcu(rdev, mddev) 9059 if (rdev->raid_disk >= 0 && 9060 mddev->delta_disks >= 0 && 9061 !test_bit(Journal, &rdev->flags) && 9062 !test_bit(Faulty, &rdev->flags) && 9063 !test_bit(In_sync, &rdev->flags) && 9064 rdev->recovery_offset < mddev->curr_resync) 9065 rdev->recovery_offset = mddev->curr_resync; 9066 rcu_read_unlock(); 9067 } 9068 } 9069 } 9070 skip: 9071 /* set CHANGE_PENDING here since maybe another update is needed, 9072 * so other nodes are informed. It should be harmless for normal 9073 * raid */ 9074 set_mask_bits(&mddev->sb_flags, 0, 9075 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9076 9077 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9078 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9079 mddev->delta_disks > 0 && 9080 mddev->pers->finish_reshape && 9081 mddev->pers->size && 9082 mddev->queue) { 9083 mddev_lock_nointr(mddev); 9084 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9085 mddev_unlock(mddev); 9086 if (!mddev_is_clustered(mddev)) 9087 set_capacity_and_notify(mddev->gendisk, 9088 mddev->array_sectors); 9089 } 9090 9091 spin_lock(&mddev->lock); 9092 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9093 /* We completed so min/max setting can be forgotten if used. */ 9094 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9095 mddev->resync_min = 0; 9096 mddev->resync_max = MaxSector; 9097 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9098 mddev->resync_min = mddev->curr_resync_completed; 9099 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9100 mddev->curr_resync = MD_RESYNC_NONE; 9101 spin_unlock(&mddev->lock); 9102 9103 wake_up(&resync_wait); 9104 md_wakeup_thread(mddev->thread); 9105 return; 9106 } 9107 EXPORT_SYMBOL_GPL(md_do_sync); 9108 9109 static int remove_and_add_spares(struct mddev *mddev, 9110 struct md_rdev *this) 9111 { 9112 struct md_rdev *rdev; 9113 int spares = 0; 9114 int removed = 0; 9115 bool remove_some = false; 9116 9117 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9118 /* Mustn't remove devices when resync thread is running */ 9119 return 0; 9120 9121 rdev_for_each(rdev, mddev) { 9122 if ((this == NULL || rdev == this) && 9123 rdev->raid_disk >= 0 && 9124 !test_bit(Blocked, &rdev->flags) && 9125 test_bit(Faulty, &rdev->flags) && 9126 atomic_read(&rdev->nr_pending)==0) { 9127 /* Faulty non-Blocked devices with nr_pending == 0 9128 * never get nr_pending incremented, 9129 * never get Faulty cleared, and never get Blocked set. 9130 * So we can synchronize_rcu now rather than once per device 9131 */ 9132 remove_some = true; 9133 set_bit(RemoveSynchronized, &rdev->flags); 9134 } 9135 } 9136 9137 if (remove_some) 9138 synchronize_rcu(); 9139 rdev_for_each(rdev, mddev) { 9140 if ((this == NULL || rdev == this) && 9141 rdev->raid_disk >= 0 && 9142 !test_bit(Blocked, &rdev->flags) && 9143 ((test_bit(RemoveSynchronized, &rdev->flags) || 9144 (!test_bit(In_sync, &rdev->flags) && 9145 !test_bit(Journal, &rdev->flags))) && 9146 atomic_read(&rdev->nr_pending)==0)) { 9147 if (mddev->pers->hot_remove_disk( 9148 mddev, rdev) == 0) { 9149 sysfs_unlink_rdev(mddev, rdev); 9150 rdev->saved_raid_disk = rdev->raid_disk; 9151 rdev->raid_disk = -1; 9152 removed++; 9153 } 9154 } 9155 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9156 clear_bit(RemoveSynchronized, &rdev->flags); 9157 } 9158 9159 if (removed && mddev->kobj.sd) 9160 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9161 9162 if (this && removed) 9163 goto no_add; 9164 9165 rdev_for_each(rdev, mddev) { 9166 if (this && this != rdev) 9167 continue; 9168 if (test_bit(Candidate, &rdev->flags)) 9169 continue; 9170 if (rdev->raid_disk >= 0 && 9171 !test_bit(In_sync, &rdev->flags) && 9172 !test_bit(Journal, &rdev->flags) && 9173 !test_bit(Faulty, &rdev->flags)) 9174 spares++; 9175 if (rdev->raid_disk >= 0) 9176 continue; 9177 if (test_bit(Faulty, &rdev->flags)) 9178 continue; 9179 if (!test_bit(Journal, &rdev->flags)) { 9180 if (mddev->ro && 9181 ! (rdev->saved_raid_disk >= 0 && 9182 !test_bit(Bitmap_sync, &rdev->flags))) 9183 continue; 9184 9185 rdev->recovery_offset = 0; 9186 } 9187 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9188 /* failure here is OK */ 9189 sysfs_link_rdev(mddev, rdev); 9190 if (!test_bit(Journal, &rdev->flags)) 9191 spares++; 9192 md_new_event(); 9193 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9194 } 9195 } 9196 no_add: 9197 if (removed) 9198 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9199 return spares; 9200 } 9201 9202 static void md_start_sync(struct work_struct *ws) 9203 { 9204 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9205 9206 mddev->sync_thread = md_register_thread(md_do_sync, 9207 mddev, 9208 "resync"); 9209 if (!mddev->sync_thread) { 9210 pr_warn("%s: could not start resync thread...\n", 9211 mdname(mddev)); 9212 /* leave the spares where they are, it shouldn't hurt */ 9213 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9214 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9215 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9216 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9217 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9218 wake_up(&resync_wait); 9219 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9220 &mddev->recovery)) 9221 if (mddev->sysfs_action) 9222 sysfs_notify_dirent_safe(mddev->sysfs_action); 9223 } else 9224 md_wakeup_thread(mddev->sync_thread); 9225 sysfs_notify_dirent_safe(mddev->sysfs_action); 9226 md_new_event(); 9227 } 9228 9229 /* 9230 * This routine is regularly called by all per-raid-array threads to 9231 * deal with generic issues like resync and super-block update. 9232 * Raid personalities that don't have a thread (linear/raid0) do not 9233 * need this as they never do any recovery or update the superblock. 9234 * 9235 * It does not do any resync itself, but rather "forks" off other threads 9236 * to do that as needed. 9237 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9238 * "->recovery" and create a thread at ->sync_thread. 9239 * When the thread finishes it sets MD_RECOVERY_DONE 9240 * and wakeups up this thread which will reap the thread and finish up. 9241 * This thread also removes any faulty devices (with nr_pending == 0). 9242 * 9243 * The overall approach is: 9244 * 1/ if the superblock needs updating, update it. 9245 * 2/ If a recovery thread is running, don't do anything else. 9246 * 3/ If recovery has finished, clean up, possibly marking spares active. 9247 * 4/ If there are any faulty devices, remove them. 9248 * 5/ If array is degraded, try to add spares devices 9249 * 6/ If array has spares or is not in-sync, start a resync thread. 9250 */ 9251 void md_check_recovery(struct mddev *mddev) 9252 { 9253 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9254 /* Write superblock - thread that called mddev_suspend() 9255 * holds reconfig_mutex for us. 9256 */ 9257 set_bit(MD_UPDATING_SB, &mddev->flags); 9258 smp_mb__after_atomic(); 9259 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9260 md_update_sb(mddev, 0); 9261 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9262 wake_up(&mddev->sb_wait); 9263 } 9264 9265 if (mddev->suspended) 9266 return; 9267 9268 if (mddev->bitmap) 9269 md_bitmap_daemon_work(mddev); 9270 9271 if (signal_pending(current)) { 9272 if (mddev->pers->sync_request && !mddev->external) { 9273 pr_debug("md: %s in immediate safe mode\n", 9274 mdname(mddev)); 9275 mddev->safemode = 2; 9276 } 9277 flush_signals(current); 9278 } 9279 9280 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9281 return; 9282 if ( ! ( 9283 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9284 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9285 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9286 (mddev->external == 0 && mddev->safemode == 1) || 9287 (mddev->safemode == 2 9288 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9289 )) 9290 return; 9291 9292 if (mddev_trylock(mddev)) { 9293 int spares = 0; 9294 bool try_set_sync = mddev->safemode != 0; 9295 9296 if (!mddev->external && mddev->safemode == 1) 9297 mddev->safemode = 0; 9298 9299 if (mddev->ro) { 9300 struct md_rdev *rdev; 9301 if (!mddev->external && mddev->in_sync) 9302 /* 'Blocked' flag not needed as failed devices 9303 * will be recorded if array switched to read/write. 9304 * Leaving it set will prevent the device 9305 * from being removed. 9306 */ 9307 rdev_for_each(rdev, mddev) 9308 clear_bit(Blocked, &rdev->flags); 9309 /* On a read-only array we can: 9310 * - remove failed devices 9311 * - add already-in_sync devices if the array itself 9312 * is in-sync. 9313 * As we only add devices that are already in-sync, 9314 * we can activate the spares immediately. 9315 */ 9316 remove_and_add_spares(mddev, NULL); 9317 /* There is no thread, but we need to call 9318 * ->spare_active and clear saved_raid_disk 9319 */ 9320 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9321 md_unregister_thread(&mddev->sync_thread); 9322 md_reap_sync_thread(mddev); 9323 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9324 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9325 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9326 goto unlock; 9327 } 9328 9329 if (mddev_is_clustered(mddev)) { 9330 struct md_rdev *rdev, *tmp; 9331 /* kick the device if another node issued a 9332 * remove disk. 9333 */ 9334 rdev_for_each_safe(rdev, tmp, mddev) { 9335 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9336 rdev->raid_disk < 0) 9337 md_kick_rdev_from_array(rdev); 9338 } 9339 } 9340 9341 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9342 spin_lock(&mddev->lock); 9343 set_in_sync(mddev); 9344 spin_unlock(&mddev->lock); 9345 } 9346 9347 if (mddev->sb_flags) 9348 md_update_sb(mddev, 0); 9349 9350 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9351 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9352 /* resync/recovery still happening */ 9353 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9354 goto unlock; 9355 } 9356 if (mddev->sync_thread) { 9357 md_unregister_thread(&mddev->sync_thread); 9358 md_reap_sync_thread(mddev); 9359 goto unlock; 9360 } 9361 /* Set RUNNING before clearing NEEDED to avoid 9362 * any transients in the value of "sync_action". 9363 */ 9364 mddev->curr_resync_completed = 0; 9365 spin_lock(&mddev->lock); 9366 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9367 spin_unlock(&mddev->lock); 9368 /* Clear some bits that don't mean anything, but 9369 * might be left set 9370 */ 9371 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9372 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9373 9374 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9375 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9376 goto not_running; 9377 /* no recovery is running. 9378 * remove any failed drives, then 9379 * add spares if possible. 9380 * Spares are also removed and re-added, to allow 9381 * the personality to fail the re-add. 9382 */ 9383 9384 if (mddev->reshape_position != MaxSector) { 9385 if (mddev->pers->check_reshape == NULL || 9386 mddev->pers->check_reshape(mddev) != 0) 9387 /* Cannot proceed */ 9388 goto not_running; 9389 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9390 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9391 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9392 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9393 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9394 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9395 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9396 } else if (mddev->recovery_cp < MaxSector) { 9397 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9398 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9399 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9400 /* nothing to be done ... */ 9401 goto not_running; 9402 9403 if (mddev->pers->sync_request) { 9404 if (spares) { 9405 /* We are adding a device or devices to an array 9406 * which has the bitmap stored on all devices. 9407 * So make sure all bitmap pages get written 9408 */ 9409 md_bitmap_write_all(mddev->bitmap); 9410 } 9411 INIT_WORK(&mddev->del_work, md_start_sync); 9412 queue_work(md_misc_wq, &mddev->del_work); 9413 goto unlock; 9414 } 9415 not_running: 9416 if (!mddev->sync_thread) { 9417 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9418 wake_up(&resync_wait); 9419 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9420 &mddev->recovery)) 9421 if (mddev->sysfs_action) 9422 sysfs_notify_dirent_safe(mddev->sysfs_action); 9423 } 9424 unlock: 9425 wake_up(&mddev->sb_wait); 9426 mddev_unlock(mddev); 9427 } 9428 } 9429 EXPORT_SYMBOL(md_check_recovery); 9430 9431 void md_reap_sync_thread(struct mddev *mddev) 9432 { 9433 struct md_rdev *rdev; 9434 sector_t old_dev_sectors = mddev->dev_sectors; 9435 bool is_reshaped = false; 9436 9437 /* sync_thread should be unregistered, collect result */ 9438 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9439 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9440 mddev->degraded != mddev->raid_disks) { 9441 /* success...*/ 9442 /* activate any spares */ 9443 if (mddev->pers->spare_active(mddev)) { 9444 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9445 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9446 } 9447 } 9448 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9449 mddev->pers->finish_reshape) { 9450 mddev->pers->finish_reshape(mddev); 9451 if (mddev_is_clustered(mddev)) 9452 is_reshaped = true; 9453 } 9454 9455 /* If array is no-longer degraded, then any saved_raid_disk 9456 * information must be scrapped. 9457 */ 9458 if (!mddev->degraded) 9459 rdev_for_each(rdev, mddev) 9460 rdev->saved_raid_disk = -1; 9461 9462 md_update_sb(mddev, 1); 9463 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9464 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9465 * clustered raid */ 9466 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9467 md_cluster_ops->resync_finish(mddev); 9468 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9469 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9470 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9471 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9472 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9473 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9474 /* 9475 * We call md_cluster_ops->update_size here because sync_size could 9476 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9477 * so it is time to update size across cluster. 9478 */ 9479 if (mddev_is_clustered(mddev) && is_reshaped 9480 && !test_bit(MD_CLOSING, &mddev->flags)) 9481 md_cluster_ops->update_size(mddev, old_dev_sectors); 9482 wake_up(&resync_wait); 9483 /* flag recovery needed just to double check */ 9484 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9485 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9486 sysfs_notify_dirent_safe(mddev->sysfs_action); 9487 md_new_event(); 9488 if (mddev->event_work.func) 9489 queue_work(md_misc_wq, &mddev->event_work); 9490 } 9491 EXPORT_SYMBOL(md_reap_sync_thread); 9492 9493 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9494 { 9495 sysfs_notify_dirent_safe(rdev->sysfs_state); 9496 wait_event_timeout(rdev->blocked_wait, 9497 !test_bit(Blocked, &rdev->flags) && 9498 !test_bit(BlockedBadBlocks, &rdev->flags), 9499 msecs_to_jiffies(5000)); 9500 rdev_dec_pending(rdev, mddev); 9501 } 9502 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9503 9504 void md_finish_reshape(struct mddev *mddev) 9505 { 9506 /* called be personality module when reshape completes. */ 9507 struct md_rdev *rdev; 9508 9509 rdev_for_each(rdev, mddev) { 9510 if (rdev->data_offset > rdev->new_data_offset) 9511 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9512 else 9513 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9514 rdev->data_offset = rdev->new_data_offset; 9515 } 9516 } 9517 EXPORT_SYMBOL(md_finish_reshape); 9518 9519 /* Bad block management */ 9520 9521 /* Returns 1 on success, 0 on failure */ 9522 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9523 int is_new) 9524 { 9525 struct mddev *mddev = rdev->mddev; 9526 int rv; 9527 if (is_new) 9528 s += rdev->new_data_offset; 9529 else 9530 s += rdev->data_offset; 9531 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9532 if (rv == 0) { 9533 /* Make sure they get written out promptly */ 9534 if (test_bit(ExternalBbl, &rdev->flags)) 9535 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9536 sysfs_notify_dirent_safe(rdev->sysfs_state); 9537 set_mask_bits(&mddev->sb_flags, 0, 9538 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9539 md_wakeup_thread(rdev->mddev->thread); 9540 return 1; 9541 } else 9542 return 0; 9543 } 9544 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9545 9546 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9547 int is_new) 9548 { 9549 int rv; 9550 if (is_new) 9551 s += rdev->new_data_offset; 9552 else 9553 s += rdev->data_offset; 9554 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9555 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9556 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9557 return rv; 9558 } 9559 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9560 9561 static int md_notify_reboot(struct notifier_block *this, 9562 unsigned long code, void *x) 9563 { 9564 struct mddev *mddev, *n; 9565 int need_delay = 0; 9566 9567 spin_lock(&all_mddevs_lock); 9568 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9569 if (!mddev_get(mddev)) 9570 continue; 9571 spin_unlock(&all_mddevs_lock); 9572 if (mddev_trylock(mddev)) { 9573 if (mddev->pers) 9574 __md_stop_writes(mddev); 9575 if (mddev->persistent) 9576 mddev->safemode = 2; 9577 mddev_unlock(mddev); 9578 } 9579 need_delay = 1; 9580 mddev_put(mddev); 9581 spin_lock(&all_mddevs_lock); 9582 } 9583 spin_unlock(&all_mddevs_lock); 9584 9585 /* 9586 * certain more exotic SCSI devices are known to be 9587 * volatile wrt too early system reboots. While the 9588 * right place to handle this issue is the given 9589 * driver, we do want to have a safe RAID driver ... 9590 */ 9591 if (need_delay) 9592 msleep(1000); 9593 9594 return NOTIFY_DONE; 9595 } 9596 9597 static struct notifier_block md_notifier = { 9598 .notifier_call = md_notify_reboot, 9599 .next = NULL, 9600 .priority = INT_MAX, /* before any real devices */ 9601 }; 9602 9603 static void md_geninit(void) 9604 { 9605 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9606 9607 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9608 } 9609 9610 static int __init md_init(void) 9611 { 9612 int ret = -ENOMEM; 9613 9614 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9615 if (!md_wq) 9616 goto err_wq; 9617 9618 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9619 if (!md_misc_wq) 9620 goto err_misc_wq; 9621 9622 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9623 if (!md_rdev_misc_wq) 9624 goto err_rdev_misc_wq; 9625 9626 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9627 if (ret < 0) 9628 goto err_md; 9629 9630 ret = __register_blkdev(0, "mdp", md_probe); 9631 if (ret < 0) 9632 goto err_mdp; 9633 mdp_major = ret; 9634 9635 register_reboot_notifier(&md_notifier); 9636 raid_table_header = register_sysctl_table(raid_root_table); 9637 9638 md_geninit(); 9639 return 0; 9640 9641 err_mdp: 9642 unregister_blkdev(MD_MAJOR, "md"); 9643 err_md: 9644 destroy_workqueue(md_rdev_misc_wq); 9645 err_rdev_misc_wq: 9646 destroy_workqueue(md_misc_wq); 9647 err_misc_wq: 9648 destroy_workqueue(md_wq); 9649 err_wq: 9650 return ret; 9651 } 9652 9653 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9654 { 9655 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9656 struct md_rdev *rdev2, *tmp; 9657 int role, ret; 9658 9659 /* 9660 * If size is changed in another node then we need to 9661 * do resize as well. 9662 */ 9663 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9664 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9665 if (ret) 9666 pr_info("md-cluster: resize failed\n"); 9667 else 9668 md_bitmap_update_sb(mddev->bitmap); 9669 } 9670 9671 /* Check for change of roles in the active devices */ 9672 rdev_for_each_safe(rdev2, tmp, mddev) { 9673 if (test_bit(Faulty, &rdev2->flags)) 9674 continue; 9675 9676 /* Check if the roles changed */ 9677 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9678 9679 if (test_bit(Candidate, &rdev2->flags)) { 9680 if (role == MD_DISK_ROLE_FAULTY) { 9681 pr_info("md: Removing Candidate device %pg because add failed\n", 9682 rdev2->bdev); 9683 md_kick_rdev_from_array(rdev2); 9684 continue; 9685 } 9686 else 9687 clear_bit(Candidate, &rdev2->flags); 9688 } 9689 9690 if (role != rdev2->raid_disk) { 9691 /* 9692 * got activated except reshape is happening. 9693 */ 9694 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9695 !(le32_to_cpu(sb->feature_map) & 9696 MD_FEATURE_RESHAPE_ACTIVE)) { 9697 rdev2->saved_raid_disk = role; 9698 ret = remove_and_add_spares(mddev, rdev2); 9699 pr_info("Activated spare: %pg\n", 9700 rdev2->bdev); 9701 /* wakeup mddev->thread here, so array could 9702 * perform resync with the new activated disk */ 9703 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9704 md_wakeup_thread(mddev->thread); 9705 } 9706 /* device faulty 9707 * We just want to do the minimum to mark the disk 9708 * as faulty. The recovery is performed by the 9709 * one who initiated the error. 9710 */ 9711 if (role == MD_DISK_ROLE_FAULTY || 9712 role == MD_DISK_ROLE_JOURNAL) { 9713 md_error(mddev, rdev2); 9714 clear_bit(Blocked, &rdev2->flags); 9715 } 9716 } 9717 } 9718 9719 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9720 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9721 if (ret) 9722 pr_warn("md: updating array disks failed. %d\n", ret); 9723 } 9724 9725 /* 9726 * Since mddev->delta_disks has already updated in update_raid_disks, 9727 * so it is time to check reshape. 9728 */ 9729 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9730 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9731 /* 9732 * reshape is happening in the remote node, we need to 9733 * update reshape_position and call start_reshape. 9734 */ 9735 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9736 if (mddev->pers->update_reshape_pos) 9737 mddev->pers->update_reshape_pos(mddev); 9738 if (mddev->pers->start_reshape) 9739 mddev->pers->start_reshape(mddev); 9740 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9741 mddev->reshape_position != MaxSector && 9742 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9743 /* reshape is just done in another node. */ 9744 mddev->reshape_position = MaxSector; 9745 if (mddev->pers->update_reshape_pos) 9746 mddev->pers->update_reshape_pos(mddev); 9747 } 9748 9749 /* Finally set the event to be up to date */ 9750 mddev->events = le64_to_cpu(sb->events); 9751 } 9752 9753 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9754 { 9755 int err; 9756 struct page *swapout = rdev->sb_page; 9757 struct mdp_superblock_1 *sb; 9758 9759 /* Store the sb page of the rdev in the swapout temporary 9760 * variable in case we err in the future 9761 */ 9762 rdev->sb_page = NULL; 9763 err = alloc_disk_sb(rdev); 9764 if (err == 0) { 9765 ClearPageUptodate(rdev->sb_page); 9766 rdev->sb_loaded = 0; 9767 err = super_types[mddev->major_version]. 9768 load_super(rdev, NULL, mddev->minor_version); 9769 } 9770 if (err < 0) { 9771 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9772 __func__, __LINE__, rdev->desc_nr, err); 9773 if (rdev->sb_page) 9774 put_page(rdev->sb_page); 9775 rdev->sb_page = swapout; 9776 rdev->sb_loaded = 1; 9777 return err; 9778 } 9779 9780 sb = page_address(rdev->sb_page); 9781 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9782 * is not set 9783 */ 9784 9785 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9786 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9787 9788 /* The other node finished recovery, call spare_active to set 9789 * device In_sync and mddev->degraded 9790 */ 9791 if (rdev->recovery_offset == MaxSector && 9792 !test_bit(In_sync, &rdev->flags) && 9793 mddev->pers->spare_active(mddev)) 9794 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9795 9796 put_page(swapout); 9797 return 0; 9798 } 9799 9800 void md_reload_sb(struct mddev *mddev, int nr) 9801 { 9802 struct md_rdev *rdev = NULL, *iter; 9803 int err; 9804 9805 /* Find the rdev */ 9806 rdev_for_each_rcu(iter, mddev) { 9807 if (iter->desc_nr == nr) { 9808 rdev = iter; 9809 break; 9810 } 9811 } 9812 9813 if (!rdev) { 9814 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9815 return; 9816 } 9817 9818 err = read_rdev(mddev, rdev); 9819 if (err < 0) 9820 return; 9821 9822 check_sb_changes(mddev, rdev); 9823 9824 /* Read all rdev's to update recovery_offset */ 9825 rdev_for_each_rcu(rdev, mddev) { 9826 if (!test_bit(Faulty, &rdev->flags)) 9827 read_rdev(mddev, rdev); 9828 } 9829 } 9830 EXPORT_SYMBOL(md_reload_sb); 9831 9832 #ifndef MODULE 9833 9834 /* 9835 * Searches all registered partitions for autorun RAID arrays 9836 * at boot time. 9837 */ 9838 9839 static DEFINE_MUTEX(detected_devices_mutex); 9840 static LIST_HEAD(all_detected_devices); 9841 struct detected_devices_node { 9842 struct list_head list; 9843 dev_t dev; 9844 }; 9845 9846 void md_autodetect_dev(dev_t dev) 9847 { 9848 struct detected_devices_node *node_detected_dev; 9849 9850 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9851 if (node_detected_dev) { 9852 node_detected_dev->dev = dev; 9853 mutex_lock(&detected_devices_mutex); 9854 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9855 mutex_unlock(&detected_devices_mutex); 9856 } 9857 } 9858 9859 void md_autostart_arrays(int part) 9860 { 9861 struct md_rdev *rdev; 9862 struct detected_devices_node *node_detected_dev; 9863 dev_t dev; 9864 int i_scanned, i_passed; 9865 9866 i_scanned = 0; 9867 i_passed = 0; 9868 9869 pr_info("md: Autodetecting RAID arrays.\n"); 9870 9871 mutex_lock(&detected_devices_mutex); 9872 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9873 i_scanned++; 9874 node_detected_dev = list_entry(all_detected_devices.next, 9875 struct detected_devices_node, list); 9876 list_del(&node_detected_dev->list); 9877 dev = node_detected_dev->dev; 9878 kfree(node_detected_dev); 9879 mutex_unlock(&detected_devices_mutex); 9880 rdev = md_import_device(dev,0, 90); 9881 mutex_lock(&detected_devices_mutex); 9882 if (IS_ERR(rdev)) 9883 continue; 9884 9885 if (test_bit(Faulty, &rdev->flags)) 9886 continue; 9887 9888 set_bit(AutoDetected, &rdev->flags); 9889 list_add(&rdev->same_set, &pending_raid_disks); 9890 i_passed++; 9891 } 9892 mutex_unlock(&detected_devices_mutex); 9893 9894 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9895 9896 autorun_devices(part); 9897 } 9898 9899 #endif /* !MODULE */ 9900 9901 static __exit void md_exit(void) 9902 { 9903 struct mddev *mddev, *n; 9904 int delay = 1; 9905 9906 unregister_blkdev(MD_MAJOR,"md"); 9907 unregister_blkdev(mdp_major, "mdp"); 9908 unregister_reboot_notifier(&md_notifier); 9909 unregister_sysctl_table(raid_table_header); 9910 9911 /* We cannot unload the modules while some process is 9912 * waiting for us in select() or poll() - wake them up 9913 */ 9914 md_unloading = 1; 9915 while (waitqueue_active(&md_event_waiters)) { 9916 /* not safe to leave yet */ 9917 wake_up(&md_event_waiters); 9918 msleep(delay); 9919 delay += delay; 9920 } 9921 remove_proc_entry("mdstat", NULL); 9922 9923 spin_lock(&all_mddevs_lock); 9924 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9925 if (!mddev_get(mddev)) 9926 continue; 9927 spin_unlock(&all_mddevs_lock); 9928 export_array(mddev); 9929 mddev->ctime = 0; 9930 mddev->hold_active = 0; 9931 /* 9932 * As the mddev is now fully clear, mddev_put will schedule 9933 * the mddev for destruction by a workqueue, and the 9934 * destroy_workqueue() below will wait for that to complete. 9935 */ 9936 mddev_put(mddev); 9937 spin_lock(&all_mddevs_lock); 9938 } 9939 spin_unlock(&all_mddevs_lock); 9940 9941 destroy_workqueue(md_rdev_misc_wq); 9942 destroy_workqueue(md_misc_wq); 9943 destroy_workqueue(md_wq); 9944 } 9945 9946 subsys_initcall(md_init); 9947 module_exit(md_exit) 9948 9949 static int get_ro(char *buffer, const struct kernel_param *kp) 9950 { 9951 return sprintf(buffer, "%d\n", start_readonly); 9952 } 9953 static int set_ro(const char *val, const struct kernel_param *kp) 9954 { 9955 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9956 } 9957 9958 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9959 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9960 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9961 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9962 9963 MODULE_LICENSE("GPL"); 9964 MODULE_DESCRIPTION("MD RAID framework"); 9965 MODULE_ALIAS("md"); 9966 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9967