1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/config.h> 37 #include <linux/linkage.h> 38 #include <linux/raid/md.h> 39 #include <linux/raid/bitmap.h> 40 #include <linux/sysctl.h> 41 #include <linux/devfs_fs_kernel.h> 42 #include <linux/buffer_head.h> /* for invalidate_bdev */ 43 #include <linux/suspend.h> 44 45 #include <linux/init.h> 46 47 #include <linux/file.h> 48 49 #ifdef CONFIG_KMOD 50 #include <linux/kmod.h> 51 #endif 52 53 #include <asm/unaligned.h> 54 55 #define MAJOR_NR MD_MAJOR 56 #define MD_DRIVER 57 58 /* 63 partitions with the alternate major number (mdp) */ 59 #define MdpMinorShift 6 60 61 #define DEBUG 0 62 #define dprintk(x...) ((void)(DEBUG && printk(x))) 63 64 65 #ifndef MODULE 66 static void autostart_arrays (int part); 67 #endif 68 69 static mdk_personality_t *pers[MAX_PERSONALITY]; 70 static DEFINE_SPINLOCK(pers_lock); 71 72 /* 73 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 74 * is 1000 KB/sec, so the extra system load does not show up that much. 75 * Increase it if you want to have more _guaranteed_ speed. Note that 76 * the RAID driver will use the maximum available bandwith if the IO 77 * subsystem is idle. There is also an 'absolute maximum' reconstruction 78 * speed limit - in case reconstruction slows down your system despite 79 * idle IO detection. 80 * 81 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 82 */ 83 84 static int sysctl_speed_limit_min = 1000; 85 static int sysctl_speed_limit_max = 200000; 86 87 static struct ctl_table_header *raid_table_header; 88 89 static ctl_table raid_table[] = { 90 { 91 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, 92 .procname = "speed_limit_min", 93 .data = &sysctl_speed_limit_min, 94 .maxlen = sizeof(int), 95 .mode = 0644, 96 .proc_handler = &proc_dointvec, 97 }, 98 { 99 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, 100 .procname = "speed_limit_max", 101 .data = &sysctl_speed_limit_max, 102 .maxlen = sizeof(int), 103 .mode = 0644, 104 .proc_handler = &proc_dointvec, 105 }, 106 { .ctl_name = 0 } 107 }; 108 109 static ctl_table raid_dir_table[] = { 110 { 111 .ctl_name = DEV_RAID, 112 .procname = "raid", 113 .maxlen = 0, 114 .mode = 0555, 115 .child = raid_table, 116 }, 117 { .ctl_name = 0 } 118 }; 119 120 static ctl_table raid_root_table[] = { 121 { 122 .ctl_name = CTL_DEV, 123 .procname = "dev", 124 .maxlen = 0, 125 .mode = 0555, 126 .child = raid_dir_table, 127 }, 128 { .ctl_name = 0 } 129 }; 130 131 static struct block_device_operations md_fops; 132 133 /* 134 * Enables to iterate over all existing md arrays 135 * all_mddevs_lock protects this list. 136 */ 137 static LIST_HEAD(all_mddevs); 138 static DEFINE_SPINLOCK(all_mddevs_lock); 139 140 141 /* 142 * iterates through all used mddevs in the system. 143 * We take care to grab the all_mddevs_lock whenever navigating 144 * the list, and to always hold a refcount when unlocked. 145 * Any code which breaks out of this loop while own 146 * a reference to the current mddev and must mddev_put it. 147 */ 148 #define ITERATE_MDDEV(mddev,tmp) \ 149 \ 150 for (({ spin_lock(&all_mddevs_lock); \ 151 tmp = all_mddevs.next; \ 152 mddev = NULL;}); \ 153 ({ if (tmp != &all_mddevs) \ 154 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 155 spin_unlock(&all_mddevs_lock); \ 156 if (mddev) mddev_put(mddev); \ 157 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 158 tmp != &all_mddevs;}); \ 159 ({ spin_lock(&all_mddevs_lock); \ 160 tmp = tmp->next;}) \ 161 ) 162 163 164 static int md_fail_request (request_queue_t *q, struct bio *bio) 165 { 166 bio_io_error(bio, bio->bi_size); 167 return 0; 168 } 169 170 static inline mddev_t *mddev_get(mddev_t *mddev) 171 { 172 atomic_inc(&mddev->active); 173 return mddev; 174 } 175 176 static void mddev_put(mddev_t *mddev) 177 { 178 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 179 return; 180 if (!mddev->raid_disks && list_empty(&mddev->disks)) { 181 list_del(&mddev->all_mddevs); 182 blk_put_queue(mddev->queue); 183 kfree(mddev); 184 } 185 spin_unlock(&all_mddevs_lock); 186 } 187 188 static mddev_t * mddev_find(dev_t unit) 189 { 190 mddev_t *mddev, *new = NULL; 191 192 retry: 193 spin_lock(&all_mddevs_lock); 194 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 195 if (mddev->unit == unit) { 196 mddev_get(mddev); 197 spin_unlock(&all_mddevs_lock); 198 kfree(new); 199 return mddev; 200 } 201 202 if (new) { 203 list_add(&new->all_mddevs, &all_mddevs); 204 spin_unlock(&all_mddevs_lock); 205 return new; 206 } 207 spin_unlock(&all_mddevs_lock); 208 209 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL); 210 if (!new) 211 return NULL; 212 213 memset(new, 0, sizeof(*new)); 214 215 new->unit = unit; 216 if (MAJOR(unit) == MD_MAJOR) 217 new->md_minor = MINOR(unit); 218 else 219 new->md_minor = MINOR(unit) >> MdpMinorShift; 220 221 init_MUTEX(&new->reconfig_sem); 222 INIT_LIST_HEAD(&new->disks); 223 INIT_LIST_HEAD(&new->all_mddevs); 224 init_timer(&new->safemode_timer); 225 atomic_set(&new->active, 1); 226 spin_lock_init(&new->write_lock); 227 init_waitqueue_head(&new->sb_wait); 228 229 new->queue = blk_alloc_queue(GFP_KERNEL); 230 if (!new->queue) { 231 kfree(new); 232 return NULL; 233 } 234 235 blk_queue_make_request(new->queue, md_fail_request); 236 237 goto retry; 238 } 239 240 static inline int mddev_lock(mddev_t * mddev) 241 { 242 return down_interruptible(&mddev->reconfig_sem); 243 } 244 245 static inline void mddev_lock_uninterruptible(mddev_t * mddev) 246 { 247 down(&mddev->reconfig_sem); 248 } 249 250 static inline int mddev_trylock(mddev_t * mddev) 251 { 252 return down_trylock(&mddev->reconfig_sem); 253 } 254 255 static inline void mddev_unlock(mddev_t * mddev) 256 { 257 up(&mddev->reconfig_sem); 258 259 md_wakeup_thread(mddev->thread); 260 } 261 262 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 263 { 264 mdk_rdev_t * rdev; 265 struct list_head *tmp; 266 267 ITERATE_RDEV(mddev,rdev,tmp) { 268 if (rdev->desc_nr == nr) 269 return rdev; 270 } 271 return NULL; 272 } 273 274 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 275 { 276 struct list_head *tmp; 277 mdk_rdev_t *rdev; 278 279 ITERATE_RDEV(mddev,rdev,tmp) { 280 if (rdev->bdev->bd_dev == dev) 281 return rdev; 282 } 283 return NULL; 284 } 285 286 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 287 { 288 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 289 return MD_NEW_SIZE_BLOCKS(size); 290 } 291 292 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size) 293 { 294 sector_t size; 295 296 size = rdev->sb_offset; 297 298 if (chunk_size) 299 size &= ~((sector_t)chunk_size/1024 - 1); 300 return size; 301 } 302 303 static int alloc_disk_sb(mdk_rdev_t * rdev) 304 { 305 if (rdev->sb_page) 306 MD_BUG(); 307 308 rdev->sb_page = alloc_page(GFP_KERNEL); 309 if (!rdev->sb_page) { 310 printk(KERN_ALERT "md: out of memory.\n"); 311 return -EINVAL; 312 } 313 314 return 0; 315 } 316 317 static void free_disk_sb(mdk_rdev_t * rdev) 318 { 319 if (rdev->sb_page) { 320 page_cache_release(rdev->sb_page); 321 rdev->sb_loaded = 0; 322 rdev->sb_page = NULL; 323 rdev->sb_offset = 0; 324 rdev->size = 0; 325 } 326 } 327 328 329 static int super_written(struct bio *bio, unsigned int bytes_done, int error) 330 { 331 mdk_rdev_t *rdev = bio->bi_private; 332 if (bio->bi_size) 333 return 1; 334 335 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) 336 md_error(rdev->mddev, rdev); 337 338 if (atomic_dec_and_test(&rdev->mddev->pending_writes)) 339 wake_up(&rdev->mddev->sb_wait); 340 bio_put(bio); 341 return 0; 342 } 343 344 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 345 sector_t sector, int size, struct page *page) 346 { 347 /* write first size bytes of page to sector of rdev 348 * Increment mddev->pending_writes before returning 349 * and decrement it on completion, waking up sb_wait 350 * if zero is reached. 351 * If an error occurred, call md_error 352 */ 353 struct bio *bio = bio_alloc(GFP_NOIO, 1); 354 355 bio->bi_bdev = rdev->bdev; 356 bio->bi_sector = sector; 357 bio_add_page(bio, page, size, 0); 358 bio->bi_private = rdev; 359 bio->bi_end_io = super_written; 360 atomic_inc(&mddev->pending_writes); 361 submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio); 362 } 363 364 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error) 365 { 366 if (bio->bi_size) 367 return 1; 368 369 complete((struct completion*)bio->bi_private); 370 return 0; 371 } 372 373 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 374 struct page *page, int rw) 375 { 376 struct bio *bio = bio_alloc(GFP_NOIO, 1); 377 struct completion event; 378 int ret; 379 380 rw |= (1 << BIO_RW_SYNC); 381 382 bio->bi_bdev = bdev; 383 bio->bi_sector = sector; 384 bio_add_page(bio, page, size, 0); 385 init_completion(&event); 386 bio->bi_private = &event; 387 bio->bi_end_io = bi_complete; 388 submit_bio(rw, bio); 389 wait_for_completion(&event); 390 391 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 392 bio_put(bio); 393 return ret; 394 } 395 396 static int read_disk_sb(mdk_rdev_t * rdev) 397 { 398 char b[BDEVNAME_SIZE]; 399 if (!rdev->sb_page) { 400 MD_BUG(); 401 return -EINVAL; 402 } 403 if (rdev->sb_loaded) 404 return 0; 405 406 407 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ)) 408 goto fail; 409 rdev->sb_loaded = 1; 410 return 0; 411 412 fail: 413 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 414 bdevname(rdev->bdev,b)); 415 return -EINVAL; 416 } 417 418 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 419 { 420 if ( (sb1->set_uuid0 == sb2->set_uuid0) && 421 (sb1->set_uuid1 == sb2->set_uuid1) && 422 (sb1->set_uuid2 == sb2->set_uuid2) && 423 (sb1->set_uuid3 == sb2->set_uuid3)) 424 425 return 1; 426 427 return 0; 428 } 429 430 431 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 432 { 433 int ret; 434 mdp_super_t *tmp1, *tmp2; 435 436 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 437 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 438 439 if (!tmp1 || !tmp2) { 440 ret = 0; 441 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n"); 442 goto abort; 443 } 444 445 *tmp1 = *sb1; 446 *tmp2 = *sb2; 447 448 /* 449 * nr_disks is not constant 450 */ 451 tmp1->nr_disks = 0; 452 tmp2->nr_disks = 0; 453 454 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4)) 455 ret = 0; 456 else 457 ret = 1; 458 459 abort: 460 kfree(tmp1); 461 kfree(tmp2); 462 return ret; 463 } 464 465 static unsigned int calc_sb_csum(mdp_super_t * sb) 466 { 467 unsigned int disk_csum, csum; 468 469 disk_csum = sb->sb_csum; 470 sb->sb_csum = 0; 471 csum = csum_partial((void *)sb, MD_SB_BYTES, 0); 472 sb->sb_csum = disk_csum; 473 return csum; 474 } 475 476 477 /* 478 * Handle superblock details. 479 * We want to be able to handle multiple superblock formats 480 * so we have a common interface to them all, and an array of 481 * different handlers. 482 * We rely on user-space to write the initial superblock, and support 483 * reading and updating of superblocks. 484 * Interface methods are: 485 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 486 * loads and validates a superblock on dev. 487 * if refdev != NULL, compare superblocks on both devices 488 * Return: 489 * 0 - dev has a superblock that is compatible with refdev 490 * 1 - dev has a superblock that is compatible and newer than refdev 491 * so dev should be used as the refdev in future 492 * -EINVAL superblock incompatible or invalid 493 * -othererror e.g. -EIO 494 * 495 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 496 * Verify that dev is acceptable into mddev. 497 * The first time, mddev->raid_disks will be 0, and data from 498 * dev should be merged in. Subsequent calls check that dev 499 * is new enough. Return 0 or -EINVAL 500 * 501 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 502 * Update the superblock for rdev with data in mddev 503 * This does not write to disc. 504 * 505 */ 506 507 struct super_type { 508 char *name; 509 struct module *owner; 510 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version); 511 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 512 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 513 }; 514 515 /* 516 * load_super for 0.90.0 517 */ 518 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 519 { 520 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 521 mdp_super_t *sb; 522 int ret; 523 sector_t sb_offset; 524 525 /* 526 * Calculate the position of the superblock, 527 * it's at the end of the disk. 528 * 529 * It also happens to be a multiple of 4Kb. 530 */ 531 sb_offset = calc_dev_sboffset(rdev->bdev); 532 rdev->sb_offset = sb_offset; 533 534 ret = read_disk_sb(rdev); 535 if (ret) return ret; 536 537 ret = -EINVAL; 538 539 bdevname(rdev->bdev, b); 540 sb = (mdp_super_t*)page_address(rdev->sb_page); 541 542 if (sb->md_magic != MD_SB_MAGIC) { 543 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 544 b); 545 goto abort; 546 } 547 548 if (sb->major_version != 0 || 549 sb->minor_version != 90) { 550 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 551 sb->major_version, sb->minor_version, 552 b); 553 goto abort; 554 } 555 556 if (sb->raid_disks <= 0) 557 goto abort; 558 559 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) { 560 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 561 b); 562 goto abort; 563 } 564 565 rdev->preferred_minor = sb->md_minor; 566 rdev->data_offset = 0; 567 568 if (sb->level == LEVEL_MULTIPATH) 569 rdev->desc_nr = -1; 570 else 571 rdev->desc_nr = sb->this_disk.number; 572 573 if (refdev == 0) 574 ret = 1; 575 else { 576 __u64 ev1, ev2; 577 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 578 if (!uuid_equal(refsb, sb)) { 579 printk(KERN_WARNING "md: %s has different UUID to %s\n", 580 b, bdevname(refdev->bdev,b2)); 581 goto abort; 582 } 583 if (!sb_equal(refsb, sb)) { 584 printk(KERN_WARNING "md: %s has same UUID" 585 " but different superblock to %s\n", 586 b, bdevname(refdev->bdev, b2)); 587 goto abort; 588 } 589 ev1 = md_event(sb); 590 ev2 = md_event(refsb); 591 if (ev1 > ev2) 592 ret = 1; 593 else 594 ret = 0; 595 } 596 rdev->size = calc_dev_size(rdev, sb->chunk_size); 597 598 abort: 599 return ret; 600 } 601 602 /* 603 * validate_super for 0.90.0 604 */ 605 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 606 { 607 mdp_disk_t *desc; 608 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 609 610 rdev->raid_disk = -1; 611 rdev->in_sync = 0; 612 if (mddev->raid_disks == 0) { 613 mddev->major_version = 0; 614 mddev->minor_version = sb->minor_version; 615 mddev->patch_version = sb->patch_version; 616 mddev->persistent = ! sb->not_persistent; 617 mddev->chunk_size = sb->chunk_size; 618 mddev->ctime = sb->ctime; 619 mddev->utime = sb->utime; 620 mddev->level = sb->level; 621 mddev->layout = sb->layout; 622 mddev->raid_disks = sb->raid_disks; 623 mddev->size = sb->size; 624 mddev->events = md_event(sb); 625 mddev->bitmap_offset = 0; 626 627 if (sb->state & (1<<MD_SB_CLEAN)) 628 mddev->recovery_cp = MaxSector; 629 else { 630 if (sb->events_hi == sb->cp_events_hi && 631 sb->events_lo == sb->cp_events_lo) { 632 mddev->recovery_cp = sb->recovery_cp; 633 } else 634 mddev->recovery_cp = 0; 635 } 636 637 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 638 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 639 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 640 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 641 642 mddev->max_disks = MD_SB_DISKS; 643 644 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 645 mddev->bitmap_file == NULL) { 646 if (mddev->level != 1) { 647 /* FIXME use a better test */ 648 printk(KERN_WARNING "md: bitmaps only support for raid1\n"); 649 return -EINVAL; 650 } 651 mddev->bitmap_offset = (MD_SB_BYTES >> 9); 652 } 653 654 } else if (mddev->pers == NULL) { 655 /* Insist on good event counter while assembling */ 656 __u64 ev1 = md_event(sb); 657 ++ev1; 658 if (ev1 < mddev->events) 659 return -EINVAL; 660 } else if (mddev->bitmap) { 661 /* if adding to array with a bitmap, then we can accept an 662 * older device ... but not too old. 663 */ 664 __u64 ev1 = md_event(sb); 665 if (ev1 < mddev->bitmap->events_cleared) 666 return 0; 667 } else /* just a hot-add of a new device, leave raid_disk at -1 */ 668 return 0; 669 670 if (mddev->level != LEVEL_MULTIPATH) { 671 rdev->faulty = 0; 672 desc = sb->disks + rdev->desc_nr; 673 674 if (desc->state & (1<<MD_DISK_FAULTY)) 675 rdev->faulty = 1; 676 else if (desc->state & (1<<MD_DISK_SYNC) && 677 desc->raid_disk < mddev->raid_disks) { 678 rdev->in_sync = 1; 679 rdev->raid_disk = desc->raid_disk; 680 } 681 } else /* MULTIPATH are always insync */ 682 rdev->in_sync = 1; 683 return 0; 684 } 685 686 /* 687 * sync_super for 0.90.0 688 */ 689 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 690 { 691 mdp_super_t *sb; 692 struct list_head *tmp; 693 mdk_rdev_t *rdev2; 694 int next_spare = mddev->raid_disks; 695 696 /* make rdev->sb match mddev data.. 697 * 698 * 1/ zero out disks 699 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 700 * 3/ any empty disks < next_spare become removed 701 * 702 * disks[0] gets initialised to REMOVED because 703 * we cannot be sure from other fields if it has 704 * been initialised or not. 705 */ 706 int i; 707 int active=0, working=0,failed=0,spare=0,nr_disks=0; 708 709 sb = (mdp_super_t*)page_address(rdev->sb_page); 710 711 memset(sb, 0, sizeof(*sb)); 712 713 sb->md_magic = MD_SB_MAGIC; 714 sb->major_version = mddev->major_version; 715 sb->minor_version = mddev->minor_version; 716 sb->patch_version = mddev->patch_version; 717 sb->gvalid_words = 0; /* ignored */ 718 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 719 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 720 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 721 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 722 723 sb->ctime = mddev->ctime; 724 sb->level = mddev->level; 725 sb->size = mddev->size; 726 sb->raid_disks = mddev->raid_disks; 727 sb->md_minor = mddev->md_minor; 728 sb->not_persistent = !mddev->persistent; 729 sb->utime = mddev->utime; 730 sb->state = 0; 731 sb->events_hi = (mddev->events>>32); 732 sb->events_lo = (u32)mddev->events; 733 734 if (mddev->in_sync) 735 { 736 sb->recovery_cp = mddev->recovery_cp; 737 sb->cp_events_hi = (mddev->events>>32); 738 sb->cp_events_lo = (u32)mddev->events; 739 if (mddev->recovery_cp == MaxSector) 740 sb->state = (1<< MD_SB_CLEAN); 741 } else 742 sb->recovery_cp = 0; 743 744 sb->layout = mddev->layout; 745 sb->chunk_size = mddev->chunk_size; 746 747 if (mddev->bitmap && mddev->bitmap_file == NULL) 748 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 749 750 sb->disks[0].state = (1<<MD_DISK_REMOVED); 751 ITERATE_RDEV(mddev,rdev2,tmp) { 752 mdp_disk_t *d; 753 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty) 754 rdev2->desc_nr = rdev2->raid_disk; 755 else 756 rdev2->desc_nr = next_spare++; 757 d = &sb->disks[rdev2->desc_nr]; 758 nr_disks++; 759 d->number = rdev2->desc_nr; 760 d->major = MAJOR(rdev2->bdev->bd_dev); 761 d->minor = MINOR(rdev2->bdev->bd_dev); 762 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty) 763 d->raid_disk = rdev2->raid_disk; 764 else 765 d->raid_disk = rdev2->desc_nr; /* compatibility */ 766 if (rdev2->faulty) { 767 d->state = (1<<MD_DISK_FAULTY); 768 failed++; 769 } else if (rdev2->in_sync) { 770 d->state = (1<<MD_DISK_ACTIVE); 771 d->state |= (1<<MD_DISK_SYNC); 772 active++; 773 working++; 774 } else { 775 d->state = 0; 776 spare++; 777 working++; 778 } 779 } 780 781 /* now set the "removed" and "faulty" bits on any missing devices */ 782 for (i=0 ; i < mddev->raid_disks ; i++) { 783 mdp_disk_t *d = &sb->disks[i]; 784 if (d->state == 0 && d->number == 0) { 785 d->number = i; 786 d->raid_disk = i; 787 d->state = (1<<MD_DISK_REMOVED); 788 d->state |= (1<<MD_DISK_FAULTY); 789 failed++; 790 } 791 } 792 sb->nr_disks = nr_disks; 793 sb->active_disks = active; 794 sb->working_disks = working; 795 sb->failed_disks = failed; 796 sb->spare_disks = spare; 797 798 sb->this_disk = sb->disks[rdev->desc_nr]; 799 sb->sb_csum = calc_sb_csum(sb); 800 } 801 802 /* 803 * version 1 superblock 804 */ 805 806 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb) 807 { 808 unsigned int disk_csum, csum; 809 unsigned long long newcsum; 810 int size = 256 + le32_to_cpu(sb->max_dev)*2; 811 unsigned int *isuper = (unsigned int*)sb; 812 int i; 813 814 disk_csum = sb->sb_csum; 815 sb->sb_csum = 0; 816 newcsum = 0; 817 for (i=0; size>=4; size -= 4 ) 818 newcsum += le32_to_cpu(*isuper++); 819 820 if (size == 2) 821 newcsum += le16_to_cpu(*(unsigned short*) isuper); 822 823 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 824 sb->sb_csum = disk_csum; 825 return cpu_to_le32(csum); 826 } 827 828 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 829 { 830 struct mdp_superblock_1 *sb; 831 int ret; 832 sector_t sb_offset; 833 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 834 835 /* 836 * Calculate the position of the superblock. 837 * It is always aligned to a 4K boundary and 838 * depeding on minor_version, it can be: 839 * 0: At least 8K, but less than 12K, from end of device 840 * 1: At start of device 841 * 2: 4K from start of device. 842 */ 843 switch(minor_version) { 844 case 0: 845 sb_offset = rdev->bdev->bd_inode->i_size >> 9; 846 sb_offset -= 8*2; 847 sb_offset &= ~(sector_t)(4*2-1); 848 /* convert from sectors to K */ 849 sb_offset /= 2; 850 break; 851 case 1: 852 sb_offset = 0; 853 break; 854 case 2: 855 sb_offset = 4; 856 break; 857 default: 858 return -EINVAL; 859 } 860 rdev->sb_offset = sb_offset; 861 862 ret = read_disk_sb(rdev); 863 if (ret) return ret; 864 865 866 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 867 868 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 869 sb->major_version != cpu_to_le32(1) || 870 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 871 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) || 872 sb->feature_map != 0) 873 return -EINVAL; 874 875 if (calc_sb_1_csum(sb) != sb->sb_csum) { 876 printk("md: invalid superblock checksum on %s\n", 877 bdevname(rdev->bdev,b)); 878 return -EINVAL; 879 } 880 if (le64_to_cpu(sb->data_size) < 10) { 881 printk("md: data_size too small on %s\n", 882 bdevname(rdev->bdev,b)); 883 return -EINVAL; 884 } 885 rdev->preferred_minor = 0xffff; 886 rdev->data_offset = le64_to_cpu(sb->data_offset); 887 888 if (refdev == 0) 889 return 1; 890 else { 891 __u64 ev1, ev2; 892 struct mdp_superblock_1 *refsb = 893 (struct mdp_superblock_1*)page_address(refdev->sb_page); 894 895 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 896 sb->level != refsb->level || 897 sb->layout != refsb->layout || 898 sb->chunksize != refsb->chunksize) { 899 printk(KERN_WARNING "md: %s has strangely different" 900 " superblock to %s\n", 901 bdevname(rdev->bdev,b), 902 bdevname(refdev->bdev,b2)); 903 return -EINVAL; 904 } 905 ev1 = le64_to_cpu(sb->events); 906 ev2 = le64_to_cpu(refsb->events); 907 908 if (ev1 > ev2) 909 return 1; 910 } 911 if (minor_version) 912 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2; 913 else 914 rdev->size = rdev->sb_offset; 915 if (rdev->size < le64_to_cpu(sb->data_size)/2) 916 return -EINVAL; 917 rdev->size = le64_to_cpu(sb->data_size)/2; 918 if (le32_to_cpu(sb->chunksize)) 919 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1); 920 return 0; 921 } 922 923 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 924 { 925 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 926 927 rdev->raid_disk = -1; 928 rdev->in_sync = 0; 929 if (mddev->raid_disks == 0) { 930 mddev->major_version = 1; 931 mddev->patch_version = 0; 932 mddev->persistent = 1; 933 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; 934 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 935 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 936 mddev->level = le32_to_cpu(sb->level); 937 mddev->layout = le32_to_cpu(sb->layout); 938 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 939 mddev->size = le64_to_cpu(sb->size)/2; 940 mddev->events = le64_to_cpu(sb->events); 941 mddev->bitmap_offset = 0; 942 943 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 944 memcpy(mddev->uuid, sb->set_uuid, 16); 945 946 mddev->max_disks = (4096-256)/2; 947 948 if ((le32_to_cpu(sb->feature_map) & 1) && 949 mddev->bitmap_file == NULL ) { 950 if (mddev->level != 1) { 951 printk(KERN_WARNING "md: bitmaps only supported for raid1\n"); 952 return -EINVAL; 953 } 954 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); 955 } 956 } else if (mddev->pers == NULL) { 957 /* Insist of good event counter while assembling */ 958 __u64 ev1 = le64_to_cpu(sb->events); 959 ++ev1; 960 if (ev1 < mddev->events) 961 return -EINVAL; 962 } else if (mddev->bitmap) { 963 /* If adding to array with a bitmap, then we can accept an 964 * older device, but not too old. 965 */ 966 __u64 ev1 = le64_to_cpu(sb->events); 967 if (ev1 < mddev->bitmap->events_cleared) 968 return 0; 969 } else /* just a hot-add of a new device, leave raid_disk at -1 */ 970 return 0; 971 972 if (mddev->level != LEVEL_MULTIPATH) { 973 int role; 974 rdev->desc_nr = le32_to_cpu(sb->dev_number); 975 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 976 switch(role) { 977 case 0xffff: /* spare */ 978 rdev->faulty = 0; 979 break; 980 case 0xfffe: /* faulty */ 981 rdev->faulty = 1; 982 break; 983 default: 984 rdev->in_sync = 1; 985 rdev->faulty = 0; 986 rdev->raid_disk = role; 987 break; 988 } 989 } else /* MULTIPATH are always insync */ 990 rdev->in_sync = 1; 991 992 return 0; 993 } 994 995 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 996 { 997 struct mdp_superblock_1 *sb; 998 struct list_head *tmp; 999 mdk_rdev_t *rdev2; 1000 int max_dev, i; 1001 /* make rdev->sb match mddev and rdev data. */ 1002 1003 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1004 1005 sb->feature_map = 0; 1006 sb->pad0 = 0; 1007 memset(sb->pad1, 0, sizeof(sb->pad1)); 1008 memset(sb->pad2, 0, sizeof(sb->pad2)); 1009 memset(sb->pad3, 0, sizeof(sb->pad3)); 1010 1011 sb->utime = cpu_to_le64((__u64)mddev->utime); 1012 sb->events = cpu_to_le64(mddev->events); 1013 if (mddev->in_sync) 1014 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1015 else 1016 sb->resync_offset = cpu_to_le64(0); 1017 1018 if (mddev->bitmap && mddev->bitmap_file == NULL) { 1019 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); 1020 sb->feature_map = cpu_to_le32(1); 1021 } 1022 1023 max_dev = 0; 1024 ITERATE_RDEV(mddev,rdev2,tmp) 1025 if (rdev2->desc_nr+1 > max_dev) 1026 max_dev = rdev2->desc_nr+1; 1027 1028 sb->max_dev = cpu_to_le32(max_dev); 1029 for (i=0; i<max_dev;i++) 1030 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1031 1032 ITERATE_RDEV(mddev,rdev2,tmp) { 1033 i = rdev2->desc_nr; 1034 if (rdev2->faulty) 1035 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1036 else if (rdev2->in_sync) 1037 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1038 else 1039 sb->dev_roles[i] = cpu_to_le16(0xffff); 1040 } 1041 1042 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */ 1043 sb->sb_csum = calc_sb_1_csum(sb); 1044 } 1045 1046 1047 static struct super_type super_types[] = { 1048 [0] = { 1049 .name = "0.90.0", 1050 .owner = THIS_MODULE, 1051 .load_super = super_90_load, 1052 .validate_super = super_90_validate, 1053 .sync_super = super_90_sync, 1054 }, 1055 [1] = { 1056 .name = "md-1", 1057 .owner = THIS_MODULE, 1058 .load_super = super_1_load, 1059 .validate_super = super_1_validate, 1060 .sync_super = super_1_sync, 1061 }, 1062 }; 1063 1064 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev) 1065 { 1066 struct list_head *tmp; 1067 mdk_rdev_t *rdev; 1068 1069 ITERATE_RDEV(mddev,rdev,tmp) 1070 if (rdev->bdev->bd_contains == dev->bdev->bd_contains) 1071 return rdev; 1072 1073 return NULL; 1074 } 1075 1076 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1077 { 1078 struct list_head *tmp; 1079 mdk_rdev_t *rdev; 1080 1081 ITERATE_RDEV(mddev1,rdev,tmp) 1082 if (match_dev_unit(mddev2, rdev)) 1083 return 1; 1084 1085 return 0; 1086 } 1087 1088 static LIST_HEAD(pending_raid_disks); 1089 1090 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1091 { 1092 mdk_rdev_t *same_pdev; 1093 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1094 1095 if (rdev->mddev) { 1096 MD_BUG(); 1097 return -EINVAL; 1098 } 1099 same_pdev = match_dev_unit(mddev, rdev); 1100 if (same_pdev) 1101 printk(KERN_WARNING 1102 "%s: WARNING: %s appears to be on the same physical" 1103 " disk as %s. True\n protection against single-disk" 1104 " failure might be compromised.\n", 1105 mdname(mddev), bdevname(rdev->bdev,b), 1106 bdevname(same_pdev->bdev,b2)); 1107 1108 /* Verify rdev->desc_nr is unique. 1109 * If it is -1, assign a free number, else 1110 * check number is not in use 1111 */ 1112 if (rdev->desc_nr < 0) { 1113 int choice = 0; 1114 if (mddev->pers) choice = mddev->raid_disks; 1115 while (find_rdev_nr(mddev, choice)) 1116 choice++; 1117 rdev->desc_nr = choice; 1118 } else { 1119 if (find_rdev_nr(mddev, rdev->desc_nr)) 1120 return -EBUSY; 1121 } 1122 1123 list_add(&rdev->same_set, &mddev->disks); 1124 rdev->mddev = mddev; 1125 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b)); 1126 return 0; 1127 } 1128 1129 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1130 { 1131 char b[BDEVNAME_SIZE]; 1132 if (!rdev->mddev) { 1133 MD_BUG(); 1134 return; 1135 } 1136 list_del_init(&rdev->same_set); 1137 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1138 rdev->mddev = NULL; 1139 } 1140 1141 /* 1142 * prevent the device from being mounted, repartitioned or 1143 * otherwise reused by a RAID array (or any other kernel 1144 * subsystem), by bd_claiming the device. 1145 */ 1146 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev) 1147 { 1148 int err = 0; 1149 struct block_device *bdev; 1150 char b[BDEVNAME_SIZE]; 1151 1152 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1153 if (IS_ERR(bdev)) { 1154 printk(KERN_ERR "md: could not open %s.\n", 1155 __bdevname(dev, b)); 1156 return PTR_ERR(bdev); 1157 } 1158 err = bd_claim(bdev, rdev); 1159 if (err) { 1160 printk(KERN_ERR "md: could not bd_claim %s.\n", 1161 bdevname(bdev, b)); 1162 blkdev_put(bdev); 1163 return err; 1164 } 1165 rdev->bdev = bdev; 1166 return err; 1167 } 1168 1169 static void unlock_rdev(mdk_rdev_t *rdev) 1170 { 1171 struct block_device *bdev = rdev->bdev; 1172 rdev->bdev = NULL; 1173 if (!bdev) 1174 MD_BUG(); 1175 bd_release(bdev); 1176 blkdev_put(bdev); 1177 } 1178 1179 void md_autodetect_dev(dev_t dev); 1180 1181 static void export_rdev(mdk_rdev_t * rdev) 1182 { 1183 char b[BDEVNAME_SIZE]; 1184 printk(KERN_INFO "md: export_rdev(%s)\n", 1185 bdevname(rdev->bdev,b)); 1186 if (rdev->mddev) 1187 MD_BUG(); 1188 free_disk_sb(rdev); 1189 list_del_init(&rdev->same_set); 1190 #ifndef MODULE 1191 md_autodetect_dev(rdev->bdev->bd_dev); 1192 #endif 1193 unlock_rdev(rdev); 1194 kfree(rdev); 1195 } 1196 1197 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1198 { 1199 unbind_rdev_from_array(rdev); 1200 export_rdev(rdev); 1201 } 1202 1203 static void export_array(mddev_t *mddev) 1204 { 1205 struct list_head *tmp; 1206 mdk_rdev_t *rdev; 1207 1208 ITERATE_RDEV(mddev,rdev,tmp) { 1209 if (!rdev->mddev) { 1210 MD_BUG(); 1211 continue; 1212 } 1213 kick_rdev_from_array(rdev); 1214 } 1215 if (!list_empty(&mddev->disks)) 1216 MD_BUG(); 1217 mddev->raid_disks = 0; 1218 mddev->major_version = 0; 1219 } 1220 1221 static void print_desc(mdp_disk_t *desc) 1222 { 1223 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1224 desc->major,desc->minor,desc->raid_disk,desc->state); 1225 } 1226 1227 static void print_sb(mdp_super_t *sb) 1228 { 1229 int i; 1230 1231 printk(KERN_INFO 1232 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1233 sb->major_version, sb->minor_version, sb->patch_version, 1234 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1235 sb->ctime); 1236 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1237 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1238 sb->md_minor, sb->layout, sb->chunk_size); 1239 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1240 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1241 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1242 sb->failed_disks, sb->spare_disks, 1243 sb->sb_csum, (unsigned long)sb->events_lo); 1244 1245 printk(KERN_INFO); 1246 for (i = 0; i < MD_SB_DISKS; i++) { 1247 mdp_disk_t *desc; 1248 1249 desc = sb->disks + i; 1250 if (desc->number || desc->major || desc->minor || 1251 desc->raid_disk || (desc->state && (desc->state != 4))) { 1252 printk(" D %2d: ", i); 1253 print_desc(desc); 1254 } 1255 } 1256 printk(KERN_INFO "md: THIS: "); 1257 print_desc(&sb->this_disk); 1258 1259 } 1260 1261 static void print_rdev(mdk_rdev_t *rdev) 1262 { 1263 char b[BDEVNAME_SIZE]; 1264 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n", 1265 bdevname(rdev->bdev,b), (unsigned long long)rdev->size, 1266 rdev->faulty, rdev->in_sync, rdev->desc_nr); 1267 if (rdev->sb_loaded) { 1268 printk(KERN_INFO "md: rdev superblock:\n"); 1269 print_sb((mdp_super_t*)page_address(rdev->sb_page)); 1270 } else 1271 printk(KERN_INFO "md: no rdev superblock!\n"); 1272 } 1273 1274 void md_print_devices(void) 1275 { 1276 struct list_head *tmp, *tmp2; 1277 mdk_rdev_t *rdev; 1278 mddev_t *mddev; 1279 char b[BDEVNAME_SIZE]; 1280 1281 printk("\n"); 1282 printk("md: **********************************\n"); 1283 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 1284 printk("md: **********************************\n"); 1285 ITERATE_MDDEV(mddev,tmp) { 1286 1287 if (mddev->bitmap) 1288 bitmap_print_sb(mddev->bitmap); 1289 else 1290 printk("%s: ", mdname(mddev)); 1291 ITERATE_RDEV(mddev,rdev,tmp2) 1292 printk("<%s>", bdevname(rdev->bdev,b)); 1293 printk("\n"); 1294 1295 ITERATE_RDEV(mddev,rdev,tmp2) 1296 print_rdev(rdev); 1297 } 1298 printk("md: **********************************\n"); 1299 printk("\n"); 1300 } 1301 1302 1303 static void sync_sbs(mddev_t * mddev) 1304 { 1305 mdk_rdev_t *rdev; 1306 struct list_head *tmp; 1307 1308 ITERATE_RDEV(mddev,rdev,tmp) { 1309 super_types[mddev->major_version]. 1310 sync_super(mddev, rdev); 1311 rdev->sb_loaded = 1; 1312 } 1313 } 1314 1315 static void md_update_sb(mddev_t * mddev) 1316 { 1317 int err; 1318 struct list_head *tmp; 1319 mdk_rdev_t *rdev; 1320 int sync_req; 1321 1322 repeat: 1323 spin_lock(&mddev->write_lock); 1324 sync_req = mddev->in_sync; 1325 mddev->utime = get_seconds(); 1326 mddev->events ++; 1327 1328 if (!mddev->events) { 1329 /* 1330 * oops, this 64-bit counter should never wrap. 1331 * Either we are in around ~1 trillion A.C., assuming 1332 * 1 reboot per second, or we have a bug: 1333 */ 1334 MD_BUG(); 1335 mddev->events --; 1336 } 1337 mddev->sb_dirty = 2; 1338 sync_sbs(mddev); 1339 1340 /* 1341 * do not write anything to disk if using 1342 * nonpersistent superblocks 1343 */ 1344 if (!mddev->persistent) { 1345 mddev->sb_dirty = 0; 1346 spin_unlock(&mddev->write_lock); 1347 wake_up(&mddev->sb_wait); 1348 return; 1349 } 1350 spin_unlock(&mddev->write_lock); 1351 1352 dprintk(KERN_INFO 1353 "md: updating %s RAID superblock on device (in sync %d)\n", 1354 mdname(mddev),mddev->in_sync); 1355 1356 err = bitmap_update_sb(mddev->bitmap); 1357 ITERATE_RDEV(mddev,rdev,tmp) { 1358 char b[BDEVNAME_SIZE]; 1359 dprintk(KERN_INFO "md: "); 1360 if (rdev->faulty) 1361 dprintk("(skipping faulty "); 1362 1363 dprintk("%s ", bdevname(rdev->bdev,b)); 1364 if (!rdev->faulty) { 1365 md_super_write(mddev,rdev, 1366 rdev->sb_offset<<1, MD_SB_BYTES, 1367 rdev->sb_page); 1368 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 1369 bdevname(rdev->bdev,b), 1370 (unsigned long long)rdev->sb_offset); 1371 1372 } else 1373 dprintk(")\n"); 1374 if (mddev->level == LEVEL_MULTIPATH) 1375 /* only need to write one superblock... */ 1376 break; 1377 } 1378 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1379 /* if there was a failure, sb_dirty was set to 1, and we re-write super */ 1380 1381 spin_lock(&mddev->write_lock); 1382 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) { 1383 /* have to write it out again */ 1384 spin_unlock(&mddev->write_lock); 1385 goto repeat; 1386 } 1387 mddev->sb_dirty = 0; 1388 spin_unlock(&mddev->write_lock); 1389 wake_up(&mddev->sb_wait); 1390 1391 } 1392 1393 /* 1394 * Import a device. If 'super_format' >= 0, then sanity check the superblock 1395 * 1396 * mark the device faulty if: 1397 * 1398 * - the device is nonexistent (zero size) 1399 * - the device has no valid superblock 1400 * 1401 * a faulty rdev _never_ has rdev->sb set. 1402 */ 1403 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 1404 { 1405 char b[BDEVNAME_SIZE]; 1406 int err; 1407 mdk_rdev_t *rdev; 1408 sector_t size; 1409 1410 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL); 1411 if (!rdev) { 1412 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 1413 return ERR_PTR(-ENOMEM); 1414 } 1415 memset(rdev, 0, sizeof(*rdev)); 1416 1417 if ((err = alloc_disk_sb(rdev))) 1418 goto abort_free; 1419 1420 err = lock_rdev(rdev, newdev); 1421 if (err) 1422 goto abort_free; 1423 1424 rdev->desc_nr = -1; 1425 rdev->faulty = 0; 1426 rdev->in_sync = 0; 1427 rdev->data_offset = 0; 1428 atomic_set(&rdev->nr_pending, 0); 1429 1430 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 1431 if (!size) { 1432 printk(KERN_WARNING 1433 "md: %s has zero or unknown size, marking faulty!\n", 1434 bdevname(rdev->bdev,b)); 1435 err = -EINVAL; 1436 goto abort_free; 1437 } 1438 1439 if (super_format >= 0) { 1440 err = super_types[super_format]. 1441 load_super(rdev, NULL, super_minor); 1442 if (err == -EINVAL) { 1443 printk(KERN_WARNING 1444 "md: %s has invalid sb, not importing!\n", 1445 bdevname(rdev->bdev,b)); 1446 goto abort_free; 1447 } 1448 if (err < 0) { 1449 printk(KERN_WARNING 1450 "md: could not read %s's sb, not importing!\n", 1451 bdevname(rdev->bdev,b)); 1452 goto abort_free; 1453 } 1454 } 1455 INIT_LIST_HEAD(&rdev->same_set); 1456 1457 return rdev; 1458 1459 abort_free: 1460 if (rdev->sb_page) { 1461 if (rdev->bdev) 1462 unlock_rdev(rdev); 1463 free_disk_sb(rdev); 1464 } 1465 kfree(rdev); 1466 return ERR_PTR(err); 1467 } 1468 1469 /* 1470 * Check a full RAID array for plausibility 1471 */ 1472 1473 1474 static void analyze_sbs(mddev_t * mddev) 1475 { 1476 int i; 1477 struct list_head *tmp; 1478 mdk_rdev_t *rdev, *freshest; 1479 char b[BDEVNAME_SIZE]; 1480 1481 freshest = NULL; 1482 ITERATE_RDEV(mddev,rdev,tmp) 1483 switch (super_types[mddev->major_version]. 1484 load_super(rdev, freshest, mddev->minor_version)) { 1485 case 1: 1486 freshest = rdev; 1487 break; 1488 case 0: 1489 break; 1490 default: 1491 printk( KERN_ERR \ 1492 "md: fatal superblock inconsistency in %s" 1493 " -- removing from array\n", 1494 bdevname(rdev->bdev,b)); 1495 kick_rdev_from_array(rdev); 1496 } 1497 1498 1499 super_types[mddev->major_version]. 1500 validate_super(mddev, freshest); 1501 1502 i = 0; 1503 ITERATE_RDEV(mddev,rdev,tmp) { 1504 if (rdev != freshest) 1505 if (super_types[mddev->major_version]. 1506 validate_super(mddev, rdev)) { 1507 printk(KERN_WARNING "md: kicking non-fresh %s" 1508 " from array!\n", 1509 bdevname(rdev->bdev,b)); 1510 kick_rdev_from_array(rdev); 1511 continue; 1512 } 1513 if (mddev->level == LEVEL_MULTIPATH) { 1514 rdev->desc_nr = i++; 1515 rdev->raid_disk = rdev->desc_nr; 1516 rdev->in_sync = 1; 1517 } 1518 } 1519 1520 1521 1522 if (mddev->recovery_cp != MaxSector && 1523 mddev->level >= 1) 1524 printk(KERN_ERR "md: %s: raid array is not clean" 1525 " -- starting background reconstruction\n", 1526 mdname(mddev)); 1527 1528 } 1529 1530 int mdp_major = 0; 1531 1532 static struct kobject *md_probe(dev_t dev, int *part, void *data) 1533 { 1534 static DECLARE_MUTEX(disks_sem); 1535 mddev_t *mddev = mddev_find(dev); 1536 struct gendisk *disk; 1537 int partitioned = (MAJOR(dev) != MD_MAJOR); 1538 int shift = partitioned ? MdpMinorShift : 0; 1539 int unit = MINOR(dev) >> shift; 1540 1541 if (!mddev) 1542 return NULL; 1543 1544 down(&disks_sem); 1545 if (mddev->gendisk) { 1546 up(&disks_sem); 1547 mddev_put(mddev); 1548 return NULL; 1549 } 1550 disk = alloc_disk(1 << shift); 1551 if (!disk) { 1552 up(&disks_sem); 1553 mddev_put(mddev); 1554 return NULL; 1555 } 1556 disk->major = MAJOR(dev); 1557 disk->first_minor = unit << shift; 1558 if (partitioned) { 1559 sprintf(disk->disk_name, "md_d%d", unit); 1560 sprintf(disk->devfs_name, "md/d%d", unit); 1561 } else { 1562 sprintf(disk->disk_name, "md%d", unit); 1563 sprintf(disk->devfs_name, "md/%d", unit); 1564 } 1565 disk->fops = &md_fops; 1566 disk->private_data = mddev; 1567 disk->queue = mddev->queue; 1568 add_disk(disk); 1569 mddev->gendisk = disk; 1570 up(&disks_sem); 1571 return NULL; 1572 } 1573 1574 void md_wakeup_thread(mdk_thread_t *thread); 1575 1576 static void md_safemode_timeout(unsigned long data) 1577 { 1578 mddev_t *mddev = (mddev_t *) data; 1579 1580 mddev->safemode = 1; 1581 md_wakeup_thread(mddev->thread); 1582 } 1583 1584 1585 static int do_md_run(mddev_t * mddev) 1586 { 1587 int pnum, err; 1588 int chunk_size; 1589 struct list_head *tmp; 1590 mdk_rdev_t *rdev; 1591 struct gendisk *disk; 1592 char b[BDEVNAME_SIZE]; 1593 1594 if (list_empty(&mddev->disks)) 1595 /* cannot run an array with no devices.. */ 1596 return -EINVAL; 1597 1598 if (mddev->pers) 1599 return -EBUSY; 1600 1601 /* 1602 * Analyze all RAID superblock(s) 1603 */ 1604 if (!mddev->raid_disks) 1605 analyze_sbs(mddev); 1606 1607 chunk_size = mddev->chunk_size; 1608 pnum = level_to_pers(mddev->level); 1609 1610 if ((pnum != MULTIPATH) && (pnum != RAID1)) { 1611 if (!chunk_size) { 1612 /* 1613 * 'default chunksize' in the old md code used to 1614 * be PAGE_SIZE, baaad. 1615 * we abort here to be on the safe side. We don't 1616 * want to continue the bad practice. 1617 */ 1618 printk(KERN_ERR 1619 "no chunksize specified, see 'man raidtab'\n"); 1620 return -EINVAL; 1621 } 1622 if (chunk_size > MAX_CHUNK_SIZE) { 1623 printk(KERN_ERR "too big chunk_size: %d > %d\n", 1624 chunk_size, MAX_CHUNK_SIZE); 1625 return -EINVAL; 1626 } 1627 /* 1628 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE 1629 */ 1630 if ( (1 << ffz(~chunk_size)) != chunk_size) { 1631 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); 1632 return -EINVAL; 1633 } 1634 if (chunk_size < PAGE_SIZE) { 1635 printk(KERN_ERR "too small chunk_size: %d < %ld\n", 1636 chunk_size, PAGE_SIZE); 1637 return -EINVAL; 1638 } 1639 1640 /* devices must have minimum size of one chunk */ 1641 ITERATE_RDEV(mddev,rdev,tmp) { 1642 if (rdev->faulty) 1643 continue; 1644 if (rdev->size < chunk_size / 1024) { 1645 printk(KERN_WARNING 1646 "md: Dev %s smaller than chunk_size:" 1647 " %lluk < %dk\n", 1648 bdevname(rdev->bdev,b), 1649 (unsigned long long)rdev->size, 1650 chunk_size / 1024); 1651 return -EINVAL; 1652 } 1653 } 1654 } 1655 1656 #ifdef CONFIG_KMOD 1657 if (!pers[pnum]) 1658 { 1659 request_module("md-personality-%d", pnum); 1660 } 1661 #endif 1662 1663 /* 1664 * Drop all container device buffers, from now on 1665 * the only valid external interface is through the md 1666 * device. 1667 * Also find largest hardsector size 1668 */ 1669 ITERATE_RDEV(mddev,rdev,tmp) { 1670 if (rdev->faulty) 1671 continue; 1672 sync_blockdev(rdev->bdev); 1673 invalidate_bdev(rdev->bdev, 0); 1674 } 1675 1676 md_probe(mddev->unit, NULL, NULL); 1677 disk = mddev->gendisk; 1678 if (!disk) 1679 return -ENOMEM; 1680 1681 spin_lock(&pers_lock); 1682 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) { 1683 spin_unlock(&pers_lock); 1684 printk(KERN_WARNING "md: personality %d is not loaded!\n", 1685 pnum); 1686 return -EINVAL; 1687 } 1688 1689 mddev->pers = pers[pnum]; 1690 spin_unlock(&pers_lock); 1691 1692 mddev->recovery = 0; 1693 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */ 1694 1695 /* before we start the array running, initialise the bitmap */ 1696 err = bitmap_create(mddev); 1697 if (err) 1698 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 1699 mdname(mddev), err); 1700 else 1701 err = mddev->pers->run(mddev); 1702 if (err) { 1703 printk(KERN_ERR "md: pers->run() failed ...\n"); 1704 module_put(mddev->pers->owner); 1705 mddev->pers = NULL; 1706 bitmap_destroy(mddev); 1707 return err; 1708 } 1709 atomic_set(&mddev->writes_pending,0); 1710 mddev->safemode = 0; 1711 mddev->safemode_timer.function = md_safemode_timeout; 1712 mddev->safemode_timer.data = (unsigned long) mddev; 1713 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */ 1714 mddev->in_sync = 1; 1715 1716 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1717 md_wakeup_thread(mddev->thread); 1718 1719 if (mddev->sb_dirty) 1720 md_update_sb(mddev); 1721 1722 set_capacity(disk, mddev->array_size<<1); 1723 1724 /* If we call blk_queue_make_request here, it will 1725 * re-initialise max_sectors etc which may have been 1726 * refined inside -> run. So just set the bits we need to set. 1727 * Most initialisation happended when we called 1728 * blk_queue_make_request(..., md_fail_request) 1729 * earlier. 1730 */ 1731 mddev->queue->queuedata = mddev; 1732 mddev->queue->make_request_fn = mddev->pers->make_request; 1733 1734 mddev->changed = 1; 1735 return 0; 1736 } 1737 1738 static int restart_array(mddev_t *mddev) 1739 { 1740 struct gendisk *disk = mddev->gendisk; 1741 int err; 1742 1743 /* 1744 * Complain if it has no devices 1745 */ 1746 err = -ENXIO; 1747 if (list_empty(&mddev->disks)) 1748 goto out; 1749 1750 if (mddev->pers) { 1751 err = -EBUSY; 1752 if (!mddev->ro) 1753 goto out; 1754 1755 mddev->safemode = 0; 1756 mddev->ro = 0; 1757 set_disk_ro(disk, 0); 1758 1759 printk(KERN_INFO "md: %s switched to read-write mode.\n", 1760 mdname(mddev)); 1761 /* 1762 * Kick recovery or resync if necessary 1763 */ 1764 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1765 md_wakeup_thread(mddev->thread); 1766 err = 0; 1767 } else { 1768 printk(KERN_ERR "md: %s has no personality assigned.\n", 1769 mdname(mddev)); 1770 err = -EINVAL; 1771 } 1772 1773 out: 1774 return err; 1775 } 1776 1777 static int do_md_stop(mddev_t * mddev, int ro) 1778 { 1779 int err = 0; 1780 struct gendisk *disk = mddev->gendisk; 1781 1782 if (mddev->pers) { 1783 if (atomic_read(&mddev->active)>2) { 1784 printk("md: %s still in use.\n",mdname(mddev)); 1785 return -EBUSY; 1786 } 1787 1788 if (mddev->sync_thread) { 1789 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1790 md_unregister_thread(mddev->sync_thread); 1791 mddev->sync_thread = NULL; 1792 } 1793 1794 del_timer_sync(&mddev->safemode_timer); 1795 1796 invalidate_partition(disk, 0); 1797 1798 if (ro) { 1799 err = -ENXIO; 1800 if (mddev->ro) 1801 goto out; 1802 mddev->ro = 1; 1803 } else { 1804 bitmap_flush(mddev); 1805 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1806 if (mddev->ro) 1807 set_disk_ro(disk, 0); 1808 blk_queue_make_request(mddev->queue, md_fail_request); 1809 mddev->pers->stop(mddev); 1810 module_put(mddev->pers->owner); 1811 mddev->pers = NULL; 1812 if (mddev->ro) 1813 mddev->ro = 0; 1814 } 1815 if (!mddev->in_sync) { 1816 /* mark array as shutdown cleanly */ 1817 mddev->in_sync = 1; 1818 md_update_sb(mddev); 1819 } 1820 if (ro) 1821 set_disk_ro(disk, 1); 1822 } 1823 1824 bitmap_destroy(mddev); 1825 if (mddev->bitmap_file) { 1826 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1); 1827 fput(mddev->bitmap_file); 1828 mddev->bitmap_file = NULL; 1829 } 1830 mddev->bitmap_offset = 0; 1831 1832 /* 1833 * Free resources if final stop 1834 */ 1835 if (!ro) { 1836 struct gendisk *disk; 1837 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 1838 1839 export_array(mddev); 1840 1841 mddev->array_size = 0; 1842 disk = mddev->gendisk; 1843 if (disk) 1844 set_capacity(disk, 0); 1845 mddev->changed = 1; 1846 } else 1847 printk(KERN_INFO "md: %s switched to read-only mode.\n", 1848 mdname(mddev)); 1849 err = 0; 1850 out: 1851 return err; 1852 } 1853 1854 static void autorun_array(mddev_t *mddev) 1855 { 1856 mdk_rdev_t *rdev; 1857 struct list_head *tmp; 1858 int err; 1859 1860 if (list_empty(&mddev->disks)) 1861 return; 1862 1863 printk(KERN_INFO "md: running: "); 1864 1865 ITERATE_RDEV(mddev,rdev,tmp) { 1866 char b[BDEVNAME_SIZE]; 1867 printk("<%s>", bdevname(rdev->bdev,b)); 1868 } 1869 printk("\n"); 1870 1871 err = do_md_run (mddev); 1872 if (err) { 1873 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 1874 do_md_stop (mddev, 0); 1875 } 1876 } 1877 1878 /* 1879 * lets try to run arrays based on all disks that have arrived 1880 * until now. (those are in pending_raid_disks) 1881 * 1882 * the method: pick the first pending disk, collect all disks with 1883 * the same UUID, remove all from the pending list and put them into 1884 * the 'same_array' list. Then order this list based on superblock 1885 * update time (freshest comes first), kick out 'old' disks and 1886 * compare superblocks. If everything's fine then run it. 1887 * 1888 * If "unit" is allocated, then bump its reference count 1889 */ 1890 static void autorun_devices(int part) 1891 { 1892 struct list_head candidates; 1893 struct list_head *tmp; 1894 mdk_rdev_t *rdev0, *rdev; 1895 mddev_t *mddev; 1896 char b[BDEVNAME_SIZE]; 1897 1898 printk(KERN_INFO "md: autorun ...\n"); 1899 while (!list_empty(&pending_raid_disks)) { 1900 dev_t dev; 1901 rdev0 = list_entry(pending_raid_disks.next, 1902 mdk_rdev_t, same_set); 1903 1904 printk(KERN_INFO "md: considering %s ...\n", 1905 bdevname(rdev0->bdev,b)); 1906 INIT_LIST_HEAD(&candidates); 1907 ITERATE_RDEV_PENDING(rdev,tmp) 1908 if (super_90_load(rdev, rdev0, 0) >= 0) { 1909 printk(KERN_INFO "md: adding %s ...\n", 1910 bdevname(rdev->bdev,b)); 1911 list_move(&rdev->same_set, &candidates); 1912 } 1913 /* 1914 * now we have a set of devices, with all of them having 1915 * mostly sane superblocks. It's time to allocate the 1916 * mddev. 1917 */ 1918 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) { 1919 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 1920 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 1921 break; 1922 } 1923 if (part) 1924 dev = MKDEV(mdp_major, 1925 rdev0->preferred_minor << MdpMinorShift); 1926 else 1927 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 1928 1929 md_probe(dev, NULL, NULL); 1930 mddev = mddev_find(dev); 1931 if (!mddev) { 1932 printk(KERN_ERR 1933 "md: cannot allocate memory for md drive.\n"); 1934 break; 1935 } 1936 if (mddev_lock(mddev)) 1937 printk(KERN_WARNING "md: %s locked, cannot run\n", 1938 mdname(mddev)); 1939 else if (mddev->raid_disks || mddev->major_version 1940 || !list_empty(&mddev->disks)) { 1941 printk(KERN_WARNING 1942 "md: %s already running, cannot run %s\n", 1943 mdname(mddev), bdevname(rdev0->bdev,b)); 1944 mddev_unlock(mddev); 1945 } else { 1946 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 1947 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) { 1948 list_del_init(&rdev->same_set); 1949 if (bind_rdev_to_array(rdev, mddev)) 1950 export_rdev(rdev); 1951 } 1952 autorun_array(mddev); 1953 mddev_unlock(mddev); 1954 } 1955 /* on success, candidates will be empty, on error 1956 * it won't... 1957 */ 1958 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) 1959 export_rdev(rdev); 1960 mddev_put(mddev); 1961 } 1962 printk(KERN_INFO "md: ... autorun DONE.\n"); 1963 } 1964 1965 /* 1966 * import RAID devices based on one partition 1967 * if possible, the array gets run as well. 1968 */ 1969 1970 static int autostart_array(dev_t startdev) 1971 { 1972 char b[BDEVNAME_SIZE]; 1973 int err = -EINVAL, i; 1974 mdp_super_t *sb = NULL; 1975 mdk_rdev_t *start_rdev = NULL, *rdev; 1976 1977 start_rdev = md_import_device(startdev, 0, 0); 1978 if (IS_ERR(start_rdev)) 1979 return err; 1980 1981 1982 /* NOTE: this can only work for 0.90.0 superblocks */ 1983 sb = (mdp_super_t*)page_address(start_rdev->sb_page); 1984 if (sb->major_version != 0 || 1985 sb->minor_version != 90 ) { 1986 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n"); 1987 export_rdev(start_rdev); 1988 return err; 1989 } 1990 1991 if (start_rdev->faulty) { 1992 printk(KERN_WARNING 1993 "md: can not autostart based on faulty %s!\n", 1994 bdevname(start_rdev->bdev,b)); 1995 export_rdev(start_rdev); 1996 return err; 1997 } 1998 list_add(&start_rdev->same_set, &pending_raid_disks); 1999 2000 for (i = 0; i < MD_SB_DISKS; i++) { 2001 mdp_disk_t *desc = sb->disks + i; 2002 dev_t dev = MKDEV(desc->major, desc->minor); 2003 2004 if (!dev) 2005 continue; 2006 if (dev == startdev) 2007 continue; 2008 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor) 2009 continue; 2010 rdev = md_import_device(dev, 0, 0); 2011 if (IS_ERR(rdev)) 2012 continue; 2013 2014 list_add(&rdev->same_set, &pending_raid_disks); 2015 } 2016 2017 /* 2018 * possibly return codes 2019 */ 2020 autorun_devices(0); 2021 return 0; 2022 2023 } 2024 2025 2026 static int get_version(void __user * arg) 2027 { 2028 mdu_version_t ver; 2029 2030 ver.major = MD_MAJOR_VERSION; 2031 ver.minor = MD_MINOR_VERSION; 2032 ver.patchlevel = MD_PATCHLEVEL_VERSION; 2033 2034 if (copy_to_user(arg, &ver, sizeof(ver))) 2035 return -EFAULT; 2036 2037 return 0; 2038 } 2039 2040 static int get_array_info(mddev_t * mddev, void __user * arg) 2041 { 2042 mdu_array_info_t info; 2043 int nr,working,active,failed,spare; 2044 mdk_rdev_t *rdev; 2045 struct list_head *tmp; 2046 2047 nr=working=active=failed=spare=0; 2048 ITERATE_RDEV(mddev,rdev,tmp) { 2049 nr++; 2050 if (rdev->faulty) 2051 failed++; 2052 else { 2053 working++; 2054 if (rdev->in_sync) 2055 active++; 2056 else 2057 spare++; 2058 } 2059 } 2060 2061 info.major_version = mddev->major_version; 2062 info.minor_version = mddev->minor_version; 2063 info.patch_version = MD_PATCHLEVEL_VERSION; 2064 info.ctime = mddev->ctime; 2065 info.level = mddev->level; 2066 info.size = mddev->size; 2067 info.nr_disks = nr; 2068 info.raid_disks = mddev->raid_disks; 2069 info.md_minor = mddev->md_minor; 2070 info.not_persistent= !mddev->persistent; 2071 2072 info.utime = mddev->utime; 2073 info.state = 0; 2074 if (mddev->in_sync) 2075 info.state = (1<<MD_SB_CLEAN); 2076 info.active_disks = active; 2077 info.working_disks = working; 2078 info.failed_disks = failed; 2079 info.spare_disks = spare; 2080 2081 info.layout = mddev->layout; 2082 info.chunk_size = mddev->chunk_size; 2083 2084 if (copy_to_user(arg, &info, sizeof(info))) 2085 return -EFAULT; 2086 2087 return 0; 2088 } 2089 2090 static int get_bitmap_file(mddev_t * mddev, void * arg) 2091 { 2092 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 2093 char *ptr, *buf = NULL; 2094 int err = -ENOMEM; 2095 2096 file = kmalloc(sizeof(*file), GFP_KERNEL); 2097 if (!file) 2098 goto out; 2099 2100 /* bitmap disabled, zero the first byte and copy out */ 2101 if (!mddev->bitmap || !mddev->bitmap->file) { 2102 file->pathname[0] = '\0'; 2103 goto copy_out; 2104 } 2105 2106 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 2107 if (!buf) 2108 goto out; 2109 2110 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname)); 2111 if (!ptr) 2112 goto out; 2113 2114 strcpy(file->pathname, ptr); 2115 2116 copy_out: 2117 err = 0; 2118 if (copy_to_user(arg, file, sizeof(*file))) 2119 err = -EFAULT; 2120 out: 2121 kfree(buf); 2122 kfree(file); 2123 return err; 2124 } 2125 2126 static int get_disk_info(mddev_t * mddev, void __user * arg) 2127 { 2128 mdu_disk_info_t info; 2129 unsigned int nr; 2130 mdk_rdev_t *rdev; 2131 2132 if (copy_from_user(&info, arg, sizeof(info))) 2133 return -EFAULT; 2134 2135 nr = info.number; 2136 2137 rdev = find_rdev_nr(mddev, nr); 2138 if (rdev) { 2139 info.major = MAJOR(rdev->bdev->bd_dev); 2140 info.minor = MINOR(rdev->bdev->bd_dev); 2141 info.raid_disk = rdev->raid_disk; 2142 info.state = 0; 2143 if (rdev->faulty) 2144 info.state |= (1<<MD_DISK_FAULTY); 2145 else if (rdev->in_sync) { 2146 info.state |= (1<<MD_DISK_ACTIVE); 2147 info.state |= (1<<MD_DISK_SYNC); 2148 } 2149 } else { 2150 info.major = info.minor = 0; 2151 info.raid_disk = -1; 2152 info.state = (1<<MD_DISK_REMOVED); 2153 } 2154 2155 if (copy_to_user(arg, &info, sizeof(info))) 2156 return -EFAULT; 2157 2158 return 0; 2159 } 2160 2161 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 2162 { 2163 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 2164 mdk_rdev_t *rdev; 2165 dev_t dev = MKDEV(info->major,info->minor); 2166 2167 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 2168 return -EOVERFLOW; 2169 2170 if (!mddev->raid_disks) { 2171 int err; 2172 /* expecting a device which has a superblock */ 2173 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 2174 if (IS_ERR(rdev)) { 2175 printk(KERN_WARNING 2176 "md: md_import_device returned %ld\n", 2177 PTR_ERR(rdev)); 2178 return PTR_ERR(rdev); 2179 } 2180 if (!list_empty(&mddev->disks)) { 2181 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 2182 mdk_rdev_t, same_set); 2183 int err = super_types[mddev->major_version] 2184 .load_super(rdev, rdev0, mddev->minor_version); 2185 if (err < 0) { 2186 printk(KERN_WARNING 2187 "md: %s has different UUID to %s\n", 2188 bdevname(rdev->bdev,b), 2189 bdevname(rdev0->bdev,b2)); 2190 export_rdev(rdev); 2191 return -EINVAL; 2192 } 2193 } 2194 err = bind_rdev_to_array(rdev, mddev); 2195 if (err) 2196 export_rdev(rdev); 2197 return err; 2198 } 2199 2200 /* 2201 * add_new_disk can be used once the array is assembled 2202 * to add "hot spares". They must already have a superblock 2203 * written 2204 */ 2205 if (mddev->pers) { 2206 int err; 2207 if (!mddev->pers->hot_add_disk) { 2208 printk(KERN_WARNING 2209 "%s: personality does not support diskops!\n", 2210 mdname(mddev)); 2211 return -EINVAL; 2212 } 2213 rdev = md_import_device(dev, mddev->major_version, 2214 mddev->minor_version); 2215 if (IS_ERR(rdev)) { 2216 printk(KERN_WARNING 2217 "md: md_import_device returned %ld\n", 2218 PTR_ERR(rdev)); 2219 return PTR_ERR(rdev); 2220 } 2221 /* set save_raid_disk if appropriate */ 2222 if (!mddev->persistent) { 2223 if (info->state & (1<<MD_DISK_SYNC) && 2224 info->raid_disk < mddev->raid_disks) 2225 rdev->raid_disk = info->raid_disk; 2226 else 2227 rdev->raid_disk = -1; 2228 } else 2229 super_types[mddev->major_version]. 2230 validate_super(mddev, rdev); 2231 rdev->saved_raid_disk = rdev->raid_disk; 2232 2233 rdev->in_sync = 0; /* just to be sure */ 2234 rdev->raid_disk = -1; 2235 err = bind_rdev_to_array(rdev, mddev); 2236 if (err) 2237 export_rdev(rdev); 2238 2239 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2240 md_wakeup_thread(mddev->thread); 2241 return err; 2242 } 2243 2244 /* otherwise, add_new_disk is only allowed 2245 * for major_version==0 superblocks 2246 */ 2247 if (mddev->major_version != 0) { 2248 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 2249 mdname(mddev)); 2250 return -EINVAL; 2251 } 2252 2253 if (!(info->state & (1<<MD_DISK_FAULTY))) { 2254 int err; 2255 rdev = md_import_device (dev, -1, 0); 2256 if (IS_ERR(rdev)) { 2257 printk(KERN_WARNING 2258 "md: error, md_import_device() returned %ld\n", 2259 PTR_ERR(rdev)); 2260 return PTR_ERR(rdev); 2261 } 2262 rdev->desc_nr = info->number; 2263 if (info->raid_disk < mddev->raid_disks) 2264 rdev->raid_disk = info->raid_disk; 2265 else 2266 rdev->raid_disk = -1; 2267 2268 rdev->faulty = 0; 2269 if (rdev->raid_disk < mddev->raid_disks) 2270 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC)); 2271 else 2272 rdev->in_sync = 0; 2273 2274 err = bind_rdev_to_array(rdev, mddev); 2275 if (err) { 2276 export_rdev(rdev); 2277 return err; 2278 } 2279 2280 if (!mddev->persistent) { 2281 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 2282 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2283 } else 2284 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 2285 rdev->size = calc_dev_size(rdev, mddev->chunk_size); 2286 2287 if (!mddev->size || (mddev->size > rdev->size)) 2288 mddev->size = rdev->size; 2289 } 2290 2291 return 0; 2292 } 2293 2294 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 2295 { 2296 char b[BDEVNAME_SIZE]; 2297 mdk_rdev_t *rdev; 2298 2299 if (!mddev->pers) 2300 return -ENODEV; 2301 2302 rdev = find_rdev(mddev, dev); 2303 if (!rdev) 2304 return -ENXIO; 2305 2306 if (rdev->raid_disk >= 0) 2307 goto busy; 2308 2309 kick_rdev_from_array(rdev); 2310 md_update_sb(mddev); 2311 2312 return 0; 2313 busy: 2314 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n", 2315 bdevname(rdev->bdev,b), mdname(mddev)); 2316 return -EBUSY; 2317 } 2318 2319 static int hot_add_disk(mddev_t * mddev, dev_t dev) 2320 { 2321 char b[BDEVNAME_SIZE]; 2322 int err; 2323 unsigned int size; 2324 mdk_rdev_t *rdev; 2325 2326 if (!mddev->pers) 2327 return -ENODEV; 2328 2329 if (mddev->major_version != 0) { 2330 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 2331 " version-0 superblocks.\n", 2332 mdname(mddev)); 2333 return -EINVAL; 2334 } 2335 if (!mddev->pers->hot_add_disk) { 2336 printk(KERN_WARNING 2337 "%s: personality does not support diskops!\n", 2338 mdname(mddev)); 2339 return -EINVAL; 2340 } 2341 2342 rdev = md_import_device (dev, -1, 0); 2343 if (IS_ERR(rdev)) { 2344 printk(KERN_WARNING 2345 "md: error, md_import_device() returned %ld\n", 2346 PTR_ERR(rdev)); 2347 return -EINVAL; 2348 } 2349 2350 if (mddev->persistent) 2351 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 2352 else 2353 rdev->sb_offset = 2354 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2355 2356 size = calc_dev_size(rdev, mddev->chunk_size); 2357 rdev->size = size; 2358 2359 if (size < mddev->size) { 2360 printk(KERN_WARNING 2361 "%s: disk size %llu blocks < array size %llu\n", 2362 mdname(mddev), (unsigned long long)size, 2363 (unsigned long long)mddev->size); 2364 err = -ENOSPC; 2365 goto abort_export; 2366 } 2367 2368 if (rdev->faulty) { 2369 printk(KERN_WARNING 2370 "md: can not hot-add faulty %s disk to %s!\n", 2371 bdevname(rdev->bdev,b), mdname(mddev)); 2372 err = -EINVAL; 2373 goto abort_export; 2374 } 2375 rdev->in_sync = 0; 2376 rdev->desc_nr = -1; 2377 bind_rdev_to_array(rdev, mddev); 2378 2379 /* 2380 * The rest should better be atomic, we can have disk failures 2381 * noticed in interrupt contexts ... 2382 */ 2383 2384 if (rdev->desc_nr == mddev->max_disks) { 2385 printk(KERN_WARNING "%s: can not hot-add to full array!\n", 2386 mdname(mddev)); 2387 err = -EBUSY; 2388 goto abort_unbind_export; 2389 } 2390 2391 rdev->raid_disk = -1; 2392 2393 md_update_sb(mddev); 2394 2395 /* 2396 * Kick recovery, maybe this spare has to be added to the 2397 * array immediately. 2398 */ 2399 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2400 md_wakeup_thread(mddev->thread); 2401 2402 return 0; 2403 2404 abort_unbind_export: 2405 unbind_rdev_from_array(rdev); 2406 2407 abort_export: 2408 export_rdev(rdev); 2409 return err; 2410 } 2411 2412 /* similar to deny_write_access, but accounts for our holding a reference 2413 * to the file ourselves */ 2414 static int deny_bitmap_write_access(struct file * file) 2415 { 2416 struct inode *inode = file->f_mapping->host; 2417 2418 spin_lock(&inode->i_lock); 2419 if (atomic_read(&inode->i_writecount) > 1) { 2420 spin_unlock(&inode->i_lock); 2421 return -ETXTBSY; 2422 } 2423 atomic_set(&inode->i_writecount, -1); 2424 spin_unlock(&inode->i_lock); 2425 2426 return 0; 2427 } 2428 2429 static int set_bitmap_file(mddev_t *mddev, int fd) 2430 { 2431 int err; 2432 2433 if (mddev->pers) 2434 return -EBUSY; 2435 2436 mddev->bitmap_file = fget(fd); 2437 2438 if (mddev->bitmap_file == NULL) { 2439 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 2440 mdname(mddev)); 2441 return -EBADF; 2442 } 2443 2444 err = deny_bitmap_write_access(mddev->bitmap_file); 2445 if (err) { 2446 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 2447 mdname(mddev)); 2448 fput(mddev->bitmap_file); 2449 mddev->bitmap_file = NULL; 2450 } else 2451 mddev->bitmap_offset = 0; /* file overrides offset */ 2452 return err; 2453 } 2454 2455 /* 2456 * set_array_info is used two different ways 2457 * The original usage is when creating a new array. 2458 * In this usage, raid_disks is > 0 and it together with 2459 * level, size, not_persistent,layout,chunksize determine the 2460 * shape of the array. 2461 * This will always create an array with a type-0.90.0 superblock. 2462 * The newer usage is when assembling an array. 2463 * In this case raid_disks will be 0, and the major_version field is 2464 * use to determine which style super-blocks are to be found on the devices. 2465 * The minor and patch _version numbers are also kept incase the 2466 * super_block handler wishes to interpret them. 2467 */ 2468 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 2469 { 2470 2471 if (info->raid_disks == 0) { 2472 /* just setting version number for superblock loading */ 2473 if (info->major_version < 0 || 2474 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) || 2475 super_types[info->major_version].name == NULL) { 2476 /* maybe try to auto-load a module? */ 2477 printk(KERN_INFO 2478 "md: superblock version %d not known\n", 2479 info->major_version); 2480 return -EINVAL; 2481 } 2482 mddev->major_version = info->major_version; 2483 mddev->minor_version = info->minor_version; 2484 mddev->patch_version = info->patch_version; 2485 return 0; 2486 } 2487 mddev->major_version = MD_MAJOR_VERSION; 2488 mddev->minor_version = MD_MINOR_VERSION; 2489 mddev->patch_version = MD_PATCHLEVEL_VERSION; 2490 mddev->ctime = get_seconds(); 2491 2492 mddev->level = info->level; 2493 mddev->size = info->size; 2494 mddev->raid_disks = info->raid_disks; 2495 /* don't set md_minor, it is determined by which /dev/md* was 2496 * openned 2497 */ 2498 if (info->state & (1<<MD_SB_CLEAN)) 2499 mddev->recovery_cp = MaxSector; 2500 else 2501 mddev->recovery_cp = 0; 2502 mddev->persistent = ! info->not_persistent; 2503 2504 mddev->layout = info->layout; 2505 mddev->chunk_size = info->chunk_size; 2506 2507 mddev->max_disks = MD_SB_DISKS; 2508 2509 mddev->sb_dirty = 1; 2510 2511 /* 2512 * Generate a 128 bit UUID 2513 */ 2514 get_random_bytes(mddev->uuid, 16); 2515 2516 return 0; 2517 } 2518 2519 /* 2520 * update_array_info is used to change the configuration of an 2521 * on-line array. 2522 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 2523 * fields in the info are checked against the array. 2524 * Any differences that cannot be handled will cause an error. 2525 * Normally, only one change can be managed at a time. 2526 */ 2527 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 2528 { 2529 int rv = 0; 2530 int cnt = 0; 2531 2532 if (mddev->major_version != info->major_version || 2533 mddev->minor_version != info->minor_version || 2534 /* mddev->patch_version != info->patch_version || */ 2535 mddev->ctime != info->ctime || 2536 mddev->level != info->level || 2537 /* mddev->layout != info->layout || */ 2538 !mddev->persistent != info->not_persistent|| 2539 mddev->chunk_size != info->chunk_size ) 2540 return -EINVAL; 2541 /* Check there is only one change */ 2542 if (mddev->size != info->size) cnt++; 2543 if (mddev->raid_disks != info->raid_disks) cnt++; 2544 if (mddev->layout != info->layout) cnt++; 2545 if (cnt == 0) return 0; 2546 if (cnt > 1) return -EINVAL; 2547 2548 if (mddev->layout != info->layout) { 2549 /* Change layout 2550 * we don't need to do anything at the md level, the 2551 * personality will take care of it all. 2552 */ 2553 if (mddev->pers->reconfig == NULL) 2554 return -EINVAL; 2555 else 2556 return mddev->pers->reconfig(mddev, info->layout, -1); 2557 } 2558 if (mddev->size != info->size) { 2559 mdk_rdev_t * rdev; 2560 struct list_head *tmp; 2561 if (mddev->pers->resize == NULL) 2562 return -EINVAL; 2563 /* The "size" is the amount of each device that is used. 2564 * This can only make sense for arrays with redundancy. 2565 * linear and raid0 always use whatever space is available 2566 * We can only consider changing the size if no resync 2567 * or reconstruction is happening, and if the new size 2568 * is acceptable. It must fit before the sb_offset or, 2569 * if that is <data_offset, it must fit before the 2570 * size of each device. 2571 * If size is zero, we find the largest size that fits. 2572 */ 2573 if (mddev->sync_thread) 2574 return -EBUSY; 2575 ITERATE_RDEV(mddev,rdev,tmp) { 2576 sector_t avail; 2577 int fit = (info->size == 0); 2578 if (rdev->sb_offset > rdev->data_offset) 2579 avail = (rdev->sb_offset*2) - rdev->data_offset; 2580 else 2581 avail = get_capacity(rdev->bdev->bd_disk) 2582 - rdev->data_offset; 2583 if (fit && (info->size == 0 || info->size > avail/2)) 2584 info->size = avail/2; 2585 if (avail < ((sector_t)info->size << 1)) 2586 return -ENOSPC; 2587 } 2588 rv = mddev->pers->resize(mddev, (sector_t)info->size *2); 2589 if (!rv) { 2590 struct block_device *bdev; 2591 2592 bdev = bdget_disk(mddev->gendisk, 0); 2593 if (bdev) { 2594 down(&bdev->bd_inode->i_sem); 2595 i_size_write(bdev->bd_inode, mddev->array_size << 10); 2596 up(&bdev->bd_inode->i_sem); 2597 bdput(bdev); 2598 } 2599 } 2600 } 2601 if (mddev->raid_disks != info->raid_disks) { 2602 /* change the number of raid disks */ 2603 if (mddev->pers->reshape == NULL) 2604 return -EINVAL; 2605 if (info->raid_disks <= 0 || 2606 info->raid_disks >= mddev->max_disks) 2607 return -EINVAL; 2608 if (mddev->sync_thread) 2609 return -EBUSY; 2610 rv = mddev->pers->reshape(mddev, info->raid_disks); 2611 if (!rv) { 2612 struct block_device *bdev; 2613 2614 bdev = bdget_disk(mddev->gendisk, 0); 2615 if (bdev) { 2616 down(&bdev->bd_inode->i_sem); 2617 i_size_write(bdev->bd_inode, mddev->array_size << 10); 2618 up(&bdev->bd_inode->i_sem); 2619 bdput(bdev); 2620 } 2621 } 2622 } 2623 md_update_sb(mddev); 2624 return rv; 2625 } 2626 2627 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 2628 { 2629 mdk_rdev_t *rdev; 2630 2631 if (mddev->pers == NULL) 2632 return -ENODEV; 2633 2634 rdev = find_rdev(mddev, dev); 2635 if (!rdev) 2636 return -ENODEV; 2637 2638 md_error(mddev, rdev); 2639 return 0; 2640 } 2641 2642 static int md_ioctl(struct inode *inode, struct file *file, 2643 unsigned int cmd, unsigned long arg) 2644 { 2645 int err = 0; 2646 void __user *argp = (void __user *)arg; 2647 struct hd_geometry __user *loc = argp; 2648 mddev_t *mddev = NULL; 2649 2650 if (!capable(CAP_SYS_ADMIN)) 2651 return -EACCES; 2652 2653 /* 2654 * Commands dealing with the RAID driver but not any 2655 * particular array: 2656 */ 2657 switch (cmd) 2658 { 2659 case RAID_VERSION: 2660 err = get_version(argp); 2661 goto done; 2662 2663 case PRINT_RAID_DEBUG: 2664 err = 0; 2665 md_print_devices(); 2666 goto done; 2667 2668 #ifndef MODULE 2669 case RAID_AUTORUN: 2670 err = 0; 2671 autostart_arrays(arg); 2672 goto done; 2673 #endif 2674 default:; 2675 } 2676 2677 /* 2678 * Commands creating/starting a new array: 2679 */ 2680 2681 mddev = inode->i_bdev->bd_disk->private_data; 2682 2683 if (!mddev) { 2684 BUG(); 2685 goto abort; 2686 } 2687 2688 2689 if (cmd == START_ARRAY) { 2690 /* START_ARRAY doesn't need to lock the array as autostart_array 2691 * does the locking, and it could even be a different array 2692 */ 2693 static int cnt = 3; 2694 if (cnt > 0 ) { 2695 printk(KERN_WARNING 2696 "md: %s(pid %d) used deprecated START_ARRAY ioctl. " 2697 "This will not be supported beyond 2.6\n", 2698 current->comm, current->pid); 2699 cnt--; 2700 } 2701 err = autostart_array(new_decode_dev(arg)); 2702 if (err) { 2703 printk(KERN_WARNING "md: autostart failed!\n"); 2704 goto abort; 2705 } 2706 goto done; 2707 } 2708 2709 err = mddev_lock(mddev); 2710 if (err) { 2711 printk(KERN_INFO 2712 "md: ioctl lock interrupted, reason %d, cmd %d\n", 2713 err, cmd); 2714 goto abort; 2715 } 2716 2717 switch (cmd) 2718 { 2719 case SET_ARRAY_INFO: 2720 { 2721 mdu_array_info_t info; 2722 if (!arg) 2723 memset(&info, 0, sizeof(info)); 2724 else if (copy_from_user(&info, argp, sizeof(info))) { 2725 err = -EFAULT; 2726 goto abort_unlock; 2727 } 2728 if (mddev->pers) { 2729 err = update_array_info(mddev, &info); 2730 if (err) { 2731 printk(KERN_WARNING "md: couldn't update" 2732 " array info. %d\n", err); 2733 goto abort_unlock; 2734 } 2735 goto done_unlock; 2736 } 2737 if (!list_empty(&mddev->disks)) { 2738 printk(KERN_WARNING 2739 "md: array %s already has disks!\n", 2740 mdname(mddev)); 2741 err = -EBUSY; 2742 goto abort_unlock; 2743 } 2744 if (mddev->raid_disks) { 2745 printk(KERN_WARNING 2746 "md: array %s already initialised!\n", 2747 mdname(mddev)); 2748 err = -EBUSY; 2749 goto abort_unlock; 2750 } 2751 err = set_array_info(mddev, &info); 2752 if (err) { 2753 printk(KERN_WARNING "md: couldn't set" 2754 " array info. %d\n", err); 2755 goto abort_unlock; 2756 } 2757 } 2758 goto done_unlock; 2759 2760 default:; 2761 } 2762 2763 /* 2764 * Commands querying/configuring an existing array: 2765 */ 2766 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 2767 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */ 2768 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 2769 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) { 2770 err = -ENODEV; 2771 goto abort_unlock; 2772 } 2773 2774 /* 2775 * Commands even a read-only array can execute: 2776 */ 2777 switch (cmd) 2778 { 2779 case GET_ARRAY_INFO: 2780 err = get_array_info(mddev, argp); 2781 goto done_unlock; 2782 2783 case GET_BITMAP_FILE: 2784 err = get_bitmap_file(mddev, (void *)arg); 2785 goto done_unlock; 2786 2787 case GET_DISK_INFO: 2788 err = get_disk_info(mddev, argp); 2789 goto done_unlock; 2790 2791 case RESTART_ARRAY_RW: 2792 err = restart_array(mddev); 2793 goto done_unlock; 2794 2795 case STOP_ARRAY: 2796 err = do_md_stop (mddev, 0); 2797 goto done_unlock; 2798 2799 case STOP_ARRAY_RO: 2800 err = do_md_stop (mddev, 1); 2801 goto done_unlock; 2802 2803 /* 2804 * We have a problem here : there is no easy way to give a CHS 2805 * virtual geometry. We currently pretend that we have a 2 heads 2806 * 4 sectors (with a BIG number of cylinders...). This drives 2807 * dosfs just mad... ;-) 2808 */ 2809 case HDIO_GETGEO: 2810 if (!loc) { 2811 err = -EINVAL; 2812 goto abort_unlock; 2813 } 2814 err = put_user (2, (char __user *) &loc->heads); 2815 if (err) 2816 goto abort_unlock; 2817 err = put_user (4, (char __user *) &loc->sectors); 2818 if (err) 2819 goto abort_unlock; 2820 err = put_user(get_capacity(mddev->gendisk)/8, 2821 (short __user *) &loc->cylinders); 2822 if (err) 2823 goto abort_unlock; 2824 err = put_user (get_start_sect(inode->i_bdev), 2825 (long __user *) &loc->start); 2826 goto done_unlock; 2827 } 2828 2829 /* 2830 * The remaining ioctls are changing the state of the 2831 * superblock, so we do not allow read-only arrays 2832 * here: 2833 */ 2834 if (mddev->ro) { 2835 err = -EROFS; 2836 goto abort_unlock; 2837 } 2838 2839 switch (cmd) 2840 { 2841 case ADD_NEW_DISK: 2842 { 2843 mdu_disk_info_t info; 2844 if (copy_from_user(&info, argp, sizeof(info))) 2845 err = -EFAULT; 2846 else 2847 err = add_new_disk(mddev, &info); 2848 goto done_unlock; 2849 } 2850 2851 case HOT_REMOVE_DISK: 2852 err = hot_remove_disk(mddev, new_decode_dev(arg)); 2853 goto done_unlock; 2854 2855 case HOT_ADD_DISK: 2856 err = hot_add_disk(mddev, new_decode_dev(arg)); 2857 goto done_unlock; 2858 2859 case SET_DISK_FAULTY: 2860 err = set_disk_faulty(mddev, new_decode_dev(arg)); 2861 goto done_unlock; 2862 2863 case RUN_ARRAY: 2864 err = do_md_run (mddev); 2865 goto done_unlock; 2866 2867 case SET_BITMAP_FILE: 2868 err = set_bitmap_file(mddev, (int)arg); 2869 goto done_unlock; 2870 2871 default: 2872 if (_IOC_TYPE(cmd) == MD_MAJOR) 2873 printk(KERN_WARNING "md: %s(pid %d) used" 2874 " obsolete MD ioctl, upgrade your" 2875 " software to use new ictls.\n", 2876 current->comm, current->pid); 2877 err = -EINVAL; 2878 goto abort_unlock; 2879 } 2880 2881 done_unlock: 2882 abort_unlock: 2883 mddev_unlock(mddev); 2884 2885 return err; 2886 done: 2887 if (err) 2888 MD_BUG(); 2889 abort: 2890 return err; 2891 } 2892 2893 static int md_open(struct inode *inode, struct file *file) 2894 { 2895 /* 2896 * Succeed if we can lock the mddev, which confirms that 2897 * it isn't being stopped right now. 2898 */ 2899 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 2900 int err; 2901 2902 if ((err = mddev_lock(mddev))) 2903 goto out; 2904 2905 err = 0; 2906 mddev_get(mddev); 2907 mddev_unlock(mddev); 2908 2909 check_disk_change(inode->i_bdev); 2910 out: 2911 return err; 2912 } 2913 2914 static int md_release(struct inode *inode, struct file * file) 2915 { 2916 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 2917 2918 if (!mddev) 2919 BUG(); 2920 mddev_put(mddev); 2921 2922 return 0; 2923 } 2924 2925 static int md_media_changed(struct gendisk *disk) 2926 { 2927 mddev_t *mddev = disk->private_data; 2928 2929 return mddev->changed; 2930 } 2931 2932 static int md_revalidate(struct gendisk *disk) 2933 { 2934 mddev_t *mddev = disk->private_data; 2935 2936 mddev->changed = 0; 2937 return 0; 2938 } 2939 static struct block_device_operations md_fops = 2940 { 2941 .owner = THIS_MODULE, 2942 .open = md_open, 2943 .release = md_release, 2944 .ioctl = md_ioctl, 2945 .media_changed = md_media_changed, 2946 .revalidate_disk= md_revalidate, 2947 }; 2948 2949 static int md_thread(void * arg) 2950 { 2951 mdk_thread_t *thread = arg; 2952 2953 lock_kernel(); 2954 2955 /* 2956 * Detach thread 2957 */ 2958 2959 daemonize(thread->name, mdname(thread->mddev)); 2960 2961 current->exit_signal = SIGCHLD; 2962 allow_signal(SIGKILL); 2963 thread->tsk = current; 2964 2965 /* 2966 * md_thread is a 'system-thread', it's priority should be very 2967 * high. We avoid resource deadlocks individually in each 2968 * raid personality. (RAID5 does preallocation) We also use RR and 2969 * the very same RT priority as kswapd, thus we will never get 2970 * into a priority inversion deadlock. 2971 * 2972 * we definitely have to have equal or higher priority than 2973 * bdflush, otherwise bdflush will deadlock if there are too 2974 * many dirty RAID5 blocks. 2975 */ 2976 unlock_kernel(); 2977 2978 complete(thread->event); 2979 while (thread->run) { 2980 void (*run)(mddev_t *); 2981 2982 wait_event_interruptible_timeout(thread->wqueue, 2983 test_bit(THREAD_WAKEUP, &thread->flags), 2984 thread->timeout); 2985 try_to_freeze(); 2986 2987 clear_bit(THREAD_WAKEUP, &thread->flags); 2988 2989 run = thread->run; 2990 if (run) 2991 run(thread->mddev); 2992 2993 if (signal_pending(current)) 2994 flush_signals(current); 2995 } 2996 complete(thread->event); 2997 return 0; 2998 } 2999 3000 void md_wakeup_thread(mdk_thread_t *thread) 3001 { 3002 if (thread) { 3003 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 3004 set_bit(THREAD_WAKEUP, &thread->flags); 3005 wake_up(&thread->wqueue); 3006 } 3007 } 3008 3009 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 3010 const char *name) 3011 { 3012 mdk_thread_t *thread; 3013 int ret; 3014 struct completion event; 3015 3016 thread = (mdk_thread_t *) kmalloc 3017 (sizeof(mdk_thread_t), GFP_KERNEL); 3018 if (!thread) 3019 return NULL; 3020 3021 memset(thread, 0, sizeof(mdk_thread_t)); 3022 init_waitqueue_head(&thread->wqueue); 3023 3024 init_completion(&event); 3025 thread->event = &event; 3026 thread->run = run; 3027 thread->mddev = mddev; 3028 thread->name = name; 3029 thread->timeout = MAX_SCHEDULE_TIMEOUT; 3030 ret = kernel_thread(md_thread, thread, 0); 3031 if (ret < 0) { 3032 kfree(thread); 3033 return NULL; 3034 } 3035 wait_for_completion(&event); 3036 return thread; 3037 } 3038 3039 void md_unregister_thread(mdk_thread_t *thread) 3040 { 3041 struct completion event; 3042 3043 init_completion(&event); 3044 3045 thread->event = &event; 3046 3047 /* As soon as ->run is set to NULL, the task could disappear, 3048 * so we need to hold tasklist_lock until we have sent the signal 3049 */ 3050 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid); 3051 read_lock(&tasklist_lock); 3052 thread->run = NULL; 3053 send_sig(SIGKILL, thread->tsk, 1); 3054 read_unlock(&tasklist_lock); 3055 wait_for_completion(&event); 3056 kfree(thread); 3057 } 3058 3059 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 3060 { 3061 if (!mddev) { 3062 MD_BUG(); 3063 return; 3064 } 3065 3066 if (!rdev || rdev->faulty) 3067 return; 3068 /* 3069 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 3070 mdname(mddev), 3071 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 3072 __builtin_return_address(0),__builtin_return_address(1), 3073 __builtin_return_address(2),__builtin_return_address(3)); 3074 */ 3075 if (!mddev->pers->error_handler) 3076 return; 3077 mddev->pers->error_handler(mddev,rdev); 3078 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3079 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3080 md_wakeup_thread(mddev->thread); 3081 } 3082 3083 /* seq_file implementation /proc/mdstat */ 3084 3085 static void status_unused(struct seq_file *seq) 3086 { 3087 int i = 0; 3088 mdk_rdev_t *rdev; 3089 struct list_head *tmp; 3090 3091 seq_printf(seq, "unused devices: "); 3092 3093 ITERATE_RDEV_PENDING(rdev,tmp) { 3094 char b[BDEVNAME_SIZE]; 3095 i++; 3096 seq_printf(seq, "%s ", 3097 bdevname(rdev->bdev,b)); 3098 } 3099 if (!i) 3100 seq_printf(seq, "<none>"); 3101 3102 seq_printf(seq, "\n"); 3103 } 3104 3105 3106 static void status_resync(struct seq_file *seq, mddev_t * mddev) 3107 { 3108 unsigned long max_blocks, resync, res, dt, db, rt; 3109 3110 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; 3111 3112 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3113 max_blocks = mddev->resync_max_sectors >> 1; 3114 else 3115 max_blocks = mddev->size; 3116 3117 /* 3118 * Should not happen. 3119 */ 3120 if (!max_blocks) { 3121 MD_BUG(); 3122 return; 3123 } 3124 res = (resync/1024)*1000/(max_blocks/1024 + 1); 3125 { 3126 int i, x = res/50, y = 20-x; 3127 seq_printf(seq, "["); 3128 for (i = 0; i < x; i++) 3129 seq_printf(seq, "="); 3130 seq_printf(seq, ">"); 3131 for (i = 0; i < y; i++) 3132 seq_printf(seq, "."); 3133 seq_printf(seq, "] "); 3134 } 3135 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)", 3136 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 3137 "resync" : "recovery"), 3138 res/10, res % 10, resync, max_blocks); 3139 3140 /* 3141 * We do not want to overflow, so the order of operands and 3142 * the * 100 / 100 trick are important. We do a +1 to be 3143 * safe against division by zero. We only estimate anyway. 3144 * 3145 * dt: time from mark until now 3146 * db: blocks written from mark until now 3147 * rt: remaining time 3148 */ 3149 dt = ((jiffies - mddev->resync_mark) / HZ); 3150 if (!dt) dt++; 3151 db = resync - (mddev->resync_mark_cnt/2); 3152 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100; 3153 3154 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); 3155 3156 seq_printf(seq, " speed=%ldK/sec", db/dt); 3157 } 3158 3159 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 3160 { 3161 struct list_head *tmp; 3162 loff_t l = *pos; 3163 mddev_t *mddev; 3164 3165 if (l >= 0x10000) 3166 return NULL; 3167 if (!l--) 3168 /* header */ 3169 return (void*)1; 3170 3171 spin_lock(&all_mddevs_lock); 3172 list_for_each(tmp,&all_mddevs) 3173 if (!l--) { 3174 mddev = list_entry(tmp, mddev_t, all_mddevs); 3175 mddev_get(mddev); 3176 spin_unlock(&all_mddevs_lock); 3177 return mddev; 3178 } 3179 spin_unlock(&all_mddevs_lock); 3180 if (!l--) 3181 return (void*)2;/* tail */ 3182 return NULL; 3183 } 3184 3185 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3186 { 3187 struct list_head *tmp; 3188 mddev_t *next_mddev, *mddev = v; 3189 3190 ++*pos; 3191 if (v == (void*)2) 3192 return NULL; 3193 3194 spin_lock(&all_mddevs_lock); 3195 if (v == (void*)1) 3196 tmp = all_mddevs.next; 3197 else 3198 tmp = mddev->all_mddevs.next; 3199 if (tmp != &all_mddevs) 3200 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 3201 else { 3202 next_mddev = (void*)2; 3203 *pos = 0x10000; 3204 } 3205 spin_unlock(&all_mddevs_lock); 3206 3207 if (v != (void*)1) 3208 mddev_put(mddev); 3209 return next_mddev; 3210 3211 } 3212 3213 static void md_seq_stop(struct seq_file *seq, void *v) 3214 { 3215 mddev_t *mddev = v; 3216 3217 if (mddev && v != (void*)1 && v != (void*)2) 3218 mddev_put(mddev); 3219 } 3220 3221 static int md_seq_show(struct seq_file *seq, void *v) 3222 { 3223 mddev_t *mddev = v; 3224 sector_t size; 3225 struct list_head *tmp2; 3226 mdk_rdev_t *rdev; 3227 int i; 3228 struct bitmap *bitmap; 3229 3230 if (v == (void*)1) { 3231 seq_printf(seq, "Personalities : "); 3232 spin_lock(&pers_lock); 3233 for (i = 0; i < MAX_PERSONALITY; i++) 3234 if (pers[i]) 3235 seq_printf(seq, "[%s] ", pers[i]->name); 3236 3237 spin_unlock(&pers_lock); 3238 seq_printf(seq, "\n"); 3239 return 0; 3240 } 3241 if (v == (void*)2) { 3242 status_unused(seq); 3243 return 0; 3244 } 3245 3246 if (mddev_lock(mddev)!=0) 3247 return -EINTR; 3248 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 3249 seq_printf(seq, "%s : %sactive", mdname(mddev), 3250 mddev->pers ? "" : "in"); 3251 if (mddev->pers) { 3252 if (mddev->ro) 3253 seq_printf(seq, " (read-only)"); 3254 seq_printf(seq, " %s", mddev->pers->name); 3255 } 3256 3257 size = 0; 3258 ITERATE_RDEV(mddev,rdev,tmp2) { 3259 char b[BDEVNAME_SIZE]; 3260 seq_printf(seq, " %s[%d]", 3261 bdevname(rdev->bdev,b), rdev->desc_nr); 3262 if (rdev->faulty) { 3263 seq_printf(seq, "(F)"); 3264 continue; 3265 } 3266 size += rdev->size; 3267 } 3268 3269 if (!list_empty(&mddev->disks)) { 3270 if (mddev->pers) 3271 seq_printf(seq, "\n %llu blocks", 3272 (unsigned long long)mddev->array_size); 3273 else 3274 seq_printf(seq, "\n %llu blocks", 3275 (unsigned long long)size); 3276 } 3277 3278 if (mddev->pers) { 3279 mddev->pers->status (seq, mddev); 3280 seq_printf(seq, "\n "); 3281 if (mddev->curr_resync > 2) { 3282 status_resync (seq, mddev); 3283 seq_printf(seq, "\n "); 3284 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 3285 seq_printf(seq, " resync=DELAYED\n "); 3286 } else 3287 seq_printf(seq, "\n "); 3288 3289 if ((bitmap = mddev->bitmap)) { 3290 unsigned long chunk_kb; 3291 unsigned long flags; 3292 spin_lock_irqsave(&bitmap->lock, flags); 3293 chunk_kb = bitmap->chunksize >> 10; 3294 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 3295 "%lu%s chunk", 3296 bitmap->pages - bitmap->missing_pages, 3297 bitmap->pages, 3298 (bitmap->pages - bitmap->missing_pages) 3299 << (PAGE_SHIFT - 10), 3300 chunk_kb ? chunk_kb : bitmap->chunksize, 3301 chunk_kb ? "KB" : "B"); 3302 if (bitmap->file) { 3303 seq_printf(seq, ", file: "); 3304 seq_path(seq, bitmap->file->f_vfsmnt, 3305 bitmap->file->f_dentry," \t\n"); 3306 } 3307 3308 seq_printf(seq, "\n"); 3309 spin_unlock_irqrestore(&bitmap->lock, flags); 3310 } 3311 3312 seq_printf(seq, "\n"); 3313 } 3314 mddev_unlock(mddev); 3315 3316 return 0; 3317 } 3318 3319 static struct seq_operations md_seq_ops = { 3320 .start = md_seq_start, 3321 .next = md_seq_next, 3322 .stop = md_seq_stop, 3323 .show = md_seq_show, 3324 }; 3325 3326 static int md_seq_open(struct inode *inode, struct file *file) 3327 { 3328 int error; 3329 3330 error = seq_open(file, &md_seq_ops); 3331 return error; 3332 } 3333 3334 static struct file_operations md_seq_fops = { 3335 .open = md_seq_open, 3336 .read = seq_read, 3337 .llseek = seq_lseek, 3338 .release = seq_release, 3339 }; 3340 3341 int register_md_personality(int pnum, mdk_personality_t *p) 3342 { 3343 if (pnum >= MAX_PERSONALITY) { 3344 printk(KERN_ERR 3345 "md: tried to install personality %s as nr %d, but max is %lu\n", 3346 p->name, pnum, MAX_PERSONALITY-1); 3347 return -EINVAL; 3348 } 3349 3350 spin_lock(&pers_lock); 3351 if (pers[pnum]) { 3352 spin_unlock(&pers_lock); 3353 return -EBUSY; 3354 } 3355 3356 pers[pnum] = p; 3357 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum); 3358 spin_unlock(&pers_lock); 3359 return 0; 3360 } 3361 3362 int unregister_md_personality(int pnum) 3363 { 3364 if (pnum >= MAX_PERSONALITY) 3365 return -EINVAL; 3366 3367 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name); 3368 spin_lock(&pers_lock); 3369 pers[pnum] = NULL; 3370 spin_unlock(&pers_lock); 3371 return 0; 3372 } 3373 3374 static int is_mddev_idle(mddev_t *mddev) 3375 { 3376 mdk_rdev_t * rdev; 3377 struct list_head *tmp; 3378 int idle; 3379 unsigned long curr_events; 3380 3381 idle = 1; 3382 ITERATE_RDEV(mddev,rdev,tmp) { 3383 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 3384 curr_events = disk_stat_read(disk, read_sectors) + 3385 disk_stat_read(disk, write_sectors) - 3386 atomic_read(&disk->sync_io); 3387 /* Allow some slack between valud of curr_events and last_events, 3388 * as there are some uninteresting races. 3389 * Note: the following is an unsigned comparison. 3390 */ 3391 if ((curr_events - rdev->last_events + 32) > 64) { 3392 rdev->last_events = curr_events; 3393 idle = 0; 3394 } 3395 } 3396 return idle; 3397 } 3398 3399 void md_done_sync(mddev_t *mddev, int blocks, int ok) 3400 { 3401 /* another "blocks" (512byte) blocks have been synced */ 3402 atomic_sub(blocks, &mddev->recovery_active); 3403 wake_up(&mddev->recovery_wait); 3404 if (!ok) { 3405 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 3406 md_wakeup_thread(mddev->thread); 3407 // stop recovery, signal do_sync .... 3408 } 3409 } 3410 3411 3412 /* md_write_start(mddev, bi) 3413 * If we need to update some array metadata (e.g. 'active' flag 3414 * in superblock) before writing, schedule a superblock update 3415 * and wait for it to complete. 3416 */ 3417 void md_write_start(mddev_t *mddev, struct bio *bi) 3418 { 3419 DEFINE_WAIT(w); 3420 if (bio_data_dir(bi) != WRITE) 3421 return; 3422 3423 atomic_inc(&mddev->writes_pending); 3424 if (mddev->in_sync) { 3425 spin_lock(&mddev->write_lock); 3426 if (mddev->in_sync) { 3427 mddev->in_sync = 0; 3428 mddev->sb_dirty = 1; 3429 md_wakeup_thread(mddev->thread); 3430 } 3431 spin_unlock(&mddev->write_lock); 3432 } 3433 wait_event(mddev->sb_wait, mddev->sb_dirty==0); 3434 } 3435 3436 void md_write_end(mddev_t *mddev) 3437 { 3438 if (atomic_dec_and_test(&mddev->writes_pending)) { 3439 if (mddev->safemode == 2) 3440 md_wakeup_thread(mddev->thread); 3441 else 3442 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 3443 } 3444 } 3445 3446 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 3447 3448 #define SYNC_MARKS 10 3449 #define SYNC_MARK_STEP (3*HZ) 3450 static void md_do_sync(mddev_t *mddev) 3451 { 3452 mddev_t *mddev2; 3453 unsigned int currspeed = 0, 3454 window; 3455 sector_t max_sectors,j, io_sectors; 3456 unsigned long mark[SYNC_MARKS]; 3457 sector_t mark_cnt[SYNC_MARKS]; 3458 int last_mark,m; 3459 struct list_head *tmp; 3460 sector_t last_check; 3461 int skipped = 0; 3462 3463 /* just incase thread restarts... */ 3464 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 3465 return; 3466 3467 /* we overload curr_resync somewhat here. 3468 * 0 == not engaged in resync at all 3469 * 2 == checking that there is no conflict with another sync 3470 * 1 == like 2, but have yielded to allow conflicting resync to 3471 * commense 3472 * other == active in resync - this many blocks 3473 * 3474 * Before starting a resync we must have set curr_resync to 3475 * 2, and then checked that every "conflicting" array has curr_resync 3476 * less than ours. When we find one that is the same or higher 3477 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 3478 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 3479 * This will mean we have to start checking from the beginning again. 3480 * 3481 */ 3482 3483 do { 3484 mddev->curr_resync = 2; 3485 3486 try_again: 3487 if (signal_pending(current)) { 3488 flush_signals(current); 3489 goto skip; 3490 } 3491 ITERATE_MDDEV(mddev2,tmp) { 3492 if (mddev2 == mddev) 3493 continue; 3494 if (mddev2->curr_resync && 3495 match_mddev_units(mddev,mddev2)) { 3496 DEFINE_WAIT(wq); 3497 if (mddev < mddev2 && mddev->curr_resync == 2) { 3498 /* arbitrarily yield */ 3499 mddev->curr_resync = 1; 3500 wake_up(&resync_wait); 3501 } 3502 if (mddev > mddev2 && mddev->curr_resync == 1) 3503 /* no need to wait here, we can wait the next 3504 * time 'round when curr_resync == 2 3505 */ 3506 continue; 3507 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 3508 if (!signal_pending(current) 3509 && mddev2->curr_resync >= mddev->curr_resync) { 3510 printk(KERN_INFO "md: delaying resync of %s" 3511 " until %s has finished resync (they" 3512 " share one or more physical units)\n", 3513 mdname(mddev), mdname(mddev2)); 3514 mddev_put(mddev2); 3515 schedule(); 3516 finish_wait(&resync_wait, &wq); 3517 goto try_again; 3518 } 3519 finish_wait(&resync_wait, &wq); 3520 } 3521 } 3522 } while (mddev->curr_resync < 2); 3523 3524 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3525 /* resync follows the size requested by the personality, 3526 * which defaults to physical size, but can be virtual size 3527 */ 3528 max_sectors = mddev->resync_max_sectors; 3529 else 3530 /* recovery follows the physical size of devices */ 3531 max_sectors = mddev->size << 1; 3532 3533 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev)); 3534 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:" 3535 " %d KB/sec/disc.\n", sysctl_speed_limit_min); 3536 printk(KERN_INFO "md: using maximum available idle IO bandwith " 3537 "(but not more than %d KB/sec) for reconstruction.\n", 3538 sysctl_speed_limit_max); 3539 3540 is_mddev_idle(mddev); /* this also initializes IO event counters */ 3541 /* we don't use the checkpoint if there's a bitmap */ 3542 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap) 3543 j = mddev->recovery_cp; 3544 else 3545 j = 0; 3546 io_sectors = 0; 3547 for (m = 0; m < SYNC_MARKS; m++) { 3548 mark[m] = jiffies; 3549 mark_cnt[m] = io_sectors; 3550 } 3551 last_mark = 0; 3552 mddev->resync_mark = mark[last_mark]; 3553 mddev->resync_mark_cnt = mark_cnt[last_mark]; 3554 3555 /* 3556 * Tune reconstruction: 3557 */ 3558 window = 32*(PAGE_SIZE/512); 3559 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 3560 window/2,(unsigned long long) max_sectors/2); 3561 3562 atomic_set(&mddev->recovery_active, 0); 3563 init_waitqueue_head(&mddev->recovery_wait); 3564 last_check = 0; 3565 3566 if (j>2) { 3567 printk(KERN_INFO 3568 "md: resuming recovery of %s from checkpoint.\n", 3569 mdname(mddev)); 3570 mddev->curr_resync = j; 3571 } 3572 3573 while (j < max_sectors) { 3574 sector_t sectors; 3575 3576 skipped = 0; 3577 sectors = mddev->pers->sync_request(mddev, j, &skipped, 3578 currspeed < sysctl_speed_limit_min); 3579 if (sectors == 0) { 3580 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 3581 goto out; 3582 } 3583 3584 if (!skipped) { /* actual IO requested */ 3585 io_sectors += sectors; 3586 atomic_add(sectors, &mddev->recovery_active); 3587 } 3588 3589 j += sectors; 3590 if (j>1) mddev->curr_resync = j; 3591 3592 3593 if (last_check + window > io_sectors || j == max_sectors) 3594 continue; 3595 3596 last_check = io_sectors; 3597 3598 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) || 3599 test_bit(MD_RECOVERY_ERR, &mddev->recovery)) 3600 break; 3601 3602 repeat: 3603 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 3604 /* step marks */ 3605 int next = (last_mark+1) % SYNC_MARKS; 3606 3607 mddev->resync_mark = mark[next]; 3608 mddev->resync_mark_cnt = mark_cnt[next]; 3609 mark[next] = jiffies; 3610 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 3611 last_mark = next; 3612 } 3613 3614 3615 if (signal_pending(current)) { 3616 /* 3617 * got a signal, exit. 3618 */ 3619 printk(KERN_INFO 3620 "md: md_do_sync() got signal ... exiting\n"); 3621 flush_signals(current); 3622 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3623 goto out; 3624 } 3625 3626 /* 3627 * this loop exits only if either when we are slower than 3628 * the 'hard' speed limit, or the system was IO-idle for 3629 * a jiffy. 3630 * the system might be non-idle CPU-wise, but we only care 3631 * about not overloading the IO subsystem. (things like an 3632 * e2fsck being done on the RAID array should execute fast) 3633 */ 3634 mddev->queue->unplug_fn(mddev->queue); 3635 cond_resched(); 3636 3637 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 3638 /((jiffies-mddev->resync_mark)/HZ +1) +1; 3639 3640 if (currspeed > sysctl_speed_limit_min) { 3641 if ((currspeed > sysctl_speed_limit_max) || 3642 !is_mddev_idle(mddev)) { 3643 msleep_interruptible(250); 3644 goto repeat; 3645 } 3646 } 3647 } 3648 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev)); 3649 /* 3650 * this also signals 'finished resyncing' to md_stop 3651 */ 3652 out: 3653 mddev->queue->unplug_fn(mddev->queue); 3654 3655 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 3656 3657 /* tell personality that we are finished */ 3658 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 3659 3660 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 3661 mddev->curr_resync > 2 && 3662 mddev->curr_resync >= mddev->recovery_cp) { 3663 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 3664 printk(KERN_INFO 3665 "md: checkpointing recovery of %s.\n", 3666 mdname(mddev)); 3667 mddev->recovery_cp = mddev->curr_resync; 3668 } else 3669 mddev->recovery_cp = MaxSector; 3670 } 3671 3672 skip: 3673 mddev->curr_resync = 0; 3674 wake_up(&resync_wait); 3675 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 3676 md_wakeup_thread(mddev->thread); 3677 } 3678 3679 3680 /* 3681 * This routine is regularly called by all per-raid-array threads to 3682 * deal with generic issues like resync and super-block update. 3683 * Raid personalities that don't have a thread (linear/raid0) do not 3684 * need this as they never do any recovery or update the superblock. 3685 * 3686 * It does not do any resync itself, but rather "forks" off other threads 3687 * to do that as needed. 3688 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 3689 * "->recovery" and create a thread at ->sync_thread. 3690 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR) 3691 * and wakeups up this thread which will reap the thread and finish up. 3692 * This thread also removes any faulty devices (with nr_pending == 0). 3693 * 3694 * The overall approach is: 3695 * 1/ if the superblock needs updating, update it. 3696 * 2/ If a recovery thread is running, don't do anything else. 3697 * 3/ If recovery has finished, clean up, possibly marking spares active. 3698 * 4/ If there are any faulty devices, remove them. 3699 * 5/ If array is degraded, try to add spares devices 3700 * 6/ If array has spares or is not in-sync, start a resync thread. 3701 */ 3702 void md_check_recovery(mddev_t *mddev) 3703 { 3704 mdk_rdev_t *rdev; 3705 struct list_head *rtmp; 3706 3707 3708 if (mddev->bitmap) 3709 bitmap_daemon_work(mddev->bitmap); 3710 3711 if (mddev->ro) 3712 return; 3713 3714 if (signal_pending(current)) { 3715 if (mddev->pers->sync_request) { 3716 printk(KERN_INFO "md: %s in immediate safe mode\n", 3717 mdname(mddev)); 3718 mddev->safemode = 2; 3719 } 3720 flush_signals(current); 3721 } 3722 3723 if ( ! ( 3724 mddev->sb_dirty || 3725 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 3726 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 3727 (mddev->safemode == 1) || 3728 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 3729 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 3730 )) 3731 return; 3732 3733 if (mddev_trylock(mddev)==0) { 3734 int spares =0; 3735 3736 spin_lock(&mddev->write_lock); 3737 if (mddev->safemode && !atomic_read(&mddev->writes_pending) && 3738 !mddev->in_sync && mddev->recovery_cp == MaxSector) { 3739 mddev->in_sync = 1; 3740 mddev->sb_dirty = 1; 3741 } 3742 if (mddev->safemode == 1) 3743 mddev->safemode = 0; 3744 spin_unlock(&mddev->write_lock); 3745 3746 if (mddev->sb_dirty) 3747 md_update_sb(mddev); 3748 3749 3750 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 3751 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 3752 /* resync/recovery still happening */ 3753 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3754 goto unlock; 3755 } 3756 if (mddev->sync_thread) { 3757 /* resync has finished, collect result */ 3758 md_unregister_thread(mddev->sync_thread); 3759 mddev->sync_thread = NULL; 3760 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 3761 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 3762 /* success...*/ 3763 /* activate any spares */ 3764 mddev->pers->spare_active(mddev); 3765 } 3766 md_update_sb(mddev); 3767 3768 /* if array is no-longer degraded, then any saved_raid_disk 3769 * information must be scrapped 3770 */ 3771 if (!mddev->degraded) 3772 ITERATE_RDEV(mddev,rdev,rtmp) 3773 rdev->saved_raid_disk = -1; 3774 3775 mddev->recovery = 0; 3776 /* flag recovery needed just to double check */ 3777 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3778 goto unlock; 3779 } 3780 if (mddev->recovery) 3781 /* probably just the RECOVERY_NEEDED flag */ 3782 mddev->recovery = 0; 3783 3784 /* no recovery is running. 3785 * remove any failed drives, then 3786 * add spares if possible. 3787 * Spare are also removed and re-added, to allow 3788 * the personality to fail the re-add. 3789 */ 3790 ITERATE_RDEV(mddev,rdev,rtmp) 3791 if (rdev->raid_disk >= 0 && 3792 (rdev->faulty || ! rdev->in_sync) && 3793 atomic_read(&rdev->nr_pending)==0) { 3794 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) 3795 rdev->raid_disk = -1; 3796 } 3797 3798 if (mddev->degraded) { 3799 ITERATE_RDEV(mddev,rdev,rtmp) 3800 if (rdev->raid_disk < 0 3801 && !rdev->faulty) { 3802 if (mddev->pers->hot_add_disk(mddev,rdev)) 3803 spares++; 3804 else 3805 break; 3806 } 3807 } 3808 3809 if (!spares && (mddev->recovery_cp == MaxSector )) { 3810 /* nothing we can do ... */ 3811 goto unlock; 3812 } 3813 if (mddev->pers->sync_request) { 3814 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3815 if (!spares) 3816 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3817 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 3818 /* We are adding a device or devices to an array 3819 * which has the bitmap stored on all devices. 3820 * So make sure all bitmap pages get written 3821 */ 3822 bitmap_write_all(mddev->bitmap); 3823 } 3824 mddev->sync_thread = md_register_thread(md_do_sync, 3825 mddev, 3826 "%s_resync"); 3827 if (!mddev->sync_thread) { 3828 printk(KERN_ERR "%s: could not start resync" 3829 " thread...\n", 3830 mdname(mddev)); 3831 /* leave the spares where they are, it shouldn't hurt */ 3832 mddev->recovery = 0; 3833 } else { 3834 md_wakeup_thread(mddev->sync_thread); 3835 } 3836 } 3837 unlock: 3838 mddev_unlock(mddev); 3839 } 3840 } 3841 3842 static int md_notify_reboot(struct notifier_block *this, 3843 unsigned long code, void *x) 3844 { 3845 struct list_head *tmp; 3846 mddev_t *mddev; 3847 3848 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 3849 3850 printk(KERN_INFO "md: stopping all md devices.\n"); 3851 3852 ITERATE_MDDEV(mddev,tmp) 3853 if (mddev_trylock(mddev)==0) 3854 do_md_stop (mddev, 1); 3855 /* 3856 * certain more exotic SCSI devices are known to be 3857 * volatile wrt too early system reboots. While the 3858 * right place to handle this issue is the given 3859 * driver, we do want to have a safe RAID driver ... 3860 */ 3861 mdelay(1000*1); 3862 } 3863 return NOTIFY_DONE; 3864 } 3865 3866 static struct notifier_block md_notifier = { 3867 .notifier_call = md_notify_reboot, 3868 .next = NULL, 3869 .priority = INT_MAX, /* before any real devices */ 3870 }; 3871 3872 static void md_geninit(void) 3873 { 3874 struct proc_dir_entry *p; 3875 3876 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 3877 3878 p = create_proc_entry("mdstat", S_IRUGO, NULL); 3879 if (p) 3880 p->proc_fops = &md_seq_fops; 3881 } 3882 3883 static int __init md_init(void) 3884 { 3885 int minor; 3886 3887 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d," 3888 " MD_SB_DISKS=%d\n", 3889 MD_MAJOR_VERSION, MD_MINOR_VERSION, 3890 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS); 3891 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR, 3892 BITMAP_MINOR); 3893 3894 if (register_blkdev(MAJOR_NR, "md")) 3895 return -1; 3896 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 3897 unregister_blkdev(MAJOR_NR, "md"); 3898 return -1; 3899 } 3900 devfs_mk_dir("md"); 3901 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE, 3902 md_probe, NULL, NULL); 3903 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE, 3904 md_probe, NULL, NULL); 3905 3906 for (minor=0; minor < MAX_MD_DEVS; ++minor) 3907 devfs_mk_bdev(MKDEV(MAJOR_NR, minor), 3908 S_IFBLK|S_IRUSR|S_IWUSR, 3909 "md/%d", minor); 3910 3911 for (minor=0; minor < MAX_MD_DEVS; ++minor) 3912 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift), 3913 S_IFBLK|S_IRUSR|S_IWUSR, 3914 "md/mdp%d", minor); 3915 3916 3917 register_reboot_notifier(&md_notifier); 3918 raid_table_header = register_sysctl_table(raid_root_table, 1); 3919 3920 md_geninit(); 3921 return (0); 3922 } 3923 3924 3925 #ifndef MODULE 3926 3927 /* 3928 * Searches all registered partitions for autorun RAID arrays 3929 * at boot time. 3930 */ 3931 static dev_t detected_devices[128]; 3932 static int dev_cnt; 3933 3934 void md_autodetect_dev(dev_t dev) 3935 { 3936 if (dev_cnt >= 0 && dev_cnt < 127) 3937 detected_devices[dev_cnt++] = dev; 3938 } 3939 3940 3941 static void autostart_arrays(int part) 3942 { 3943 mdk_rdev_t *rdev; 3944 int i; 3945 3946 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 3947 3948 for (i = 0; i < dev_cnt; i++) { 3949 dev_t dev = detected_devices[i]; 3950 3951 rdev = md_import_device(dev,0, 0); 3952 if (IS_ERR(rdev)) 3953 continue; 3954 3955 if (rdev->faulty) { 3956 MD_BUG(); 3957 continue; 3958 } 3959 list_add(&rdev->same_set, &pending_raid_disks); 3960 } 3961 dev_cnt = 0; 3962 3963 autorun_devices(part); 3964 } 3965 3966 #endif 3967 3968 static __exit void md_exit(void) 3969 { 3970 mddev_t *mddev; 3971 struct list_head *tmp; 3972 int i; 3973 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS); 3974 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift); 3975 for (i=0; i < MAX_MD_DEVS; i++) 3976 devfs_remove("md/%d", i); 3977 for (i=0; i < MAX_MD_DEVS; i++) 3978 devfs_remove("md/d%d", i); 3979 3980 devfs_remove("md"); 3981 3982 unregister_blkdev(MAJOR_NR,"md"); 3983 unregister_blkdev(mdp_major, "mdp"); 3984 unregister_reboot_notifier(&md_notifier); 3985 unregister_sysctl_table(raid_table_header); 3986 remove_proc_entry("mdstat", NULL); 3987 ITERATE_MDDEV(mddev,tmp) { 3988 struct gendisk *disk = mddev->gendisk; 3989 if (!disk) 3990 continue; 3991 export_array(mddev); 3992 del_gendisk(disk); 3993 put_disk(disk); 3994 mddev->gendisk = NULL; 3995 mddev_put(mddev); 3996 } 3997 } 3998 3999 module_init(md_init) 4000 module_exit(md_exit) 4001 4002 EXPORT_SYMBOL(register_md_personality); 4003 EXPORT_SYMBOL(unregister_md_personality); 4004 EXPORT_SYMBOL(md_error); 4005 EXPORT_SYMBOL(md_done_sync); 4006 EXPORT_SYMBOL(md_write_start); 4007 EXPORT_SYMBOL(md_write_end); 4008 EXPORT_SYMBOL(md_register_thread); 4009 EXPORT_SYMBOL(md_unregister_thread); 4010 EXPORT_SYMBOL(md_wakeup_thread); 4011 EXPORT_SYMBOL(md_print_devices); 4012 EXPORT_SYMBOL(md_check_recovery); 4013 MODULE_LICENSE("GPL"); 4014 MODULE_ALIAS("md"); 4015 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 4016