xref: /linux/drivers/md/md.c (revision 0dd9ac63ce26ec87b080ca9c3e6efed33c23ace6)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/reboot.h>
47 #include <linux/file.h>
48 #include <linux/compat.h>
49 #include <linux/delay.h>
50 #include <linux/raid/md_p.h>
51 #include <linux/raid/md_u.h>
52 #include <linux/slab.h>
53 #include "md.h"
54 #include "bitmap.h"
55 
56 #define DEBUG 0
57 #define dprintk(x...) ((void)(DEBUG && printk(x)))
58 
59 
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
63 
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
66 
67 static void md_print_devices(void);
68 
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 
71 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
72 
73 /*
74  * Default number of read corrections we'll attempt on an rdev
75  * before ejecting it from the array. We divide the read error
76  * count by 2 for every hour elapsed between read errors.
77  */
78 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
79 /*
80  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81  * is 1000 KB/sec, so the extra system load does not show up that much.
82  * Increase it if you want to have more _guaranteed_ speed. Note that
83  * the RAID driver will use the maximum available bandwidth if the IO
84  * subsystem is idle. There is also an 'absolute maximum' reconstruction
85  * speed limit - in case reconstruction slows down your system despite
86  * idle IO detection.
87  *
88  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89  * or /sys/block/mdX/md/sync_speed_{min,max}
90  */
91 
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
95 {
96 	return mddev->sync_speed_min ?
97 		mddev->sync_speed_min : sysctl_speed_limit_min;
98 }
99 
100 static inline int speed_max(mddev_t *mddev)
101 {
102 	return mddev->sync_speed_max ?
103 		mddev->sync_speed_max : sysctl_speed_limit_max;
104 }
105 
106 static struct ctl_table_header *raid_table_header;
107 
108 static ctl_table raid_table[] = {
109 	{
110 		.procname	= "speed_limit_min",
111 		.data		= &sysctl_speed_limit_min,
112 		.maxlen		= sizeof(int),
113 		.mode		= S_IRUGO|S_IWUSR,
114 		.proc_handler	= proc_dointvec,
115 	},
116 	{
117 		.procname	= "speed_limit_max",
118 		.data		= &sysctl_speed_limit_max,
119 		.maxlen		= sizeof(int),
120 		.mode		= S_IRUGO|S_IWUSR,
121 		.proc_handler	= proc_dointvec,
122 	},
123 	{ }
124 };
125 
126 static ctl_table raid_dir_table[] = {
127 	{
128 		.procname	= "raid",
129 		.maxlen		= 0,
130 		.mode		= S_IRUGO|S_IXUGO,
131 		.child		= raid_table,
132 	},
133 	{ }
134 };
135 
136 static ctl_table raid_root_table[] = {
137 	{
138 		.procname	= "dev",
139 		.maxlen		= 0,
140 		.mode		= 0555,
141 		.child		= raid_dir_table,
142 	},
143 	{  }
144 };
145 
146 static const struct block_device_operations md_fops;
147 
148 static int start_readonly;
149 
150 /*
151  * We have a system wide 'event count' that is incremented
152  * on any 'interesting' event, and readers of /proc/mdstat
153  * can use 'poll' or 'select' to find out when the event
154  * count increases.
155  *
156  * Events are:
157  *  start array, stop array, error, add device, remove device,
158  *  start build, activate spare
159  */
160 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
161 static atomic_t md_event_count;
162 void md_new_event(mddev_t *mddev)
163 {
164 	atomic_inc(&md_event_count);
165 	wake_up(&md_event_waiters);
166 }
167 EXPORT_SYMBOL_GPL(md_new_event);
168 
169 /* Alternate version that can be called from interrupts
170  * when calling sysfs_notify isn't needed.
171  */
172 static void md_new_event_inintr(mddev_t *mddev)
173 {
174 	atomic_inc(&md_event_count);
175 	wake_up(&md_event_waiters);
176 }
177 
178 /*
179  * Enables to iterate over all existing md arrays
180  * all_mddevs_lock protects this list.
181  */
182 static LIST_HEAD(all_mddevs);
183 static DEFINE_SPINLOCK(all_mddevs_lock);
184 
185 
186 /*
187  * iterates through all used mddevs in the system.
188  * We take care to grab the all_mddevs_lock whenever navigating
189  * the list, and to always hold a refcount when unlocked.
190  * Any code which breaks out of this loop while own
191  * a reference to the current mddev and must mddev_put it.
192  */
193 #define for_each_mddev(mddev,tmp)					\
194 									\
195 	for (({ spin_lock(&all_mddevs_lock); 				\
196 		tmp = all_mddevs.next;					\
197 		mddev = NULL;});					\
198 	     ({ if (tmp != &all_mddevs)					\
199 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
200 		spin_unlock(&all_mddevs_lock);				\
201 		if (mddev) mddev_put(mddev);				\
202 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
203 		tmp != &all_mddevs;});					\
204 	     ({ spin_lock(&all_mddevs_lock);				\
205 		tmp = tmp->next;})					\
206 		)
207 
208 
209 /* Rather than calling directly into the personality make_request function,
210  * IO requests come here first so that we can check if the device is
211  * being suspended pending a reconfiguration.
212  * We hold a refcount over the call to ->make_request.  By the time that
213  * call has finished, the bio has been linked into some internal structure
214  * and so is visible to ->quiesce(), so we don't need the refcount any more.
215  */
216 static int md_make_request(struct request_queue *q, struct bio *bio)
217 {
218 	const int rw = bio_data_dir(bio);
219 	mddev_t *mddev = q->queuedata;
220 	int rv;
221 	int cpu;
222 
223 	if (mddev == NULL || mddev->pers == NULL) {
224 		bio_io_error(bio);
225 		return 0;
226 	}
227 	rcu_read_lock();
228 	if (mddev->suspended || mddev->barrier) {
229 		DEFINE_WAIT(__wait);
230 		for (;;) {
231 			prepare_to_wait(&mddev->sb_wait, &__wait,
232 					TASK_UNINTERRUPTIBLE);
233 			if (!mddev->suspended && !mddev->barrier)
234 				break;
235 			rcu_read_unlock();
236 			schedule();
237 			rcu_read_lock();
238 		}
239 		finish_wait(&mddev->sb_wait, &__wait);
240 	}
241 	atomic_inc(&mddev->active_io);
242 	rcu_read_unlock();
243 
244 	rv = mddev->pers->make_request(mddev, bio);
245 
246 	cpu = part_stat_lock();
247 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
248 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
249 		      bio_sectors(bio));
250 	part_stat_unlock();
251 
252 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
253 		wake_up(&mddev->sb_wait);
254 
255 	return rv;
256 }
257 
258 /* mddev_suspend makes sure no new requests are submitted
259  * to the device, and that any requests that have been submitted
260  * are completely handled.
261  * Once ->stop is called and completes, the module will be completely
262  * unused.
263  */
264 static void mddev_suspend(mddev_t *mddev)
265 {
266 	BUG_ON(mddev->suspended);
267 	mddev->suspended = 1;
268 	synchronize_rcu();
269 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
270 	mddev->pers->quiesce(mddev, 1);
271 }
272 
273 static void mddev_resume(mddev_t *mddev)
274 {
275 	mddev->suspended = 0;
276 	wake_up(&mddev->sb_wait);
277 	mddev->pers->quiesce(mddev, 0);
278 }
279 
280 int mddev_congested(mddev_t *mddev, int bits)
281 {
282 	if (mddev->barrier)
283 		return 1;
284 	return mddev->suspended;
285 }
286 EXPORT_SYMBOL(mddev_congested);
287 
288 /*
289  * Generic barrier handling for md
290  */
291 
292 #define POST_REQUEST_BARRIER ((void*)1)
293 
294 static void md_end_barrier(struct bio *bio, int err)
295 {
296 	mdk_rdev_t *rdev = bio->bi_private;
297 	mddev_t *mddev = rdev->mddev;
298 	if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
299 		set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
300 
301 	rdev_dec_pending(rdev, mddev);
302 
303 	if (atomic_dec_and_test(&mddev->flush_pending)) {
304 		if (mddev->barrier == POST_REQUEST_BARRIER) {
305 			/* This was a post-request barrier */
306 			mddev->barrier = NULL;
307 			wake_up(&mddev->sb_wait);
308 		} else
309 			/* The pre-request barrier has finished */
310 			schedule_work(&mddev->barrier_work);
311 	}
312 	bio_put(bio);
313 }
314 
315 static void submit_barriers(mddev_t *mddev)
316 {
317 	mdk_rdev_t *rdev;
318 
319 	rcu_read_lock();
320 	list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
321 		if (rdev->raid_disk >= 0 &&
322 		    !test_bit(Faulty, &rdev->flags)) {
323 			/* Take two references, one is dropped
324 			 * when request finishes, one after
325 			 * we reclaim rcu_read_lock
326 			 */
327 			struct bio *bi;
328 			atomic_inc(&rdev->nr_pending);
329 			atomic_inc(&rdev->nr_pending);
330 			rcu_read_unlock();
331 			bi = bio_alloc(GFP_KERNEL, 0);
332 			bi->bi_end_io = md_end_barrier;
333 			bi->bi_private = rdev;
334 			bi->bi_bdev = rdev->bdev;
335 			atomic_inc(&mddev->flush_pending);
336 			submit_bio(WRITE_BARRIER, bi);
337 			rcu_read_lock();
338 			rdev_dec_pending(rdev, mddev);
339 		}
340 	rcu_read_unlock();
341 }
342 
343 static void md_submit_barrier(struct work_struct *ws)
344 {
345 	mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
346 	struct bio *bio = mddev->barrier;
347 
348 	atomic_set(&mddev->flush_pending, 1);
349 
350 	if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
351 		bio_endio(bio, -EOPNOTSUPP);
352 	else if (bio->bi_size == 0)
353 		/* an empty barrier - all done */
354 		bio_endio(bio, 0);
355 	else {
356 		bio->bi_rw &= ~(1<<BIO_RW_BARRIER);
357 		if (mddev->pers->make_request(mddev, bio))
358 			generic_make_request(bio);
359 		mddev->barrier = POST_REQUEST_BARRIER;
360 		submit_barriers(mddev);
361 	}
362 	if (atomic_dec_and_test(&mddev->flush_pending)) {
363 		mddev->barrier = NULL;
364 		wake_up(&mddev->sb_wait);
365 	}
366 }
367 
368 void md_barrier_request(mddev_t *mddev, struct bio *bio)
369 {
370 	spin_lock_irq(&mddev->write_lock);
371 	wait_event_lock_irq(mddev->sb_wait,
372 			    !mddev->barrier,
373 			    mddev->write_lock, /*nothing*/);
374 	mddev->barrier = bio;
375 	spin_unlock_irq(&mddev->write_lock);
376 
377 	atomic_set(&mddev->flush_pending, 1);
378 	INIT_WORK(&mddev->barrier_work, md_submit_barrier);
379 
380 	submit_barriers(mddev);
381 
382 	if (atomic_dec_and_test(&mddev->flush_pending))
383 		schedule_work(&mddev->barrier_work);
384 }
385 EXPORT_SYMBOL(md_barrier_request);
386 
387 static inline mddev_t *mddev_get(mddev_t *mddev)
388 {
389 	atomic_inc(&mddev->active);
390 	return mddev;
391 }
392 
393 static void mddev_delayed_delete(struct work_struct *ws);
394 
395 static void mddev_put(mddev_t *mddev)
396 {
397 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
398 		return;
399 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
400 	    mddev->ctime == 0 && !mddev->hold_active) {
401 		/* Array is not configured at all, and not held active,
402 		 * so destroy it */
403 		list_del(&mddev->all_mddevs);
404 		if (mddev->gendisk) {
405 			/* we did a probe so need to clean up.
406 			 * Call schedule_work inside the spinlock
407 			 * so that flush_scheduled_work() after
408 			 * mddev_find will succeed in waiting for the
409 			 * work to be done.
410 			 */
411 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
412 			schedule_work(&mddev->del_work);
413 		} else
414 			kfree(mddev);
415 	}
416 	spin_unlock(&all_mddevs_lock);
417 }
418 
419 static void mddev_init(mddev_t *mddev)
420 {
421 	mutex_init(&mddev->open_mutex);
422 	mutex_init(&mddev->reconfig_mutex);
423 	mutex_init(&mddev->bitmap_info.mutex);
424 	INIT_LIST_HEAD(&mddev->disks);
425 	INIT_LIST_HEAD(&mddev->all_mddevs);
426 	init_timer(&mddev->safemode_timer);
427 	atomic_set(&mddev->active, 1);
428 	atomic_set(&mddev->openers, 0);
429 	atomic_set(&mddev->active_io, 0);
430 	spin_lock_init(&mddev->write_lock);
431 	atomic_set(&mddev->flush_pending, 0);
432 	init_waitqueue_head(&mddev->sb_wait);
433 	init_waitqueue_head(&mddev->recovery_wait);
434 	mddev->reshape_position = MaxSector;
435 	mddev->resync_min = 0;
436 	mddev->resync_max = MaxSector;
437 	mddev->level = LEVEL_NONE;
438 }
439 
440 static mddev_t * mddev_find(dev_t unit)
441 {
442 	mddev_t *mddev, *new = NULL;
443 
444  retry:
445 	spin_lock(&all_mddevs_lock);
446 
447 	if (unit) {
448 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
449 			if (mddev->unit == unit) {
450 				mddev_get(mddev);
451 				spin_unlock(&all_mddevs_lock);
452 				kfree(new);
453 				return mddev;
454 			}
455 
456 		if (new) {
457 			list_add(&new->all_mddevs, &all_mddevs);
458 			spin_unlock(&all_mddevs_lock);
459 			new->hold_active = UNTIL_IOCTL;
460 			return new;
461 		}
462 	} else if (new) {
463 		/* find an unused unit number */
464 		static int next_minor = 512;
465 		int start = next_minor;
466 		int is_free = 0;
467 		int dev = 0;
468 		while (!is_free) {
469 			dev = MKDEV(MD_MAJOR, next_minor);
470 			next_minor++;
471 			if (next_minor > MINORMASK)
472 				next_minor = 0;
473 			if (next_minor == start) {
474 				/* Oh dear, all in use. */
475 				spin_unlock(&all_mddevs_lock);
476 				kfree(new);
477 				return NULL;
478 			}
479 
480 			is_free = 1;
481 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
482 				if (mddev->unit == dev) {
483 					is_free = 0;
484 					break;
485 				}
486 		}
487 		new->unit = dev;
488 		new->md_minor = MINOR(dev);
489 		new->hold_active = UNTIL_STOP;
490 		list_add(&new->all_mddevs, &all_mddevs);
491 		spin_unlock(&all_mddevs_lock);
492 		return new;
493 	}
494 	spin_unlock(&all_mddevs_lock);
495 
496 	new = kzalloc(sizeof(*new), GFP_KERNEL);
497 	if (!new)
498 		return NULL;
499 
500 	new->unit = unit;
501 	if (MAJOR(unit) == MD_MAJOR)
502 		new->md_minor = MINOR(unit);
503 	else
504 		new->md_minor = MINOR(unit) >> MdpMinorShift;
505 
506 	mddev_init(new);
507 
508 	goto retry;
509 }
510 
511 static inline int mddev_lock(mddev_t * mddev)
512 {
513 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
514 }
515 
516 static inline int mddev_is_locked(mddev_t *mddev)
517 {
518 	return mutex_is_locked(&mddev->reconfig_mutex);
519 }
520 
521 static inline int mddev_trylock(mddev_t * mddev)
522 {
523 	return mutex_trylock(&mddev->reconfig_mutex);
524 }
525 
526 static struct attribute_group md_redundancy_group;
527 
528 static void mddev_unlock(mddev_t * mddev)
529 {
530 	if (mddev->to_remove) {
531 		/* These cannot be removed under reconfig_mutex as
532 		 * an access to the files will try to take reconfig_mutex
533 		 * while holding the file unremovable, which leads to
534 		 * a deadlock.
535 		 * So hold open_mutex instead - we are allowed to take
536 		 * it while holding reconfig_mutex, and md_run can
537 		 * use it to wait for the remove to complete.
538 		 */
539 		struct attribute_group *to_remove = mddev->to_remove;
540 		mddev->to_remove = NULL;
541 		mutex_lock(&mddev->open_mutex);
542 		mutex_unlock(&mddev->reconfig_mutex);
543 
544 		if (to_remove != &md_redundancy_group)
545 			sysfs_remove_group(&mddev->kobj, to_remove);
546 		if (mddev->pers == NULL ||
547 		    mddev->pers->sync_request == NULL) {
548 			sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
549 			if (mddev->sysfs_action)
550 				sysfs_put(mddev->sysfs_action);
551 			mddev->sysfs_action = NULL;
552 		}
553 		mutex_unlock(&mddev->open_mutex);
554 	} else
555 		mutex_unlock(&mddev->reconfig_mutex);
556 
557 	md_wakeup_thread(mddev->thread);
558 }
559 
560 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
561 {
562 	mdk_rdev_t *rdev;
563 
564 	list_for_each_entry(rdev, &mddev->disks, same_set)
565 		if (rdev->desc_nr == nr)
566 			return rdev;
567 
568 	return NULL;
569 }
570 
571 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
572 {
573 	mdk_rdev_t *rdev;
574 
575 	list_for_each_entry(rdev, &mddev->disks, same_set)
576 		if (rdev->bdev->bd_dev == dev)
577 			return rdev;
578 
579 	return NULL;
580 }
581 
582 static struct mdk_personality *find_pers(int level, char *clevel)
583 {
584 	struct mdk_personality *pers;
585 	list_for_each_entry(pers, &pers_list, list) {
586 		if (level != LEVEL_NONE && pers->level == level)
587 			return pers;
588 		if (strcmp(pers->name, clevel)==0)
589 			return pers;
590 	}
591 	return NULL;
592 }
593 
594 /* return the offset of the super block in 512byte sectors */
595 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
596 {
597 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
598 	return MD_NEW_SIZE_SECTORS(num_sectors);
599 }
600 
601 static int alloc_disk_sb(mdk_rdev_t * rdev)
602 {
603 	if (rdev->sb_page)
604 		MD_BUG();
605 
606 	rdev->sb_page = alloc_page(GFP_KERNEL);
607 	if (!rdev->sb_page) {
608 		printk(KERN_ALERT "md: out of memory.\n");
609 		return -ENOMEM;
610 	}
611 
612 	return 0;
613 }
614 
615 static void free_disk_sb(mdk_rdev_t * rdev)
616 {
617 	if (rdev->sb_page) {
618 		put_page(rdev->sb_page);
619 		rdev->sb_loaded = 0;
620 		rdev->sb_page = NULL;
621 		rdev->sb_start = 0;
622 		rdev->sectors = 0;
623 	}
624 }
625 
626 
627 static void super_written(struct bio *bio, int error)
628 {
629 	mdk_rdev_t *rdev = bio->bi_private;
630 	mddev_t *mddev = rdev->mddev;
631 
632 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
633 		printk("md: super_written gets error=%d, uptodate=%d\n",
634 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
635 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
636 		md_error(mddev, rdev);
637 	}
638 
639 	if (atomic_dec_and_test(&mddev->pending_writes))
640 		wake_up(&mddev->sb_wait);
641 	bio_put(bio);
642 }
643 
644 static void super_written_barrier(struct bio *bio, int error)
645 {
646 	struct bio *bio2 = bio->bi_private;
647 	mdk_rdev_t *rdev = bio2->bi_private;
648 	mddev_t *mddev = rdev->mddev;
649 
650 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
651 	    error == -EOPNOTSUPP) {
652 		unsigned long flags;
653 		/* barriers don't appear to be supported :-( */
654 		set_bit(BarriersNotsupp, &rdev->flags);
655 		mddev->barriers_work = 0;
656 		spin_lock_irqsave(&mddev->write_lock, flags);
657 		bio2->bi_next = mddev->biolist;
658 		mddev->biolist = bio2;
659 		spin_unlock_irqrestore(&mddev->write_lock, flags);
660 		wake_up(&mddev->sb_wait);
661 		bio_put(bio);
662 	} else {
663 		bio_put(bio2);
664 		bio->bi_private = rdev;
665 		super_written(bio, error);
666 	}
667 }
668 
669 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
670 		   sector_t sector, int size, struct page *page)
671 {
672 	/* write first size bytes of page to sector of rdev
673 	 * Increment mddev->pending_writes before returning
674 	 * and decrement it on completion, waking up sb_wait
675 	 * if zero is reached.
676 	 * If an error occurred, call md_error
677 	 *
678 	 * As we might need to resubmit the request if BIO_RW_BARRIER
679 	 * causes ENOTSUPP, we allocate a spare bio...
680 	 */
681 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
682 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
683 
684 	bio->bi_bdev = rdev->bdev;
685 	bio->bi_sector = sector;
686 	bio_add_page(bio, page, size, 0);
687 	bio->bi_private = rdev;
688 	bio->bi_end_io = super_written;
689 	bio->bi_rw = rw;
690 
691 	atomic_inc(&mddev->pending_writes);
692 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
693 		struct bio *rbio;
694 		rw |= (1<<BIO_RW_BARRIER);
695 		rbio = bio_clone(bio, GFP_NOIO);
696 		rbio->bi_private = bio;
697 		rbio->bi_end_io = super_written_barrier;
698 		submit_bio(rw, rbio);
699 	} else
700 		submit_bio(rw, bio);
701 }
702 
703 void md_super_wait(mddev_t *mddev)
704 {
705 	/* wait for all superblock writes that were scheduled to complete.
706 	 * if any had to be retried (due to BARRIER problems), retry them
707 	 */
708 	DEFINE_WAIT(wq);
709 	for(;;) {
710 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
711 		if (atomic_read(&mddev->pending_writes)==0)
712 			break;
713 		while (mddev->biolist) {
714 			struct bio *bio;
715 			spin_lock_irq(&mddev->write_lock);
716 			bio = mddev->biolist;
717 			mddev->biolist = bio->bi_next ;
718 			bio->bi_next = NULL;
719 			spin_unlock_irq(&mddev->write_lock);
720 			submit_bio(bio->bi_rw, bio);
721 		}
722 		schedule();
723 	}
724 	finish_wait(&mddev->sb_wait, &wq);
725 }
726 
727 static void bi_complete(struct bio *bio, int error)
728 {
729 	complete((struct completion*)bio->bi_private);
730 }
731 
732 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
733 		   struct page *page, int rw)
734 {
735 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
736 	struct completion event;
737 	int ret;
738 
739 	rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
740 
741 	bio->bi_bdev = bdev;
742 	bio->bi_sector = sector;
743 	bio_add_page(bio, page, size, 0);
744 	init_completion(&event);
745 	bio->bi_private = &event;
746 	bio->bi_end_io = bi_complete;
747 	submit_bio(rw, bio);
748 	wait_for_completion(&event);
749 
750 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
751 	bio_put(bio);
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(sync_page_io);
755 
756 static int read_disk_sb(mdk_rdev_t * rdev, int size)
757 {
758 	char b[BDEVNAME_SIZE];
759 	if (!rdev->sb_page) {
760 		MD_BUG();
761 		return -EINVAL;
762 	}
763 	if (rdev->sb_loaded)
764 		return 0;
765 
766 
767 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
768 		goto fail;
769 	rdev->sb_loaded = 1;
770 	return 0;
771 
772 fail:
773 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
774 		bdevname(rdev->bdev,b));
775 	return -EINVAL;
776 }
777 
778 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
779 {
780 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
781 		sb1->set_uuid1 == sb2->set_uuid1 &&
782 		sb1->set_uuid2 == sb2->set_uuid2 &&
783 		sb1->set_uuid3 == sb2->set_uuid3;
784 }
785 
786 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
787 {
788 	int ret;
789 	mdp_super_t *tmp1, *tmp2;
790 
791 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
792 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
793 
794 	if (!tmp1 || !tmp2) {
795 		ret = 0;
796 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
797 		goto abort;
798 	}
799 
800 	*tmp1 = *sb1;
801 	*tmp2 = *sb2;
802 
803 	/*
804 	 * nr_disks is not constant
805 	 */
806 	tmp1->nr_disks = 0;
807 	tmp2->nr_disks = 0;
808 
809 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
810 abort:
811 	kfree(tmp1);
812 	kfree(tmp2);
813 	return ret;
814 }
815 
816 
817 static u32 md_csum_fold(u32 csum)
818 {
819 	csum = (csum & 0xffff) + (csum >> 16);
820 	return (csum & 0xffff) + (csum >> 16);
821 }
822 
823 static unsigned int calc_sb_csum(mdp_super_t * sb)
824 {
825 	u64 newcsum = 0;
826 	u32 *sb32 = (u32*)sb;
827 	int i;
828 	unsigned int disk_csum, csum;
829 
830 	disk_csum = sb->sb_csum;
831 	sb->sb_csum = 0;
832 
833 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
834 		newcsum += sb32[i];
835 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
836 
837 
838 #ifdef CONFIG_ALPHA
839 	/* This used to use csum_partial, which was wrong for several
840 	 * reasons including that different results are returned on
841 	 * different architectures.  It isn't critical that we get exactly
842 	 * the same return value as before (we always csum_fold before
843 	 * testing, and that removes any differences).  However as we
844 	 * know that csum_partial always returned a 16bit value on
845 	 * alphas, do a fold to maximise conformity to previous behaviour.
846 	 */
847 	sb->sb_csum = md_csum_fold(disk_csum);
848 #else
849 	sb->sb_csum = disk_csum;
850 #endif
851 	return csum;
852 }
853 
854 
855 /*
856  * Handle superblock details.
857  * We want to be able to handle multiple superblock formats
858  * so we have a common interface to them all, and an array of
859  * different handlers.
860  * We rely on user-space to write the initial superblock, and support
861  * reading and updating of superblocks.
862  * Interface methods are:
863  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
864  *      loads and validates a superblock on dev.
865  *      if refdev != NULL, compare superblocks on both devices
866  *    Return:
867  *      0 - dev has a superblock that is compatible with refdev
868  *      1 - dev has a superblock that is compatible and newer than refdev
869  *          so dev should be used as the refdev in future
870  *     -EINVAL superblock incompatible or invalid
871  *     -othererror e.g. -EIO
872  *
873  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
874  *      Verify that dev is acceptable into mddev.
875  *       The first time, mddev->raid_disks will be 0, and data from
876  *       dev should be merged in.  Subsequent calls check that dev
877  *       is new enough.  Return 0 or -EINVAL
878  *
879  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
880  *     Update the superblock for rdev with data in mddev
881  *     This does not write to disc.
882  *
883  */
884 
885 struct super_type  {
886 	char		    *name;
887 	struct module	    *owner;
888 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
889 					  int minor_version);
890 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
891 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
892 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
893 						sector_t num_sectors);
894 };
895 
896 /*
897  * Check that the given mddev has no bitmap.
898  *
899  * This function is called from the run method of all personalities that do not
900  * support bitmaps. It prints an error message and returns non-zero if mddev
901  * has a bitmap. Otherwise, it returns 0.
902  *
903  */
904 int md_check_no_bitmap(mddev_t *mddev)
905 {
906 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
907 		return 0;
908 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
909 		mdname(mddev), mddev->pers->name);
910 	return 1;
911 }
912 EXPORT_SYMBOL(md_check_no_bitmap);
913 
914 /*
915  * load_super for 0.90.0
916  */
917 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
918 {
919 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
920 	mdp_super_t *sb;
921 	int ret;
922 
923 	/*
924 	 * Calculate the position of the superblock (512byte sectors),
925 	 * it's at the end of the disk.
926 	 *
927 	 * It also happens to be a multiple of 4Kb.
928 	 */
929 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
930 
931 	ret = read_disk_sb(rdev, MD_SB_BYTES);
932 	if (ret) return ret;
933 
934 	ret = -EINVAL;
935 
936 	bdevname(rdev->bdev, b);
937 	sb = (mdp_super_t*)page_address(rdev->sb_page);
938 
939 	if (sb->md_magic != MD_SB_MAGIC) {
940 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
941 		       b);
942 		goto abort;
943 	}
944 
945 	if (sb->major_version != 0 ||
946 	    sb->minor_version < 90 ||
947 	    sb->minor_version > 91) {
948 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
949 			sb->major_version, sb->minor_version,
950 			b);
951 		goto abort;
952 	}
953 
954 	if (sb->raid_disks <= 0)
955 		goto abort;
956 
957 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
958 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
959 			b);
960 		goto abort;
961 	}
962 
963 	rdev->preferred_minor = sb->md_minor;
964 	rdev->data_offset = 0;
965 	rdev->sb_size = MD_SB_BYTES;
966 
967 	if (sb->level == LEVEL_MULTIPATH)
968 		rdev->desc_nr = -1;
969 	else
970 		rdev->desc_nr = sb->this_disk.number;
971 
972 	if (!refdev) {
973 		ret = 1;
974 	} else {
975 		__u64 ev1, ev2;
976 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
977 		if (!uuid_equal(refsb, sb)) {
978 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
979 				b, bdevname(refdev->bdev,b2));
980 			goto abort;
981 		}
982 		if (!sb_equal(refsb, sb)) {
983 			printk(KERN_WARNING "md: %s has same UUID"
984 			       " but different superblock to %s\n",
985 			       b, bdevname(refdev->bdev, b2));
986 			goto abort;
987 		}
988 		ev1 = md_event(sb);
989 		ev2 = md_event(refsb);
990 		if (ev1 > ev2)
991 			ret = 1;
992 		else
993 			ret = 0;
994 	}
995 	rdev->sectors = rdev->sb_start;
996 
997 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
998 		/* "this cannot possibly happen" ... */
999 		ret = -EINVAL;
1000 
1001  abort:
1002 	return ret;
1003 }
1004 
1005 /*
1006  * validate_super for 0.90.0
1007  */
1008 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1009 {
1010 	mdp_disk_t *desc;
1011 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1012 	__u64 ev1 = md_event(sb);
1013 
1014 	rdev->raid_disk = -1;
1015 	clear_bit(Faulty, &rdev->flags);
1016 	clear_bit(In_sync, &rdev->flags);
1017 	clear_bit(WriteMostly, &rdev->flags);
1018 	clear_bit(BarriersNotsupp, &rdev->flags);
1019 
1020 	if (mddev->raid_disks == 0) {
1021 		mddev->major_version = 0;
1022 		mddev->minor_version = sb->minor_version;
1023 		mddev->patch_version = sb->patch_version;
1024 		mddev->external = 0;
1025 		mddev->chunk_sectors = sb->chunk_size >> 9;
1026 		mddev->ctime = sb->ctime;
1027 		mddev->utime = sb->utime;
1028 		mddev->level = sb->level;
1029 		mddev->clevel[0] = 0;
1030 		mddev->layout = sb->layout;
1031 		mddev->raid_disks = sb->raid_disks;
1032 		mddev->dev_sectors = sb->size * 2;
1033 		mddev->events = ev1;
1034 		mddev->bitmap_info.offset = 0;
1035 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1036 
1037 		if (mddev->minor_version >= 91) {
1038 			mddev->reshape_position = sb->reshape_position;
1039 			mddev->delta_disks = sb->delta_disks;
1040 			mddev->new_level = sb->new_level;
1041 			mddev->new_layout = sb->new_layout;
1042 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1043 		} else {
1044 			mddev->reshape_position = MaxSector;
1045 			mddev->delta_disks = 0;
1046 			mddev->new_level = mddev->level;
1047 			mddev->new_layout = mddev->layout;
1048 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1049 		}
1050 
1051 		if (sb->state & (1<<MD_SB_CLEAN))
1052 			mddev->recovery_cp = MaxSector;
1053 		else {
1054 			if (sb->events_hi == sb->cp_events_hi &&
1055 				sb->events_lo == sb->cp_events_lo) {
1056 				mddev->recovery_cp = sb->recovery_cp;
1057 			} else
1058 				mddev->recovery_cp = 0;
1059 		}
1060 
1061 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1062 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1063 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1064 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1065 
1066 		mddev->max_disks = MD_SB_DISKS;
1067 
1068 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1069 		    mddev->bitmap_info.file == NULL)
1070 			mddev->bitmap_info.offset =
1071 				mddev->bitmap_info.default_offset;
1072 
1073 	} else if (mddev->pers == NULL) {
1074 		/* Insist on good event counter while assembling, except
1075 		 * for spares (which don't need an event count) */
1076 		++ev1;
1077 		if (sb->disks[rdev->desc_nr].state & (
1078 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1079 			if (ev1 < mddev->events)
1080 				return -EINVAL;
1081 	} else if (mddev->bitmap) {
1082 		/* if adding to array with a bitmap, then we can accept an
1083 		 * older device ... but not too old.
1084 		 */
1085 		if (ev1 < mddev->bitmap->events_cleared)
1086 			return 0;
1087 	} else {
1088 		if (ev1 < mddev->events)
1089 			/* just a hot-add of a new device, leave raid_disk at -1 */
1090 			return 0;
1091 	}
1092 
1093 	if (mddev->level != LEVEL_MULTIPATH) {
1094 		desc = sb->disks + rdev->desc_nr;
1095 
1096 		if (desc->state & (1<<MD_DISK_FAULTY))
1097 			set_bit(Faulty, &rdev->flags);
1098 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1099 			    desc->raid_disk < mddev->raid_disks */) {
1100 			set_bit(In_sync, &rdev->flags);
1101 			rdev->raid_disk = desc->raid_disk;
1102 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1103 			/* active but not in sync implies recovery up to
1104 			 * reshape position.  We don't know exactly where
1105 			 * that is, so set to zero for now */
1106 			if (mddev->minor_version >= 91) {
1107 				rdev->recovery_offset = 0;
1108 				rdev->raid_disk = desc->raid_disk;
1109 			}
1110 		}
1111 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1112 			set_bit(WriteMostly, &rdev->flags);
1113 	} else /* MULTIPATH are always insync */
1114 		set_bit(In_sync, &rdev->flags);
1115 	return 0;
1116 }
1117 
1118 /*
1119  * sync_super for 0.90.0
1120  */
1121 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1122 {
1123 	mdp_super_t *sb;
1124 	mdk_rdev_t *rdev2;
1125 	int next_spare = mddev->raid_disks;
1126 
1127 
1128 	/* make rdev->sb match mddev data..
1129 	 *
1130 	 * 1/ zero out disks
1131 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1132 	 * 3/ any empty disks < next_spare become removed
1133 	 *
1134 	 * disks[0] gets initialised to REMOVED because
1135 	 * we cannot be sure from other fields if it has
1136 	 * been initialised or not.
1137 	 */
1138 	int i;
1139 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1140 
1141 	rdev->sb_size = MD_SB_BYTES;
1142 
1143 	sb = (mdp_super_t*)page_address(rdev->sb_page);
1144 
1145 	memset(sb, 0, sizeof(*sb));
1146 
1147 	sb->md_magic = MD_SB_MAGIC;
1148 	sb->major_version = mddev->major_version;
1149 	sb->patch_version = mddev->patch_version;
1150 	sb->gvalid_words  = 0; /* ignored */
1151 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1152 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1153 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1154 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1155 
1156 	sb->ctime = mddev->ctime;
1157 	sb->level = mddev->level;
1158 	sb->size = mddev->dev_sectors / 2;
1159 	sb->raid_disks = mddev->raid_disks;
1160 	sb->md_minor = mddev->md_minor;
1161 	sb->not_persistent = 0;
1162 	sb->utime = mddev->utime;
1163 	sb->state = 0;
1164 	sb->events_hi = (mddev->events>>32);
1165 	sb->events_lo = (u32)mddev->events;
1166 
1167 	if (mddev->reshape_position == MaxSector)
1168 		sb->minor_version = 90;
1169 	else {
1170 		sb->minor_version = 91;
1171 		sb->reshape_position = mddev->reshape_position;
1172 		sb->new_level = mddev->new_level;
1173 		sb->delta_disks = mddev->delta_disks;
1174 		sb->new_layout = mddev->new_layout;
1175 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1176 	}
1177 	mddev->minor_version = sb->minor_version;
1178 	if (mddev->in_sync)
1179 	{
1180 		sb->recovery_cp = mddev->recovery_cp;
1181 		sb->cp_events_hi = (mddev->events>>32);
1182 		sb->cp_events_lo = (u32)mddev->events;
1183 		if (mddev->recovery_cp == MaxSector)
1184 			sb->state = (1<< MD_SB_CLEAN);
1185 	} else
1186 		sb->recovery_cp = 0;
1187 
1188 	sb->layout = mddev->layout;
1189 	sb->chunk_size = mddev->chunk_sectors << 9;
1190 
1191 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1192 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1193 
1194 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1195 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1196 		mdp_disk_t *d;
1197 		int desc_nr;
1198 		int is_active = test_bit(In_sync, &rdev2->flags);
1199 
1200 		if (rdev2->raid_disk >= 0 &&
1201 		    sb->minor_version >= 91)
1202 			/* we have nowhere to store the recovery_offset,
1203 			 * but if it is not below the reshape_position,
1204 			 * we can piggy-back on that.
1205 			 */
1206 			is_active = 1;
1207 		if (rdev2->raid_disk < 0 ||
1208 		    test_bit(Faulty, &rdev2->flags))
1209 			is_active = 0;
1210 		if (is_active)
1211 			desc_nr = rdev2->raid_disk;
1212 		else
1213 			desc_nr = next_spare++;
1214 		rdev2->desc_nr = desc_nr;
1215 		d = &sb->disks[rdev2->desc_nr];
1216 		nr_disks++;
1217 		d->number = rdev2->desc_nr;
1218 		d->major = MAJOR(rdev2->bdev->bd_dev);
1219 		d->minor = MINOR(rdev2->bdev->bd_dev);
1220 		if (is_active)
1221 			d->raid_disk = rdev2->raid_disk;
1222 		else
1223 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1224 		if (test_bit(Faulty, &rdev2->flags))
1225 			d->state = (1<<MD_DISK_FAULTY);
1226 		else if (is_active) {
1227 			d->state = (1<<MD_DISK_ACTIVE);
1228 			if (test_bit(In_sync, &rdev2->flags))
1229 				d->state |= (1<<MD_DISK_SYNC);
1230 			active++;
1231 			working++;
1232 		} else {
1233 			d->state = 0;
1234 			spare++;
1235 			working++;
1236 		}
1237 		if (test_bit(WriteMostly, &rdev2->flags))
1238 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1239 	}
1240 	/* now set the "removed" and "faulty" bits on any missing devices */
1241 	for (i=0 ; i < mddev->raid_disks ; i++) {
1242 		mdp_disk_t *d = &sb->disks[i];
1243 		if (d->state == 0 && d->number == 0) {
1244 			d->number = i;
1245 			d->raid_disk = i;
1246 			d->state = (1<<MD_DISK_REMOVED);
1247 			d->state |= (1<<MD_DISK_FAULTY);
1248 			failed++;
1249 		}
1250 	}
1251 	sb->nr_disks = nr_disks;
1252 	sb->active_disks = active;
1253 	sb->working_disks = working;
1254 	sb->failed_disks = failed;
1255 	sb->spare_disks = spare;
1256 
1257 	sb->this_disk = sb->disks[rdev->desc_nr];
1258 	sb->sb_csum = calc_sb_csum(sb);
1259 }
1260 
1261 /*
1262  * rdev_size_change for 0.90.0
1263  */
1264 static unsigned long long
1265 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1266 {
1267 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1268 		return 0; /* component must fit device */
1269 	if (rdev->mddev->bitmap_info.offset)
1270 		return 0; /* can't move bitmap */
1271 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1272 	if (!num_sectors || num_sectors > rdev->sb_start)
1273 		num_sectors = rdev->sb_start;
1274 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1275 		       rdev->sb_page);
1276 	md_super_wait(rdev->mddev);
1277 	return num_sectors / 2; /* kB for sysfs */
1278 }
1279 
1280 
1281 /*
1282  * version 1 superblock
1283  */
1284 
1285 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1286 {
1287 	__le32 disk_csum;
1288 	u32 csum;
1289 	unsigned long long newcsum;
1290 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1291 	__le32 *isuper = (__le32*)sb;
1292 	int i;
1293 
1294 	disk_csum = sb->sb_csum;
1295 	sb->sb_csum = 0;
1296 	newcsum = 0;
1297 	for (i=0; size>=4; size -= 4 )
1298 		newcsum += le32_to_cpu(*isuper++);
1299 
1300 	if (size == 2)
1301 		newcsum += le16_to_cpu(*(__le16*) isuper);
1302 
1303 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1304 	sb->sb_csum = disk_csum;
1305 	return cpu_to_le32(csum);
1306 }
1307 
1308 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1309 {
1310 	struct mdp_superblock_1 *sb;
1311 	int ret;
1312 	sector_t sb_start;
1313 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1314 	int bmask;
1315 
1316 	/*
1317 	 * Calculate the position of the superblock in 512byte sectors.
1318 	 * It is always aligned to a 4K boundary and
1319 	 * depeding on minor_version, it can be:
1320 	 * 0: At least 8K, but less than 12K, from end of device
1321 	 * 1: At start of device
1322 	 * 2: 4K from start of device.
1323 	 */
1324 	switch(minor_version) {
1325 	case 0:
1326 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1327 		sb_start -= 8*2;
1328 		sb_start &= ~(sector_t)(4*2-1);
1329 		break;
1330 	case 1:
1331 		sb_start = 0;
1332 		break;
1333 	case 2:
1334 		sb_start = 8;
1335 		break;
1336 	default:
1337 		return -EINVAL;
1338 	}
1339 	rdev->sb_start = sb_start;
1340 
1341 	/* superblock is rarely larger than 1K, but it can be larger,
1342 	 * and it is safe to read 4k, so we do that
1343 	 */
1344 	ret = read_disk_sb(rdev, 4096);
1345 	if (ret) return ret;
1346 
1347 
1348 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1349 
1350 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1351 	    sb->major_version != cpu_to_le32(1) ||
1352 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1353 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1354 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1355 		return -EINVAL;
1356 
1357 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1358 		printk("md: invalid superblock checksum on %s\n",
1359 			bdevname(rdev->bdev,b));
1360 		return -EINVAL;
1361 	}
1362 	if (le64_to_cpu(sb->data_size) < 10) {
1363 		printk("md: data_size too small on %s\n",
1364 		       bdevname(rdev->bdev,b));
1365 		return -EINVAL;
1366 	}
1367 
1368 	rdev->preferred_minor = 0xffff;
1369 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1370 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1371 
1372 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1373 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1374 	if (rdev->sb_size & bmask)
1375 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1376 
1377 	if (minor_version
1378 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1379 		return -EINVAL;
1380 
1381 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1382 		rdev->desc_nr = -1;
1383 	else
1384 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1385 
1386 	if (!refdev) {
1387 		ret = 1;
1388 	} else {
1389 		__u64 ev1, ev2;
1390 		struct mdp_superblock_1 *refsb =
1391 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1392 
1393 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1394 		    sb->level != refsb->level ||
1395 		    sb->layout != refsb->layout ||
1396 		    sb->chunksize != refsb->chunksize) {
1397 			printk(KERN_WARNING "md: %s has strangely different"
1398 				" superblock to %s\n",
1399 				bdevname(rdev->bdev,b),
1400 				bdevname(refdev->bdev,b2));
1401 			return -EINVAL;
1402 		}
1403 		ev1 = le64_to_cpu(sb->events);
1404 		ev2 = le64_to_cpu(refsb->events);
1405 
1406 		if (ev1 > ev2)
1407 			ret = 1;
1408 		else
1409 			ret = 0;
1410 	}
1411 	if (minor_version)
1412 		rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1413 			le64_to_cpu(sb->data_offset);
1414 	else
1415 		rdev->sectors = rdev->sb_start;
1416 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1417 		return -EINVAL;
1418 	rdev->sectors = le64_to_cpu(sb->data_size);
1419 	if (le64_to_cpu(sb->size) > rdev->sectors)
1420 		return -EINVAL;
1421 	return ret;
1422 }
1423 
1424 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1425 {
1426 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1427 	__u64 ev1 = le64_to_cpu(sb->events);
1428 
1429 	rdev->raid_disk = -1;
1430 	clear_bit(Faulty, &rdev->flags);
1431 	clear_bit(In_sync, &rdev->flags);
1432 	clear_bit(WriteMostly, &rdev->flags);
1433 	clear_bit(BarriersNotsupp, &rdev->flags);
1434 
1435 	if (mddev->raid_disks == 0) {
1436 		mddev->major_version = 1;
1437 		mddev->patch_version = 0;
1438 		mddev->external = 0;
1439 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1440 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1441 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1442 		mddev->level = le32_to_cpu(sb->level);
1443 		mddev->clevel[0] = 0;
1444 		mddev->layout = le32_to_cpu(sb->layout);
1445 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1446 		mddev->dev_sectors = le64_to_cpu(sb->size);
1447 		mddev->events = ev1;
1448 		mddev->bitmap_info.offset = 0;
1449 		mddev->bitmap_info.default_offset = 1024 >> 9;
1450 
1451 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1452 		memcpy(mddev->uuid, sb->set_uuid, 16);
1453 
1454 		mddev->max_disks =  (4096-256)/2;
1455 
1456 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1457 		    mddev->bitmap_info.file == NULL )
1458 			mddev->bitmap_info.offset =
1459 				(__s32)le32_to_cpu(sb->bitmap_offset);
1460 
1461 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1462 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1463 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1464 			mddev->new_level = le32_to_cpu(sb->new_level);
1465 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1466 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1467 		} else {
1468 			mddev->reshape_position = MaxSector;
1469 			mddev->delta_disks = 0;
1470 			mddev->new_level = mddev->level;
1471 			mddev->new_layout = mddev->layout;
1472 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1473 		}
1474 
1475 	} else if (mddev->pers == NULL) {
1476 		/* Insist of good event counter while assembling, except for
1477 		 * spares (which don't need an event count) */
1478 		++ev1;
1479 		if (rdev->desc_nr >= 0 &&
1480 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1481 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1482 			if (ev1 < mddev->events)
1483 				return -EINVAL;
1484 	} else if (mddev->bitmap) {
1485 		/* If adding to array with a bitmap, then we can accept an
1486 		 * older device, but not too old.
1487 		 */
1488 		if (ev1 < mddev->bitmap->events_cleared)
1489 			return 0;
1490 	} else {
1491 		if (ev1 < mddev->events)
1492 			/* just a hot-add of a new device, leave raid_disk at -1 */
1493 			return 0;
1494 	}
1495 	if (mddev->level != LEVEL_MULTIPATH) {
1496 		int role;
1497 		if (rdev->desc_nr < 0 ||
1498 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1499 			role = 0xffff;
1500 			rdev->desc_nr = -1;
1501 		} else
1502 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1503 		switch(role) {
1504 		case 0xffff: /* spare */
1505 			break;
1506 		case 0xfffe: /* faulty */
1507 			set_bit(Faulty, &rdev->flags);
1508 			break;
1509 		default:
1510 			if ((le32_to_cpu(sb->feature_map) &
1511 			     MD_FEATURE_RECOVERY_OFFSET))
1512 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1513 			else
1514 				set_bit(In_sync, &rdev->flags);
1515 			rdev->raid_disk = role;
1516 			break;
1517 		}
1518 		if (sb->devflags & WriteMostly1)
1519 			set_bit(WriteMostly, &rdev->flags);
1520 	} else /* MULTIPATH are always insync */
1521 		set_bit(In_sync, &rdev->flags);
1522 
1523 	return 0;
1524 }
1525 
1526 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1527 {
1528 	struct mdp_superblock_1 *sb;
1529 	mdk_rdev_t *rdev2;
1530 	int max_dev, i;
1531 	/* make rdev->sb match mddev and rdev data. */
1532 
1533 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1534 
1535 	sb->feature_map = 0;
1536 	sb->pad0 = 0;
1537 	sb->recovery_offset = cpu_to_le64(0);
1538 	memset(sb->pad1, 0, sizeof(sb->pad1));
1539 	memset(sb->pad2, 0, sizeof(sb->pad2));
1540 	memset(sb->pad3, 0, sizeof(sb->pad3));
1541 
1542 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1543 	sb->events = cpu_to_le64(mddev->events);
1544 	if (mddev->in_sync)
1545 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1546 	else
1547 		sb->resync_offset = cpu_to_le64(0);
1548 
1549 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1550 
1551 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1552 	sb->size = cpu_to_le64(mddev->dev_sectors);
1553 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1554 	sb->level = cpu_to_le32(mddev->level);
1555 	sb->layout = cpu_to_le32(mddev->layout);
1556 
1557 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1558 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1559 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1560 	}
1561 
1562 	if (rdev->raid_disk >= 0 &&
1563 	    !test_bit(In_sync, &rdev->flags)) {
1564 		sb->feature_map |=
1565 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1566 		sb->recovery_offset =
1567 			cpu_to_le64(rdev->recovery_offset);
1568 	}
1569 
1570 	if (mddev->reshape_position != MaxSector) {
1571 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1572 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1573 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1574 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1575 		sb->new_level = cpu_to_le32(mddev->new_level);
1576 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1577 	}
1578 
1579 	max_dev = 0;
1580 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1581 		if (rdev2->desc_nr+1 > max_dev)
1582 			max_dev = rdev2->desc_nr+1;
1583 
1584 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1585 		int bmask;
1586 		sb->max_dev = cpu_to_le32(max_dev);
1587 		rdev->sb_size = max_dev * 2 + 256;
1588 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1589 		if (rdev->sb_size & bmask)
1590 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1591 	}
1592 	for (i=0; i<max_dev;i++)
1593 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1594 
1595 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1596 		i = rdev2->desc_nr;
1597 		if (test_bit(Faulty, &rdev2->flags))
1598 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1599 		else if (test_bit(In_sync, &rdev2->flags))
1600 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1601 		else if (rdev2->raid_disk >= 0)
1602 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1603 		else
1604 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1605 	}
1606 
1607 	sb->sb_csum = calc_sb_1_csum(sb);
1608 }
1609 
1610 static unsigned long long
1611 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1612 {
1613 	struct mdp_superblock_1 *sb;
1614 	sector_t max_sectors;
1615 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1616 		return 0; /* component must fit device */
1617 	if (rdev->sb_start < rdev->data_offset) {
1618 		/* minor versions 1 and 2; superblock before data */
1619 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1620 		max_sectors -= rdev->data_offset;
1621 		if (!num_sectors || num_sectors > max_sectors)
1622 			num_sectors = max_sectors;
1623 	} else if (rdev->mddev->bitmap_info.offset) {
1624 		/* minor version 0 with bitmap we can't move */
1625 		return 0;
1626 	} else {
1627 		/* minor version 0; superblock after data */
1628 		sector_t sb_start;
1629 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1630 		sb_start &= ~(sector_t)(4*2 - 1);
1631 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1632 		if (!num_sectors || num_sectors > max_sectors)
1633 			num_sectors = max_sectors;
1634 		rdev->sb_start = sb_start;
1635 	}
1636 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1637 	sb->data_size = cpu_to_le64(num_sectors);
1638 	sb->super_offset = rdev->sb_start;
1639 	sb->sb_csum = calc_sb_1_csum(sb);
1640 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1641 		       rdev->sb_page);
1642 	md_super_wait(rdev->mddev);
1643 	return num_sectors / 2; /* kB for sysfs */
1644 }
1645 
1646 static struct super_type super_types[] = {
1647 	[0] = {
1648 		.name	= "0.90.0",
1649 		.owner	= THIS_MODULE,
1650 		.load_super	    = super_90_load,
1651 		.validate_super	    = super_90_validate,
1652 		.sync_super	    = super_90_sync,
1653 		.rdev_size_change   = super_90_rdev_size_change,
1654 	},
1655 	[1] = {
1656 		.name	= "md-1",
1657 		.owner	= THIS_MODULE,
1658 		.load_super	    = super_1_load,
1659 		.validate_super	    = super_1_validate,
1660 		.sync_super	    = super_1_sync,
1661 		.rdev_size_change   = super_1_rdev_size_change,
1662 	},
1663 };
1664 
1665 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1666 {
1667 	mdk_rdev_t *rdev, *rdev2;
1668 
1669 	rcu_read_lock();
1670 	rdev_for_each_rcu(rdev, mddev1)
1671 		rdev_for_each_rcu(rdev2, mddev2)
1672 			if (rdev->bdev->bd_contains ==
1673 			    rdev2->bdev->bd_contains) {
1674 				rcu_read_unlock();
1675 				return 1;
1676 			}
1677 	rcu_read_unlock();
1678 	return 0;
1679 }
1680 
1681 static LIST_HEAD(pending_raid_disks);
1682 
1683 /*
1684  * Try to register data integrity profile for an mddev
1685  *
1686  * This is called when an array is started and after a disk has been kicked
1687  * from the array. It only succeeds if all working and active component devices
1688  * are integrity capable with matching profiles.
1689  */
1690 int md_integrity_register(mddev_t *mddev)
1691 {
1692 	mdk_rdev_t *rdev, *reference = NULL;
1693 
1694 	if (list_empty(&mddev->disks))
1695 		return 0; /* nothing to do */
1696 	if (blk_get_integrity(mddev->gendisk))
1697 		return 0; /* already registered */
1698 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1699 		/* skip spares and non-functional disks */
1700 		if (test_bit(Faulty, &rdev->flags))
1701 			continue;
1702 		if (rdev->raid_disk < 0)
1703 			continue;
1704 		/*
1705 		 * If at least one rdev is not integrity capable, we can not
1706 		 * enable data integrity for the md device.
1707 		 */
1708 		if (!bdev_get_integrity(rdev->bdev))
1709 			return -EINVAL;
1710 		if (!reference) {
1711 			/* Use the first rdev as the reference */
1712 			reference = rdev;
1713 			continue;
1714 		}
1715 		/* does this rdev's profile match the reference profile? */
1716 		if (blk_integrity_compare(reference->bdev->bd_disk,
1717 				rdev->bdev->bd_disk) < 0)
1718 			return -EINVAL;
1719 	}
1720 	/*
1721 	 * All component devices are integrity capable and have matching
1722 	 * profiles, register the common profile for the md device.
1723 	 */
1724 	if (blk_integrity_register(mddev->gendisk,
1725 			bdev_get_integrity(reference->bdev)) != 0) {
1726 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1727 			mdname(mddev));
1728 		return -EINVAL;
1729 	}
1730 	printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1731 		mdname(mddev));
1732 	return 0;
1733 }
1734 EXPORT_SYMBOL(md_integrity_register);
1735 
1736 /* Disable data integrity if non-capable/non-matching disk is being added */
1737 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1738 {
1739 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1740 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1741 
1742 	if (!bi_mddev) /* nothing to do */
1743 		return;
1744 	if (rdev->raid_disk < 0) /* skip spares */
1745 		return;
1746 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1747 					     rdev->bdev->bd_disk) >= 0)
1748 		return;
1749 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1750 	blk_integrity_unregister(mddev->gendisk);
1751 }
1752 EXPORT_SYMBOL(md_integrity_add_rdev);
1753 
1754 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1755 {
1756 	char b[BDEVNAME_SIZE];
1757 	struct kobject *ko;
1758 	char *s;
1759 	int err;
1760 
1761 	if (rdev->mddev) {
1762 		MD_BUG();
1763 		return -EINVAL;
1764 	}
1765 
1766 	/* prevent duplicates */
1767 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1768 		return -EEXIST;
1769 
1770 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1771 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1772 			rdev->sectors < mddev->dev_sectors)) {
1773 		if (mddev->pers) {
1774 			/* Cannot change size, so fail
1775 			 * If mddev->level <= 0, then we don't care
1776 			 * about aligning sizes (e.g. linear)
1777 			 */
1778 			if (mddev->level > 0)
1779 				return -ENOSPC;
1780 		} else
1781 			mddev->dev_sectors = rdev->sectors;
1782 	}
1783 
1784 	/* Verify rdev->desc_nr is unique.
1785 	 * If it is -1, assign a free number, else
1786 	 * check number is not in use
1787 	 */
1788 	if (rdev->desc_nr < 0) {
1789 		int choice = 0;
1790 		if (mddev->pers) choice = mddev->raid_disks;
1791 		while (find_rdev_nr(mddev, choice))
1792 			choice++;
1793 		rdev->desc_nr = choice;
1794 	} else {
1795 		if (find_rdev_nr(mddev, rdev->desc_nr))
1796 			return -EBUSY;
1797 	}
1798 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1799 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1800 		       mdname(mddev), mddev->max_disks);
1801 		return -EBUSY;
1802 	}
1803 	bdevname(rdev->bdev,b);
1804 	while ( (s=strchr(b, '/')) != NULL)
1805 		*s = '!';
1806 
1807 	rdev->mddev = mddev;
1808 	printk(KERN_INFO "md: bind<%s>\n", b);
1809 
1810 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1811 		goto fail;
1812 
1813 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1814 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1815 		kobject_del(&rdev->kobj);
1816 		goto fail;
1817 	}
1818 	rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, NULL, "state");
1819 
1820 	list_add_rcu(&rdev->same_set, &mddev->disks);
1821 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1822 
1823 	/* May as well allow recovery to be retried once */
1824 	mddev->recovery_disabled = 0;
1825 
1826 	return 0;
1827 
1828  fail:
1829 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1830 	       b, mdname(mddev));
1831 	return err;
1832 }
1833 
1834 static void md_delayed_delete(struct work_struct *ws)
1835 {
1836 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1837 	kobject_del(&rdev->kobj);
1838 	kobject_put(&rdev->kobj);
1839 }
1840 
1841 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1842 {
1843 	char b[BDEVNAME_SIZE];
1844 	if (!rdev->mddev) {
1845 		MD_BUG();
1846 		return;
1847 	}
1848 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1849 	list_del_rcu(&rdev->same_set);
1850 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1851 	rdev->mddev = NULL;
1852 	sysfs_remove_link(&rdev->kobj, "block");
1853 	sysfs_put(rdev->sysfs_state);
1854 	rdev->sysfs_state = NULL;
1855 	/* We need to delay this, otherwise we can deadlock when
1856 	 * writing to 'remove' to "dev/state".  We also need
1857 	 * to delay it due to rcu usage.
1858 	 */
1859 	synchronize_rcu();
1860 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1861 	kobject_get(&rdev->kobj);
1862 	schedule_work(&rdev->del_work);
1863 }
1864 
1865 /*
1866  * prevent the device from being mounted, repartitioned or
1867  * otherwise reused by a RAID array (or any other kernel
1868  * subsystem), by bd_claiming the device.
1869  */
1870 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1871 {
1872 	int err = 0;
1873 	struct block_device *bdev;
1874 	char b[BDEVNAME_SIZE];
1875 
1876 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1877 	if (IS_ERR(bdev)) {
1878 		printk(KERN_ERR "md: could not open %s.\n",
1879 			__bdevname(dev, b));
1880 		return PTR_ERR(bdev);
1881 	}
1882 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1883 	if (err) {
1884 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1885 			bdevname(bdev, b));
1886 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1887 		return err;
1888 	}
1889 	if (!shared)
1890 		set_bit(AllReserved, &rdev->flags);
1891 	rdev->bdev = bdev;
1892 	return err;
1893 }
1894 
1895 static void unlock_rdev(mdk_rdev_t *rdev)
1896 {
1897 	struct block_device *bdev = rdev->bdev;
1898 	rdev->bdev = NULL;
1899 	if (!bdev)
1900 		MD_BUG();
1901 	bd_release(bdev);
1902 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1903 }
1904 
1905 void md_autodetect_dev(dev_t dev);
1906 
1907 static void export_rdev(mdk_rdev_t * rdev)
1908 {
1909 	char b[BDEVNAME_SIZE];
1910 	printk(KERN_INFO "md: export_rdev(%s)\n",
1911 		bdevname(rdev->bdev,b));
1912 	if (rdev->mddev)
1913 		MD_BUG();
1914 	free_disk_sb(rdev);
1915 #ifndef MODULE
1916 	if (test_bit(AutoDetected, &rdev->flags))
1917 		md_autodetect_dev(rdev->bdev->bd_dev);
1918 #endif
1919 	unlock_rdev(rdev);
1920 	kobject_put(&rdev->kobj);
1921 }
1922 
1923 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1924 {
1925 	unbind_rdev_from_array(rdev);
1926 	export_rdev(rdev);
1927 }
1928 
1929 static void export_array(mddev_t *mddev)
1930 {
1931 	mdk_rdev_t *rdev, *tmp;
1932 
1933 	rdev_for_each(rdev, tmp, mddev) {
1934 		if (!rdev->mddev) {
1935 			MD_BUG();
1936 			continue;
1937 		}
1938 		kick_rdev_from_array(rdev);
1939 	}
1940 	if (!list_empty(&mddev->disks))
1941 		MD_BUG();
1942 	mddev->raid_disks = 0;
1943 	mddev->major_version = 0;
1944 }
1945 
1946 static void print_desc(mdp_disk_t *desc)
1947 {
1948 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1949 		desc->major,desc->minor,desc->raid_disk,desc->state);
1950 }
1951 
1952 static void print_sb_90(mdp_super_t *sb)
1953 {
1954 	int i;
1955 
1956 	printk(KERN_INFO
1957 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1958 		sb->major_version, sb->minor_version, sb->patch_version,
1959 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1960 		sb->ctime);
1961 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1962 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1963 		sb->md_minor, sb->layout, sb->chunk_size);
1964 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1965 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1966 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1967 		sb->failed_disks, sb->spare_disks,
1968 		sb->sb_csum, (unsigned long)sb->events_lo);
1969 
1970 	printk(KERN_INFO);
1971 	for (i = 0; i < MD_SB_DISKS; i++) {
1972 		mdp_disk_t *desc;
1973 
1974 		desc = sb->disks + i;
1975 		if (desc->number || desc->major || desc->minor ||
1976 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1977 			printk("     D %2d: ", i);
1978 			print_desc(desc);
1979 		}
1980 	}
1981 	printk(KERN_INFO "md:     THIS: ");
1982 	print_desc(&sb->this_disk);
1983 }
1984 
1985 static void print_sb_1(struct mdp_superblock_1 *sb)
1986 {
1987 	__u8 *uuid;
1988 
1989 	uuid = sb->set_uuid;
1990 	printk(KERN_INFO
1991 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
1992 	       "md:    Name: \"%s\" CT:%llu\n",
1993 		le32_to_cpu(sb->major_version),
1994 		le32_to_cpu(sb->feature_map),
1995 		uuid,
1996 		sb->set_name,
1997 		(unsigned long long)le64_to_cpu(sb->ctime)
1998 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1999 
2000 	uuid = sb->device_uuid;
2001 	printk(KERN_INFO
2002 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2003 			" RO:%llu\n"
2004 	       "md:     Dev:%08x UUID: %pU\n"
2005 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2006 	       "md:         (MaxDev:%u) \n",
2007 		le32_to_cpu(sb->level),
2008 		(unsigned long long)le64_to_cpu(sb->size),
2009 		le32_to_cpu(sb->raid_disks),
2010 		le32_to_cpu(sb->layout),
2011 		le32_to_cpu(sb->chunksize),
2012 		(unsigned long long)le64_to_cpu(sb->data_offset),
2013 		(unsigned long long)le64_to_cpu(sb->data_size),
2014 		(unsigned long long)le64_to_cpu(sb->super_offset),
2015 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2016 		le32_to_cpu(sb->dev_number),
2017 		uuid,
2018 		sb->devflags,
2019 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2020 		(unsigned long long)le64_to_cpu(sb->events),
2021 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2022 		le32_to_cpu(sb->sb_csum),
2023 		le32_to_cpu(sb->max_dev)
2024 		);
2025 }
2026 
2027 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2028 {
2029 	char b[BDEVNAME_SIZE];
2030 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2031 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2032 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2033 	        rdev->desc_nr);
2034 	if (rdev->sb_loaded) {
2035 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2036 		switch (major_version) {
2037 		case 0:
2038 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2039 			break;
2040 		case 1:
2041 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2042 			break;
2043 		}
2044 	} else
2045 		printk(KERN_INFO "md: no rdev superblock!\n");
2046 }
2047 
2048 static void md_print_devices(void)
2049 {
2050 	struct list_head *tmp;
2051 	mdk_rdev_t *rdev;
2052 	mddev_t *mddev;
2053 	char b[BDEVNAME_SIZE];
2054 
2055 	printk("\n");
2056 	printk("md:	**********************************\n");
2057 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2058 	printk("md:	**********************************\n");
2059 	for_each_mddev(mddev, tmp) {
2060 
2061 		if (mddev->bitmap)
2062 			bitmap_print_sb(mddev->bitmap);
2063 		else
2064 			printk("%s: ", mdname(mddev));
2065 		list_for_each_entry(rdev, &mddev->disks, same_set)
2066 			printk("<%s>", bdevname(rdev->bdev,b));
2067 		printk("\n");
2068 
2069 		list_for_each_entry(rdev, &mddev->disks, same_set)
2070 			print_rdev(rdev, mddev->major_version);
2071 	}
2072 	printk("md:	**********************************\n");
2073 	printk("\n");
2074 }
2075 
2076 
2077 static void sync_sbs(mddev_t * mddev, int nospares)
2078 {
2079 	/* Update each superblock (in-memory image), but
2080 	 * if we are allowed to, skip spares which already
2081 	 * have the right event counter, or have one earlier
2082 	 * (which would mean they aren't being marked as dirty
2083 	 * with the rest of the array)
2084 	 */
2085 	mdk_rdev_t *rdev;
2086 
2087 	/* First make sure individual recovery_offsets are correct */
2088 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2089 		if (rdev->raid_disk >= 0 &&
2090 		    mddev->delta_disks >= 0 &&
2091 		    !test_bit(In_sync, &rdev->flags) &&
2092 		    mddev->curr_resync_completed > rdev->recovery_offset)
2093 				rdev->recovery_offset = mddev->curr_resync_completed;
2094 
2095 	}
2096 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2097 		if (rdev->sb_events == mddev->events ||
2098 		    (nospares &&
2099 		     rdev->raid_disk < 0 &&
2100 		     rdev->sb_events+1 == mddev->events)) {
2101 			/* Don't update this superblock */
2102 			rdev->sb_loaded = 2;
2103 		} else {
2104 			super_types[mddev->major_version].
2105 				sync_super(mddev, rdev);
2106 			rdev->sb_loaded = 1;
2107 		}
2108 	}
2109 }
2110 
2111 static void md_update_sb(mddev_t * mddev, int force_change)
2112 {
2113 	mdk_rdev_t *rdev;
2114 	int sync_req;
2115 	int nospares = 0;
2116 
2117 	mddev->utime = get_seconds();
2118 	if (mddev->external)
2119 		return;
2120 repeat:
2121 	spin_lock_irq(&mddev->write_lock);
2122 
2123 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
2124 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2125 		force_change = 1;
2126 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2127 		/* just a clean<-> dirty transition, possibly leave spares alone,
2128 		 * though if events isn't the right even/odd, we will have to do
2129 		 * spares after all
2130 		 */
2131 		nospares = 1;
2132 	if (force_change)
2133 		nospares = 0;
2134 	if (mddev->degraded)
2135 		/* If the array is degraded, then skipping spares is both
2136 		 * dangerous and fairly pointless.
2137 		 * Dangerous because a device that was removed from the array
2138 		 * might have a event_count that still looks up-to-date,
2139 		 * so it can be re-added without a resync.
2140 		 * Pointless because if there are any spares to skip,
2141 		 * then a recovery will happen and soon that array won't
2142 		 * be degraded any more and the spare can go back to sleep then.
2143 		 */
2144 		nospares = 0;
2145 
2146 	sync_req = mddev->in_sync;
2147 
2148 	/* If this is just a dirty<->clean transition, and the array is clean
2149 	 * and 'events' is odd, we can roll back to the previous clean state */
2150 	if (nospares
2151 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2152 	    && mddev->can_decrease_events
2153 	    && mddev->events != 1) {
2154 		mddev->events--;
2155 		mddev->can_decrease_events = 0;
2156 	} else {
2157 		/* otherwise we have to go forward and ... */
2158 		mddev->events ++;
2159 		mddev->can_decrease_events = nospares;
2160 	}
2161 
2162 	if (!mddev->events) {
2163 		/*
2164 		 * oops, this 64-bit counter should never wrap.
2165 		 * Either we are in around ~1 trillion A.C., assuming
2166 		 * 1 reboot per second, or we have a bug:
2167 		 */
2168 		MD_BUG();
2169 		mddev->events --;
2170 	}
2171 
2172 	/*
2173 	 * do not write anything to disk if using
2174 	 * nonpersistent superblocks
2175 	 */
2176 	if (!mddev->persistent) {
2177 		if (!mddev->external)
2178 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2179 
2180 		spin_unlock_irq(&mddev->write_lock);
2181 		wake_up(&mddev->sb_wait);
2182 		return;
2183 	}
2184 	sync_sbs(mddev, nospares);
2185 	spin_unlock_irq(&mddev->write_lock);
2186 
2187 	dprintk(KERN_INFO
2188 		"md: updating %s RAID superblock on device (in sync %d)\n",
2189 		mdname(mddev),mddev->in_sync);
2190 
2191 	bitmap_update_sb(mddev->bitmap);
2192 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2193 		char b[BDEVNAME_SIZE];
2194 		dprintk(KERN_INFO "md: ");
2195 		if (rdev->sb_loaded != 1)
2196 			continue; /* no noise on spare devices */
2197 		if (test_bit(Faulty, &rdev->flags))
2198 			dprintk("(skipping faulty ");
2199 
2200 		dprintk("%s ", bdevname(rdev->bdev,b));
2201 		if (!test_bit(Faulty, &rdev->flags)) {
2202 			md_super_write(mddev,rdev,
2203 				       rdev->sb_start, rdev->sb_size,
2204 				       rdev->sb_page);
2205 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2206 				bdevname(rdev->bdev,b),
2207 				(unsigned long long)rdev->sb_start);
2208 			rdev->sb_events = mddev->events;
2209 
2210 		} else
2211 			dprintk(")\n");
2212 		if (mddev->level == LEVEL_MULTIPATH)
2213 			/* only need to write one superblock... */
2214 			break;
2215 	}
2216 	md_super_wait(mddev);
2217 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2218 
2219 	spin_lock_irq(&mddev->write_lock);
2220 	if (mddev->in_sync != sync_req ||
2221 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2222 		/* have to write it out again */
2223 		spin_unlock_irq(&mddev->write_lock);
2224 		goto repeat;
2225 	}
2226 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2227 	spin_unlock_irq(&mddev->write_lock);
2228 	wake_up(&mddev->sb_wait);
2229 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2230 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2231 
2232 }
2233 
2234 /* words written to sysfs files may, or may not, be \n terminated.
2235  * We want to accept with case. For this we use cmd_match.
2236  */
2237 static int cmd_match(const char *cmd, const char *str)
2238 {
2239 	/* See if cmd, written into a sysfs file, matches
2240 	 * str.  They must either be the same, or cmd can
2241 	 * have a trailing newline
2242 	 */
2243 	while (*cmd && *str && *cmd == *str) {
2244 		cmd++;
2245 		str++;
2246 	}
2247 	if (*cmd == '\n')
2248 		cmd++;
2249 	if (*str || *cmd)
2250 		return 0;
2251 	return 1;
2252 }
2253 
2254 struct rdev_sysfs_entry {
2255 	struct attribute attr;
2256 	ssize_t (*show)(mdk_rdev_t *, char *);
2257 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2258 };
2259 
2260 static ssize_t
2261 state_show(mdk_rdev_t *rdev, char *page)
2262 {
2263 	char *sep = "";
2264 	size_t len = 0;
2265 
2266 	if (test_bit(Faulty, &rdev->flags)) {
2267 		len+= sprintf(page+len, "%sfaulty",sep);
2268 		sep = ",";
2269 	}
2270 	if (test_bit(In_sync, &rdev->flags)) {
2271 		len += sprintf(page+len, "%sin_sync",sep);
2272 		sep = ",";
2273 	}
2274 	if (test_bit(WriteMostly, &rdev->flags)) {
2275 		len += sprintf(page+len, "%swrite_mostly",sep);
2276 		sep = ",";
2277 	}
2278 	if (test_bit(Blocked, &rdev->flags)) {
2279 		len += sprintf(page+len, "%sblocked", sep);
2280 		sep = ",";
2281 	}
2282 	if (!test_bit(Faulty, &rdev->flags) &&
2283 	    !test_bit(In_sync, &rdev->flags)) {
2284 		len += sprintf(page+len, "%sspare", sep);
2285 		sep = ",";
2286 	}
2287 	return len+sprintf(page+len, "\n");
2288 }
2289 
2290 static ssize_t
2291 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2292 {
2293 	/* can write
2294 	 *  faulty  - simulates and error
2295 	 *  remove  - disconnects the device
2296 	 *  writemostly - sets write_mostly
2297 	 *  -writemostly - clears write_mostly
2298 	 *  blocked - sets the Blocked flag
2299 	 *  -blocked - clears the Blocked flag
2300 	 *  insync - sets Insync providing device isn't active
2301 	 */
2302 	int err = -EINVAL;
2303 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2304 		md_error(rdev->mddev, rdev);
2305 		err = 0;
2306 	} else if (cmd_match(buf, "remove")) {
2307 		if (rdev->raid_disk >= 0)
2308 			err = -EBUSY;
2309 		else {
2310 			mddev_t *mddev = rdev->mddev;
2311 			kick_rdev_from_array(rdev);
2312 			if (mddev->pers)
2313 				md_update_sb(mddev, 1);
2314 			md_new_event(mddev);
2315 			err = 0;
2316 		}
2317 	} else if (cmd_match(buf, "writemostly")) {
2318 		set_bit(WriteMostly, &rdev->flags);
2319 		err = 0;
2320 	} else if (cmd_match(buf, "-writemostly")) {
2321 		clear_bit(WriteMostly, &rdev->flags);
2322 		err = 0;
2323 	} else if (cmd_match(buf, "blocked")) {
2324 		set_bit(Blocked, &rdev->flags);
2325 		err = 0;
2326 	} else if (cmd_match(buf, "-blocked")) {
2327 		clear_bit(Blocked, &rdev->flags);
2328 		wake_up(&rdev->blocked_wait);
2329 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2330 		md_wakeup_thread(rdev->mddev->thread);
2331 
2332 		err = 0;
2333 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2334 		set_bit(In_sync, &rdev->flags);
2335 		err = 0;
2336 	}
2337 	if (!err && rdev->sysfs_state)
2338 		sysfs_notify_dirent(rdev->sysfs_state);
2339 	return err ? err : len;
2340 }
2341 static struct rdev_sysfs_entry rdev_state =
2342 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2343 
2344 static ssize_t
2345 errors_show(mdk_rdev_t *rdev, char *page)
2346 {
2347 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2348 }
2349 
2350 static ssize_t
2351 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2352 {
2353 	char *e;
2354 	unsigned long n = simple_strtoul(buf, &e, 10);
2355 	if (*buf && (*e == 0 || *e == '\n')) {
2356 		atomic_set(&rdev->corrected_errors, n);
2357 		return len;
2358 	}
2359 	return -EINVAL;
2360 }
2361 static struct rdev_sysfs_entry rdev_errors =
2362 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2363 
2364 static ssize_t
2365 slot_show(mdk_rdev_t *rdev, char *page)
2366 {
2367 	if (rdev->raid_disk < 0)
2368 		return sprintf(page, "none\n");
2369 	else
2370 		return sprintf(page, "%d\n", rdev->raid_disk);
2371 }
2372 
2373 static ssize_t
2374 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2375 {
2376 	char *e;
2377 	int err;
2378 	char nm[20];
2379 	int slot = simple_strtoul(buf, &e, 10);
2380 	if (strncmp(buf, "none", 4)==0)
2381 		slot = -1;
2382 	else if (e==buf || (*e && *e!= '\n'))
2383 		return -EINVAL;
2384 	if (rdev->mddev->pers && slot == -1) {
2385 		/* Setting 'slot' on an active array requires also
2386 		 * updating the 'rd%d' link, and communicating
2387 		 * with the personality with ->hot_*_disk.
2388 		 * For now we only support removing
2389 		 * failed/spare devices.  This normally happens automatically,
2390 		 * but not when the metadata is externally managed.
2391 		 */
2392 		if (rdev->raid_disk == -1)
2393 			return -EEXIST;
2394 		/* personality does all needed checks */
2395 		if (rdev->mddev->pers->hot_add_disk == NULL)
2396 			return -EINVAL;
2397 		err = rdev->mddev->pers->
2398 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2399 		if (err)
2400 			return err;
2401 		sprintf(nm, "rd%d", rdev->raid_disk);
2402 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2403 		rdev->raid_disk = -1;
2404 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2405 		md_wakeup_thread(rdev->mddev->thread);
2406 	} else if (rdev->mddev->pers) {
2407 		mdk_rdev_t *rdev2;
2408 		/* Activating a spare .. or possibly reactivating
2409 		 * if we ever get bitmaps working here.
2410 		 */
2411 
2412 		if (rdev->raid_disk != -1)
2413 			return -EBUSY;
2414 
2415 		if (rdev->mddev->pers->hot_add_disk == NULL)
2416 			return -EINVAL;
2417 
2418 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2419 			if (rdev2->raid_disk == slot)
2420 				return -EEXIST;
2421 
2422 		rdev->raid_disk = slot;
2423 		if (test_bit(In_sync, &rdev->flags))
2424 			rdev->saved_raid_disk = slot;
2425 		else
2426 			rdev->saved_raid_disk = -1;
2427 		err = rdev->mddev->pers->
2428 			hot_add_disk(rdev->mddev, rdev);
2429 		if (err) {
2430 			rdev->raid_disk = -1;
2431 			return err;
2432 		} else
2433 			sysfs_notify_dirent(rdev->sysfs_state);
2434 		sprintf(nm, "rd%d", rdev->raid_disk);
2435 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2436 			printk(KERN_WARNING
2437 			       "md: cannot register "
2438 			       "%s for %s\n",
2439 			       nm, mdname(rdev->mddev));
2440 
2441 		/* don't wakeup anyone, leave that to userspace. */
2442 	} else {
2443 		if (slot >= rdev->mddev->raid_disks)
2444 			return -ENOSPC;
2445 		rdev->raid_disk = slot;
2446 		/* assume it is working */
2447 		clear_bit(Faulty, &rdev->flags);
2448 		clear_bit(WriteMostly, &rdev->flags);
2449 		set_bit(In_sync, &rdev->flags);
2450 		sysfs_notify_dirent(rdev->sysfs_state);
2451 	}
2452 	return len;
2453 }
2454 
2455 
2456 static struct rdev_sysfs_entry rdev_slot =
2457 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2458 
2459 static ssize_t
2460 offset_show(mdk_rdev_t *rdev, char *page)
2461 {
2462 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2463 }
2464 
2465 static ssize_t
2466 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2467 {
2468 	char *e;
2469 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2470 	if (e==buf || (*e && *e != '\n'))
2471 		return -EINVAL;
2472 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2473 		return -EBUSY;
2474 	if (rdev->sectors && rdev->mddev->external)
2475 		/* Must set offset before size, so overlap checks
2476 		 * can be sane */
2477 		return -EBUSY;
2478 	rdev->data_offset = offset;
2479 	return len;
2480 }
2481 
2482 static struct rdev_sysfs_entry rdev_offset =
2483 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2484 
2485 static ssize_t
2486 rdev_size_show(mdk_rdev_t *rdev, char *page)
2487 {
2488 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2489 }
2490 
2491 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2492 {
2493 	/* check if two start/length pairs overlap */
2494 	if (s1+l1 <= s2)
2495 		return 0;
2496 	if (s2+l2 <= s1)
2497 		return 0;
2498 	return 1;
2499 }
2500 
2501 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2502 {
2503 	unsigned long long blocks;
2504 	sector_t new;
2505 
2506 	if (strict_strtoull(buf, 10, &blocks) < 0)
2507 		return -EINVAL;
2508 
2509 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2510 		return -EINVAL; /* sector conversion overflow */
2511 
2512 	new = blocks * 2;
2513 	if (new != blocks * 2)
2514 		return -EINVAL; /* unsigned long long to sector_t overflow */
2515 
2516 	*sectors = new;
2517 	return 0;
2518 }
2519 
2520 static ssize_t
2521 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2522 {
2523 	mddev_t *my_mddev = rdev->mddev;
2524 	sector_t oldsectors = rdev->sectors;
2525 	sector_t sectors;
2526 
2527 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2528 		return -EINVAL;
2529 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2530 		if (my_mddev->persistent) {
2531 			sectors = super_types[my_mddev->major_version].
2532 				rdev_size_change(rdev, sectors);
2533 			if (!sectors)
2534 				return -EBUSY;
2535 		} else if (!sectors)
2536 			sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2537 				rdev->data_offset;
2538 	}
2539 	if (sectors < my_mddev->dev_sectors)
2540 		return -EINVAL; /* component must fit device */
2541 
2542 	rdev->sectors = sectors;
2543 	if (sectors > oldsectors && my_mddev->external) {
2544 		/* need to check that all other rdevs with the same ->bdev
2545 		 * do not overlap.  We need to unlock the mddev to avoid
2546 		 * a deadlock.  We have already changed rdev->sectors, and if
2547 		 * we have to change it back, we will have the lock again.
2548 		 */
2549 		mddev_t *mddev;
2550 		int overlap = 0;
2551 		struct list_head *tmp;
2552 
2553 		mddev_unlock(my_mddev);
2554 		for_each_mddev(mddev, tmp) {
2555 			mdk_rdev_t *rdev2;
2556 
2557 			mddev_lock(mddev);
2558 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2559 				if (test_bit(AllReserved, &rdev2->flags) ||
2560 				    (rdev->bdev == rdev2->bdev &&
2561 				     rdev != rdev2 &&
2562 				     overlaps(rdev->data_offset, rdev->sectors,
2563 					      rdev2->data_offset,
2564 					      rdev2->sectors))) {
2565 					overlap = 1;
2566 					break;
2567 				}
2568 			mddev_unlock(mddev);
2569 			if (overlap) {
2570 				mddev_put(mddev);
2571 				break;
2572 			}
2573 		}
2574 		mddev_lock(my_mddev);
2575 		if (overlap) {
2576 			/* Someone else could have slipped in a size
2577 			 * change here, but doing so is just silly.
2578 			 * We put oldsectors back because we *know* it is
2579 			 * safe, and trust userspace not to race with
2580 			 * itself
2581 			 */
2582 			rdev->sectors = oldsectors;
2583 			return -EBUSY;
2584 		}
2585 	}
2586 	return len;
2587 }
2588 
2589 static struct rdev_sysfs_entry rdev_size =
2590 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2591 
2592 
2593 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2594 {
2595 	unsigned long long recovery_start = rdev->recovery_offset;
2596 
2597 	if (test_bit(In_sync, &rdev->flags) ||
2598 	    recovery_start == MaxSector)
2599 		return sprintf(page, "none\n");
2600 
2601 	return sprintf(page, "%llu\n", recovery_start);
2602 }
2603 
2604 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2605 {
2606 	unsigned long long recovery_start;
2607 
2608 	if (cmd_match(buf, "none"))
2609 		recovery_start = MaxSector;
2610 	else if (strict_strtoull(buf, 10, &recovery_start))
2611 		return -EINVAL;
2612 
2613 	if (rdev->mddev->pers &&
2614 	    rdev->raid_disk >= 0)
2615 		return -EBUSY;
2616 
2617 	rdev->recovery_offset = recovery_start;
2618 	if (recovery_start == MaxSector)
2619 		set_bit(In_sync, &rdev->flags);
2620 	else
2621 		clear_bit(In_sync, &rdev->flags);
2622 	return len;
2623 }
2624 
2625 static struct rdev_sysfs_entry rdev_recovery_start =
2626 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2627 
2628 static struct attribute *rdev_default_attrs[] = {
2629 	&rdev_state.attr,
2630 	&rdev_errors.attr,
2631 	&rdev_slot.attr,
2632 	&rdev_offset.attr,
2633 	&rdev_size.attr,
2634 	&rdev_recovery_start.attr,
2635 	NULL,
2636 };
2637 static ssize_t
2638 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2639 {
2640 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2641 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2642 	mddev_t *mddev = rdev->mddev;
2643 	ssize_t rv;
2644 
2645 	if (!entry->show)
2646 		return -EIO;
2647 
2648 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2649 	if (!rv) {
2650 		if (rdev->mddev == NULL)
2651 			rv = -EBUSY;
2652 		else
2653 			rv = entry->show(rdev, page);
2654 		mddev_unlock(mddev);
2655 	}
2656 	return rv;
2657 }
2658 
2659 static ssize_t
2660 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2661 	      const char *page, size_t length)
2662 {
2663 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2664 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2665 	ssize_t rv;
2666 	mddev_t *mddev = rdev->mddev;
2667 
2668 	if (!entry->store)
2669 		return -EIO;
2670 	if (!capable(CAP_SYS_ADMIN))
2671 		return -EACCES;
2672 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2673 	if (!rv) {
2674 		if (rdev->mddev == NULL)
2675 			rv = -EBUSY;
2676 		else
2677 			rv = entry->store(rdev, page, length);
2678 		mddev_unlock(mddev);
2679 	}
2680 	return rv;
2681 }
2682 
2683 static void rdev_free(struct kobject *ko)
2684 {
2685 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2686 	kfree(rdev);
2687 }
2688 static const struct sysfs_ops rdev_sysfs_ops = {
2689 	.show		= rdev_attr_show,
2690 	.store		= rdev_attr_store,
2691 };
2692 static struct kobj_type rdev_ktype = {
2693 	.release	= rdev_free,
2694 	.sysfs_ops	= &rdev_sysfs_ops,
2695 	.default_attrs	= rdev_default_attrs,
2696 };
2697 
2698 /*
2699  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2700  *
2701  * mark the device faulty if:
2702  *
2703  *   - the device is nonexistent (zero size)
2704  *   - the device has no valid superblock
2705  *
2706  * a faulty rdev _never_ has rdev->sb set.
2707  */
2708 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2709 {
2710 	char b[BDEVNAME_SIZE];
2711 	int err;
2712 	mdk_rdev_t *rdev;
2713 	sector_t size;
2714 
2715 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2716 	if (!rdev) {
2717 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2718 		return ERR_PTR(-ENOMEM);
2719 	}
2720 
2721 	if ((err = alloc_disk_sb(rdev)))
2722 		goto abort_free;
2723 
2724 	err = lock_rdev(rdev, newdev, super_format == -2);
2725 	if (err)
2726 		goto abort_free;
2727 
2728 	kobject_init(&rdev->kobj, &rdev_ktype);
2729 
2730 	rdev->desc_nr = -1;
2731 	rdev->saved_raid_disk = -1;
2732 	rdev->raid_disk = -1;
2733 	rdev->flags = 0;
2734 	rdev->data_offset = 0;
2735 	rdev->sb_events = 0;
2736 	rdev->last_read_error.tv_sec  = 0;
2737 	rdev->last_read_error.tv_nsec = 0;
2738 	atomic_set(&rdev->nr_pending, 0);
2739 	atomic_set(&rdev->read_errors, 0);
2740 	atomic_set(&rdev->corrected_errors, 0);
2741 
2742 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2743 	if (!size) {
2744 		printk(KERN_WARNING
2745 			"md: %s has zero or unknown size, marking faulty!\n",
2746 			bdevname(rdev->bdev,b));
2747 		err = -EINVAL;
2748 		goto abort_free;
2749 	}
2750 
2751 	if (super_format >= 0) {
2752 		err = super_types[super_format].
2753 			load_super(rdev, NULL, super_minor);
2754 		if (err == -EINVAL) {
2755 			printk(KERN_WARNING
2756 				"md: %s does not have a valid v%d.%d "
2757 			       "superblock, not importing!\n",
2758 				bdevname(rdev->bdev,b),
2759 			       super_format, super_minor);
2760 			goto abort_free;
2761 		}
2762 		if (err < 0) {
2763 			printk(KERN_WARNING
2764 				"md: could not read %s's sb, not importing!\n",
2765 				bdevname(rdev->bdev,b));
2766 			goto abort_free;
2767 		}
2768 	}
2769 
2770 	INIT_LIST_HEAD(&rdev->same_set);
2771 	init_waitqueue_head(&rdev->blocked_wait);
2772 
2773 	return rdev;
2774 
2775 abort_free:
2776 	if (rdev->sb_page) {
2777 		if (rdev->bdev)
2778 			unlock_rdev(rdev);
2779 		free_disk_sb(rdev);
2780 	}
2781 	kfree(rdev);
2782 	return ERR_PTR(err);
2783 }
2784 
2785 /*
2786  * Check a full RAID array for plausibility
2787  */
2788 
2789 
2790 static void analyze_sbs(mddev_t * mddev)
2791 {
2792 	int i;
2793 	mdk_rdev_t *rdev, *freshest, *tmp;
2794 	char b[BDEVNAME_SIZE];
2795 
2796 	freshest = NULL;
2797 	rdev_for_each(rdev, tmp, mddev)
2798 		switch (super_types[mddev->major_version].
2799 			load_super(rdev, freshest, mddev->minor_version)) {
2800 		case 1:
2801 			freshest = rdev;
2802 			break;
2803 		case 0:
2804 			break;
2805 		default:
2806 			printk( KERN_ERR \
2807 				"md: fatal superblock inconsistency in %s"
2808 				" -- removing from array\n",
2809 				bdevname(rdev->bdev,b));
2810 			kick_rdev_from_array(rdev);
2811 		}
2812 
2813 
2814 	super_types[mddev->major_version].
2815 		validate_super(mddev, freshest);
2816 
2817 	i = 0;
2818 	rdev_for_each(rdev, tmp, mddev) {
2819 		if (mddev->max_disks &&
2820 		    (rdev->desc_nr >= mddev->max_disks ||
2821 		     i > mddev->max_disks)) {
2822 			printk(KERN_WARNING
2823 			       "md: %s: %s: only %d devices permitted\n",
2824 			       mdname(mddev), bdevname(rdev->bdev, b),
2825 			       mddev->max_disks);
2826 			kick_rdev_from_array(rdev);
2827 			continue;
2828 		}
2829 		if (rdev != freshest)
2830 			if (super_types[mddev->major_version].
2831 			    validate_super(mddev, rdev)) {
2832 				printk(KERN_WARNING "md: kicking non-fresh %s"
2833 					" from array!\n",
2834 					bdevname(rdev->bdev,b));
2835 				kick_rdev_from_array(rdev);
2836 				continue;
2837 			}
2838 		if (mddev->level == LEVEL_MULTIPATH) {
2839 			rdev->desc_nr = i++;
2840 			rdev->raid_disk = rdev->desc_nr;
2841 			set_bit(In_sync, &rdev->flags);
2842 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2843 			rdev->raid_disk = -1;
2844 			clear_bit(In_sync, &rdev->flags);
2845 		}
2846 	}
2847 }
2848 
2849 /* Read a fixed-point number.
2850  * Numbers in sysfs attributes should be in "standard" units where
2851  * possible, so time should be in seconds.
2852  * However we internally use a a much smaller unit such as
2853  * milliseconds or jiffies.
2854  * This function takes a decimal number with a possible fractional
2855  * component, and produces an integer which is the result of
2856  * multiplying that number by 10^'scale'.
2857  * all without any floating-point arithmetic.
2858  */
2859 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2860 {
2861 	unsigned long result = 0;
2862 	long decimals = -1;
2863 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2864 		if (*cp == '.')
2865 			decimals = 0;
2866 		else if (decimals < scale) {
2867 			unsigned int value;
2868 			value = *cp - '0';
2869 			result = result * 10 + value;
2870 			if (decimals >= 0)
2871 				decimals++;
2872 		}
2873 		cp++;
2874 	}
2875 	if (*cp == '\n')
2876 		cp++;
2877 	if (*cp)
2878 		return -EINVAL;
2879 	if (decimals < 0)
2880 		decimals = 0;
2881 	while (decimals < scale) {
2882 		result *= 10;
2883 		decimals ++;
2884 	}
2885 	*res = result;
2886 	return 0;
2887 }
2888 
2889 
2890 static void md_safemode_timeout(unsigned long data);
2891 
2892 static ssize_t
2893 safe_delay_show(mddev_t *mddev, char *page)
2894 {
2895 	int msec = (mddev->safemode_delay*1000)/HZ;
2896 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2897 }
2898 static ssize_t
2899 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2900 {
2901 	unsigned long msec;
2902 
2903 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2904 		return -EINVAL;
2905 	if (msec == 0)
2906 		mddev->safemode_delay = 0;
2907 	else {
2908 		unsigned long old_delay = mddev->safemode_delay;
2909 		mddev->safemode_delay = (msec*HZ)/1000;
2910 		if (mddev->safemode_delay == 0)
2911 			mddev->safemode_delay = 1;
2912 		if (mddev->safemode_delay < old_delay)
2913 			md_safemode_timeout((unsigned long)mddev);
2914 	}
2915 	return len;
2916 }
2917 static struct md_sysfs_entry md_safe_delay =
2918 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2919 
2920 static ssize_t
2921 level_show(mddev_t *mddev, char *page)
2922 {
2923 	struct mdk_personality *p = mddev->pers;
2924 	if (p)
2925 		return sprintf(page, "%s\n", p->name);
2926 	else if (mddev->clevel[0])
2927 		return sprintf(page, "%s\n", mddev->clevel);
2928 	else if (mddev->level != LEVEL_NONE)
2929 		return sprintf(page, "%d\n", mddev->level);
2930 	else
2931 		return 0;
2932 }
2933 
2934 static ssize_t
2935 level_store(mddev_t *mddev, const char *buf, size_t len)
2936 {
2937 	char clevel[16];
2938 	ssize_t rv = len;
2939 	struct mdk_personality *pers;
2940 	long level;
2941 	void *priv;
2942 	mdk_rdev_t *rdev;
2943 
2944 	if (mddev->pers == NULL) {
2945 		if (len == 0)
2946 			return 0;
2947 		if (len >= sizeof(mddev->clevel))
2948 			return -ENOSPC;
2949 		strncpy(mddev->clevel, buf, len);
2950 		if (mddev->clevel[len-1] == '\n')
2951 			len--;
2952 		mddev->clevel[len] = 0;
2953 		mddev->level = LEVEL_NONE;
2954 		return rv;
2955 	}
2956 
2957 	/* request to change the personality.  Need to ensure:
2958 	 *  - array is not engaged in resync/recovery/reshape
2959 	 *  - old personality can be suspended
2960 	 *  - new personality will access other array.
2961 	 */
2962 
2963 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2964 		return -EBUSY;
2965 
2966 	if (!mddev->pers->quiesce) {
2967 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2968 		       mdname(mddev), mddev->pers->name);
2969 		return -EINVAL;
2970 	}
2971 
2972 	/* Now find the new personality */
2973 	if (len == 0 || len >= sizeof(clevel))
2974 		return -EINVAL;
2975 	strncpy(clevel, buf, len);
2976 	if (clevel[len-1] == '\n')
2977 		len--;
2978 	clevel[len] = 0;
2979 	if (strict_strtol(clevel, 10, &level))
2980 		level = LEVEL_NONE;
2981 
2982 	if (request_module("md-%s", clevel) != 0)
2983 		request_module("md-level-%s", clevel);
2984 	spin_lock(&pers_lock);
2985 	pers = find_pers(level, clevel);
2986 	if (!pers || !try_module_get(pers->owner)) {
2987 		spin_unlock(&pers_lock);
2988 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
2989 		return -EINVAL;
2990 	}
2991 	spin_unlock(&pers_lock);
2992 
2993 	if (pers == mddev->pers) {
2994 		/* Nothing to do! */
2995 		module_put(pers->owner);
2996 		return rv;
2997 	}
2998 	if (!pers->takeover) {
2999 		module_put(pers->owner);
3000 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3001 		       mdname(mddev), clevel);
3002 		return -EINVAL;
3003 	}
3004 
3005 	list_for_each_entry(rdev, &mddev->disks, same_set)
3006 		rdev->new_raid_disk = rdev->raid_disk;
3007 
3008 	/* ->takeover must set new_* and/or delta_disks
3009 	 * if it succeeds, and may set them when it fails.
3010 	 */
3011 	priv = pers->takeover(mddev);
3012 	if (IS_ERR(priv)) {
3013 		mddev->new_level = mddev->level;
3014 		mddev->new_layout = mddev->layout;
3015 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3016 		mddev->raid_disks -= mddev->delta_disks;
3017 		mddev->delta_disks = 0;
3018 		module_put(pers->owner);
3019 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3020 		       mdname(mddev), clevel);
3021 		return PTR_ERR(priv);
3022 	}
3023 
3024 	/* Looks like we have a winner */
3025 	mddev_suspend(mddev);
3026 	mddev->pers->stop(mddev);
3027 
3028 	if (mddev->pers->sync_request == NULL &&
3029 	    pers->sync_request != NULL) {
3030 		/* need to add the md_redundancy_group */
3031 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3032 			printk(KERN_WARNING
3033 			       "md: cannot register extra attributes for %s\n",
3034 			       mdname(mddev));
3035 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3036 	}
3037 	if (mddev->pers->sync_request != NULL &&
3038 	    pers->sync_request == NULL) {
3039 		/* need to remove the md_redundancy_group */
3040 		if (mddev->to_remove == NULL)
3041 			mddev->to_remove = &md_redundancy_group;
3042 	}
3043 
3044 	if (mddev->pers->sync_request == NULL &&
3045 	    mddev->external) {
3046 		/* We are converting from a no-redundancy array
3047 		 * to a redundancy array and metadata is managed
3048 		 * externally so we need to be sure that writes
3049 		 * won't block due to a need to transition
3050 		 *      clean->dirty
3051 		 * until external management is started.
3052 		 */
3053 		mddev->in_sync = 0;
3054 		mddev->safemode_delay = 0;
3055 		mddev->safemode = 0;
3056 	}
3057 
3058 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3059 		char nm[20];
3060 		if (rdev->raid_disk < 0)
3061 			continue;
3062 		if (rdev->new_raid_disk > mddev->raid_disks)
3063 			rdev->new_raid_disk = -1;
3064 		if (rdev->new_raid_disk == rdev->raid_disk)
3065 			continue;
3066 		sprintf(nm, "rd%d", rdev->raid_disk);
3067 		sysfs_remove_link(&mddev->kobj, nm);
3068 	}
3069 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3070 		if (rdev->raid_disk < 0)
3071 			continue;
3072 		if (rdev->new_raid_disk == rdev->raid_disk)
3073 			continue;
3074 		rdev->raid_disk = rdev->new_raid_disk;
3075 		if (rdev->raid_disk < 0)
3076 			clear_bit(In_sync, &rdev->flags);
3077 		else {
3078 			char nm[20];
3079 			sprintf(nm, "rd%d", rdev->raid_disk);
3080 			if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3081 				printk("md: cannot register %s for %s after level change\n",
3082 				       nm, mdname(mddev));
3083 		}
3084 	}
3085 
3086 	module_put(mddev->pers->owner);
3087 	mddev->pers = pers;
3088 	mddev->private = priv;
3089 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3090 	mddev->level = mddev->new_level;
3091 	mddev->layout = mddev->new_layout;
3092 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3093 	mddev->delta_disks = 0;
3094 	if (mddev->pers->sync_request == NULL) {
3095 		/* this is now an array without redundancy, so
3096 		 * it must always be in_sync
3097 		 */
3098 		mddev->in_sync = 1;
3099 		del_timer_sync(&mddev->safemode_timer);
3100 	}
3101 	pers->run(mddev);
3102 	mddev_resume(mddev);
3103 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3104 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3105 	md_wakeup_thread(mddev->thread);
3106 	sysfs_notify(&mddev->kobj, NULL, "level");
3107 	md_new_event(mddev);
3108 	return rv;
3109 }
3110 
3111 static struct md_sysfs_entry md_level =
3112 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3113 
3114 
3115 static ssize_t
3116 layout_show(mddev_t *mddev, char *page)
3117 {
3118 	/* just a number, not meaningful for all levels */
3119 	if (mddev->reshape_position != MaxSector &&
3120 	    mddev->layout != mddev->new_layout)
3121 		return sprintf(page, "%d (%d)\n",
3122 			       mddev->new_layout, mddev->layout);
3123 	return sprintf(page, "%d\n", mddev->layout);
3124 }
3125 
3126 static ssize_t
3127 layout_store(mddev_t *mddev, const char *buf, size_t len)
3128 {
3129 	char *e;
3130 	unsigned long n = simple_strtoul(buf, &e, 10);
3131 
3132 	if (!*buf || (*e && *e != '\n'))
3133 		return -EINVAL;
3134 
3135 	if (mddev->pers) {
3136 		int err;
3137 		if (mddev->pers->check_reshape == NULL)
3138 			return -EBUSY;
3139 		mddev->new_layout = n;
3140 		err = mddev->pers->check_reshape(mddev);
3141 		if (err) {
3142 			mddev->new_layout = mddev->layout;
3143 			return err;
3144 		}
3145 	} else {
3146 		mddev->new_layout = n;
3147 		if (mddev->reshape_position == MaxSector)
3148 			mddev->layout = n;
3149 	}
3150 	return len;
3151 }
3152 static struct md_sysfs_entry md_layout =
3153 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3154 
3155 
3156 static ssize_t
3157 raid_disks_show(mddev_t *mddev, char *page)
3158 {
3159 	if (mddev->raid_disks == 0)
3160 		return 0;
3161 	if (mddev->reshape_position != MaxSector &&
3162 	    mddev->delta_disks != 0)
3163 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3164 			       mddev->raid_disks - mddev->delta_disks);
3165 	return sprintf(page, "%d\n", mddev->raid_disks);
3166 }
3167 
3168 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3169 
3170 static ssize_t
3171 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3172 {
3173 	char *e;
3174 	int rv = 0;
3175 	unsigned long n = simple_strtoul(buf, &e, 10);
3176 
3177 	if (!*buf || (*e && *e != '\n'))
3178 		return -EINVAL;
3179 
3180 	if (mddev->pers)
3181 		rv = update_raid_disks(mddev, n);
3182 	else if (mddev->reshape_position != MaxSector) {
3183 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3184 		mddev->delta_disks = n - olddisks;
3185 		mddev->raid_disks = n;
3186 	} else
3187 		mddev->raid_disks = n;
3188 	return rv ? rv : len;
3189 }
3190 static struct md_sysfs_entry md_raid_disks =
3191 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3192 
3193 static ssize_t
3194 chunk_size_show(mddev_t *mddev, char *page)
3195 {
3196 	if (mddev->reshape_position != MaxSector &&
3197 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3198 		return sprintf(page, "%d (%d)\n",
3199 			       mddev->new_chunk_sectors << 9,
3200 			       mddev->chunk_sectors << 9);
3201 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3202 }
3203 
3204 static ssize_t
3205 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3206 {
3207 	char *e;
3208 	unsigned long n = simple_strtoul(buf, &e, 10);
3209 
3210 	if (!*buf || (*e && *e != '\n'))
3211 		return -EINVAL;
3212 
3213 	if (mddev->pers) {
3214 		int err;
3215 		if (mddev->pers->check_reshape == NULL)
3216 			return -EBUSY;
3217 		mddev->new_chunk_sectors = n >> 9;
3218 		err = mddev->pers->check_reshape(mddev);
3219 		if (err) {
3220 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3221 			return err;
3222 		}
3223 	} else {
3224 		mddev->new_chunk_sectors = n >> 9;
3225 		if (mddev->reshape_position == MaxSector)
3226 			mddev->chunk_sectors = n >> 9;
3227 	}
3228 	return len;
3229 }
3230 static struct md_sysfs_entry md_chunk_size =
3231 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3232 
3233 static ssize_t
3234 resync_start_show(mddev_t *mddev, char *page)
3235 {
3236 	if (mddev->recovery_cp == MaxSector)
3237 		return sprintf(page, "none\n");
3238 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3239 }
3240 
3241 static ssize_t
3242 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3243 {
3244 	char *e;
3245 	unsigned long long n = simple_strtoull(buf, &e, 10);
3246 
3247 	if (mddev->pers)
3248 		return -EBUSY;
3249 	if (cmd_match(buf, "none"))
3250 		n = MaxSector;
3251 	else if (!*buf || (*e && *e != '\n'))
3252 		return -EINVAL;
3253 
3254 	mddev->recovery_cp = n;
3255 	return len;
3256 }
3257 static struct md_sysfs_entry md_resync_start =
3258 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3259 
3260 /*
3261  * The array state can be:
3262  *
3263  * clear
3264  *     No devices, no size, no level
3265  *     Equivalent to STOP_ARRAY ioctl
3266  * inactive
3267  *     May have some settings, but array is not active
3268  *        all IO results in error
3269  *     When written, doesn't tear down array, but just stops it
3270  * suspended (not supported yet)
3271  *     All IO requests will block. The array can be reconfigured.
3272  *     Writing this, if accepted, will block until array is quiescent
3273  * readonly
3274  *     no resync can happen.  no superblocks get written.
3275  *     write requests fail
3276  * read-auto
3277  *     like readonly, but behaves like 'clean' on a write request.
3278  *
3279  * clean - no pending writes, but otherwise active.
3280  *     When written to inactive array, starts without resync
3281  *     If a write request arrives then
3282  *       if metadata is known, mark 'dirty' and switch to 'active'.
3283  *       if not known, block and switch to write-pending
3284  *     If written to an active array that has pending writes, then fails.
3285  * active
3286  *     fully active: IO and resync can be happening.
3287  *     When written to inactive array, starts with resync
3288  *
3289  * write-pending
3290  *     clean, but writes are blocked waiting for 'active' to be written.
3291  *
3292  * active-idle
3293  *     like active, but no writes have been seen for a while (100msec).
3294  *
3295  */
3296 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3297 		   write_pending, active_idle, bad_word};
3298 static char *array_states[] = {
3299 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3300 	"write-pending", "active-idle", NULL };
3301 
3302 static int match_word(const char *word, char **list)
3303 {
3304 	int n;
3305 	for (n=0; list[n]; n++)
3306 		if (cmd_match(word, list[n]))
3307 			break;
3308 	return n;
3309 }
3310 
3311 static ssize_t
3312 array_state_show(mddev_t *mddev, char *page)
3313 {
3314 	enum array_state st = inactive;
3315 
3316 	if (mddev->pers)
3317 		switch(mddev->ro) {
3318 		case 1:
3319 			st = readonly;
3320 			break;
3321 		case 2:
3322 			st = read_auto;
3323 			break;
3324 		case 0:
3325 			if (mddev->in_sync)
3326 				st = clean;
3327 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
3328 				st = write_pending;
3329 			else if (mddev->safemode)
3330 				st = active_idle;
3331 			else
3332 				st = active;
3333 		}
3334 	else {
3335 		if (list_empty(&mddev->disks) &&
3336 		    mddev->raid_disks == 0 &&
3337 		    mddev->dev_sectors == 0)
3338 			st = clear;
3339 		else
3340 			st = inactive;
3341 	}
3342 	return sprintf(page, "%s\n", array_states[st]);
3343 }
3344 
3345 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3346 static int md_set_readonly(mddev_t * mddev, int is_open);
3347 static int do_md_run(mddev_t * mddev);
3348 static int restart_array(mddev_t *mddev);
3349 
3350 static ssize_t
3351 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3352 {
3353 	int err = -EINVAL;
3354 	enum array_state st = match_word(buf, array_states);
3355 	switch(st) {
3356 	case bad_word:
3357 		break;
3358 	case clear:
3359 		/* stopping an active array */
3360 		if (atomic_read(&mddev->openers) > 0)
3361 			return -EBUSY;
3362 		err = do_md_stop(mddev, 0, 0);
3363 		break;
3364 	case inactive:
3365 		/* stopping an active array */
3366 		if (mddev->pers) {
3367 			if (atomic_read(&mddev->openers) > 0)
3368 				return -EBUSY;
3369 			err = do_md_stop(mddev, 2, 0);
3370 		} else
3371 			err = 0; /* already inactive */
3372 		break;
3373 	case suspended:
3374 		break; /* not supported yet */
3375 	case readonly:
3376 		if (mddev->pers)
3377 			err = md_set_readonly(mddev, 0);
3378 		else {
3379 			mddev->ro = 1;
3380 			set_disk_ro(mddev->gendisk, 1);
3381 			err = do_md_run(mddev);
3382 		}
3383 		break;
3384 	case read_auto:
3385 		if (mddev->pers) {
3386 			if (mddev->ro == 0)
3387 				err = md_set_readonly(mddev, 0);
3388 			else if (mddev->ro == 1)
3389 				err = restart_array(mddev);
3390 			if (err == 0) {
3391 				mddev->ro = 2;
3392 				set_disk_ro(mddev->gendisk, 0);
3393 			}
3394 		} else {
3395 			mddev->ro = 2;
3396 			err = do_md_run(mddev);
3397 		}
3398 		break;
3399 	case clean:
3400 		if (mddev->pers) {
3401 			restart_array(mddev);
3402 			spin_lock_irq(&mddev->write_lock);
3403 			if (atomic_read(&mddev->writes_pending) == 0) {
3404 				if (mddev->in_sync == 0) {
3405 					mddev->in_sync = 1;
3406 					if (mddev->safemode == 1)
3407 						mddev->safemode = 0;
3408 					if (mddev->persistent)
3409 						set_bit(MD_CHANGE_CLEAN,
3410 							&mddev->flags);
3411 				}
3412 				err = 0;
3413 			} else
3414 				err = -EBUSY;
3415 			spin_unlock_irq(&mddev->write_lock);
3416 		} else
3417 			err = -EINVAL;
3418 		break;
3419 	case active:
3420 		if (mddev->pers) {
3421 			restart_array(mddev);
3422 			if (mddev->external)
3423 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3424 			wake_up(&mddev->sb_wait);
3425 			err = 0;
3426 		} else {
3427 			mddev->ro = 0;
3428 			set_disk_ro(mddev->gendisk, 0);
3429 			err = do_md_run(mddev);
3430 		}
3431 		break;
3432 	case write_pending:
3433 	case active_idle:
3434 		/* these cannot be set */
3435 		break;
3436 	}
3437 	if (err)
3438 		return err;
3439 	else {
3440 		sysfs_notify_dirent(mddev->sysfs_state);
3441 		return len;
3442 	}
3443 }
3444 static struct md_sysfs_entry md_array_state =
3445 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3446 
3447 static ssize_t
3448 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3449 	return sprintf(page, "%d\n",
3450 		       atomic_read(&mddev->max_corr_read_errors));
3451 }
3452 
3453 static ssize_t
3454 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3455 {
3456 	char *e;
3457 	unsigned long n = simple_strtoul(buf, &e, 10);
3458 
3459 	if (*buf && (*e == 0 || *e == '\n')) {
3460 		atomic_set(&mddev->max_corr_read_errors, n);
3461 		return len;
3462 	}
3463 	return -EINVAL;
3464 }
3465 
3466 static struct md_sysfs_entry max_corr_read_errors =
3467 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3468 	max_corrected_read_errors_store);
3469 
3470 static ssize_t
3471 null_show(mddev_t *mddev, char *page)
3472 {
3473 	return -EINVAL;
3474 }
3475 
3476 static ssize_t
3477 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3478 {
3479 	/* buf must be %d:%d\n? giving major and minor numbers */
3480 	/* The new device is added to the array.
3481 	 * If the array has a persistent superblock, we read the
3482 	 * superblock to initialise info and check validity.
3483 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3484 	 * which mainly checks size.
3485 	 */
3486 	char *e;
3487 	int major = simple_strtoul(buf, &e, 10);
3488 	int minor;
3489 	dev_t dev;
3490 	mdk_rdev_t *rdev;
3491 	int err;
3492 
3493 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3494 		return -EINVAL;
3495 	minor = simple_strtoul(e+1, &e, 10);
3496 	if (*e && *e != '\n')
3497 		return -EINVAL;
3498 	dev = MKDEV(major, minor);
3499 	if (major != MAJOR(dev) ||
3500 	    minor != MINOR(dev))
3501 		return -EOVERFLOW;
3502 
3503 
3504 	if (mddev->persistent) {
3505 		rdev = md_import_device(dev, mddev->major_version,
3506 					mddev->minor_version);
3507 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3508 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3509 						       mdk_rdev_t, same_set);
3510 			err = super_types[mddev->major_version]
3511 				.load_super(rdev, rdev0, mddev->minor_version);
3512 			if (err < 0)
3513 				goto out;
3514 		}
3515 	} else if (mddev->external)
3516 		rdev = md_import_device(dev, -2, -1);
3517 	else
3518 		rdev = md_import_device(dev, -1, -1);
3519 
3520 	if (IS_ERR(rdev))
3521 		return PTR_ERR(rdev);
3522 	err = bind_rdev_to_array(rdev, mddev);
3523  out:
3524 	if (err)
3525 		export_rdev(rdev);
3526 	return err ? err : len;
3527 }
3528 
3529 static struct md_sysfs_entry md_new_device =
3530 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3531 
3532 static ssize_t
3533 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3534 {
3535 	char *end;
3536 	unsigned long chunk, end_chunk;
3537 
3538 	if (!mddev->bitmap)
3539 		goto out;
3540 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3541 	while (*buf) {
3542 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3543 		if (buf == end) break;
3544 		if (*end == '-') { /* range */
3545 			buf = end + 1;
3546 			end_chunk = simple_strtoul(buf, &end, 0);
3547 			if (buf == end) break;
3548 		}
3549 		if (*end && !isspace(*end)) break;
3550 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3551 		buf = skip_spaces(end);
3552 	}
3553 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3554 out:
3555 	return len;
3556 }
3557 
3558 static struct md_sysfs_entry md_bitmap =
3559 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3560 
3561 static ssize_t
3562 size_show(mddev_t *mddev, char *page)
3563 {
3564 	return sprintf(page, "%llu\n",
3565 		(unsigned long long)mddev->dev_sectors / 2);
3566 }
3567 
3568 static int update_size(mddev_t *mddev, sector_t num_sectors);
3569 
3570 static ssize_t
3571 size_store(mddev_t *mddev, const char *buf, size_t len)
3572 {
3573 	/* If array is inactive, we can reduce the component size, but
3574 	 * not increase it (except from 0).
3575 	 * If array is active, we can try an on-line resize
3576 	 */
3577 	sector_t sectors;
3578 	int err = strict_blocks_to_sectors(buf, &sectors);
3579 
3580 	if (err < 0)
3581 		return err;
3582 	if (mddev->pers) {
3583 		err = update_size(mddev, sectors);
3584 		md_update_sb(mddev, 1);
3585 	} else {
3586 		if (mddev->dev_sectors == 0 ||
3587 		    mddev->dev_sectors > sectors)
3588 			mddev->dev_sectors = sectors;
3589 		else
3590 			err = -ENOSPC;
3591 	}
3592 	return err ? err : len;
3593 }
3594 
3595 static struct md_sysfs_entry md_size =
3596 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3597 
3598 
3599 /* Metdata version.
3600  * This is one of
3601  *   'none' for arrays with no metadata (good luck...)
3602  *   'external' for arrays with externally managed metadata,
3603  * or N.M for internally known formats
3604  */
3605 static ssize_t
3606 metadata_show(mddev_t *mddev, char *page)
3607 {
3608 	if (mddev->persistent)
3609 		return sprintf(page, "%d.%d\n",
3610 			       mddev->major_version, mddev->minor_version);
3611 	else if (mddev->external)
3612 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3613 	else
3614 		return sprintf(page, "none\n");
3615 }
3616 
3617 static ssize_t
3618 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3619 {
3620 	int major, minor;
3621 	char *e;
3622 	/* Changing the details of 'external' metadata is
3623 	 * always permitted.  Otherwise there must be
3624 	 * no devices attached to the array.
3625 	 */
3626 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3627 		;
3628 	else if (!list_empty(&mddev->disks))
3629 		return -EBUSY;
3630 
3631 	if (cmd_match(buf, "none")) {
3632 		mddev->persistent = 0;
3633 		mddev->external = 0;
3634 		mddev->major_version = 0;
3635 		mddev->minor_version = 90;
3636 		return len;
3637 	}
3638 	if (strncmp(buf, "external:", 9) == 0) {
3639 		size_t namelen = len-9;
3640 		if (namelen >= sizeof(mddev->metadata_type))
3641 			namelen = sizeof(mddev->metadata_type)-1;
3642 		strncpy(mddev->metadata_type, buf+9, namelen);
3643 		mddev->metadata_type[namelen] = 0;
3644 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3645 			mddev->metadata_type[--namelen] = 0;
3646 		mddev->persistent = 0;
3647 		mddev->external = 1;
3648 		mddev->major_version = 0;
3649 		mddev->minor_version = 90;
3650 		return len;
3651 	}
3652 	major = simple_strtoul(buf, &e, 10);
3653 	if (e==buf || *e != '.')
3654 		return -EINVAL;
3655 	buf = e+1;
3656 	minor = simple_strtoul(buf, &e, 10);
3657 	if (e==buf || (*e && *e != '\n') )
3658 		return -EINVAL;
3659 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3660 		return -ENOENT;
3661 	mddev->major_version = major;
3662 	mddev->minor_version = minor;
3663 	mddev->persistent = 1;
3664 	mddev->external = 0;
3665 	return len;
3666 }
3667 
3668 static struct md_sysfs_entry md_metadata =
3669 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3670 
3671 static ssize_t
3672 action_show(mddev_t *mddev, char *page)
3673 {
3674 	char *type = "idle";
3675 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3676 		type = "frozen";
3677 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3678 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3679 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3680 			type = "reshape";
3681 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3682 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3683 				type = "resync";
3684 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3685 				type = "check";
3686 			else
3687 				type = "repair";
3688 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3689 			type = "recover";
3690 	}
3691 	return sprintf(page, "%s\n", type);
3692 }
3693 
3694 static ssize_t
3695 action_store(mddev_t *mddev, const char *page, size_t len)
3696 {
3697 	if (!mddev->pers || !mddev->pers->sync_request)
3698 		return -EINVAL;
3699 
3700 	if (cmd_match(page, "frozen"))
3701 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3702 	else
3703 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3704 
3705 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3706 		if (mddev->sync_thread) {
3707 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3708 			md_unregister_thread(mddev->sync_thread);
3709 			mddev->sync_thread = NULL;
3710 			mddev->recovery = 0;
3711 		}
3712 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3713 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3714 		return -EBUSY;
3715 	else if (cmd_match(page, "resync"))
3716 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3717 	else if (cmd_match(page, "recover")) {
3718 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3719 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3720 	} else if (cmd_match(page, "reshape")) {
3721 		int err;
3722 		if (mddev->pers->start_reshape == NULL)
3723 			return -EINVAL;
3724 		err = mddev->pers->start_reshape(mddev);
3725 		if (err)
3726 			return err;
3727 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3728 	} else {
3729 		if (cmd_match(page, "check"))
3730 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3731 		else if (!cmd_match(page, "repair"))
3732 			return -EINVAL;
3733 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3734 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3735 	}
3736 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3737 	md_wakeup_thread(mddev->thread);
3738 	sysfs_notify_dirent(mddev->sysfs_action);
3739 	return len;
3740 }
3741 
3742 static ssize_t
3743 mismatch_cnt_show(mddev_t *mddev, char *page)
3744 {
3745 	return sprintf(page, "%llu\n",
3746 		       (unsigned long long) mddev->resync_mismatches);
3747 }
3748 
3749 static struct md_sysfs_entry md_scan_mode =
3750 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3751 
3752 
3753 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3754 
3755 static ssize_t
3756 sync_min_show(mddev_t *mddev, char *page)
3757 {
3758 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3759 		       mddev->sync_speed_min ? "local": "system");
3760 }
3761 
3762 static ssize_t
3763 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3764 {
3765 	int min;
3766 	char *e;
3767 	if (strncmp(buf, "system", 6)==0) {
3768 		mddev->sync_speed_min = 0;
3769 		return len;
3770 	}
3771 	min = simple_strtoul(buf, &e, 10);
3772 	if (buf == e || (*e && *e != '\n') || min <= 0)
3773 		return -EINVAL;
3774 	mddev->sync_speed_min = min;
3775 	return len;
3776 }
3777 
3778 static struct md_sysfs_entry md_sync_min =
3779 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3780 
3781 static ssize_t
3782 sync_max_show(mddev_t *mddev, char *page)
3783 {
3784 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3785 		       mddev->sync_speed_max ? "local": "system");
3786 }
3787 
3788 static ssize_t
3789 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3790 {
3791 	int max;
3792 	char *e;
3793 	if (strncmp(buf, "system", 6)==0) {
3794 		mddev->sync_speed_max = 0;
3795 		return len;
3796 	}
3797 	max = simple_strtoul(buf, &e, 10);
3798 	if (buf == e || (*e && *e != '\n') || max <= 0)
3799 		return -EINVAL;
3800 	mddev->sync_speed_max = max;
3801 	return len;
3802 }
3803 
3804 static struct md_sysfs_entry md_sync_max =
3805 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3806 
3807 static ssize_t
3808 degraded_show(mddev_t *mddev, char *page)
3809 {
3810 	return sprintf(page, "%d\n", mddev->degraded);
3811 }
3812 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3813 
3814 static ssize_t
3815 sync_force_parallel_show(mddev_t *mddev, char *page)
3816 {
3817 	return sprintf(page, "%d\n", mddev->parallel_resync);
3818 }
3819 
3820 static ssize_t
3821 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3822 {
3823 	long n;
3824 
3825 	if (strict_strtol(buf, 10, &n))
3826 		return -EINVAL;
3827 
3828 	if (n != 0 && n != 1)
3829 		return -EINVAL;
3830 
3831 	mddev->parallel_resync = n;
3832 
3833 	if (mddev->sync_thread)
3834 		wake_up(&resync_wait);
3835 
3836 	return len;
3837 }
3838 
3839 /* force parallel resync, even with shared block devices */
3840 static struct md_sysfs_entry md_sync_force_parallel =
3841 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3842        sync_force_parallel_show, sync_force_parallel_store);
3843 
3844 static ssize_t
3845 sync_speed_show(mddev_t *mddev, char *page)
3846 {
3847 	unsigned long resync, dt, db;
3848 	if (mddev->curr_resync == 0)
3849 		return sprintf(page, "none\n");
3850 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3851 	dt = (jiffies - mddev->resync_mark) / HZ;
3852 	if (!dt) dt++;
3853 	db = resync - mddev->resync_mark_cnt;
3854 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3855 }
3856 
3857 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3858 
3859 static ssize_t
3860 sync_completed_show(mddev_t *mddev, char *page)
3861 {
3862 	unsigned long max_sectors, resync;
3863 
3864 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3865 		return sprintf(page, "none\n");
3866 
3867 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3868 		max_sectors = mddev->resync_max_sectors;
3869 	else
3870 		max_sectors = mddev->dev_sectors;
3871 
3872 	resync = mddev->curr_resync_completed;
3873 	return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3874 }
3875 
3876 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3877 
3878 static ssize_t
3879 min_sync_show(mddev_t *mddev, char *page)
3880 {
3881 	return sprintf(page, "%llu\n",
3882 		       (unsigned long long)mddev->resync_min);
3883 }
3884 static ssize_t
3885 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3886 {
3887 	unsigned long long min;
3888 	if (strict_strtoull(buf, 10, &min))
3889 		return -EINVAL;
3890 	if (min > mddev->resync_max)
3891 		return -EINVAL;
3892 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3893 		return -EBUSY;
3894 
3895 	/* Must be a multiple of chunk_size */
3896 	if (mddev->chunk_sectors) {
3897 		sector_t temp = min;
3898 		if (sector_div(temp, mddev->chunk_sectors))
3899 			return -EINVAL;
3900 	}
3901 	mddev->resync_min = min;
3902 
3903 	return len;
3904 }
3905 
3906 static struct md_sysfs_entry md_min_sync =
3907 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3908 
3909 static ssize_t
3910 max_sync_show(mddev_t *mddev, char *page)
3911 {
3912 	if (mddev->resync_max == MaxSector)
3913 		return sprintf(page, "max\n");
3914 	else
3915 		return sprintf(page, "%llu\n",
3916 			       (unsigned long long)mddev->resync_max);
3917 }
3918 static ssize_t
3919 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3920 {
3921 	if (strncmp(buf, "max", 3) == 0)
3922 		mddev->resync_max = MaxSector;
3923 	else {
3924 		unsigned long long max;
3925 		if (strict_strtoull(buf, 10, &max))
3926 			return -EINVAL;
3927 		if (max < mddev->resync_min)
3928 			return -EINVAL;
3929 		if (max < mddev->resync_max &&
3930 		    mddev->ro == 0 &&
3931 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3932 			return -EBUSY;
3933 
3934 		/* Must be a multiple of chunk_size */
3935 		if (mddev->chunk_sectors) {
3936 			sector_t temp = max;
3937 			if (sector_div(temp, mddev->chunk_sectors))
3938 				return -EINVAL;
3939 		}
3940 		mddev->resync_max = max;
3941 	}
3942 	wake_up(&mddev->recovery_wait);
3943 	return len;
3944 }
3945 
3946 static struct md_sysfs_entry md_max_sync =
3947 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3948 
3949 static ssize_t
3950 suspend_lo_show(mddev_t *mddev, char *page)
3951 {
3952 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3953 }
3954 
3955 static ssize_t
3956 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3957 {
3958 	char *e;
3959 	unsigned long long new = simple_strtoull(buf, &e, 10);
3960 
3961 	if (mddev->pers == NULL ||
3962 	    mddev->pers->quiesce == NULL)
3963 		return -EINVAL;
3964 	if (buf == e || (*e && *e != '\n'))
3965 		return -EINVAL;
3966 	if (new >= mddev->suspend_hi ||
3967 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3968 		mddev->suspend_lo = new;
3969 		mddev->pers->quiesce(mddev, 2);
3970 		return len;
3971 	} else
3972 		return -EINVAL;
3973 }
3974 static struct md_sysfs_entry md_suspend_lo =
3975 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3976 
3977 
3978 static ssize_t
3979 suspend_hi_show(mddev_t *mddev, char *page)
3980 {
3981 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3982 }
3983 
3984 static ssize_t
3985 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3986 {
3987 	char *e;
3988 	unsigned long long new = simple_strtoull(buf, &e, 10);
3989 
3990 	if (mddev->pers == NULL ||
3991 	    mddev->pers->quiesce == NULL)
3992 		return -EINVAL;
3993 	if (buf == e || (*e && *e != '\n'))
3994 		return -EINVAL;
3995 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3996 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3997 		mddev->suspend_hi = new;
3998 		mddev->pers->quiesce(mddev, 1);
3999 		mddev->pers->quiesce(mddev, 0);
4000 		return len;
4001 	} else
4002 		return -EINVAL;
4003 }
4004 static struct md_sysfs_entry md_suspend_hi =
4005 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4006 
4007 static ssize_t
4008 reshape_position_show(mddev_t *mddev, char *page)
4009 {
4010 	if (mddev->reshape_position != MaxSector)
4011 		return sprintf(page, "%llu\n",
4012 			       (unsigned long long)mddev->reshape_position);
4013 	strcpy(page, "none\n");
4014 	return 5;
4015 }
4016 
4017 static ssize_t
4018 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4019 {
4020 	char *e;
4021 	unsigned long long new = simple_strtoull(buf, &e, 10);
4022 	if (mddev->pers)
4023 		return -EBUSY;
4024 	if (buf == e || (*e && *e != '\n'))
4025 		return -EINVAL;
4026 	mddev->reshape_position = new;
4027 	mddev->delta_disks = 0;
4028 	mddev->new_level = mddev->level;
4029 	mddev->new_layout = mddev->layout;
4030 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4031 	return len;
4032 }
4033 
4034 static struct md_sysfs_entry md_reshape_position =
4035 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4036        reshape_position_store);
4037 
4038 static ssize_t
4039 array_size_show(mddev_t *mddev, char *page)
4040 {
4041 	if (mddev->external_size)
4042 		return sprintf(page, "%llu\n",
4043 			       (unsigned long long)mddev->array_sectors/2);
4044 	else
4045 		return sprintf(page, "default\n");
4046 }
4047 
4048 static ssize_t
4049 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4050 {
4051 	sector_t sectors;
4052 
4053 	if (strncmp(buf, "default", 7) == 0) {
4054 		if (mddev->pers)
4055 			sectors = mddev->pers->size(mddev, 0, 0);
4056 		else
4057 			sectors = mddev->array_sectors;
4058 
4059 		mddev->external_size = 0;
4060 	} else {
4061 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4062 			return -EINVAL;
4063 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4064 			return -E2BIG;
4065 
4066 		mddev->external_size = 1;
4067 	}
4068 
4069 	mddev->array_sectors = sectors;
4070 	set_capacity(mddev->gendisk, mddev->array_sectors);
4071 	if (mddev->pers)
4072 		revalidate_disk(mddev->gendisk);
4073 
4074 	return len;
4075 }
4076 
4077 static struct md_sysfs_entry md_array_size =
4078 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4079        array_size_store);
4080 
4081 static struct attribute *md_default_attrs[] = {
4082 	&md_level.attr,
4083 	&md_layout.attr,
4084 	&md_raid_disks.attr,
4085 	&md_chunk_size.attr,
4086 	&md_size.attr,
4087 	&md_resync_start.attr,
4088 	&md_metadata.attr,
4089 	&md_new_device.attr,
4090 	&md_safe_delay.attr,
4091 	&md_array_state.attr,
4092 	&md_reshape_position.attr,
4093 	&md_array_size.attr,
4094 	&max_corr_read_errors.attr,
4095 	NULL,
4096 };
4097 
4098 static struct attribute *md_redundancy_attrs[] = {
4099 	&md_scan_mode.attr,
4100 	&md_mismatches.attr,
4101 	&md_sync_min.attr,
4102 	&md_sync_max.attr,
4103 	&md_sync_speed.attr,
4104 	&md_sync_force_parallel.attr,
4105 	&md_sync_completed.attr,
4106 	&md_min_sync.attr,
4107 	&md_max_sync.attr,
4108 	&md_suspend_lo.attr,
4109 	&md_suspend_hi.attr,
4110 	&md_bitmap.attr,
4111 	&md_degraded.attr,
4112 	NULL,
4113 };
4114 static struct attribute_group md_redundancy_group = {
4115 	.name = NULL,
4116 	.attrs = md_redundancy_attrs,
4117 };
4118 
4119 
4120 static ssize_t
4121 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4122 {
4123 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4124 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4125 	ssize_t rv;
4126 
4127 	if (!entry->show)
4128 		return -EIO;
4129 	rv = mddev_lock(mddev);
4130 	if (!rv) {
4131 		rv = entry->show(mddev, page);
4132 		mddev_unlock(mddev);
4133 	}
4134 	return rv;
4135 }
4136 
4137 static ssize_t
4138 md_attr_store(struct kobject *kobj, struct attribute *attr,
4139 	      const char *page, size_t length)
4140 {
4141 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4142 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4143 	ssize_t rv;
4144 
4145 	if (!entry->store)
4146 		return -EIO;
4147 	if (!capable(CAP_SYS_ADMIN))
4148 		return -EACCES;
4149 	rv = mddev_lock(mddev);
4150 	if (mddev->hold_active == UNTIL_IOCTL)
4151 		mddev->hold_active = 0;
4152 	if (!rv) {
4153 		rv = entry->store(mddev, page, length);
4154 		mddev_unlock(mddev);
4155 	}
4156 	return rv;
4157 }
4158 
4159 static void md_free(struct kobject *ko)
4160 {
4161 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
4162 
4163 	if (mddev->sysfs_state)
4164 		sysfs_put(mddev->sysfs_state);
4165 
4166 	if (mddev->gendisk) {
4167 		del_gendisk(mddev->gendisk);
4168 		put_disk(mddev->gendisk);
4169 	}
4170 	if (mddev->queue)
4171 		blk_cleanup_queue(mddev->queue);
4172 
4173 	kfree(mddev);
4174 }
4175 
4176 static const struct sysfs_ops md_sysfs_ops = {
4177 	.show	= md_attr_show,
4178 	.store	= md_attr_store,
4179 };
4180 static struct kobj_type md_ktype = {
4181 	.release	= md_free,
4182 	.sysfs_ops	= &md_sysfs_ops,
4183 	.default_attrs	= md_default_attrs,
4184 };
4185 
4186 int mdp_major = 0;
4187 
4188 static void mddev_delayed_delete(struct work_struct *ws)
4189 {
4190 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
4191 
4192 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4193 	kobject_del(&mddev->kobj);
4194 	kobject_put(&mddev->kobj);
4195 }
4196 
4197 static int md_alloc(dev_t dev, char *name)
4198 {
4199 	static DEFINE_MUTEX(disks_mutex);
4200 	mddev_t *mddev = mddev_find(dev);
4201 	struct gendisk *disk;
4202 	int partitioned;
4203 	int shift;
4204 	int unit;
4205 	int error;
4206 
4207 	if (!mddev)
4208 		return -ENODEV;
4209 
4210 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4211 	shift = partitioned ? MdpMinorShift : 0;
4212 	unit = MINOR(mddev->unit) >> shift;
4213 
4214 	/* wait for any previous instance if this device
4215 	 * to be completed removed (mddev_delayed_delete).
4216 	 */
4217 	flush_scheduled_work();
4218 
4219 	mutex_lock(&disks_mutex);
4220 	error = -EEXIST;
4221 	if (mddev->gendisk)
4222 		goto abort;
4223 
4224 	if (name) {
4225 		/* Need to ensure that 'name' is not a duplicate.
4226 		 */
4227 		mddev_t *mddev2;
4228 		spin_lock(&all_mddevs_lock);
4229 
4230 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4231 			if (mddev2->gendisk &&
4232 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4233 				spin_unlock(&all_mddevs_lock);
4234 				goto abort;
4235 			}
4236 		spin_unlock(&all_mddevs_lock);
4237 	}
4238 
4239 	error = -ENOMEM;
4240 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4241 	if (!mddev->queue)
4242 		goto abort;
4243 	mddev->queue->queuedata = mddev;
4244 
4245 	/* Can be unlocked because the queue is new: no concurrency */
4246 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4247 
4248 	blk_queue_make_request(mddev->queue, md_make_request);
4249 
4250 	disk = alloc_disk(1 << shift);
4251 	if (!disk) {
4252 		blk_cleanup_queue(mddev->queue);
4253 		mddev->queue = NULL;
4254 		goto abort;
4255 	}
4256 	disk->major = MAJOR(mddev->unit);
4257 	disk->first_minor = unit << shift;
4258 	if (name)
4259 		strcpy(disk->disk_name, name);
4260 	else if (partitioned)
4261 		sprintf(disk->disk_name, "md_d%d", unit);
4262 	else
4263 		sprintf(disk->disk_name, "md%d", unit);
4264 	disk->fops = &md_fops;
4265 	disk->private_data = mddev;
4266 	disk->queue = mddev->queue;
4267 	/* Allow extended partitions.  This makes the
4268 	 * 'mdp' device redundant, but we can't really
4269 	 * remove it now.
4270 	 */
4271 	disk->flags |= GENHD_FL_EXT_DEVT;
4272 	add_disk(disk);
4273 	mddev->gendisk = disk;
4274 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4275 				     &disk_to_dev(disk)->kobj, "%s", "md");
4276 	if (error) {
4277 		/* This isn't possible, but as kobject_init_and_add is marked
4278 		 * __must_check, we must do something with the result
4279 		 */
4280 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4281 		       disk->disk_name);
4282 		error = 0;
4283 	}
4284 	if (sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4285 		printk(KERN_DEBUG "pointless warning\n");
4286  abort:
4287 	mutex_unlock(&disks_mutex);
4288 	if (!error) {
4289 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4290 		mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, NULL, "array_state");
4291 	}
4292 	mddev_put(mddev);
4293 	return error;
4294 }
4295 
4296 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4297 {
4298 	md_alloc(dev, NULL);
4299 	return NULL;
4300 }
4301 
4302 static int add_named_array(const char *val, struct kernel_param *kp)
4303 {
4304 	/* val must be "md_*" where * is not all digits.
4305 	 * We allocate an array with a large free minor number, and
4306 	 * set the name to val.  val must not already be an active name.
4307 	 */
4308 	int len = strlen(val);
4309 	char buf[DISK_NAME_LEN];
4310 
4311 	while (len && val[len-1] == '\n')
4312 		len--;
4313 	if (len >= DISK_NAME_LEN)
4314 		return -E2BIG;
4315 	strlcpy(buf, val, len+1);
4316 	if (strncmp(buf, "md_", 3) != 0)
4317 		return -EINVAL;
4318 	return md_alloc(0, buf);
4319 }
4320 
4321 static void md_safemode_timeout(unsigned long data)
4322 {
4323 	mddev_t *mddev = (mddev_t *) data;
4324 
4325 	if (!atomic_read(&mddev->writes_pending)) {
4326 		mddev->safemode = 1;
4327 		if (mddev->external)
4328 			sysfs_notify_dirent(mddev->sysfs_state);
4329 	}
4330 	md_wakeup_thread(mddev->thread);
4331 }
4332 
4333 static int start_dirty_degraded;
4334 
4335 static int md_run(mddev_t *mddev)
4336 {
4337 	int err;
4338 	mdk_rdev_t *rdev;
4339 	struct mdk_personality *pers;
4340 
4341 	if (list_empty(&mddev->disks))
4342 		/* cannot run an array with no devices.. */
4343 		return -EINVAL;
4344 
4345 	if (mddev->pers)
4346 		return -EBUSY;
4347 
4348 	/* These two calls synchronise us with the
4349 	 * sysfs_remove_group calls in mddev_unlock,
4350 	 * so they must have completed.
4351 	 */
4352 	mutex_lock(&mddev->open_mutex);
4353 	mutex_unlock(&mddev->open_mutex);
4354 
4355 	/*
4356 	 * Analyze all RAID superblock(s)
4357 	 */
4358 	if (!mddev->raid_disks) {
4359 		if (!mddev->persistent)
4360 			return -EINVAL;
4361 		analyze_sbs(mddev);
4362 	}
4363 
4364 	if (mddev->level != LEVEL_NONE)
4365 		request_module("md-level-%d", mddev->level);
4366 	else if (mddev->clevel[0])
4367 		request_module("md-%s", mddev->clevel);
4368 
4369 	/*
4370 	 * Drop all container device buffers, from now on
4371 	 * the only valid external interface is through the md
4372 	 * device.
4373 	 */
4374 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4375 		if (test_bit(Faulty, &rdev->flags))
4376 			continue;
4377 		sync_blockdev(rdev->bdev);
4378 		invalidate_bdev(rdev->bdev);
4379 
4380 		/* perform some consistency tests on the device.
4381 		 * We don't want the data to overlap the metadata,
4382 		 * Internal Bitmap issues have been handled elsewhere.
4383 		 */
4384 		if (rdev->data_offset < rdev->sb_start) {
4385 			if (mddev->dev_sectors &&
4386 			    rdev->data_offset + mddev->dev_sectors
4387 			    > rdev->sb_start) {
4388 				printk("md: %s: data overlaps metadata\n",
4389 				       mdname(mddev));
4390 				return -EINVAL;
4391 			}
4392 		} else {
4393 			if (rdev->sb_start + rdev->sb_size/512
4394 			    > rdev->data_offset) {
4395 				printk("md: %s: metadata overlaps data\n",
4396 				       mdname(mddev));
4397 				return -EINVAL;
4398 			}
4399 		}
4400 		sysfs_notify_dirent(rdev->sysfs_state);
4401 	}
4402 
4403 	spin_lock(&pers_lock);
4404 	pers = find_pers(mddev->level, mddev->clevel);
4405 	if (!pers || !try_module_get(pers->owner)) {
4406 		spin_unlock(&pers_lock);
4407 		if (mddev->level != LEVEL_NONE)
4408 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4409 			       mddev->level);
4410 		else
4411 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4412 			       mddev->clevel);
4413 		return -EINVAL;
4414 	}
4415 	mddev->pers = pers;
4416 	spin_unlock(&pers_lock);
4417 	if (mddev->level != pers->level) {
4418 		mddev->level = pers->level;
4419 		mddev->new_level = pers->level;
4420 	}
4421 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4422 
4423 	if (mddev->reshape_position != MaxSector &&
4424 	    pers->start_reshape == NULL) {
4425 		/* This personality cannot handle reshaping... */
4426 		mddev->pers = NULL;
4427 		module_put(pers->owner);
4428 		return -EINVAL;
4429 	}
4430 
4431 	if (pers->sync_request) {
4432 		/* Warn if this is a potentially silly
4433 		 * configuration.
4434 		 */
4435 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4436 		mdk_rdev_t *rdev2;
4437 		int warned = 0;
4438 
4439 		list_for_each_entry(rdev, &mddev->disks, same_set)
4440 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4441 				if (rdev < rdev2 &&
4442 				    rdev->bdev->bd_contains ==
4443 				    rdev2->bdev->bd_contains) {
4444 					printk(KERN_WARNING
4445 					       "%s: WARNING: %s appears to be"
4446 					       " on the same physical disk as"
4447 					       " %s.\n",
4448 					       mdname(mddev),
4449 					       bdevname(rdev->bdev,b),
4450 					       bdevname(rdev2->bdev,b2));
4451 					warned = 1;
4452 				}
4453 			}
4454 
4455 		if (warned)
4456 			printk(KERN_WARNING
4457 			       "True protection against single-disk"
4458 			       " failure might be compromised.\n");
4459 	}
4460 
4461 	mddev->recovery = 0;
4462 	/* may be over-ridden by personality */
4463 	mddev->resync_max_sectors = mddev->dev_sectors;
4464 
4465 	mddev->barriers_work = 1;
4466 	mddev->ok_start_degraded = start_dirty_degraded;
4467 
4468 	if (start_readonly && mddev->ro == 0)
4469 		mddev->ro = 2; /* read-only, but switch on first write */
4470 
4471 	err = mddev->pers->run(mddev);
4472 	if (err)
4473 		printk(KERN_ERR "md: pers->run() failed ...\n");
4474 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4475 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4476 			  " but 'external_size' not in effect?\n", __func__);
4477 		printk(KERN_ERR
4478 		       "md: invalid array_size %llu > default size %llu\n",
4479 		       (unsigned long long)mddev->array_sectors / 2,
4480 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4481 		err = -EINVAL;
4482 		mddev->pers->stop(mddev);
4483 	}
4484 	if (err == 0 && mddev->pers->sync_request) {
4485 		err = bitmap_create(mddev);
4486 		if (err) {
4487 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4488 			       mdname(mddev), err);
4489 			mddev->pers->stop(mddev);
4490 		}
4491 	}
4492 	if (err) {
4493 		module_put(mddev->pers->owner);
4494 		mddev->pers = NULL;
4495 		bitmap_destroy(mddev);
4496 		return err;
4497 	}
4498 	if (mddev->pers->sync_request) {
4499 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4500 			printk(KERN_WARNING
4501 			       "md: cannot register extra attributes for %s\n",
4502 			       mdname(mddev));
4503 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
4504 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4505 		mddev->ro = 0;
4506 
4507  	atomic_set(&mddev->writes_pending,0);
4508 	atomic_set(&mddev->max_corr_read_errors,
4509 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4510 	mddev->safemode = 0;
4511 	mddev->safemode_timer.function = md_safemode_timeout;
4512 	mddev->safemode_timer.data = (unsigned long) mddev;
4513 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4514 	mddev->in_sync = 1;
4515 
4516 	list_for_each_entry(rdev, &mddev->disks, same_set)
4517 		if (rdev->raid_disk >= 0) {
4518 			char nm[20];
4519 			sprintf(nm, "rd%d", rdev->raid_disk);
4520 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4521 				printk("md: cannot register %s for %s\n",
4522 				       nm, mdname(mddev));
4523 		}
4524 
4525 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4526 
4527 	if (mddev->flags)
4528 		md_update_sb(mddev, 0);
4529 
4530 	md_wakeup_thread(mddev->thread);
4531 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4532 
4533 	md_new_event(mddev);
4534 	sysfs_notify_dirent(mddev->sysfs_state);
4535 	if (mddev->sysfs_action)
4536 		sysfs_notify_dirent(mddev->sysfs_action);
4537 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4538 	return 0;
4539 }
4540 
4541 static int do_md_run(mddev_t *mddev)
4542 {
4543 	int err;
4544 
4545 	err = md_run(mddev);
4546 	if (err)
4547 		goto out;
4548 
4549 	set_capacity(mddev->gendisk, mddev->array_sectors);
4550 	revalidate_disk(mddev->gendisk);
4551 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4552 out:
4553 	return err;
4554 }
4555 
4556 static int restart_array(mddev_t *mddev)
4557 {
4558 	struct gendisk *disk = mddev->gendisk;
4559 
4560 	/* Complain if it has no devices */
4561 	if (list_empty(&mddev->disks))
4562 		return -ENXIO;
4563 	if (!mddev->pers)
4564 		return -EINVAL;
4565 	if (!mddev->ro)
4566 		return -EBUSY;
4567 	mddev->safemode = 0;
4568 	mddev->ro = 0;
4569 	set_disk_ro(disk, 0);
4570 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4571 		mdname(mddev));
4572 	/* Kick recovery or resync if necessary */
4573 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4574 	md_wakeup_thread(mddev->thread);
4575 	md_wakeup_thread(mddev->sync_thread);
4576 	sysfs_notify_dirent(mddev->sysfs_state);
4577 	return 0;
4578 }
4579 
4580 /* similar to deny_write_access, but accounts for our holding a reference
4581  * to the file ourselves */
4582 static int deny_bitmap_write_access(struct file * file)
4583 {
4584 	struct inode *inode = file->f_mapping->host;
4585 
4586 	spin_lock(&inode->i_lock);
4587 	if (atomic_read(&inode->i_writecount) > 1) {
4588 		spin_unlock(&inode->i_lock);
4589 		return -ETXTBSY;
4590 	}
4591 	atomic_set(&inode->i_writecount, -1);
4592 	spin_unlock(&inode->i_lock);
4593 
4594 	return 0;
4595 }
4596 
4597 void restore_bitmap_write_access(struct file *file)
4598 {
4599 	struct inode *inode = file->f_mapping->host;
4600 
4601 	spin_lock(&inode->i_lock);
4602 	atomic_set(&inode->i_writecount, 1);
4603 	spin_unlock(&inode->i_lock);
4604 }
4605 
4606 static void md_clean(mddev_t *mddev)
4607 {
4608 	mddev->array_sectors = 0;
4609 	mddev->external_size = 0;
4610 	mddev->dev_sectors = 0;
4611 	mddev->raid_disks = 0;
4612 	mddev->recovery_cp = 0;
4613 	mddev->resync_min = 0;
4614 	mddev->resync_max = MaxSector;
4615 	mddev->reshape_position = MaxSector;
4616 	mddev->external = 0;
4617 	mddev->persistent = 0;
4618 	mddev->level = LEVEL_NONE;
4619 	mddev->clevel[0] = 0;
4620 	mddev->flags = 0;
4621 	mddev->ro = 0;
4622 	mddev->metadata_type[0] = 0;
4623 	mddev->chunk_sectors = 0;
4624 	mddev->ctime = mddev->utime = 0;
4625 	mddev->layout = 0;
4626 	mddev->max_disks = 0;
4627 	mddev->events = 0;
4628 	mddev->can_decrease_events = 0;
4629 	mddev->delta_disks = 0;
4630 	mddev->new_level = LEVEL_NONE;
4631 	mddev->new_layout = 0;
4632 	mddev->new_chunk_sectors = 0;
4633 	mddev->curr_resync = 0;
4634 	mddev->resync_mismatches = 0;
4635 	mddev->suspend_lo = mddev->suspend_hi = 0;
4636 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
4637 	mddev->recovery = 0;
4638 	mddev->in_sync = 0;
4639 	mddev->degraded = 0;
4640 	mddev->barriers_work = 0;
4641 	mddev->safemode = 0;
4642 	mddev->bitmap_info.offset = 0;
4643 	mddev->bitmap_info.default_offset = 0;
4644 	mddev->bitmap_info.chunksize = 0;
4645 	mddev->bitmap_info.daemon_sleep = 0;
4646 	mddev->bitmap_info.max_write_behind = 0;
4647 }
4648 
4649 static void md_stop_writes(mddev_t *mddev)
4650 {
4651 	if (mddev->sync_thread) {
4652 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4653 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4654 		md_unregister_thread(mddev->sync_thread);
4655 		mddev->sync_thread = NULL;
4656 	}
4657 
4658 	del_timer_sync(&mddev->safemode_timer);
4659 
4660 	bitmap_flush(mddev);
4661 	md_super_wait(mddev);
4662 
4663 	if (!mddev->in_sync || mddev->flags) {
4664 		/* mark array as shutdown cleanly */
4665 		mddev->in_sync = 1;
4666 		md_update_sb(mddev, 1);
4667 	}
4668 }
4669 
4670 static void md_stop(mddev_t *mddev)
4671 {
4672 	md_stop_writes(mddev);
4673 
4674 	mddev->pers->stop(mddev);
4675 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
4676 		mddev->to_remove = &md_redundancy_group;
4677 	module_put(mddev->pers->owner);
4678 	mddev->pers = NULL;
4679 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4680 }
4681 
4682 static int md_set_readonly(mddev_t *mddev, int is_open)
4683 {
4684 	int err = 0;
4685 	mutex_lock(&mddev->open_mutex);
4686 	if (atomic_read(&mddev->openers) > is_open) {
4687 		printk("md: %s still in use.\n",mdname(mddev));
4688 		err = -EBUSY;
4689 		goto out;
4690 	}
4691 	if (mddev->pers) {
4692 		md_stop_writes(mddev);
4693 
4694 		err  = -ENXIO;
4695 		if (mddev->ro==1)
4696 			goto out;
4697 		mddev->ro = 1;
4698 		set_disk_ro(mddev->gendisk, 1);
4699 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4700 		sysfs_notify_dirent(mddev->sysfs_state);
4701 		err = 0;
4702 	}
4703 out:
4704 	mutex_unlock(&mddev->open_mutex);
4705 	return err;
4706 }
4707 
4708 /* mode:
4709  *   0 - completely stop and dis-assemble array
4710  *   2 - stop but do not disassemble array
4711  */
4712 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4713 {
4714 	int err = 0;
4715 	struct gendisk *disk = mddev->gendisk;
4716 	mdk_rdev_t *rdev;
4717 
4718 	mutex_lock(&mddev->open_mutex);
4719 	if (atomic_read(&mddev->openers) > is_open) {
4720 		printk("md: %s still in use.\n",mdname(mddev));
4721 		err = -EBUSY;
4722 	} else if (mddev->pers) {
4723 
4724 		if (mddev->ro)
4725 			set_disk_ro(disk, 0);
4726 
4727 		md_stop(mddev);
4728 		mddev->queue->merge_bvec_fn = NULL;
4729 		mddev->queue->unplug_fn = NULL;
4730 		mddev->queue->backing_dev_info.congested_fn = NULL;
4731 
4732 		/* tell userspace to handle 'inactive' */
4733 		sysfs_notify_dirent(mddev->sysfs_state);
4734 
4735 		list_for_each_entry(rdev, &mddev->disks, same_set)
4736 			if (rdev->raid_disk >= 0) {
4737 				char nm[20];
4738 				sprintf(nm, "rd%d", rdev->raid_disk);
4739 				sysfs_remove_link(&mddev->kobj, nm);
4740 			}
4741 
4742 		set_capacity(disk, 0);
4743 		revalidate_disk(disk);
4744 
4745 		if (mddev->ro)
4746 			mddev->ro = 0;
4747 
4748 		err = 0;
4749 	}
4750 	mutex_unlock(&mddev->open_mutex);
4751 	if (err)
4752 		return err;
4753 	/*
4754 	 * Free resources if final stop
4755 	 */
4756 	if (mode == 0) {
4757 
4758 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4759 
4760 		bitmap_destroy(mddev);
4761 		if (mddev->bitmap_info.file) {
4762 			restore_bitmap_write_access(mddev->bitmap_info.file);
4763 			fput(mddev->bitmap_info.file);
4764 			mddev->bitmap_info.file = NULL;
4765 		}
4766 		mddev->bitmap_info.offset = 0;
4767 
4768 		export_array(mddev);
4769 
4770 		md_clean(mddev);
4771 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4772 		if (mddev->hold_active == UNTIL_STOP)
4773 			mddev->hold_active = 0;
4774 
4775 	}
4776 	err = 0;
4777 	blk_integrity_unregister(disk);
4778 	md_new_event(mddev);
4779 	sysfs_notify_dirent(mddev->sysfs_state);
4780 	return err;
4781 }
4782 
4783 #ifndef MODULE
4784 static void autorun_array(mddev_t *mddev)
4785 {
4786 	mdk_rdev_t *rdev;
4787 	int err;
4788 
4789 	if (list_empty(&mddev->disks))
4790 		return;
4791 
4792 	printk(KERN_INFO "md: running: ");
4793 
4794 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4795 		char b[BDEVNAME_SIZE];
4796 		printk("<%s>", bdevname(rdev->bdev,b));
4797 	}
4798 	printk("\n");
4799 
4800 	err = do_md_run(mddev);
4801 	if (err) {
4802 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4803 		do_md_stop(mddev, 0, 0);
4804 	}
4805 }
4806 
4807 /*
4808  * lets try to run arrays based on all disks that have arrived
4809  * until now. (those are in pending_raid_disks)
4810  *
4811  * the method: pick the first pending disk, collect all disks with
4812  * the same UUID, remove all from the pending list and put them into
4813  * the 'same_array' list. Then order this list based on superblock
4814  * update time (freshest comes first), kick out 'old' disks and
4815  * compare superblocks. If everything's fine then run it.
4816  *
4817  * If "unit" is allocated, then bump its reference count
4818  */
4819 static void autorun_devices(int part)
4820 {
4821 	mdk_rdev_t *rdev0, *rdev, *tmp;
4822 	mddev_t *mddev;
4823 	char b[BDEVNAME_SIZE];
4824 
4825 	printk(KERN_INFO "md: autorun ...\n");
4826 	while (!list_empty(&pending_raid_disks)) {
4827 		int unit;
4828 		dev_t dev;
4829 		LIST_HEAD(candidates);
4830 		rdev0 = list_entry(pending_raid_disks.next,
4831 					 mdk_rdev_t, same_set);
4832 
4833 		printk(KERN_INFO "md: considering %s ...\n",
4834 			bdevname(rdev0->bdev,b));
4835 		INIT_LIST_HEAD(&candidates);
4836 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4837 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4838 				printk(KERN_INFO "md:  adding %s ...\n",
4839 					bdevname(rdev->bdev,b));
4840 				list_move(&rdev->same_set, &candidates);
4841 			}
4842 		/*
4843 		 * now we have a set of devices, with all of them having
4844 		 * mostly sane superblocks. It's time to allocate the
4845 		 * mddev.
4846 		 */
4847 		if (part) {
4848 			dev = MKDEV(mdp_major,
4849 				    rdev0->preferred_minor << MdpMinorShift);
4850 			unit = MINOR(dev) >> MdpMinorShift;
4851 		} else {
4852 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4853 			unit = MINOR(dev);
4854 		}
4855 		if (rdev0->preferred_minor != unit) {
4856 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4857 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4858 			break;
4859 		}
4860 
4861 		md_probe(dev, NULL, NULL);
4862 		mddev = mddev_find(dev);
4863 		if (!mddev || !mddev->gendisk) {
4864 			if (mddev)
4865 				mddev_put(mddev);
4866 			printk(KERN_ERR
4867 				"md: cannot allocate memory for md drive.\n");
4868 			break;
4869 		}
4870 		if (mddev_lock(mddev))
4871 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4872 			       mdname(mddev));
4873 		else if (mddev->raid_disks || mddev->major_version
4874 			 || !list_empty(&mddev->disks)) {
4875 			printk(KERN_WARNING
4876 				"md: %s already running, cannot run %s\n",
4877 				mdname(mddev), bdevname(rdev0->bdev,b));
4878 			mddev_unlock(mddev);
4879 		} else {
4880 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4881 			mddev->persistent = 1;
4882 			rdev_for_each_list(rdev, tmp, &candidates) {
4883 				list_del_init(&rdev->same_set);
4884 				if (bind_rdev_to_array(rdev, mddev))
4885 					export_rdev(rdev);
4886 			}
4887 			autorun_array(mddev);
4888 			mddev_unlock(mddev);
4889 		}
4890 		/* on success, candidates will be empty, on error
4891 		 * it won't...
4892 		 */
4893 		rdev_for_each_list(rdev, tmp, &candidates) {
4894 			list_del_init(&rdev->same_set);
4895 			export_rdev(rdev);
4896 		}
4897 		mddev_put(mddev);
4898 	}
4899 	printk(KERN_INFO "md: ... autorun DONE.\n");
4900 }
4901 #endif /* !MODULE */
4902 
4903 static int get_version(void __user * arg)
4904 {
4905 	mdu_version_t ver;
4906 
4907 	ver.major = MD_MAJOR_VERSION;
4908 	ver.minor = MD_MINOR_VERSION;
4909 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4910 
4911 	if (copy_to_user(arg, &ver, sizeof(ver)))
4912 		return -EFAULT;
4913 
4914 	return 0;
4915 }
4916 
4917 static int get_array_info(mddev_t * mddev, void __user * arg)
4918 {
4919 	mdu_array_info_t info;
4920 	int nr,working,insync,failed,spare;
4921 	mdk_rdev_t *rdev;
4922 
4923 	nr=working=insync=failed=spare=0;
4924 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4925 		nr++;
4926 		if (test_bit(Faulty, &rdev->flags))
4927 			failed++;
4928 		else {
4929 			working++;
4930 			if (test_bit(In_sync, &rdev->flags))
4931 				insync++;
4932 			else
4933 				spare++;
4934 		}
4935 	}
4936 
4937 	info.major_version = mddev->major_version;
4938 	info.minor_version = mddev->minor_version;
4939 	info.patch_version = MD_PATCHLEVEL_VERSION;
4940 	info.ctime         = mddev->ctime;
4941 	info.level         = mddev->level;
4942 	info.size          = mddev->dev_sectors / 2;
4943 	if (info.size != mddev->dev_sectors / 2) /* overflow */
4944 		info.size = -1;
4945 	info.nr_disks      = nr;
4946 	info.raid_disks    = mddev->raid_disks;
4947 	info.md_minor      = mddev->md_minor;
4948 	info.not_persistent= !mddev->persistent;
4949 
4950 	info.utime         = mddev->utime;
4951 	info.state         = 0;
4952 	if (mddev->in_sync)
4953 		info.state = (1<<MD_SB_CLEAN);
4954 	if (mddev->bitmap && mddev->bitmap_info.offset)
4955 		info.state = (1<<MD_SB_BITMAP_PRESENT);
4956 	info.active_disks  = insync;
4957 	info.working_disks = working;
4958 	info.failed_disks  = failed;
4959 	info.spare_disks   = spare;
4960 
4961 	info.layout        = mddev->layout;
4962 	info.chunk_size    = mddev->chunk_sectors << 9;
4963 
4964 	if (copy_to_user(arg, &info, sizeof(info)))
4965 		return -EFAULT;
4966 
4967 	return 0;
4968 }
4969 
4970 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4971 {
4972 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4973 	char *ptr, *buf = NULL;
4974 	int err = -ENOMEM;
4975 
4976 	if (md_allow_write(mddev))
4977 		file = kmalloc(sizeof(*file), GFP_NOIO);
4978 	else
4979 		file = kmalloc(sizeof(*file), GFP_KERNEL);
4980 
4981 	if (!file)
4982 		goto out;
4983 
4984 	/* bitmap disabled, zero the first byte and copy out */
4985 	if (!mddev->bitmap || !mddev->bitmap->file) {
4986 		file->pathname[0] = '\0';
4987 		goto copy_out;
4988 	}
4989 
4990 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4991 	if (!buf)
4992 		goto out;
4993 
4994 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4995 	if (IS_ERR(ptr))
4996 		goto out;
4997 
4998 	strcpy(file->pathname, ptr);
4999 
5000 copy_out:
5001 	err = 0;
5002 	if (copy_to_user(arg, file, sizeof(*file)))
5003 		err = -EFAULT;
5004 out:
5005 	kfree(buf);
5006 	kfree(file);
5007 	return err;
5008 }
5009 
5010 static int get_disk_info(mddev_t * mddev, void __user * arg)
5011 {
5012 	mdu_disk_info_t info;
5013 	mdk_rdev_t *rdev;
5014 
5015 	if (copy_from_user(&info, arg, sizeof(info)))
5016 		return -EFAULT;
5017 
5018 	rdev = find_rdev_nr(mddev, info.number);
5019 	if (rdev) {
5020 		info.major = MAJOR(rdev->bdev->bd_dev);
5021 		info.minor = MINOR(rdev->bdev->bd_dev);
5022 		info.raid_disk = rdev->raid_disk;
5023 		info.state = 0;
5024 		if (test_bit(Faulty, &rdev->flags))
5025 			info.state |= (1<<MD_DISK_FAULTY);
5026 		else if (test_bit(In_sync, &rdev->flags)) {
5027 			info.state |= (1<<MD_DISK_ACTIVE);
5028 			info.state |= (1<<MD_DISK_SYNC);
5029 		}
5030 		if (test_bit(WriteMostly, &rdev->flags))
5031 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5032 	} else {
5033 		info.major = info.minor = 0;
5034 		info.raid_disk = -1;
5035 		info.state = (1<<MD_DISK_REMOVED);
5036 	}
5037 
5038 	if (copy_to_user(arg, &info, sizeof(info)))
5039 		return -EFAULT;
5040 
5041 	return 0;
5042 }
5043 
5044 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5045 {
5046 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5047 	mdk_rdev_t *rdev;
5048 	dev_t dev = MKDEV(info->major,info->minor);
5049 
5050 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5051 		return -EOVERFLOW;
5052 
5053 	if (!mddev->raid_disks) {
5054 		int err;
5055 		/* expecting a device which has a superblock */
5056 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5057 		if (IS_ERR(rdev)) {
5058 			printk(KERN_WARNING
5059 				"md: md_import_device returned %ld\n",
5060 				PTR_ERR(rdev));
5061 			return PTR_ERR(rdev);
5062 		}
5063 		if (!list_empty(&mddev->disks)) {
5064 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5065 							mdk_rdev_t, same_set);
5066 			err = super_types[mddev->major_version]
5067 				.load_super(rdev, rdev0, mddev->minor_version);
5068 			if (err < 0) {
5069 				printk(KERN_WARNING
5070 					"md: %s has different UUID to %s\n",
5071 					bdevname(rdev->bdev,b),
5072 					bdevname(rdev0->bdev,b2));
5073 				export_rdev(rdev);
5074 				return -EINVAL;
5075 			}
5076 		}
5077 		err = bind_rdev_to_array(rdev, mddev);
5078 		if (err)
5079 			export_rdev(rdev);
5080 		return err;
5081 	}
5082 
5083 	/*
5084 	 * add_new_disk can be used once the array is assembled
5085 	 * to add "hot spares".  They must already have a superblock
5086 	 * written
5087 	 */
5088 	if (mddev->pers) {
5089 		int err;
5090 		if (!mddev->pers->hot_add_disk) {
5091 			printk(KERN_WARNING
5092 				"%s: personality does not support diskops!\n",
5093 			       mdname(mddev));
5094 			return -EINVAL;
5095 		}
5096 		if (mddev->persistent)
5097 			rdev = md_import_device(dev, mddev->major_version,
5098 						mddev->minor_version);
5099 		else
5100 			rdev = md_import_device(dev, -1, -1);
5101 		if (IS_ERR(rdev)) {
5102 			printk(KERN_WARNING
5103 				"md: md_import_device returned %ld\n",
5104 				PTR_ERR(rdev));
5105 			return PTR_ERR(rdev);
5106 		}
5107 		/* set save_raid_disk if appropriate */
5108 		if (!mddev->persistent) {
5109 			if (info->state & (1<<MD_DISK_SYNC)  &&
5110 			    info->raid_disk < mddev->raid_disks)
5111 				rdev->raid_disk = info->raid_disk;
5112 			else
5113 				rdev->raid_disk = -1;
5114 		} else
5115 			super_types[mddev->major_version].
5116 				validate_super(mddev, rdev);
5117 		rdev->saved_raid_disk = rdev->raid_disk;
5118 
5119 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5120 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5121 			set_bit(WriteMostly, &rdev->flags);
5122 		else
5123 			clear_bit(WriteMostly, &rdev->flags);
5124 
5125 		rdev->raid_disk = -1;
5126 		err = bind_rdev_to_array(rdev, mddev);
5127 		if (!err && !mddev->pers->hot_remove_disk) {
5128 			/* If there is hot_add_disk but no hot_remove_disk
5129 			 * then added disks for geometry changes,
5130 			 * and should be added immediately.
5131 			 */
5132 			super_types[mddev->major_version].
5133 				validate_super(mddev, rdev);
5134 			err = mddev->pers->hot_add_disk(mddev, rdev);
5135 			if (err)
5136 				unbind_rdev_from_array(rdev);
5137 		}
5138 		if (err)
5139 			export_rdev(rdev);
5140 		else
5141 			sysfs_notify_dirent(rdev->sysfs_state);
5142 
5143 		md_update_sb(mddev, 1);
5144 		if (mddev->degraded)
5145 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5146 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5147 		md_wakeup_thread(mddev->thread);
5148 		return err;
5149 	}
5150 
5151 	/* otherwise, add_new_disk is only allowed
5152 	 * for major_version==0 superblocks
5153 	 */
5154 	if (mddev->major_version != 0) {
5155 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5156 		       mdname(mddev));
5157 		return -EINVAL;
5158 	}
5159 
5160 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5161 		int err;
5162 		rdev = md_import_device(dev, -1, 0);
5163 		if (IS_ERR(rdev)) {
5164 			printk(KERN_WARNING
5165 				"md: error, md_import_device() returned %ld\n",
5166 				PTR_ERR(rdev));
5167 			return PTR_ERR(rdev);
5168 		}
5169 		rdev->desc_nr = info->number;
5170 		if (info->raid_disk < mddev->raid_disks)
5171 			rdev->raid_disk = info->raid_disk;
5172 		else
5173 			rdev->raid_disk = -1;
5174 
5175 		if (rdev->raid_disk < mddev->raid_disks)
5176 			if (info->state & (1<<MD_DISK_SYNC))
5177 				set_bit(In_sync, &rdev->flags);
5178 
5179 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5180 			set_bit(WriteMostly, &rdev->flags);
5181 
5182 		if (!mddev->persistent) {
5183 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5184 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5185 		} else
5186 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5187 		rdev->sectors = rdev->sb_start;
5188 
5189 		err = bind_rdev_to_array(rdev, mddev);
5190 		if (err) {
5191 			export_rdev(rdev);
5192 			return err;
5193 		}
5194 	}
5195 
5196 	return 0;
5197 }
5198 
5199 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5200 {
5201 	char b[BDEVNAME_SIZE];
5202 	mdk_rdev_t *rdev;
5203 
5204 	rdev = find_rdev(mddev, dev);
5205 	if (!rdev)
5206 		return -ENXIO;
5207 
5208 	if (rdev->raid_disk >= 0)
5209 		goto busy;
5210 
5211 	kick_rdev_from_array(rdev);
5212 	md_update_sb(mddev, 1);
5213 	md_new_event(mddev);
5214 
5215 	return 0;
5216 busy:
5217 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5218 		bdevname(rdev->bdev,b), mdname(mddev));
5219 	return -EBUSY;
5220 }
5221 
5222 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5223 {
5224 	char b[BDEVNAME_SIZE];
5225 	int err;
5226 	mdk_rdev_t *rdev;
5227 
5228 	if (!mddev->pers)
5229 		return -ENODEV;
5230 
5231 	if (mddev->major_version != 0) {
5232 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5233 			" version-0 superblocks.\n",
5234 			mdname(mddev));
5235 		return -EINVAL;
5236 	}
5237 	if (!mddev->pers->hot_add_disk) {
5238 		printk(KERN_WARNING
5239 			"%s: personality does not support diskops!\n",
5240 			mdname(mddev));
5241 		return -EINVAL;
5242 	}
5243 
5244 	rdev = md_import_device(dev, -1, 0);
5245 	if (IS_ERR(rdev)) {
5246 		printk(KERN_WARNING
5247 			"md: error, md_import_device() returned %ld\n",
5248 			PTR_ERR(rdev));
5249 		return -EINVAL;
5250 	}
5251 
5252 	if (mddev->persistent)
5253 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5254 	else
5255 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5256 
5257 	rdev->sectors = rdev->sb_start;
5258 
5259 	if (test_bit(Faulty, &rdev->flags)) {
5260 		printk(KERN_WARNING
5261 			"md: can not hot-add faulty %s disk to %s!\n",
5262 			bdevname(rdev->bdev,b), mdname(mddev));
5263 		err = -EINVAL;
5264 		goto abort_export;
5265 	}
5266 	clear_bit(In_sync, &rdev->flags);
5267 	rdev->desc_nr = -1;
5268 	rdev->saved_raid_disk = -1;
5269 	err = bind_rdev_to_array(rdev, mddev);
5270 	if (err)
5271 		goto abort_export;
5272 
5273 	/*
5274 	 * The rest should better be atomic, we can have disk failures
5275 	 * noticed in interrupt contexts ...
5276 	 */
5277 
5278 	rdev->raid_disk = -1;
5279 
5280 	md_update_sb(mddev, 1);
5281 
5282 	/*
5283 	 * Kick recovery, maybe this spare has to be added to the
5284 	 * array immediately.
5285 	 */
5286 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5287 	md_wakeup_thread(mddev->thread);
5288 	md_new_event(mddev);
5289 	return 0;
5290 
5291 abort_export:
5292 	export_rdev(rdev);
5293 	return err;
5294 }
5295 
5296 static int set_bitmap_file(mddev_t *mddev, int fd)
5297 {
5298 	int err;
5299 
5300 	if (mddev->pers) {
5301 		if (!mddev->pers->quiesce)
5302 			return -EBUSY;
5303 		if (mddev->recovery || mddev->sync_thread)
5304 			return -EBUSY;
5305 		/* we should be able to change the bitmap.. */
5306 	}
5307 
5308 
5309 	if (fd >= 0) {
5310 		if (mddev->bitmap)
5311 			return -EEXIST; /* cannot add when bitmap is present */
5312 		mddev->bitmap_info.file = fget(fd);
5313 
5314 		if (mddev->bitmap_info.file == NULL) {
5315 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5316 			       mdname(mddev));
5317 			return -EBADF;
5318 		}
5319 
5320 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5321 		if (err) {
5322 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5323 			       mdname(mddev));
5324 			fput(mddev->bitmap_info.file);
5325 			mddev->bitmap_info.file = NULL;
5326 			return err;
5327 		}
5328 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5329 	} else if (mddev->bitmap == NULL)
5330 		return -ENOENT; /* cannot remove what isn't there */
5331 	err = 0;
5332 	if (mddev->pers) {
5333 		mddev->pers->quiesce(mddev, 1);
5334 		if (fd >= 0)
5335 			err = bitmap_create(mddev);
5336 		if (fd < 0 || err) {
5337 			bitmap_destroy(mddev);
5338 			fd = -1; /* make sure to put the file */
5339 		}
5340 		mddev->pers->quiesce(mddev, 0);
5341 	}
5342 	if (fd < 0) {
5343 		if (mddev->bitmap_info.file) {
5344 			restore_bitmap_write_access(mddev->bitmap_info.file);
5345 			fput(mddev->bitmap_info.file);
5346 		}
5347 		mddev->bitmap_info.file = NULL;
5348 	}
5349 
5350 	return err;
5351 }
5352 
5353 /*
5354  * set_array_info is used two different ways
5355  * The original usage is when creating a new array.
5356  * In this usage, raid_disks is > 0 and it together with
5357  *  level, size, not_persistent,layout,chunksize determine the
5358  *  shape of the array.
5359  *  This will always create an array with a type-0.90.0 superblock.
5360  * The newer usage is when assembling an array.
5361  *  In this case raid_disks will be 0, and the major_version field is
5362  *  use to determine which style super-blocks are to be found on the devices.
5363  *  The minor and patch _version numbers are also kept incase the
5364  *  super_block handler wishes to interpret them.
5365  */
5366 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5367 {
5368 
5369 	if (info->raid_disks == 0) {
5370 		/* just setting version number for superblock loading */
5371 		if (info->major_version < 0 ||
5372 		    info->major_version >= ARRAY_SIZE(super_types) ||
5373 		    super_types[info->major_version].name == NULL) {
5374 			/* maybe try to auto-load a module? */
5375 			printk(KERN_INFO
5376 				"md: superblock version %d not known\n",
5377 				info->major_version);
5378 			return -EINVAL;
5379 		}
5380 		mddev->major_version = info->major_version;
5381 		mddev->minor_version = info->minor_version;
5382 		mddev->patch_version = info->patch_version;
5383 		mddev->persistent = !info->not_persistent;
5384 		/* ensure mddev_put doesn't delete this now that there
5385 		 * is some minimal configuration.
5386 		 */
5387 		mddev->ctime         = get_seconds();
5388 		return 0;
5389 	}
5390 	mddev->major_version = MD_MAJOR_VERSION;
5391 	mddev->minor_version = MD_MINOR_VERSION;
5392 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5393 	mddev->ctime         = get_seconds();
5394 
5395 	mddev->level         = info->level;
5396 	mddev->clevel[0]     = 0;
5397 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5398 	mddev->raid_disks    = info->raid_disks;
5399 	/* don't set md_minor, it is determined by which /dev/md* was
5400 	 * openned
5401 	 */
5402 	if (info->state & (1<<MD_SB_CLEAN))
5403 		mddev->recovery_cp = MaxSector;
5404 	else
5405 		mddev->recovery_cp = 0;
5406 	mddev->persistent    = ! info->not_persistent;
5407 	mddev->external	     = 0;
5408 
5409 	mddev->layout        = info->layout;
5410 	mddev->chunk_sectors = info->chunk_size >> 9;
5411 
5412 	mddev->max_disks     = MD_SB_DISKS;
5413 
5414 	if (mddev->persistent)
5415 		mddev->flags         = 0;
5416 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5417 
5418 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5419 	mddev->bitmap_info.offset = 0;
5420 
5421 	mddev->reshape_position = MaxSector;
5422 
5423 	/*
5424 	 * Generate a 128 bit UUID
5425 	 */
5426 	get_random_bytes(mddev->uuid, 16);
5427 
5428 	mddev->new_level = mddev->level;
5429 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5430 	mddev->new_layout = mddev->layout;
5431 	mddev->delta_disks = 0;
5432 
5433 	return 0;
5434 }
5435 
5436 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5437 {
5438 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5439 
5440 	if (mddev->external_size)
5441 		return;
5442 
5443 	mddev->array_sectors = array_sectors;
5444 }
5445 EXPORT_SYMBOL(md_set_array_sectors);
5446 
5447 static int update_size(mddev_t *mddev, sector_t num_sectors)
5448 {
5449 	mdk_rdev_t *rdev;
5450 	int rv;
5451 	int fit = (num_sectors == 0);
5452 
5453 	if (mddev->pers->resize == NULL)
5454 		return -EINVAL;
5455 	/* The "num_sectors" is the number of sectors of each device that
5456 	 * is used.  This can only make sense for arrays with redundancy.
5457 	 * linear and raid0 always use whatever space is available. We can only
5458 	 * consider changing this number if no resync or reconstruction is
5459 	 * happening, and if the new size is acceptable. It must fit before the
5460 	 * sb_start or, if that is <data_offset, it must fit before the size
5461 	 * of each device.  If num_sectors is zero, we find the largest size
5462 	 * that fits.
5463 
5464 	 */
5465 	if (mddev->sync_thread)
5466 		return -EBUSY;
5467 	if (mddev->bitmap)
5468 		/* Sorry, cannot grow a bitmap yet, just remove it,
5469 		 * grow, and re-add.
5470 		 */
5471 		return -EBUSY;
5472 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5473 		sector_t avail = rdev->sectors;
5474 
5475 		if (fit && (num_sectors == 0 || num_sectors > avail))
5476 			num_sectors = avail;
5477 		if (avail < num_sectors)
5478 			return -ENOSPC;
5479 	}
5480 	rv = mddev->pers->resize(mddev, num_sectors);
5481 	if (!rv)
5482 		revalidate_disk(mddev->gendisk);
5483 	return rv;
5484 }
5485 
5486 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5487 {
5488 	int rv;
5489 	/* change the number of raid disks */
5490 	if (mddev->pers->check_reshape == NULL)
5491 		return -EINVAL;
5492 	if (raid_disks <= 0 ||
5493 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5494 		return -EINVAL;
5495 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5496 		return -EBUSY;
5497 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5498 
5499 	rv = mddev->pers->check_reshape(mddev);
5500 	return rv;
5501 }
5502 
5503 
5504 /*
5505  * update_array_info is used to change the configuration of an
5506  * on-line array.
5507  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5508  * fields in the info are checked against the array.
5509  * Any differences that cannot be handled will cause an error.
5510  * Normally, only one change can be managed at a time.
5511  */
5512 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5513 {
5514 	int rv = 0;
5515 	int cnt = 0;
5516 	int state = 0;
5517 
5518 	/* calculate expected state,ignoring low bits */
5519 	if (mddev->bitmap && mddev->bitmap_info.offset)
5520 		state |= (1 << MD_SB_BITMAP_PRESENT);
5521 
5522 	if (mddev->major_version != info->major_version ||
5523 	    mddev->minor_version != info->minor_version ||
5524 /*	    mddev->patch_version != info->patch_version || */
5525 	    mddev->ctime         != info->ctime         ||
5526 	    mddev->level         != info->level         ||
5527 /*	    mddev->layout        != info->layout        || */
5528 	    !mddev->persistent	 != info->not_persistent||
5529 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5530 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5531 	    ((state^info->state) & 0xfffffe00)
5532 		)
5533 		return -EINVAL;
5534 	/* Check there is only one change */
5535 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5536 		cnt++;
5537 	if (mddev->raid_disks != info->raid_disks)
5538 		cnt++;
5539 	if (mddev->layout != info->layout)
5540 		cnt++;
5541 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5542 		cnt++;
5543 	if (cnt == 0)
5544 		return 0;
5545 	if (cnt > 1)
5546 		return -EINVAL;
5547 
5548 	if (mddev->layout != info->layout) {
5549 		/* Change layout
5550 		 * we don't need to do anything at the md level, the
5551 		 * personality will take care of it all.
5552 		 */
5553 		if (mddev->pers->check_reshape == NULL)
5554 			return -EINVAL;
5555 		else {
5556 			mddev->new_layout = info->layout;
5557 			rv = mddev->pers->check_reshape(mddev);
5558 			if (rv)
5559 				mddev->new_layout = mddev->layout;
5560 			return rv;
5561 		}
5562 	}
5563 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5564 		rv = update_size(mddev, (sector_t)info->size * 2);
5565 
5566 	if (mddev->raid_disks    != info->raid_disks)
5567 		rv = update_raid_disks(mddev, info->raid_disks);
5568 
5569 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5570 		if (mddev->pers->quiesce == NULL)
5571 			return -EINVAL;
5572 		if (mddev->recovery || mddev->sync_thread)
5573 			return -EBUSY;
5574 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5575 			/* add the bitmap */
5576 			if (mddev->bitmap)
5577 				return -EEXIST;
5578 			if (mddev->bitmap_info.default_offset == 0)
5579 				return -EINVAL;
5580 			mddev->bitmap_info.offset =
5581 				mddev->bitmap_info.default_offset;
5582 			mddev->pers->quiesce(mddev, 1);
5583 			rv = bitmap_create(mddev);
5584 			if (rv)
5585 				bitmap_destroy(mddev);
5586 			mddev->pers->quiesce(mddev, 0);
5587 		} else {
5588 			/* remove the bitmap */
5589 			if (!mddev->bitmap)
5590 				return -ENOENT;
5591 			if (mddev->bitmap->file)
5592 				return -EINVAL;
5593 			mddev->pers->quiesce(mddev, 1);
5594 			bitmap_destroy(mddev);
5595 			mddev->pers->quiesce(mddev, 0);
5596 			mddev->bitmap_info.offset = 0;
5597 		}
5598 	}
5599 	md_update_sb(mddev, 1);
5600 	return rv;
5601 }
5602 
5603 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5604 {
5605 	mdk_rdev_t *rdev;
5606 
5607 	if (mddev->pers == NULL)
5608 		return -ENODEV;
5609 
5610 	rdev = find_rdev(mddev, dev);
5611 	if (!rdev)
5612 		return -ENODEV;
5613 
5614 	md_error(mddev, rdev);
5615 	return 0;
5616 }
5617 
5618 /*
5619  * We have a problem here : there is no easy way to give a CHS
5620  * virtual geometry. We currently pretend that we have a 2 heads
5621  * 4 sectors (with a BIG number of cylinders...). This drives
5622  * dosfs just mad... ;-)
5623  */
5624 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5625 {
5626 	mddev_t *mddev = bdev->bd_disk->private_data;
5627 
5628 	geo->heads = 2;
5629 	geo->sectors = 4;
5630 	geo->cylinders = mddev->array_sectors / 8;
5631 	return 0;
5632 }
5633 
5634 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5635 			unsigned int cmd, unsigned long arg)
5636 {
5637 	int err = 0;
5638 	void __user *argp = (void __user *)arg;
5639 	mddev_t *mddev = NULL;
5640 	int ro;
5641 
5642 	if (!capable(CAP_SYS_ADMIN))
5643 		return -EACCES;
5644 
5645 	/*
5646 	 * Commands dealing with the RAID driver but not any
5647 	 * particular array:
5648 	 */
5649 	switch (cmd)
5650 	{
5651 		case RAID_VERSION:
5652 			err = get_version(argp);
5653 			goto done;
5654 
5655 		case PRINT_RAID_DEBUG:
5656 			err = 0;
5657 			md_print_devices();
5658 			goto done;
5659 
5660 #ifndef MODULE
5661 		case RAID_AUTORUN:
5662 			err = 0;
5663 			autostart_arrays(arg);
5664 			goto done;
5665 #endif
5666 		default:;
5667 	}
5668 
5669 	/*
5670 	 * Commands creating/starting a new array:
5671 	 */
5672 
5673 	mddev = bdev->bd_disk->private_data;
5674 
5675 	if (!mddev) {
5676 		BUG();
5677 		goto abort;
5678 	}
5679 
5680 	err = mddev_lock(mddev);
5681 	if (err) {
5682 		printk(KERN_INFO
5683 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5684 			err, cmd);
5685 		goto abort;
5686 	}
5687 
5688 	switch (cmd)
5689 	{
5690 		case SET_ARRAY_INFO:
5691 			{
5692 				mdu_array_info_t info;
5693 				if (!arg)
5694 					memset(&info, 0, sizeof(info));
5695 				else if (copy_from_user(&info, argp, sizeof(info))) {
5696 					err = -EFAULT;
5697 					goto abort_unlock;
5698 				}
5699 				if (mddev->pers) {
5700 					err = update_array_info(mddev, &info);
5701 					if (err) {
5702 						printk(KERN_WARNING "md: couldn't update"
5703 						       " array info. %d\n", err);
5704 						goto abort_unlock;
5705 					}
5706 					goto done_unlock;
5707 				}
5708 				if (!list_empty(&mddev->disks)) {
5709 					printk(KERN_WARNING
5710 					       "md: array %s already has disks!\n",
5711 					       mdname(mddev));
5712 					err = -EBUSY;
5713 					goto abort_unlock;
5714 				}
5715 				if (mddev->raid_disks) {
5716 					printk(KERN_WARNING
5717 					       "md: array %s already initialised!\n",
5718 					       mdname(mddev));
5719 					err = -EBUSY;
5720 					goto abort_unlock;
5721 				}
5722 				err = set_array_info(mddev, &info);
5723 				if (err) {
5724 					printk(KERN_WARNING "md: couldn't set"
5725 					       " array info. %d\n", err);
5726 					goto abort_unlock;
5727 				}
5728 			}
5729 			goto done_unlock;
5730 
5731 		default:;
5732 	}
5733 
5734 	/*
5735 	 * Commands querying/configuring an existing array:
5736 	 */
5737 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5738 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5739 	if ((!mddev->raid_disks && !mddev->external)
5740 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5741 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5742 	    && cmd != GET_BITMAP_FILE) {
5743 		err = -ENODEV;
5744 		goto abort_unlock;
5745 	}
5746 
5747 	/*
5748 	 * Commands even a read-only array can execute:
5749 	 */
5750 	switch (cmd)
5751 	{
5752 		case GET_ARRAY_INFO:
5753 			err = get_array_info(mddev, argp);
5754 			goto done_unlock;
5755 
5756 		case GET_BITMAP_FILE:
5757 			err = get_bitmap_file(mddev, argp);
5758 			goto done_unlock;
5759 
5760 		case GET_DISK_INFO:
5761 			err = get_disk_info(mddev, argp);
5762 			goto done_unlock;
5763 
5764 		case RESTART_ARRAY_RW:
5765 			err = restart_array(mddev);
5766 			goto done_unlock;
5767 
5768 		case STOP_ARRAY:
5769 			err = do_md_stop(mddev, 0, 1);
5770 			goto done_unlock;
5771 
5772 		case STOP_ARRAY_RO:
5773 			err = md_set_readonly(mddev, 1);
5774 			goto done_unlock;
5775 
5776 		case BLKROSET:
5777 			if (get_user(ro, (int __user *)(arg))) {
5778 				err = -EFAULT;
5779 				goto done_unlock;
5780 			}
5781 			err = -EINVAL;
5782 
5783 			/* if the bdev is going readonly the value of mddev->ro
5784 			 * does not matter, no writes are coming
5785 			 */
5786 			if (ro)
5787 				goto done_unlock;
5788 
5789 			/* are we are already prepared for writes? */
5790 			if (mddev->ro != 1)
5791 				goto done_unlock;
5792 
5793 			/* transitioning to readauto need only happen for
5794 			 * arrays that call md_write_start
5795 			 */
5796 			if (mddev->pers) {
5797 				err = restart_array(mddev);
5798 				if (err == 0) {
5799 					mddev->ro = 2;
5800 					set_disk_ro(mddev->gendisk, 0);
5801 				}
5802 			}
5803 			goto done_unlock;
5804 	}
5805 
5806 	/*
5807 	 * The remaining ioctls are changing the state of the
5808 	 * superblock, so we do not allow them on read-only arrays.
5809 	 * However non-MD ioctls (e.g. get-size) will still come through
5810 	 * here and hit the 'default' below, so only disallow
5811 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5812 	 */
5813 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5814 		if (mddev->ro == 2) {
5815 			mddev->ro = 0;
5816 			sysfs_notify_dirent(mddev->sysfs_state);
5817 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5818 			md_wakeup_thread(mddev->thread);
5819 		} else {
5820 			err = -EROFS;
5821 			goto abort_unlock;
5822 		}
5823 	}
5824 
5825 	switch (cmd)
5826 	{
5827 		case ADD_NEW_DISK:
5828 		{
5829 			mdu_disk_info_t info;
5830 			if (copy_from_user(&info, argp, sizeof(info)))
5831 				err = -EFAULT;
5832 			else
5833 				err = add_new_disk(mddev, &info);
5834 			goto done_unlock;
5835 		}
5836 
5837 		case HOT_REMOVE_DISK:
5838 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5839 			goto done_unlock;
5840 
5841 		case HOT_ADD_DISK:
5842 			err = hot_add_disk(mddev, new_decode_dev(arg));
5843 			goto done_unlock;
5844 
5845 		case SET_DISK_FAULTY:
5846 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5847 			goto done_unlock;
5848 
5849 		case RUN_ARRAY:
5850 			err = do_md_run(mddev);
5851 			goto done_unlock;
5852 
5853 		case SET_BITMAP_FILE:
5854 			err = set_bitmap_file(mddev, (int)arg);
5855 			goto done_unlock;
5856 
5857 		default:
5858 			err = -EINVAL;
5859 			goto abort_unlock;
5860 	}
5861 
5862 done_unlock:
5863 abort_unlock:
5864 	if (mddev->hold_active == UNTIL_IOCTL &&
5865 	    err != -EINVAL)
5866 		mddev->hold_active = 0;
5867 	mddev_unlock(mddev);
5868 
5869 	return err;
5870 done:
5871 	if (err)
5872 		MD_BUG();
5873 abort:
5874 	return err;
5875 }
5876 #ifdef CONFIG_COMPAT
5877 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5878 		    unsigned int cmd, unsigned long arg)
5879 {
5880 	switch (cmd) {
5881 	case HOT_REMOVE_DISK:
5882 	case HOT_ADD_DISK:
5883 	case SET_DISK_FAULTY:
5884 	case SET_BITMAP_FILE:
5885 		/* These take in integer arg, do not convert */
5886 		break;
5887 	default:
5888 		arg = (unsigned long)compat_ptr(arg);
5889 		break;
5890 	}
5891 
5892 	return md_ioctl(bdev, mode, cmd, arg);
5893 }
5894 #endif /* CONFIG_COMPAT */
5895 
5896 static int md_open(struct block_device *bdev, fmode_t mode)
5897 {
5898 	/*
5899 	 * Succeed if we can lock the mddev, which confirms that
5900 	 * it isn't being stopped right now.
5901 	 */
5902 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5903 	int err;
5904 
5905 	if (mddev->gendisk != bdev->bd_disk) {
5906 		/* we are racing with mddev_put which is discarding this
5907 		 * bd_disk.
5908 		 */
5909 		mddev_put(mddev);
5910 		/* Wait until bdev->bd_disk is definitely gone */
5911 		flush_scheduled_work();
5912 		/* Then retry the open from the top */
5913 		return -ERESTARTSYS;
5914 	}
5915 	BUG_ON(mddev != bdev->bd_disk->private_data);
5916 
5917 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5918 		goto out;
5919 
5920 	err = 0;
5921 	atomic_inc(&mddev->openers);
5922 	mutex_unlock(&mddev->open_mutex);
5923 
5924 	check_disk_size_change(mddev->gendisk, bdev);
5925  out:
5926 	return err;
5927 }
5928 
5929 static int md_release(struct gendisk *disk, fmode_t mode)
5930 {
5931  	mddev_t *mddev = disk->private_data;
5932 
5933 	BUG_ON(!mddev);
5934 	atomic_dec(&mddev->openers);
5935 	mddev_put(mddev);
5936 
5937 	return 0;
5938 }
5939 static const struct block_device_operations md_fops =
5940 {
5941 	.owner		= THIS_MODULE,
5942 	.open		= md_open,
5943 	.release	= md_release,
5944 	.ioctl		= md_ioctl,
5945 #ifdef CONFIG_COMPAT
5946 	.compat_ioctl	= md_compat_ioctl,
5947 #endif
5948 	.getgeo		= md_getgeo,
5949 };
5950 
5951 static int md_thread(void * arg)
5952 {
5953 	mdk_thread_t *thread = arg;
5954 
5955 	/*
5956 	 * md_thread is a 'system-thread', it's priority should be very
5957 	 * high. We avoid resource deadlocks individually in each
5958 	 * raid personality. (RAID5 does preallocation) We also use RR and
5959 	 * the very same RT priority as kswapd, thus we will never get
5960 	 * into a priority inversion deadlock.
5961 	 *
5962 	 * we definitely have to have equal or higher priority than
5963 	 * bdflush, otherwise bdflush will deadlock if there are too
5964 	 * many dirty RAID5 blocks.
5965 	 */
5966 
5967 	allow_signal(SIGKILL);
5968 	while (!kthread_should_stop()) {
5969 
5970 		/* We need to wait INTERRUPTIBLE so that
5971 		 * we don't add to the load-average.
5972 		 * That means we need to be sure no signals are
5973 		 * pending
5974 		 */
5975 		if (signal_pending(current))
5976 			flush_signals(current);
5977 
5978 		wait_event_interruptible_timeout
5979 			(thread->wqueue,
5980 			 test_bit(THREAD_WAKEUP, &thread->flags)
5981 			 || kthread_should_stop(),
5982 			 thread->timeout);
5983 
5984 		clear_bit(THREAD_WAKEUP, &thread->flags);
5985 
5986 		thread->run(thread->mddev);
5987 	}
5988 
5989 	return 0;
5990 }
5991 
5992 void md_wakeup_thread(mdk_thread_t *thread)
5993 {
5994 	if (thread) {
5995 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5996 		set_bit(THREAD_WAKEUP, &thread->flags);
5997 		wake_up(&thread->wqueue);
5998 	}
5999 }
6000 
6001 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6002 				 const char *name)
6003 {
6004 	mdk_thread_t *thread;
6005 
6006 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6007 	if (!thread)
6008 		return NULL;
6009 
6010 	init_waitqueue_head(&thread->wqueue);
6011 
6012 	thread->run = run;
6013 	thread->mddev = mddev;
6014 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6015 	thread->tsk = kthread_run(md_thread, thread,
6016 				  "%s_%s",
6017 				  mdname(thread->mddev),
6018 				  name ?: mddev->pers->name);
6019 	if (IS_ERR(thread->tsk)) {
6020 		kfree(thread);
6021 		return NULL;
6022 	}
6023 	return thread;
6024 }
6025 
6026 void md_unregister_thread(mdk_thread_t *thread)
6027 {
6028 	if (!thread)
6029 		return;
6030 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6031 
6032 	kthread_stop(thread->tsk);
6033 	kfree(thread);
6034 }
6035 
6036 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6037 {
6038 	if (!mddev) {
6039 		MD_BUG();
6040 		return;
6041 	}
6042 
6043 	if (!rdev || test_bit(Faulty, &rdev->flags))
6044 		return;
6045 
6046 	if (mddev->external)
6047 		set_bit(Blocked, &rdev->flags);
6048 /*
6049 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6050 		mdname(mddev),
6051 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6052 		__builtin_return_address(0),__builtin_return_address(1),
6053 		__builtin_return_address(2),__builtin_return_address(3));
6054 */
6055 	if (!mddev->pers)
6056 		return;
6057 	if (!mddev->pers->error_handler)
6058 		return;
6059 	mddev->pers->error_handler(mddev,rdev);
6060 	if (mddev->degraded)
6061 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6062 	sysfs_notify_dirent(rdev->sysfs_state);
6063 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6064 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6065 	md_wakeup_thread(mddev->thread);
6066 	md_new_event_inintr(mddev);
6067 }
6068 
6069 /* seq_file implementation /proc/mdstat */
6070 
6071 static void status_unused(struct seq_file *seq)
6072 {
6073 	int i = 0;
6074 	mdk_rdev_t *rdev;
6075 
6076 	seq_printf(seq, "unused devices: ");
6077 
6078 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6079 		char b[BDEVNAME_SIZE];
6080 		i++;
6081 		seq_printf(seq, "%s ",
6082 			      bdevname(rdev->bdev,b));
6083 	}
6084 	if (!i)
6085 		seq_printf(seq, "<none>");
6086 
6087 	seq_printf(seq, "\n");
6088 }
6089 
6090 
6091 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6092 {
6093 	sector_t max_sectors, resync, res;
6094 	unsigned long dt, db;
6095 	sector_t rt;
6096 	int scale;
6097 	unsigned int per_milli;
6098 
6099 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6100 
6101 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6102 		max_sectors = mddev->resync_max_sectors;
6103 	else
6104 		max_sectors = mddev->dev_sectors;
6105 
6106 	/*
6107 	 * Should not happen.
6108 	 */
6109 	if (!max_sectors) {
6110 		MD_BUG();
6111 		return;
6112 	}
6113 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6114 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6115 	 * u32, as those are the requirements for sector_div.
6116 	 * Thus 'scale' must be at least 10
6117 	 */
6118 	scale = 10;
6119 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6120 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6121 			scale++;
6122 	}
6123 	res = (resync>>scale)*1000;
6124 	sector_div(res, (u32)((max_sectors>>scale)+1));
6125 
6126 	per_milli = res;
6127 	{
6128 		int i, x = per_milli/50, y = 20-x;
6129 		seq_printf(seq, "[");
6130 		for (i = 0; i < x; i++)
6131 			seq_printf(seq, "=");
6132 		seq_printf(seq, ">");
6133 		for (i = 0; i < y; i++)
6134 			seq_printf(seq, ".");
6135 		seq_printf(seq, "] ");
6136 	}
6137 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6138 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6139 		    "reshape" :
6140 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6141 		     "check" :
6142 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6143 		      "resync" : "recovery"))),
6144 		   per_milli/10, per_milli % 10,
6145 		   (unsigned long long) resync/2,
6146 		   (unsigned long long) max_sectors/2);
6147 
6148 	/*
6149 	 * dt: time from mark until now
6150 	 * db: blocks written from mark until now
6151 	 * rt: remaining time
6152 	 *
6153 	 * rt is a sector_t, so could be 32bit or 64bit.
6154 	 * So we divide before multiply in case it is 32bit and close
6155 	 * to the limit.
6156 	 * We scale the divisor (db) by 32 to avoid loosing precision
6157 	 * near the end of resync when the number of remaining sectors
6158 	 * is close to 'db'.
6159 	 * We then divide rt by 32 after multiplying by db to compensate.
6160 	 * The '+1' avoids division by zero if db is very small.
6161 	 */
6162 	dt = ((jiffies - mddev->resync_mark) / HZ);
6163 	if (!dt) dt++;
6164 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6165 		- mddev->resync_mark_cnt;
6166 
6167 	rt = max_sectors - resync;    /* number of remaining sectors */
6168 	sector_div(rt, db/32+1);
6169 	rt *= dt;
6170 	rt >>= 5;
6171 
6172 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6173 		   ((unsigned long)rt % 60)/6);
6174 
6175 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6176 }
6177 
6178 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6179 {
6180 	struct list_head *tmp;
6181 	loff_t l = *pos;
6182 	mddev_t *mddev;
6183 
6184 	if (l >= 0x10000)
6185 		return NULL;
6186 	if (!l--)
6187 		/* header */
6188 		return (void*)1;
6189 
6190 	spin_lock(&all_mddevs_lock);
6191 	list_for_each(tmp,&all_mddevs)
6192 		if (!l--) {
6193 			mddev = list_entry(tmp, mddev_t, all_mddevs);
6194 			mddev_get(mddev);
6195 			spin_unlock(&all_mddevs_lock);
6196 			return mddev;
6197 		}
6198 	spin_unlock(&all_mddevs_lock);
6199 	if (!l--)
6200 		return (void*)2;/* tail */
6201 	return NULL;
6202 }
6203 
6204 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6205 {
6206 	struct list_head *tmp;
6207 	mddev_t *next_mddev, *mddev = v;
6208 
6209 	++*pos;
6210 	if (v == (void*)2)
6211 		return NULL;
6212 
6213 	spin_lock(&all_mddevs_lock);
6214 	if (v == (void*)1)
6215 		tmp = all_mddevs.next;
6216 	else
6217 		tmp = mddev->all_mddevs.next;
6218 	if (tmp != &all_mddevs)
6219 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6220 	else {
6221 		next_mddev = (void*)2;
6222 		*pos = 0x10000;
6223 	}
6224 	spin_unlock(&all_mddevs_lock);
6225 
6226 	if (v != (void*)1)
6227 		mddev_put(mddev);
6228 	return next_mddev;
6229 
6230 }
6231 
6232 static void md_seq_stop(struct seq_file *seq, void *v)
6233 {
6234 	mddev_t *mddev = v;
6235 
6236 	if (mddev && v != (void*)1 && v != (void*)2)
6237 		mddev_put(mddev);
6238 }
6239 
6240 struct mdstat_info {
6241 	int event;
6242 };
6243 
6244 static int md_seq_show(struct seq_file *seq, void *v)
6245 {
6246 	mddev_t *mddev = v;
6247 	sector_t sectors;
6248 	mdk_rdev_t *rdev;
6249 	struct mdstat_info *mi = seq->private;
6250 	struct bitmap *bitmap;
6251 
6252 	if (v == (void*)1) {
6253 		struct mdk_personality *pers;
6254 		seq_printf(seq, "Personalities : ");
6255 		spin_lock(&pers_lock);
6256 		list_for_each_entry(pers, &pers_list, list)
6257 			seq_printf(seq, "[%s] ", pers->name);
6258 
6259 		spin_unlock(&pers_lock);
6260 		seq_printf(seq, "\n");
6261 		mi->event = atomic_read(&md_event_count);
6262 		return 0;
6263 	}
6264 	if (v == (void*)2) {
6265 		status_unused(seq);
6266 		return 0;
6267 	}
6268 
6269 	if (mddev_lock(mddev) < 0)
6270 		return -EINTR;
6271 
6272 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6273 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6274 						mddev->pers ? "" : "in");
6275 		if (mddev->pers) {
6276 			if (mddev->ro==1)
6277 				seq_printf(seq, " (read-only)");
6278 			if (mddev->ro==2)
6279 				seq_printf(seq, " (auto-read-only)");
6280 			seq_printf(seq, " %s", mddev->pers->name);
6281 		}
6282 
6283 		sectors = 0;
6284 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6285 			char b[BDEVNAME_SIZE];
6286 			seq_printf(seq, " %s[%d]",
6287 				bdevname(rdev->bdev,b), rdev->desc_nr);
6288 			if (test_bit(WriteMostly, &rdev->flags))
6289 				seq_printf(seq, "(W)");
6290 			if (test_bit(Faulty, &rdev->flags)) {
6291 				seq_printf(seq, "(F)");
6292 				continue;
6293 			} else if (rdev->raid_disk < 0)
6294 				seq_printf(seq, "(S)"); /* spare */
6295 			sectors += rdev->sectors;
6296 		}
6297 
6298 		if (!list_empty(&mddev->disks)) {
6299 			if (mddev->pers)
6300 				seq_printf(seq, "\n      %llu blocks",
6301 					   (unsigned long long)
6302 					   mddev->array_sectors / 2);
6303 			else
6304 				seq_printf(seq, "\n      %llu blocks",
6305 					   (unsigned long long)sectors / 2);
6306 		}
6307 		if (mddev->persistent) {
6308 			if (mddev->major_version != 0 ||
6309 			    mddev->minor_version != 90) {
6310 				seq_printf(seq," super %d.%d",
6311 					   mddev->major_version,
6312 					   mddev->minor_version);
6313 			}
6314 		} else if (mddev->external)
6315 			seq_printf(seq, " super external:%s",
6316 				   mddev->metadata_type);
6317 		else
6318 			seq_printf(seq, " super non-persistent");
6319 
6320 		if (mddev->pers) {
6321 			mddev->pers->status(seq, mddev);
6322 	 		seq_printf(seq, "\n      ");
6323 			if (mddev->pers->sync_request) {
6324 				if (mddev->curr_resync > 2) {
6325 					status_resync(seq, mddev);
6326 					seq_printf(seq, "\n      ");
6327 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6328 					seq_printf(seq, "\tresync=DELAYED\n      ");
6329 				else if (mddev->recovery_cp < MaxSector)
6330 					seq_printf(seq, "\tresync=PENDING\n      ");
6331 			}
6332 		} else
6333 			seq_printf(seq, "\n       ");
6334 
6335 		if ((bitmap = mddev->bitmap)) {
6336 			unsigned long chunk_kb;
6337 			unsigned long flags;
6338 			spin_lock_irqsave(&bitmap->lock, flags);
6339 			chunk_kb = mddev->bitmap_info.chunksize >> 10;
6340 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6341 				"%lu%s chunk",
6342 				bitmap->pages - bitmap->missing_pages,
6343 				bitmap->pages,
6344 				(bitmap->pages - bitmap->missing_pages)
6345 					<< (PAGE_SHIFT - 10),
6346 				chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6347 				chunk_kb ? "KB" : "B");
6348 			if (bitmap->file) {
6349 				seq_printf(seq, ", file: ");
6350 				seq_path(seq, &bitmap->file->f_path, " \t\n");
6351 			}
6352 
6353 			seq_printf(seq, "\n");
6354 			spin_unlock_irqrestore(&bitmap->lock, flags);
6355 		}
6356 
6357 		seq_printf(seq, "\n");
6358 	}
6359 	mddev_unlock(mddev);
6360 
6361 	return 0;
6362 }
6363 
6364 static const struct seq_operations md_seq_ops = {
6365 	.start  = md_seq_start,
6366 	.next   = md_seq_next,
6367 	.stop   = md_seq_stop,
6368 	.show   = md_seq_show,
6369 };
6370 
6371 static int md_seq_open(struct inode *inode, struct file *file)
6372 {
6373 	int error;
6374 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6375 	if (mi == NULL)
6376 		return -ENOMEM;
6377 
6378 	error = seq_open(file, &md_seq_ops);
6379 	if (error)
6380 		kfree(mi);
6381 	else {
6382 		struct seq_file *p = file->private_data;
6383 		p->private = mi;
6384 		mi->event = atomic_read(&md_event_count);
6385 	}
6386 	return error;
6387 }
6388 
6389 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6390 {
6391 	struct seq_file *m = filp->private_data;
6392 	struct mdstat_info *mi = m->private;
6393 	int mask;
6394 
6395 	poll_wait(filp, &md_event_waiters, wait);
6396 
6397 	/* always allow read */
6398 	mask = POLLIN | POLLRDNORM;
6399 
6400 	if (mi->event != atomic_read(&md_event_count))
6401 		mask |= POLLERR | POLLPRI;
6402 	return mask;
6403 }
6404 
6405 static const struct file_operations md_seq_fops = {
6406 	.owner		= THIS_MODULE,
6407 	.open           = md_seq_open,
6408 	.read           = seq_read,
6409 	.llseek         = seq_lseek,
6410 	.release	= seq_release_private,
6411 	.poll		= mdstat_poll,
6412 };
6413 
6414 int register_md_personality(struct mdk_personality *p)
6415 {
6416 	spin_lock(&pers_lock);
6417 	list_add_tail(&p->list, &pers_list);
6418 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6419 	spin_unlock(&pers_lock);
6420 	return 0;
6421 }
6422 
6423 int unregister_md_personality(struct mdk_personality *p)
6424 {
6425 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6426 	spin_lock(&pers_lock);
6427 	list_del_init(&p->list);
6428 	spin_unlock(&pers_lock);
6429 	return 0;
6430 }
6431 
6432 static int is_mddev_idle(mddev_t *mddev, int init)
6433 {
6434 	mdk_rdev_t * rdev;
6435 	int idle;
6436 	int curr_events;
6437 
6438 	idle = 1;
6439 	rcu_read_lock();
6440 	rdev_for_each_rcu(rdev, mddev) {
6441 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6442 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6443 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6444 			      atomic_read(&disk->sync_io);
6445 		/* sync IO will cause sync_io to increase before the disk_stats
6446 		 * as sync_io is counted when a request starts, and
6447 		 * disk_stats is counted when it completes.
6448 		 * So resync activity will cause curr_events to be smaller than
6449 		 * when there was no such activity.
6450 		 * non-sync IO will cause disk_stat to increase without
6451 		 * increasing sync_io so curr_events will (eventually)
6452 		 * be larger than it was before.  Once it becomes
6453 		 * substantially larger, the test below will cause
6454 		 * the array to appear non-idle, and resync will slow
6455 		 * down.
6456 		 * If there is a lot of outstanding resync activity when
6457 		 * we set last_event to curr_events, then all that activity
6458 		 * completing might cause the array to appear non-idle
6459 		 * and resync will be slowed down even though there might
6460 		 * not have been non-resync activity.  This will only
6461 		 * happen once though.  'last_events' will soon reflect
6462 		 * the state where there is little or no outstanding
6463 		 * resync requests, and further resync activity will
6464 		 * always make curr_events less than last_events.
6465 		 *
6466 		 */
6467 		if (init || curr_events - rdev->last_events > 64) {
6468 			rdev->last_events = curr_events;
6469 			idle = 0;
6470 		}
6471 	}
6472 	rcu_read_unlock();
6473 	return idle;
6474 }
6475 
6476 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6477 {
6478 	/* another "blocks" (512byte) blocks have been synced */
6479 	atomic_sub(blocks, &mddev->recovery_active);
6480 	wake_up(&mddev->recovery_wait);
6481 	if (!ok) {
6482 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6483 		md_wakeup_thread(mddev->thread);
6484 		// stop recovery, signal do_sync ....
6485 	}
6486 }
6487 
6488 
6489 /* md_write_start(mddev, bi)
6490  * If we need to update some array metadata (e.g. 'active' flag
6491  * in superblock) before writing, schedule a superblock update
6492  * and wait for it to complete.
6493  */
6494 void md_write_start(mddev_t *mddev, struct bio *bi)
6495 {
6496 	int did_change = 0;
6497 	if (bio_data_dir(bi) != WRITE)
6498 		return;
6499 
6500 	BUG_ON(mddev->ro == 1);
6501 	if (mddev->ro == 2) {
6502 		/* need to switch to read/write */
6503 		mddev->ro = 0;
6504 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6505 		md_wakeup_thread(mddev->thread);
6506 		md_wakeup_thread(mddev->sync_thread);
6507 		did_change = 1;
6508 	}
6509 	atomic_inc(&mddev->writes_pending);
6510 	if (mddev->safemode == 1)
6511 		mddev->safemode = 0;
6512 	if (mddev->in_sync) {
6513 		spin_lock_irq(&mddev->write_lock);
6514 		if (mddev->in_sync) {
6515 			mddev->in_sync = 0;
6516 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6517 			md_wakeup_thread(mddev->thread);
6518 			did_change = 1;
6519 		}
6520 		spin_unlock_irq(&mddev->write_lock);
6521 	}
6522 	if (did_change)
6523 		sysfs_notify_dirent(mddev->sysfs_state);
6524 	wait_event(mddev->sb_wait,
6525 		   !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6526 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6527 }
6528 
6529 void md_write_end(mddev_t *mddev)
6530 {
6531 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6532 		if (mddev->safemode == 2)
6533 			md_wakeup_thread(mddev->thread);
6534 		else if (mddev->safemode_delay)
6535 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6536 	}
6537 }
6538 
6539 /* md_allow_write(mddev)
6540  * Calling this ensures that the array is marked 'active' so that writes
6541  * may proceed without blocking.  It is important to call this before
6542  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6543  * Must be called with mddev_lock held.
6544  *
6545  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6546  * is dropped, so return -EAGAIN after notifying userspace.
6547  */
6548 int md_allow_write(mddev_t *mddev)
6549 {
6550 	if (!mddev->pers)
6551 		return 0;
6552 	if (mddev->ro)
6553 		return 0;
6554 	if (!mddev->pers->sync_request)
6555 		return 0;
6556 
6557 	spin_lock_irq(&mddev->write_lock);
6558 	if (mddev->in_sync) {
6559 		mddev->in_sync = 0;
6560 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6561 		if (mddev->safemode_delay &&
6562 		    mddev->safemode == 0)
6563 			mddev->safemode = 1;
6564 		spin_unlock_irq(&mddev->write_lock);
6565 		md_update_sb(mddev, 0);
6566 		sysfs_notify_dirent(mddev->sysfs_state);
6567 	} else
6568 		spin_unlock_irq(&mddev->write_lock);
6569 
6570 	if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6571 		return -EAGAIN;
6572 	else
6573 		return 0;
6574 }
6575 EXPORT_SYMBOL_GPL(md_allow_write);
6576 
6577 #define SYNC_MARKS	10
6578 #define	SYNC_MARK_STEP	(3*HZ)
6579 void md_do_sync(mddev_t *mddev)
6580 {
6581 	mddev_t *mddev2;
6582 	unsigned int currspeed = 0,
6583 		 window;
6584 	sector_t max_sectors,j, io_sectors;
6585 	unsigned long mark[SYNC_MARKS];
6586 	sector_t mark_cnt[SYNC_MARKS];
6587 	int last_mark,m;
6588 	struct list_head *tmp;
6589 	sector_t last_check;
6590 	int skipped = 0;
6591 	mdk_rdev_t *rdev;
6592 	char *desc;
6593 
6594 	/* just incase thread restarts... */
6595 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6596 		return;
6597 	if (mddev->ro) /* never try to sync a read-only array */
6598 		return;
6599 
6600 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6601 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6602 			desc = "data-check";
6603 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6604 			desc = "requested-resync";
6605 		else
6606 			desc = "resync";
6607 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6608 		desc = "reshape";
6609 	else
6610 		desc = "recovery";
6611 
6612 	/* we overload curr_resync somewhat here.
6613 	 * 0 == not engaged in resync at all
6614 	 * 2 == checking that there is no conflict with another sync
6615 	 * 1 == like 2, but have yielded to allow conflicting resync to
6616 	 *		commense
6617 	 * other == active in resync - this many blocks
6618 	 *
6619 	 * Before starting a resync we must have set curr_resync to
6620 	 * 2, and then checked that every "conflicting" array has curr_resync
6621 	 * less than ours.  When we find one that is the same or higher
6622 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6623 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6624 	 * This will mean we have to start checking from the beginning again.
6625 	 *
6626 	 */
6627 
6628 	do {
6629 		mddev->curr_resync = 2;
6630 
6631 	try_again:
6632 		if (kthread_should_stop())
6633 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6634 
6635 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6636 			goto skip;
6637 		for_each_mddev(mddev2, tmp) {
6638 			if (mddev2 == mddev)
6639 				continue;
6640 			if (!mddev->parallel_resync
6641 			&&  mddev2->curr_resync
6642 			&&  match_mddev_units(mddev, mddev2)) {
6643 				DEFINE_WAIT(wq);
6644 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6645 					/* arbitrarily yield */
6646 					mddev->curr_resync = 1;
6647 					wake_up(&resync_wait);
6648 				}
6649 				if (mddev > mddev2 && mddev->curr_resync == 1)
6650 					/* no need to wait here, we can wait the next
6651 					 * time 'round when curr_resync == 2
6652 					 */
6653 					continue;
6654 				/* We need to wait 'interruptible' so as not to
6655 				 * contribute to the load average, and not to
6656 				 * be caught by 'softlockup'
6657 				 */
6658 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6659 				if (!kthread_should_stop() &&
6660 				    mddev2->curr_resync >= mddev->curr_resync) {
6661 					printk(KERN_INFO "md: delaying %s of %s"
6662 					       " until %s has finished (they"
6663 					       " share one or more physical units)\n",
6664 					       desc, mdname(mddev), mdname(mddev2));
6665 					mddev_put(mddev2);
6666 					if (signal_pending(current))
6667 						flush_signals(current);
6668 					schedule();
6669 					finish_wait(&resync_wait, &wq);
6670 					goto try_again;
6671 				}
6672 				finish_wait(&resync_wait, &wq);
6673 			}
6674 		}
6675 	} while (mddev->curr_resync < 2);
6676 
6677 	j = 0;
6678 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6679 		/* resync follows the size requested by the personality,
6680 		 * which defaults to physical size, but can be virtual size
6681 		 */
6682 		max_sectors = mddev->resync_max_sectors;
6683 		mddev->resync_mismatches = 0;
6684 		/* we don't use the checkpoint if there's a bitmap */
6685 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6686 			j = mddev->resync_min;
6687 		else if (!mddev->bitmap)
6688 			j = mddev->recovery_cp;
6689 
6690 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6691 		max_sectors = mddev->dev_sectors;
6692 	else {
6693 		/* recovery follows the physical size of devices */
6694 		max_sectors = mddev->dev_sectors;
6695 		j = MaxSector;
6696 		rcu_read_lock();
6697 		list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6698 			if (rdev->raid_disk >= 0 &&
6699 			    !test_bit(Faulty, &rdev->flags) &&
6700 			    !test_bit(In_sync, &rdev->flags) &&
6701 			    rdev->recovery_offset < j)
6702 				j = rdev->recovery_offset;
6703 		rcu_read_unlock();
6704 	}
6705 
6706 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6707 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6708 		" %d KB/sec/disk.\n", speed_min(mddev));
6709 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6710 	       "(but not more than %d KB/sec) for %s.\n",
6711 	       speed_max(mddev), desc);
6712 
6713 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6714 
6715 	io_sectors = 0;
6716 	for (m = 0; m < SYNC_MARKS; m++) {
6717 		mark[m] = jiffies;
6718 		mark_cnt[m] = io_sectors;
6719 	}
6720 	last_mark = 0;
6721 	mddev->resync_mark = mark[last_mark];
6722 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6723 
6724 	/*
6725 	 * Tune reconstruction:
6726 	 */
6727 	window = 32*(PAGE_SIZE/512);
6728 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6729 		window/2,(unsigned long long) max_sectors/2);
6730 
6731 	atomic_set(&mddev->recovery_active, 0);
6732 	last_check = 0;
6733 
6734 	if (j>2) {
6735 		printk(KERN_INFO
6736 		       "md: resuming %s of %s from checkpoint.\n",
6737 		       desc, mdname(mddev));
6738 		mddev->curr_resync = j;
6739 	}
6740 	mddev->curr_resync_completed = mddev->curr_resync;
6741 
6742 	while (j < max_sectors) {
6743 		sector_t sectors;
6744 
6745 		skipped = 0;
6746 
6747 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6748 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
6749 		      (mddev->curr_resync - mddev->curr_resync_completed)
6750 		      > (max_sectors >> 4)) ||
6751 		     (j - mddev->curr_resync_completed)*2
6752 		     >= mddev->resync_max - mddev->curr_resync_completed
6753 			    )) {
6754 			/* time to update curr_resync_completed */
6755 			blk_unplug(mddev->queue);
6756 			wait_event(mddev->recovery_wait,
6757 				   atomic_read(&mddev->recovery_active) == 0);
6758 			mddev->curr_resync_completed =
6759 				mddev->curr_resync;
6760 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6761 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6762 		}
6763 
6764 		while (j >= mddev->resync_max && !kthread_should_stop()) {
6765 			/* As this condition is controlled by user-space,
6766 			 * we can block indefinitely, so use '_interruptible'
6767 			 * to avoid triggering warnings.
6768 			 */
6769 			flush_signals(current); /* just in case */
6770 			wait_event_interruptible(mddev->recovery_wait,
6771 						 mddev->resync_max > j
6772 						 || kthread_should_stop());
6773 		}
6774 
6775 		if (kthread_should_stop())
6776 			goto interrupted;
6777 
6778 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6779 						  currspeed < speed_min(mddev));
6780 		if (sectors == 0) {
6781 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6782 			goto out;
6783 		}
6784 
6785 		if (!skipped) { /* actual IO requested */
6786 			io_sectors += sectors;
6787 			atomic_add(sectors, &mddev->recovery_active);
6788 		}
6789 
6790 		j += sectors;
6791 		if (j>1) mddev->curr_resync = j;
6792 		mddev->curr_mark_cnt = io_sectors;
6793 		if (last_check == 0)
6794 			/* this is the earliers that rebuilt will be
6795 			 * visible in /proc/mdstat
6796 			 */
6797 			md_new_event(mddev);
6798 
6799 		if (last_check + window > io_sectors || j == max_sectors)
6800 			continue;
6801 
6802 		last_check = io_sectors;
6803 
6804 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6805 			break;
6806 
6807 	repeat:
6808 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6809 			/* step marks */
6810 			int next = (last_mark+1) % SYNC_MARKS;
6811 
6812 			mddev->resync_mark = mark[next];
6813 			mddev->resync_mark_cnt = mark_cnt[next];
6814 			mark[next] = jiffies;
6815 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6816 			last_mark = next;
6817 		}
6818 
6819 
6820 		if (kthread_should_stop())
6821 			goto interrupted;
6822 
6823 
6824 		/*
6825 		 * this loop exits only if either when we are slower than
6826 		 * the 'hard' speed limit, or the system was IO-idle for
6827 		 * a jiffy.
6828 		 * the system might be non-idle CPU-wise, but we only care
6829 		 * about not overloading the IO subsystem. (things like an
6830 		 * e2fsck being done on the RAID array should execute fast)
6831 		 */
6832 		blk_unplug(mddev->queue);
6833 		cond_resched();
6834 
6835 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6836 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6837 
6838 		if (currspeed > speed_min(mddev)) {
6839 			if ((currspeed > speed_max(mddev)) ||
6840 					!is_mddev_idle(mddev, 0)) {
6841 				msleep(500);
6842 				goto repeat;
6843 			}
6844 		}
6845 	}
6846 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6847 	/*
6848 	 * this also signals 'finished resyncing' to md_stop
6849 	 */
6850  out:
6851 	blk_unplug(mddev->queue);
6852 
6853 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6854 
6855 	/* tell personality that we are finished */
6856 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6857 
6858 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6859 	    mddev->curr_resync > 2) {
6860 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6861 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6862 				if (mddev->curr_resync >= mddev->recovery_cp) {
6863 					printk(KERN_INFO
6864 					       "md: checkpointing %s of %s.\n",
6865 					       desc, mdname(mddev));
6866 					mddev->recovery_cp = mddev->curr_resync;
6867 				}
6868 			} else
6869 				mddev->recovery_cp = MaxSector;
6870 		} else {
6871 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6872 				mddev->curr_resync = MaxSector;
6873 			rcu_read_lock();
6874 			list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6875 				if (rdev->raid_disk >= 0 &&
6876 				    mddev->delta_disks >= 0 &&
6877 				    !test_bit(Faulty, &rdev->flags) &&
6878 				    !test_bit(In_sync, &rdev->flags) &&
6879 				    rdev->recovery_offset < mddev->curr_resync)
6880 					rdev->recovery_offset = mddev->curr_resync;
6881 			rcu_read_unlock();
6882 		}
6883 	}
6884 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6885 
6886  skip:
6887 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6888 		/* We completed so min/max setting can be forgotten if used. */
6889 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6890 			mddev->resync_min = 0;
6891 		mddev->resync_max = MaxSector;
6892 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6893 		mddev->resync_min = mddev->curr_resync_completed;
6894 	mddev->curr_resync = 0;
6895 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6896 		mddev->curr_resync_completed = 0;
6897 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6898 	wake_up(&resync_wait);
6899 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6900 	md_wakeup_thread(mddev->thread);
6901 	return;
6902 
6903  interrupted:
6904 	/*
6905 	 * got a signal, exit.
6906 	 */
6907 	printk(KERN_INFO
6908 	       "md: md_do_sync() got signal ... exiting\n");
6909 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6910 	goto out;
6911 
6912 }
6913 EXPORT_SYMBOL_GPL(md_do_sync);
6914 
6915 
6916 static int remove_and_add_spares(mddev_t *mddev)
6917 {
6918 	mdk_rdev_t *rdev;
6919 	int spares = 0;
6920 
6921 	mddev->curr_resync_completed = 0;
6922 
6923 	list_for_each_entry(rdev, &mddev->disks, same_set)
6924 		if (rdev->raid_disk >= 0 &&
6925 		    !test_bit(Blocked, &rdev->flags) &&
6926 		    (test_bit(Faulty, &rdev->flags) ||
6927 		     ! test_bit(In_sync, &rdev->flags)) &&
6928 		    atomic_read(&rdev->nr_pending)==0) {
6929 			if (mddev->pers->hot_remove_disk(
6930 				    mddev, rdev->raid_disk)==0) {
6931 				char nm[20];
6932 				sprintf(nm,"rd%d", rdev->raid_disk);
6933 				sysfs_remove_link(&mddev->kobj, nm);
6934 				rdev->raid_disk = -1;
6935 			}
6936 		}
6937 
6938 	if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6939 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6940 			if (rdev->raid_disk >= 0 &&
6941 			    !test_bit(In_sync, &rdev->flags) &&
6942 			    !test_bit(Blocked, &rdev->flags))
6943 				spares++;
6944 			if (rdev->raid_disk < 0
6945 			    && !test_bit(Faulty, &rdev->flags)) {
6946 				rdev->recovery_offset = 0;
6947 				if (mddev->pers->
6948 				    hot_add_disk(mddev, rdev) == 0) {
6949 					char nm[20];
6950 					sprintf(nm, "rd%d", rdev->raid_disk);
6951 					if (sysfs_create_link(&mddev->kobj,
6952 							      &rdev->kobj, nm))
6953 						printk(KERN_WARNING
6954 						       "md: cannot register "
6955 						       "%s for %s\n",
6956 						       nm, mdname(mddev));
6957 					spares++;
6958 					md_new_event(mddev);
6959 					set_bit(MD_CHANGE_DEVS, &mddev->flags);
6960 				} else
6961 					break;
6962 			}
6963 		}
6964 	}
6965 	return spares;
6966 }
6967 /*
6968  * This routine is regularly called by all per-raid-array threads to
6969  * deal with generic issues like resync and super-block update.
6970  * Raid personalities that don't have a thread (linear/raid0) do not
6971  * need this as they never do any recovery or update the superblock.
6972  *
6973  * It does not do any resync itself, but rather "forks" off other threads
6974  * to do that as needed.
6975  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6976  * "->recovery" and create a thread at ->sync_thread.
6977  * When the thread finishes it sets MD_RECOVERY_DONE
6978  * and wakeups up this thread which will reap the thread and finish up.
6979  * This thread also removes any faulty devices (with nr_pending == 0).
6980  *
6981  * The overall approach is:
6982  *  1/ if the superblock needs updating, update it.
6983  *  2/ If a recovery thread is running, don't do anything else.
6984  *  3/ If recovery has finished, clean up, possibly marking spares active.
6985  *  4/ If there are any faulty devices, remove them.
6986  *  5/ If array is degraded, try to add spares devices
6987  *  6/ If array has spares or is not in-sync, start a resync thread.
6988  */
6989 void md_check_recovery(mddev_t *mddev)
6990 {
6991 	mdk_rdev_t *rdev;
6992 
6993 
6994 	if (mddev->bitmap)
6995 		bitmap_daemon_work(mddev);
6996 
6997 	if (mddev->ro)
6998 		return;
6999 
7000 	if (signal_pending(current)) {
7001 		if (mddev->pers->sync_request && !mddev->external) {
7002 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7003 			       mdname(mddev));
7004 			mddev->safemode = 2;
7005 		}
7006 		flush_signals(current);
7007 	}
7008 
7009 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7010 		return;
7011 	if ( ! (
7012 		(mddev->flags && !mddev->external) ||
7013 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7014 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7015 		(mddev->external == 0 && mddev->safemode == 1) ||
7016 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7017 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7018 		))
7019 		return;
7020 
7021 	if (mddev_trylock(mddev)) {
7022 		int spares = 0;
7023 
7024 		if (mddev->ro) {
7025 			/* Only thing we do on a ro array is remove
7026 			 * failed devices.
7027 			 */
7028 			remove_and_add_spares(mddev);
7029 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7030 			goto unlock;
7031 		}
7032 
7033 		if (!mddev->external) {
7034 			int did_change = 0;
7035 			spin_lock_irq(&mddev->write_lock);
7036 			if (mddev->safemode &&
7037 			    !atomic_read(&mddev->writes_pending) &&
7038 			    !mddev->in_sync &&
7039 			    mddev->recovery_cp == MaxSector) {
7040 				mddev->in_sync = 1;
7041 				did_change = 1;
7042 				if (mddev->persistent)
7043 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7044 			}
7045 			if (mddev->safemode == 1)
7046 				mddev->safemode = 0;
7047 			spin_unlock_irq(&mddev->write_lock);
7048 			if (did_change)
7049 				sysfs_notify_dirent(mddev->sysfs_state);
7050 		}
7051 
7052 		if (mddev->flags)
7053 			md_update_sb(mddev, 0);
7054 
7055 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7056 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7057 			/* resync/recovery still happening */
7058 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7059 			goto unlock;
7060 		}
7061 		if (mddev->sync_thread) {
7062 			/* resync has finished, collect result */
7063 			md_unregister_thread(mddev->sync_thread);
7064 			mddev->sync_thread = NULL;
7065 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7066 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7067 				/* success...*/
7068 				/* activate any spares */
7069 				if (mddev->pers->spare_active(mddev))
7070 					sysfs_notify(&mddev->kobj, NULL,
7071 						     "degraded");
7072 			}
7073 			if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7074 			    mddev->pers->finish_reshape)
7075 				mddev->pers->finish_reshape(mddev);
7076 			md_update_sb(mddev, 1);
7077 
7078 			/* if array is no-longer degraded, then any saved_raid_disk
7079 			 * information must be scrapped
7080 			 */
7081 			if (!mddev->degraded)
7082 				list_for_each_entry(rdev, &mddev->disks, same_set)
7083 					rdev->saved_raid_disk = -1;
7084 
7085 			mddev->recovery = 0;
7086 			/* flag recovery needed just to double check */
7087 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7088 			sysfs_notify_dirent(mddev->sysfs_action);
7089 			md_new_event(mddev);
7090 			goto unlock;
7091 		}
7092 		/* Set RUNNING before clearing NEEDED to avoid
7093 		 * any transients in the value of "sync_action".
7094 		 */
7095 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7096 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7097 		/* Clear some bits that don't mean anything, but
7098 		 * might be left set
7099 		 */
7100 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7101 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7102 
7103 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7104 			goto unlock;
7105 		/* no recovery is running.
7106 		 * remove any failed drives, then
7107 		 * add spares if possible.
7108 		 * Spare are also removed and re-added, to allow
7109 		 * the personality to fail the re-add.
7110 		 */
7111 
7112 		if (mddev->reshape_position != MaxSector) {
7113 			if (mddev->pers->check_reshape == NULL ||
7114 			    mddev->pers->check_reshape(mddev) != 0)
7115 				/* Cannot proceed */
7116 				goto unlock;
7117 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7118 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7119 		} else if ((spares = remove_and_add_spares(mddev))) {
7120 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7121 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7122 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7123 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7124 		} else if (mddev->recovery_cp < MaxSector) {
7125 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7126 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7127 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7128 			/* nothing to be done ... */
7129 			goto unlock;
7130 
7131 		if (mddev->pers->sync_request) {
7132 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7133 				/* We are adding a device or devices to an array
7134 				 * which has the bitmap stored on all devices.
7135 				 * So make sure all bitmap pages get written
7136 				 */
7137 				bitmap_write_all(mddev->bitmap);
7138 			}
7139 			mddev->sync_thread = md_register_thread(md_do_sync,
7140 								mddev,
7141 								"resync");
7142 			if (!mddev->sync_thread) {
7143 				printk(KERN_ERR "%s: could not start resync"
7144 					" thread...\n",
7145 					mdname(mddev));
7146 				/* leave the spares where they are, it shouldn't hurt */
7147 				mddev->recovery = 0;
7148 			} else
7149 				md_wakeup_thread(mddev->sync_thread);
7150 			sysfs_notify_dirent(mddev->sysfs_action);
7151 			md_new_event(mddev);
7152 		}
7153 	unlock:
7154 		if (!mddev->sync_thread) {
7155 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7156 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7157 					       &mddev->recovery))
7158 				if (mddev->sysfs_action)
7159 					sysfs_notify_dirent(mddev->sysfs_action);
7160 		}
7161 		mddev_unlock(mddev);
7162 	}
7163 }
7164 
7165 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7166 {
7167 	sysfs_notify_dirent(rdev->sysfs_state);
7168 	wait_event_timeout(rdev->blocked_wait,
7169 			   !test_bit(Blocked, &rdev->flags),
7170 			   msecs_to_jiffies(5000));
7171 	rdev_dec_pending(rdev, mddev);
7172 }
7173 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7174 
7175 static int md_notify_reboot(struct notifier_block *this,
7176 			    unsigned long code, void *x)
7177 {
7178 	struct list_head *tmp;
7179 	mddev_t *mddev;
7180 
7181 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7182 
7183 		printk(KERN_INFO "md: stopping all md devices.\n");
7184 
7185 		for_each_mddev(mddev, tmp)
7186 			if (mddev_trylock(mddev)) {
7187 				/* Force a switch to readonly even array
7188 				 * appears to still be in use.  Hence
7189 				 * the '100'.
7190 				 */
7191 				md_set_readonly(mddev, 100);
7192 				mddev_unlock(mddev);
7193 			}
7194 		/*
7195 		 * certain more exotic SCSI devices are known to be
7196 		 * volatile wrt too early system reboots. While the
7197 		 * right place to handle this issue is the given
7198 		 * driver, we do want to have a safe RAID driver ...
7199 		 */
7200 		mdelay(1000*1);
7201 	}
7202 	return NOTIFY_DONE;
7203 }
7204 
7205 static struct notifier_block md_notifier = {
7206 	.notifier_call	= md_notify_reboot,
7207 	.next		= NULL,
7208 	.priority	= INT_MAX, /* before any real devices */
7209 };
7210 
7211 static void md_geninit(void)
7212 {
7213 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7214 
7215 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7216 }
7217 
7218 static int __init md_init(void)
7219 {
7220 	if (register_blkdev(MD_MAJOR, "md"))
7221 		return -1;
7222 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7223 		unregister_blkdev(MD_MAJOR, "md");
7224 		return -1;
7225 	}
7226 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7227 			    md_probe, NULL, NULL);
7228 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7229 			    md_probe, NULL, NULL);
7230 
7231 	register_reboot_notifier(&md_notifier);
7232 	raid_table_header = register_sysctl_table(raid_root_table);
7233 
7234 	md_geninit();
7235 	return 0;
7236 }
7237 
7238 
7239 #ifndef MODULE
7240 
7241 /*
7242  * Searches all registered partitions for autorun RAID arrays
7243  * at boot time.
7244  */
7245 
7246 static LIST_HEAD(all_detected_devices);
7247 struct detected_devices_node {
7248 	struct list_head list;
7249 	dev_t dev;
7250 };
7251 
7252 void md_autodetect_dev(dev_t dev)
7253 {
7254 	struct detected_devices_node *node_detected_dev;
7255 
7256 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7257 	if (node_detected_dev) {
7258 		node_detected_dev->dev = dev;
7259 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
7260 	} else {
7261 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7262 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7263 	}
7264 }
7265 
7266 
7267 static void autostart_arrays(int part)
7268 {
7269 	mdk_rdev_t *rdev;
7270 	struct detected_devices_node *node_detected_dev;
7271 	dev_t dev;
7272 	int i_scanned, i_passed;
7273 
7274 	i_scanned = 0;
7275 	i_passed = 0;
7276 
7277 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7278 
7279 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7280 		i_scanned++;
7281 		node_detected_dev = list_entry(all_detected_devices.next,
7282 					struct detected_devices_node, list);
7283 		list_del(&node_detected_dev->list);
7284 		dev = node_detected_dev->dev;
7285 		kfree(node_detected_dev);
7286 		rdev = md_import_device(dev,0, 90);
7287 		if (IS_ERR(rdev))
7288 			continue;
7289 
7290 		if (test_bit(Faulty, &rdev->flags)) {
7291 			MD_BUG();
7292 			continue;
7293 		}
7294 		set_bit(AutoDetected, &rdev->flags);
7295 		list_add(&rdev->same_set, &pending_raid_disks);
7296 		i_passed++;
7297 	}
7298 
7299 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7300 						i_scanned, i_passed);
7301 
7302 	autorun_devices(part);
7303 }
7304 
7305 #endif /* !MODULE */
7306 
7307 static __exit void md_exit(void)
7308 {
7309 	mddev_t *mddev;
7310 	struct list_head *tmp;
7311 
7312 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7313 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7314 
7315 	unregister_blkdev(MD_MAJOR,"md");
7316 	unregister_blkdev(mdp_major, "mdp");
7317 	unregister_reboot_notifier(&md_notifier);
7318 	unregister_sysctl_table(raid_table_header);
7319 	remove_proc_entry("mdstat", NULL);
7320 	for_each_mddev(mddev, tmp) {
7321 		export_array(mddev);
7322 		mddev->hold_active = 0;
7323 	}
7324 }
7325 
7326 subsys_initcall(md_init);
7327 module_exit(md_exit)
7328 
7329 static int get_ro(char *buffer, struct kernel_param *kp)
7330 {
7331 	return sprintf(buffer, "%d", start_readonly);
7332 }
7333 static int set_ro(const char *val, struct kernel_param *kp)
7334 {
7335 	char *e;
7336 	int num = simple_strtoul(val, &e, 10);
7337 	if (*val && (*e == '\0' || *e == '\n')) {
7338 		start_readonly = num;
7339 		return 0;
7340 	}
7341 	return -EINVAL;
7342 }
7343 
7344 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7345 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7346 
7347 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7348 
7349 EXPORT_SYMBOL(register_md_personality);
7350 EXPORT_SYMBOL(unregister_md_personality);
7351 EXPORT_SYMBOL(md_error);
7352 EXPORT_SYMBOL(md_done_sync);
7353 EXPORT_SYMBOL(md_write_start);
7354 EXPORT_SYMBOL(md_write_end);
7355 EXPORT_SYMBOL(md_register_thread);
7356 EXPORT_SYMBOL(md_unregister_thread);
7357 EXPORT_SYMBOL(md_wakeup_thread);
7358 EXPORT_SYMBOL(md_check_recovery);
7359 MODULE_LICENSE("GPL");
7360 MODULE_DESCRIPTION("MD RAID framework");
7361 MODULE_ALIAS("md");
7362 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
7363