xref: /linux/drivers/md/md.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/devfs_fs_kernel.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/suspend.h>
44 
45 #include <linux/init.h>
46 
47 #include <linux/file.h>
48 
49 #ifdef CONFIG_KMOD
50 #include <linux/kmod.h>
51 #endif
52 
53 #include <asm/unaligned.h>
54 
55 #define MAJOR_NR MD_MAJOR
56 #define MD_DRIVER
57 
58 /* 63 partitions with the alternate major number (mdp) */
59 #define MdpMinorShift 6
60 
61 #define DEBUG 0
62 #define dprintk(x...) ((void)(DEBUG && printk(x)))
63 
64 
65 #ifndef MODULE
66 static void autostart_arrays (int part);
67 #endif
68 
69 static mdk_personality_t *pers[MAX_PERSONALITY];
70 static DEFINE_SPINLOCK(pers_lock);
71 
72 /*
73  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
74  * is 1000 KB/sec, so the extra system load does not show up that much.
75  * Increase it if you want to have more _guaranteed_ speed. Note that
76  * the RAID driver will use the maximum available bandwith if the IO
77  * subsystem is idle. There is also an 'absolute maximum' reconstruction
78  * speed limit - in case reconstruction slows down your system despite
79  * idle IO detection.
80  *
81  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
82  */
83 
84 static int sysctl_speed_limit_min = 1000;
85 static int sysctl_speed_limit_max = 200000;
86 
87 static struct ctl_table_header *raid_table_header;
88 
89 static ctl_table raid_table[] = {
90 	{
91 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
92 		.procname	= "speed_limit_min",
93 		.data		= &sysctl_speed_limit_min,
94 		.maxlen		= sizeof(int),
95 		.mode		= 0644,
96 		.proc_handler	= &proc_dointvec,
97 	},
98 	{
99 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
100 		.procname	= "speed_limit_max",
101 		.data		= &sysctl_speed_limit_max,
102 		.maxlen		= sizeof(int),
103 		.mode		= 0644,
104 		.proc_handler	= &proc_dointvec,
105 	},
106 	{ .ctl_name = 0 }
107 };
108 
109 static ctl_table raid_dir_table[] = {
110 	{
111 		.ctl_name	= DEV_RAID,
112 		.procname	= "raid",
113 		.maxlen		= 0,
114 		.mode		= 0555,
115 		.child		= raid_table,
116 	},
117 	{ .ctl_name = 0 }
118 };
119 
120 static ctl_table raid_root_table[] = {
121 	{
122 		.ctl_name	= CTL_DEV,
123 		.procname	= "dev",
124 		.maxlen		= 0,
125 		.mode		= 0555,
126 		.child		= raid_dir_table,
127 	},
128 	{ .ctl_name = 0 }
129 };
130 
131 static struct block_device_operations md_fops;
132 
133 /*
134  * Enables to iterate over all existing md arrays
135  * all_mddevs_lock protects this list.
136  */
137 static LIST_HEAD(all_mddevs);
138 static DEFINE_SPINLOCK(all_mddevs_lock);
139 
140 
141 /*
142  * iterates through all used mddevs in the system.
143  * We take care to grab the all_mddevs_lock whenever navigating
144  * the list, and to always hold a refcount when unlocked.
145  * Any code which breaks out of this loop while own
146  * a reference to the current mddev and must mddev_put it.
147  */
148 #define ITERATE_MDDEV(mddev,tmp)					\
149 									\
150 	for (({ spin_lock(&all_mddevs_lock); 				\
151 		tmp = all_mddevs.next;					\
152 		mddev = NULL;});					\
153 	     ({ if (tmp != &all_mddevs)					\
154 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
155 		spin_unlock(&all_mddevs_lock);				\
156 		if (mddev) mddev_put(mddev);				\
157 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
158 		tmp != &all_mddevs;});					\
159 	     ({ spin_lock(&all_mddevs_lock);				\
160 		tmp = tmp->next;})					\
161 		)
162 
163 
164 static int md_fail_request (request_queue_t *q, struct bio *bio)
165 {
166 	bio_io_error(bio, bio->bi_size);
167 	return 0;
168 }
169 
170 static inline mddev_t *mddev_get(mddev_t *mddev)
171 {
172 	atomic_inc(&mddev->active);
173 	return mddev;
174 }
175 
176 static void mddev_put(mddev_t *mddev)
177 {
178 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
179 		return;
180 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
181 		list_del(&mddev->all_mddevs);
182 		blk_put_queue(mddev->queue);
183 		kfree(mddev);
184 	}
185 	spin_unlock(&all_mddevs_lock);
186 }
187 
188 static mddev_t * mddev_find(dev_t unit)
189 {
190 	mddev_t *mddev, *new = NULL;
191 
192  retry:
193 	spin_lock(&all_mddevs_lock);
194 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
195 		if (mddev->unit == unit) {
196 			mddev_get(mddev);
197 			spin_unlock(&all_mddevs_lock);
198 			kfree(new);
199 			return mddev;
200 		}
201 
202 	if (new) {
203 		list_add(&new->all_mddevs, &all_mddevs);
204 		spin_unlock(&all_mddevs_lock);
205 		return new;
206 	}
207 	spin_unlock(&all_mddevs_lock);
208 
209 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
210 	if (!new)
211 		return NULL;
212 
213 	memset(new, 0, sizeof(*new));
214 
215 	new->unit = unit;
216 	if (MAJOR(unit) == MD_MAJOR)
217 		new->md_minor = MINOR(unit);
218 	else
219 		new->md_minor = MINOR(unit) >> MdpMinorShift;
220 
221 	init_MUTEX(&new->reconfig_sem);
222 	INIT_LIST_HEAD(&new->disks);
223 	INIT_LIST_HEAD(&new->all_mddevs);
224 	init_timer(&new->safemode_timer);
225 	atomic_set(&new->active, 1);
226 	spin_lock_init(&new->write_lock);
227 	init_waitqueue_head(&new->sb_wait);
228 
229 	new->queue = blk_alloc_queue(GFP_KERNEL);
230 	if (!new->queue) {
231 		kfree(new);
232 		return NULL;
233 	}
234 
235 	blk_queue_make_request(new->queue, md_fail_request);
236 
237 	goto retry;
238 }
239 
240 static inline int mddev_lock(mddev_t * mddev)
241 {
242 	return down_interruptible(&mddev->reconfig_sem);
243 }
244 
245 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
246 {
247 	down(&mddev->reconfig_sem);
248 }
249 
250 static inline int mddev_trylock(mddev_t * mddev)
251 {
252 	return down_trylock(&mddev->reconfig_sem);
253 }
254 
255 static inline void mddev_unlock(mddev_t * mddev)
256 {
257 	up(&mddev->reconfig_sem);
258 
259 	md_wakeup_thread(mddev->thread);
260 }
261 
262 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
263 {
264 	mdk_rdev_t * rdev;
265 	struct list_head *tmp;
266 
267 	ITERATE_RDEV(mddev,rdev,tmp) {
268 		if (rdev->desc_nr == nr)
269 			return rdev;
270 	}
271 	return NULL;
272 }
273 
274 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
275 {
276 	struct list_head *tmp;
277 	mdk_rdev_t *rdev;
278 
279 	ITERATE_RDEV(mddev,rdev,tmp) {
280 		if (rdev->bdev->bd_dev == dev)
281 			return rdev;
282 	}
283 	return NULL;
284 }
285 
286 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
287 {
288 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
289 	return MD_NEW_SIZE_BLOCKS(size);
290 }
291 
292 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
293 {
294 	sector_t size;
295 
296 	size = rdev->sb_offset;
297 
298 	if (chunk_size)
299 		size &= ~((sector_t)chunk_size/1024 - 1);
300 	return size;
301 }
302 
303 static int alloc_disk_sb(mdk_rdev_t * rdev)
304 {
305 	if (rdev->sb_page)
306 		MD_BUG();
307 
308 	rdev->sb_page = alloc_page(GFP_KERNEL);
309 	if (!rdev->sb_page) {
310 		printk(KERN_ALERT "md: out of memory.\n");
311 		return -EINVAL;
312 	}
313 
314 	return 0;
315 }
316 
317 static void free_disk_sb(mdk_rdev_t * rdev)
318 {
319 	if (rdev->sb_page) {
320 		page_cache_release(rdev->sb_page);
321 		rdev->sb_loaded = 0;
322 		rdev->sb_page = NULL;
323 		rdev->sb_offset = 0;
324 		rdev->size = 0;
325 	}
326 }
327 
328 
329 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
330 {
331 	mdk_rdev_t *rdev = bio->bi_private;
332 	if (bio->bi_size)
333 		return 1;
334 
335 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
336 		md_error(rdev->mddev, rdev);
337 
338 	if (atomic_dec_and_test(&rdev->mddev->pending_writes))
339 		wake_up(&rdev->mddev->sb_wait);
340 	bio_put(bio);
341 	return 0;
342 }
343 
344 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
345 		   sector_t sector, int size, struct page *page)
346 {
347 	/* write first size bytes of page to sector of rdev
348 	 * Increment mddev->pending_writes before returning
349 	 * and decrement it on completion, waking up sb_wait
350 	 * if zero is reached.
351 	 * If an error occurred, call md_error
352 	 */
353 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
354 
355 	bio->bi_bdev = rdev->bdev;
356 	bio->bi_sector = sector;
357 	bio_add_page(bio, page, size, 0);
358 	bio->bi_private = rdev;
359 	bio->bi_end_io = super_written;
360 	atomic_inc(&mddev->pending_writes);
361 	submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
362 }
363 
364 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
365 {
366 	if (bio->bi_size)
367 		return 1;
368 
369 	complete((struct completion*)bio->bi_private);
370 	return 0;
371 }
372 
373 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
374 		   struct page *page, int rw)
375 {
376 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
377 	struct completion event;
378 	int ret;
379 
380 	rw |= (1 << BIO_RW_SYNC);
381 
382 	bio->bi_bdev = bdev;
383 	bio->bi_sector = sector;
384 	bio_add_page(bio, page, size, 0);
385 	init_completion(&event);
386 	bio->bi_private = &event;
387 	bio->bi_end_io = bi_complete;
388 	submit_bio(rw, bio);
389 	wait_for_completion(&event);
390 
391 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
392 	bio_put(bio);
393 	return ret;
394 }
395 
396 static int read_disk_sb(mdk_rdev_t * rdev)
397 {
398 	char b[BDEVNAME_SIZE];
399 	if (!rdev->sb_page) {
400 		MD_BUG();
401 		return -EINVAL;
402 	}
403 	if (rdev->sb_loaded)
404 		return 0;
405 
406 
407 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
408 		goto fail;
409 	rdev->sb_loaded = 1;
410 	return 0;
411 
412 fail:
413 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
414 		bdevname(rdev->bdev,b));
415 	return -EINVAL;
416 }
417 
418 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
419 {
420 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
421 		(sb1->set_uuid1 == sb2->set_uuid1) &&
422 		(sb1->set_uuid2 == sb2->set_uuid2) &&
423 		(sb1->set_uuid3 == sb2->set_uuid3))
424 
425 		return 1;
426 
427 	return 0;
428 }
429 
430 
431 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
432 {
433 	int ret;
434 	mdp_super_t *tmp1, *tmp2;
435 
436 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
437 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
438 
439 	if (!tmp1 || !tmp2) {
440 		ret = 0;
441 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
442 		goto abort;
443 	}
444 
445 	*tmp1 = *sb1;
446 	*tmp2 = *sb2;
447 
448 	/*
449 	 * nr_disks is not constant
450 	 */
451 	tmp1->nr_disks = 0;
452 	tmp2->nr_disks = 0;
453 
454 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
455 		ret = 0;
456 	else
457 		ret = 1;
458 
459 abort:
460 	kfree(tmp1);
461 	kfree(tmp2);
462 	return ret;
463 }
464 
465 static unsigned int calc_sb_csum(mdp_super_t * sb)
466 {
467 	unsigned int disk_csum, csum;
468 
469 	disk_csum = sb->sb_csum;
470 	sb->sb_csum = 0;
471 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
472 	sb->sb_csum = disk_csum;
473 	return csum;
474 }
475 
476 
477 /*
478  * Handle superblock details.
479  * We want to be able to handle multiple superblock formats
480  * so we have a common interface to them all, and an array of
481  * different handlers.
482  * We rely on user-space to write the initial superblock, and support
483  * reading and updating of superblocks.
484  * Interface methods are:
485  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
486  *      loads and validates a superblock on dev.
487  *      if refdev != NULL, compare superblocks on both devices
488  *    Return:
489  *      0 - dev has a superblock that is compatible with refdev
490  *      1 - dev has a superblock that is compatible and newer than refdev
491  *          so dev should be used as the refdev in future
492  *     -EINVAL superblock incompatible or invalid
493  *     -othererror e.g. -EIO
494  *
495  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
496  *      Verify that dev is acceptable into mddev.
497  *       The first time, mddev->raid_disks will be 0, and data from
498  *       dev should be merged in.  Subsequent calls check that dev
499  *       is new enough.  Return 0 or -EINVAL
500  *
501  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
502  *     Update the superblock for rdev with data in mddev
503  *     This does not write to disc.
504  *
505  */
506 
507 struct super_type  {
508 	char 		*name;
509 	struct module	*owner;
510 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
511 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
512 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
513 };
514 
515 /*
516  * load_super for 0.90.0
517  */
518 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
519 {
520 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
521 	mdp_super_t *sb;
522 	int ret;
523 	sector_t sb_offset;
524 
525 	/*
526 	 * Calculate the position of the superblock,
527 	 * it's at the end of the disk.
528 	 *
529 	 * It also happens to be a multiple of 4Kb.
530 	 */
531 	sb_offset = calc_dev_sboffset(rdev->bdev);
532 	rdev->sb_offset = sb_offset;
533 
534 	ret = read_disk_sb(rdev);
535 	if (ret) return ret;
536 
537 	ret = -EINVAL;
538 
539 	bdevname(rdev->bdev, b);
540 	sb = (mdp_super_t*)page_address(rdev->sb_page);
541 
542 	if (sb->md_magic != MD_SB_MAGIC) {
543 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
544 		       b);
545 		goto abort;
546 	}
547 
548 	if (sb->major_version != 0 ||
549 	    sb->minor_version != 90) {
550 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
551 			sb->major_version, sb->minor_version,
552 			b);
553 		goto abort;
554 	}
555 
556 	if (sb->raid_disks <= 0)
557 		goto abort;
558 
559 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
560 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
561 			b);
562 		goto abort;
563 	}
564 
565 	rdev->preferred_minor = sb->md_minor;
566 	rdev->data_offset = 0;
567 
568 	if (sb->level == LEVEL_MULTIPATH)
569 		rdev->desc_nr = -1;
570 	else
571 		rdev->desc_nr = sb->this_disk.number;
572 
573 	if (refdev == 0)
574 		ret = 1;
575 	else {
576 		__u64 ev1, ev2;
577 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
578 		if (!uuid_equal(refsb, sb)) {
579 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
580 				b, bdevname(refdev->bdev,b2));
581 			goto abort;
582 		}
583 		if (!sb_equal(refsb, sb)) {
584 			printk(KERN_WARNING "md: %s has same UUID"
585 			       " but different superblock to %s\n",
586 			       b, bdevname(refdev->bdev, b2));
587 			goto abort;
588 		}
589 		ev1 = md_event(sb);
590 		ev2 = md_event(refsb);
591 		if (ev1 > ev2)
592 			ret = 1;
593 		else
594 			ret = 0;
595 	}
596 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
597 
598  abort:
599 	return ret;
600 }
601 
602 /*
603  * validate_super for 0.90.0
604  */
605 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
606 {
607 	mdp_disk_t *desc;
608 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
609 
610 	rdev->raid_disk = -1;
611 	rdev->in_sync = 0;
612 	if (mddev->raid_disks == 0) {
613 		mddev->major_version = 0;
614 		mddev->minor_version = sb->minor_version;
615 		mddev->patch_version = sb->patch_version;
616 		mddev->persistent = ! sb->not_persistent;
617 		mddev->chunk_size = sb->chunk_size;
618 		mddev->ctime = sb->ctime;
619 		mddev->utime = sb->utime;
620 		mddev->level = sb->level;
621 		mddev->layout = sb->layout;
622 		mddev->raid_disks = sb->raid_disks;
623 		mddev->size = sb->size;
624 		mddev->events = md_event(sb);
625 		mddev->bitmap_offset = 0;
626 
627 		if (sb->state & (1<<MD_SB_CLEAN))
628 			mddev->recovery_cp = MaxSector;
629 		else {
630 			if (sb->events_hi == sb->cp_events_hi &&
631 				sb->events_lo == sb->cp_events_lo) {
632 				mddev->recovery_cp = sb->recovery_cp;
633 			} else
634 				mddev->recovery_cp = 0;
635 		}
636 
637 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
638 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
639 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
640 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
641 
642 		mddev->max_disks = MD_SB_DISKS;
643 
644 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
645 		    mddev->bitmap_file == NULL) {
646 			if (mddev->level != 1) {
647 				/* FIXME use a better test */
648 				printk(KERN_WARNING "md: bitmaps only support for raid1\n");
649 				return -EINVAL;
650 			}
651 			mddev->bitmap_offset = (MD_SB_BYTES >> 9);
652 		}
653 
654 	} else if (mddev->pers == NULL) {
655 		/* Insist on good event counter while assembling */
656 		__u64 ev1 = md_event(sb);
657 		++ev1;
658 		if (ev1 < mddev->events)
659 			return -EINVAL;
660 	} else if (mddev->bitmap) {
661 		/* if adding to array with a bitmap, then we can accept an
662 		 * older device ... but not too old.
663 		 */
664 		__u64 ev1 = md_event(sb);
665 		if (ev1 < mddev->bitmap->events_cleared)
666 			return 0;
667 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
668 		return 0;
669 
670 	if (mddev->level != LEVEL_MULTIPATH) {
671 		rdev->faulty = 0;
672 		desc = sb->disks + rdev->desc_nr;
673 
674 		if (desc->state & (1<<MD_DISK_FAULTY))
675 			rdev->faulty = 1;
676 		else if (desc->state & (1<<MD_DISK_SYNC) &&
677 			 desc->raid_disk < mddev->raid_disks) {
678 			rdev->in_sync = 1;
679 			rdev->raid_disk = desc->raid_disk;
680 		}
681 	} else /* MULTIPATH are always insync */
682 		rdev->in_sync = 1;
683 	return 0;
684 }
685 
686 /*
687  * sync_super for 0.90.0
688  */
689 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
690 {
691 	mdp_super_t *sb;
692 	struct list_head *tmp;
693 	mdk_rdev_t *rdev2;
694 	int next_spare = mddev->raid_disks;
695 
696 	/* make rdev->sb match mddev data..
697 	 *
698 	 * 1/ zero out disks
699 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
700 	 * 3/ any empty disks < next_spare become removed
701 	 *
702 	 * disks[0] gets initialised to REMOVED because
703 	 * we cannot be sure from other fields if it has
704 	 * been initialised or not.
705 	 */
706 	int i;
707 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
708 
709 	sb = (mdp_super_t*)page_address(rdev->sb_page);
710 
711 	memset(sb, 0, sizeof(*sb));
712 
713 	sb->md_magic = MD_SB_MAGIC;
714 	sb->major_version = mddev->major_version;
715 	sb->minor_version = mddev->minor_version;
716 	sb->patch_version = mddev->patch_version;
717 	sb->gvalid_words  = 0; /* ignored */
718 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
719 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
720 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
721 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
722 
723 	sb->ctime = mddev->ctime;
724 	sb->level = mddev->level;
725 	sb->size  = mddev->size;
726 	sb->raid_disks = mddev->raid_disks;
727 	sb->md_minor = mddev->md_minor;
728 	sb->not_persistent = !mddev->persistent;
729 	sb->utime = mddev->utime;
730 	sb->state = 0;
731 	sb->events_hi = (mddev->events>>32);
732 	sb->events_lo = (u32)mddev->events;
733 
734 	if (mddev->in_sync)
735 	{
736 		sb->recovery_cp = mddev->recovery_cp;
737 		sb->cp_events_hi = (mddev->events>>32);
738 		sb->cp_events_lo = (u32)mddev->events;
739 		if (mddev->recovery_cp == MaxSector)
740 			sb->state = (1<< MD_SB_CLEAN);
741 	} else
742 		sb->recovery_cp = 0;
743 
744 	sb->layout = mddev->layout;
745 	sb->chunk_size = mddev->chunk_size;
746 
747 	if (mddev->bitmap && mddev->bitmap_file == NULL)
748 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
749 
750 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
751 	ITERATE_RDEV(mddev,rdev2,tmp) {
752 		mdp_disk_t *d;
753 		if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
754 			rdev2->desc_nr = rdev2->raid_disk;
755 		else
756 			rdev2->desc_nr = next_spare++;
757 		d = &sb->disks[rdev2->desc_nr];
758 		nr_disks++;
759 		d->number = rdev2->desc_nr;
760 		d->major = MAJOR(rdev2->bdev->bd_dev);
761 		d->minor = MINOR(rdev2->bdev->bd_dev);
762 		if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
763 			d->raid_disk = rdev2->raid_disk;
764 		else
765 			d->raid_disk = rdev2->desc_nr; /* compatibility */
766 		if (rdev2->faulty) {
767 			d->state = (1<<MD_DISK_FAULTY);
768 			failed++;
769 		} else if (rdev2->in_sync) {
770 			d->state = (1<<MD_DISK_ACTIVE);
771 			d->state |= (1<<MD_DISK_SYNC);
772 			active++;
773 			working++;
774 		} else {
775 			d->state = 0;
776 			spare++;
777 			working++;
778 		}
779 	}
780 
781 	/* now set the "removed" and "faulty" bits on any missing devices */
782 	for (i=0 ; i < mddev->raid_disks ; i++) {
783 		mdp_disk_t *d = &sb->disks[i];
784 		if (d->state == 0 && d->number == 0) {
785 			d->number = i;
786 			d->raid_disk = i;
787 			d->state = (1<<MD_DISK_REMOVED);
788 			d->state |= (1<<MD_DISK_FAULTY);
789 			failed++;
790 		}
791 	}
792 	sb->nr_disks = nr_disks;
793 	sb->active_disks = active;
794 	sb->working_disks = working;
795 	sb->failed_disks = failed;
796 	sb->spare_disks = spare;
797 
798 	sb->this_disk = sb->disks[rdev->desc_nr];
799 	sb->sb_csum = calc_sb_csum(sb);
800 }
801 
802 /*
803  * version 1 superblock
804  */
805 
806 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
807 {
808 	unsigned int disk_csum, csum;
809 	unsigned long long newcsum;
810 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
811 	unsigned int *isuper = (unsigned int*)sb;
812 	int i;
813 
814 	disk_csum = sb->sb_csum;
815 	sb->sb_csum = 0;
816 	newcsum = 0;
817 	for (i=0; size>=4; size -= 4 )
818 		newcsum += le32_to_cpu(*isuper++);
819 
820 	if (size == 2)
821 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
822 
823 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
824 	sb->sb_csum = disk_csum;
825 	return cpu_to_le32(csum);
826 }
827 
828 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
829 {
830 	struct mdp_superblock_1 *sb;
831 	int ret;
832 	sector_t sb_offset;
833 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
834 
835 	/*
836 	 * Calculate the position of the superblock.
837 	 * It is always aligned to a 4K boundary and
838 	 * depeding on minor_version, it can be:
839 	 * 0: At least 8K, but less than 12K, from end of device
840 	 * 1: At start of device
841 	 * 2: 4K from start of device.
842 	 */
843 	switch(minor_version) {
844 	case 0:
845 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
846 		sb_offset -= 8*2;
847 		sb_offset &= ~(sector_t)(4*2-1);
848 		/* convert from sectors to K */
849 		sb_offset /= 2;
850 		break;
851 	case 1:
852 		sb_offset = 0;
853 		break;
854 	case 2:
855 		sb_offset = 4;
856 		break;
857 	default:
858 		return -EINVAL;
859 	}
860 	rdev->sb_offset = sb_offset;
861 
862 	ret = read_disk_sb(rdev);
863 	if (ret) return ret;
864 
865 
866 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
867 
868 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
869 	    sb->major_version != cpu_to_le32(1) ||
870 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
871 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
872 	    sb->feature_map != 0)
873 		return -EINVAL;
874 
875 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
876 		printk("md: invalid superblock checksum on %s\n",
877 			bdevname(rdev->bdev,b));
878 		return -EINVAL;
879 	}
880 	if (le64_to_cpu(sb->data_size) < 10) {
881 		printk("md: data_size too small on %s\n",
882 		       bdevname(rdev->bdev,b));
883 		return -EINVAL;
884 	}
885 	rdev->preferred_minor = 0xffff;
886 	rdev->data_offset = le64_to_cpu(sb->data_offset);
887 
888 	if (refdev == 0)
889 		return 1;
890 	else {
891 		__u64 ev1, ev2;
892 		struct mdp_superblock_1 *refsb =
893 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
894 
895 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
896 		    sb->level != refsb->level ||
897 		    sb->layout != refsb->layout ||
898 		    sb->chunksize != refsb->chunksize) {
899 			printk(KERN_WARNING "md: %s has strangely different"
900 				" superblock to %s\n",
901 				bdevname(rdev->bdev,b),
902 				bdevname(refdev->bdev,b2));
903 			return -EINVAL;
904 		}
905 		ev1 = le64_to_cpu(sb->events);
906 		ev2 = le64_to_cpu(refsb->events);
907 
908 		if (ev1 > ev2)
909 			return 1;
910 	}
911 	if (minor_version)
912 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
913 	else
914 		rdev->size = rdev->sb_offset;
915 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
916 		return -EINVAL;
917 	rdev->size = le64_to_cpu(sb->data_size)/2;
918 	if (le32_to_cpu(sb->chunksize))
919 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
920 	return 0;
921 }
922 
923 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
924 {
925 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
926 
927 	rdev->raid_disk = -1;
928 	rdev->in_sync = 0;
929 	if (mddev->raid_disks == 0) {
930 		mddev->major_version = 1;
931 		mddev->patch_version = 0;
932 		mddev->persistent = 1;
933 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
934 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
935 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
936 		mddev->level = le32_to_cpu(sb->level);
937 		mddev->layout = le32_to_cpu(sb->layout);
938 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
939 		mddev->size = le64_to_cpu(sb->size)/2;
940 		mddev->events = le64_to_cpu(sb->events);
941 		mddev->bitmap_offset = 0;
942 
943 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
944 		memcpy(mddev->uuid, sb->set_uuid, 16);
945 
946 		mddev->max_disks =  (4096-256)/2;
947 
948 		if ((le32_to_cpu(sb->feature_map) & 1) &&
949 		    mddev->bitmap_file == NULL ) {
950 			if (mddev->level != 1) {
951 				printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
952 				return -EINVAL;
953 			}
954 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
955 		}
956 	} else if (mddev->pers == NULL) {
957 		/* Insist of good event counter while assembling */
958 		__u64 ev1 = le64_to_cpu(sb->events);
959 		++ev1;
960 		if (ev1 < mddev->events)
961 			return -EINVAL;
962 	} else if (mddev->bitmap) {
963 		/* If adding to array with a bitmap, then we can accept an
964 		 * older device, but not too old.
965 		 */
966 		__u64 ev1 = le64_to_cpu(sb->events);
967 		if (ev1 < mddev->bitmap->events_cleared)
968 			return 0;
969 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
970 		return 0;
971 
972 	if (mddev->level != LEVEL_MULTIPATH) {
973 		int role;
974 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
975 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
976 		switch(role) {
977 		case 0xffff: /* spare */
978 			rdev->faulty = 0;
979 			break;
980 		case 0xfffe: /* faulty */
981 			rdev->faulty = 1;
982 			break;
983 		default:
984 			rdev->in_sync = 1;
985 			rdev->faulty = 0;
986 			rdev->raid_disk = role;
987 			break;
988 		}
989 	} else /* MULTIPATH are always insync */
990 		rdev->in_sync = 1;
991 
992 	return 0;
993 }
994 
995 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
996 {
997 	struct mdp_superblock_1 *sb;
998 	struct list_head *tmp;
999 	mdk_rdev_t *rdev2;
1000 	int max_dev, i;
1001 	/* make rdev->sb match mddev and rdev data. */
1002 
1003 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1004 
1005 	sb->feature_map = 0;
1006 	sb->pad0 = 0;
1007 	memset(sb->pad1, 0, sizeof(sb->pad1));
1008 	memset(sb->pad2, 0, sizeof(sb->pad2));
1009 	memset(sb->pad3, 0, sizeof(sb->pad3));
1010 
1011 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1012 	sb->events = cpu_to_le64(mddev->events);
1013 	if (mddev->in_sync)
1014 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1015 	else
1016 		sb->resync_offset = cpu_to_le64(0);
1017 
1018 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1019 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1020 		sb->feature_map = cpu_to_le32(1);
1021 	}
1022 
1023 	max_dev = 0;
1024 	ITERATE_RDEV(mddev,rdev2,tmp)
1025 		if (rdev2->desc_nr+1 > max_dev)
1026 			max_dev = rdev2->desc_nr+1;
1027 
1028 	sb->max_dev = cpu_to_le32(max_dev);
1029 	for (i=0; i<max_dev;i++)
1030 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1031 
1032 	ITERATE_RDEV(mddev,rdev2,tmp) {
1033 		i = rdev2->desc_nr;
1034 		if (rdev2->faulty)
1035 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1036 		else if (rdev2->in_sync)
1037 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1038 		else
1039 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1040 	}
1041 
1042 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1043 	sb->sb_csum = calc_sb_1_csum(sb);
1044 }
1045 
1046 
1047 static struct super_type super_types[] = {
1048 	[0] = {
1049 		.name	= "0.90.0",
1050 		.owner	= THIS_MODULE,
1051 		.load_super	= super_90_load,
1052 		.validate_super	= super_90_validate,
1053 		.sync_super	= super_90_sync,
1054 	},
1055 	[1] = {
1056 		.name	= "md-1",
1057 		.owner	= THIS_MODULE,
1058 		.load_super	= super_1_load,
1059 		.validate_super	= super_1_validate,
1060 		.sync_super	= super_1_sync,
1061 	},
1062 };
1063 
1064 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1065 {
1066 	struct list_head *tmp;
1067 	mdk_rdev_t *rdev;
1068 
1069 	ITERATE_RDEV(mddev,rdev,tmp)
1070 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1071 			return rdev;
1072 
1073 	return NULL;
1074 }
1075 
1076 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1077 {
1078 	struct list_head *tmp;
1079 	mdk_rdev_t *rdev;
1080 
1081 	ITERATE_RDEV(mddev1,rdev,tmp)
1082 		if (match_dev_unit(mddev2, rdev))
1083 			return 1;
1084 
1085 	return 0;
1086 }
1087 
1088 static LIST_HEAD(pending_raid_disks);
1089 
1090 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1091 {
1092 	mdk_rdev_t *same_pdev;
1093 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1094 
1095 	if (rdev->mddev) {
1096 		MD_BUG();
1097 		return -EINVAL;
1098 	}
1099 	same_pdev = match_dev_unit(mddev, rdev);
1100 	if (same_pdev)
1101 		printk(KERN_WARNING
1102 			"%s: WARNING: %s appears to be on the same physical"
1103 	 		" disk as %s. True\n     protection against single-disk"
1104 			" failure might be compromised.\n",
1105 			mdname(mddev), bdevname(rdev->bdev,b),
1106 			bdevname(same_pdev->bdev,b2));
1107 
1108 	/* Verify rdev->desc_nr is unique.
1109 	 * If it is -1, assign a free number, else
1110 	 * check number is not in use
1111 	 */
1112 	if (rdev->desc_nr < 0) {
1113 		int choice = 0;
1114 		if (mddev->pers) choice = mddev->raid_disks;
1115 		while (find_rdev_nr(mddev, choice))
1116 			choice++;
1117 		rdev->desc_nr = choice;
1118 	} else {
1119 		if (find_rdev_nr(mddev, rdev->desc_nr))
1120 			return -EBUSY;
1121 	}
1122 
1123 	list_add(&rdev->same_set, &mddev->disks);
1124 	rdev->mddev = mddev;
1125 	printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1126 	return 0;
1127 }
1128 
1129 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1130 {
1131 	char b[BDEVNAME_SIZE];
1132 	if (!rdev->mddev) {
1133 		MD_BUG();
1134 		return;
1135 	}
1136 	list_del_init(&rdev->same_set);
1137 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1138 	rdev->mddev = NULL;
1139 }
1140 
1141 /*
1142  * prevent the device from being mounted, repartitioned or
1143  * otherwise reused by a RAID array (or any other kernel
1144  * subsystem), by bd_claiming the device.
1145  */
1146 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1147 {
1148 	int err = 0;
1149 	struct block_device *bdev;
1150 	char b[BDEVNAME_SIZE];
1151 
1152 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1153 	if (IS_ERR(bdev)) {
1154 		printk(KERN_ERR "md: could not open %s.\n",
1155 			__bdevname(dev, b));
1156 		return PTR_ERR(bdev);
1157 	}
1158 	err = bd_claim(bdev, rdev);
1159 	if (err) {
1160 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1161 			bdevname(bdev, b));
1162 		blkdev_put(bdev);
1163 		return err;
1164 	}
1165 	rdev->bdev = bdev;
1166 	return err;
1167 }
1168 
1169 static void unlock_rdev(mdk_rdev_t *rdev)
1170 {
1171 	struct block_device *bdev = rdev->bdev;
1172 	rdev->bdev = NULL;
1173 	if (!bdev)
1174 		MD_BUG();
1175 	bd_release(bdev);
1176 	blkdev_put(bdev);
1177 }
1178 
1179 void md_autodetect_dev(dev_t dev);
1180 
1181 static void export_rdev(mdk_rdev_t * rdev)
1182 {
1183 	char b[BDEVNAME_SIZE];
1184 	printk(KERN_INFO "md: export_rdev(%s)\n",
1185 		bdevname(rdev->bdev,b));
1186 	if (rdev->mddev)
1187 		MD_BUG();
1188 	free_disk_sb(rdev);
1189 	list_del_init(&rdev->same_set);
1190 #ifndef MODULE
1191 	md_autodetect_dev(rdev->bdev->bd_dev);
1192 #endif
1193 	unlock_rdev(rdev);
1194 	kfree(rdev);
1195 }
1196 
1197 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1198 {
1199 	unbind_rdev_from_array(rdev);
1200 	export_rdev(rdev);
1201 }
1202 
1203 static void export_array(mddev_t *mddev)
1204 {
1205 	struct list_head *tmp;
1206 	mdk_rdev_t *rdev;
1207 
1208 	ITERATE_RDEV(mddev,rdev,tmp) {
1209 		if (!rdev->mddev) {
1210 			MD_BUG();
1211 			continue;
1212 		}
1213 		kick_rdev_from_array(rdev);
1214 	}
1215 	if (!list_empty(&mddev->disks))
1216 		MD_BUG();
1217 	mddev->raid_disks = 0;
1218 	mddev->major_version = 0;
1219 }
1220 
1221 static void print_desc(mdp_disk_t *desc)
1222 {
1223 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1224 		desc->major,desc->minor,desc->raid_disk,desc->state);
1225 }
1226 
1227 static void print_sb(mdp_super_t *sb)
1228 {
1229 	int i;
1230 
1231 	printk(KERN_INFO
1232 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1233 		sb->major_version, sb->minor_version, sb->patch_version,
1234 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1235 		sb->ctime);
1236 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1237 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1238 		sb->md_minor, sb->layout, sb->chunk_size);
1239 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1240 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1241 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1242 		sb->failed_disks, sb->spare_disks,
1243 		sb->sb_csum, (unsigned long)sb->events_lo);
1244 
1245 	printk(KERN_INFO);
1246 	for (i = 0; i < MD_SB_DISKS; i++) {
1247 		mdp_disk_t *desc;
1248 
1249 		desc = sb->disks + i;
1250 		if (desc->number || desc->major || desc->minor ||
1251 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1252 			printk("     D %2d: ", i);
1253 			print_desc(desc);
1254 		}
1255 	}
1256 	printk(KERN_INFO "md:     THIS: ");
1257 	print_desc(&sb->this_disk);
1258 
1259 }
1260 
1261 static void print_rdev(mdk_rdev_t *rdev)
1262 {
1263 	char b[BDEVNAME_SIZE];
1264 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1265 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1266 	       	rdev->faulty, rdev->in_sync, rdev->desc_nr);
1267 	if (rdev->sb_loaded) {
1268 		printk(KERN_INFO "md: rdev superblock:\n");
1269 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1270 	} else
1271 		printk(KERN_INFO "md: no rdev superblock!\n");
1272 }
1273 
1274 void md_print_devices(void)
1275 {
1276 	struct list_head *tmp, *tmp2;
1277 	mdk_rdev_t *rdev;
1278 	mddev_t *mddev;
1279 	char b[BDEVNAME_SIZE];
1280 
1281 	printk("\n");
1282 	printk("md:	**********************************\n");
1283 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1284 	printk("md:	**********************************\n");
1285 	ITERATE_MDDEV(mddev,tmp) {
1286 
1287 		if (mddev->bitmap)
1288 			bitmap_print_sb(mddev->bitmap);
1289 		else
1290 			printk("%s: ", mdname(mddev));
1291 		ITERATE_RDEV(mddev,rdev,tmp2)
1292 			printk("<%s>", bdevname(rdev->bdev,b));
1293 		printk("\n");
1294 
1295 		ITERATE_RDEV(mddev,rdev,tmp2)
1296 			print_rdev(rdev);
1297 	}
1298 	printk("md:	**********************************\n");
1299 	printk("\n");
1300 }
1301 
1302 
1303 static void sync_sbs(mddev_t * mddev)
1304 {
1305 	mdk_rdev_t *rdev;
1306 	struct list_head *tmp;
1307 
1308 	ITERATE_RDEV(mddev,rdev,tmp) {
1309 		super_types[mddev->major_version].
1310 			sync_super(mddev, rdev);
1311 		rdev->sb_loaded = 1;
1312 	}
1313 }
1314 
1315 static void md_update_sb(mddev_t * mddev)
1316 {
1317 	int err;
1318 	struct list_head *tmp;
1319 	mdk_rdev_t *rdev;
1320 	int sync_req;
1321 
1322 repeat:
1323 	spin_lock(&mddev->write_lock);
1324 	sync_req = mddev->in_sync;
1325 	mddev->utime = get_seconds();
1326 	mddev->events ++;
1327 
1328 	if (!mddev->events) {
1329 		/*
1330 		 * oops, this 64-bit counter should never wrap.
1331 		 * Either we are in around ~1 trillion A.C., assuming
1332 		 * 1 reboot per second, or we have a bug:
1333 		 */
1334 		MD_BUG();
1335 		mddev->events --;
1336 	}
1337 	mddev->sb_dirty = 2;
1338 	sync_sbs(mddev);
1339 
1340 	/*
1341 	 * do not write anything to disk if using
1342 	 * nonpersistent superblocks
1343 	 */
1344 	if (!mddev->persistent) {
1345 		mddev->sb_dirty = 0;
1346 		spin_unlock(&mddev->write_lock);
1347 		wake_up(&mddev->sb_wait);
1348 		return;
1349 	}
1350 	spin_unlock(&mddev->write_lock);
1351 
1352 	dprintk(KERN_INFO
1353 		"md: updating %s RAID superblock on device (in sync %d)\n",
1354 		mdname(mddev),mddev->in_sync);
1355 
1356 	err = bitmap_update_sb(mddev->bitmap);
1357 	ITERATE_RDEV(mddev,rdev,tmp) {
1358 		char b[BDEVNAME_SIZE];
1359 		dprintk(KERN_INFO "md: ");
1360 		if (rdev->faulty)
1361 			dprintk("(skipping faulty ");
1362 
1363 		dprintk("%s ", bdevname(rdev->bdev,b));
1364 		if (!rdev->faulty) {
1365 			md_super_write(mddev,rdev,
1366 				       rdev->sb_offset<<1, MD_SB_BYTES,
1367 				       rdev->sb_page);
1368 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1369 				bdevname(rdev->bdev,b),
1370 				(unsigned long long)rdev->sb_offset);
1371 
1372 		} else
1373 			dprintk(")\n");
1374 		if (mddev->level == LEVEL_MULTIPATH)
1375 			/* only need to write one superblock... */
1376 			break;
1377 	}
1378 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1379 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1380 
1381 	spin_lock(&mddev->write_lock);
1382 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1383 		/* have to write it out again */
1384 		spin_unlock(&mddev->write_lock);
1385 		goto repeat;
1386 	}
1387 	mddev->sb_dirty = 0;
1388 	spin_unlock(&mddev->write_lock);
1389 	wake_up(&mddev->sb_wait);
1390 
1391 }
1392 
1393 /*
1394  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1395  *
1396  * mark the device faulty if:
1397  *
1398  *   - the device is nonexistent (zero size)
1399  *   - the device has no valid superblock
1400  *
1401  * a faulty rdev _never_ has rdev->sb set.
1402  */
1403 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1404 {
1405 	char b[BDEVNAME_SIZE];
1406 	int err;
1407 	mdk_rdev_t *rdev;
1408 	sector_t size;
1409 
1410 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1411 	if (!rdev) {
1412 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1413 		return ERR_PTR(-ENOMEM);
1414 	}
1415 	memset(rdev, 0, sizeof(*rdev));
1416 
1417 	if ((err = alloc_disk_sb(rdev)))
1418 		goto abort_free;
1419 
1420 	err = lock_rdev(rdev, newdev);
1421 	if (err)
1422 		goto abort_free;
1423 
1424 	rdev->desc_nr = -1;
1425 	rdev->faulty = 0;
1426 	rdev->in_sync = 0;
1427 	rdev->data_offset = 0;
1428 	atomic_set(&rdev->nr_pending, 0);
1429 
1430 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1431 	if (!size) {
1432 		printk(KERN_WARNING
1433 			"md: %s has zero or unknown size, marking faulty!\n",
1434 			bdevname(rdev->bdev,b));
1435 		err = -EINVAL;
1436 		goto abort_free;
1437 	}
1438 
1439 	if (super_format >= 0) {
1440 		err = super_types[super_format].
1441 			load_super(rdev, NULL, super_minor);
1442 		if (err == -EINVAL) {
1443 			printk(KERN_WARNING
1444 				"md: %s has invalid sb, not importing!\n",
1445 				bdevname(rdev->bdev,b));
1446 			goto abort_free;
1447 		}
1448 		if (err < 0) {
1449 			printk(KERN_WARNING
1450 				"md: could not read %s's sb, not importing!\n",
1451 				bdevname(rdev->bdev,b));
1452 			goto abort_free;
1453 		}
1454 	}
1455 	INIT_LIST_HEAD(&rdev->same_set);
1456 
1457 	return rdev;
1458 
1459 abort_free:
1460 	if (rdev->sb_page) {
1461 		if (rdev->bdev)
1462 			unlock_rdev(rdev);
1463 		free_disk_sb(rdev);
1464 	}
1465 	kfree(rdev);
1466 	return ERR_PTR(err);
1467 }
1468 
1469 /*
1470  * Check a full RAID array for plausibility
1471  */
1472 
1473 
1474 static void analyze_sbs(mddev_t * mddev)
1475 {
1476 	int i;
1477 	struct list_head *tmp;
1478 	mdk_rdev_t *rdev, *freshest;
1479 	char b[BDEVNAME_SIZE];
1480 
1481 	freshest = NULL;
1482 	ITERATE_RDEV(mddev,rdev,tmp)
1483 		switch (super_types[mddev->major_version].
1484 			load_super(rdev, freshest, mddev->minor_version)) {
1485 		case 1:
1486 			freshest = rdev;
1487 			break;
1488 		case 0:
1489 			break;
1490 		default:
1491 			printk( KERN_ERR \
1492 				"md: fatal superblock inconsistency in %s"
1493 				" -- removing from array\n",
1494 				bdevname(rdev->bdev,b));
1495 			kick_rdev_from_array(rdev);
1496 		}
1497 
1498 
1499 	super_types[mddev->major_version].
1500 		validate_super(mddev, freshest);
1501 
1502 	i = 0;
1503 	ITERATE_RDEV(mddev,rdev,tmp) {
1504 		if (rdev != freshest)
1505 			if (super_types[mddev->major_version].
1506 			    validate_super(mddev, rdev)) {
1507 				printk(KERN_WARNING "md: kicking non-fresh %s"
1508 					" from array!\n",
1509 					bdevname(rdev->bdev,b));
1510 				kick_rdev_from_array(rdev);
1511 				continue;
1512 			}
1513 		if (mddev->level == LEVEL_MULTIPATH) {
1514 			rdev->desc_nr = i++;
1515 			rdev->raid_disk = rdev->desc_nr;
1516 			rdev->in_sync = 1;
1517 		}
1518 	}
1519 
1520 
1521 
1522 	if (mddev->recovery_cp != MaxSector &&
1523 	    mddev->level >= 1)
1524 		printk(KERN_ERR "md: %s: raid array is not clean"
1525 		       " -- starting background reconstruction\n",
1526 		       mdname(mddev));
1527 
1528 }
1529 
1530 int mdp_major = 0;
1531 
1532 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1533 {
1534 	static DECLARE_MUTEX(disks_sem);
1535 	mddev_t *mddev = mddev_find(dev);
1536 	struct gendisk *disk;
1537 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1538 	int shift = partitioned ? MdpMinorShift : 0;
1539 	int unit = MINOR(dev) >> shift;
1540 
1541 	if (!mddev)
1542 		return NULL;
1543 
1544 	down(&disks_sem);
1545 	if (mddev->gendisk) {
1546 		up(&disks_sem);
1547 		mddev_put(mddev);
1548 		return NULL;
1549 	}
1550 	disk = alloc_disk(1 << shift);
1551 	if (!disk) {
1552 		up(&disks_sem);
1553 		mddev_put(mddev);
1554 		return NULL;
1555 	}
1556 	disk->major = MAJOR(dev);
1557 	disk->first_minor = unit << shift;
1558 	if (partitioned) {
1559 		sprintf(disk->disk_name, "md_d%d", unit);
1560 		sprintf(disk->devfs_name, "md/d%d", unit);
1561 	} else {
1562 		sprintf(disk->disk_name, "md%d", unit);
1563 		sprintf(disk->devfs_name, "md/%d", unit);
1564 	}
1565 	disk->fops = &md_fops;
1566 	disk->private_data = mddev;
1567 	disk->queue = mddev->queue;
1568 	add_disk(disk);
1569 	mddev->gendisk = disk;
1570 	up(&disks_sem);
1571 	return NULL;
1572 }
1573 
1574 void md_wakeup_thread(mdk_thread_t *thread);
1575 
1576 static void md_safemode_timeout(unsigned long data)
1577 {
1578 	mddev_t *mddev = (mddev_t *) data;
1579 
1580 	mddev->safemode = 1;
1581 	md_wakeup_thread(mddev->thread);
1582 }
1583 
1584 
1585 static int do_md_run(mddev_t * mddev)
1586 {
1587 	int pnum, err;
1588 	int chunk_size;
1589 	struct list_head *tmp;
1590 	mdk_rdev_t *rdev;
1591 	struct gendisk *disk;
1592 	char b[BDEVNAME_SIZE];
1593 
1594 	if (list_empty(&mddev->disks))
1595 		/* cannot run an array with no devices.. */
1596 		return -EINVAL;
1597 
1598 	if (mddev->pers)
1599 		return -EBUSY;
1600 
1601 	/*
1602 	 * Analyze all RAID superblock(s)
1603 	 */
1604 	if (!mddev->raid_disks)
1605 		analyze_sbs(mddev);
1606 
1607 	chunk_size = mddev->chunk_size;
1608 	pnum = level_to_pers(mddev->level);
1609 
1610 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1611 		if (!chunk_size) {
1612 			/*
1613 			 * 'default chunksize' in the old md code used to
1614 			 * be PAGE_SIZE, baaad.
1615 			 * we abort here to be on the safe side. We don't
1616 			 * want to continue the bad practice.
1617 			 */
1618 			printk(KERN_ERR
1619 				"no chunksize specified, see 'man raidtab'\n");
1620 			return -EINVAL;
1621 		}
1622 		if (chunk_size > MAX_CHUNK_SIZE) {
1623 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1624 				chunk_size, MAX_CHUNK_SIZE);
1625 			return -EINVAL;
1626 		}
1627 		/*
1628 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1629 		 */
1630 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1631 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1632 			return -EINVAL;
1633 		}
1634 		if (chunk_size < PAGE_SIZE) {
1635 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1636 				chunk_size, PAGE_SIZE);
1637 			return -EINVAL;
1638 		}
1639 
1640 		/* devices must have minimum size of one chunk */
1641 		ITERATE_RDEV(mddev,rdev,tmp) {
1642 			if (rdev->faulty)
1643 				continue;
1644 			if (rdev->size < chunk_size / 1024) {
1645 				printk(KERN_WARNING
1646 					"md: Dev %s smaller than chunk_size:"
1647 					" %lluk < %dk\n",
1648 					bdevname(rdev->bdev,b),
1649 					(unsigned long long)rdev->size,
1650 					chunk_size / 1024);
1651 				return -EINVAL;
1652 			}
1653 		}
1654 	}
1655 
1656 #ifdef CONFIG_KMOD
1657 	if (!pers[pnum])
1658 	{
1659 		request_module("md-personality-%d", pnum);
1660 	}
1661 #endif
1662 
1663 	/*
1664 	 * Drop all container device buffers, from now on
1665 	 * the only valid external interface is through the md
1666 	 * device.
1667 	 * Also find largest hardsector size
1668 	 */
1669 	ITERATE_RDEV(mddev,rdev,tmp) {
1670 		if (rdev->faulty)
1671 			continue;
1672 		sync_blockdev(rdev->bdev);
1673 		invalidate_bdev(rdev->bdev, 0);
1674 	}
1675 
1676 	md_probe(mddev->unit, NULL, NULL);
1677 	disk = mddev->gendisk;
1678 	if (!disk)
1679 		return -ENOMEM;
1680 
1681 	spin_lock(&pers_lock);
1682 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1683 		spin_unlock(&pers_lock);
1684 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
1685 		       pnum);
1686 		return -EINVAL;
1687 	}
1688 
1689 	mddev->pers = pers[pnum];
1690 	spin_unlock(&pers_lock);
1691 
1692 	mddev->recovery = 0;
1693 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1694 
1695 	/* before we start the array running, initialise the bitmap */
1696 	err = bitmap_create(mddev);
1697 	if (err)
1698 		printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1699 			mdname(mddev), err);
1700 	else
1701 		err = mddev->pers->run(mddev);
1702 	if (err) {
1703 		printk(KERN_ERR "md: pers->run() failed ...\n");
1704 		module_put(mddev->pers->owner);
1705 		mddev->pers = NULL;
1706 		bitmap_destroy(mddev);
1707 		return err;
1708 	}
1709  	atomic_set(&mddev->writes_pending,0);
1710 	mddev->safemode = 0;
1711 	mddev->safemode_timer.function = md_safemode_timeout;
1712 	mddev->safemode_timer.data = (unsigned long) mddev;
1713 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1714 	mddev->in_sync = 1;
1715 
1716 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1717 	md_wakeup_thread(mddev->thread);
1718 
1719 	if (mddev->sb_dirty)
1720 		md_update_sb(mddev);
1721 
1722 	set_capacity(disk, mddev->array_size<<1);
1723 
1724 	/* If we call blk_queue_make_request here, it will
1725 	 * re-initialise max_sectors etc which may have been
1726 	 * refined inside -> run.  So just set the bits we need to set.
1727 	 * Most initialisation happended when we called
1728 	 * blk_queue_make_request(..., md_fail_request)
1729 	 * earlier.
1730 	 */
1731 	mddev->queue->queuedata = mddev;
1732 	mddev->queue->make_request_fn = mddev->pers->make_request;
1733 
1734 	mddev->changed = 1;
1735 	return 0;
1736 }
1737 
1738 static int restart_array(mddev_t *mddev)
1739 {
1740 	struct gendisk *disk = mddev->gendisk;
1741 	int err;
1742 
1743 	/*
1744 	 * Complain if it has no devices
1745 	 */
1746 	err = -ENXIO;
1747 	if (list_empty(&mddev->disks))
1748 		goto out;
1749 
1750 	if (mddev->pers) {
1751 		err = -EBUSY;
1752 		if (!mddev->ro)
1753 			goto out;
1754 
1755 		mddev->safemode = 0;
1756 		mddev->ro = 0;
1757 		set_disk_ro(disk, 0);
1758 
1759 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
1760 			mdname(mddev));
1761 		/*
1762 		 * Kick recovery or resync if necessary
1763 		 */
1764 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1765 		md_wakeup_thread(mddev->thread);
1766 		err = 0;
1767 	} else {
1768 		printk(KERN_ERR "md: %s has no personality assigned.\n",
1769 			mdname(mddev));
1770 		err = -EINVAL;
1771 	}
1772 
1773 out:
1774 	return err;
1775 }
1776 
1777 static int do_md_stop(mddev_t * mddev, int ro)
1778 {
1779 	int err = 0;
1780 	struct gendisk *disk = mddev->gendisk;
1781 
1782 	if (mddev->pers) {
1783 		if (atomic_read(&mddev->active)>2) {
1784 			printk("md: %s still in use.\n",mdname(mddev));
1785 			return -EBUSY;
1786 		}
1787 
1788 		if (mddev->sync_thread) {
1789 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1790 			md_unregister_thread(mddev->sync_thread);
1791 			mddev->sync_thread = NULL;
1792 		}
1793 
1794 		del_timer_sync(&mddev->safemode_timer);
1795 
1796 		invalidate_partition(disk, 0);
1797 
1798 		if (ro) {
1799 			err  = -ENXIO;
1800 			if (mddev->ro)
1801 				goto out;
1802 			mddev->ro = 1;
1803 		} else {
1804 			bitmap_flush(mddev);
1805 			wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1806 			if (mddev->ro)
1807 				set_disk_ro(disk, 0);
1808 			blk_queue_make_request(mddev->queue, md_fail_request);
1809 			mddev->pers->stop(mddev);
1810 			module_put(mddev->pers->owner);
1811 			mddev->pers = NULL;
1812 			if (mddev->ro)
1813 				mddev->ro = 0;
1814 		}
1815 		if (!mddev->in_sync) {
1816 			/* mark array as shutdown cleanly */
1817 			mddev->in_sync = 1;
1818 			md_update_sb(mddev);
1819 		}
1820 		if (ro)
1821 			set_disk_ro(disk, 1);
1822 	}
1823 
1824 	bitmap_destroy(mddev);
1825 	if (mddev->bitmap_file) {
1826 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1827 		fput(mddev->bitmap_file);
1828 		mddev->bitmap_file = NULL;
1829 	}
1830 	mddev->bitmap_offset = 0;
1831 
1832 	/*
1833 	 * Free resources if final stop
1834 	 */
1835 	if (!ro) {
1836 		struct gendisk *disk;
1837 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1838 
1839 		export_array(mddev);
1840 
1841 		mddev->array_size = 0;
1842 		disk = mddev->gendisk;
1843 		if (disk)
1844 			set_capacity(disk, 0);
1845 		mddev->changed = 1;
1846 	} else
1847 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
1848 			mdname(mddev));
1849 	err = 0;
1850 out:
1851 	return err;
1852 }
1853 
1854 static void autorun_array(mddev_t *mddev)
1855 {
1856 	mdk_rdev_t *rdev;
1857 	struct list_head *tmp;
1858 	int err;
1859 
1860 	if (list_empty(&mddev->disks))
1861 		return;
1862 
1863 	printk(KERN_INFO "md: running: ");
1864 
1865 	ITERATE_RDEV(mddev,rdev,tmp) {
1866 		char b[BDEVNAME_SIZE];
1867 		printk("<%s>", bdevname(rdev->bdev,b));
1868 	}
1869 	printk("\n");
1870 
1871 	err = do_md_run (mddev);
1872 	if (err) {
1873 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1874 		do_md_stop (mddev, 0);
1875 	}
1876 }
1877 
1878 /*
1879  * lets try to run arrays based on all disks that have arrived
1880  * until now. (those are in pending_raid_disks)
1881  *
1882  * the method: pick the first pending disk, collect all disks with
1883  * the same UUID, remove all from the pending list and put them into
1884  * the 'same_array' list. Then order this list based on superblock
1885  * update time (freshest comes first), kick out 'old' disks and
1886  * compare superblocks. If everything's fine then run it.
1887  *
1888  * If "unit" is allocated, then bump its reference count
1889  */
1890 static void autorun_devices(int part)
1891 {
1892 	struct list_head candidates;
1893 	struct list_head *tmp;
1894 	mdk_rdev_t *rdev0, *rdev;
1895 	mddev_t *mddev;
1896 	char b[BDEVNAME_SIZE];
1897 
1898 	printk(KERN_INFO "md: autorun ...\n");
1899 	while (!list_empty(&pending_raid_disks)) {
1900 		dev_t dev;
1901 		rdev0 = list_entry(pending_raid_disks.next,
1902 					 mdk_rdev_t, same_set);
1903 
1904 		printk(KERN_INFO "md: considering %s ...\n",
1905 			bdevname(rdev0->bdev,b));
1906 		INIT_LIST_HEAD(&candidates);
1907 		ITERATE_RDEV_PENDING(rdev,tmp)
1908 			if (super_90_load(rdev, rdev0, 0) >= 0) {
1909 				printk(KERN_INFO "md:  adding %s ...\n",
1910 					bdevname(rdev->bdev,b));
1911 				list_move(&rdev->same_set, &candidates);
1912 			}
1913 		/*
1914 		 * now we have a set of devices, with all of them having
1915 		 * mostly sane superblocks. It's time to allocate the
1916 		 * mddev.
1917 		 */
1918 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1919 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1920 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1921 			break;
1922 		}
1923 		if (part)
1924 			dev = MKDEV(mdp_major,
1925 				    rdev0->preferred_minor << MdpMinorShift);
1926 		else
1927 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1928 
1929 		md_probe(dev, NULL, NULL);
1930 		mddev = mddev_find(dev);
1931 		if (!mddev) {
1932 			printk(KERN_ERR
1933 				"md: cannot allocate memory for md drive.\n");
1934 			break;
1935 		}
1936 		if (mddev_lock(mddev))
1937 			printk(KERN_WARNING "md: %s locked, cannot run\n",
1938 			       mdname(mddev));
1939 		else if (mddev->raid_disks || mddev->major_version
1940 			 || !list_empty(&mddev->disks)) {
1941 			printk(KERN_WARNING
1942 				"md: %s already running, cannot run %s\n",
1943 				mdname(mddev), bdevname(rdev0->bdev,b));
1944 			mddev_unlock(mddev);
1945 		} else {
1946 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
1947 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1948 				list_del_init(&rdev->same_set);
1949 				if (bind_rdev_to_array(rdev, mddev))
1950 					export_rdev(rdev);
1951 			}
1952 			autorun_array(mddev);
1953 			mddev_unlock(mddev);
1954 		}
1955 		/* on success, candidates will be empty, on error
1956 		 * it won't...
1957 		 */
1958 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1959 			export_rdev(rdev);
1960 		mddev_put(mddev);
1961 	}
1962 	printk(KERN_INFO "md: ... autorun DONE.\n");
1963 }
1964 
1965 /*
1966  * import RAID devices based on one partition
1967  * if possible, the array gets run as well.
1968  */
1969 
1970 static int autostart_array(dev_t startdev)
1971 {
1972 	char b[BDEVNAME_SIZE];
1973 	int err = -EINVAL, i;
1974 	mdp_super_t *sb = NULL;
1975 	mdk_rdev_t *start_rdev = NULL, *rdev;
1976 
1977 	start_rdev = md_import_device(startdev, 0, 0);
1978 	if (IS_ERR(start_rdev))
1979 		return err;
1980 
1981 
1982 	/* NOTE: this can only work for 0.90.0 superblocks */
1983 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1984 	if (sb->major_version != 0 ||
1985 	    sb->minor_version != 90 ) {
1986 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1987 		export_rdev(start_rdev);
1988 		return err;
1989 	}
1990 
1991 	if (start_rdev->faulty) {
1992 		printk(KERN_WARNING
1993 			"md: can not autostart based on faulty %s!\n",
1994 			bdevname(start_rdev->bdev,b));
1995 		export_rdev(start_rdev);
1996 		return err;
1997 	}
1998 	list_add(&start_rdev->same_set, &pending_raid_disks);
1999 
2000 	for (i = 0; i < MD_SB_DISKS; i++) {
2001 		mdp_disk_t *desc = sb->disks + i;
2002 		dev_t dev = MKDEV(desc->major, desc->minor);
2003 
2004 		if (!dev)
2005 			continue;
2006 		if (dev == startdev)
2007 			continue;
2008 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2009 			continue;
2010 		rdev = md_import_device(dev, 0, 0);
2011 		if (IS_ERR(rdev))
2012 			continue;
2013 
2014 		list_add(&rdev->same_set, &pending_raid_disks);
2015 	}
2016 
2017 	/*
2018 	 * possibly return codes
2019 	 */
2020 	autorun_devices(0);
2021 	return 0;
2022 
2023 }
2024 
2025 
2026 static int get_version(void __user * arg)
2027 {
2028 	mdu_version_t ver;
2029 
2030 	ver.major = MD_MAJOR_VERSION;
2031 	ver.minor = MD_MINOR_VERSION;
2032 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2033 
2034 	if (copy_to_user(arg, &ver, sizeof(ver)))
2035 		return -EFAULT;
2036 
2037 	return 0;
2038 }
2039 
2040 static int get_array_info(mddev_t * mddev, void __user * arg)
2041 {
2042 	mdu_array_info_t info;
2043 	int nr,working,active,failed,spare;
2044 	mdk_rdev_t *rdev;
2045 	struct list_head *tmp;
2046 
2047 	nr=working=active=failed=spare=0;
2048 	ITERATE_RDEV(mddev,rdev,tmp) {
2049 		nr++;
2050 		if (rdev->faulty)
2051 			failed++;
2052 		else {
2053 			working++;
2054 			if (rdev->in_sync)
2055 				active++;
2056 			else
2057 				spare++;
2058 		}
2059 	}
2060 
2061 	info.major_version = mddev->major_version;
2062 	info.minor_version = mddev->minor_version;
2063 	info.patch_version = MD_PATCHLEVEL_VERSION;
2064 	info.ctime         = mddev->ctime;
2065 	info.level         = mddev->level;
2066 	info.size          = mddev->size;
2067 	info.nr_disks      = nr;
2068 	info.raid_disks    = mddev->raid_disks;
2069 	info.md_minor      = mddev->md_minor;
2070 	info.not_persistent= !mddev->persistent;
2071 
2072 	info.utime         = mddev->utime;
2073 	info.state         = 0;
2074 	if (mddev->in_sync)
2075 		info.state = (1<<MD_SB_CLEAN);
2076 	info.active_disks  = active;
2077 	info.working_disks = working;
2078 	info.failed_disks  = failed;
2079 	info.spare_disks   = spare;
2080 
2081 	info.layout        = mddev->layout;
2082 	info.chunk_size    = mddev->chunk_size;
2083 
2084 	if (copy_to_user(arg, &info, sizeof(info)))
2085 		return -EFAULT;
2086 
2087 	return 0;
2088 }
2089 
2090 static int get_bitmap_file(mddev_t * mddev, void * arg)
2091 {
2092 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2093 	char *ptr, *buf = NULL;
2094 	int err = -ENOMEM;
2095 
2096 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2097 	if (!file)
2098 		goto out;
2099 
2100 	/* bitmap disabled, zero the first byte and copy out */
2101 	if (!mddev->bitmap || !mddev->bitmap->file) {
2102 		file->pathname[0] = '\0';
2103 		goto copy_out;
2104 	}
2105 
2106 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2107 	if (!buf)
2108 		goto out;
2109 
2110 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2111 	if (!ptr)
2112 		goto out;
2113 
2114 	strcpy(file->pathname, ptr);
2115 
2116 copy_out:
2117 	err = 0;
2118 	if (copy_to_user(arg, file, sizeof(*file)))
2119 		err = -EFAULT;
2120 out:
2121 	kfree(buf);
2122 	kfree(file);
2123 	return err;
2124 }
2125 
2126 static int get_disk_info(mddev_t * mddev, void __user * arg)
2127 {
2128 	mdu_disk_info_t info;
2129 	unsigned int nr;
2130 	mdk_rdev_t *rdev;
2131 
2132 	if (copy_from_user(&info, arg, sizeof(info)))
2133 		return -EFAULT;
2134 
2135 	nr = info.number;
2136 
2137 	rdev = find_rdev_nr(mddev, nr);
2138 	if (rdev) {
2139 		info.major = MAJOR(rdev->bdev->bd_dev);
2140 		info.minor = MINOR(rdev->bdev->bd_dev);
2141 		info.raid_disk = rdev->raid_disk;
2142 		info.state = 0;
2143 		if (rdev->faulty)
2144 			info.state |= (1<<MD_DISK_FAULTY);
2145 		else if (rdev->in_sync) {
2146 			info.state |= (1<<MD_DISK_ACTIVE);
2147 			info.state |= (1<<MD_DISK_SYNC);
2148 		}
2149 	} else {
2150 		info.major = info.minor = 0;
2151 		info.raid_disk = -1;
2152 		info.state = (1<<MD_DISK_REMOVED);
2153 	}
2154 
2155 	if (copy_to_user(arg, &info, sizeof(info)))
2156 		return -EFAULT;
2157 
2158 	return 0;
2159 }
2160 
2161 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2162 {
2163 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2164 	mdk_rdev_t *rdev;
2165 	dev_t dev = MKDEV(info->major,info->minor);
2166 
2167 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2168 		return -EOVERFLOW;
2169 
2170 	if (!mddev->raid_disks) {
2171 		int err;
2172 		/* expecting a device which has a superblock */
2173 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2174 		if (IS_ERR(rdev)) {
2175 			printk(KERN_WARNING
2176 				"md: md_import_device returned %ld\n",
2177 				PTR_ERR(rdev));
2178 			return PTR_ERR(rdev);
2179 		}
2180 		if (!list_empty(&mddev->disks)) {
2181 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2182 							mdk_rdev_t, same_set);
2183 			int err = super_types[mddev->major_version]
2184 				.load_super(rdev, rdev0, mddev->minor_version);
2185 			if (err < 0) {
2186 				printk(KERN_WARNING
2187 					"md: %s has different UUID to %s\n",
2188 					bdevname(rdev->bdev,b),
2189 					bdevname(rdev0->bdev,b2));
2190 				export_rdev(rdev);
2191 				return -EINVAL;
2192 			}
2193 		}
2194 		err = bind_rdev_to_array(rdev, mddev);
2195 		if (err)
2196 			export_rdev(rdev);
2197 		return err;
2198 	}
2199 
2200 	/*
2201 	 * add_new_disk can be used once the array is assembled
2202 	 * to add "hot spares".  They must already have a superblock
2203 	 * written
2204 	 */
2205 	if (mddev->pers) {
2206 		int err;
2207 		if (!mddev->pers->hot_add_disk) {
2208 			printk(KERN_WARNING
2209 				"%s: personality does not support diskops!\n",
2210 			       mdname(mddev));
2211 			return -EINVAL;
2212 		}
2213 		rdev = md_import_device(dev, mddev->major_version,
2214 					mddev->minor_version);
2215 		if (IS_ERR(rdev)) {
2216 			printk(KERN_WARNING
2217 				"md: md_import_device returned %ld\n",
2218 				PTR_ERR(rdev));
2219 			return PTR_ERR(rdev);
2220 		}
2221 		/* set save_raid_disk if appropriate */
2222 		if (!mddev->persistent) {
2223 			if (info->state & (1<<MD_DISK_SYNC)  &&
2224 			    info->raid_disk < mddev->raid_disks)
2225 				rdev->raid_disk = info->raid_disk;
2226 			else
2227 				rdev->raid_disk = -1;
2228 		} else
2229 			super_types[mddev->major_version].
2230 				validate_super(mddev, rdev);
2231 		rdev->saved_raid_disk = rdev->raid_disk;
2232 
2233 		rdev->in_sync = 0; /* just to be sure */
2234 		rdev->raid_disk = -1;
2235 		err = bind_rdev_to_array(rdev, mddev);
2236 		if (err)
2237 			export_rdev(rdev);
2238 
2239 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2240 		md_wakeup_thread(mddev->thread);
2241 		return err;
2242 	}
2243 
2244 	/* otherwise, add_new_disk is only allowed
2245 	 * for major_version==0 superblocks
2246 	 */
2247 	if (mddev->major_version != 0) {
2248 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2249 		       mdname(mddev));
2250 		return -EINVAL;
2251 	}
2252 
2253 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2254 		int err;
2255 		rdev = md_import_device (dev, -1, 0);
2256 		if (IS_ERR(rdev)) {
2257 			printk(KERN_WARNING
2258 				"md: error, md_import_device() returned %ld\n",
2259 				PTR_ERR(rdev));
2260 			return PTR_ERR(rdev);
2261 		}
2262 		rdev->desc_nr = info->number;
2263 		if (info->raid_disk < mddev->raid_disks)
2264 			rdev->raid_disk = info->raid_disk;
2265 		else
2266 			rdev->raid_disk = -1;
2267 
2268 		rdev->faulty = 0;
2269 		if (rdev->raid_disk < mddev->raid_disks)
2270 			rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2271 		else
2272 			rdev->in_sync = 0;
2273 
2274 		err = bind_rdev_to_array(rdev, mddev);
2275 		if (err) {
2276 			export_rdev(rdev);
2277 			return err;
2278 		}
2279 
2280 		if (!mddev->persistent) {
2281 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2282 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2283 		} else
2284 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2285 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2286 
2287 		if (!mddev->size || (mddev->size > rdev->size))
2288 			mddev->size = rdev->size;
2289 	}
2290 
2291 	return 0;
2292 }
2293 
2294 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2295 {
2296 	char b[BDEVNAME_SIZE];
2297 	mdk_rdev_t *rdev;
2298 
2299 	if (!mddev->pers)
2300 		return -ENODEV;
2301 
2302 	rdev = find_rdev(mddev, dev);
2303 	if (!rdev)
2304 		return -ENXIO;
2305 
2306 	if (rdev->raid_disk >= 0)
2307 		goto busy;
2308 
2309 	kick_rdev_from_array(rdev);
2310 	md_update_sb(mddev);
2311 
2312 	return 0;
2313 busy:
2314 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2315 		bdevname(rdev->bdev,b), mdname(mddev));
2316 	return -EBUSY;
2317 }
2318 
2319 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2320 {
2321 	char b[BDEVNAME_SIZE];
2322 	int err;
2323 	unsigned int size;
2324 	mdk_rdev_t *rdev;
2325 
2326 	if (!mddev->pers)
2327 		return -ENODEV;
2328 
2329 	if (mddev->major_version != 0) {
2330 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2331 			" version-0 superblocks.\n",
2332 			mdname(mddev));
2333 		return -EINVAL;
2334 	}
2335 	if (!mddev->pers->hot_add_disk) {
2336 		printk(KERN_WARNING
2337 			"%s: personality does not support diskops!\n",
2338 			mdname(mddev));
2339 		return -EINVAL;
2340 	}
2341 
2342 	rdev = md_import_device (dev, -1, 0);
2343 	if (IS_ERR(rdev)) {
2344 		printk(KERN_WARNING
2345 			"md: error, md_import_device() returned %ld\n",
2346 			PTR_ERR(rdev));
2347 		return -EINVAL;
2348 	}
2349 
2350 	if (mddev->persistent)
2351 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2352 	else
2353 		rdev->sb_offset =
2354 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2355 
2356 	size = calc_dev_size(rdev, mddev->chunk_size);
2357 	rdev->size = size;
2358 
2359 	if (size < mddev->size) {
2360 		printk(KERN_WARNING
2361 			"%s: disk size %llu blocks < array size %llu\n",
2362 			mdname(mddev), (unsigned long long)size,
2363 			(unsigned long long)mddev->size);
2364 		err = -ENOSPC;
2365 		goto abort_export;
2366 	}
2367 
2368 	if (rdev->faulty) {
2369 		printk(KERN_WARNING
2370 			"md: can not hot-add faulty %s disk to %s!\n",
2371 			bdevname(rdev->bdev,b), mdname(mddev));
2372 		err = -EINVAL;
2373 		goto abort_export;
2374 	}
2375 	rdev->in_sync = 0;
2376 	rdev->desc_nr = -1;
2377 	bind_rdev_to_array(rdev, mddev);
2378 
2379 	/*
2380 	 * The rest should better be atomic, we can have disk failures
2381 	 * noticed in interrupt contexts ...
2382 	 */
2383 
2384 	if (rdev->desc_nr == mddev->max_disks) {
2385 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2386 			mdname(mddev));
2387 		err = -EBUSY;
2388 		goto abort_unbind_export;
2389 	}
2390 
2391 	rdev->raid_disk = -1;
2392 
2393 	md_update_sb(mddev);
2394 
2395 	/*
2396 	 * Kick recovery, maybe this spare has to be added to the
2397 	 * array immediately.
2398 	 */
2399 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2400 	md_wakeup_thread(mddev->thread);
2401 
2402 	return 0;
2403 
2404 abort_unbind_export:
2405 	unbind_rdev_from_array(rdev);
2406 
2407 abort_export:
2408 	export_rdev(rdev);
2409 	return err;
2410 }
2411 
2412 /* similar to deny_write_access, but accounts for our holding a reference
2413  * to the file ourselves */
2414 static int deny_bitmap_write_access(struct file * file)
2415 {
2416 	struct inode *inode = file->f_mapping->host;
2417 
2418 	spin_lock(&inode->i_lock);
2419 	if (atomic_read(&inode->i_writecount) > 1) {
2420 		spin_unlock(&inode->i_lock);
2421 		return -ETXTBSY;
2422 	}
2423 	atomic_set(&inode->i_writecount, -1);
2424 	spin_unlock(&inode->i_lock);
2425 
2426 	return 0;
2427 }
2428 
2429 static int set_bitmap_file(mddev_t *mddev, int fd)
2430 {
2431 	int err;
2432 
2433 	if (mddev->pers)
2434 		return -EBUSY;
2435 
2436 	mddev->bitmap_file = fget(fd);
2437 
2438 	if (mddev->bitmap_file == NULL) {
2439 		printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2440 			mdname(mddev));
2441 		return -EBADF;
2442 	}
2443 
2444 	err = deny_bitmap_write_access(mddev->bitmap_file);
2445 	if (err) {
2446 		printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2447 			mdname(mddev));
2448 		fput(mddev->bitmap_file);
2449 		mddev->bitmap_file = NULL;
2450 	} else
2451 		mddev->bitmap_offset = 0; /* file overrides offset */
2452 	return err;
2453 }
2454 
2455 /*
2456  * set_array_info is used two different ways
2457  * The original usage is when creating a new array.
2458  * In this usage, raid_disks is > 0 and it together with
2459  *  level, size, not_persistent,layout,chunksize determine the
2460  *  shape of the array.
2461  *  This will always create an array with a type-0.90.0 superblock.
2462  * The newer usage is when assembling an array.
2463  *  In this case raid_disks will be 0, and the major_version field is
2464  *  use to determine which style super-blocks are to be found on the devices.
2465  *  The minor and patch _version numbers are also kept incase the
2466  *  super_block handler wishes to interpret them.
2467  */
2468 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2469 {
2470 
2471 	if (info->raid_disks == 0) {
2472 		/* just setting version number for superblock loading */
2473 		if (info->major_version < 0 ||
2474 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2475 		    super_types[info->major_version].name == NULL) {
2476 			/* maybe try to auto-load a module? */
2477 			printk(KERN_INFO
2478 				"md: superblock version %d not known\n",
2479 				info->major_version);
2480 			return -EINVAL;
2481 		}
2482 		mddev->major_version = info->major_version;
2483 		mddev->minor_version = info->minor_version;
2484 		mddev->patch_version = info->patch_version;
2485 		return 0;
2486 	}
2487 	mddev->major_version = MD_MAJOR_VERSION;
2488 	mddev->minor_version = MD_MINOR_VERSION;
2489 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2490 	mddev->ctime         = get_seconds();
2491 
2492 	mddev->level         = info->level;
2493 	mddev->size          = info->size;
2494 	mddev->raid_disks    = info->raid_disks;
2495 	/* don't set md_minor, it is determined by which /dev/md* was
2496 	 * openned
2497 	 */
2498 	if (info->state & (1<<MD_SB_CLEAN))
2499 		mddev->recovery_cp = MaxSector;
2500 	else
2501 		mddev->recovery_cp = 0;
2502 	mddev->persistent    = ! info->not_persistent;
2503 
2504 	mddev->layout        = info->layout;
2505 	mddev->chunk_size    = info->chunk_size;
2506 
2507 	mddev->max_disks     = MD_SB_DISKS;
2508 
2509 	mddev->sb_dirty      = 1;
2510 
2511 	/*
2512 	 * Generate a 128 bit UUID
2513 	 */
2514 	get_random_bytes(mddev->uuid, 16);
2515 
2516 	return 0;
2517 }
2518 
2519 /*
2520  * update_array_info is used to change the configuration of an
2521  * on-line array.
2522  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2523  * fields in the info are checked against the array.
2524  * Any differences that cannot be handled will cause an error.
2525  * Normally, only one change can be managed at a time.
2526  */
2527 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2528 {
2529 	int rv = 0;
2530 	int cnt = 0;
2531 
2532 	if (mddev->major_version != info->major_version ||
2533 	    mddev->minor_version != info->minor_version ||
2534 /*	    mddev->patch_version != info->patch_version || */
2535 	    mddev->ctime         != info->ctime         ||
2536 	    mddev->level         != info->level         ||
2537 /*	    mddev->layout        != info->layout        || */
2538 	    !mddev->persistent	 != info->not_persistent||
2539 	    mddev->chunk_size    != info->chunk_size    )
2540 		return -EINVAL;
2541 	/* Check there is only one change */
2542 	if (mddev->size != info->size) cnt++;
2543 	if (mddev->raid_disks != info->raid_disks) cnt++;
2544 	if (mddev->layout != info->layout) cnt++;
2545 	if (cnt == 0) return 0;
2546 	if (cnt > 1) return -EINVAL;
2547 
2548 	if (mddev->layout != info->layout) {
2549 		/* Change layout
2550 		 * we don't need to do anything at the md level, the
2551 		 * personality will take care of it all.
2552 		 */
2553 		if (mddev->pers->reconfig == NULL)
2554 			return -EINVAL;
2555 		else
2556 			return mddev->pers->reconfig(mddev, info->layout, -1);
2557 	}
2558 	if (mddev->size != info->size) {
2559 		mdk_rdev_t * rdev;
2560 		struct list_head *tmp;
2561 		if (mddev->pers->resize == NULL)
2562 			return -EINVAL;
2563 		/* The "size" is the amount of each device that is used.
2564 		 * This can only make sense for arrays with redundancy.
2565 		 * linear and raid0 always use whatever space is available
2566 		 * We can only consider changing the size if no resync
2567 		 * or reconstruction is happening, and if the new size
2568 		 * is acceptable. It must fit before the sb_offset or,
2569 		 * if that is <data_offset, it must fit before the
2570 		 * size of each device.
2571 		 * If size is zero, we find the largest size that fits.
2572 		 */
2573 		if (mddev->sync_thread)
2574 			return -EBUSY;
2575 		ITERATE_RDEV(mddev,rdev,tmp) {
2576 			sector_t avail;
2577 			int fit = (info->size == 0);
2578 			if (rdev->sb_offset > rdev->data_offset)
2579 				avail = (rdev->sb_offset*2) - rdev->data_offset;
2580 			else
2581 				avail = get_capacity(rdev->bdev->bd_disk)
2582 					- rdev->data_offset;
2583 			if (fit && (info->size == 0 || info->size > avail/2))
2584 				info->size = avail/2;
2585 			if (avail < ((sector_t)info->size << 1))
2586 				return -ENOSPC;
2587 		}
2588 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2589 		if (!rv) {
2590 			struct block_device *bdev;
2591 
2592 			bdev = bdget_disk(mddev->gendisk, 0);
2593 			if (bdev) {
2594 				down(&bdev->bd_inode->i_sem);
2595 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
2596 				up(&bdev->bd_inode->i_sem);
2597 				bdput(bdev);
2598 			}
2599 		}
2600 	}
2601 	if (mddev->raid_disks    != info->raid_disks) {
2602 		/* change the number of raid disks */
2603 		if (mddev->pers->reshape == NULL)
2604 			return -EINVAL;
2605 		if (info->raid_disks <= 0 ||
2606 		    info->raid_disks >= mddev->max_disks)
2607 			return -EINVAL;
2608 		if (mddev->sync_thread)
2609 			return -EBUSY;
2610 		rv = mddev->pers->reshape(mddev, info->raid_disks);
2611 		if (!rv) {
2612 			struct block_device *bdev;
2613 
2614 			bdev = bdget_disk(mddev->gendisk, 0);
2615 			if (bdev) {
2616 				down(&bdev->bd_inode->i_sem);
2617 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
2618 				up(&bdev->bd_inode->i_sem);
2619 				bdput(bdev);
2620 			}
2621 		}
2622 	}
2623 	md_update_sb(mddev);
2624 	return rv;
2625 }
2626 
2627 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2628 {
2629 	mdk_rdev_t *rdev;
2630 
2631 	if (mddev->pers == NULL)
2632 		return -ENODEV;
2633 
2634 	rdev = find_rdev(mddev, dev);
2635 	if (!rdev)
2636 		return -ENODEV;
2637 
2638 	md_error(mddev, rdev);
2639 	return 0;
2640 }
2641 
2642 static int md_ioctl(struct inode *inode, struct file *file,
2643 			unsigned int cmd, unsigned long arg)
2644 {
2645 	int err = 0;
2646 	void __user *argp = (void __user *)arg;
2647 	struct hd_geometry __user *loc = argp;
2648 	mddev_t *mddev = NULL;
2649 
2650 	if (!capable(CAP_SYS_ADMIN))
2651 		return -EACCES;
2652 
2653 	/*
2654 	 * Commands dealing with the RAID driver but not any
2655 	 * particular array:
2656 	 */
2657 	switch (cmd)
2658 	{
2659 		case RAID_VERSION:
2660 			err = get_version(argp);
2661 			goto done;
2662 
2663 		case PRINT_RAID_DEBUG:
2664 			err = 0;
2665 			md_print_devices();
2666 			goto done;
2667 
2668 #ifndef MODULE
2669 		case RAID_AUTORUN:
2670 			err = 0;
2671 			autostart_arrays(arg);
2672 			goto done;
2673 #endif
2674 		default:;
2675 	}
2676 
2677 	/*
2678 	 * Commands creating/starting a new array:
2679 	 */
2680 
2681 	mddev = inode->i_bdev->bd_disk->private_data;
2682 
2683 	if (!mddev) {
2684 		BUG();
2685 		goto abort;
2686 	}
2687 
2688 
2689 	if (cmd == START_ARRAY) {
2690 		/* START_ARRAY doesn't need to lock the array as autostart_array
2691 		 * does the locking, and it could even be a different array
2692 		 */
2693 		static int cnt = 3;
2694 		if (cnt > 0 ) {
2695 			printk(KERN_WARNING
2696 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2697 			       "This will not be supported beyond 2.6\n",
2698 			       current->comm, current->pid);
2699 			cnt--;
2700 		}
2701 		err = autostart_array(new_decode_dev(arg));
2702 		if (err) {
2703 			printk(KERN_WARNING "md: autostart failed!\n");
2704 			goto abort;
2705 		}
2706 		goto done;
2707 	}
2708 
2709 	err = mddev_lock(mddev);
2710 	if (err) {
2711 		printk(KERN_INFO
2712 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
2713 			err, cmd);
2714 		goto abort;
2715 	}
2716 
2717 	switch (cmd)
2718 	{
2719 		case SET_ARRAY_INFO:
2720 			{
2721 				mdu_array_info_t info;
2722 				if (!arg)
2723 					memset(&info, 0, sizeof(info));
2724 				else if (copy_from_user(&info, argp, sizeof(info))) {
2725 					err = -EFAULT;
2726 					goto abort_unlock;
2727 				}
2728 				if (mddev->pers) {
2729 					err = update_array_info(mddev, &info);
2730 					if (err) {
2731 						printk(KERN_WARNING "md: couldn't update"
2732 						       " array info. %d\n", err);
2733 						goto abort_unlock;
2734 					}
2735 					goto done_unlock;
2736 				}
2737 				if (!list_empty(&mddev->disks)) {
2738 					printk(KERN_WARNING
2739 					       "md: array %s already has disks!\n",
2740 					       mdname(mddev));
2741 					err = -EBUSY;
2742 					goto abort_unlock;
2743 				}
2744 				if (mddev->raid_disks) {
2745 					printk(KERN_WARNING
2746 					       "md: array %s already initialised!\n",
2747 					       mdname(mddev));
2748 					err = -EBUSY;
2749 					goto abort_unlock;
2750 				}
2751 				err = set_array_info(mddev, &info);
2752 				if (err) {
2753 					printk(KERN_WARNING "md: couldn't set"
2754 					       " array info. %d\n", err);
2755 					goto abort_unlock;
2756 				}
2757 			}
2758 			goto done_unlock;
2759 
2760 		default:;
2761 	}
2762 
2763 	/*
2764 	 * Commands querying/configuring an existing array:
2765 	 */
2766 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2767 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2768 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2769 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
2770 		err = -ENODEV;
2771 		goto abort_unlock;
2772 	}
2773 
2774 	/*
2775 	 * Commands even a read-only array can execute:
2776 	 */
2777 	switch (cmd)
2778 	{
2779 		case GET_ARRAY_INFO:
2780 			err = get_array_info(mddev, argp);
2781 			goto done_unlock;
2782 
2783 		case GET_BITMAP_FILE:
2784 			err = get_bitmap_file(mddev, (void *)arg);
2785 			goto done_unlock;
2786 
2787 		case GET_DISK_INFO:
2788 			err = get_disk_info(mddev, argp);
2789 			goto done_unlock;
2790 
2791 		case RESTART_ARRAY_RW:
2792 			err = restart_array(mddev);
2793 			goto done_unlock;
2794 
2795 		case STOP_ARRAY:
2796 			err = do_md_stop (mddev, 0);
2797 			goto done_unlock;
2798 
2799 		case STOP_ARRAY_RO:
2800 			err = do_md_stop (mddev, 1);
2801 			goto done_unlock;
2802 
2803 	/*
2804 	 * We have a problem here : there is no easy way to give a CHS
2805 	 * virtual geometry. We currently pretend that we have a 2 heads
2806 	 * 4 sectors (with a BIG number of cylinders...). This drives
2807 	 * dosfs just mad... ;-)
2808 	 */
2809 		case HDIO_GETGEO:
2810 			if (!loc) {
2811 				err = -EINVAL;
2812 				goto abort_unlock;
2813 			}
2814 			err = put_user (2, (char __user *) &loc->heads);
2815 			if (err)
2816 				goto abort_unlock;
2817 			err = put_user (4, (char __user *) &loc->sectors);
2818 			if (err)
2819 				goto abort_unlock;
2820 			err = put_user(get_capacity(mddev->gendisk)/8,
2821 					(short __user *) &loc->cylinders);
2822 			if (err)
2823 				goto abort_unlock;
2824 			err = put_user (get_start_sect(inode->i_bdev),
2825 						(long __user *) &loc->start);
2826 			goto done_unlock;
2827 	}
2828 
2829 	/*
2830 	 * The remaining ioctls are changing the state of the
2831 	 * superblock, so we do not allow read-only arrays
2832 	 * here:
2833 	 */
2834 	if (mddev->ro) {
2835 		err = -EROFS;
2836 		goto abort_unlock;
2837 	}
2838 
2839 	switch (cmd)
2840 	{
2841 		case ADD_NEW_DISK:
2842 		{
2843 			mdu_disk_info_t info;
2844 			if (copy_from_user(&info, argp, sizeof(info)))
2845 				err = -EFAULT;
2846 			else
2847 				err = add_new_disk(mddev, &info);
2848 			goto done_unlock;
2849 		}
2850 
2851 		case HOT_REMOVE_DISK:
2852 			err = hot_remove_disk(mddev, new_decode_dev(arg));
2853 			goto done_unlock;
2854 
2855 		case HOT_ADD_DISK:
2856 			err = hot_add_disk(mddev, new_decode_dev(arg));
2857 			goto done_unlock;
2858 
2859 		case SET_DISK_FAULTY:
2860 			err = set_disk_faulty(mddev, new_decode_dev(arg));
2861 			goto done_unlock;
2862 
2863 		case RUN_ARRAY:
2864 			err = do_md_run (mddev);
2865 			goto done_unlock;
2866 
2867 		case SET_BITMAP_FILE:
2868 			err = set_bitmap_file(mddev, (int)arg);
2869 			goto done_unlock;
2870 
2871 		default:
2872 			if (_IOC_TYPE(cmd) == MD_MAJOR)
2873 				printk(KERN_WARNING "md: %s(pid %d) used"
2874 					" obsolete MD ioctl, upgrade your"
2875 					" software to use new ictls.\n",
2876 					current->comm, current->pid);
2877 			err = -EINVAL;
2878 			goto abort_unlock;
2879 	}
2880 
2881 done_unlock:
2882 abort_unlock:
2883 	mddev_unlock(mddev);
2884 
2885 	return err;
2886 done:
2887 	if (err)
2888 		MD_BUG();
2889 abort:
2890 	return err;
2891 }
2892 
2893 static int md_open(struct inode *inode, struct file *file)
2894 {
2895 	/*
2896 	 * Succeed if we can lock the mddev, which confirms that
2897 	 * it isn't being stopped right now.
2898 	 */
2899 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2900 	int err;
2901 
2902 	if ((err = mddev_lock(mddev)))
2903 		goto out;
2904 
2905 	err = 0;
2906 	mddev_get(mddev);
2907 	mddev_unlock(mddev);
2908 
2909 	check_disk_change(inode->i_bdev);
2910  out:
2911 	return err;
2912 }
2913 
2914 static int md_release(struct inode *inode, struct file * file)
2915 {
2916  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2917 
2918 	if (!mddev)
2919 		BUG();
2920 	mddev_put(mddev);
2921 
2922 	return 0;
2923 }
2924 
2925 static int md_media_changed(struct gendisk *disk)
2926 {
2927 	mddev_t *mddev = disk->private_data;
2928 
2929 	return mddev->changed;
2930 }
2931 
2932 static int md_revalidate(struct gendisk *disk)
2933 {
2934 	mddev_t *mddev = disk->private_data;
2935 
2936 	mddev->changed = 0;
2937 	return 0;
2938 }
2939 static struct block_device_operations md_fops =
2940 {
2941 	.owner		= THIS_MODULE,
2942 	.open		= md_open,
2943 	.release	= md_release,
2944 	.ioctl		= md_ioctl,
2945 	.media_changed	= md_media_changed,
2946 	.revalidate_disk= md_revalidate,
2947 };
2948 
2949 static int md_thread(void * arg)
2950 {
2951 	mdk_thread_t *thread = arg;
2952 
2953 	lock_kernel();
2954 
2955 	/*
2956 	 * Detach thread
2957 	 */
2958 
2959 	daemonize(thread->name, mdname(thread->mddev));
2960 
2961 	current->exit_signal = SIGCHLD;
2962 	allow_signal(SIGKILL);
2963 	thread->tsk = current;
2964 
2965 	/*
2966 	 * md_thread is a 'system-thread', it's priority should be very
2967 	 * high. We avoid resource deadlocks individually in each
2968 	 * raid personality. (RAID5 does preallocation) We also use RR and
2969 	 * the very same RT priority as kswapd, thus we will never get
2970 	 * into a priority inversion deadlock.
2971 	 *
2972 	 * we definitely have to have equal or higher priority than
2973 	 * bdflush, otherwise bdflush will deadlock if there are too
2974 	 * many dirty RAID5 blocks.
2975 	 */
2976 	unlock_kernel();
2977 
2978 	complete(thread->event);
2979 	while (thread->run) {
2980 		void (*run)(mddev_t *);
2981 
2982 		wait_event_interruptible_timeout(thread->wqueue,
2983 						 test_bit(THREAD_WAKEUP, &thread->flags),
2984 						 thread->timeout);
2985 		try_to_freeze();
2986 
2987 		clear_bit(THREAD_WAKEUP, &thread->flags);
2988 
2989 		run = thread->run;
2990 		if (run)
2991 			run(thread->mddev);
2992 
2993 		if (signal_pending(current))
2994 			flush_signals(current);
2995 	}
2996 	complete(thread->event);
2997 	return 0;
2998 }
2999 
3000 void md_wakeup_thread(mdk_thread_t *thread)
3001 {
3002 	if (thread) {
3003 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3004 		set_bit(THREAD_WAKEUP, &thread->flags);
3005 		wake_up(&thread->wqueue);
3006 	}
3007 }
3008 
3009 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3010 				 const char *name)
3011 {
3012 	mdk_thread_t *thread;
3013 	int ret;
3014 	struct completion event;
3015 
3016 	thread = (mdk_thread_t *) kmalloc
3017 				(sizeof(mdk_thread_t), GFP_KERNEL);
3018 	if (!thread)
3019 		return NULL;
3020 
3021 	memset(thread, 0, sizeof(mdk_thread_t));
3022 	init_waitqueue_head(&thread->wqueue);
3023 
3024 	init_completion(&event);
3025 	thread->event = &event;
3026 	thread->run = run;
3027 	thread->mddev = mddev;
3028 	thread->name = name;
3029 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3030 	ret = kernel_thread(md_thread, thread, 0);
3031 	if (ret < 0) {
3032 		kfree(thread);
3033 		return NULL;
3034 	}
3035 	wait_for_completion(&event);
3036 	return thread;
3037 }
3038 
3039 void md_unregister_thread(mdk_thread_t *thread)
3040 {
3041 	struct completion event;
3042 
3043 	init_completion(&event);
3044 
3045 	thread->event = &event;
3046 
3047 	/* As soon as ->run is set to NULL, the task could disappear,
3048 	 * so we need to hold tasklist_lock until we have sent the signal
3049 	 */
3050 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3051 	read_lock(&tasklist_lock);
3052 	thread->run = NULL;
3053 	send_sig(SIGKILL, thread->tsk, 1);
3054 	read_unlock(&tasklist_lock);
3055 	wait_for_completion(&event);
3056 	kfree(thread);
3057 }
3058 
3059 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3060 {
3061 	if (!mddev) {
3062 		MD_BUG();
3063 		return;
3064 	}
3065 
3066 	if (!rdev || rdev->faulty)
3067 		return;
3068 /*
3069 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3070 		mdname(mddev),
3071 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3072 		__builtin_return_address(0),__builtin_return_address(1),
3073 		__builtin_return_address(2),__builtin_return_address(3));
3074 */
3075 	if (!mddev->pers->error_handler)
3076 		return;
3077 	mddev->pers->error_handler(mddev,rdev);
3078 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3079 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3080 	md_wakeup_thread(mddev->thread);
3081 }
3082 
3083 /* seq_file implementation /proc/mdstat */
3084 
3085 static void status_unused(struct seq_file *seq)
3086 {
3087 	int i = 0;
3088 	mdk_rdev_t *rdev;
3089 	struct list_head *tmp;
3090 
3091 	seq_printf(seq, "unused devices: ");
3092 
3093 	ITERATE_RDEV_PENDING(rdev,tmp) {
3094 		char b[BDEVNAME_SIZE];
3095 		i++;
3096 		seq_printf(seq, "%s ",
3097 			      bdevname(rdev->bdev,b));
3098 	}
3099 	if (!i)
3100 		seq_printf(seq, "<none>");
3101 
3102 	seq_printf(seq, "\n");
3103 }
3104 
3105 
3106 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3107 {
3108 	unsigned long max_blocks, resync, res, dt, db, rt;
3109 
3110 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3111 
3112 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3113 		max_blocks = mddev->resync_max_sectors >> 1;
3114 	else
3115 		max_blocks = mddev->size;
3116 
3117 	/*
3118 	 * Should not happen.
3119 	 */
3120 	if (!max_blocks) {
3121 		MD_BUG();
3122 		return;
3123 	}
3124 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3125 	{
3126 		int i, x = res/50, y = 20-x;
3127 		seq_printf(seq, "[");
3128 		for (i = 0; i < x; i++)
3129 			seq_printf(seq, "=");
3130 		seq_printf(seq, ">");
3131 		for (i = 0; i < y; i++)
3132 			seq_printf(seq, ".");
3133 		seq_printf(seq, "] ");
3134 	}
3135 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3136 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3137 		       "resync" : "recovery"),
3138 		      res/10, res % 10, resync, max_blocks);
3139 
3140 	/*
3141 	 * We do not want to overflow, so the order of operands and
3142 	 * the * 100 / 100 trick are important. We do a +1 to be
3143 	 * safe against division by zero. We only estimate anyway.
3144 	 *
3145 	 * dt: time from mark until now
3146 	 * db: blocks written from mark until now
3147 	 * rt: remaining time
3148 	 */
3149 	dt = ((jiffies - mddev->resync_mark) / HZ);
3150 	if (!dt) dt++;
3151 	db = resync - (mddev->resync_mark_cnt/2);
3152 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3153 
3154 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3155 
3156 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3157 }
3158 
3159 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3160 {
3161 	struct list_head *tmp;
3162 	loff_t l = *pos;
3163 	mddev_t *mddev;
3164 
3165 	if (l >= 0x10000)
3166 		return NULL;
3167 	if (!l--)
3168 		/* header */
3169 		return (void*)1;
3170 
3171 	spin_lock(&all_mddevs_lock);
3172 	list_for_each(tmp,&all_mddevs)
3173 		if (!l--) {
3174 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3175 			mddev_get(mddev);
3176 			spin_unlock(&all_mddevs_lock);
3177 			return mddev;
3178 		}
3179 	spin_unlock(&all_mddevs_lock);
3180 	if (!l--)
3181 		return (void*)2;/* tail */
3182 	return NULL;
3183 }
3184 
3185 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3186 {
3187 	struct list_head *tmp;
3188 	mddev_t *next_mddev, *mddev = v;
3189 
3190 	++*pos;
3191 	if (v == (void*)2)
3192 		return NULL;
3193 
3194 	spin_lock(&all_mddevs_lock);
3195 	if (v == (void*)1)
3196 		tmp = all_mddevs.next;
3197 	else
3198 		tmp = mddev->all_mddevs.next;
3199 	if (tmp != &all_mddevs)
3200 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3201 	else {
3202 		next_mddev = (void*)2;
3203 		*pos = 0x10000;
3204 	}
3205 	spin_unlock(&all_mddevs_lock);
3206 
3207 	if (v != (void*)1)
3208 		mddev_put(mddev);
3209 	return next_mddev;
3210 
3211 }
3212 
3213 static void md_seq_stop(struct seq_file *seq, void *v)
3214 {
3215 	mddev_t *mddev = v;
3216 
3217 	if (mddev && v != (void*)1 && v != (void*)2)
3218 		mddev_put(mddev);
3219 }
3220 
3221 static int md_seq_show(struct seq_file *seq, void *v)
3222 {
3223 	mddev_t *mddev = v;
3224 	sector_t size;
3225 	struct list_head *tmp2;
3226 	mdk_rdev_t *rdev;
3227 	int i;
3228 	struct bitmap *bitmap;
3229 
3230 	if (v == (void*)1) {
3231 		seq_printf(seq, "Personalities : ");
3232 		spin_lock(&pers_lock);
3233 		for (i = 0; i < MAX_PERSONALITY; i++)
3234 			if (pers[i])
3235 				seq_printf(seq, "[%s] ", pers[i]->name);
3236 
3237 		spin_unlock(&pers_lock);
3238 		seq_printf(seq, "\n");
3239 		return 0;
3240 	}
3241 	if (v == (void*)2) {
3242 		status_unused(seq);
3243 		return 0;
3244 	}
3245 
3246 	if (mddev_lock(mddev)!=0)
3247 		return -EINTR;
3248 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3249 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3250 						mddev->pers ? "" : "in");
3251 		if (mddev->pers) {
3252 			if (mddev->ro)
3253 				seq_printf(seq, " (read-only)");
3254 			seq_printf(seq, " %s", mddev->pers->name);
3255 		}
3256 
3257 		size = 0;
3258 		ITERATE_RDEV(mddev,rdev,tmp2) {
3259 			char b[BDEVNAME_SIZE];
3260 			seq_printf(seq, " %s[%d]",
3261 				bdevname(rdev->bdev,b), rdev->desc_nr);
3262 			if (rdev->faulty) {
3263 				seq_printf(seq, "(F)");
3264 				continue;
3265 			}
3266 			size += rdev->size;
3267 		}
3268 
3269 		if (!list_empty(&mddev->disks)) {
3270 			if (mddev->pers)
3271 				seq_printf(seq, "\n      %llu blocks",
3272 					(unsigned long long)mddev->array_size);
3273 			else
3274 				seq_printf(seq, "\n      %llu blocks",
3275 					(unsigned long long)size);
3276 		}
3277 
3278 		if (mddev->pers) {
3279 			mddev->pers->status (seq, mddev);
3280 	 		seq_printf(seq, "\n      ");
3281 			if (mddev->curr_resync > 2) {
3282 				status_resync (seq, mddev);
3283 				seq_printf(seq, "\n      ");
3284 			} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3285 				seq_printf(seq, "	resync=DELAYED\n      ");
3286 		} else
3287 			seq_printf(seq, "\n       ");
3288 
3289 		if ((bitmap = mddev->bitmap)) {
3290 			unsigned long chunk_kb;
3291 			unsigned long flags;
3292 			spin_lock_irqsave(&bitmap->lock, flags);
3293 			chunk_kb = bitmap->chunksize >> 10;
3294 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3295 				"%lu%s chunk",
3296 				bitmap->pages - bitmap->missing_pages,
3297 				bitmap->pages,
3298 				(bitmap->pages - bitmap->missing_pages)
3299 					<< (PAGE_SHIFT - 10),
3300 				chunk_kb ? chunk_kb : bitmap->chunksize,
3301 				chunk_kb ? "KB" : "B");
3302 			if (bitmap->file) {
3303 				seq_printf(seq, ", file: ");
3304 				seq_path(seq, bitmap->file->f_vfsmnt,
3305 					 bitmap->file->f_dentry," \t\n");
3306 			}
3307 
3308 			seq_printf(seq, "\n");
3309 			spin_unlock_irqrestore(&bitmap->lock, flags);
3310 		}
3311 
3312 		seq_printf(seq, "\n");
3313 	}
3314 	mddev_unlock(mddev);
3315 
3316 	return 0;
3317 }
3318 
3319 static struct seq_operations md_seq_ops = {
3320 	.start  = md_seq_start,
3321 	.next   = md_seq_next,
3322 	.stop   = md_seq_stop,
3323 	.show   = md_seq_show,
3324 };
3325 
3326 static int md_seq_open(struct inode *inode, struct file *file)
3327 {
3328 	int error;
3329 
3330 	error = seq_open(file, &md_seq_ops);
3331 	return error;
3332 }
3333 
3334 static struct file_operations md_seq_fops = {
3335 	.open           = md_seq_open,
3336 	.read           = seq_read,
3337 	.llseek         = seq_lseek,
3338 	.release	= seq_release,
3339 };
3340 
3341 int register_md_personality(int pnum, mdk_personality_t *p)
3342 {
3343 	if (pnum >= MAX_PERSONALITY) {
3344 		printk(KERN_ERR
3345 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3346 		       p->name, pnum, MAX_PERSONALITY-1);
3347 		return -EINVAL;
3348 	}
3349 
3350 	spin_lock(&pers_lock);
3351 	if (pers[pnum]) {
3352 		spin_unlock(&pers_lock);
3353 		return -EBUSY;
3354 	}
3355 
3356 	pers[pnum] = p;
3357 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3358 	spin_unlock(&pers_lock);
3359 	return 0;
3360 }
3361 
3362 int unregister_md_personality(int pnum)
3363 {
3364 	if (pnum >= MAX_PERSONALITY)
3365 		return -EINVAL;
3366 
3367 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3368 	spin_lock(&pers_lock);
3369 	pers[pnum] = NULL;
3370 	spin_unlock(&pers_lock);
3371 	return 0;
3372 }
3373 
3374 static int is_mddev_idle(mddev_t *mddev)
3375 {
3376 	mdk_rdev_t * rdev;
3377 	struct list_head *tmp;
3378 	int idle;
3379 	unsigned long curr_events;
3380 
3381 	idle = 1;
3382 	ITERATE_RDEV(mddev,rdev,tmp) {
3383 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3384 		curr_events = disk_stat_read(disk, read_sectors) +
3385 				disk_stat_read(disk, write_sectors) -
3386 				atomic_read(&disk->sync_io);
3387 		/* Allow some slack between valud of curr_events and last_events,
3388 		 * as there are some uninteresting races.
3389 		 * Note: the following is an unsigned comparison.
3390 		 */
3391 		if ((curr_events - rdev->last_events + 32) > 64) {
3392 			rdev->last_events = curr_events;
3393 			idle = 0;
3394 		}
3395 	}
3396 	return idle;
3397 }
3398 
3399 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3400 {
3401 	/* another "blocks" (512byte) blocks have been synced */
3402 	atomic_sub(blocks, &mddev->recovery_active);
3403 	wake_up(&mddev->recovery_wait);
3404 	if (!ok) {
3405 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3406 		md_wakeup_thread(mddev->thread);
3407 		// stop recovery, signal do_sync ....
3408 	}
3409 }
3410 
3411 
3412 /* md_write_start(mddev, bi)
3413  * If we need to update some array metadata (e.g. 'active' flag
3414  * in superblock) before writing, schedule a superblock update
3415  * and wait for it to complete.
3416  */
3417 void md_write_start(mddev_t *mddev, struct bio *bi)
3418 {
3419 	DEFINE_WAIT(w);
3420 	if (bio_data_dir(bi) != WRITE)
3421 		return;
3422 
3423 	atomic_inc(&mddev->writes_pending);
3424 	if (mddev->in_sync) {
3425 		spin_lock(&mddev->write_lock);
3426 		if (mddev->in_sync) {
3427 			mddev->in_sync = 0;
3428 			mddev->sb_dirty = 1;
3429 			md_wakeup_thread(mddev->thread);
3430 		}
3431 		spin_unlock(&mddev->write_lock);
3432 	}
3433 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3434 }
3435 
3436 void md_write_end(mddev_t *mddev)
3437 {
3438 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3439 		if (mddev->safemode == 2)
3440 			md_wakeup_thread(mddev->thread);
3441 		else
3442 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3443 	}
3444 }
3445 
3446 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3447 
3448 #define SYNC_MARKS	10
3449 #define	SYNC_MARK_STEP	(3*HZ)
3450 static void md_do_sync(mddev_t *mddev)
3451 {
3452 	mddev_t *mddev2;
3453 	unsigned int currspeed = 0,
3454 		 window;
3455 	sector_t max_sectors,j, io_sectors;
3456 	unsigned long mark[SYNC_MARKS];
3457 	sector_t mark_cnt[SYNC_MARKS];
3458 	int last_mark,m;
3459 	struct list_head *tmp;
3460 	sector_t last_check;
3461 	int skipped = 0;
3462 
3463 	/* just incase thread restarts... */
3464 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3465 		return;
3466 
3467 	/* we overload curr_resync somewhat here.
3468 	 * 0 == not engaged in resync at all
3469 	 * 2 == checking that there is no conflict with another sync
3470 	 * 1 == like 2, but have yielded to allow conflicting resync to
3471 	 *		commense
3472 	 * other == active in resync - this many blocks
3473 	 *
3474 	 * Before starting a resync we must have set curr_resync to
3475 	 * 2, and then checked that every "conflicting" array has curr_resync
3476 	 * less than ours.  When we find one that is the same or higher
3477 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3478 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3479 	 * This will mean we have to start checking from the beginning again.
3480 	 *
3481 	 */
3482 
3483 	do {
3484 		mddev->curr_resync = 2;
3485 
3486 	try_again:
3487 		if (signal_pending(current)) {
3488 			flush_signals(current);
3489 			goto skip;
3490 		}
3491 		ITERATE_MDDEV(mddev2,tmp) {
3492 			if (mddev2 == mddev)
3493 				continue;
3494 			if (mddev2->curr_resync &&
3495 			    match_mddev_units(mddev,mddev2)) {
3496 				DEFINE_WAIT(wq);
3497 				if (mddev < mddev2 && mddev->curr_resync == 2) {
3498 					/* arbitrarily yield */
3499 					mddev->curr_resync = 1;
3500 					wake_up(&resync_wait);
3501 				}
3502 				if (mddev > mddev2 && mddev->curr_resync == 1)
3503 					/* no need to wait here, we can wait the next
3504 					 * time 'round when curr_resync == 2
3505 					 */
3506 					continue;
3507 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3508 				if (!signal_pending(current)
3509 				    && mddev2->curr_resync >= mddev->curr_resync) {
3510 					printk(KERN_INFO "md: delaying resync of %s"
3511 					       " until %s has finished resync (they"
3512 					       " share one or more physical units)\n",
3513 					       mdname(mddev), mdname(mddev2));
3514 					mddev_put(mddev2);
3515 					schedule();
3516 					finish_wait(&resync_wait, &wq);
3517 					goto try_again;
3518 				}
3519 				finish_wait(&resync_wait, &wq);
3520 			}
3521 		}
3522 	} while (mddev->curr_resync < 2);
3523 
3524 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3525 		/* resync follows the size requested by the personality,
3526 		 * which defaults to physical size, but can be virtual size
3527 		 */
3528 		max_sectors = mddev->resync_max_sectors;
3529 	else
3530 		/* recovery follows the physical size of devices */
3531 		max_sectors = mddev->size << 1;
3532 
3533 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3534 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3535 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
3536 	printk(KERN_INFO "md: using maximum available idle IO bandwith "
3537 	       "(but not more than %d KB/sec) for reconstruction.\n",
3538 	       sysctl_speed_limit_max);
3539 
3540 	is_mddev_idle(mddev); /* this also initializes IO event counters */
3541 	/* we don't use the checkpoint if there's a bitmap */
3542 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
3543 		j = mddev->recovery_cp;
3544 	else
3545 		j = 0;
3546 	io_sectors = 0;
3547 	for (m = 0; m < SYNC_MARKS; m++) {
3548 		mark[m] = jiffies;
3549 		mark_cnt[m] = io_sectors;
3550 	}
3551 	last_mark = 0;
3552 	mddev->resync_mark = mark[last_mark];
3553 	mddev->resync_mark_cnt = mark_cnt[last_mark];
3554 
3555 	/*
3556 	 * Tune reconstruction:
3557 	 */
3558 	window = 32*(PAGE_SIZE/512);
3559 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3560 		window/2,(unsigned long long) max_sectors/2);
3561 
3562 	atomic_set(&mddev->recovery_active, 0);
3563 	init_waitqueue_head(&mddev->recovery_wait);
3564 	last_check = 0;
3565 
3566 	if (j>2) {
3567 		printk(KERN_INFO
3568 			"md: resuming recovery of %s from checkpoint.\n",
3569 			mdname(mddev));
3570 		mddev->curr_resync = j;
3571 	}
3572 
3573 	while (j < max_sectors) {
3574 		sector_t sectors;
3575 
3576 		skipped = 0;
3577 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
3578 					    currspeed < sysctl_speed_limit_min);
3579 		if (sectors == 0) {
3580 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3581 			goto out;
3582 		}
3583 
3584 		if (!skipped) { /* actual IO requested */
3585 			io_sectors += sectors;
3586 			atomic_add(sectors, &mddev->recovery_active);
3587 		}
3588 
3589 		j += sectors;
3590 		if (j>1) mddev->curr_resync = j;
3591 
3592 
3593 		if (last_check + window > io_sectors || j == max_sectors)
3594 			continue;
3595 
3596 		last_check = io_sectors;
3597 
3598 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3599 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3600 			break;
3601 
3602 	repeat:
3603 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3604 			/* step marks */
3605 			int next = (last_mark+1) % SYNC_MARKS;
3606 
3607 			mddev->resync_mark = mark[next];
3608 			mddev->resync_mark_cnt = mark_cnt[next];
3609 			mark[next] = jiffies;
3610 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
3611 			last_mark = next;
3612 		}
3613 
3614 
3615 		if (signal_pending(current)) {
3616 			/*
3617 			 * got a signal, exit.
3618 			 */
3619 			printk(KERN_INFO
3620 				"md: md_do_sync() got signal ... exiting\n");
3621 			flush_signals(current);
3622 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3623 			goto out;
3624 		}
3625 
3626 		/*
3627 		 * this loop exits only if either when we are slower than
3628 		 * the 'hard' speed limit, or the system was IO-idle for
3629 		 * a jiffy.
3630 		 * the system might be non-idle CPU-wise, but we only care
3631 		 * about not overloading the IO subsystem. (things like an
3632 		 * e2fsck being done on the RAID array should execute fast)
3633 		 */
3634 		mddev->queue->unplug_fn(mddev->queue);
3635 		cond_resched();
3636 
3637 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3638 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
3639 
3640 		if (currspeed > sysctl_speed_limit_min) {
3641 			if ((currspeed > sysctl_speed_limit_max) ||
3642 					!is_mddev_idle(mddev)) {
3643 				msleep_interruptible(250);
3644 				goto repeat;
3645 			}
3646 		}
3647 	}
3648 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3649 	/*
3650 	 * this also signals 'finished resyncing' to md_stop
3651 	 */
3652  out:
3653 	mddev->queue->unplug_fn(mddev->queue);
3654 
3655 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3656 
3657 	/* tell personality that we are finished */
3658 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
3659 
3660 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3661 	    mddev->curr_resync > 2 &&
3662 	    mddev->curr_resync >= mddev->recovery_cp) {
3663 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3664 			printk(KERN_INFO
3665 				"md: checkpointing recovery of %s.\n",
3666 				mdname(mddev));
3667 			mddev->recovery_cp = mddev->curr_resync;
3668 		} else
3669 			mddev->recovery_cp = MaxSector;
3670 	}
3671 
3672  skip:
3673 	mddev->curr_resync = 0;
3674 	wake_up(&resync_wait);
3675 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3676 	md_wakeup_thread(mddev->thread);
3677 }
3678 
3679 
3680 /*
3681  * This routine is regularly called by all per-raid-array threads to
3682  * deal with generic issues like resync and super-block update.
3683  * Raid personalities that don't have a thread (linear/raid0) do not
3684  * need this as they never do any recovery or update the superblock.
3685  *
3686  * It does not do any resync itself, but rather "forks" off other threads
3687  * to do that as needed.
3688  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3689  * "->recovery" and create a thread at ->sync_thread.
3690  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3691  * and wakeups up this thread which will reap the thread and finish up.
3692  * This thread also removes any faulty devices (with nr_pending == 0).
3693  *
3694  * The overall approach is:
3695  *  1/ if the superblock needs updating, update it.
3696  *  2/ If a recovery thread is running, don't do anything else.
3697  *  3/ If recovery has finished, clean up, possibly marking spares active.
3698  *  4/ If there are any faulty devices, remove them.
3699  *  5/ If array is degraded, try to add spares devices
3700  *  6/ If array has spares or is not in-sync, start a resync thread.
3701  */
3702 void md_check_recovery(mddev_t *mddev)
3703 {
3704 	mdk_rdev_t *rdev;
3705 	struct list_head *rtmp;
3706 
3707 
3708 	if (mddev->bitmap)
3709 		bitmap_daemon_work(mddev->bitmap);
3710 
3711 	if (mddev->ro)
3712 		return;
3713 
3714 	if (signal_pending(current)) {
3715 		if (mddev->pers->sync_request) {
3716 			printk(KERN_INFO "md: %s in immediate safe mode\n",
3717 			       mdname(mddev));
3718 			mddev->safemode = 2;
3719 		}
3720 		flush_signals(current);
3721 	}
3722 
3723 	if ( ! (
3724 		mddev->sb_dirty ||
3725 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3726 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
3727 		(mddev->safemode == 1) ||
3728 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
3729 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
3730 		))
3731 		return;
3732 
3733 	if (mddev_trylock(mddev)==0) {
3734 		int spares =0;
3735 
3736 		spin_lock(&mddev->write_lock);
3737 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3738 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3739 			mddev->in_sync = 1;
3740 			mddev->sb_dirty = 1;
3741 		}
3742 		if (mddev->safemode == 1)
3743 			mddev->safemode = 0;
3744 		spin_unlock(&mddev->write_lock);
3745 
3746 		if (mddev->sb_dirty)
3747 			md_update_sb(mddev);
3748 
3749 
3750 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3751 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3752 			/* resync/recovery still happening */
3753 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3754 			goto unlock;
3755 		}
3756 		if (mddev->sync_thread) {
3757 			/* resync has finished, collect result */
3758 			md_unregister_thread(mddev->sync_thread);
3759 			mddev->sync_thread = NULL;
3760 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3761 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3762 				/* success...*/
3763 				/* activate any spares */
3764 				mddev->pers->spare_active(mddev);
3765 			}
3766 			md_update_sb(mddev);
3767 
3768 			/* if array is no-longer degraded, then any saved_raid_disk
3769 			 * information must be scrapped
3770 			 */
3771 			if (!mddev->degraded)
3772 				ITERATE_RDEV(mddev,rdev,rtmp)
3773 					rdev->saved_raid_disk = -1;
3774 
3775 			mddev->recovery = 0;
3776 			/* flag recovery needed just to double check */
3777 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3778 			goto unlock;
3779 		}
3780 		if (mddev->recovery)
3781 			/* probably just the RECOVERY_NEEDED flag */
3782 			mddev->recovery = 0;
3783 
3784 		/* no recovery is running.
3785 		 * remove any failed drives, then
3786 		 * add spares if possible.
3787 		 * Spare are also removed and re-added, to allow
3788 		 * the personality to fail the re-add.
3789 		 */
3790 		ITERATE_RDEV(mddev,rdev,rtmp)
3791 			if (rdev->raid_disk >= 0 &&
3792 			    (rdev->faulty || ! rdev->in_sync) &&
3793 			    atomic_read(&rdev->nr_pending)==0) {
3794 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3795 					rdev->raid_disk = -1;
3796 			}
3797 
3798 		if (mddev->degraded) {
3799 			ITERATE_RDEV(mddev,rdev,rtmp)
3800 				if (rdev->raid_disk < 0
3801 				    && !rdev->faulty) {
3802 					if (mddev->pers->hot_add_disk(mddev,rdev))
3803 						spares++;
3804 					else
3805 						break;
3806 				}
3807 		}
3808 
3809 		if (!spares && (mddev->recovery_cp == MaxSector )) {
3810 			/* nothing we can do ... */
3811 			goto unlock;
3812 		}
3813 		if (mddev->pers->sync_request) {
3814 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3815 			if (!spares)
3816 				set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3817 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
3818 				/* We are adding a device or devices to an array
3819 				 * which has the bitmap stored on all devices.
3820 				 * So make sure all bitmap pages get written
3821 				 */
3822 				bitmap_write_all(mddev->bitmap);
3823 			}
3824 			mddev->sync_thread = md_register_thread(md_do_sync,
3825 								mddev,
3826 								"%s_resync");
3827 			if (!mddev->sync_thread) {
3828 				printk(KERN_ERR "%s: could not start resync"
3829 					" thread...\n",
3830 					mdname(mddev));
3831 				/* leave the spares where they are, it shouldn't hurt */
3832 				mddev->recovery = 0;
3833 			} else {
3834 				md_wakeup_thread(mddev->sync_thread);
3835 			}
3836 		}
3837 	unlock:
3838 		mddev_unlock(mddev);
3839 	}
3840 }
3841 
3842 static int md_notify_reboot(struct notifier_block *this,
3843 			    unsigned long code, void *x)
3844 {
3845 	struct list_head *tmp;
3846 	mddev_t *mddev;
3847 
3848 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3849 
3850 		printk(KERN_INFO "md: stopping all md devices.\n");
3851 
3852 		ITERATE_MDDEV(mddev,tmp)
3853 			if (mddev_trylock(mddev)==0)
3854 				do_md_stop (mddev, 1);
3855 		/*
3856 		 * certain more exotic SCSI devices are known to be
3857 		 * volatile wrt too early system reboots. While the
3858 		 * right place to handle this issue is the given
3859 		 * driver, we do want to have a safe RAID driver ...
3860 		 */
3861 		mdelay(1000*1);
3862 	}
3863 	return NOTIFY_DONE;
3864 }
3865 
3866 static struct notifier_block md_notifier = {
3867 	.notifier_call	= md_notify_reboot,
3868 	.next		= NULL,
3869 	.priority	= INT_MAX, /* before any real devices */
3870 };
3871 
3872 static void md_geninit(void)
3873 {
3874 	struct proc_dir_entry *p;
3875 
3876 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3877 
3878 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
3879 	if (p)
3880 		p->proc_fops = &md_seq_fops;
3881 }
3882 
3883 static int __init md_init(void)
3884 {
3885 	int minor;
3886 
3887 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3888 			" MD_SB_DISKS=%d\n",
3889 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
3890 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3891 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
3892 			BITMAP_MINOR);
3893 
3894 	if (register_blkdev(MAJOR_NR, "md"))
3895 		return -1;
3896 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3897 		unregister_blkdev(MAJOR_NR, "md");
3898 		return -1;
3899 	}
3900 	devfs_mk_dir("md");
3901 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3902 				md_probe, NULL, NULL);
3903 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3904 			    md_probe, NULL, NULL);
3905 
3906 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
3907 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3908 				S_IFBLK|S_IRUSR|S_IWUSR,
3909 				"md/%d", minor);
3910 
3911 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
3912 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3913 			      S_IFBLK|S_IRUSR|S_IWUSR,
3914 			      "md/mdp%d", minor);
3915 
3916 
3917 	register_reboot_notifier(&md_notifier);
3918 	raid_table_header = register_sysctl_table(raid_root_table, 1);
3919 
3920 	md_geninit();
3921 	return (0);
3922 }
3923 
3924 
3925 #ifndef MODULE
3926 
3927 /*
3928  * Searches all registered partitions for autorun RAID arrays
3929  * at boot time.
3930  */
3931 static dev_t detected_devices[128];
3932 static int dev_cnt;
3933 
3934 void md_autodetect_dev(dev_t dev)
3935 {
3936 	if (dev_cnt >= 0 && dev_cnt < 127)
3937 		detected_devices[dev_cnt++] = dev;
3938 }
3939 
3940 
3941 static void autostart_arrays(int part)
3942 {
3943 	mdk_rdev_t *rdev;
3944 	int i;
3945 
3946 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3947 
3948 	for (i = 0; i < dev_cnt; i++) {
3949 		dev_t dev = detected_devices[i];
3950 
3951 		rdev = md_import_device(dev,0, 0);
3952 		if (IS_ERR(rdev))
3953 			continue;
3954 
3955 		if (rdev->faulty) {
3956 			MD_BUG();
3957 			continue;
3958 		}
3959 		list_add(&rdev->same_set, &pending_raid_disks);
3960 	}
3961 	dev_cnt = 0;
3962 
3963 	autorun_devices(part);
3964 }
3965 
3966 #endif
3967 
3968 static __exit void md_exit(void)
3969 {
3970 	mddev_t *mddev;
3971 	struct list_head *tmp;
3972 	int i;
3973 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3974 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
3975 	for (i=0; i < MAX_MD_DEVS; i++)
3976 		devfs_remove("md/%d", i);
3977 	for (i=0; i < MAX_MD_DEVS; i++)
3978 		devfs_remove("md/d%d", i);
3979 
3980 	devfs_remove("md");
3981 
3982 	unregister_blkdev(MAJOR_NR,"md");
3983 	unregister_blkdev(mdp_major, "mdp");
3984 	unregister_reboot_notifier(&md_notifier);
3985 	unregister_sysctl_table(raid_table_header);
3986 	remove_proc_entry("mdstat", NULL);
3987 	ITERATE_MDDEV(mddev,tmp) {
3988 		struct gendisk *disk = mddev->gendisk;
3989 		if (!disk)
3990 			continue;
3991 		export_array(mddev);
3992 		del_gendisk(disk);
3993 		put_disk(disk);
3994 		mddev->gendisk = NULL;
3995 		mddev_put(mddev);
3996 	}
3997 }
3998 
3999 module_init(md_init)
4000 module_exit(md_exit)
4001 
4002 EXPORT_SYMBOL(register_md_personality);
4003 EXPORT_SYMBOL(unregister_md_personality);
4004 EXPORT_SYMBOL(md_error);
4005 EXPORT_SYMBOL(md_done_sync);
4006 EXPORT_SYMBOL(md_write_start);
4007 EXPORT_SYMBOL(md_write_end);
4008 EXPORT_SYMBOL(md_register_thread);
4009 EXPORT_SYMBOL(md_unregister_thread);
4010 EXPORT_SYMBOL(md_wakeup_thread);
4011 EXPORT_SYMBOL(md_print_devices);
4012 EXPORT_SYMBOL(md_check_recovery);
4013 MODULE_LICENSE("GPL");
4014 MODULE_ALIAS("md");
4015 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4016