xref: /linux/drivers/md/md.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59 
60 static DEFINE_MUTEX(md_mutex);
61 
62 #ifndef MODULE
63 static void autostart_arrays(int part);
64 #endif
65 
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
74 
75 /*
76  * Default number of read corrections we'll attempt on an rdev
77  * before ejecting it from the array. We divide the read error
78  * count by 2 for every hour elapsed between read errors.
79  */
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81 /*
82  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83  * is 1000 KB/sec, so the extra system load does not show up that much.
84  * Increase it if you want to have more _guaranteed_ speed. Note that
85  * the RAID driver will use the maximum available bandwidth if the IO
86  * subsystem is idle. There is also an 'absolute maximum' reconstruction
87  * speed limit - in case reconstruction slows down your system despite
88  * idle IO detection.
89  *
90  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91  * or /sys/block/mdX/md/sync_speed_{min,max}
92  */
93 
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 	return mddev->sync_speed_min ?
99 		mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101 
102 static inline int speed_max(mddev_t *mddev)
103 {
104 	return mddev->sync_speed_max ?
105 		mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107 
108 static struct ctl_table_header *raid_table_header;
109 
110 static ctl_table raid_table[] = {
111 	{
112 		.procname	= "speed_limit_min",
113 		.data		= &sysctl_speed_limit_min,
114 		.maxlen		= sizeof(int),
115 		.mode		= S_IRUGO|S_IWUSR,
116 		.proc_handler	= proc_dointvec,
117 	},
118 	{
119 		.procname	= "speed_limit_max",
120 		.data		= &sysctl_speed_limit_max,
121 		.maxlen		= sizeof(int),
122 		.mode		= S_IRUGO|S_IWUSR,
123 		.proc_handler	= proc_dointvec,
124 	},
125 	{ }
126 };
127 
128 static ctl_table raid_dir_table[] = {
129 	{
130 		.procname	= "raid",
131 		.maxlen		= 0,
132 		.mode		= S_IRUGO|S_IXUGO,
133 		.child		= raid_table,
134 	},
135 	{ }
136 };
137 
138 static ctl_table raid_root_table[] = {
139 	{
140 		.procname	= "dev",
141 		.maxlen		= 0,
142 		.mode		= 0555,
143 		.child		= raid_dir_table,
144 	},
145 	{  }
146 };
147 
148 static const struct block_device_operations md_fops;
149 
150 static int start_readonly;
151 
152 /*
153  * We have a system wide 'event count' that is incremented
154  * on any 'interesting' event, and readers of /proc/mdstat
155  * can use 'poll' or 'select' to find out when the event
156  * count increases.
157  *
158  * Events are:
159  *  start array, stop array, error, add device, remove device,
160  *  start build, activate spare
161  */
162 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
163 static atomic_t md_event_count;
164 void md_new_event(mddev_t *mddev)
165 {
166 	atomic_inc(&md_event_count);
167 	wake_up(&md_event_waiters);
168 }
169 EXPORT_SYMBOL_GPL(md_new_event);
170 
171 /* Alternate version that can be called from interrupts
172  * when calling sysfs_notify isn't needed.
173  */
174 static void md_new_event_inintr(mddev_t *mddev)
175 {
176 	atomic_inc(&md_event_count);
177 	wake_up(&md_event_waiters);
178 }
179 
180 /*
181  * Enables to iterate over all existing md arrays
182  * all_mddevs_lock protects this list.
183  */
184 static LIST_HEAD(all_mddevs);
185 static DEFINE_SPINLOCK(all_mddevs_lock);
186 
187 
188 /*
189  * iterates through all used mddevs in the system.
190  * We take care to grab the all_mddevs_lock whenever navigating
191  * the list, and to always hold a refcount when unlocked.
192  * Any code which breaks out of this loop while own
193  * a reference to the current mddev and must mddev_put it.
194  */
195 #define for_each_mddev(mddev,tmp)					\
196 									\
197 	for (({ spin_lock(&all_mddevs_lock); 				\
198 		tmp = all_mddevs.next;					\
199 		mddev = NULL;});					\
200 	     ({ if (tmp != &all_mddevs)					\
201 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
202 		spin_unlock(&all_mddevs_lock);				\
203 		if (mddev) mddev_put(mddev);				\
204 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
205 		tmp != &all_mddevs;});					\
206 	     ({ spin_lock(&all_mddevs_lock);				\
207 		tmp = tmp->next;})					\
208 		)
209 
210 
211 /* Rather than calling directly into the personality make_request function,
212  * IO requests come here first so that we can check if the device is
213  * being suspended pending a reconfiguration.
214  * We hold a refcount over the call to ->make_request.  By the time that
215  * call has finished, the bio has been linked into some internal structure
216  * and so is visible to ->quiesce(), so we don't need the refcount any more.
217  */
218 static int md_make_request(struct request_queue *q, struct bio *bio)
219 {
220 	const int rw = bio_data_dir(bio);
221 	mddev_t *mddev = q->queuedata;
222 	int rv;
223 	int cpu;
224 
225 	if (mddev == NULL || mddev->pers == NULL) {
226 		bio_io_error(bio);
227 		return 0;
228 	}
229 	rcu_read_lock();
230 	if (mddev->suspended || mddev->barrier) {
231 		DEFINE_WAIT(__wait);
232 		for (;;) {
233 			prepare_to_wait(&mddev->sb_wait, &__wait,
234 					TASK_UNINTERRUPTIBLE);
235 			if (!mddev->suspended && !mddev->barrier)
236 				break;
237 			rcu_read_unlock();
238 			schedule();
239 			rcu_read_lock();
240 		}
241 		finish_wait(&mddev->sb_wait, &__wait);
242 	}
243 	atomic_inc(&mddev->active_io);
244 	rcu_read_unlock();
245 
246 	rv = mddev->pers->make_request(mddev, bio);
247 
248 	cpu = part_stat_lock();
249 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
250 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
251 		      bio_sectors(bio));
252 	part_stat_unlock();
253 
254 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
255 		wake_up(&mddev->sb_wait);
256 
257 	return rv;
258 }
259 
260 /* mddev_suspend makes sure no new requests are submitted
261  * to the device, and that any requests that have been submitted
262  * are completely handled.
263  * Once ->stop is called and completes, the module will be completely
264  * unused.
265  */
266 void mddev_suspend(mddev_t *mddev)
267 {
268 	BUG_ON(mddev->suspended);
269 	mddev->suspended = 1;
270 	synchronize_rcu();
271 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
272 	mddev->pers->quiesce(mddev, 1);
273 }
274 EXPORT_SYMBOL_GPL(mddev_suspend);
275 
276 void mddev_resume(mddev_t *mddev)
277 {
278 	mddev->suspended = 0;
279 	wake_up(&mddev->sb_wait);
280 	mddev->pers->quiesce(mddev, 0);
281 }
282 EXPORT_SYMBOL_GPL(mddev_resume);
283 
284 int mddev_congested(mddev_t *mddev, int bits)
285 {
286 	if (mddev->barrier)
287 		return 1;
288 	return mddev->suspended;
289 }
290 EXPORT_SYMBOL(mddev_congested);
291 
292 /*
293  * Generic barrier handling for md
294  */
295 
296 #define POST_REQUEST_BARRIER ((void*)1)
297 
298 static void md_end_barrier(struct bio *bio, int err)
299 {
300 	mdk_rdev_t *rdev = bio->bi_private;
301 	mddev_t *mddev = rdev->mddev;
302 	if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
303 		set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
304 
305 	rdev_dec_pending(rdev, mddev);
306 
307 	if (atomic_dec_and_test(&mddev->flush_pending)) {
308 		if (mddev->barrier == POST_REQUEST_BARRIER) {
309 			/* This was a post-request barrier */
310 			mddev->barrier = NULL;
311 			wake_up(&mddev->sb_wait);
312 		} else
313 			/* The pre-request barrier has finished */
314 			schedule_work(&mddev->barrier_work);
315 	}
316 	bio_put(bio);
317 }
318 
319 static void submit_barriers(mddev_t *mddev)
320 {
321 	mdk_rdev_t *rdev;
322 
323 	rcu_read_lock();
324 	list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
325 		if (rdev->raid_disk >= 0 &&
326 		    !test_bit(Faulty, &rdev->flags)) {
327 			/* Take two references, one is dropped
328 			 * when request finishes, one after
329 			 * we reclaim rcu_read_lock
330 			 */
331 			struct bio *bi;
332 			atomic_inc(&rdev->nr_pending);
333 			atomic_inc(&rdev->nr_pending);
334 			rcu_read_unlock();
335 			bi = bio_alloc(GFP_KERNEL, 0);
336 			bi->bi_end_io = md_end_barrier;
337 			bi->bi_private = rdev;
338 			bi->bi_bdev = rdev->bdev;
339 			atomic_inc(&mddev->flush_pending);
340 			submit_bio(WRITE_BARRIER, bi);
341 			rcu_read_lock();
342 			rdev_dec_pending(rdev, mddev);
343 		}
344 	rcu_read_unlock();
345 }
346 
347 static void md_submit_barrier(struct work_struct *ws)
348 {
349 	mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
350 	struct bio *bio = mddev->barrier;
351 
352 	atomic_set(&mddev->flush_pending, 1);
353 
354 	if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
355 		bio_endio(bio, -EOPNOTSUPP);
356 	else if (bio->bi_size == 0)
357 		/* an empty barrier - all done */
358 		bio_endio(bio, 0);
359 	else {
360 		bio->bi_rw &= ~REQ_HARDBARRIER;
361 		if (mddev->pers->make_request(mddev, bio))
362 			generic_make_request(bio);
363 		mddev->barrier = POST_REQUEST_BARRIER;
364 		submit_barriers(mddev);
365 	}
366 	if (atomic_dec_and_test(&mddev->flush_pending)) {
367 		mddev->barrier = NULL;
368 		wake_up(&mddev->sb_wait);
369 	}
370 }
371 
372 void md_barrier_request(mddev_t *mddev, struct bio *bio)
373 {
374 	spin_lock_irq(&mddev->write_lock);
375 	wait_event_lock_irq(mddev->sb_wait,
376 			    !mddev->barrier,
377 			    mddev->write_lock, /*nothing*/);
378 	mddev->barrier = bio;
379 	spin_unlock_irq(&mddev->write_lock);
380 
381 	atomic_set(&mddev->flush_pending, 1);
382 	INIT_WORK(&mddev->barrier_work, md_submit_barrier);
383 
384 	submit_barriers(mddev);
385 
386 	if (atomic_dec_and_test(&mddev->flush_pending))
387 		schedule_work(&mddev->barrier_work);
388 }
389 EXPORT_SYMBOL(md_barrier_request);
390 
391 /* Support for plugging.
392  * This mirrors the plugging support in request_queue, but does not
393  * require having a whole queue
394  */
395 static void plugger_work(struct work_struct *work)
396 {
397 	struct plug_handle *plug =
398 		container_of(work, struct plug_handle, unplug_work);
399 	plug->unplug_fn(plug);
400 }
401 static void plugger_timeout(unsigned long data)
402 {
403 	struct plug_handle *plug = (void *)data;
404 	kblockd_schedule_work(NULL, &plug->unplug_work);
405 }
406 void plugger_init(struct plug_handle *plug,
407 		  void (*unplug_fn)(struct plug_handle *))
408 {
409 	plug->unplug_flag = 0;
410 	plug->unplug_fn = unplug_fn;
411 	init_timer(&plug->unplug_timer);
412 	plug->unplug_timer.function = plugger_timeout;
413 	plug->unplug_timer.data = (unsigned long)plug;
414 	INIT_WORK(&plug->unplug_work, plugger_work);
415 }
416 EXPORT_SYMBOL_GPL(plugger_init);
417 
418 void plugger_set_plug(struct plug_handle *plug)
419 {
420 	if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
421 		mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
422 }
423 EXPORT_SYMBOL_GPL(plugger_set_plug);
424 
425 int plugger_remove_plug(struct plug_handle *plug)
426 {
427 	if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
428 		del_timer(&plug->unplug_timer);
429 		return 1;
430 	} else
431 		return 0;
432 }
433 EXPORT_SYMBOL_GPL(plugger_remove_plug);
434 
435 
436 static inline mddev_t *mddev_get(mddev_t *mddev)
437 {
438 	atomic_inc(&mddev->active);
439 	return mddev;
440 }
441 
442 static void mddev_delayed_delete(struct work_struct *ws);
443 
444 static void mddev_put(mddev_t *mddev)
445 {
446 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
447 		return;
448 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
449 	    mddev->ctime == 0 && !mddev->hold_active) {
450 		/* Array is not configured at all, and not held active,
451 		 * so destroy it */
452 		list_del(&mddev->all_mddevs);
453 		if (mddev->gendisk) {
454 			/* we did a probe so need to clean up.
455 			 * Call schedule_work inside the spinlock
456 			 * so that flush_scheduled_work() after
457 			 * mddev_find will succeed in waiting for the
458 			 * work to be done.
459 			 */
460 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
461 			schedule_work(&mddev->del_work);
462 		} else
463 			kfree(mddev);
464 	}
465 	spin_unlock(&all_mddevs_lock);
466 }
467 
468 void mddev_init(mddev_t *mddev)
469 {
470 	mutex_init(&mddev->open_mutex);
471 	mutex_init(&mddev->reconfig_mutex);
472 	mutex_init(&mddev->bitmap_info.mutex);
473 	INIT_LIST_HEAD(&mddev->disks);
474 	INIT_LIST_HEAD(&mddev->all_mddevs);
475 	init_timer(&mddev->safemode_timer);
476 	atomic_set(&mddev->active, 1);
477 	atomic_set(&mddev->openers, 0);
478 	atomic_set(&mddev->active_io, 0);
479 	spin_lock_init(&mddev->write_lock);
480 	atomic_set(&mddev->flush_pending, 0);
481 	init_waitqueue_head(&mddev->sb_wait);
482 	init_waitqueue_head(&mddev->recovery_wait);
483 	mddev->reshape_position = MaxSector;
484 	mddev->resync_min = 0;
485 	mddev->resync_max = MaxSector;
486 	mddev->level = LEVEL_NONE;
487 }
488 EXPORT_SYMBOL_GPL(mddev_init);
489 
490 static mddev_t * mddev_find(dev_t unit)
491 {
492 	mddev_t *mddev, *new = NULL;
493 
494  retry:
495 	spin_lock(&all_mddevs_lock);
496 
497 	if (unit) {
498 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
499 			if (mddev->unit == unit) {
500 				mddev_get(mddev);
501 				spin_unlock(&all_mddevs_lock);
502 				kfree(new);
503 				return mddev;
504 			}
505 
506 		if (new) {
507 			list_add(&new->all_mddevs, &all_mddevs);
508 			spin_unlock(&all_mddevs_lock);
509 			new->hold_active = UNTIL_IOCTL;
510 			return new;
511 		}
512 	} else if (new) {
513 		/* find an unused unit number */
514 		static int next_minor = 512;
515 		int start = next_minor;
516 		int is_free = 0;
517 		int dev = 0;
518 		while (!is_free) {
519 			dev = MKDEV(MD_MAJOR, next_minor);
520 			next_minor++;
521 			if (next_minor > MINORMASK)
522 				next_minor = 0;
523 			if (next_minor == start) {
524 				/* Oh dear, all in use. */
525 				spin_unlock(&all_mddevs_lock);
526 				kfree(new);
527 				return NULL;
528 			}
529 
530 			is_free = 1;
531 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
532 				if (mddev->unit == dev) {
533 					is_free = 0;
534 					break;
535 				}
536 		}
537 		new->unit = dev;
538 		new->md_minor = MINOR(dev);
539 		new->hold_active = UNTIL_STOP;
540 		list_add(&new->all_mddevs, &all_mddevs);
541 		spin_unlock(&all_mddevs_lock);
542 		return new;
543 	}
544 	spin_unlock(&all_mddevs_lock);
545 
546 	new = kzalloc(sizeof(*new), GFP_KERNEL);
547 	if (!new)
548 		return NULL;
549 
550 	new->unit = unit;
551 	if (MAJOR(unit) == MD_MAJOR)
552 		new->md_minor = MINOR(unit);
553 	else
554 		new->md_minor = MINOR(unit) >> MdpMinorShift;
555 
556 	mddev_init(new);
557 
558 	goto retry;
559 }
560 
561 static inline int mddev_lock(mddev_t * mddev)
562 {
563 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
564 }
565 
566 static inline int mddev_is_locked(mddev_t *mddev)
567 {
568 	return mutex_is_locked(&mddev->reconfig_mutex);
569 }
570 
571 static inline int mddev_trylock(mddev_t * mddev)
572 {
573 	return mutex_trylock(&mddev->reconfig_mutex);
574 }
575 
576 static struct attribute_group md_redundancy_group;
577 
578 static void mddev_unlock(mddev_t * mddev)
579 {
580 	if (mddev->to_remove) {
581 		/* These cannot be removed under reconfig_mutex as
582 		 * an access to the files will try to take reconfig_mutex
583 		 * while holding the file unremovable, which leads to
584 		 * a deadlock.
585 		 * So hold set sysfs_active while the remove in happeing,
586 		 * and anything else which might set ->to_remove or my
587 		 * otherwise change the sysfs namespace will fail with
588 		 * -EBUSY if sysfs_active is still set.
589 		 * We set sysfs_active under reconfig_mutex and elsewhere
590 		 * test it under the same mutex to ensure its correct value
591 		 * is seen.
592 		 */
593 		struct attribute_group *to_remove = mddev->to_remove;
594 		mddev->to_remove = NULL;
595 		mddev->sysfs_active = 1;
596 		mutex_unlock(&mddev->reconfig_mutex);
597 
598 		if (mddev->kobj.sd) {
599 			if (to_remove != &md_redundancy_group)
600 				sysfs_remove_group(&mddev->kobj, to_remove);
601 			if (mddev->pers == NULL ||
602 			    mddev->pers->sync_request == NULL) {
603 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
604 				if (mddev->sysfs_action)
605 					sysfs_put(mddev->sysfs_action);
606 				mddev->sysfs_action = NULL;
607 			}
608 		}
609 		mddev->sysfs_active = 0;
610 	} else
611 		mutex_unlock(&mddev->reconfig_mutex);
612 
613 	md_wakeup_thread(mddev->thread);
614 }
615 
616 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
617 {
618 	mdk_rdev_t *rdev;
619 
620 	list_for_each_entry(rdev, &mddev->disks, same_set)
621 		if (rdev->desc_nr == nr)
622 			return rdev;
623 
624 	return NULL;
625 }
626 
627 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
628 {
629 	mdk_rdev_t *rdev;
630 
631 	list_for_each_entry(rdev, &mddev->disks, same_set)
632 		if (rdev->bdev->bd_dev == dev)
633 			return rdev;
634 
635 	return NULL;
636 }
637 
638 static struct mdk_personality *find_pers(int level, char *clevel)
639 {
640 	struct mdk_personality *pers;
641 	list_for_each_entry(pers, &pers_list, list) {
642 		if (level != LEVEL_NONE && pers->level == level)
643 			return pers;
644 		if (strcmp(pers->name, clevel)==0)
645 			return pers;
646 	}
647 	return NULL;
648 }
649 
650 /* return the offset of the super block in 512byte sectors */
651 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
652 {
653 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
654 	return MD_NEW_SIZE_SECTORS(num_sectors);
655 }
656 
657 static int alloc_disk_sb(mdk_rdev_t * rdev)
658 {
659 	if (rdev->sb_page)
660 		MD_BUG();
661 
662 	rdev->sb_page = alloc_page(GFP_KERNEL);
663 	if (!rdev->sb_page) {
664 		printk(KERN_ALERT "md: out of memory.\n");
665 		return -ENOMEM;
666 	}
667 
668 	return 0;
669 }
670 
671 static void free_disk_sb(mdk_rdev_t * rdev)
672 {
673 	if (rdev->sb_page) {
674 		put_page(rdev->sb_page);
675 		rdev->sb_loaded = 0;
676 		rdev->sb_page = NULL;
677 		rdev->sb_start = 0;
678 		rdev->sectors = 0;
679 	}
680 }
681 
682 
683 static void super_written(struct bio *bio, int error)
684 {
685 	mdk_rdev_t *rdev = bio->bi_private;
686 	mddev_t *mddev = rdev->mddev;
687 
688 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
689 		printk("md: super_written gets error=%d, uptodate=%d\n",
690 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
691 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
692 		md_error(mddev, rdev);
693 	}
694 
695 	if (atomic_dec_and_test(&mddev->pending_writes))
696 		wake_up(&mddev->sb_wait);
697 	bio_put(bio);
698 }
699 
700 static void super_written_barrier(struct bio *bio, int error)
701 {
702 	struct bio *bio2 = bio->bi_private;
703 	mdk_rdev_t *rdev = bio2->bi_private;
704 	mddev_t *mddev = rdev->mddev;
705 
706 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
707 	    error == -EOPNOTSUPP) {
708 		unsigned long flags;
709 		/* barriers don't appear to be supported :-( */
710 		set_bit(BarriersNotsupp, &rdev->flags);
711 		mddev->barriers_work = 0;
712 		spin_lock_irqsave(&mddev->write_lock, flags);
713 		bio2->bi_next = mddev->biolist;
714 		mddev->biolist = bio2;
715 		spin_unlock_irqrestore(&mddev->write_lock, flags);
716 		wake_up(&mddev->sb_wait);
717 		bio_put(bio);
718 	} else {
719 		bio_put(bio2);
720 		bio->bi_private = rdev;
721 		super_written(bio, error);
722 	}
723 }
724 
725 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
726 		   sector_t sector, int size, struct page *page)
727 {
728 	/* write first size bytes of page to sector of rdev
729 	 * Increment mddev->pending_writes before returning
730 	 * and decrement it on completion, waking up sb_wait
731 	 * if zero is reached.
732 	 * If an error occurred, call md_error
733 	 *
734 	 * As we might need to resubmit the request if REQ_HARDBARRIER
735 	 * causes ENOTSUPP, we allocate a spare bio...
736 	 */
737 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
738 	int rw = REQ_WRITE | REQ_SYNC | REQ_UNPLUG;
739 
740 	bio->bi_bdev = rdev->bdev;
741 	bio->bi_sector = sector;
742 	bio_add_page(bio, page, size, 0);
743 	bio->bi_private = rdev;
744 	bio->bi_end_io = super_written;
745 	bio->bi_rw = rw;
746 
747 	atomic_inc(&mddev->pending_writes);
748 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
749 		struct bio *rbio;
750 		rw |= REQ_HARDBARRIER;
751 		rbio = bio_clone(bio, GFP_NOIO);
752 		rbio->bi_private = bio;
753 		rbio->bi_end_io = super_written_barrier;
754 		submit_bio(rw, rbio);
755 	} else
756 		submit_bio(rw, bio);
757 }
758 
759 void md_super_wait(mddev_t *mddev)
760 {
761 	/* wait for all superblock writes that were scheduled to complete.
762 	 * if any had to be retried (due to BARRIER problems), retry them
763 	 */
764 	DEFINE_WAIT(wq);
765 	for(;;) {
766 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
767 		if (atomic_read(&mddev->pending_writes)==0)
768 			break;
769 		while (mddev->biolist) {
770 			struct bio *bio;
771 			spin_lock_irq(&mddev->write_lock);
772 			bio = mddev->biolist;
773 			mddev->biolist = bio->bi_next ;
774 			bio->bi_next = NULL;
775 			spin_unlock_irq(&mddev->write_lock);
776 			submit_bio(bio->bi_rw, bio);
777 		}
778 		schedule();
779 	}
780 	finish_wait(&mddev->sb_wait, &wq);
781 }
782 
783 static void bi_complete(struct bio *bio, int error)
784 {
785 	complete((struct completion*)bio->bi_private);
786 }
787 
788 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
789 		   struct page *page, int rw)
790 {
791 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
792 	struct completion event;
793 	int ret;
794 
795 	rw |= REQ_SYNC | REQ_UNPLUG;
796 
797 	bio->bi_bdev = bdev;
798 	bio->bi_sector = sector;
799 	bio_add_page(bio, page, size, 0);
800 	init_completion(&event);
801 	bio->bi_private = &event;
802 	bio->bi_end_io = bi_complete;
803 	submit_bio(rw, bio);
804 	wait_for_completion(&event);
805 
806 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
807 	bio_put(bio);
808 	return ret;
809 }
810 EXPORT_SYMBOL_GPL(sync_page_io);
811 
812 static int read_disk_sb(mdk_rdev_t * rdev, int size)
813 {
814 	char b[BDEVNAME_SIZE];
815 	if (!rdev->sb_page) {
816 		MD_BUG();
817 		return -EINVAL;
818 	}
819 	if (rdev->sb_loaded)
820 		return 0;
821 
822 
823 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
824 		goto fail;
825 	rdev->sb_loaded = 1;
826 	return 0;
827 
828 fail:
829 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
830 		bdevname(rdev->bdev,b));
831 	return -EINVAL;
832 }
833 
834 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
835 {
836 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
837 		sb1->set_uuid1 == sb2->set_uuid1 &&
838 		sb1->set_uuid2 == sb2->set_uuid2 &&
839 		sb1->set_uuid3 == sb2->set_uuid3;
840 }
841 
842 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
843 {
844 	int ret;
845 	mdp_super_t *tmp1, *tmp2;
846 
847 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
848 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
849 
850 	if (!tmp1 || !tmp2) {
851 		ret = 0;
852 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
853 		goto abort;
854 	}
855 
856 	*tmp1 = *sb1;
857 	*tmp2 = *sb2;
858 
859 	/*
860 	 * nr_disks is not constant
861 	 */
862 	tmp1->nr_disks = 0;
863 	tmp2->nr_disks = 0;
864 
865 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
866 abort:
867 	kfree(tmp1);
868 	kfree(tmp2);
869 	return ret;
870 }
871 
872 
873 static u32 md_csum_fold(u32 csum)
874 {
875 	csum = (csum & 0xffff) + (csum >> 16);
876 	return (csum & 0xffff) + (csum >> 16);
877 }
878 
879 static unsigned int calc_sb_csum(mdp_super_t * sb)
880 {
881 	u64 newcsum = 0;
882 	u32 *sb32 = (u32*)sb;
883 	int i;
884 	unsigned int disk_csum, csum;
885 
886 	disk_csum = sb->sb_csum;
887 	sb->sb_csum = 0;
888 
889 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
890 		newcsum += sb32[i];
891 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
892 
893 
894 #ifdef CONFIG_ALPHA
895 	/* This used to use csum_partial, which was wrong for several
896 	 * reasons including that different results are returned on
897 	 * different architectures.  It isn't critical that we get exactly
898 	 * the same return value as before (we always csum_fold before
899 	 * testing, and that removes any differences).  However as we
900 	 * know that csum_partial always returned a 16bit value on
901 	 * alphas, do a fold to maximise conformity to previous behaviour.
902 	 */
903 	sb->sb_csum = md_csum_fold(disk_csum);
904 #else
905 	sb->sb_csum = disk_csum;
906 #endif
907 	return csum;
908 }
909 
910 
911 /*
912  * Handle superblock details.
913  * We want to be able to handle multiple superblock formats
914  * so we have a common interface to them all, and an array of
915  * different handlers.
916  * We rely on user-space to write the initial superblock, and support
917  * reading and updating of superblocks.
918  * Interface methods are:
919  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
920  *      loads and validates a superblock on dev.
921  *      if refdev != NULL, compare superblocks on both devices
922  *    Return:
923  *      0 - dev has a superblock that is compatible with refdev
924  *      1 - dev has a superblock that is compatible and newer than refdev
925  *          so dev should be used as the refdev in future
926  *     -EINVAL superblock incompatible or invalid
927  *     -othererror e.g. -EIO
928  *
929  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
930  *      Verify that dev is acceptable into mddev.
931  *       The first time, mddev->raid_disks will be 0, and data from
932  *       dev should be merged in.  Subsequent calls check that dev
933  *       is new enough.  Return 0 or -EINVAL
934  *
935  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
936  *     Update the superblock for rdev with data in mddev
937  *     This does not write to disc.
938  *
939  */
940 
941 struct super_type  {
942 	char		    *name;
943 	struct module	    *owner;
944 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
945 					  int minor_version);
946 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
947 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
948 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
949 						sector_t num_sectors);
950 };
951 
952 /*
953  * Check that the given mddev has no bitmap.
954  *
955  * This function is called from the run method of all personalities that do not
956  * support bitmaps. It prints an error message and returns non-zero if mddev
957  * has a bitmap. Otherwise, it returns 0.
958  *
959  */
960 int md_check_no_bitmap(mddev_t *mddev)
961 {
962 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
963 		return 0;
964 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
965 		mdname(mddev), mddev->pers->name);
966 	return 1;
967 }
968 EXPORT_SYMBOL(md_check_no_bitmap);
969 
970 /*
971  * load_super for 0.90.0
972  */
973 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
974 {
975 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
976 	mdp_super_t *sb;
977 	int ret;
978 
979 	/*
980 	 * Calculate the position of the superblock (512byte sectors),
981 	 * it's at the end of the disk.
982 	 *
983 	 * It also happens to be a multiple of 4Kb.
984 	 */
985 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
986 
987 	ret = read_disk_sb(rdev, MD_SB_BYTES);
988 	if (ret) return ret;
989 
990 	ret = -EINVAL;
991 
992 	bdevname(rdev->bdev, b);
993 	sb = (mdp_super_t*)page_address(rdev->sb_page);
994 
995 	if (sb->md_magic != MD_SB_MAGIC) {
996 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
997 		       b);
998 		goto abort;
999 	}
1000 
1001 	if (sb->major_version != 0 ||
1002 	    sb->minor_version < 90 ||
1003 	    sb->minor_version > 91) {
1004 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1005 			sb->major_version, sb->minor_version,
1006 			b);
1007 		goto abort;
1008 	}
1009 
1010 	if (sb->raid_disks <= 0)
1011 		goto abort;
1012 
1013 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1014 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1015 			b);
1016 		goto abort;
1017 	}
1018 
1019 	rdev->preferred_minor = sb->md_minor;
1020 	rdev->data_offset = 0;
1021 	rdev->sb_size = MD_SB_BYTES;
1022 
1023 	if (sb->level == LEVEL_MULTIPATH)
1024 		rdev->desc_nr = -1;
1025 	else
1026 		rdev->desc_nr = sb->this_disk.number;
1027 
1028 	if (!refdev) {
1029 		ret = 1;
1030 	} else {
1031 		__u64 ev1, ev2;
1032 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1033 		if (!uuid_equal(refsb, sb)) {
1034 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1035 				b, bdevname(refdev->bdev,b2));
1036 			goto abort;
1037 		}
1038 		if (!sb_equal(refsb, sb)) {
1039 			printk(KERN_WARNING "md: %s has same UUID"
1040 			       " but different superblock to %s\n",
1041 			       b, bdevname(refdev->bdev, b2));
1042 			goto abort;
1043 		}
1044 		ev1 = md_event(sb);
1045 		ev2 = md_event(refsb);
1046 		if (ev1 > ev2)
1047 			ret = 1;
1048 		else
1049 			ret = 0;
1050 	}
1051 	rdev->sectors = rdev->sb_start;
1052 
1053 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
1054 		/* "this cannot possibly happen" ... */
1055 		ret = -EINVAL;
1056 
1057  abort:
1058 	return ret;
1059 }
1060 
1061 /*
1062  * validate_super for 0.90.0
1063  */
1064 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1065 {
1066 	mdp_disk_t *desc;
1067 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1068 	__u64 ev1 = md_event(sb);
1069 
1070 	rdev->raid_disk = -1;
1071 	clear_bit(Faulty, &rdev->flags);
1072 	clear_bit(In_sync, &rdev->flags);
1073 	clear_bit(WriteMostly, &rdev->flags);
1074 	clear_bit(BarriersNotsupp, &rdev->flags);
1075 
1076 	if (mddev->raid_disks == 0) {
1077 		mddev->major_version = 0;
1078 		mddev->minor_version = sb->minor_version;
1079 		mddev->patch_version = sb->patch_version;
1080 		mddev->external = 0;
1081 		mddev->chunk_sectors = sb->chunk_size >> 9;
1082 		mddev->ctime = sb->ctime;
1083 		mddev->utime = sb->utime;
1084 		mddev->level = sb->level;
1085 		mddev->clevel[0] = 0;
1086 		mddev->layout = sb->layout;
1087 		mddev->raid_disks = sb->raid_disks;
1088 		mddev->dev_sectors = sb->size * 2;
1089 		mddev->events = ev1;
1090 		mddev->bitmap_info.offset = 0;
1091 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1092 
1093 		if (mddev->minor_version >= 91) {
1094 			mddev->reshape_position = sb->reshape_position;
1095 			mddev->delta_disks = sb->delta_disks;
1096 			mddev->new_level = sb->new_level;
1097 			mddev->new_layout = sb->new_layout;
1098 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1099 		} else {
1100 			mddev->reshape_position = MaxSector;
1101 			mddev->delta_disks = 0;
1102 			mddev->new_level = mddev->level;
1103 			mddev->new_layout = mddev->layout;
1104 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1105 		}
1106 
1107 		if (sb->state & (1<<MD_SB_CLEAN))
1108 			mddev->recovery_cp = MaxSector;
1109 		else {
1110 			if (sb->events_hi == sb->cp_events_hi &&
1111 				sb->events_lo == sb->cp_events_lo) {
1112 				mddev->recovery_cp = sb->recovery_cp;
1113 			} else
1114 				mddev->recovery_cp = 0;
1115 		}
1116 
1117 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1118 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1119 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1120 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1121 
1122 		mddev->max_disks = MD_SB_DISKS;
1123 
1124 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1125 		    mddev->bitmap_info.file == NULL)
1126 			mddev->bitmap_info.offset =
1127 				mddev->bitmap_info.default_offset;
1128 
1129 	} else if (mddev->pers == NULL) {
1130 		/* Insist on good event counter while assembling, except
1131 		 * for spares (which don't need an event count) */
1132 		++ev1;
1133 		if (sb->disks[rdev->desc_nr].state & (
1134 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1135 			if (ev1 < mddev->events)
1136 				return -EINVAL;
1137 	} else if (mddev->bitmap) {
1138 		/* if adding to array with a bitmap, then we can accept an
1139 		 * older device ... but not too old.
1140 		 */
1141 		if (ev1 < mddev->bitmap->events_cleared)
1142 			return 0;
1143 	} else {
1144 		if (ev1 < mddev->events)
1145 			/* just a hot-add of a new device, leave raid_disk at -1 */
1146 			return 0;
1147 	}
1148 
1149 	if (mddev->level != LEVEL_MULTIPATH) {
1150 		desc = sb->disks + rdev->desc_nr;
1151 
1152 		if (desc->state & (1<<MD_DISK_FAULTY))
1153 			set_bit(Faulty, &rdev->flags);
1154 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1155 			    desc->raid_disk < mddev->raid_disks */) {
1156 			set_bit(In_sync, &rdev->flags);
1157 			rdev->raid_disk = desc->raid_disk;
1158 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1159 			/* active but not in sync implies recovery up to
1160 			 * reshape position.  We don't know exactly where
1161 			 * that is, so set to zero for now */
1162 			if (mddev->minor_version >= 91) {
1163 				rdev->recovery_offset = 0;
1164 				rdev->raid_disk = desc->raid_disk;
1165 			}
1166 		}
1167 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1168 			set_bit(WriteMostly, &rdev->flags);
1169 	} else /* MULTIPATH are always insync */
1170 		set_bit(In_sync, &rdev->flags);
1171 	return 0;
1172 }
1173 
1174 /*
1175  * sync_super for 0.90.0
1176  */
1177 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1178 {
1179 	mdp_super_t *sb;
1180 	mdk_rdev_t *rdev2;
1181 	int next_spare = mddev->raid_disks;
1182 
1183 
1184 	/* make rdev->sb match mddev data..
1185 	 *
1186 	 * 1/ zero out disks
1187 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1188 	 * 3/ any empty disks < next_spare become removed
1189 	 *
1190 	 * disks[0] gets initialised to REMOVED because
1191 	 * we cannot be sure from other fields if it has
1192 	 * been initialised or not.
1193 	 */
1194 	int i;
1195 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1196 
1197 	rdev->sb_size = MD_SB_BYTES;
1198 
1199 	sb = (mdp_super_t*)page_address(rdev->sb_page);
1200 
1201 	memset(sb, 0, sizeof(*sb));
1202 
1203 	sb->md_magic = MD_SB_MAGIC;
1204 	sb->major_version = mddev->major_version;
1205 	sb->patch_version = mddev->patch_version;
1206 	sb->gvalid_words  = 0; /* ignored */
1207 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1208 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1209 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1210 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1211 
1212 	sb->ctime = mddev->ctime;
1213 	sb->level = mddev->level;
1214 	sb->size = mddev->dev_sectors / 2;
1215 	sb->raid_disks = mddev->raid_disks;
1216 	sb->md_minor = mddev->md_minor;
1217 	sb->not_persistent = 0;
1218 	sb->utime = mddev->utime;
1219 	sb->state = 0;
1220 	sb->events_hi = (mddev->events>>32);
1221 	sb->events_lo = (u32)mddev->events;
1222 
1223 	if (mddev->reshape_position == MaxSector)
1224 		sb->minor_version = 90;
1225 	else {
1226 		sb->minor_version = 91;
1227 		sb->reshape_position = mddev->reshape_position;
1228 		sb->new_level = mddev->new_level;
1229 		sb->delta_disks = mddev->delta_disks;
1230 		sb->new_layout = mddev->new_layout;
1231 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1232 	}
1233 	mddev->minor_version = sb->minor_version;
1234 	if (mddev->in_sync)
1235 	{
1236 		sb->recovery_cp = mddev->recovery_cp;
1237 		sb->cp_events_hi = (mddev->events>>32);
1238 		sb->cp_events_lo = (u32)mddev->events;
1239 		if (mddev->recovery_cp == MaxSector)
1240 			sb->state = (1<< MD_SB_CLEAN);
1241 	} else
1242 		sb->recovery_cp = 0;
1243 
1244 	sb->layout = mddev->layout;
1245 	sb->chunk_size = mddev->chunk_sectors << 9;
1246 
1247 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1248 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1249 
1250 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1251 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1252 		mdp_disk_t *d;
1253 		int desc_nr;
1254 		int is_active = test_bit(In_sync, &rdev2->flags);
1255 
1256 		if (rdev2->raid_disk >= 0 &&
1257 		    sb->minor_version >= 91)
1258 			/* we have nowhere to store the recovery_offset,
1259 			 * but if it is not below the reshape_position,
1260 			 * we can piggy-back on that.
1261 			 */
1262 			is_active = 1;
1263 		if (rdev2->raid_disk < 0 ||
1264 		    test_bit(Faulty, &rdev2->flags))
1265 			is_active = 0;
1266 		if (is_active)
1267 			desc_nr = rdev2->raid_disk;
1268 		else
1269 			desc_nr = next_spare++;
1270 		rdev2->desc_nr = desc_nr;
1271 		d = &sb->disks[rdev2->desc_nr];
1272 		nr_disks++;
1273 		d->number = rdev2->desc_nr;
1274 		d->major = MAJOR(rdev2->bdev->bd_dev);
1275 		d->minor = MINOR(rdev2->bdev->bd_dev);
1276 		if (is_active)
1277 			d->raid_disk = rdev2->raid_disk;
1278 		else
1279 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1280 		if (test_bit(Faulty, &rdev2->flags))
1281 			d->state = (1<<MD_DISK_FAULTY);
1282 		else if (is_active) {
1283 			d->state = (1<<MD_DISK_ACTIVE);
1284 			if (test_bit(In_sync, &rdev2->flags))
1285 				d->state |= (1<<MD_DISK_SYNC);
1286 			active++;
1287 			working++;
1288 		} else {
1289 			d->state = 0;
1290 			spare++;
1291 			working++;
1292 		}
1293 		if (test_bit(WriteMostly, &rdev2->flags))
1294 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1295 	}
1296 	/* now set the "removed" and "faulty" bits on any missing devices */
1297 	for (i=0 ; i < mddev->raid_disks ; i++) {
1298 		mdp_disk_t *d = &sb->disks[i];
1299 		if (d->state == 0 && d->number == 0) {
1300 			d->number = i;
1301 			d->raid_disk = i;
1302 			d->state = (1<<MD_DISK_REMOVED);
1303 			d->state |= (1<<MD_DISK_FAULTY);
1304 			failed++;
1305 		}
1306 	}
1307 	sb->nr_disks = nr_disks;
1308 	sb->active_disks = active;
1309 	sb->working_disks = working;
1310 	sb->failed_disks = failed;
1311 	sb->spare_disks = spare;
1312 
1313 	sb->this_disk = sb->disks[rdev->desc_nr];
1314 	sb->sb_csum = calc_sb_csum(sb);
1315 }
1316 
1317 /*
1318  * rdev_size_change for 0.90.0
1319  */
1320 static unsigned long long
1321 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1322 {
1323 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1324 		return 0; /* component must fit device */
1325 	if (rdev->mddev->bitmap_info.offset)
1326 		return 0; /* can't move bitmap */
1327 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1328 	if (!num_sectors || num_sectors > rdev->sb_start)
1329 		num_sectors = rdev->sb_start;
1330 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1331 		       rdev->sb_page);
1332 	md_super_wait(rdev->mddev);
1333 	return num_sectors / 2; /* kB for sysfs */
1334 }
1335 
1336 
1337 /*
1338  * version 1 superblock
1339  */
1340 
1341 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1342 {
1343 	__le32 disk_csum;
1344 	u32 csum;
1345 	unsigned long long newcsum;
1346 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1347 	__le32 *isuper = (__le32*)sb;
1348 	int i;
1349 
1350 	disk_csum = sb->sb_csum;
1351 	sb->sb_csum = 0;
1352 	newcsum = 0;
1353 	for (i=0; size>=4; size -= 4 )
1354 		newcsum += le32_to_cpu(*isuper++);
1355 
1356 	if (size == 2)
1357 		newcsum += le16_to_cpu(*(__le16*) isuper);
1358 
1359 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1360 	sb->sb_csum = disk_csum;
1361 	return cpu_to_le32(csum);
1362 }
1363 
1364 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1365 {
1366 	struct mdp_superblock_1 *sb;
1367 	int ret;
1368 	sector_t sb_start;
1369 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1370 	int bmask;
1371 
1372 	/*
1373 	 * Calculate the position of the superblock in 512byte sectors.
1374 	 * It is always aligned to a 4K boundary and
1375 	 * depeding on minor_version, it can be:
1376 	 * 0: At least 8K, but less than 12K, from end of device
1377 	 * 1: At start of device
1378 	 * 2: 4K from start of device.
1379 	 */
1380 	switch(minor_version) {
1381 	case 0:
1382 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1383 		sb_start -= 8*2;
1384 		sb_start &= ~(sector_t)(4*2-1);
1385 		break;
1386 	case 1:
1387 		sb_start = 0;
1388 		break;
1389 	case 2:
1390 		sb_start = 8;
1391 		break;
1392 	default:
1393 		return -EINVAL;
1394 	}
1395 	rdev->sb_start = sb_start;
1396 
1397 	/* superblock is rarely larger than 1K, but it can be larger,
1398 	 * and it is safe to read 4k, so we do that
1399 	 */
1400 	ret = read_disk_sb(rdev, 4096);
1401 	if (ret) return ret;
1402 
1403 
1404 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1405 
1406 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1407 	    sb->major_version != cpu_to_le32(1) ||
1408 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1409 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1410 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1411 		return -EINVAL;
1412 
1413 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1414 		printk("md: invalid superblock checksum on %s\n",
1415 			bdevname(rdev->bdev,b));
1416 		return -EINVAL;
1417 	}
1418 	if (le64_to_cpu(sb->data_size) < 10) {
1419 		printk("md: data_size too small on %s\n",
1420 		       bdevname(rdev->bdev,b));
1421 		return -EINVAL;
1422 	}
1423 
1424 	rdev->preferred_minor = 0xffff;
1425 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1426 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1427 
1428 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1429 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1430 	if (rdev->sb_size & bmask)
1431 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1432 
1433 	if (minor_version
1434 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1435 		return -EINVAL;
1436 
1437 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1438 		rdev->desc_nr = -1;
1439 	else
1440 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1441 
1442 	if (!refdev) {
1443 		ret = 1;
1444 	} else {
1445 		__u64 ev1, ev2;
1446 		struct mdp_superblock_1 *refsb =
1447 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1448 
1449 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1450 		    sb->level != refsb->level ||
1451 		    sb->layout != refsb->layout ||
1452 		    sb->chunksize != refsb->chunksize) {
1453 			printk(KERN_WARNING "md: %s has strangely different"
1454 				" superblock to %s\n",
1455 				bdevname(rdev->bdev,b),
1456 				bdevname(refdev->bdev,b2));
1457 			return -EINVAL;
1458 		}
1459 		ev1 = le64_to_cpu(sb->events);
1460 		ev2 = le64_to_cpu(refsb->events);
1461 
1462 		if (ev1 > ev2)
1463 			ret = 1;
1464 		else
1465 			ret = 0;
1466 	}
1467 	if (minor_version)
1468 		rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1469 			le64_to_cpu(sb->data_offset);
1470 	else
1471 		rdev->sectors = rdev->sb_start;
1472 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1473 		return -EINVAL;
1474 	rdev->sectors = le64_to_cpu(sb->data_size);
1475 	if (le64_to_cpu(sb->size) > rdev->sectors)
1476 		return -EINVAL;
1477 	return ret;
1478 }
1479 
1480 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1481 {
1482 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1483 	__u64 ev1 = le64_to_cpu(sb->events);
1484 
1485 	rdev->raid_disk = -1;
1486 	clear_bit(Faulty, &rdev->flags);
1487 	clear_bit(In_sync, &rdev->flags);
1488 	clear_bit(WriteMostly, &rdev->flags);
1489 	clear_bit(BarriersNotsupp, &rdev->flags);
1490 
1491 	if (mddev->raid_disks == 0) {
1492 		mddev->major_version = 1;
1493 		mddev->patch_version = 0;
1494 		mddev->external = 0;
1495 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1496 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1497 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1498 		mddev->level = le32_to_cpu(sb->level);
1499 		mddev->clevel[0] = 0;
1500 		mddev->layout = le32_to_cpu(sb->layout);
1501 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1502 		mddev->dev_sectors = le64_to_cpu(sb->size);
1503 		mddev->events = ev1;
1504 		mddev->bitmap_info.offset = 0;
1505 		mddev->bitmap_info.default_offset = 1024 >> 9;
1506 
1507 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1508 		memcpy(mddev->uuid, sb->set_uuid, 16);
1509 
1510 		mddev->max_disks =  (4096-256)/2;
1511 
1512 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1513 		    mddev->bitmap_info.file == NULL )
1514 			mddev->bitmap_info.offset =
1515 				(__s32)le32_to_cpu(sb->bitmap_offset);
1516 
1517 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1518 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1519 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1520 			mddev->new_level = le32_to_cpu(sb->new_level);
1521 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1522 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1523 		} else {
1524 			mddev->reshape_position = MaxSector;
1525 			mddev->delta_disks = 0;
1526 			mddev->new_level = mddev->level;
1527 			mddev->new_layout = mddev->layout;
1528 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1529 		}
1530 
1531 	} else if (mddev->pers == NULL) {
1532 		/* Insist of good event counter while assembling, except for
1533 		 * spares (which don't need an event count) */
1534 		++ev1;
1535 		if (rdev->desc_nr >= 0 &&
1536 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1537 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1538 			if (ev1 < mddev->events)
1539 				return -EINVAL;
1540 	} else if (mddev->bitmap) {
1541 		/* If adding to array with a bitmap, then we can accept an
1542 		 * older device, but not too old.
1543 		 */
1544 		if (ev1 < mddev->bitmap->events_cleared)
1545 			return 0;
1546 	} else {
1547 		if (ev1 < mddev->events)
1548 			/* just a hot-add of a new device, leave raid_disk at -1 */
1549 			return 0;
1550 	}
1551 	if (mddev->level != LEVEL_MULTIPATH) {
1552 		int role;
1553 		if (rdev->desc_nr < 0 ||
1554 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1555 			role = 0xffff;
1556 			rdev->desc_nr = -1;
1557 		} else
1558 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1559 		switch(role) {
1560 		case 0xffff: /* spare */
1561 			break;
1562 		case 0xfffe: /* faulty */
1563 			set_bit(Faulty, &rdev->flags);
1564 			break;
1565 		default:
1566 			if ((le32_to_cpu(sb->feature_map) &
1567 			     MD_FEATURE_RECOVERY_OFFSET))
1568 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1569 			else
1570 				set_bit(In_sync, &rdev->flags);
1571 			rdev->raid_disk = role;
1572 			break;
1573 		}
1574 		if (sb->devflags & WriteMostly1)
1575 			set_bit(WriteMostly, &rdev->flags);
1576 	} else /* MULTIPATH are always insync */
1577 		set_bit(In_sync, &rdev->flags);
1578 
1579 	return 0;
1580 }
1581 
1582 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1583 {
1584 	struct mdp_superblock_1 *sb;
1585 	mdk_rdev_t *rdev2;
1586 	int max_dev, i;
1587 	/* make rdev->sb match mddev and rdev data. */
1588 
1589 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1590 
1591 	sb->feature_map = 0;
1592 	sb->pad0 = 0;
1593 	sb->recovery_offset = cpu_to_le64(0);
1594 	memset(sb->pad1, 0, sizeof(sb->pad1));
1595 	memset(sb->pad2, 0, sizeof(sb->pad2));
1596 	memset(sb->pad3, 0, sizeof(sb->pad3));
1597 
1598 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1599 	sb->events = cpu_to_le64(mddev->events);
1600 	if (mddev->in_sync)
1601 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1602 	else
1603 		sb->resync_offset = cpu_to_le64(0);
1604 
1605 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1606 
1607 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1608 	sb->size = cpu_to_le64(mddev->dev_sectors);
1609 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1610 	sb->level = cpu_to_le32(mddev->level);
1611 	sb->layout = cpu_to_le32(mddev->layout);
1612 
1613 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1614 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1615 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1616 	}
1617 
1618 	if (rdev->raid_disk >= 0 &&
1619 	    !test_bit(In_sync, &rdev->flags)) {
1620 		sb->feature_map |=
1621 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1622 		sb->recovery_offset =
1623 			cpu_to_le64(rdev->recovery_offset);
1624 	}
1625 
1626 	if (mddev->reshape_position != MaxSector) {
1627 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1628 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1629 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1630 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1631 		sb->new_level = cpu_to_le32(mddev->new_level);
1632 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1633 	}
1634 
1635 	max_dev = 0;
1636 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1637 		if (rdev2->desc_nr+1 > max_dev)
1638 			max_dev = rdev2->desc_nr+1;
1639 
1640 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1641 		int bmask;
1642 		sb->max_dev = cpu_to_le32(max_dev);
1643 		rdev->sb_size = max_dev * 2 + 256;
1644 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1645 		if (rdev->sb_size & bmask)
1646 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1647 	} else
1648 		max_dev = le32_to_cpu(sb->max_dev);
1649 
1650 	for (i=0; i<max_dev;i++)
1651 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1652 
1653 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1654 		i = rdev2->desc_nr;
1655 		if (test_bit(Faulty, &rdev2->flags))
1656 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1657 		else if (test_bit(In_sync, &rdev2->flags))
1658 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1659 		else if (rdev2->raid_disk >= 0)
1660 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1661 		else
1662 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1663 	}
1664 
1665 	sb->sb_csum = calc_sb_1_csum(sb);
1666 }
1667 
1668 static unsigned long long
1669 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1670 {
1671 	struct mdp_superblock_1 *sb;
1672 	sector_t max_sectors;
1673 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1674 		return 0; /* component must fit device */
1675 	if (rdev->sb_start < rdev->data_offset) {
1676 		/* minor versions 1 and 2; superblock before data */
1677 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1678 		max_sectors -= rdev->data_offset;
1679 		if (!num_sectors || num_sectors > max_sectors)
1680 			num_sectors = max_sectors;
1681 	} else if (rdev->mddev->bitmap_info.offset) {
1682 		/* minor version 0 with bitmap we can't move */
1683 		return 0;
1684 	} else {
1685 		/* minor version 0; superblock after data */
1686 		sector_t sb_start;
1687 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1688 		sb_start &= ~(sector_t)(4*2 - 1);
1689 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1690 		if (!num_sectors || num_sectors > max_sectors)
1691 			num_sectors = max_sectors;
1692 		rdev->sb_start = sb_start;
1693 	}
1694 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1695 	sb->data_size = cpu_to_le64(num_sectors);
1696 	sb->super_offset = rdev->sb_start;
1697 	sb->sb_csum = calc_sb_1_csum(sb);
1698 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1699 		       rdev->sb_page);
1700 	md_super_wait(rdev->mddev);
1701 	return num_sectors / 2; /* kB for sysfs */
1702 }
1703 
1704 static struct super_type super_types[] = {
1705 	[0] = {
1706 		.name	= "0.90.0",
1707 		.owner	= THIS_MODULE,
1708 		.load_super	    = super_90_load,
1709 		.validate_super	    = super_90_validate,
1710 		.sync_super	    = super_90_sync,
1711 		.rdev_size_change   = super_90_rdev_size_change,
1712 	},
1713 	[1] = {
1714 		.name	= "md-1",
1715 		.owner	= THIS_MODULE,
1716 		.load_super	    = super_1_load,
1717 		.validate_super	    = super_1_validate,
1718 		.sync_super	    = super_1_sync,
1719 		.rdev_size_change   = super_1_rdev_size_change,
1720 	},
1721 };
1722 
1723 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1724 {
1725 	mdk_rdev_t *rdev, *rdev2;
1726 
1727 	rcu_read_lock();
1728 	rdev_for_each_rcu(rdev, mddev1)
1729 		rdev_for_each_rcu(rdev2, mddev2)
1730 			if (rdev->bdev->bd_contains ==
1731 			    rdev2->bdev->bd_contains) {
1732 				rcu_read_unlock();
1733 				return 1;
1734 			}
1735 	rcu_read_unlock();
1736 	return 0;
1737 }
1738 
1739 static LIST_HEAD(pending_raid_disks);
1740 
1741 /*
1742  * Try to register data integrity profile for an mddev
1743  *
1744  * This is called when an array is started and after a disk has been kicked
1745  * from the array. It only succeeds if all working and active component devices
1746  * are integrity capable with matching profiles.
1747  */
1748 int md_integrity_register(mddev_t *mddev)
1749 {
1750 	mdk_rdev_t *rdev, *reference = NULL;
1751 
1752 	if (list_empty(&mddev->disks))
1753 		return 0; /* nothing to do */
1754 	if (blk_get_integrity(mddev->gendisk))
1755 		return 0; /* already registered */
1756 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1757 		/* skip spares and non-functional disks */
1758 		if (test_bit(Faulty, &rdev->flags))
1759 			continue;
1760 		if (rdev->raid_disk < 0)
1761 			continue;
1762 		/*
1763 		 * If at least one rdev is not integrity capable, we can not
1764 		 * enable data integrity for the md device.
1765 		 */
1766 		if (!bdev_get_integrity(rdev->bdev))
1767 			return -EINVAL;
1768 		if (!reference) {
1769 			/* Use the first rdev as the reference */
1770 			reference = rdev;
1771 			continue;
1772 		}
1773 		/* does this rdev's profile match the reference profile? */
1774 		if (blk_integrity_compare(reference->bdev->bd_disk,
1775 				rdev->bdev->bd_disk) < 0)
1776 			return -EINVAL;
1777 	}
1778 	/*
1779 	 * All component devices are integrity capable and have matching
1780 	 * profiles, register the common profile for the md device.
1781 	 */
1782 	if (blk_integrity_register(mddev->gendisk,
1783 			bdev_get_integrity(reference->bdev)) != 0) {
1784 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1785 			mdname(mddev));
1786 		return -EINVAL;
1787 	}
1788 	printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1789 		mdname(mddev));
1790 	return 0;
1791 }
1792 EXPORT_SYMBOL(md_integrity_register);
1793 
1794 /* Disable data integrity if non-capable/non-matching disk is being added */
1795 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1796 {
1797 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1798 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1799 
1800 	if (!bi_mddev) /* nothing to do */
1801 		return;
1802 	if (rdev->raid_disk < 0) /* skip spares */
1803 		return;
1804 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1805 					     rdev->bdev->bd_disk) >= 0)
1806 		return;
1807 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1808 	blk_integrity_unregister(mddev->gendisk);
1809 }
1810 EXPORT_SYMBOL(md_integrity_add_rdev);
1811 
1812 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1813 {
1814 	char b[BDEVNAME_SIZE];
1815 	struct kobject *ko;
1816 	char *s;
1817 	int err;
1818 
1819 	if (rdev->mddev) {
1820 		MD_BUG();
1821 		return -EINVAL;
1822 	}
1823 
1824 	/* prevent duplicates */
1825 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1826 		return -EEXIST;
1827 
1828 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1829 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1830 			rdev->sectors < mddev->dev_sectors)) {
1831 		if (mddev->pers) {
1832 			/* Cannot change size, so fail
1833 			 * If mddev->level <= 0, then we don't care
1834 			 * about aligning sizes (e.g. linear)
1835 			 */
1836 			if (mddev->level > 0)
1837 				return -ENOSPC;
1838 		} else
1839 			mddev->dev_sectors = rdev->sectors;
1840 	}
1841 
1842 	/* Verify rdev->desc_nr is unique.
1843 	 * If it is -1, assign a free number, else
1844 	 * check number is not in use
1845 	 */
1846 	if (rdev->desc_nr < 0) {
1847 		int choice = 0;
1848 		if (mddev->pers) choice = mddev->raid_disks;
1849 		while (find_rdev_nr(mddev, choice))
1850 			choice++;
1851 		rdev->desc_nr = choice;
1852 	} else {
1853 		if (find_rdev_nr(mddev, rdev->desc_nr))
1854 			return -EBUSY;
1855 	}
1856 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1857 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1858 		       mdname(mddev), mddev->max_disks);
1859 		return -EBUSY;
1860 	}
1861 	bdevname(rdev->bdev,b);
1862 	while ( (s=strchr(b, '/')) != NULL)
1863 		*s = '!';
1864 
1865 	rdev->mddev = mddev;
1866 	printk(KERN_INFO "md: bind<%s>\n", b);
1867 
1868 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1869 		goto fail;
1870 
1871 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1872 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
1873 		/* failure here is OK */;
1874 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1875 
1876 	list_add_rcu(&rdev->same_set, &mddev->disks);
1877 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1878 
1879 	/* May as well allow recovery to be retried once */
1880 	mddev->recovery_disabled = 0;
1881 
1882 	return 0;
1883 
1884  fail:
1885 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1886 	       b, mdname(mddev));
1887 	return err;
1888 }
1889 
1890 static void md_delayed_delete(struct work_struct *ws)
1891 {
1892 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1893 	kobject_del(&rdev->kobj);
1894 	kobject_put(&rdev->kobj);
1895 }
1896 
1897 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1898 {
1899 	char b[BDEVNAME_SIZE];
1900 	if (!rdev->mddev) {
1901 		MD_BUG();
1902 		return;
1903 	}
1904 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1905 	list_del_rcu(&rdev->same_set);
1906 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1907 	rdev->mddev = NULL;
1908 	sysfs_remove_link(&rdev->kobj, "block");
1909 	sysfs_put(rdev->sysfs_state);
1910 	rdev->sysfs_state = NULL;
1911 	/* We need to delay this, otherwise we can deadlock when
1912 	 * writing to 'remove' to "dev/state".  We also need
1913 	 * to delay it due to rcu usage.
1914 	 */
1915 	synchronize_rcu();
1916 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1917 	kobject_get(&rdev->kobj);
1918 	schedule_work(&rdev->del_work);
1919 }
1920 
1921 /*
1922  * prevent the device from being mounted, repartitioned or
1923  * otherwise reused by a RAID array (or any other kernel
1924  * subsystem), by bd_claiming the device.
1925  */
1926 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1927 {
1928 	int err = 0;
1929 	struct block_device *bdev;
1930 	char b[BDEVNAME_SIZE];
1931 
1932 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1933 	if (IS_ERR(bdev)) {
1934 		printk(KERN_ERR "md: could not open %s.\n",
1935 			__bdevname(dev, b));
1936 		return PTR_ERR(bdev);
1937 	}
1938 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1939 	if (err) {
1940 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1941 			bdevname(bdev, b));
1942 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1943 		return err;
1944 	}
1945 	if (!shared)
1946 		set_bit(AllReserved, &rdev->flags);
1947 	rdev->bdev = bdev;
1948 	return err;
1949 }
1950 
1951 static void unlock_rdev(mdk_rdev_t *rdev)
1952 {
1953 	struct block_device *bdev = rdev->bdev;
1954 	rdev->bdev = NULL;
1955 	if (!bdev)
1956 		MD_BUG();
1957 	bd_release(bdev);
1958 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1959 }
1960 
1961 void md_autodetect_dev(dev_t dev);
1962 
1963 static void export_rdev(mdk_rdev_t * rdev)
1964 {
1965 	char b[BDEVNAME_SIZE];
1966 	printk(KERN_INFO "md: export_rdev(%s)\n",
1967 		bdevname(rdev->bdev,b));
1968 	if (rdev->mddev)
1969 		MD_BUG();
1970 	free_disk_sb(rdev);
1971 #ifndef MODULE
1972 	if (test_bit(AutoDetected, &rdev->flags))
1973 		md_autodetect_dev(rdev->bdev->bd_dev);
1974 #endif
1975 	unlock_rdev(rdev);
1976 	kobject_put(&rdev->kobj);
1977 }
1978 
1979 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1980 {
1981 	unbind_rdev_from_array(rdev);
1982 	export_rdev(rdev);
1983 }
1984 
1985 static void export_array(mddev_t *mddev)
1986 {
1987 	mdk_rdev_t *rdev, *tmp;
1988 
1989 	rdev_for_each(rdev, tmp, mddev) {
1990 		if (!rdev->mddev) {
1991 			MD_BUG();
1992 			continue;
1993 		}
1994 		kick_rdev_from_array(rdev);
1995 	}
1996 	if (!list_empty(&mddev->disks))
1997 		MD_BUG();
1998 	mddev->raid_disks = 0;
1999 	mddev->major_version = 0;
2000 }
2001 
2002 static void print_desc(mdp_disk_t *desc)
2003 {
2004 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2005 		desc->major,desc->minor,desc->raid_disk,desc->state);
2006 }
2007 
2008 static void print_sb_90(mdp_super_t *sb)
2009 {
2010 	int i;
2011 
2012 	printk(KERN_INFO
2013 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2014 		sb->major_version, sb->minor_version, sb->patch_version,
2015 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2016 		sb->ctime);
2017 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2018 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2019 		sb->md_minor, sb->layout, sb->chunk_size);
2020 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2021 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2022 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2023 		sb->failed_disks, sb->spare_disks,
2024 		sb->sb_csum, (unsigned long)sb->events_lo);
2025 
2026 	printk(KERN_INFO);
2027 	for (i = 0; i < MD_SB_DISKS; i++) {
2028 		mdp_disk_t *desc;
2029 
2030 		desc = sb->disks + i;
2031 		if (desc->number || desc->major || desc->minor ||
2032 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2033 			printk("     D %2d: ", i);
2034 			print_desc(desc);
2035 		}
2036 	}
2037 	printk(KERN_INFO "md:     THIS: ");
2038 	print_desc(&sb->this_disk);
2039 }
2040 
2041 static void print_sb_1(struct mdp_superblock_1 *sb)
2042 {
2043 	__u8 *uuid;
2044 
2045 	uuid = sb->set_uuid;
2046 	printk(KERN_INFO
2047 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2048 	       "md:    Name: \"%s\" CT:%llu\n",
2049 		le32_to_cpu(sb->major_version),
2050 		le32_to_cpu(sb->feature_map),
2051 		uuid,
2052 		sb->set_name,
2053 		(unsigned long long)le64_to_cpu(sb->ctime)
2054 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2055 
2056 	uuid = sb->device_uuid;
2057 	printk(KERN_INFO
2058 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2059 			" RO:%llu\n"
2060 	       "md:     Dev:%08x UUID: %pU\n"
2061 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2062 	       "md:         (MaxDev:%u) \n",
2063 		le32_to_cpu(sb->level),
2064 		(unsigned long long)le64_to_cpu(sb->size),
2065 		le32_to_cpu(sb->raid_disks),
2066 		le32_to_cpu(sb->layout),
2067 		le32_to_cpu(sb->chunksize),
2068 		(unsigned long long)le64_to_cpu(sb->data_offset),
2069 		(unsigned long long)le64_to_cpu(sb->data_size),
2070 		(unsigned long long)le64_to_cpu(sb->super_offset),
2071 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2072 		le32_to_cpu(sb->dev_number),
2073 		uuid,
2074 		sb->devflags,
2075 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2076 		(unsigned long long)le64_to_cpu(sb->events),
2077 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2078 		le32_to_cpu(sb->sb_csum),
2079 		le32_to_cpu(sb->max_dev)
2080 		);
2081 }
2082 
2083 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2084 {
2085 	char b[BDEVNAME_SIZE];
2086 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2087 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2088 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2089 	        rdev->desc_nr);
2090 	if (rdev->sb_loaded) {
2091 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2092 		switch (major_version) {
2093 		case 0:
2094 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2095 			break;
2096 		case 1:
2097 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2098 			break;
2099 		}
2100 	} else
2101 		printk(KERN_INFO "md: no rdev superblock!\n");
2102 }
2103 
2104 static void md_print_devices(void)
2105 {
2106 	struct list_head *tmp;
2107 	mdk_rdev_t *rdev;
2108 	mddev_t *mddev;
2109 	char b[BDEVNAME_SIZE];
2110 
2111 	printk("\n");
2112 	printk("md:	**********************************\n");
2113 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2114 	printk("md:	**********************************\n");
2115 	for_each_mddev(mddev, tmp) {
2116 
2117 		if (mddev->bitmap)
2118 			bitmap_print_sb(mddev->bitmap);
2119 		else
2120 			printk("%s: ", mdname(mddev));
2121 		list_for_each_entry(rdev, &mddev->disks, same_set)
2122 			printk("<%s>", bdevname(rdev->bdev,b));
2123 		printk("\n");
2124 
2125 		list_for_each_entry(rdev, &mddev->disks, same_set)
2126 			print_rdev(rdev, mddev->major_version);
2127 	}
2128 	printk("md:	**********************************\n");
2129 	printk("\n");
2130 }
2131 
2132 
2133 static void sync_sbs(mddev_t * mddev, int nospares)
2134 {
2135 	/* Update each superblock (in-memory image), but
2136 	 * if we are allowed to, skip spares which already
2137 	 * have the right event counter, or have one earlier
2138 	 * (which would mean they aren't being marked as dirty
2139 	 * with the rest of the array)
2140 	 */
2141 	mdk_rdev_t *rdev;
2142 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2143 		if (rdev->sb_events == mddev->events ||
2144 		    (nospares &&
2145 		     rdev->raid_disk < 0 &&
2146 		     rdev->sb_events+1 == mddev->events)) {
2147 			/* Don't update this superblock */
2148 			rdev->sb_loaded = 2;
2149 		} else {
2150 			super_types[mddev->major_version].
2151 				sync_super(mddev, rdev);
2152 			rdev->sb_loaded = 1;
2153 		}
2154 	}
2155 }
2156 
2157 static void md_update_sb(mddev_t * mddev, int force_change)
2158 {
2159 	mdk_rdev_t *rdev;
2160 	int sync_req;
2161 	int nospares = 0;
2162 
2163 repeat:
2164 	/* First make sure individual recovery_offsets are correct */
2165 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2166 		if (rdev->raid_disk >= 0 &&
2167 		    mddev->delta_disks >= 0 &&
2168 		    !test_bit(In_sync, &rdev->flags) &&
2169 		    mddev->curr_resync_completed > rdev->recovery_offset)
2170 				rdev->recovery_offset = mddev->curr_resync_completed;
2171 
2172 	}
2173 	if (!mddev->persistent) {
2174 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2175 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2176 		wake_up(&mddev->sb_wait);
2177 		return;
2178 	}
2179 
2180 	spin_lock_irq(&mddev->write_lock);
2181 
2182 	mddev->utime = get_seconds();
2183 
2184 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2185 		force_change = 1;
2186 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2187 		/* just a clean<-> dirty transition, possibly leave spares alone,
2188 		 * though if events isn't the right even/odd, we will have to do
2189 		 * spares after all
2190 		 */
2191 		nospares = 1;
2192 	if (force_change)
2193 		nospares = 0;
2194 	if (mddev->degraded)
2195 		/* If the array is degraded, then skipping spares is both
2196 		 * dangerous and fairly pointless.
2197 		 * Dangerous because a device that was removed from the array
2198 		 * might have a event_count that still looks up-to-date,
2199 		 * so it can be re-added without a resync.
2200 		 * Pointless because if there are any spares to skip,
2201 		 * then a recovery will happen and soon that array won't
2202 		 * be degraded any more and the spare can go back to sleep then.
2203 		 */
2204 		nospares = 0;
2205 
2206 	sync_req = mddev->in_sync;
2207 
2208 	/* If this is just a dirty<->clean transition, and the array is clean
2209 	 * and 'events' is odd, we can roll back to the previous clean state */
2210 	if (nospares
2211 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2212 	    && mddev->can_decrease_events
2213 	    && mddev->events != 1) {
2214 		mddev->events--;
2215 		mddev->can_decrease_events = 0;
2216 	} else {
2217 		/* otherwise we have to go forward and ... */
2218 		mddev->events ++;
2219 		mddev->can_decrease_events = nospares;
2220 	}
2221 
2222 	if (!mddev->events) {
2223 		/*
2224 		 * oops, this 64-bit counter should never wrap.
2225 		 * Either we are in around ~1 trillion A.C., assuming
2226 		 * 1 reboot per second, or we have a bug:
2227 		 */
2228 		MD_BUG();
2229 		mddev->events --;
2230 	}
2231 	sync_sbs(mddev, nospares);
2232 	spin_unlock_irq(&mddev->write_lock);
2233 
2234 	dprintk(KERN_INFO
2235 		"md: updating %s RAID superblock on device (in sync %d)\n",
2236 		mdname(mddev),mddev->in_sync);
2237 
2238 	bitmap_update_sb(mddev->bitmap);
2239 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2240 		char b[BDEVNAME_SIZE];
2241 		dprintk(KERN_INFO "md: ");
2242 		if (rdev->sb_loaded != 1)
2243 			continue; /* no noise on spare devices */
2244 		if (test_bit(Faulty, &rdev->flags))
2245 			dprintk("(skipping faulty ");
2246 
2247 		dprintk("%s ", bdevname(rdev->bdev,b));
2248 		if (!test_bit(Faulty, &rdev->flags)) {
2249 			md_super_write(mddev,rdev,
2250 				       rdev->sb_start, rdev->sb_size,
2251 				       rdev->sb_page);
2252 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2253 				bdevname(rdev->bdev,b),
2254 				(unsigned long long)rdev->sb_start);
2255 			rdev->sb_events = mddev->events;
2256 
2257 		} else
2258 			dprintk(")\n");
2259 		if (mddev->level == LEVEL_MULTIPATH)
2260 			/* only need to write one superblock... */
2261 			break;
2262 	}
2263 	md_super_wait(mddev);
2264 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2265 
2266 	spin_lock_irq(&mddev->write_lock);
2267 	if (mddev->in_sync != sync_req ||
2268 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2269 		/* have to write it out again */
2270 		spin_unlock_irq(&mddev->write_lock);
2271 		goto repeat;
2272 	}
2273 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2274 	spin_unlock_irq(&mddev->write_lock);
2275 	wake_up(&mddev->sb_wait);
2276 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2277 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2278 
2279 }
2280 
2281 /* words written to sysfs files may, or may not, be \n terminated.
2282  * We want to accept with case. For this we use cmd_match.
2283  */
2284 static int cmd_match(const char *cmd, const char *str)
2285 {
2286 	/* See if cmd, written into a sysfs file, matches
2287 	 * str.  They must either be the same, or cmd can
2288 	 * have a trailing newline
2289 	 */
2290 	while (*cmd && *str && *cmd == *str) {
2291 		cmd++;
2292 		str++;
2293 	}
2294 	if (*cmd == '\n')
2295 		cmd++;
2296 	if (*str || *cmd)
2297 		return 0;
2298 	return 1;
2299 }
2300 
2301 struct rdev_sysfs_entry {
2302 	struct attribute attr;
2303 	ssize_t (*show)(mdk_rdev_t *, char *);
2304 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2305 };
2306 
2307 static ssize_t
2308 state_show(mdk_rdev_t *rdev, char *page)
2309 {
2310 	char *sep = "";
2311 	size_t len = 0;
2312 
2313 	if (test_bit(Faulty, &rdev->flags)) {
2314 		len+= sprintf(page+len, "%sfaulty",sep);
2315 		sep = ",";
2316 	}
2317 	if (test_bit(In_sync, &rdev->flags)) {
2318 		len += sprintf(page+len, "%sin_sync",sep);
2319 		sep = ",";
2320 	}
2321 	if (test_bit(WriteMostly, &rdev->flags)) {
2322 		len += sprintf(page+len, "%swrite_mostly",sep);
2323 		sep = ",";
2324 	}
2325 	if (test_bit(Blocked, &rdev->flags)) {
2326 		len += sprintf(page+len, "%sblocked", sep);
2327 		sep = ",";
2328 	}
2329 	if (!test_bit(Faulty, &rdev->flags) &&
2330 	    !test_bit(In_sync, &rdev->flags)) {
2331 		len += sprintf(page+len, "%sspare", sep);
2332 		sep = ",";
2333 	}
2334 	return len+sprintf(page+len, "\n");
2335 }
2336 
2337 static ssize_t
2338 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2339 {
2340 	/* can write
2341 	 *  faulty  - simulates and error
2342 	 *  remove  - disconnects the device
2343 	 *  writemostly - sets write_mostly
2344 	 *  -writemostly - clears write_mostly
2345 	 *  blocked - sets the Blocked flag
2346 	 *  -blocked - clears the Blocked flag
2347 	 *  insync - sets Insync providing device isn't active
2348 	 */
2349 	int err = -EINVAL;
2350 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2351 		md_error(rdev->mddev, rdev);
2352 		err = 0;
2353 	} else if (cmd_match(buf, "remove")) {
2354 		if (rdev->raid_disk >= 0)
2355 			err = -EBUSY;
2356 		else {
2357 			mddev_t *mddev = rdev->mddev;
2358 			kick_rdev_from_array(rdev);
2359 			if (mddev->pers)
2360 				md_update_sb(mddev, 1);
2361 			md_new_event(mddev);
2362 			err = 0;
2363 		}
2364 	} else if (cmd_match(buf, "writemostly")) {
2365 		set_bit(WriteMostly, &rdev->flags);
2366 		err = 0;
2367 	} else if (cmd_match(buf, "-writemostly")) {
2368 		clear_bit(WriteMostly, &rdev->flags);
2369 		err = 0;
2370 	} else if (cmd_match(buf, "blocked")) {
2371 		set_bit(Blocked, &rdev->flags);
2372 		err = 0;
2373 	} else if (cmd_match(buf, "-blocked")) {
2374 		clear_bit(Blocked, &rdev->flags);
2375 		wake_up(&rdev->blocked_wait);
2376 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2377 		md_wakeup_thread(rdev->mddev->thread);
2378 
2379 		err = 0;
2380 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2381 		set_bit(In_sync, &rdev->flags);
2382 		err = 0;
2383 	}
2384 	if (!err)
2385 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2386 	return err ? err : len;
2387 }
2388 static struct rdev_sysfs_entry rdev_state =
2389 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2390 
2391 static ssize_t
2392 errors_show(mdk_rdev_t *rdev, char *page)
2393 {
2394 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2395 }
2396 
2397 static ssize_t
2398 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2399 {
2400 	char *e;
2401 	unsigned long n = simple_strtoul(buf, &e, 10);
2402 	if (*buf && (*e == 0 || *e == '\n')) {
2403 		atomic_set(&rdev->corrected_errors, n);
2404 		return len;
2405 	}
2406 	return -EINVAL;
2407 }
2408 static struct rdev_sysfs_entry rdev_errors =
2409 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2410 
2411 static ssize_t
2412 slot_show(mdk_rdev_t *rdev, char *page)
2413 {
2414 	if (rdev->raid_disk < 0)
2415 		return sprintf(page, "none\n");
2416 	else
2417 		return sprintf(page, "%d\n", rdev->raid_disk);
2418 }
2419 
2420 static ssize_t
2421 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2422 {
2423 	char *e;
2424 	int err;
2425 	char nm[20];
2426 	int slot = simple_strtoul(buf, &e, 10);
2427 	if (strncmp(buf, "none", 4)==0)
2428 		slot = -1;
2429 	else if (e==buf || (*e && *e!= '\n'))
2430 		return -EINVAL;
2431 	if (rdev->mddev->pers && slot == -1) {
2432 		/* Setting 'slot' on an active array requires also
2433 		 * updating the 'rd%d' link, and communicating
2434 		 * with the personality with ->hot_*_disk.
2435 		 * For now we only support removing
2436 		 * failed/spare devices.  This normally happens automatically,
2437 		 * but not when the metadata is externally managed.
2438 		 */
2439 		if (rdev->raid_disk == -1)
2440 			return -EEXIST;
2441 		/* personality does all needed checks */
2442 		if (rdev->mddev->pers->hot_add_disk == NULL)
2443 			return -EINVAL;
2444 		err = rdev->mddev->pers->
2445 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2446 		if (err)
2447 			return err;
2448 		sprintf(nm, "rd%d", rdev->raid_disk);
2449 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2450 		rdev->raid_disk = -1;
2451 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2452 		md_wakeup_thread(rdev->mddev->thread);
2453 	} else if (rdev->mddev->pers) {
2454 		mdk_rdev_t *rdev2;
2455 		/* Activating a spare .. or possibly reactivating
2456 		 * if we ever get bitmaps working here.
2457 		 */
2458 
2459 		if (rdev->raid_disk != -1)
2460 			return -EBUSY;
2461 
2462 		if (rdev->mddev->pers->hot_add_disk == NULL)
2463 			return -EINVAL;
2464 
2465 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2466 			if (rdev2->raid_disk == slot)
2467 				return -EEXIST;
2468 
2469 		rdev->raid_disk = slot;
2470 		if (test_bit(In_sync, &rdev->flags))
2471 			rdev->saved_raid_disk = slot;
2472 		else
2473 			rdev->saved_raid_disk = -1;
2474 		err = rdev->mddev->pers->
2475 			hot_add_disk(rdev->mddev, rdev);
2476 		if (err) {
2477 			rdev->raid_disk = -1;
2478 			return err;
2479 		} else
2480 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2481 		sprintf(nm, "rd%d", rdev->raid_disk);
2482 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2483 			/* failure here is OK */;
2484 		/* don't wakeup anyone, leave that to userspace. */
2485 	} else {
2486 		if (slot >= rdev->mddev->raid_disks)
2487 			return -ENOSPC;
2488 		rdev->raid_disk = slot;
2489 		/* assume it is working */
2490 		clear_bit(Faulty, &rdev->flags);
2491 		clear_bit(WriteMostly, &rdev->flags);
2492 		set_bit(In_sync, &rdev->flags);
2493 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2494 	}
2495 	return len;
2496 }
2497 
2498 
2499 static struct rdev_sysfs_entry rdev_slot =
2500 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2501 
2502 static ssize_t
2503 offset_show(mdk_rdev_t *rdev, char *page)
2504 {
2505 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2506 }
2507 
2508 static ssize_t
2509 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2510 {
2511 	char *e;
2512 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2513 	if (e==buf || (*e && *e != '\n'))
2514 		return -EINVAL;
2515 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2516 		return -EBUSY;
2517 	if (rdev->sectors && rdev->mddev->external)
2518 		/* Must set offset before size, so overlap checks
2519 		 * can be sane */
2520 		return -EBUSY;
2521 	rdev->data_offset = offset;
2522 	return len;
2523 }
2524 
2525 static struct rdev_sysfs_entry rdev_offset =
2526 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2527 
2528 static ssize_t
2529 rdev_size_show(mdk_rdev_t *rdev, char *page)
2530 {
2531 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2532 }
2533 
2534 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2535 {
2536 	/* check if two start/length pairs overlap */
2537 	if (s1+l1 <= s2)
2538 		return 0;
2539 	if (s2+l2 <= s1)
2540 		return 0;
2541 	return 1;
2542 }
2543 
2544 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2545 {
2546 	unsigned long long blocks;
2547 	sector_t new;
2548 
2549 	if (strict_strtoull(buf, 10, &blocks) < 0)
2550 		return -EINVAL;
2551 
2552 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2553 		return -EINVAL; /* sector conversion overflow */
2554 
2555 	new = blocks * 2;
2556 	if (new != blocks * 2)
2557 		return -EINVAL; /* unsigned long long to sector_t overflow */
2558 
2559 	*sectors = new;
2560 	return 0;
2561 }
2562 
2563 static ssize_t
2564 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2565 {
2566 	mddev_t *my_mddev = rdev->mddev;
2567 	sector_t oldsectors = rdev->sectors;
2568 	sector_t sectors;
2569 
2570 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2571 		return -EINVAL;
2572 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2573 		if (my_mddev->persistent) {
2574 			sectors = super_types[my_mddev->major_version].
2575 				rdev_size_change(rdev, sectors);
2576 			if (!sectors)
2577 				return -EBUSY;
2578 		} else if (!sectors)
2579 			sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2580 				rdev->data_offset;
2581 	}
2582 	if (sectors < my_mddev->dev_sectors)
2583 		return -EINVAL; /* component must fit device */
2584 
2585 	rdev->sectors = sectors;
2586 	if (sectors > oldsectors && my_mddev->external) {
2587 		/* need to check that all other rdevs with the same ->bdev
2588 		 * do not overlap.  We need to unlock the mddev to avoid
2589 		 * a deadlock.  We have already changed rdev->sectors, and if
2590 		 * we have to change it back, we will have the lock again.
2591 		 */
2592 		mddev_t *mddev;
2593 		int overlap = 0;
2594 		struct list_head *tmp;
2595 
2596 		mddev_unlock(my_mddev);
2597 		for_each_mddev(mddev, tmp) {
2598 			mdk_rdev_t *rdev2;
2599 
2600 			mddev_lock(mddev);
2601 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2602 				if (test_bit(AllReserved, &rdev2->flags) ||
2603 				    (rdev->bdev == rdev2->bdev &&
2604 				     rdev != rdev2 &&
2605 				     overlaps(rdev->data_offset, rdev->sectors,
2606 					      rdev2->data_offset,
2607 					      rdev2->sectors))) {
2608 					overlap = 1;
2609 					break;
2610 				}
2611 			mddev_unlock(mddev);
2612 			if (overlap) {
2613 				mddev_put(mddev);
2614 				break;
2615 			}
2616 		}
2617 		mddev_lock(my_mddev);
2618 		if (overlap) {
2619 			/* Someone else could have slipped in a size
2620 			 * change here, but doing so is just silly.
2621 			 * We put oldsectors back because we *know* it is
2622 			 * safe, and trust userspace not to race with
2623 			 * itself
2624 			 */
2625 			rdev->sectors = oldsectors;
2626 			return -EBUSY;
2627 		}
2628 	}
2629 	return len;
2630 }
2631 
2632 static struct rdev_sysfs_entry rdev_size =
2633 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2634 
2635 
2636 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2637 {
2638 	unsigned long long recovery_start = rdev->recovery_offset;
2639 
2640 	if (test_bit(In_sync, &rdev->flags) ||
2641 	    recovery_start == MaxSector)
2642 		return sprintf(page, "none\n");
2643 
2644 	return sprintf(page, "%llu\n", recovery_start);
2645 }
2646 
2647 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2648 {
2649 	unsigned long long recovery_start;
2650 
2651 	if (cmd_match(buf, "none"))
2652 		recovery_start = MaxSector;
2653 	else if (strict_strtoull(buf, 10, &recovery_start))
2654 		return -EINVAL;
2655 
2656 	if (rdev->mddev->pers &&
2657 	    rdev->raid_disk >= 0)
2658 		return -EBUSY;
2659 
2660 	rdev->recovery_offset = recovery_start;
2661 	if (recovery_start == MaxSector)
2662 		set_bit(In_sync, &rdev->flags);
2663 	else
2664 		clear_bit(In_sync, &rdev->flags);
2665 	return len;
2666 }
2667 
2668 static struct rdev_sysfs_entry rdev_recovery_start =
2669 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2670 
2671 static struct attribute *rdev_default_attrs[] = {
2672 	&rdev_state.attr,
2673 	&rdev_errors.attr,
2674 	&rdev_slot.attr,
2675 	&rdev_offset.attr,
2676 	&rdev_size.attr,
2677 	&rdev_recovery_start.attr,
2678 	NULL,
2679 };
2680 static ssize_t
2681 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2682 {
2683 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2684 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2685 	mddev_t *mddev = rdev->mddev;
2686 	ssize_t rv;
2687 
2688 	if (!entry->show)
2689 		return -EIO;
2690 
2691 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2692 	if (!rv) {
2693 		if (rdev->mddev == NULL)
2694 			rv = -EBUSY;
2695 		else
2696 			rv = entry->show(rdev, page);
2697 		mddev_unlock(mddev);
2698 	}
2699 	return rv;
2700 }
2701 
2702 static ssize_t
2703 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2704 	      const char *page, size_t length)
2705 {
2706 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2707 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2708 	ssize_t rv;
2709 	mddev_t *mddev = rdev->mddev;
2710 
2711 	if (!entry->store)
2712 		return -EIO;
2713 	if (!capable(CAP_SYS_ADMIN))
2714 		return -EACCES;
2715 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2716 	if (!rv) {
2717 		if (rdev->mddev == NULL)
2718 			rv = -EBUSY;
2719 		else
2720 			rv = entry->store(rdev, page, length);
2721 		mddev_unlock(mddev);
2722 	}
2723 	return rv;
2724 }
2725 
2726 static void rdev_free(struct kobject *ko)
2727 {
2728 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2729 	kfree(rdev);
2730 }
2731 static const struct sysfs_ops rdev_sysfs_ops = {
2732 	.show		= rdev_attr_show,
2733 	.store		= rdev_attr_store,
2734 };
2735 static struct kobj_type rdev_ktype = {
2736 	.release	= rdev_free,
2737 	.sysfs_ops	= &rdev_sysfs_ops,
2738 	.default_attrs	= rdev_default_attrs,
2739 };
2740 
2741 void md_rdev_init(mdk_rdev_t *rdev)
2742 {
2743 	rdev->desc_nr = -1;
2744 	rdev->saved_raid_disk = -1;
2745 	rdev->raid_disk = -1;
2746 	rdev->flags = 0;
2747 	rdev->data_offset = 0;
2748 	rdev->sb_events = 0;
2749 	rdev->last_read_error.tv_sec  = 0;
2750 	rdev->last_read_error.tv_nsec = 0;
2751 	atomic_set(&rdev->nr_pending, 0);
2752 	atomic_set(&rdev->read_errors, 0);
2753 	atomic_set(&rdev->corrected_errors, 0);
2754 
2755 	INIT_LIST_HEAD(&rdev->same_set);
2756 	init_waitqueue_head(&rdev->blocked_wait);
2757 }
2758 EXPORT_SYMBOL_GPL(md_rdev_init);
2759 /*
2760  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2761  *
2762  * mark the device faulty if:
2763  *
2764  *   - the device is nonexistent (zero size)
2765  *   - the device has no valid superblock
2766  *
2767  * a faulty rdev _never_ has rdev->sb set.
2768  */
2769 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2770 {
2771 	char b[BDEVNAME_SIZE];
2772 	int err;
2773 	mdk_rdev_t *rdev;
2774 	sector_t size;
2775 
2776 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2777 	if (!rdev) {
2778 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2779 		return ERR_PTR(-ENOMEM);
2780 	}
2781 
2782 	md_rdev_init(rdev);
2783 	if ((err = alloc_disk_sb(rdev)))
2784 		goto abort_free;
2785 
2786 	err = lock_rdev(rdev, newdev, super_format == -2);
2787 	if (err)
2788 		goto abort_free;
2789 
2790 	kobject_init(&rdev->kobj, &rdev_ktype);
2791 
2792 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2793 	if (!size) {
2794 		printk(KERN_WARNING
2795 			"md: %s has zero or unknown size, marking faulty!\n",
2796 			bdevname(rdev->bdev,b));
2797 		err = -EINVAL;
2798 		goto abort_free;
2799 	}
2800 
2801 	if (super_format >= 0) {
2802 		err = super_types[super_format].
2803 			load_super(rdev, NULL, super_minor);
2804 		if (err == -EINVAL) {
2805 			printk(KERN_WARNING
2806 				"md: %s does not have a valid v%d.%d "
2807 			       "superblock, not importing!\n",
2808 				bdevname(rdev->bdev,b),
2809 			       super_format, super_minor);
2810 			goto abort_free;
2811 		}
2812 		if (err < 0) {
2813 			printk(KERN_WARNING
2814 				"md: could not read %s's sb, not importing!\n",
2815 				bdevname(rdev->bdev,b));
2816 			goto abort_free;
2817 		}
2818 	}
2819 
2820 	return rdev;
2821 
2822 abort_free:
2823 	if (rdev->sb_page) {
2824 		if (rdev->bdev)
2825 			unlock_rdev(rdev);
2826 		free_disk_sb(rdev);
2827 	}
2828 	kfree(rdev);
2829 	return ERR_PTR(err);
2830 }
2831 
2832 /*
2833  * Check a full RAID array for plausibility
2834  */
2835 
2836 
2837 static void analyze_sbs(mddev_t * mddev)
2838 {
2839 	int i;
2840 	mdk_rdev_t *rdev, *freshest, *tmp;
2841 	char b[BDEVNAME_SIZE];
2842 
2843 	freshest = NULL;
2844 	rdev_for_each(rdev, tmp, mddev)
2845 		switch (super_types[mddev->major_version].
2846 			load_super(rdev, freshest, mddev->minor_version)) {
2847 		case 1:
2848 			freshest = rdev;
2849 			break;
2850 		case 0:
2851 			break;
2852 		default:
2853 			printk( KERN_ERR \
2854 				"md: fatal superblock inconsistency in %s"
2855 				" -- removing from array\n",
2856 				bdevname(rdev->bdev,b));
2857 			kick_rdev_from_array(rdev);
2858 		}
2859 
2860 
2861 	super_types[mddev->major_version].
2862 		validate_super(mddev, freshest);
2863 
2864 	i = 0;
2865 	rdev_for_each(rdev, tmp, mddev) {
2866 		if (mddev->max_disks &&
2867 		    (rdev->desc_nr >= mddev->max_disks ||
2868 		     i > mddev->max_disks)) {
2869 			printk(KERN_WARNING
2870 			       "md: %s: %s: only %d devices permitted\n",
2871 			       mdname(mddev), bdevname(rdev->bdev, b),
2872 			       mddev->max_disks);
2873 			kick_rdev_from_array(rdev);
2874 			continue;
2875 		}
2876 		if (rdev != freshest)
2877 			if (super_types[mddev->major_version].
2878 			    validate_super(mddev, rdev)) {
2879 				printk(KERN_WARNING "md: kicking non-fresh %s"
2880 					" from array!\n",
2881 					bdevname(rdev->bdev,b));
2882 				kick_rdev_from_array(rdev);
2883 				continue;
2884 			}
2885 		if (mddev->level == LEVEL_MULTIPATH) {
2886 			rdev->desc_nr = i++;
2887 			rdev->raid_disk = rdev->desc_nr;
2888 			set_bit(In_sync, &rdev->flags);
2889 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2890 			rdev->raid_disk = -1;
2891 			clear_bit(In_sync, &rdev->flags);
2892 		}
2893 	}
2894 }
2895 
2896 /* Read a fixed-point number.
2897  * Numbers in sysfs attributes should be in "standard" units where
2898  * possible, so time should be in seconds.
2899  * However we internally use a a much smaller unit such as
2900  * milliseconds or jiffies.
2901  * This function takes a decimal number with a possible fractional
2902  * component, and produces an integer which is the result of
2903  * multiplying that number by 10^'scale'.
2904  * all without any floating-point arithmetic.
2905  */
2906 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2907 {
2908 	unsigned long result = 0;
2909 	long decimals = -1;
2910 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2911 		if (*cp == '.')
2912 			decimals = 0;
2913 		else if (decimals < scale) {
2914 			unsigned int value;
2915 			value = *cp - '0';
2916 			result = result * 10 + value;
2917 			if (decimals >= 0)
2918 				decimals++;
2919 		}
2920 		cp++;
2921 	}
2922 	if (*cp == '\n')
2923 		cp++;
2924 	if (*cp)
2925 		return -EINVAL;
2926 	if (decimals < 0)
2927 		decimals = 0;
2928 	while (decimals < scale) {
2929 		result *= 10;
2930 		decimals ++;
2931 	}
2932 	*res = result;
2933 	return 0;
2934 }
2935 
2936 
2937 static void md_safemode_timeout(unsigned long data);
2938 
2939 static ssize_t
2940 safe_delay_show(mddev_t *mddev, char *page)
2941 {
2942 	int msec = (mddev->safemode_delay*1000)/HZ;
2943 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2944 }
2945 static ssize_t
2946 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2947 {
2948 	unsigned long msec;
2949 
2950 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2951 		return -EINVAL;
2952 	if (msec == 0)
2953 		mddev->safemode_delay = 0;
2954 	else {
2955 		unsigned long old_delay = mddev->safemode_delay;
2956 		mddev->safemode_delay = (msec*HZ)/1000;
2957 		if (mddev->safemode_delay == 0)
2958 			mddev->safemode_delay = 1;
2959 		if (mddev->safemode_delay < old_delay)
2960 			md_safemode_timeout((unsigned long)mddev);
2961 	}
2962 	return len;
2963 }
2964 static struct md_sysfs_entry md_safe_delay =
2965 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2966 
2967 static ssize_t
2968 level_show(mddev_t *mddev, char *page)
2969 {
2970 	struct mdk_personality *p = mddev->pers;
2971 	if (p)
2972 		return sprintf(page, "%s\n", p->name);
2973 	else if (mddev->clevel[0])
2974 		return sprintf(page, "%s\n", mddev->clevel);
2975 	else if (mddev->level != LEVEL_NONE)
2976 		return sprintf(page, "%d\n", mddev->level);
2977 	else
2978 		return 0;
2979 }
2980 
2981 static ssize_t
2982 level_store(mddev_t *mddev, const char *buf, size_t len)
2983 {
2984 	char clevel[16];
2985 	ssize_t rv = len;
2986 	struct mdk_personality *pers;
2987 	long level;
2988 	void *priv;
2989 	mdk_rdev_t *rdev;
2990 
2991 	if (mddev->pers == NULL) {
2992 		if (len == 0)
2993 			return 0;
2994 		if (len >= sizeof(mddev->clevel))
2995 			return -ENOSPC;
2996 		strncpy(mddev->clevel, buf, len);
2997 		if (mddev->clevel[len-1] == '\n')
2998 			len--;
2999 		mddev->clevel[len] = 0;
3000 		mddev->level = LEVEL_NONE;
3001 		return rv;
3002 	}
3003 
3004 	/* request to change the personality.  Need to ensure:
3005 	 *  - array is not engaged in resync/recovery/reshape
3006 	 *  - old personality can be suspended
3007 	 *  - new personality will access other array.
3008 	 */
3009 
3010 	if (mddev->sync_thread ||
3011 	    mddev->reshape_position != MaxSector ||
3012 	    mddev->sysfs_active)
3013 		return -EBUSY;
3014 
3015 	if (!mddev->pers->quiesce) {
3016 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3017 		       mdname(mddev), mddev->pers->name);
3018 		return -EINVAL;
3019 	}
3020 
3021 	/* Now find the new personality */
3022 	if (len == 0 || len >= sizeof(clevel))
3023 		return -EINVAL;
3024 	strncpy(clevel, buf, len);
3025 	if (clevel[len-1] == '\n')
3026 		len--;
3027 	clevel[len] = 0;
3028 	if (strict_strtol(clevel, 10, &level))
3029 		level = LEVEL_NONE;
3030 
3031 	if (request_module("md-%s", clevel) != 0)
3032 		request_module("md-level-%s", clevel);
3033 	spin_lock(&pers_lock);
3034 	pers = find_pers(level, clevel);
3035 	if (!pers || !try_module_get(pers->owner)) {
3036 		spin_unlock(&pers_lock);
3037 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3038 		return -EINVAL;
3039 	}
3040 	spin_unlock(&pers_lock);
3041 
3042 	if (pers == mddev->pers) {
3043 		/* Nothing to do! */
3044 		module_put(pers->owner);
3045 		return rv;
3046 	}
3047 	if (!pers->takeover) {
3048 		module_put(pers->owner);
3049 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3050 		       mdname(mddev), clevel);
3051 		return -EINVAL;
3052 	}
3053 
3054 	list_for_each_entry(rdev, &mddev->disks, same_set)
3055 		rdev->new_raid_disk = rdev->raid_disk;
3056 
3057 	/* ->takeover must set new_* and/or delta_disks
3058 	 * if it succeeds, and may set them when it fails.
3059 	 */
3060 	priv = pers->takeover(mddev);
3061 	if (IS_ERR(priv)) {
3062 		mddev->new_level = mddev->level;
3063 		mddev->new_layout = mddev->layout;
3064 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3065 		mddev->raid_disks -= mddev->delta_disks;
3066 		mddev->delta_disks = 0;
3067 		module_put(pers->owner);
3068 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3069 		       mdname(mddev), clevel);
3070 		return PTR_ERR(priv);
3071 	}
3072 
3073 	/* Looks like we have a winner */
3074 	mddev_suspend(mddev);
3075 	mddev->pers->stop(mddev);
3076 
3077 	if (mddev->pers->sync_request == NULL &&
3078 	    pers->sync_request != NULL) {
3079 		/* need to add the md_redundancy_group */
3080 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3081 			printk(KERN_WARNING
3082 			       "md: cannot register extra attributes for %s\n",
3083 			       mdname(mddev));
3084 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3085 	}
3086 	if (mddev->pers->sync_request != NULL &&
3087 	    pers->sync_request == NULL) {
3088 		/* need to remove the md_redundancy_group */
3089 		if (mddev->to_remove == NULL)
3090 			mddev->to_remove = &md_redundancy_group;
3091 	}
3092 
3093 	if (mddev->pers->sync_request == NULL &&
3094 	    mddev->external) {
3095 		/* We are converting from a no-redundancy array
3096 		 * to a redundancy array and metadata is managed
3097 		 * externally so we need to be sure that writes
3098 		 * won't block due to a need to transition
3099 		 *      clean->dirty
3100 		 * until external management is started.
3101 		 */
3102 		mddev->in_sync = 0;
3103 		mddev->safemode_delay = 0;
3104 		mddev->safemode = 0;
3105 	}
3106 
3107 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3108 		char nm[20];
3109 		if (rdev->raid_disk < 0)
3110 			continue;
3111 		if (rdev->new_raid_disk > mddev->raid_disks)
3112 			rdev->new_raid_disk = -1;
3113 		if (rdev->new_raid_disk == rdev->raid_disk)
3114 			continue;
3115 		sprintf(nm, "rd%d", rdev->raid_disk);
3116 		sysfs_remove_link(&mddev->kobj, nm);
3117 	}
3118 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3119 		if (rdev->raid_disk < 0)
3120 			continue;
3121 		if (rdev->new_raid_disk == rdev->raid_disk)
3122 			continue;
3123 		rdev->raid_disk = rdev->new_raid_disk;
3124 		if (rdev->raid_disk < 0)
3125 			clear_bit(In_sync, &rdev->flags);
3126 		else {
3127 			char nm[20];
3128 			sprintf(nm, "rd%d", rdev->raid_disk);
3129 			if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3130 				printk("md: cannot register %s for %s after level change\n",
3131 				       nm, mdname(mddev));
3132 		}
3133 	}
3134 
3135 	module_put(mddev->pers->owner);
3136 	mddev->pers = pers;
3137 	mddev->private = priv;
3138 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3139 	mddev->level = mddev->new_level;
3140 	mddev->layout = mddev->new_layout;
3141 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3142 	mddev->delta_disks = 0;
3143 	if (mddev->pers->sync_request == NULL) {
3144 		/* this is now an array without redundancy, so
3145 		 * it must always be in_sync
3146 		 */
3147 		mddev->in_sync = 1;
3148 		del_timer_sync(&mddev->safemode_timer);
3149 	}
3150 	pers->run(mddev);
3151 	mddev_resume(mddev);
3152 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3153 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3154 	md_wakeup_thread(mddev->thread);
3155 	sysfs_notify(&mddev->kobj, NULL, "level");
3156 	md_new_event(mddev);
3157 	return rv;
3158 }
3159 
3160 static struct md_sysfs_entry md_level =
3161 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3162 
3163 
3164 static ssize_t
3165 layout_show(mddev_t *mddev, char *page)
3166 {
3167 	/* just a number, not meaningful for all levels */
3168 	if (mddev->reshape_position != MaxSector &&
3169 	    mddev->layout != mddev->new_layout)
3170 		return sprintf(page, "%d (%d)\n",
3171 			       mddev->new_layout, mddev->layout);
3172 	return sprintf(page, "%d\n", mddev->layout);
3173 }
3174 
3175 static ssize_t
3176 layout_store(mddev_t *mddev, const char *buf, size_t len)
3177 {
3178 	char *e;
3179 	unsigned long n = simple_strtoul(buf, &e, 10);
3180 
3181 	if (!*buf || (*e && *e != '\n'))
3182 		return -EINVAL;
3183 
3184 	if (mddev->pers) {
3185 		int err;
3186 		if (mddev->pers->check_reshape == NULL)
3187 			return -EBUSY;
3188 		mddev->new_layout = n;
3189 		err = mddev->pers->check_reshape(mddev);
3190 		if (err) {
3191 			mddev->new_layout = mddev->layout;
3192 			return err;
3193 		}
3194 	} else {
3195 		mddev->new_layout = n;
3196 		if (mddev->reshape_position == MaxSector)
3197 			mddev->layout = n;
3198 	}
3199 	return len;
3200 }
3201 static struct md_sysfs_entry md_layout =
3202 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3203 
3204 
3205 static ssize_t
3206 raid_disks_show(mddev_t *mddev, char *page)
3207 {
3208 	if (mddev->raid_disks == 0)
3209 		return 0;
3210 	if (mddev->reshape_position != MaxSector &&
3211 	    mddev->delta_disks != 0)
3212 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3213 			       mddev->raid_disks - mddev->delta_disks);
3214 	return sprintf(page, "%d\n", mddev->raid_disks);
3215 }
3216 
3217 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3218 
3219 static ssize_t
3220 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3221 {
3222 	char *e;
3223 	int rv = 0;
3224 	unsigned long n = simple_strtoul(buf, &e, 10);
3225 
3226 	if (!*buf || (*e && *e != '\n'))
3227 		return -EINVAL;
3228 
3229 	if (mddev->pers)
3230 		rv = update_raid_disks(mddev, n);
3231 	else if (mddev->reshape_position != MaxSector) {
3232 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3233 		mddev->delta_disks = n - olddisks;
3234 		mddev->raid_disks = n;
3235 	} else
3236 		mddev->raid_disks = n;
3237 	return rv ? rv : len;
3238 }
3239 static struct md_sysfs_entry md_raid_disks =
3240 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3241 
3242 static ssize_t
3243 chunk_size_show(mddev_t *mddev, char *page)
3244 {
3245 	if (mddev->reshape_position != MaxSector &&
3246 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3247 		return sprintf(page, "%d (%d)\n",
3248 			       mddev->new_chunk_sectors << 9,
3249 			       mddev->chunk_sectors << 9);
3250 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3251 }
3252 
3253 static ssize_t
3254 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3255 {
3256 	char *e;
3257 	unsigned long n = simple_strtoul(buf, &e, 10);
3258 
3259 	if (!*buf || (*e && *e != '\n'))
3260 		return -EINVAL;
3261 
3262 	if (mddev->pers) {
3263 		int err;
3264 		if (mddev->pers->check_reshape == NULL)
3265 			return -EBUSY;
3266 		mddev->new_chunk_sectors = n >> 9;
3267 		err = mddev->pers->check_reshape(mddev);
3268 		if (err) {
3269 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3270 			return err;
3271 		}
3272 	} else {
3273 		mddev->new_chunk_sectors = n >> 9;
3274 		if (mddev->reshape_position == MaxSector)
3275 			mddev->chunk_sectors = n >> 9;
3276 	}
3277 	return len;
3278 }
3279 static struct md_sysfs_entry md_chunk_size =
3280 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3281 
3282 static ssize_t
3283 resync_start_show(mddev_t *mddev, char *page)
3284 {
3285 	if (mddev->recovery_cp == MaxSector)
3286 		return sprintf(page, "none\n");
3287 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3288 }
3289 
3290 static ssize_t
3291 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3292 {
3293 	char *e;
3294 	unsigned long long n = simple_strtoull(buf, &e, 10);
3295 
3296 	if (mddev->pers)
3297 		return -EBUSY;
3298 	if (cmd_match(buf, "none"))
3299 		n = MaxSector;
3300 	else if (!*buf || (*e && *e != '\n'))
3301 		return -EINVAL;
3302 
3303 	mddev->recovery_cp = n;
3304 	return len;
3305 }
3306 static struct md_sysfs_entry md_resync_start =
3307 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3308 
3309 /*
3310  * The array state can be:
3311  *
3312  * clear
3313  *     No devices, no size, no level
3314  *     Equivalent to STOP_ARRAY ioctl
3315  * inactive
3316  *     May have some settings, but array is not active
3317  *        all IO results in error
3318  *     When written, doesn't tear down array, but just stops it
3319  * suspended (not supported yet)
3320  *     All IO requests will block. The array can be reconfigured.
3321  *     Writing this, if accepted, will block until array is quiescent
3322  * readonly
3323  *     no resync can happen.  no superblocks get written.
3324  *     write requests fail
3325  * read-auto
3326  *     like readonly, but behaves like 'clean' on a write request.
3327  *
3328  * clean - no pending writes, but otherwise active.
3329  *     When written to inactive array, starts without resync
3330  *     If a write request arrives then
3331  *       if metadata is known, mark 'dirty' and switch to 'active'.
3332  *       if not known, block and switch to write-pending
3333  *     If written to an active array that has pending writes, then fails.
3334  * active
3335  *     fully active: IO and resync can be happening.
3336  *     When written to inactive array, starts with resync
3337  *
3338  * write-pending
3339  *     clean, but writes are blocked waiting for 'active' to be written.
3340  *
3341  * active-idle
3342  *     like active, but no writes have been seen for a while (100msec).
3343  *
3344  */
3345 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3346 		   write_pending, active_idle, bad_word};
3347 static char *array_states[] = {
3348 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3349 	"write-pending", "active-idle", NULL };
3350 
3351 static int match_word(const char *word, char **list)
3352 {
3353 	int n;
3354 	for (n=0; list[n]; n++)
3355 		if (cmd_match(word, list[n]))
3356 			break;
3357 	return n;
3358 }
3359 
3360 static ssize_t
3361 array_state_show(mddev_t *mddev, char *page)
3362 {
3363 	enum array_state st = inactive;
3364 
3365 	if (mddev->pers)
3366 		switch(mddev->ro) {
3367 		case 1:
3368 			st = readonly;
3369 			break;
3370 		case 2:
3371 			st = read_auto;
3372 			break;
3373 		case 0:
3374 			if (mddev->in_sync)
3375 				st = clean;
3376 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3377 				st = write_pending;
3378 			else if (mddev->safemode)
3379 				st = active_idle;
3380 			else
3381 				st = active;
3382 		}
3383 	else {
3384 		if (list_empty(&mddev->disks) &&
3385 		    mddev->raid_disks == 0 &&
3386 		    mddev->dev_sectors == 0)
3387 			st = clear;
3388 		else
3389 			st = inactive;
3390 	}
3391 	return sprintf(page, "%s\n", array_states[st]);
3392 }
3393 
3394 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3395 static int md_set_readonly(mddev_t * mddev, int is_open);
3396 static int do_md_run(mddev_t * mddev);
3397 static int restart_array(mddev_t *mddev);
3398 
3399 static ssize_t
3400 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3401 {
3402 	int err = -EINVAL;
3403 	enum array_state st = match_word(buf, array_states);
3404 	switch(st) {
3405 	case bad_word:
3406 		break;
3407 	case clear:
3408 		/* stopping an active array */
3409 		if (atomic_read(&mddev->openers) > 0)
3410 			return -EBUSY;
3411 		err = do_md_stop(mddev, 0, 0);
3412 		break;
3413 	case inactive:
3414 		/* stopping an active array */
3415 		if (mddev->pers) {
3416 			if (atomic_read(&mddev->openers) > 0)
3417 				return -EBUSY;
3418 			err = do_md_stop(mddev, 2, 0);
3419 		} else
3420 			err = 0; /* already inactive */
3421 		break;
3422 	case suspended:
3423 		break; /* not supported yet */
3424 	case readonly:
3425 		if (mddev->pers)
3426 			err = md_set_readonly(mddev, 0);
3427 		else {
3428 			mddev->ro = 1;
3429 			set_disk_ro(mddev->gendisk, 1);
3430 			err = do_md_run(mddev);
3431 		}
3432 		break;
3433 	case read_auto:
3434 		if (mddev->pers) {
3435 			if (mddev->ro == 0)
3436 				err = md_set_readonly(mddev, 0);
3437 			else if (mddev->ro == 1)
3438 				err = restart_array(mddev);
3439 			if (err == 0) {
3440 				mddev->ro = 2;
3441 				set_disk_ro(mddev->gendisk, 0);
3442 			}
3443 		} else {
3444 			mddev->ro = 2;
3445 			err = do_md_run(mddev);
3446 		}
3447 		break;
3448 	case clean:
3449 		if (mddev->pers) {
3450 			restart_array(mddev);
3451 			spin_lock_irq(&mddev->write_lock);
3452 			if (atomic_read(&mddev->writes_pending) == 0) {
3453 				if (mddev->in_sync == 0) {
3454 					mddev->in_sync = 1;
3455 					if (mddev->safemode == 1)
3456 						mddev->safemode = 0;
3457 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3458 				}
3459 				err = 0;
3460 			} else
3461 				err = -EBUSY;
3462 			spin_unlock_irq(&mddev->write_lock);
3463 		} else
3464 			err = -EINVAL;
3465 		break;
3466 	case active:
3467 		if (mddev->pers) {
3468 			restart_array(mddev);
3469 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3470 			wake_up(&mddev->sb_wait);
3471 			err = 0;
3472 		} else {
3473 			mddev->ro = 0;
3474 			set_disk_ro(mddev->gendisk, 0);
3475 			err = do_md_run(mddev);
3476 		}
3477 		break;
3478 	case write_pending:
3479 	case active_idle:
3480 		/* these cannot be set */
3481 		break;
3482 	}
3483 	if (err)
3484 		return err;
3485 	else {
3486 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3487 		return len;
3488 	}
3489 }
3490 static struct md_sysfs_entry md_array_state =
3491 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3492 
3493 static ssize_t
3494 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3495 	return sprintf(page, "%d\n",
3496 		       atomic_read(&mddev->max_corr_read_errors));
3497 }
3498 
3499 static ssize_t
3500 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3501 {
3502 	char *e;
3503 	unsigned long n = simple_strtoul(buf, &e, 10);
3504 
3505 	if (*buf && (*e == 0 || *e == '\n')) {
3506 		atomic_set(&mddev->max_corr_read_errors, n);
3507 		return len;
3508 	}
3509 	return -EINVAL;
3510 }
3511 
3512 static struct md_sysfs_entry max_corr_read_errors =
3513 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3514 	max_corrected_read_errors_store);
3515 
3516 static ssize_t
3517 null_show(mddev_t *mddev, char *page)
3518 {
3519 	return -EINVAL;
3520 }
3521 
3522 static ssize_t
3523 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3524 {
3525 	/* buf must be %d:%d\n? giving major and minor numbers */
3526 	/* The new device is added to the array.
3527 	 * If the array has a persistent superblock, we read the
3528 	 * superblock to initialise info and check validity.
3529 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3530 	 * which mainly checks size.
3531 	 */
3532 	char *e;
3533 	int major = simple_strtoul(buf, &e, 10);
3534 	int minor;
3535 	dev_t dev;
3536 	mdk_rdev_t *rdev;
3537 	int err;
3538 
3539 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3540 		return -EINVAL;
3541 	minor = simple_strtoul(e+1, &e, 10);
3542 	if (*e && *e != '\n')
3543 		return -EINVAL;
3544 	dev = MKDEV(major, minor);
3545 	if (major != MAJOR(dev) ||
3546 	    minor != MINOR(dev))
3547 		return -EOVERFLOW;
3548 
3549 
3550 	if (mddev->persistent) {
3551 		rdev = md_import_device(dev, mddev->major_version,
3552 					mddev->minor_version);
3553 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3554 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3555 						       mdk_rdev_t, same_set);
3556 			err = super_types[mddev->major_version]
3557 				.load_super(rdev, rdev0, mddev->minor_version);
3558 			if (err < 0)
3559 				goto out;
3560 		}
3561 	} else if (mddev->external)
3562 		rdev = md_import_device(dev, -2, -1);
3563 	else
3564 		rdev = md_import_device(dev, -1, -1);
3565 
3566 	if (IS_ERR(rdev))
3567 		return PTR_ERR(rdev);
3568 	err = bind_rdev_to_array(rdev, mddev);
3569  out:
3570 	if (err)
3571 		export_rdev(rdev);
3572 	return err ? err : len;
3573 }
3574 
3575 static struct md_sysfs_entry md_new_device =
3576 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3577 
3578 static ssize_t
3579 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3580 {
3581 	char *end;
3582 	unsigned long chunk, end_chunk;
3583 
3584 	if (!mddev->bitmap)
3585 		goto out;
3586 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3587 	while (*buf) {
3588 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3589 		if (buf == end) break;
3590 		if (*end == '-') { /* range */
3591 			buf = end + 1;
3592 			end_chunk = simple_strtoul(buf, &end, 0);
3593 			if (buf == end) break;
3594 		}
3595 		if (*end && !isspace(*end)) break;
3596 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3597 		buf = skip_spaces(end);
3598 	}
3599 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3600 out:
3601 	return len;
3602 }
3603 
3604 static struct md_sysfs_entry md_bitmap =
3605 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3606 
3607 static ssize_t
3608 size_show(mddev_t *mddev, char *page)
3609 {
3610 	return sprintf(page, "%llu\n",
3611 		(unsigned long long)mddev->dev_sectors / 2);
3612 }
3613 
3614 static int update_size(mddev_t *mddev, sector_t num_sectors);
3615 
3616 static ssize_t
3617 size_store(mddev_t *mddev, const char *buf, size_t len)
3618 {
3619 	/* If array is inactive, we can reduce the component size, but
3620 	 * not increase it (except from 0).
3621 	 * If array is active, we can try an on-line resize
3622 	 */
3623 	sector_t sectors;
3624 	int err = strict_blocks_to_sectors(buf, &sectors);
3625 
3626 	if (err < 0)
3627 		return err;
3628 	if (mddev->pers) {
3629 		err = update_size(mddev, sectors);
3630 		md_update_sb(mddev, 1);
3631 	} else {
3632 		if (mddev->dev_sectors == 0 ||
3633 		    mddev->dev_sectors > sectors)
3634 			mddev->dev_sectors = sectors;
3635 		else
3636 			err = -ENOSPC;
3637 	}
3638 	return err ? err : len;
3639 }
3640 
3641 static struct md_sysfs_entry md_size =
3642 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3643 
3644 
3645 /* Metdata version.
3646  * This is one of
3647  *   'none' for arrays with no metadata (good luck...)
3648  *   'external' for arrays with externally managed metadata,
3649  * or N.M for internally known formats
3650  */
3651 static ssize_t
3652 metadata_show(mddev_t *mddev, char *page)
3653 {
3654 	if (mddev->persistent)
3655 		return sprintf(page, "%d.%d\n",
3656 			       mddev->major_version, mddev->minor_version);
3657 	else if (mddev->external)
3658 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3659 	else
3660 		return sprintf(page, "none\n");
3661 }
3662 
3663 static ssize_t
3664 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3665 {
3666 	int major, minor;
3667 	char *e;
3668 	/* Changing the details of 'external' metadata is
3669 	 * always permitted.  Otherwise there must be
3670 	 * no devices attached to the array.
3671 	 */
3672 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3673 		;
3674 	else if (!list_empty(&mddev->disks))
3675 		return -EBUSY;
3676 
3677 	if (cmd_match(buf, "none")) {
3678 		mddev->persistent = 0;
3679 		mddev->external = 0;
3680 		mddev->major_version = 0;
3681 		mddev->minor_version = 90;
3682 		return len;
3683 	}
3684 	if (strncmp(buf, "external:", 9) == 0) {
3685 		size_t namelen = len-9;
3686 		if (namelen >= sizeof(mddev->metadata_type))
3687 			namelen = sizeof(mddev->metadata_type)-1;
3688 		strncpy(mddev->metadata_type, buf+9, namelen);
3689 		mddev->metadata_type[namelen] = 0;
3690 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3691 			mddev->metadata_type[--namelen] = 0;
3692 		mddev->persistent = 0;
3693 		mddev->external = 1;
3694 		mddev->major_version = 0;
3695 		mddev->minor_version = 90;
3696 		return len;
3697 	}
3698 	major = simple_strtoul(buf, &e, 10);
3699 	if (e==buf || *e != '.')
3700 		return -EINVAL;
3701 	buf = e+1;
3702 	minor = simple_strtoul(buf, &e, 10);
3703 	if (e==buf || (*e && *e != '\n') )
3704 		return -EINVAL;
3705 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3706 		return -ENOENT;
3707 	mddev->major_version = major;
3708 	mddev->minor_version = minor;
3709 	mddev->persistent = 1;
3710 	mddev->external = 0;
3711 	return len;
3712 }
3713 
3714 static struct md_sysfs_entry md_metadata =
3715 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3716 
3717 static ssize_t
3718 action_show(mddev_t *mddev, char *page)
3719 {
3720 	char *type = "idle";
3721 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3722 		type = "frozen";
3723 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3724 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3725 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3726 			type = "reshape";
3727 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3728 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3729 				type = "resync";
3730 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3731 				type = "check";
3732 			else
3733 				type = "repair";
3734 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3735 			type = "recover";
3736 	}
3737 	return sprintf(page, "%s\n", type);
3738 }
3739 
3740 static ssize_t
3741 action_store(mddev_t *mddev, const char *page, size_t len)
3742 {
3743 	if (!mddev->pers || !mddev->pers->sync_request)
3744 		return -EINVAL;
3745 
3746 	if (cmd_match(page, "frozen"))
3747 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3748 	else
3749 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3750 
3751 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3752 		if (mddev->sync_thread) {
3753 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3754 			md_unregister_thread(mddev->sync_thread);
3755 			mddev->sync_thread = NULL;
3756 			mddev->recovery = 0;
3757 		}
3758 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3759 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3760 		return -EBUSY;
3761 	else if (cmd_match(page, "resync"))
3762 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3763 	else if (cmd_match(page, "recover")) {
3764 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3765 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3766 	} else if (cmd_match(page, "reshape")) {
3767 		int err;
3768 		if (mddev->pers->start_reshape == NULL)
3769 			return -EINVAL;
3770 		err = mddev->pers->start_reshape(mddev);
3771 		if (err)
3772 			return err;
3773 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3774 	} else {
3775 		if (cmd_match(page, "check"))
3776 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3777 		else if (!cmd_match(page, "repair"))
3778 			return -EINVAL;
3779 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3780 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3781 	}
3782 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3783 	md_wakeup_thread(mddev->thread);
3784 	sysfs_notify_dirent_safe(mddev->sysfs_action);
3785 	return len;
3786 }
3787 
3788 static ssize_t
3789 mismatch_cnt_show(mddev_t *mddev, char *page)
3790 {
3791 	return sprintf(page, "%llu\n",
3792 		       (unsigned long long) mddev->resync_mismatches);
3793 }
3794 
3795 static struct md_sysfs_entry md_scan_mode =
3796 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3797 
3798 
3799 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3800 
3801 static ssize_t
3802 sync_min_show(mddev_t *mddev, char *page)
3803 {
3804 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3805 		       mddev->sync_speed_min ? "local": "system");
3806 }
3807 
3808 static ssize_t
3809 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3810 {
3811 	int min;
3812 	char *e;
3813 	if (strncmp(buf, "system", 6)==0) {
3814 		mddev->sync_speed_min = 0;
3815 		return len;
3816 	}
3817 	min = simple_strtoul(buf, &e, 10);
3818 	if (buf == e || (*e && *e != '\n') || min <= 0)
3819 		return -EINVAL;
3820 	mddev->sync_speed_min = min;
3821 	return len;
3822 }
3823 
3824 static struct md_sysfs_entry md_sync_min =
3825 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3826 
3827 static ssize_t
3828 sync_max_show(mddev_t *mddev, char *page)
3829 {
3830 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3831 		       mddev->sync_speed_max ? "local": "system");
3832 }
3833 
3834 static ssize_t
3835 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3836 {
3837 	int max;
3838 	char *e;
3839 	if (strncmp(buf, "system", 6)==0) {
3840 		mddev->sync_speed_max = 0;
3841 		return len;
3842 	}
3843 	max = simple_strtoul(buf, &e, 10);
3844 	if (buf == e || (*e && *e != '\n') || max <= 0)
3845 		return -EINVAL;
3846 	mddev->sync_speed_max = max;
3847 	return len;
3848 }
3849 
3850 static struct md_sysfs_entry md_sync_max =
3851 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3852 
3853 static ssize_t
3854 degraded_show(mddev_t *mddev, char *page)
3855 {
3856 	return sprintf(page, "%d\n", mddev->degraded);
3857 }
3858 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3859 
3860 static ssize_t
3861 sync_force_parallel_show(mddev_t *mddev, char *page)
3862 {
3863 	return sprintf(page, "%d\n", mddev->parallel_resync);
3864 }
3865 
3866 static ssize_t
3867 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3868 {
3869 	long n;
3870 
3871 	if (strict_strtol(buf, 10, &n))
3872 		return -EINVAL;
3873 
3874 	if (n != 0 && n != 1)
3875 		return -EINVAL;
3876 
3877 	mddev->parallel_resync = n;
3878 
3879 	if (mddev->sync_thread)
3880 		wake_up(&resync_wait);
3881 
3882 	return len;
3883 }
3884 
3885 /* force parallel resync, even with shared block devices */
3886 static struct md_sysfs_entry md_sync_force_parallel =
3887 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3888        sync_force_parallel_show, sync_force_parallel_store);
3889 
3890 static ssize_t
3891 sync_speed_show(mddev_t *mddev, char *page)
3892 {
3893 	unsigned long resync, dt, db;
3894 	if (mddev->curr_resync == 0)
3895 		return sprintf(page, "none\n");
3896 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3897 	dt = (jiffies - mddev->resync_mark) / HZ;
3898 	if (!dt) dt++;
3899 	db = resync - mddev->resync_mark_cnt;
3900 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3901 }
3902 
3903 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3904 
3905 static ssize_t
3906 sync_completed_show(mddev_t *mddev, char *page)
3907 {
3908 	unsigned long max_sectors, resync;
3909 
3910 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3911 		return sprintf(page, "none\n");
3912 
3913 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3914 		max_sectors = mddev->resync_max_sectors;
3915 	else
3916 		max_sectors = mddev->dev_sectors;
3917 
3918 	resync = mddev->curr_resync_completed;
3919 	return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3920 }
3921 
3922 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3923 
3924 static ssize_t
3925 min_sync_show(mddev_t *mddev, char *page)
3926 {
3927 	return sprintf(page, "%llu\n",
3928 		       (unsigned long long)mddev->resync_min);
3929 }
3930 static ssize_t
3931 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3932 {
3933 	unsigned long long min;
3934 	if (strict_strtoull(buf, 10, &min))
3935 		return -EINVAL;
3936 	if (min > mddev->resync_max)
3937 		return -EINVAL;
3938 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3939 		return -EBUSY;
3940 
3941 	/* Must be a multiple of chunk_size */
3942 	if (mddev->chunk_sectors) {
3943 		sector_t temp = min;
3944 		if (sector_div(temp, mddev->chunk_sectors))
3945 			return -EINVAL;
3946 	}
3947 	mddev->resync_min = min;
3948 
3949 	return len;
3950 }
3951 
3952 static struct md_sysfs_entry md_min_sync =
3953 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3954 
3955 static ssize_t
3956 max_sync_show(mddev_t *mddev, char *page)
3957 {
3958 	if (mddev->resync_max == MaxSector)
3959 		return sprintf(page, "max\n");
3960 	else
3961 		return sprintf(page, "%llu\n",
3962 			       (unsigned long long)mddev->resync_max);
3963 }
3964 static ssize_t
3965 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3966 {
3967 	if (strncmp(buf, "max", 3) == 0)
3968 		mddev->resync_max = MaxSector;
3969 	else {
3970 		unsigned long long max;
3971 		if (strict_strtoull(buf, 10, &max))
3972 			return -EINVAL;
3973 		if (max < mddev->resync_min)
3974 			return -EINVAL;
3975 		if (max < mddev->resync_max &&
3976 		    mddev->ro == 0 &&
3977 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3978 			return -EBUSY;
3979 
3980 		/* Must be a multiple of chunk_size */
3981 		if (mddev->chunk_sectors) {
3982 			sector_t temp = max;
3983 			if (sector_div(temp, mddev->chunk_sectors))
3984 				return -EINVAL;
3985 		}
3986 		mddev->resync_max = max;
3987 	}
3988 	wake_up(&mddev->recovery_wait);
3989 	return len;
3990 }
3991 
3992 static struct md_sysfs_entry md_max_sync =
3993 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3994 
3995 static ssize_t
3996 suspend_lo_show(mddev_t *mddev, char *page)
3997 {
3998 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3999 }
4000 
4001 static ssize_t
4002 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4003 {
4004 	char *e;
4005 	unsigned long long new = simple_strtoull(buf, &e, 10);
4006 
4007 	if (mddev->pers == NULL ||
4008 	    mddev->pers->quiesce == NULL)
4009 		return -EINVAL;
4010 	if (buf == e || (*e && *e != '\n'))
4011 		return -EINVAL;
4012 	if (new >= mddev->suspend_hi ||
4013 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
4014 		mddev->suspend_lo = new;
4015 		mddev->pers->quiesce(mddev, 2);
4016 		return len;
4017 	} else
4018 		return -EINVAL;
4019 }
4020 static struct md_sysfs_entry md_suspend_lo =
4021 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4022 
4023 
4024 static ssize_t
4025 suspend_hi_show(mddev_t *mddev, char *page)
4026 {
4027 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4028 }
4029 
4030 static ssize_t
4031 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4032 {
4033 	char *e;
4034 	unsigned long long new = simple_strtoull(buf, &e, 10);
4035 
4036 	if (mddev->pers == NULL ||
4037 	    mddev->pers->quiesce == NULL)
4038 		return -EINVAL;
4039 	if (buf == e || (*e && *e != '\n'))
4040 		return -EINVAL;
4041 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
4042 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
4043 		mddev->suspend_hi = new;
4044 		mddev->pers->quiesce(mddev, 1);
4045 		mddev->pers->quiesce(mddev, 0);
4046 		return len;
4047 	} else
4048 		return -EINVAL;
4049 }
4050 static struct md_sysfs_entry md_suspend_hi =
4051 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4052 
4053 static ssize_t
4054 reshape_position_show(mddev_t *mddev, char *page)
4055 {
4056 	if (mddev->reshape_position != MaxSector)
4057 		return sprintf(page, "%llu\n",
4058 			       (unsigned long long)mddev->reshape_position);
4059 	strcpy(page, "none\n");
4060 	return 5;
4061 }
4062 
4063 static ssize_t
4064 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4065 {
4066 	char *e;
4067 	unsigned long long new = simple_strtoull(buf, &e, 10);
4068 	if (mddev->pers)
4069 		return -EBUSY;
4070 	if (buf == e || (*e && *e != '\n'))
4071 		return -EINVAL;
4072 	mddev->reshape_position = new;
4073 	mddev->delta_disks = 0;
4074 	mddev->new_level = mddev->level;
4075 	mddev->new_layout = mddev->layout;
4076 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4077 	return len;
4078 }
4079 
4080 static struct md_sysfs_entry md_reshape_position =
4081 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4082        reshape_position_store);
4083 
4084 static ssize_t
4085 array_size_show(mddev_t *mddev, char *page)
4086 {
4087 	if (mddev->external_size)
4088 		return sprintf(page, "%llu\n",
4089 			       (unsigned long long)mddev->array_sectors/2);
4090 	else
4091 		return sprintf(page, "default\n");
4092 }
4093 
4094 static ssize_t
4095 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4096 {
4097 	sector_t sectors;
4098 
4099 	if (strncmp(buf, "default", 7) == 0) {
4100 		if (mddev->pers)
4101 			sectors = mddev->pers->size(mddev, 0, 0);
4102 		else
4103 			sectors = mddev->array_sectors;
4104 
4105 		mddev->external_size = 0;
4106 	} else {
4107 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4108 			return -EINVAL;
4109 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4110 			return -E2BIG;
4111 
4112 		mddev->external_size = 1;
4113 	}
4114 
4115 	mddev->array_sectors = sectors;
4116 	set_capacity(mddev->gendisk, mddev->array_sectors);
4117 	if (mddev->pers)
4118 		revalidate_disk(mddev->gendisk);
4119 
4120 	return len;
4121 }
4122 
4123 static struct md_sysfs_entry md_array_size =
4124 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4125        array_size_store);
4126 
4127 static struct attribute *md_default_attrs[] = {
4128 	&md_level.attr,
4129 	&md_layout.attr,
4130 	&md_raid_disks.attr,
4131 	&md_chunk_size.attr,
4132 	&md_size.attr,
4133 	&md_resync_start.attr,
4134 	&md_metadata.attr,
4135 	&md_new_device.attr,
4136 	&md_safe_delay.attr,
4137 	&md_array_state.attr,
4138 	&md_reshape_position.attr,
4139 	&md_array_size.attr,
4140 	&max_corr_read_errors.attr,
4141 	NULL,
4142 };
4143 
4144 static struct attribute *md_redundancy_attrs[] = {
4145 	&md_scan_mode.attr,
4146 	&md_mismatches.attr,
4147 	&md_sync_min.attr,
4148 	&md_sync_max.attr,
4149 	&md_sync_speed.attr,
4150 	&md_sync_force_parallel.attr,
4151 	&md_sync_completed.attr,
4152 	&md_min_sync.attr,
4153 	&md_max_sync.attr,
4154 	&md_suspend_lo.attr,
4155 	&md_suspend_hi.attr,
4156 	&md_bitmap.attr,
4157 	&md_degraded.attr,
4158 	NULL,
4159 };
4160 static struct attribute_group md_redundancy_group = {
4161 	.name = NULL,
4162 	.attrs = md_redundancy_attrs,
4163 };
4164 
4165 
4166 static ssize_t
4167 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4168 {
4169 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4170 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4171 	ssize_t rv;
4172 
4173 	if (!entry->show)
4174 		return -EIO;
4175 	rv = mddev_lock(mddev);
4176 	if (!rv) {
4177 		rv = entry->show(mddev, page);
4178 		mddev_unlock(mddev);
4179 	}
4180 	return rv;
4181 }
4182 
4183 static ssize_t
4184 md_attr_store(struct kobject *kobj, struct attribute *attr,
4185 	      const char *page, size_t length)
4186 {
4187 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4188 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4189 	ssize_t rv;
4190 
4191 	if (!entry->store)
4192 		return -EIO;
4193 	if (!capable(CAP_SYS_ADMIN))
4194 		return -EACCES;
4195 	rv = mddev_lock(mddev);
4196 	if (mddev->hold_active == UNTIL_IOCTL)
4197 		mddev->hold_active = 0;
4198 	if (!rv) {
4199 		rv = entry->store(mddev, page, length);
4200 		mddev_unlock(mddev);
4201 	}
4202 	return rv;
4203 }
4204 
4205 static void md_free(struct kobject *ko)
4206 {
4207 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
4208 
4209 	if (mddev->sysfs_state)
4210 		sysfs_put(mddev->sysfs_state);
4211 
4212 	if (mddev->gendisk) {
4213 		del_gendisk(mddev->gendisk);
4214 		put_disk(mddev->gendisk);
4215 	}
4216 	if (mddev->queue)
4217 		blk_cleanup_queue(mddev->queue);
4218 
4219 	kfree(mddev);
4220 }
4221 
4222 static const struct sysfs_ops md_sysfs_ops = {
4223 	.show	= md_attr_show,
4224 	.store	= md_attr_store,
4225 };
4226 static struct kobj_type md_ktype = {
4227 	.release	= md_free,
4228 	.sysfs_ops	= &md_sysfs_ops,
4229 	.default_attrs	= md_default_attrs,
4230 };
4231 
4232 int mdp_major = 0;
4233 
4234 static void mddev_delayed_delete(struct work_struct *ws)
4235 {
4236 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
4237 
4238 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4239 	kobject_del(&mddev->kobj);
4240 	kobject_put(&mddev->kobj);
4241 }
4242 
4243 static int md_alloc(dev_t dev, char *name)
4244 {
4245 	static DEFINE_MUTEX(disks_mutex);
4246 	mddev_t *mddev = mddev_find(dev);
4247 	struct gendisk *disk;
4248 	int partitioned;
4249 	int shift;
4250 	int unit;
4251 	int error;
4252 
4253 	if (!mddev)
4254 		return -ENODEV;
4255 
4256 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4257 	shift = partitioned ? MdpMinorShift : 0;
4258 	unit = MINOR(mddev->unit) >> shift;
4259 
4260 	/* wait for any previous instance if this device
4261 	 * to be completed removed (mddev_delayed_delete).
4262 	 */
4263 	flush_scheduled_work();
4264 
4265 	mutex_lock(&disks_mutex);
4266 	error = -EEXIST;
4267 	if (mddev->gendisk)
4268 		goto abort;
4269 
4270 	if (name) {
4271 		/* Need to ensure that 'name' is not a duplicate.
4272 		 */
4273 		mddev_t *mddev2;
4274 		spin_lock(&all_mddevs_lock);
4275 
4276 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4277 			if (mddev2->gendisk &&
4278 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4279 				spin_unlock(&all_mddevs_lock);
4280 				goto abort;
4281 			}
4282 		spin_unlock(&all_mddevs_lock);
4283 	}
4284 
4285 	error = -ENOMEM;
4286 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4287 	if (!mddev->queue)
4288 		goto abort;
4289 	mddev->queue->queuedata = mddev;
4290 
4291 	/* Can be unlocked because the queue is new: no concurrency */
4292 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4293 
4294 	blk_queue_make_request(mddev->queue, md_make_request);
4295 
4296 	disk = alloc_disk(1 << shift);
4297 	if (!disk) {
4298 		blk_cleanup_queue(mddev->queue);
4299 		mddev->queue = NULL;
4300 		goto abort;
4301 	}
4302 	disk->major = MAJOR(mddev->unit);
4303 	disk->first_minor = unit << shift;
4304 	if (name)
4305 		strcpy(disk->disk_name, name);
4306 	else if (partitioned)
4307 		sprintf(disk->disk_name, "md_d%d", unit);
4308 	else
4309 		sprintf(disk->disk_name, "md%d", unit);
4310 	disk->fops = &md_fops;
4311 	disk->private_data = mddev;
4312 	disk->queue = mddev->queue;
4313 	/* Allow extended partitions.  This makes the
4314 	 * 'mdp' device redundant, but we can't really
4315 	 * remove it now.
4316 	 */
4317 	disk->flags |= GENHD_FL_EXT_DEVT;
4318 	add_disk(disk);
4319 	mddev->gendisk = disk;
4320 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4321 				     &disk_to_dev(disk)->kobj, "%s", "md");
4322 	if (error) {
4323 		/* This isn't possible, but as kobject_init_and_add is marked
4324 		 * __must_check, we must do something with the result
4325 		 */
4326 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4327 		       disk->disk_name);
4328 		error = 0;
4329 	}
4330 	if (mddev->kobj.sd &&
4331 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4332 		printk(KERN_DEBUG "pointless warning\n");
4333  abort:
4334 	mutex_unlock(&disks_mutex);
4335 	if (!error && mddev->kobj.sd) {
4336 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4337 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4338 	}
4339 	mddev_put(mddev);
4340 	return error;
4341 }
4342 
4343 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4344 {
4345 	md_alloc(dev, NULL);
4346 	return NULL;
4347 }
4348 
4349 static int add_named_array(const char *val, struct kernel_param *kp)
4350 {
4351 	/* val must be "md_*" where * is not all digits.
4352 	 * We allocate an array with a large free minor number, and
4353 	 * set the name to val.  val must not already be an active name.
4354 	 */
4355 	int len = strlen(val);
4356 	char buf[DISK_NAME_LEN];
4357 
4358 	while (len && val[len-1] == '\n')
4359 		len--;
4360 	if (len >= DISK_NAME_LEN)
4361 		return -E2BIG;
4362 	strlcpy(buf, val, len+1);
4363 	if (strncmp(buf, "md_", 3) != 0)
4364 		return -EINVAL;
4365 	return md_alloc(0, buf);
4366 }
4367 
4368 static void md_safemode_timeout(unsigned long data)
4369 {
4370 	mddev_t *mddev = (mddev_t *) data;
4371 
4372 	if (!atomic_read(&mddev->writes_pending)) {
4373 		mddev->safemode = 1;
4374 		if (mddev->external)
4375 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4376 	}
4377 	md_wakeup_thread(mddev->thread);
4378 }
4379 
4380 static int start_dirty_degraded;
4381 
4382 int md_run(mddev_t *mddev)
4383 {
4384 	int err;
4385 	mdk_rdev_t *rdev;
4386 	struct mdk_personality *pers;
4387 
4388 	if (list_empty(&mddev->disks))
4389 		/* cannot run an array with no devices.. */
4390 		return -EINVAL;
4391 
4392 	if (mddev->pers)
4393 		return -EBUSY;
4394 	/* Cannot run until previous stop completes properly */
4395 	if (mddev->sysfs_active)
4396 		return -EBUSY;
4397 
4398 	/*
4399 	 * Analyze all RAID superblock(s)
4400 	 */
4401 	if (!mddev->raid_disks) {
4402 		if (!mddev->persistent)
4403 			return -EINVAL;
4404 		analyze_sbs(mddev);
4405 	}
4406 
4407 	if (mddev->level != LEVEL_NONE)
4408 		request_module("md-level-%d", mddev->level);
4409 	else if (mddev->clevel[0])
4410 		request_module("md-%s", mddev->clevel);
4411 
4412 	/*
4413 	 * Drop all container device buffers, from now on
4414 	 * the only valid external interface is through the md
4415 	 * device.
4416 	 */
4417 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4418 		if (test_bit(Faulty, &rdev->flags))
4419 			continue;
4420 		sync_blockdev(rdev->bdev);
4421 		invalidate_bdev(rdev->bdev);
4422 
4423 		/* perform some consistency tests on the device.
4424 		 * We don't want the data to overlap the metadata,
4425 		 * Internal Bitmap issues have been handled elsewhere.
4426 		 */
4427 		if (rdev->data_offset < rdev->sb_start) {
4428 			if (mddev->dev_sectors &&
4429 			    rdev->data_offset + mddev->dev_sectors
4430 			    > rdev->sb_start) {
4431 				printk("md: %s: data overlaps metadata\n",
4432 				       mdname(mddev));
4433 				return -EINVAL;
4434 			}
4435 		} else {
4436 			if (rdev->sb_start + rdev->sb_size/512
4437 			    > rdev->data_offset) {
4438 				printk("md: %s: metadata overlaps data\n",
4439 				       mdname(mddev));
4440 				return -EINVAL;
4441 			}
4442 		}
4443 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4444 	}
4445 
4446 	spin_lock(&pers_lock);
4447 	pers = find_pers(mddev->level, mddev->clevel);
4448 	if (!pers || !try_module_get(pers->owner)) {
4449 		spin_unlock(&pers_lock);
4450 		if (mddev->level != LEVEL_NONE)
4451 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4452 			       mddev->level);
4453 		else
4454 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4455 			       mddev->clevel);
4456 		return -EINVAL;
4457 	}
4458 	mddev->pers = pers;
4459 	spin_unlock(&pers_lock);
4460 	if (mddev->level != pers->level) {
4461 		mddev->level = pers->level;
4462 		mddev->new_level = pers->level;
4463 	}
4464 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4465 
4466 	if (mddev->reshape_position != MaxSector &&
4467 	    pers->start_reshape == NULL) {
4468 		/* This personality cannot handle reshaping... */
4469 		mddev->pers = NULL;
4470 		module_put(pers->owner);
4471 		return -EINVAL;
4472 	}
4473 
4474 	if (pers->sync_request) {
4475 		/* Warn if this is a potentially silly
4476 		 * configuration.
4477 		 */
4478 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4479 		mdk_rdev_t *rdev2;
4480 		int warned = 0;
4481 
4482 		list_for_each_entry(rdev, &mddev->disks, same_set)
4483 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4484 				if (rdev < rdev2 &&
4485 				    rdev->bdev->bd_contains ==
4486 				    rdev2->bdev->bd_contains) {
4487 					printk(KERN_WARNING
4488 					       "%s: WARNING: %s appears to be"
4489 					       " on the same physical disk as"
4490 					       " %s.\n",
4491 					       mdname(mddev),
4492 					       bdevname(rdev->bdev,b),
4493 					       bdevname(rdev2->bdev,b2));
4494 					warned = 1;
4495 				}
4496 			}
4497 
4498 		if (warned)
4499 			printk(KERN_WARNING
4500 			       "True protection against single-disk"
4501 			       " failure might be compromised.\n");
4502 	}
4503 
4504 	mddev->recovery = 0;
4505 	/* may be over-ridden by personality */
4506 	mddev->resync_max_sectors = mddev->dev_sectors;
4507 
4508 	mddev->barriers_work = 1;
4509 	mddev->ok_start_degraded = start_dirty_degraded;
4510 
4511 	if (start_readonly && mddev->ro == 0)
4512 		mddev->ro = 2; /* read-only, but switch on first write */
4513 
4514 	err = mddev->pers->run(mddev);
4515 	if (err)
4516 		printk(KERN_ERR "md: pers->run() failed ...\n");
4517 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4518 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4519 			  " but 'external_size' not in effect?\n", __func__);
4520 		printk(KERN_ERR
4521 		       "md: invalid array_size %llu > default size %llu\n",
4522 		       (unsigned long long)mddev->array_sectors / 2,
4523 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4524 		err = -EINVAL;
4525 		mddev->pers->stop(mddev);
4526 	}
4527 	if (err == 0 && mddev->pers->sync_request) {
4528 		err = bitmap_create(mddev);
4529 		if (err) {
4530 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4531 			       mdname(mddev), err);
4532 			mddev->pers->stop(mddev);
4533 		}
4534 	}
4535 	if (err) {
4536 		module_put(mddev->pers->owner);
4537 		mddev->pers = NULL;
4538 		bitmap_destroy(mddev);
4539 		return err;
4540 	}
4541 	if (mddev->pers->sync_request) {
4542 		if (mddev->kobj.sd &&
4543 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4544 			printk(KERN_WARNING
4545 			       "md: cannot register extra attributes for %s\n",
4546 			       mdname(mddev));
4547 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4548 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4549 		mddev->ro = 0;
4550 
4551  	atomic_set(&mddev->writes_pending,0);
4552 	atomic_set(&mddev->max_corr_read_errors,
4553 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4554 	mddev->safemode = 0;
4555 	mddev->safemode_timer.function = md_safemode_timeout;
4556 	mddev->safemode_timer.data = (unsigned long) mddev;
4557 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4558 	mddev->in_sync = 1;
4559 
4560 	list_for_each_entry(rdev, &mddev->disks, same_set)
4561 		if (rdev->raid_disk >= 0) {
4562 			char nm[20];
4563 			sprintf(nm, "rd%d", rdev->raid_disk);
4564 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4565 				/* failure here is OK */;
4566 		}
4567 
4568 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4569 
4570 	if (mddev->flags)
4571 		md_update_sb(mddev, 0);
4572 
4573 	md_wakeup_thread(mddev->thread);
4574 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4575 
4576 	md_new_event(mddev);
4577 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4578 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4579 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4580 	return 0;
4581 }
4582 EXPORT_SYMBOL_GPL(md_run);
4583 
4584 static int do_md_run(mddev_t *mddev)
4585 {
4586 	int err;
4587 
4588 	err = md_run(mddev);
4589 	if (err)
4590 		goto out;
4591 	err = bitmap_load(mddev);
4592 	if (err) {
4593 		bitmap_destroy(mddev);
4594 		goto out;
4595 	}
4596 	set_capacity(mddev->gendisk, mddev->array_sectors);
4597 	revalidate_disk(mddev->gendisk);
4598 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4599 out:
4600 	return err;
4601 }
4602 
4603 static int restart_array(mddev_t *mddev)
4604 {
4605 	struct gendisk *disk = mddev->gendisk;
4606 
4607 	/* Complain if it has no devices */
4608 	if (list_empty(&mddev->disks))
4609 		return -ENXIO;
4610 	if (!mddev->pers)
4611 		return -EINVAL;
4612 	if (!mddev->ro)
4613 		return -EBUSY;
4614 	mddev->safemode = 0;
4615 	mddev->ro = 0;
4616 	set_disk_ro(disk, 0);
4617 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4618 		mdname(mddev));
4619 	/* Kick recovery or resync if necessary */
4620 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4621 	md_wakeup_thread(mddev->thread);
4622 	md_wakeup_thread(mddev->sync_thread);
4623 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4624 	return 0;
4625 }
4626 
4627 /* similar to deny_write_access, but accounts for our holding a reference
4628  * to the file ourselves */
4629 static int deny_bitmap_write_access(struct file * file)
4630 {
4631 	struct inode *inode = file->f_mapping->host;
4632 
4633 	spin_lock(&inode->i_lock);
4634 	if (atomic_read(&inode->i_writecount) > 1) {
4635 		spin_unlock(&inode->i_lock);
4636 		return -ETXTBSY;
4637 	}
4638 	atomic_set(&inode->i_writecount, -1);
4639 	spin_unlock(&inode->i_lock);
4640 
4641 	return 0;
4642 }
4643 
4644 void restore_bitmap_write_access(struct file *file)
4645 {
4646 	struct inode *inode = file->f_mapping->host;
4647 
4648 	spin_lock(&inode->i_lock);
4649 	atomic_set(&inode->i_writecount, 1);
4650 	spin_unlock(&inode->i_lock);
4651 }
4652 
4653 static void md_clean(mddev_t *mddev)
4654 {
4655 	mddev->array_sectors = 0;
4656 	mddev->external_size = 0;
4657 	mddev->dev_sectors = 0;
4658 	mddev->raid_disks = 0;
4659 	mddev->recovery_cp = 0;
4660 	mddev->resync_min = 0;
4661 	mddev->resync_max = MaxSector;
4662 	mddev->reshape_position = MaxSector;
4663 	mddev->external = 0;
4664 	mddev->persistent = 0;
4665 	mddev->level = LEVEL_NONE;
4666 	mddev->clevel[0] = 0;
4667 	mddev->flags = 0;
4668 	mddev->ro = 0;
4669 	mddev->metadata_type[0] = 0;
4670 	mddev->chunk_sectors = 0;
4671 	mddev->ctime = mddev->utime = 0;
4672 	mddev->layout = 0;
4673 	mddev->max_disks = 0;
4674 	mddev->events = 0;
4675 	mddev->can_decrease_events = 0;
4676 	mddev->delta_disks = 0;
4677 	mddev->new_level = LEVEL_NONE;
4678 	mddev->new_layout = 0;
4679 	mddev->new_chunk_sectors = 0;
4680 	mddev->curr_resync = 0;
4681 	mddev->resync_mismatches = 0;
4682 	mddev->suspend_lo = mddev->suspend_hi = 0;
4683 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
4684 	mddev->recovery = 0;
4685 	mddev->in_sync = 0;
4686 	mddev->degraded = 0;
4687 	mddev->barriers_work = 0;
4688 	mddev->safemode = 0;
4689 	mddev->bitmap_info.offset = 0;
4690 	mddev->bitmap_info.default_offset = 0;
4691 	mddev->bitmap_info.chunksize = 0;
4692 	mddev->bitmap_info.daemon_sleep = 0;
4693 	mddev->bitmap_info.max_write_behind = 0;
4694 	mddev->plug = NULL;
4695 }
4696 
4697 void md_stop_writes(mddev_t *mddev)
4698 {
4699 	if (mddev->sync_thread) {
4700 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4701 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4702 		md_unregister_thread(mddev->sync_thread);
4703 		mddev->sync_thread = NULL;
4704 	}
4705 
4706 	del_timer_sync(&mddev->safemode_timer);
4707 
4708 	bitmap_flush(mddev);
4709 	md_super_wait(mddev);
4710 
4711 	if (!mddev->in_sync || mddev->flags) {
4712 		/* mark array as shutdown cleanly */
4713 		mddev->in_sync = 1;
4714 		md_update_sb(mddev, 1);
4715 	}
4716 }
4717 EXPORT_SYMBOL_GPL(md_stop_writes);
4718 
4719 void md_stop(mddev_t *mddev)
4720 {
4721 	mddev->pers->stop(mddev);
4722 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
4723 		mddev->to_remove = &md_redundancy_group;
4724 	module_put(mddev->pers->owner);
4725 	mddev->pers = NULL;
4726 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4727 }
4728 EXPORT_SYMBOL_GPL(md_stop);
4729 
4730 static int md_set_readonly(mddev_t *mddev, int is_open)
4731 {
4732 	int err = 0;
4733 	mutex_lock(&mddev->open_mutex);
4734 	if (atomic_read(&mddev->openers) > is_open) {
4735 		printk("md: %s still in use.\n",mdname(mddev));
4736 		err = -EBUSY;
4737 		goto out;
4738 	}
4739 	if (mddev->pers) {
4740 		md_stop_writes(mddev);
4741 
4742 		err  = -ENXIO;
4743 		if (mddev->ro==1)
4744 			goto out;
4745 		mddev->ro = 1;
4746 		set_disk_ro(mddev->gendisk, 1);
4747 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4748 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4749 		err = 0;
4750 	}
4751 out:
4752 	mutex_unlock(&mddev->open_mutex);
4753 	return err;
4754 }
4755 
4756 /* mode:
4757  *   0 - completely stop and dis-assemble array
4758  *   2 - stop but do not disassemble array
4759  */
4760 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4761 {
4762 	struct gendisk *disk = mddev->gendisk;
4763 	mdk_rdev_t *rdev;
4764 
4765 	mutex_lock(&mddev->open_mutex);
4766 	if (atomic_read(&mddev->openers) > is_open ||
4767 	    mddev->sysfs_active) {
4768 		printk("md: %s still in use.\n",mdname(mddev));
4769 		mutex_unlock(&mddev->open_mutex);
4770 		return -EBUSY;
4771 	}
4772 
4773 	if (mddev->pers) {
4774 		if (mddev->ro)
4775 			set_disk_ro(disk, 0);
4776 
4777 		md_stop_writes(mddev);
4778 		md_stop(mddev);
4779 		mddev->queue->merge_bvec_fn = NULL;
4780 		mddev->queue->unplug_fn = NULL;
4781 		mddev->queue->backing_dev_info.congested_fn = NULL;
4782 
4783 		/* tell userspace to handle 'inactive' */
4784 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4785 
4786 		list_for_each_entry(rdev, &mddev->disks, same_set)
4787 			if (rdev->raid_disk >= 0) {
4788 				char nm[20];
4789 				sprintf(nm, "rd%d", rdev->raid_disk);
4790 				sysfs_remove_link(&mddev->kobj, nm);
4791 			}
4792 
4793 		set_capacity(disk, 0);
4794 		mutex_unlock(&mddev->open_mutex);
4795 		revalidate_disk(disk);
4796 
4797 		if (mddev->ro)
4798 			mddev->ro = 0;
4799 	} else
4800 		mutex_unlock(&mddev->open_mutex);
4801 	/*
4802 	 * Free resources if final stop
4803 	 */
4804 	if (mode == 0) {
4805 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4806 
4807 		bitmap_destroy(mddev);
4808 		if (mddev->bitmap_info.file) {
4809 			restore_bitmap_write_access(mddev->bitmap_info.file);
4810 			fput(mddev->bitmap_info.file);
4811 			mddev->bitmap_info.file = NULL;
4812 		}
4813 		mddev->bitmap_info.offset = 0;
4814 
4815 		export_array(mddev);
4816 
4817 		md_clean(mddev);
4818 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4819 		if (mddev->hold_active == UNTIL_STOP)
4820 			mddev->hold_active = 0;
4821 	}
4822 	blk_integrity_unregister(disk);
4823 	md_new_event(mddev);
4824 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4825 	return 0;
4826 }
4827 
4828 #ifndef MODULE
4829 static void autorun_array(mddev_t *mddev)
4830 {
4831 	mdk_rdev_t *rdev;
4832 	int err;
4833 
4834 	if (list_empty(&mddev->disks))
4835 		return;
4836 
4837 	printk(KERN_INFO "md: running: ");
4838 
4839 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4840 		char b[BDEVNAME_SIZE];
4841 		printk("<%s>", bdevname(rdev->bdev,b));
4842 	}
4843 	printk("\n");
4844 
4845 	err = do_md_run(mddev);
4846 	if (err) {
4847 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4848 		do_md_stop(mddev, 0, 0);
4849 	}
4850 }
4851 
4852 /*
4853  * lets try to run arrays based on all disks that have arrived
4854  * until now. (those are in pending_raid_disks)
4855  *
4856  * the method: pick the first pending disk, collect all disks with
4857  * the same UUID, remove all from the pending list and put them into
4858  * the 'same_array' list. Then order this list based on superblock
4859  * update time (freshest comes first), kick out 'old' disks and
4860  * compare superblocks. If everything's fine then run it.
4861  *
4862  * If "unit" is allocated, then bump its reference count
4863  */
4864 static void autorun_devices(int part)
4865 {
4866 	mdk_rdev_t *rdev0, *rdev, *tmp;
4867 	mddev_t *mddev;
4868 	char b[BDEVNAME_SIZE];
4869 
4870 	printk(KERN_INFO "md: autorun ...\n");
4871 	while (!list_empty(&pending_raid_disks)) {
4872 		int unit;
4873 		dev_t dev;
4874 		LIST_HEAD(candidates);
4875 		rdev0 = list_entry(pending_raid_disks.next,
4876 					 mdk_rdev_t, same_set);
4877 
4878 		printk(KERN_INFO "md: considering %s ...\n",
4879 			bdevname(rdev0->bdev,b));
4880 		INIT_LIST_HEAD(&candidates);
4881 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4882 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4883 				printk(KERN_INFO "md:  adding %s ...\n",
4884 					bdevname(rdev->bdev,b));
4885 				list_move(&rdev->same_set, &candidates);
4886 			}
4887 		/*
4888 		 * now we have a set of devices, with all of them having
4889 		 * mostly sane superblocks. It's time to allocate the
4890 		 * mddev.
4891 		 */
4892 		if (part) {
4893 			dev = MKDEV(mdp_major,
4894 				    rdev0->preferred_minor << MdpMinorShift);
4895 			unit = MINOR(dev) >> MdpMinorShift;
4896 		} else {
4897 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4898 			unit = MINOR(dev);
4899 		}
4900 		if (rdev0->preferred_minor != unit) {
4901 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4902 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4903 			break;
4904 		}
4905 
4906 		md_probe(dev, NULL, NULL);
4907 		mddev = mddev_find(dev);
4908 		if (!mddev || !mddev->gendisk) {
4909 			if (mddev)
4910 				mddev_put(mddev);
4911 			printk(KERN_ERR
4912 				"md: cannot allocate memory for md drive.\n");
4913 			break;
4914 		}
4915 		if (mddev_lock(mddev))
4916 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4917 			       mdname(mddev));
4918 		else if (mddev->raid_disks || mddev->major_version
4919 			 || !list_empty(&mddev->disks)) {
4920 			printk(KERN_WARNING
4921 				"md: %s already running, cannot run %s\n",
4922 				mdname(mddev), bdevname(rdev0->bdev,b));
4923 			mddev_unlock(mddev);
4924 		} else {
4925 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4926 			mddev->persistent = 1;
4927 			rdev_for_each_list(rdev, tmp, &candidates) {
4928 				list_del_init(&rdev->same_set);
4929 				if (bind_rdev_to_array(rdev, mddev))
4930 					export_rdev(rdev);
4931 			}
4932 			autorun_array(mddev);
4933 			mddev_unlock(mddev);
4934 		}
4935 		/* on success, candidates will be empty, on error
4936 		 * it won't...
4937 		 */
4938 		rdev_for_each_list(rdev, tmp, &candidates) {
4939 			list_del_init(&rdev->same_set);
4940 			export_rdev(rdev);
4941 		}
4942 		mddev_put(mddev);
4943 	}
4944 	printk(KERN_INFO "md: ... autorun DONE.\n");
4945 }
4946 #endif /* !MODULE */
4947 
4948 static int get_version(void __user * arg)
4949 {
4950 	mdu_version_t ver;
4951 
4952 	ver.major = MD_MAJOR_VERSION;
4953 	ver.minor = MD_MINOR_VERSION;
4954 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4955 
4956 	if (copy_to_user(arg, &ver, sizeof(ver)))
4957 		return -EFAULT;
4958 
4959 	return 0;
4960 }
4961 
4962 static int get_array_info(mddev_t * mddev, void __user * arg)
4963 {
4964 	mdu_array_info_t info;
4965 	int nr,working,insync,failed,spare;
4966 	mdk_rdev_t *rdev;
4967 
4968 	nr=working=insync=failed=spare=0;
4969 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4970 		nr++;
4971 		if (test_bit(Faulty, &rdev->flags))
4972 			failed++;
4973 		else {
4974 			working++;
4975 			if (test_bit(In_sync, &rdev->flags))
4976 				insync++;
4977 			else
4978 				spare++;
4979 		}
4980 	}
4981 
4982 	info.major_version = mddev->major_version;
4983 	info.minor_version = mddev->minor_version;
4984 	info.patch_version = MD_PATCHLEVEL_VERSION;
4985 	info.ctime         = mddev->ctime;
4986 	info.level         = mddev->level;
4987 	info.size          = mddev->dev_sectors / 2;
4988 	if (info.size != mddev->dev_sectors / 2) /* overflow */
4989 		info.size = -1;
4990 	info.nr_disks      = nr;
4991 	info.raid_disks    = mddev->raid_disks;
4992 	info.md_minor      = mddev->md_minor;
4993 	info.not_persistent= !mddev->persistent;
4994 
4995 	info.utime         = mddev->utime;
4996 	info.state         = 0;
4997 	if (mddev->in_sync)
4998 		info.state = (1<<MD_SB_CLEAN);
4999 	if (mddev->bitmap && mddev->bitmap_info.offset)
5000 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5001 	info.active_disks  = insync;
5002 	info.working_disks = working;
5003 	info.failed_disks  = failed;
5004 	info.spare_disks   = spare;
5005 
5006 	info.layout        = mddev->layout;
5007 	info.chunk_size    = mddev->chunk_sectors << 9;
5008 
5009 	if (copy_to_user(arg, &info, sizeof(info)))
5010 		return -EFAULT;
5011 
5012 	return 0;
5013 }
5014 
5015 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5016 {
5017 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5018 	char *ptr, *buf = NULL;
5019 	int err = -ENOMEM;
5020 
5021 	if (md_allow_write(mddev))
5022 		file = kmalloc(sizeof(*file), GFP_NOIO);
5023 	else
5024 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5025 
5026 	if (!file)
5027 		goto out;
5028 
5029 	/* bitmap disabled, zero the first byte and copy out */
5030 	if (!mddev->bitmap || !mddev->bitmap->file) {
5031 		file->pathname[0] = '\0';
5032 		goto copy_out;
5033 	}
5034 
5035 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5036 	if (!buf)
5037 		goto out;
5038 
5039 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5040 	if (IS_ERR(ptr))
5041 		goto out;
5042 
5043 	strcpy(file->pathname, ptr);
5044 
5045 copy_out:
5046 	err = 0;
5047 	if (copy_to_user(arg, file, sizeof(*file)))
5048 		err = -EFAULT;
5049 out:
5050 	kfree(buf);
5051 	kfree(file);
5052 	return err;
5053 }
5054 
5055 static int get_disk_info(mddev_t * mddev, void __user * arg)
5056 {
5057 	mdu_disk_info_t info;
5058 	mdk_rdev_t *rdev;
5059 
5060 	if (copy_from_user(&info, arg, sizeof(info)))
5061 		return -EFAULT;
5062 
5063 	rdev = find_rdev_nr(mddev, info.number);
5064 	if (rdev) {
5065 		info.major = MAJOR(rdev->bdev->bd_dev);
5066 		info.minor = MINOR(rdev->bdev->bd_dev);
5067 		info.raid_disk = rdev->raid_disk;
5068 		info.state = 0;
5069 		if (test_bit(Faulty, &rdev->flags))
5070 			info.state |= (1<<MD_DISK_FAULTY);
5071 		else if (test_bit(In_sync, &rdev->flags)) {
5072 			info.state |= (1<<MD_DISK_ACTIVE);
5073 			info.state |= (1<<MD_DISK_SYNC);
5074 		}
5075 		if (test_bit(WriteMostly, &rdev->flags))
5076 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5077 	} else {
5078 		info.major = info.minor = 0;
5079 		info.raid_disk = -1;
5080 		info.state = (1<<MD_DISK_REMOVED);
5081 	}
5082 
5083 	if (copy_to_user(arg, &info, sizeof(info)))
5084 		return -EFAULT;
5085 
5086 	return 0;
5087 }
5088 
5089 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5090 {
5091 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5092 	mdk_rdev_t *rdev;
5093 	dev_t dev = MKDEV(info->major,info->minor);
5094 
5095 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5096 		return -EOVERFLOW;
5097 
5098 	if (!mddev->raid_disks) {
5099 		int err;
5100 		/* expecting a device which has a superblock */
5101 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5102 		if (IS_ERR(rdev)) {
5103 			printk(KERN_WARNING
5104 				"md: md_import_device returned %ld\n",
5105 				PTR_ERR(rdev));
5106 			return PTR_ERR(rdev);
5107 		}
5108 		if (!list_empty(&mddev->disks)) {
5109 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5110 							mdk_rdev_t, same_set);
5111 			err = super_types[mddev->major_version]
5112 				.load_super(rdev, rdev0, mddev->minor_version);
5113 			if (err < 0) {
5114 				printk(KERN_WARNING
5115 					"md: %s has different UUID to %s\n",
5116 					bdevname(rdev->bdev,b),
5117 					bdevname(rdev0->bdev,b2));
5118 				export_rdev(rdev);
5119 				return -EINVAL;
5120 			}
5121 		}
5122 		err = bind_rdev_to_array(rdev, mddev);
5123 		if (err)
5124 			export_rdev(rdev);
5125 		return err;
5126 	}
5127 
5128 	/*
5129 	 * add_new_disk can be used once the array is assembled
5130 	 * to add "hot spares".  They must already have a superblock
5131 	 * written
5132 	 */
5133 	if (mddev->pers) {
5134 		int err;
5135 		if (!mddev->pers->hot_add_disk) {
5136 			printk(KERN_WARNING
5137 				"%s: personality does not support diskops!\n",
5138 			       mdname(mddev));
5139 			return -EINVAL;
5140 		}
5141 		if (mddev->persistent)
5142 			rdev = md_import_device(dev, mddev->major_version,
5143 						mddev->minor_version);
5144 		else
5145 			rdev = md_import_device(dev, -1, -1);
5146 		if (IS_ERR(rdev)) {
5147 			printk(KERN_WARNING
5148 				"md: md_import_device returned %ld\n",
5149 				PTR_ERR(rdev));
5150 			return PTR_ERR(rdev);
5151 		}
5152 		/* set save_raid_disk if appropriate */
5153 		if (!mddev->persistent) {
5154 			if (info->state & (1<<MD_DISK_SYNC)  &&
5155 			    info->raid_disk < mddev->raid_disks)
5156 				rdev->raid_disk = info->raid_disk;
5157 			else
5158 				rdev->raid_disk = -1;
5159 		} else
5160 			super_types[mddev->major_version].
5161 				validate_super(mddev, rdev);
5162 		rdev->saved_raid_disk = rdev->raid_disk;
5163 
5164 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5165 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5166 			set_bit(WriteMostly, &rdev->flags);
5167 		else
5168 			clear_bit(WriteMostly, &rdev->flags);
5169 
5170 		rdev->raid_disk = -1;
5171 		err = bind_rdev_to_array(rdev, mddev);
5172 		if (!err && !mddev->pers->hot_remove_disk) {
5173 			/* If there is hot_add_disk but no hot_remove_disk
5174 			 * then added disks for geometry changes,
5175 			 * and should be added immediately.
5176 			 */
5177 			super_types[mddev->major_version].
5178 				validate_super(mddev, rdev);
5179 			err = mddev->pers->hot_add_disk(mddev, rdev);
5180 			if (err)
5181 				unbind_rdev_from_array(rdev);
5182 		}
5183 		if (err)
5184 			export_rdev(rdev);
5185 		else
5186 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5187 
5188 		md_update_sb(mddev, 1);
5189 		if (mddev->degraded)
5190 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5191 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5192 		md_wakeup_thread(mddev->thread);
5193 		return err;
5194 	}
5195 
5196 	/* otherwise, add_new_disk is only allowed
5197 	 * for major_version==0 superblocks
5198 	 */
5199 	if (mddev->major_version != 0) {
5200 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5201 		       mdname(mddev));
5202 		return -EINVAL;
5203 	}
5204 
5205 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5206 		int err;
5207 		rdev = md_import_device(dev, -1, 0);
5208 		if (IS_ERR(rdev)) {
5209 			printk(KERN_WARNING
5210 				"md: error, md_import_device() returned %ld\n",
5211 				PTR_ERR(rdev));
5212 			return PTR_ERR(rdev);
5213 		}
5214 		rdev->desc_nr = info->number;
5215 		if (info->raid_disk < mddev->raid_disks)
5216 			rdev->raid_disk = info->raid_disk;
5217 		else
5218 			rdev->raid_disk = -1;
5219 
5220 		if (rdev->raid_disk < mddev->raid_disks)
5221 			if (info->state & (1<<MD_DISK_SYNC))
5222 				set_bit(In_sync, &rdev->flags);
5223 
5224 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5225 			set_bit(WriteMostly, &rdev->flags);
5226 
5227 		if (!mddev->persistent) {
5228 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5229 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5230 		} else
5231 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5232 		rdev->sectors = rdev->sb_start;
5233 
5234 		err = bind_rdev_to_array(rdev, mddev);
5235 		if (err) {
5236 			export_rdev(rdev);
5237 			return err;
5238 		}
5239 	}
5240 
5241 	return 0;
5242 }
5243 
5244 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5245 {
5246 	char b[BDEVNAME_SIZE];
5247 	mdk_rdev_t *rdev;
5248 
5249 	rdev = find_rdev(mddev, dev);
5250 	if (!rdev)
5251 		return -ENXIO;
5252 
5253 	if (rdev->raid_disk >= 0)
5254 		goto busy;
5255 
5256 	kick_rdev_from_array(rdev);
5257 	md_update_sb(mddev, 1);
5258 	md_new_event(mddev);
5259 
5260 	return 0;
5261 busy:
5262 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5263 		bdevname(rdev->bdev,b), mdname(mddev));
5264 	return -EBUSY;
5265 }
5266 
5267 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5268 {
5269 	char b[BDEVNAME_SIZE];
5270 	int err;
5271 	mdk_rdev_t *rdev;
5272 
5273 	if (!mddev->pers)
5274 		return -ENODEV;
5275 
5276 	if (mddev->major_version != 0) {
5277 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5278 			" version-0 superblocks.\n",
5279 			mdname(mddev));
5280 		return -EINVAL;
5281 	}
5282 	if (!mddev->pers->hot_add_disk) {
5283 		printk(KERN_WARNING
5284 			"%s: personality does not support diskops!\n",
5285 			mdname(mddev));
5286 		return -EINVAL;
5287 	}
5288 
5289 	rdev = md_import_device(dev, -1, 0);
5290 	if (IS_ERR(rdev)) {
5291 		printk(KERN_WARNING
5292 			"md: error, md_import_device() returned %ld\n",
5293 			PTR_ERR(rdev));
5294 		return -EINVAL;
5295 	}
5296 
5297 	if (mddev->persistent)
5298 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5299 	else
5300 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5301 
5302 	rdev->sectors = rdev->sb_start;
5303 
5304 	if (test_bit(Faulty, &rdev->flags)) {
5305 		printk(KERN_WARNING
5306 			"md: can not hot-add faulty %s disk to %s!\n",
5307 			bdevname(rdev->bdev,b), mdname(mddev));
5308 		err = -EINVAL;
5309 		goto abort_export;
5310 	}
5311 	clear_bit(In_sync, &rdev->flags);
5312 	rdev->desc_nr = -1;
5313 	rdev->saved_raid_disk = -1;
5314 	err = bind_rdev_to_array(rdev, mddev);
5315 	if (err)
5316 		goto abort_export;
5317 
5318 	/*
5319 	 * The rest should better be atomic, we can have disk failures
5320 	 * noticed in interrupt contexts ...
5321 	 */
5322 
5323 	rdev->raid_disk = -1;
5324 
5325 	md_update_sb(mddev, 1);
5326 
5327 	/*
5328 	 * Kick recovery, maybe this spare has to be added to the
5329 	 * array immediately.
5330 	 */
5331 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5332 	md_wakeup_thread(mddev->thread);
5333 	md_new_event(mddev);
5334 	return 0;
5335 
5336 abort_export:
5337 	export_rdev(rdev);
5338 	return err;
5339 }
5340 
5341 static int set_bitmap_file(mddev_t *mddev, int fd)
5342 {
5343 	int err;
5344 
5345 	if (mddev->pers) {
5346 		if (!mddev->pers->quiesce)
5347 			return -EBUSY;
5348 		if (mddev->recovery || mddev->sync_thread)
5349 			return -EBUSY;
5350 		/* we should be able to change the bitmap.. */
5351 	}
5352 
5353 
5354 	if (fd >= 0) {
5355 		if (mddev->bitmap)
5356 			return -EEXIST; /* cannot add when bitmap is present */
5357 		mddev->bitmap_info.file = fget(fd);
5358 
5359 		if (mddev->bitmap_info.file == NULL) {
5360 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5361 			       mdname(mddev));
5362 			return -EBADF;
5363 		}
5364 
5365 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5366 		if (err) {
5367 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5368 			       mdname(mddev));
5369 			fput(mddev->bitmap_info.file);
5370 			mddev->bitmap_info.file = NULL;
5371 			return err;
5372 		}
5373 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5374 	} else if (mddev->bitmap == NULL)
5375 		return -ENOENT; /* cannot remove what isn't there */
5376 	err = 0;
5377 	if (mddev->pers) {
5378 		mddev->pers->quiesce(mddev, 1);
5379 		if (fd >= 0) {
5380 			err = bitmap_create(mddev);
5381 			if (!err)
5382 				err = bitmap_load(mddev);
5383 		}
5384 		if (fd < 0 || err) {
5385 			bitmap_destroy(mddev);
5386 			fd = -1; /* make sure to put the file */
5387 		}
5388 		mddev->pers->quiesce(mddev, 0);
5389 	}
5390 	if (fd < 0) {
5391 		if (mddev->bitmap_info.file) {
5392 			restore_bitmap_write_access(mddev->bitmap_info.file);
5393 			fput(mddev->bitmap_info.file);
5394 		}
5395 		mddev->bitmap_info.file = NULL;
5396 	}
5397 
5398 	return err;
5399 }
5400 
5401 /*
5402  * set_array_info is used two different ways
5403  * The original usage is when creating a new array.
5404  * In this usage, raid_disks is > 0 and it together with
5405  *  level, size, not_persistent,layout,chunksize determine the
5406  *  shape of the array.
5407  *  This will always create an array with a type-0.90.0 superblock.
5408  * The newer usage is when assembling an array.
5409  *  In this case raid_disks will be 0, and the major_version field is
5410  *  use to determine which style super-blocks are to be found on the devices.
5411  *  The minor and patch _version numbers are also kept incase the
5412  *  super_block handler wishes to interpret them.
5413  */
5414 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5415 {
5416 
5417 	if (info->raid_disks == 0) {
5418 		/* just setting version number for superblock loading */
5419 		if (info->major_version < 0 ||
5420 		    info->major_version >= ARRAY_SIZE(super_types) ||
5421 		    super_types[info->major_version].name == NULL) {
5422 			/* maybe try to auto-load a module? */
5423 			printk(KERN_INFO
5424 				"md: superblock version %d not known\n",
5425 				info->major_version);
5426 			return -EINVAL;
5427 		}
5428 		mddev->major_version = info->major_version;
5429 		mddev->minor_version = info->minor_version;
5430 		mddev->patch_version = info->patch_version;
5431 		mddev->persistent = !info->not_persistent;
5432 		/* ensure mddev_put doesn't delete this now that there
5433 		 * is some minimal configuration.
5434 		 */
5435 		mddev->ctime         = get_seconds();
5436 		return 0;
5437 	}
5438 	mddev->major_version = MD_MAJOR_VERSION;
5439 	mddev->minor_version = MD_MINOR_VERSION;
5440 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5441 	mddev->ctime         = get_seconds();
5442 
5443 	mddev->level         = info->level;
5444 	mddev->clevel[0]     = 0;
5445 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5446 	mddev->raid_disks    = info->raid_disks;
5447 	/* don't set md_minor, it is determined by which /dev/md* was
5448 	 * openned
5449 	 */
5450 	if (info->state & (1<<MD_SB_CLEAN))
5451 		mddev->recovery_cp = MaxSector;
5452 	else
5453 		mddev->recovery_cp = 0;
5454 	mddev->persistent    = ! info->not_persistent;
5455 	mddev->external	     = 0;
5456 
5457 	mddev->layout        = info->layout;
5458 	mddev->chunk_sectors = info->chunk_size >> 9;
5459 
5460 	mddev->max_disks     = MD_SB_DISKS;
5461 
5462 	if (mddev->persistent)
5463 		mddev->flags         = 0;
5464 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5465 
5466 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5467 	mddev->bitmap_info.offset = 0;
5468 
5469 	mddev->reshape_position = MaxSector;
5470 
5471 	/*
5472 	 * Generate a 128 bit UUID
5473 	 */
5474 	get_random_bytes(mddev->uuid, 16);
5475 
5476 	mddev->new_level = mddev->level;
5477 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5478 	mddev->new_layout = mddev->layout;
5479 	mddev->delta_disks = 0;
5480 
5481 	return 0;
5482 }
5483 
5484 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5485 {
5486 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5487 
5488 	if (mddev->external_size)
5489 		return;
5490 
5491 	mddev->array_sectors = array_sectors;
5492 }
5493 EXPORT_SYMBOL(md_set_array_sectors);
5494 
5495 static int update_size(mddev_t *mddev, sector_t num_sectors)
5496 {
5497 	mdk_rdev_t *rdev;
5498 	int rv;
5499 	int fit = (num_sectors == 0);
5500 
5501 	if (mddev->pers->resize == NULL)
5502 		return -EINVAL;
5503 	/* The "num_sectors" is the number of sectors of each device that
5504 	 * is used.  This can only make sense for arrays with redundancy.
5505 	 * linear and raid0 always use whatever space is available. We can only
5506 	 * consider changing this number if no resync or reconstruction is
5507 	 * happening, and if the new size is acceptable. It must fit before the
5508 	 * sb_start or, if that is <data_offset, it must fit before the size
5509 	 * of each device.  If num_sectors is zero, we find the largest size
5510 	 * that fits.
5511 
5512 	 */
5513 	if (mddev->sync_thread)
5514 		return -EBUSY;
5515 	if (mddev->bitmap)
5516 		/* Sorry, cannot grow a bitmap yet, just remove it,
5517 		 * grow, and re-add.
5518 		 */
5519 		return -EBUSY;
5520 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5521 		sector_t avail = rdev->sectors;
5522 
5523 		if (fit && (num_sectors == 0 || num_sectors > avail))
5524 			num_sectors = avail;
5525 		if (avail < num_sectors)
5526 			return -ENOSPC;
5527 	}
5528 	rv = mddev->pers->resize(mddev, num_sectors);
5529 	if (!rv)
5530 		revalidate_disk(mddev->gendisk);
5531 	return rv;
5532 }
5533 
5534 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5535 {
5536 	int rv;
5537 	/* change the number of raid disks */
5538 	if (mddev->pers->check_reshape == NULL)
5539 		return -EINVAL;
5540 	if (raid_disks <= 0 ||
5541 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5542 		return -EINVAL;
5543 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5544 		return -EBUSY;
5545 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5546 
5547 	rv = mddev->pers->check_reshape(mddev);
5548 	return rv;
5549 }
5550 
5551 
5552 /*
5553  * update_array_info is used to change the configuration of an
5554  * on-line array.
5555  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5556  * fields in the info are checked against the array.
5557  * Any differences that cannot be handled will cause an error.
5558  * Normally, only one change can be managed at a time.
5559  */
5560 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5561 {
5562 	int rv = 0;
5563 	int cnt = 0;
5564 	int state = 0;
5565 
5566 	/* calculate expected state,ignoring low bits */
5567 	if (mddev->bitmap && mddev->bitmap_info.offset)
5568 		state |= (1 << MD_SB_BITMAP_PRESENT);
5569 
5570 	if (mddev->major_version != info->major_version ||
5571 	    mddev->minor_version != info->minor_version ||
5572 /*	    mddev->patch_version != info->patch_version || */
5573 	    mddev->ctime         != info->ctime         ||
5574 	    mddev->level         != info->level         ||
5575 /*	    mddev->layout        != info->layout        || */
5576 	    !mddev->persistent	 != info->not_persistent||
5577 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5578 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5579 	    ((state^info->state) & 0xfffffe00)
5580 		)
5581 		return -EINVAL;
5582 	/* Check there is only one change */
5583 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5584 		cnt++;
5585 	if (mddev->raid_disks != info->raid_disks)
5586 		cnt++;
5587 	if (mddev->layout != info->layout)
5588 		cnt++;
5589 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5590 		cnt++;
5591 	if (cnt == 0)
5592 		return 0;
5593 	if (cnt > 1)
5594 		return -EINVAL;
5595 
5596 	if (mddev->layout != info->layout) {
5597 		/* Change layout
5598 		 * we don't need to do anything at the md level, the
5599 		 * personality will take care of it all.
5600 		 */
5601 		if (mddev->pers->check_reshape == NULL)
5602 			return -EINVAL;
5603 		else {
5604 			mddev->new_layout = info->layout;
5605 			rv = mddev->pers->check_reshape(mddev);
5606 			if (rv)
5607 				mddev->new_layout = mddev->layout;
5608 			return rv;
5609 		}
5610 	}
5611 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5612 		rv = update_size(mddev, (sector_t)info->size * 2);
5613 
5614 	if (mddev->raid_disks    != info->raid_disks)
5615 		rv = update_raid_disks(mddev, info->raid_disks);
5616 
5617 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5618 		if (mddev->pers->quiesce == NULL)
5619 			return -EINVAL;
5620 		if (mddev->recovery || mddev->sync_thread)
5621 			return -EBUSY;
5622 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5623 			/* add the bitmap */
5624 			if (mddev->bitmap)
5625 				return -EEXIST;
5626 			if (mddev->bitmap_info.default_offset == 0)
5627 				return -EINVAL;
5628 			mddev->bitmap_info.offset =
5629 				mddev->bitmap_info.default_offset;
5630 			mddev->pers->quiesce(mddev, 1);
5631 			rv = bitmap_create(mddev);
5632 			if (!rv)
5633 				rv = bitmap_load(mddev);
5634 			if (rv)
5635 				bitmap_destroy(mddev);
5636 			mddev->pers->quiesce(mddev, 0);
5637 		} else {
5638 			/* remove the bitmap */
5639 			if (!mddev->bitmap)
5640 				return -ENOENT;
5641 			if (mddev->bitmap->file)
5642 				return -EINVAL;
5643 			mddev->pers->quiesce(mddev, 1);
5644 			bitmap_destroy(mddev);
5645 			mddev->pers->quiesce(mddev, 0);
5646 			mddev->bitmap_info.offset = 0;
5647 		}
5648 	}
5649 	md_update_sb(mddev, 1);
5650 	return rv;
5651 }
5652 
5653 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5654 {
5655 	mdk_rdev_t *rdev;
5656 
5657 	if (mddev->pers == NULL)
5658 		return -ENODEV;
5659 
5660 	rdev = find_rdev(mddev, dev);
5661 	if (!rdev)
5662 		return -ENODEV;
5663 
5664 	md_error(mddev, rdev);
5665 	return 0;
5666 }
5667 
5668 /*
5669  * We have a problem here : there is no easy way to give a CHS
5670  * virtual geometry. We currently pretend that we have a 2 heads
5671  * 4 sectors (with a BIG number of cylinders...). This drives
5672  * dosfs just mad... ;-)
5673  */
5674 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5675 {
5676 	mddev_t *mddev = bdev->bd_disk->private_data;
5677 
5678 	geo->heads = 2;
5679 	geo->sectors = 4;
5680 	geo->cylinders = mddev->array_sectors / 8;
5681 	return 0;
5682 }
5683 
5684 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5685 			unsigned int cmd, unsigned long arg)
5686 {
5687 	int err = 0;
5688 	void __user *argp = (void __user *)arg;
5689 	mddev_t *mddev = NULL;
5690 	int ro;
5691 
5692 	if (!capable(CAP_SYS_ADMIN))
5693 		return -EACCES;
5694 
5695 	/*
5696 	 * Commands dealing with the RAID driver but not any
5697 	 * particular array:
5698 	 */
5699 	switch (cmd)
5700 	{
5701 		case RAID_VERSION:
5702 			err = get_version(argp);
5703 			goto done;
5704 
5705 		case PRINT_RAID_DEBUG:
5706 			err = 0;
5707 			md_print_devices();
5708 			goto done;
5709 
5710 #ifndef MODULE
5711 		case RAID_AUTORUN:
5712 			err = 0;
5713 			autostart_arrays(arg);
5714 			goto done;
5715 #endif
5716 		default:;
5717 	}
5718 
5719 	/*
5720 	 * Commands creating/starting a new array:
5721 	 */
5722 
5723 	mddev = bdev->bd_disk->private_data;
5724 
5725 	if (!mddev) {
5726 		BUG();
5727 		goto abort;
5728 	}
5729 
5730 	err = mddev_lock(mddev);
5731 	if (err) {
5732 		printk(KERN_INFO
5733 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5734 			err, cmd);
5735 		goto abort;
5736 	}
5737 
5738 	switch (cmd)
5739 	{
5740 		case SET_ARRAY_INFO:
5741 			{
5742 				mdu_array_info_t info;
5743 				if (!arg)
5744 					memset(&info, 0, sizeof(info));
5745 				else if (copy_from_user(&info, argp, sizeof(info))) {
5746 					err = -EFAULT;
5747 					goto abort_unlock;
5748 				}
5749 				if (mddev->pers) {
5750 					err = update_array_info(mddev, &info);
5751 					if (err) {
5752 						printk(KERN_WARNING "md: couldn't update"
5753 						       " array info. %d\n", err);
5754 						goto abort_unlock;
5755 					}
5756 					goto done_unlock;
5757 				}
5758 				if (!list_empty(&mddev->disks)) {
5759 					printk(KERN_WARNING
5760 					       "md: array %s already has disks!\n",
5761 					       mdname(mddev));
5762 					err = -EBUSY;
5763 					goto abort_unlock;
5764 				}
5765 				if (mddev->raid_disks) {
5766 					printk(KERN_WARNING
5767 					       "md: array %s already initialised!\n",
5768 					       mdname(mddev));
5769 					err = -EBUSY;
5770 					goto abort_unlock;
5771 				}
5772 				err = set_array_info(mddev, &info);
5773 				if (err) {
5774 					printk(KERN_WARNING "md: couldn't set"
5775 					       " array info. %d\n", err);
5776 					goto abort_unlock;
5777 				}
5778 			}
5779 			goto done_unlock;
5780 
5781 		default:;
5782 	}
5783 
5784 	/*
5785 	 * Commands querying/configuring an existing array:
5786 	 */
5787 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5788 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5789 	if ((!mddev->raid_disks && !mddev->external)
5790 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5791 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5792 	    && cmd != GET_BITMAP_FILE) {
5793 		err = -ENODEV;
5794 		goto abort_unlock;
5795 	}
5796 
5797 	/*
5798 	 * Commands even a read-only array can execute:
5799 	 */
5800 	switch (cmd)
5801 	{
5802 		case GET_ARRAY_INFO:
5803 			err = get_array_info(mddev, argp);
5804 			goto done_unlock;
5805 
5806 		case GET_BITMAP_FILE:
5807 			err = get_bitmap_file(mddev, argp);
5808 			goto done_unlock;
5809 
5810 		case GET_DISK_INFO:
5811 			err = get_disk_info(mddev, argp);
5812 			goto done_unlock;
5813 
5814 		case RESTART_ARRAY_RW:
5815 			err = restart_array(mddev);
5816 			goto done_unlock;
5817 
5818 		case STOP_ARRAY:
5819 			err = do_md_stop(mddev, 0, 1);
5820 			goto done_unlock;
5821 
5822 		case STOP_ARRAY_RO:
5823 			err = md_set_readonly(mddev, 1);
5824 			goto done_unlock;
5825 
5826 		case BLKROSET:
5827 			if (get_user(ro, (int __user *)(arg))) {
5828 				err = -EFAULT;
5829 				goto done_unlock;
5830 			}
5831 			err = -EINVAL;
5832 
5833 			/* if the bdev is going readonly the value of mddev->ro
5834 			 * does not matter, no writes are coming
5835 			 */
5836 			if (ro)
5837 				goto done_unlock;
5838 
5839 			/* are we are already prepared for writes? */
5840 			if (mddev->ro != 1)
5841 				goto done_unlock;
5842 
5843 			/* transitioning to readauto need only happen for
5844 			 * arrays that call md_write_start
5845 			 */
5846 			if (mddev->pers) {
5847 				err = restart_array(mddev);
5848 				if (err == 0) {
5849 					mddev->ro = 2;
5850 					set_disk_ro(mddev->gendisk, 0);
5851 				}
5852 			}
5853 			goto done_unlock;
5854 	}
5855 
5856 	/*
5857 	 * The remaining ioctls are changing the state of the
5858 	 * superblock, so we do not allow them on read-only arrays.
5859 	 * However non-MD ioctls (e.g. get-size) will still come through
5860 	 * here and hit the 'default' below, so only disallow
5861 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5862 	 */
5863 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5864 		if (mddev->ro == 2) {
5865 			mddev->ro = 0;
5866 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5867 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5868 			md_wakeup_thread(mddev->thread);
5869 		} else {
5870 			err = -EROFS;
5871 			goto abort_unlock;
5872 		}
5873 	}
5874 
5875 	switch (cmd)
5876 	{
5877 		case ADD_NEW_DISK:
5878 		{
5879 			mdu_disk_info_t info;
5880 			if (copy_from_user(&info, argp, sizeof(info)))
5881 				err = -EFAULT;
5882 			else
5883 				err = add_new_disk(mddev, &info);
5884 			goto done_unlock;
5885 		}
5886 
5887 		case HOT_REMOVE_DISK:
5888 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5889 			goto done_unlock;
5890 
5891 		case HOT_ADD_DISK:
5892 			err = hot_add_disk(mddev, new_decode_dev(arg));
5893 			goto done_unlock;
5894 
5895 		case SET_DISK_FAULTY:
5896 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5897 			goto done_unlock;
5898 
5899 		case RUN_ARRAY:
5900 			err = do_md_run(mddev);
5901 			goto done_unlock;
5902 
5903 		case SET_BITMAP_FILE:
5904 			err = set_bitmap_file(mddev, (int)arg);
5905 			goto done_unlock;
5906 
5907 		default:
5908 			err = -EINVAL;
5909 			goto abort_unlock;
5910 	}
5911 
5912 done_unlock:
5913 abort_unlock:
5914 	if (mddev->hold_active == UNTIL_IOCTL &&
5915 	    err != -EINVAL)
5916 		mddev->hold_active = 0;
5917 	mddev_unlock(mddev);
5918 
5919 	return err;
5920 done:
5921 	if (err)
5922 		MD_BUG();
5923 abort:
5924 	return err;
5925 }
5926 #ifdef CONFIG_COMPAT
5927 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5928 		    unsigned int cmd, unsigned long arg)
5929 {
5930 	switch (cmd) {
5931 	case HOT_REMOVE_DISK:
5932 	case HOT_ADD_DISK:
5933 	case SET_DISK_FAULTY:
5934 	case SET_BITMAP_FILE:
5935 		/* These take in integer arg, do not convert */
5936 		break;
5937 	default:
5938 		arg = (unsigned long)compat_ptr(arg);
5939 		break;
5940 	}
5941 
5942 	return md_ioctl(bdev, mode, cmd, arg);
5943 }
5944 #endif /* CONFIG_COMPAT */
5945 
5946 static int md_open(struct block_device *bdev, fmode_t mode)
5947 {
5948 	/*
5949 	 * Succeed if we can lock the mddev, which confirms that
5950 	 * it isn't being stopped right now.
5951 	 */
5952 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5953 	int err;
5954 
5955 	mutex_lock(&md_mutex);
5956 	if (mddev->gendisk != bdev->bd_disk) {
5957 		/* we are racing with mddev_put which is discarding this
5958 		 * bd_disk.
5959 		 */
5960 		mddev_put(mddev);
5961 		/* Wait until bdev->bd_disk is definitely gone */
5962 		flush_scheduled_work();
5963 		/* Then retry the open from the top */
5964 		mutex_unlock(&md_mutex);
5965 		return -ERESTARTSYS;
5966 	}
5967 	BUG_ON(mddev != bdev->bd_disk->private_data);
5968 
5969 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5970 		goto out;
5971 
5972 	err = 0;
5973 	atomic_inc(&mddev->openers);
5974 	mutex_unlock(&mddev->open_mutex);
5975 
5976 	check_disk_size_change(mddev->gendisk, bdev);
5977  out:
5978 	mutex_unlock(&md_mutex);
5979 	return err;
5980 }
5981 
5982 static int md_release(struct gendisk *disk, fmode_t mode)
5983 {
5984  	mddev_t *mddev = disk->private_data;
5985 
5986 	BUG_ON(!mddev);
5987 	mutex_lock(&md_mutex);
5988 	atomic_dec(&mddev->openers);
5989 	mddev_put(mddev);
5990 	mutex_unlock(&md_mutex);
5991 
5992 	return 0;
5993 }
5994 static const struct block_device_operations md_fops =
5995 {
5996 	.owner		= THIS_MODULE,
5997 	.open		= md_open,
5998 	.release	= md_release,
5999 	.ioctl		= md_ioctl,
6000 #ifdef CONFIG_COMPAT
6001 	.compat_ioctl	= md_compat_ioctl,
6002 #endif
6003 	.getgeo		= md_getgeo,
6004 };
6005 
6006 static int md_thread(void * arg)
6007 {
6008 	mdk_thread_t *thread = arg;
6009 
6010 	/*
6011 	 * md_thread is a 'system-thread', it's priority should be very
6012 	 * high. We avoid resource deadlocks individually in each
6013 	 * raid personality. (RAID5 does preallocation) We also use RR and
6014 	 * the very same RT priority as kswapd, thus we will never get
6015 	 * into a priority inversion deadlock.
6016 	 *
6017 	 * we definitely have to have equal or higher priority than
6018 	 * bdflush, otherwise bdflush will deadlock if there are too
6019 	 * many dirty RAID5 blocks.
6020 	 */
6021 
6022 	allow_signal(SIGKILL);
6023 	while (!kthread_should_stop()) {
6024 
6025 		/* We need to wait INTERRUPTIBLE so that
6026 		 * we don't add to the load-average.
6027 		 * That means we need to be sure no signals are
6028 		 * pending
6029 		 */
6030 		if (signal_pending(current))
6031 			flush_signals(current);
6032 
6033 		wait_event_interruptible_timeout
6034 			(thread->wqueue,
6035 			 test_bit(THREAD_WAKEUP, &thread->flags)
6036 			 || kthread_should_stop(),
6037 			 thread->timeout);
6038 
6039 		clear_bit(THREAD_WAKEUP, &thread->flags);
6040 
6041 		thread->run(thread->mddev);
6042 	}
6043 
6044 	return 0;
6045 }
6046 
6047 void md_wakeup_thread(mdk_thread_t *thread)
6048 {
6049 	if (thread) {
6050 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6051 		set_bit(THREAD_WAKEUP, &thread->flags);
6052 		wake_up(&thread->wqueue);
6053 	}
6054 }
6055 
6056 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6057 				 const char *name)
6058 {
6059 	mdk_thread_t *thread;
6060 
6061 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6062 	if (!thread)
6063 		return NULL;
6064 
6065 	init_waitqueue_head(&thread->wqueue);
6066 
6067 	thread->run = run;
6068 	thread->mddev = mddev;
6069 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6070 	thread->tsk = kthread_run(md_thread, thread,
6071 				  "%s_%s",
6072 				  mdname(thread->mddev),
6073 				  name ?: mddev->pers->name);
6074 	if (IS_ERR(thread->tsk)) {
6075 		kfree(thread);
6076 		return NULL;
6077 	}
6078 	return thread;
6079 }
6080 
6081 void md_unregister_thread(mdk_thread_t *thread)
6082 {
6083 	if (!thread)
6084 		return;
6085 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6086 
6087 	kthread_stop(thread->tsk);
6088 	kfree(thread);
6089 }
6090 
6091 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6092 {
6093 	if (!mddev) {
6094 		MD_BUG();
6095 		return;
6096 	}
6097 
6098 	if (!rdev || test_bit(Faulty, &rdev->flags))
6099 		return;
6100 
6101 	if (mddev->external)
6102 		set_bit(Blocked, &rdev->flags);
6103 /*
6104 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6105 		mdname(mddev),
6106 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6107 		__builtin_return_address(0),__builtin_return_address(1),
6108 		__builtin_return_address(2),__builtin_return_address(3));
6109 */
6110 	if (!mddev->pers)
6111 		return;
6112 	if (!mddev->pers->error_handler)
6113 		return;
6114 	mddev->pers->error_handler(mddev,rdev);
6115 	if (mddev->degraded)
6116 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6117 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6118 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6119 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6120 	md_wakeup_thread(mddev->thread);
6121 	if (mddev->event_work.func)
6122 		schedule_work(&mddev->event_work);
6123 	md_new_event_inintr(mddev);
6124 }
6125 
6126 /* seq_file implementation /proc/mdstat */
6127 
6128 static void status_unused(struct seq_file *seq)
6129 {
6130 	int i = 0;
6131 	mdk_rdev_t *rdev;
6132 
6133 	seq_printf(seq, "unused devices: ");
6134 
6135 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6136 		char b[BDEVNAME_SIZE];
6137 		i++;
6138 		seq_printf(seq, "%s ",
6139 			      bdevname(rdev->bdev,b));
6140 	}
6141 	if (!i)
6142 		seq_printf(seq, "<none>");
6143 
6144 	seq_printf(seq, "\n");
6145 }
6146 
6147 
6148 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6149 {
6150 	sector_t max_sectors, resync, res;
6151 	unsigned long dt, db;
6152 	sector_t rt;
6153 	int scale;
6154 	unsigned int per_milli;
6155 
6156 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6157 
6158 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6159 		max_sectors = mddev->resync_max_sectors;
6160 	else
6161 		max_sectors = mddev->dev_sectors;
6162 
6163 	/*
6164 	 * Should not happen.
6165 	 */
6166 	if (!max_sectors) {
6167 		MD_BUG();
6168 		return;
6169 	}
6170 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6171 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6172 	 * u32, as those are the requirements for sector_div.
6173 	 * Thus 'scale' must be at least 10
6174 	 */
6175 	scale = 10;
6176 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6177 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6178 			scale++;
6179 	}
6180 	res = (resync>>scale)*1000;
6181 	sector_div(res, (u32)((max_sectors>>scale)+1));
6182 
6183 	per_milli = res;
6184 	{
6185 		int i, x = per_milli/50, y = 20-x;
6186 		seq_printf(seq, "[");
6187 		for (i = 0; i < x; i++)
6188 			seq_printf(seq, "=");
6189 		seq_printf(seq, ">");
6190 		for (i = 0; i < y; i++)
6191 			seq_printf(seq, ".");
6192 		seq_printf(seq, "] ");
6193 	}
6194 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6195 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6196 		    "reshape" :
6197 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6198 		     "check" :
6199 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6200 		      "resync" : "recovery"))),
6201 		   per_milli/10, per_milli % 10,
6202 		   (unsigned long long) resync/2,
6203 		   (unsigned long long) max_sectors/2);
6204 
6205 	/*
6206 	 * dt: time from mark until now
6207 	 * db: blocks written from mark until now
6208 	 * rt: remaining time
6209 	 *
6210 	 * rt is a sector_t, so could be 32bit or 64bit.
6211 	 * So we divide before multiply in case it is 32bit and close
6212 	 * to the limit.
6213 	 * We scale the divisor (db) by 32 to avoid loosing precision
6214 	 * near the end of resync when the number of remaining sectors
6215 	 * is close to 'db'.
6216 	 * We then divide rt by 32 after multiplying by db to compensate.
6217 	 * The '+1' avoids division by zero if db is very small.
6218 	 */
6219 	dt = ((jiffies - mddev->resync_mark) / HZ);
6220 	if (!dt) dt++;
6221 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6222 		- mddev->resync_mark_cnt;
6223 
6224 	rt = max_sectors - resync;    /* number of remaining sectors */
6225 	sector_div(rt, db/32+1);
6226 	rt *= dt;
6227 	rt >>= 5;
6228 
6229 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6230 		   ((unsigned long)rt % 60)/6);
6231 
6232 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6233 }
6234 
6235 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6236 {
6237 	struct list_head *tmp;
6238 	loff_t l = *pos;
6239 	mddev_t *mddev;
6240 
6241 	if (l >= 0x10000)
6242 		return NULL;
6243 	if (!l--)
6244 		/* header */
6245 		return (void*)1;
6246 
6247 	spin_lock(&all_mddevs_lock);
6248 	list_for_each(tmp,&all_mddevs)
6249 		if (!l--) {
6250 			mddev = list_entry(tmp, mddev_t, all_mddevs);
6251 			mddev_get(mddev);
6252 			spin_unlock(&all_mddevs_lock);
6253 			return mddev;
6254 		}
6255 	spin_unlock(&all_mddevs_lock);
6256 	if (!l--)
6257 		return (void*)2;/* tail */
6258 	return NULL;
6259 }
6260 
6261 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6262 {
6263 	struct list_head *tmp;
6264 	mddev_t *next_mddev, *mddev = v;
6265 
6266 	++*pos;
6267 	if (v == (void*)2)
6268 		return NULL;
6269 
6270 	spin_lock(&all_mddevs_lock);
6271 	if (v == (void*)1)
6272 		tmp = all_mddevs.next;
6273 	else
6274 		tmp = mddev->all_mddevs.next;
6275 	if (tmp != &all_mddevs)
6276 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6277 	else {
6278 		next_mddev = (void*)2;
6279 		*pos = 0x10000;
6280 	}
6281 	spin_unlock(&all_mddevs_lock);
6282 
6283 	if (v != (void*)1)
6284 		mddev_put(mddev);
6285 	return next_mddev;
6286 
6287 }
6288 
6289 static void md_seq_stop(struct seq_file *seq, void *v)
6290 {
6291 	mddev_t *mddev = v;
6292 
6293 	if (mddev && v != (void*)1 && v != (void*)2)
6294 		mddev_put(mddev);
6295 }
6296 
6297 struct mdstat_info {
6298 	int event;
6299 };
6300 
6301 static int md_seq_show(struct seq_file *seq, void *v)
6302 {
6303 	mddev_t *mddev = v;
6304 	sector_t sectors;
6305 	mdk_rdev_t *rdev;
6306 	struct mdstat_info *mi = seq->private;
6307 	struct bitmap *bitmap;
6308 
6309 	if (v == (void*)1) {
6310 		struct mdk_personality *pers;
6311 		seq_printf(seq, "Personalities : ");
6312 		spin_lock(&pers_lock);
6313 		list_for_each_entry(pers, &pers_list, list)
6314 			seq_printf(seq, "[%s] ", pers->name);
6315 
6316 		spin_unlock(&pers_lock);
6317 		seq_printf(seq, "\n");
6318 		mi->event = atomic_read(&md_event_count);
6319 		return 0;
6320 	}
6321 	if (v == (void*)2) {
6322 		status_unused(seq);
6323 		return 0;
6324 	}
6325 
6326 	if (mddev_lock(mddev) < 0)
6327 		return -EINTR;
6328 
6329 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6330 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6331 						mddev->pers ? "" : "in");
6332 		if (mddev->pers) {
6333 			if (mddev->ro==1)
6334 				seq_printf(seq, " (read-only)");
6335 			if (mddev->ro==2)
6336 				seq_printf(seq, " (auto-read-only)");
6337 			seq_printf(seq, " %s", mddev->pers->name);
6338 		}
6339 
6340 		sectors = 0;
6341 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6342 			char b[BDEVNAME_SIZE];
6343 			seq_printf(seq, " %s[%d]",
6344 				bdevname(rdev->bdev,b), rdev->desc_nr);
6345 			if (test_bit(WriteMostly, &rdev->flags))
6346 				seq_printf(seq, "(W)");
6347 			if (test_bit(Faulty, &rdev->flags)) {
6348 				seq_printf(seq, "(F)");
6349 				continue;
6350 			} else if (rdev->raid_disk < 0)
6351 				seq_printf(seq, "(S)"); /* spare */
6352 			sectors += rdev->sectors;
6353 		}
6354 
6355 		if (!list_empty(&mddev->disks)) {
6356 			if (mddev->pers)
6357 				seq_printf(seq, "\n      %llu blocks",
6358 					   (unsigned long long)
6359 					   mddev->array_sectors / 2);
6360 			else
6361 				seq_printf(seq, "\n      %llu blocks",
6362 					   (unsigned long long)sectors / 2);
6363 		}
6364 		if (mddev->persistent) {
6365 			if (mddev->major_version != 0 ||
6366 			    mddev->minor_version != 90) {
6367 				seq_printf(seq," super %d.%d",
6368 					   mddev->major_version,
6369 					   mddev->minor_version);
6370 			}
6371 		} else if (mddev->external)
6372 			seq_printf(seq, " super external:%s",
6373 				   mddev->metadata_type);
6374 		else
6375 			seq_printf(seq, " super non-persistent");
6376 
6377 		if (mddev->pers) {
6378 			mddev->pers->status(seq, mddev);
6379 	 		seq_printf(seq, "\n      ");
6380 			if (mddev->pers->sync_request) {
6381 				if (mddev->curr_resync > 2) {
6382 					status_resync(seq, mddev);
6383 					seq_printf(seq, "\n      ");
6384 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6385 					seq_printf(seq, "\tresync=DELAYED\n      ");
6386 				else if (mddev->recovery_cp < MaxSector)
6387 					seq_printf(seq, "\tresync=PENDING\n      ");
6388 			}
6389 		} else
6390 			seq_printf(seq, "\n       ");
6391 
6392 		if ((bitmap = mddev->bitmap)) {
6393 			unsigned long chunk_kb;
6394 			unsigned long flags;
6395 			spin_lock_irqsave(&bitmap->lock, flags);
6396 			chunk_kb = mddev->bitmap_info.chunksize >> 10;
6397 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6398 				"%lu%s chunk",
6399 				bitmap->pages - bitmap->missing_pages,
6400 				bitmap->pages,
6401 				(bitmap->pages - bitmap->missing_pages)
6402 					<< (PAGE_SHIFT - 10),
6403 				chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6404 				chunk_kb ? "KB" : "B");
6405 			if (bitmap->file) {
6406 				seq_printf(seq, ", file: ");
6407 				seq_path(seq, &bitmap->file->f_path, " \t\n");
6408 			}
6409 
6410 			seq_printf(seq, "\n");
6411 			spin_unlock_irqrestore(&bitmap->lock, flags);
6412 		}
6413 
6414 		seq_printf(seq, "\n");
6415 	}
6416 	mddev_unlock(mddev);
6417 
6418 	return 0;
6419 }
6420 
6421 static const struct seq_operations md_seq_ops = {
6422 	.start  = md_seq_start,
6423 	.next   = md_seq_next,
6424 	.stop   = md_seq_stop,
6425 	.show   = md_seq_show,
6426 };
6427 
6428 static int md_seq_open(struct inode *inode, struct file *file)
6429 {
6430 	int error;
6431 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6432 	if (mi == NULL)
6433 		return -ENOMEM;
6434 
6435 	error = seq_open(file, &md_seq_ops);
6436 	if (error)
6437 		kfree(mi);
6438 	else {
6439 		struct seq_file *p = file->private_data;
6440 		p->private = mi;
6441 		mi->event = atomic_read(&md_event_count);
6442 	}
6443 	return error;
6444 }
6445 
6446 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6447 {
6448 	struct seq_file *m = filp->private_data;
6449 	struct mdstat_info *mi = m->private;
6450 	int mask;
6451 
6452 	poll_wait(filp, &md_event_waiters, wait);
6453 
6454 	/* always allow read */
6455 	mask = POLLIN | POLLRDNORM;
6456 
6457 	if (mi->event != atomic_read(&md_event_count))
6458 		mask |= POLLERR | POLLPRI;
6459 	return mask;
6460 }
6461 
6462 static const struct file_operations md_seq_fops = {
6463 	.owner		= THIS_MODULE,
6464 	.open           = md_seq_open,
6465 	.read           = seq_read,
6466 	.llseek         = seq_lseek,
6467 	.release	= seq_release_private,
6468 	.poll		= mdstat_poll,
6469 };
6470 
6471 int register_md_personality(struct mdk_personality *p)
6472 {
6473 	spin_lock(&pers_lock);
6474 	list_add_tail(&p->list, &pers_list);
6475 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6476 	spin_unlock(&pers_lock);
6477 	return 0;
6478 }
6479 
6480 int unregister_md_personality(struct mdk_personality *p)
6481 {
6482 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6483 	spin_lock(&pers_lock);
6484 	list_del_init(&p->list);
6485 	spin_unlock(&pers_lock);
6486 	return 0;
6487 }
6488 
6489 static int is_mddev_idle(mddev_t *mddev, int init)
6490 {
6491 	mdk_rdev_t * rdev;
6492 	int idle;
6493 	int curr_events;
6494 
6495 	idle = 1;
6496 	rcu_read_lock();
6497 	rdev_for_each_rcu(rdev, mddev) {
6498 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6499 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6500 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6501 			      atomic_read(&disk->sync_io);
6502 		/* sync IO will cause sync_io to increase before the disk_stats
6503 		 * as sync_io is counted when a request starts, and
6504 		 * disk_stats is counted when it completes.
6505 		 * So resync activity will cause curr_events to be smaller than
6506 		 * when there was no such activity.
6507 		 * non-sync IO will cause disk_stat to increase without
6508 		 * increasing sync_io so curr_events will (eventually)
6509 		 * be larger than it was before.  Once it becomes
6510 		 * substantially larger, the test below will cause
6511 		 * the array to appear non-idle, and resync will slow
6512 		 * down.
6513 		 * If there is a lot of outstanding resync activity when
6514 		 * we set last_event to curr_events, then all that activity
6515 		 * completing might cause the array to appear non-idle
6516 		 * and resync will be slowed down even though there might
6517 		 * not have been non-resync activity.  This will only
6518 		 * happen once though.  'last_events' will soon reflect
6519 		 * the state where there is little or no outstanding
6520 		 * resync requests, and further resync activity will
6521 		 * always make curr_events less than last_events.
6522 		 *
6523 		 */
6524 		if (init || curr_events - rdev->last_events > 64) {
6525 			rdev->last_events = curr_events;
6526 			idle = 0;
6527 		}
6528 	}
6529 	rcu_read_unlock();
6530 	return idle;
6531 }
6532 
6533 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6534 {
6535 	/* another "blocks" (512byte) blocks have been synced */
6536 	atomic_sub(blocks, &mddev->recovery_active);
6537 	wake_up(&mddev->recovery_wait);
6538 	if (!ok) {
6539 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6540 		md_wakeup_thread(mddev->thread);
6541 		// stop recovery, signal do_sync ....
6542 	}
6543 }
6544 
6545 
6546 /* md_write_start(mddev, bi)
6547  * If we need to update some array metadata (e.g. 'active' flag
6548  * in superblock) before writing, schedule a superblock update
6549  * and wait for it to complete.
6550  */
6551 void md_write_start(mddev_t *mddev, struct bio *bi)
6552 {
6553 	int did_change = 0;
6554 	if (bio_data_dir(bi) != WRITE)
6555 		return;
6556 
6557 	BUG_ON(mddev->ro == 1);
6558 	if (mddev->ro == 2) {
6559 		/* need to switch to read/write */
6560 		mddev->ro = 0;
6561 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6562 		md_wakeup_thread(mddev->thread);
6563 		md_wakeup_thread(mddev->sync_thread);
6564 		did_change = 1;
6565 	}
6566 	atomic_inc(&mddev->writes_pending);
6567 	if (mddev->safemode == 1)
6568 		mddev->safemode = 0;
6569 	if (mddev->in_sync) {
6570 		spin_lock_irq(&mddev->write_lock);
6571 		if (mddev->in_sync) {
6572 			mddev->in_sync = 0;
6573 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6574 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
6575 			md_wakeup_thread(mddev->thread);
6576 			did_change = 1;
6577 		}
6578 		spin_unlock_irq(&mddev->write_lock);
6579 	}
6580 	if (did_change)
6581 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6582 	wait_event(mddev->sb_wait,
6583 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6584 }
6585 
6586 void md_write_end(mddev_t *mddev)
6587 {
6588 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6589 		if (mddev->safemode == 2)
6590 			md_wakeup_thread(mddev->thread);
6591 		else if (mddev->safemode_delay)
6592 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6593 	}
6594 }
6595 
6596 /* md_allow_write(mddev)
6597  * Calling this ensures that the array is marked 'active' so that writes
6598  * may proceed without blocking.  It is important to call this before
6599  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6600  * Must be called with mddev_lock held.
6601  *
6602  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6603  * is dropped, so return -EAGAIN after notifying userspace.
6604  */
6605 int md_allow_write(mddev_t *mddev)
6606 {
6607 	if (!mddev->pers)
6608 		return 0;
6609 	if (mddev->ro)
6610 		return 0;
6611 	if (!mddev->pers->sync_request)
6612 		return 0;
6613 
6614 	spin_lock_irq(&mddev->write_lock);
6615 	if (mddev->in_sync) {
6616 		mddev->in_sync = 0;
6617 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6618 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
6619 		if (mddev->safemode_delay &&
6620 		    mddev->safemode == 0)
6621 			mddev->safemode = 1;
6622 		spin_unlock_irq(&mddev->write_lock);
6623 		md_update_sb(mddev, 0);
6624 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6625 	} else
6626 		spin_unlock_irq(&mddev->write_lock);
6627 
6628 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6629 		return -EAGAIN;
6630 	else
6631 		return 0;
6632 }
6633 EXPORT_SYMBOL_GPL(md_allow_write);
6634 
6635 void md_unplug(mddev_t *mddev)
6636 {
6637 	if (mddev->queue)
6638 		blk_unplug(mddev->queue);
6639 	if (mddev->plug)
6640 		mddev->plug->unplug_fn(mddev->plug);
6641 }
6642 
6643 #define SYNC_MARKS	10
6644 #define	SYNC_MARK_STEP	(3*HZ)
6645 void md_do_sync(mddev_t *mddev)
6646 {
6647 	mddev_t *mddev2;
6648 	unsigned int currspeed = 0,
6649 		 window;
6650 	sector_t max_sectors,j, io_sectors;
6651 	unsigned long mark[SYNC_MARKS];
6652 	sector_t mark_cnt[SYNC_MARKS];
6653 	int last_mark,m;
6654 	struct list_head *tmp;
6655 	sector_t last_check;
6656 	int skipped = 0;
6657 	mdk_rdev_t *rdev;
6658 	char *desc;
6659 
6660 	/* just incase thread restarts... */
6661 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6662 		return;
6663 	if (mddev->ro) /* never try to sync a read-only array */
6664 		return;
6665 
6666 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6667 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6668 			desc = "data-check";
6669 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6670 			desc = "requested-resync";
6671 		else
6672 			desc = "resync";
6673 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6674 		desc = "reshape";
6675 	else
6676 		desc = "recovery";
6677 
6678 	/* we overload curr_resync somewhat here.
6679 	 * 0 == not engaged in resync at all
6680 	 * 2 == checking that there is no conflict with another sync
6681 	 * 1 == like 2, but have yielded to allow conflicting resync to
6682 	 *		commense
6683 	 * other == active in resync - this many blocks
6684 	 *
6685 	 * Before starting a resync we must have set curr_resync to
6686 	 * 2, and then checked that every "conflicting" array has curr_resync
6687 	 * less than ours.  When we find one that is the same or higher
6688 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6689 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6690 	 * This will mean we have to start checking from the beginning again.
6691 	 *
6692 	 */
6693 
6694 	do {
6695 		mddev->curr_resync = 2;
6696 
6697 	try_again:
6698 		if (kthread_should_stop())
6699 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6700 
6701 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6702 			goto skip;
6703 		for_each_mddev(mddev2, tmp) {
6704 			if (mddev2 == mddev)
6705 				continue;
6706 			if (!mddev->parallel_resync
6707 			&&  mddev2->curr_resync
6708 			&&  match_mddev_units(mddev, mddev2)) {
6709 				DEFINE_WAIT(wq);
6710 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6711 					/* arbitrarily yield */
6712 					mddev->curr_resync = 1;
6713 					wake_up(&resync_wait);
6714 				}
6715 				if (mddev > mddev2 && mddev->curr_resync == 1)
6716 					/* no need to wait here, we can wait the next
6717 					 * time 'round when curr_resync == 2
6718 					 */
6719 					continue;
6720 				/* We need to wait 'interruptible' so as not to
6721 				 * contribute to the load average, and not to
6722 				 * be caught by 'softlockup'
6723 				 */
6724 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6725 				if (!kthread_should_stop() &&
6726 				    mddev2->curr_resync >= mddev->curr_resync) {
6727 					printk(KERN_INFO "md: delaying %s of %s"
6728 					       " until %s has finished (they"
6729 					       " share one or more physical units)\n",
6730 					       desc, mdname(mddev), mdname(mddev2));
6731 					mddev_put(mddev2);
6732 					if (signal_pending(current))
6733 						flush_signals(current);
6734 					schedule();
6735 					finish_wait(&resync_wait, &wq);
6736 					goto try_again;
6737 				}
6738 				finish_wait(&resync_wait, &wq);
6739 			}
6740 		}
6741 	} while (mddev->curr_resync < 2);
6742 
6743 	j = 0;
6744 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6745 		/* resync follows the size requested by the personality,
6746 		 * which defaults to physical size, but can be virtual size
6747 		 */
6748 		max_sectors = mddev->resync_max_sectors;
6749 		mddev->resync_mismatches = 0;
6750 		/* we don't use the checkpoint if there's a bitmap */
6751 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6752 			j = mddev->resync_min;
6753 		else if (!mddev->bitmap)
6754 			j = mddev->recovery_cp;
6755 
6756 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6757 		max_sectors = mddev->dev_sectors;
6758 	else {
6759 		/* recovery follows the physical size of devices */
6760 		max_sectors = mddev->dev_sectors;
6761 		j = MaxSector;
6762 		rcu_read_lock();
6763 		list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6764 			if (rdev->raid_disk >= 0 &&
6765 			    !test_bit(Faulty, &rdev->flags) &&
6766 			    !test_bit(In_sync, &rdev->flags) &&
6767 			    rdev->recovery_offset < j)
6768 				j = rdev->recovery_offset;
6769 		rcu_read_unlock();
6770 	}
6771 
6772 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6773 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6774 		" %d KB/sec/disk.\n", speed_min(mddev));
6775 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6776 	       "(but not more than %d KB/sec) for %s.\n",
6777 	       speed_max(mddev), desc);
6778 
6779 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6780 
6781 	io_sectors = 0;
6782 	for (m = 0; m < SYNC_MARKS; m++) {
6783 		mark[m] = jiffies;
6784 		mark_cnt[m] = io_sectors;
6785 	}
6786 	last_mark = 0;
6787 	mddev->resync_mark = mark[last_mark];
6788 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6789 
6790 	/*
6791 	 * Tune reconstruction:
6792 	 */
6793 	window = 32*(PAGE_SIZE/512);
6794 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6795 		window/2,(unsigned long long) max_sectors/2);
6796 
6797 	atomic_set(&mddev->recovery_active, 0);
6798 	last_check = 0;
6799 
6800 	if (j>2) {
6801 		printk(KERN_INFO
6802 		       "md: resuming %s of %s from checkpoint.\n",
6803 		       desc, mdname(mddev));
6804 		mddev->curr_resync = j;
6805 	}
6806 	mddev->curr_resync_completed = mddev->curr_resync;
6807 
6808 	while (j < max_sectors) {
6809 		sector_t sectors;
6810 
6811 		skipped = 0;
6812 
6813 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6814 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
6815 		      (mddev->curr_resync - mddev->curr_resync_completed)
6816 		      > (max_sectors >> 4)) ||
6817 		     (j - mddev->curr_resync_completed)*2
6818 		     >= mddev->resync_max - mddev->curr_resync_completed
6819 			    )) {
6820 			/* time to update curr_resync_completed */
6821 			md_unplug(mddev);
6822 			wait_event(mddev->recovery_wait,
6823 				   atomic_read(&mddev->recovery_active) == 0);
6824 			mddev->curr_resync_completed =
6825 				mddev->curr_resync;
6826 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6827 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6828 		}
6829 
6830 		while (j >= mddev->resync_max && !kthread_should_stop()) {
6831 			/* As this condition is controlled by user-space,
6832 			 * we can block indefinitely, so use '_interruptible'
6833 			 * to avoid triggering warnings.
6834 			 */
6835 			flush_signals(current); /* just in case */
6836 			wait_event_interruptible(mddev->recovery_wait,
6837 						 mddev->resync_max > j
6838 						 || kthread_should_stop());
6839 		}
6840 
6841 		if (kthread_should_stop())
6842 			goto interrupted;
6843 
6844 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6845 						  currspeed < speed_min(mddev));
6846 		if (sectors == 0) {
6847 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6848 			goto out;
6849 		}
6850 
6851 		if (!skipped) { /* actual IO requested */
6852 			io_sectors += sectors;
6853 			atomic_add(sectors, &mddev->recovery_active);
6854 		}
6855 
6856 		j += sectors;
6857 		if (j>1) mddev->curr_resync = j;
6858 		mddev->curr_mark_cnt = io_sectors;
6859 		if (last_check == 0)
6860 			/* this is the earliers that rebuilt will be
6861 			 * visible in /proc/mdstat
6862 			 */
6863 			md_new_event(mddev);
6864 
6865 		if (last_check + window > io_sectors || j == max_sectors)
6866 			continue;
6867 
6868 		last_check = io_sectors;
6869 
6870 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6871 			break;
6872 
6873 	repeat:
6874 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6875 			/* step marks */
6876 			int next = (last_mark+1) % SYNC_MARKS;
6877 
6878 			mddev->resync_mark = mark[next];
6879 			mddev->resync_mark_cnt = mark_cnt[next];
6880 			mark[next] = jiffies;
6881 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6882 			last_mark = next;
6883 		}
6884 
6885 
6886 		if (kthread_should_stop())
6887 			goto interrupted;
6888 
6889 
6890 		/*
6891 		 * this loop exits only if either when we are slower than
6892 		 * the 'hard' speed limit, or the system was IO-idle for
6893 		 * a jiffy.
6894 		 * the system might be non-idle CPU-wise, but we only care
6895 		 * about not overloading the IO subsystem. (things like an
6896 		 * e2fsck being done on the RAID array should execute fast)
6897 		 */
6898 		md_unplug(mddev);
6899 		cond_resched();
6900 
6901 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6902 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6903 
6904 		if (currspeed > speed_min(mddev)) {
6905 			if ((currspeed > speed_max(mddev)) ||
6906 					!is_mddev_idle(mddev, 0)) {
6907 				msleep(500);
6908 				goto repeat;
6909 			}
6910 		}
6911 	}
6912 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6913 	/*
6914 	 * this also signals 'finished resyncing' to md_stop
6915 	 */
6916  out:
6917 	md_unplug(mddev);
6918 
6919 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6920 
6921 	/* tell personality that we are finished */
6922 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6923 
6924 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6925 	    mddev->curr_resync > 2) {
6926 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6927 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6928 				if (mddev->curr_resync >= mddev->recovery_cp) {
6929 					printk(KERN_INFO
6930 					       "md: checkpointing %s of %s.\n",
6931 					       desc, mdname(mddev));
6932 					mddev->recovery_cp = mddev->curr_resync;
6933 				}
6934 			} else
6935 				mddev->recovery_cp = MaxSector;
6936 		} else {
6937 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6938 				mddev->curr_resync = MaxSector;
6939 			rcu_read_lock();
6940 			list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6941 				if (rdev->raid_disk >= 0 &&
6942 				    mddev->delta_disks >= 0 &&
6943 				    !test_bit(Faulty, &rdev->flags) &&
6944 				    !test_bit(In_sync, &rdev->flags) &&
6945 				    rdev->recovery_offset < mddev->curr_resync)
6946 					rdev->recovery_offset = mddev->curr_resync;
6947 			rcu_read_unlock();
6948 		}
6949 	}
6950 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6951 
6952  skip:
6953 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6954 		/* We completed so min/max setting can be forgotten if used. */
6955 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6956 			mddev->resync_min = 0;
6957 		mddev->resync_max = MaxSector;
6958 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6959 		mddev->resync_min = mddev->curr_resync_completed;
6960 	mddev->curr_resync = 0;
6961 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6962 		mddev->curr_resync_completed = 0;
6963 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6964 	wake_up(&resync_wait);
6965 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6966 	md_wakeup_thread(mddev->thread);
6967 	return;
6968 
6969  interrupted:
6970 	/*
6971 	 * got a signal, exit.
6972 	 */
6973 	printk(KERN_INFO
6974 	       "md: md_do_sync() got signal ... exiting\n");
6975 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6976 	goto out;
6977 
6978 }
6979 EXPORT_SYMBOL_GPL(md_do_sync);
6980 
6981 
6982 static int remove_and_add_spares(mddev_t *mddev)
6983 {
6984 	mdk_rdev_t *rdev;
6985 	int spares = 0;
6986 
6987 	mddev->curr_resync_completed = 0;
6988 
6989 	list_for_each_entry(rdev, &mddev->disks, same_set)
6990 		if (rdev->raid_disk >= 0 &&
6991 		    !test_bit(Blocked, &rdev->flags) &&
6992 		    (test_bit(Faulty, &rdev->flags) ||
6993 		     ! test_bit(In_sync, &rdev->flags)) &&
6994 		    atomic_read(&rdev->nr_pending)==0) {
6995 			if (mddev->pers->hot_remove_disk(
6996 				    mddev, rdev->raid_disk)==0) {
6997 				char nm[20];
6998 				sprintf(nm,"rd%d", rdev->raid_disk);
6999 				sysfs_remove_link(&mddev->kobj, nm);
7000 				rdev->raid_disk = -1;
7001 			}
7002 		}
7003 
7004 	if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
7005 		list_for_each_entry(rdev, &mddev->disks, same_set) {
7006 			if (rdev->raid_disk >= 0 &&
7007 			    !test_bit(In_sync, &rdev->flags) &&
7008 			    !test_bit(Blocked, &rdev->flags))
7009 				spares++;
7010 			if (rdev->raid_disk < 0
7011 			    && !test_bit(Faulty, &rdev->flags)) {
7012 				rdev->recovery_offset = 0;
7013 				if (mddev->pers->
7014 				    hot_add_disk(mddev, rdev) == 0) {
7015 					char nm[20];
7016 					sprintf(nm, "rd%d", rdev->raid_disk);
7017 					if (sysfs_create_link(&mddev->kobj,
7018 							      &rdev->kobj, nm))
7019 						/* failure here is OK */;
7020 					spares++;
7021 					md_new_event(mddev);
7022 					set_bit(MD_CHANGE_DEVS, &mddev->flags);
7023 				} else
7024 					break;
7025 			}
7026 		}
7027 	}
7028 	return spares;
7029 }
7030 /*
7031  * This routine is regularly called by all per-raid-array threads to
7032  * deal with generic issues like resync and super-block update.
7033  * Raid personalities that don't have a thread (linear/raid0) do not
7034  * need this as they never do any recovery or update the superblock.
7035  *
7036  * It does not do any resync itself, but rather "forks" off other threads
7037  * to do that as needed.
7038  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7039  * "->recovery" and create a thread at ->sync_thread.
7040  * When the thread finishes it sets MD_RECOVERY_DONE
7041  * and wakeups up this thread which will reap the thread and finish up.
7042  * This thread also removes any faulty devices (with nr_pending == 0).
7043  *
7044  * The overall approach is:
7045  *  1/ if the superblock needs updating, update it.
7046  *  2/ If a recovery thread is running, don't do anything else.
7047  *  3/ If recovery has finished, clean up, possibly marking spares active.
7048  *  4/ If there are any faulty devices, remove them.
7049  *  5/ If array is degraded, try to add spares devices
7050  *  6/ If array has spares or is not in-sync, start a resync thread.
7051  */
7052 void md_check_recovery(mddev_t *mddev)
7053 {
7054 	mdk_rdev_t *rdev;
7055 
7056 
7057 	if (mddev->bitmap)
7058 		bitmap_daemon_work(mddev);
7059 
7060 	if (mddev->ro)
7061 		return;
7062 
7063 	if (signal_pending(current)) {
7064 		if (mddev->pers->sync_request && !mddev->external) {
7065 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7066 			       mdname(mddev));
7067 			mddev->safemode = 2;
7068 		}
7069 		flush_signals(current);
7070 	}
7071 
7072 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7073 		return;
7074 	if ( ! (
7075 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7076 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7077 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7078 		(mddev->external == 0 && mddev->safemode == 1) ||
7079 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7080 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7081 		))
7082 		return;
7083 
7084 	if (mddev_trylock(mddev)) {
7085 		int spares = 0;
7086 
7087 		if (mddev->ro) {
7088 			/* Only thing we do on a ro array is remove
7089 			 * failed devices.
7090 			 */
7091 			remove_and_add_spares(mddev);
7092 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7093 			goto unlock;
7094 		}
7095 
7096 		if (!mddev->external) {
7097 			int did_change = 0;
7098 			spin_lock_irq(&mddev->write_lock);
7099 			if (mddev->safemode &&
7100 			    !atomic_read(&mddev->writes_pending) &&
7101 			    !mddev->in_sync &&
7102 			    mddev->recovery_cp == MaxSector) {
7103 				mddev->in_sync = 1;
7104 				did_change = 1;
7105 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7106 			}
7107 			if (mddev->safemode == 1)
7108 				mddev->safemode = 0;
7109 			spin_unlock_irq(&mddev->write_lock);
7110 			if (did_change)
7111 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7112 		}
7113 
7114 		if (mddev->flags)
7115 			md_update_sb(mddev, 0);
7116 
7117 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7118 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7119 			/* resync/recovery still happening */
7120 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7121 			goto unlock;
7122 		}
7123 		if (mddev->sync_thread) {
7124 			/* resync has finished, collect result */
7125 			md_unregister_thread(mddev->sync_thread);
7126 			mddev->sync_thread = NULL;
7127 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7128 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7129 				/* success...*/
7130 				/* activate any spares */
7131 				if (mddev->pers->spare_active(mddev))
7132 					sysfs_notify(&mddev->kobj, NULL,
7133 						     "degraded");
7134 			}
7135 			if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7136 			    mddev->pers->finish_reshape)
7137 				mddev->pers->finish_reshape(mddev);
7138 			md_update_sb(mddev, 1);
7139 
7140 			/* if array is no-longer degraded, then any saved_raid_disk
7141 			 * information must be scrapped
7142 			 */
7143 			if (!mddev->degraded)
7144 				list_for_each_entry(rdev, &mddev->disks, same_set)
7145 					rdev->saved_raid_disk = -1;
7146 
7147 			mddev->recovery = 0;
7148 			/* flag recovery needed just to double check */
7149 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7150 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7151 			md_new_event(mddev);
7152 			goto unlock;
7153 		}
7154 		/* Set RUNNING before clearing NEEDED to avoid
7155 		 * any transients in the value of "sync_action".
7156 		 */
7157 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7158 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7159 		/* Clear some bits that don't mean anything, but
7160 		 * might be left set
7161 		 */
7162 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7163 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7164 
7165 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7166 			goto unlock;
7167 		/* no recovery is running.
7168 		 * remove any failed drives, then
7169 		 * add spares if possible.
7170 		 * Spare are also removed and re-added, to allow
7171 		 * the personality to fail the re-add.
7172 		 */
7173 
7174 		if (mddev->reshape_position != MaxSector) {
7175 			if (mddev->pers->check_reshape == NULL ||
7176 			    mddev->pers->check_reshape(mddev) != 0)
7177 				/* Cannot proceed */
7178 				goto unlock;
7179 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7180 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7181 		} else if ((spares = remove_and_add_spares(mddev))) {
7182 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7183 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7184 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7185 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7186 		} else if (mddev->recovery_cp < MaxSector) {
7187 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7188 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7189 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7190 			/* nothing to be done ... */
7191 			goto unlock;
7192 
7193 		if (mddev->pers->sync_request) {
7194 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7195 				/* We are adding a device or devices to an array
7196 				 * which has the bitmap stored on all devices.
7197 				 * So make sure all bitmap pages get written
7198 				 */
7199 				bitmap_write_all(mddev->bitmap);
7200 			}
7201 			mddev->sync_thread = md_register_thread(md_do_sync,
7202 								mddev,
7203 								"resync");
7204 			if (!mddev->sync_thread) {
7205 				printk(KERN_ERR "%s: could not start resync"
7206 					" thread...\n",
7207 					mdname(mddev));
7208 				/* leave the spares where they are, it shouldn't hurt */
7209 				mddev->recovery = 0;
7210 			} else
7211 				md_wakeup_thread(mddev->sync_thread);
7212 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7213 			md_new_event(mddev);
7214 		}
7215 	unlock:
7216 		if (!mddev->sync_thread) {
7217 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7218 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7219 					       &mddev->recovery))
7220 				if (mddev->sysfs_action)
7221 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7222 		}
7223 		mddev_unlock(mddev);
7224 	}
7225 }
7226 
7227 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7228 {
7229 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7230 	wait_event_timeout(rdev->blocked_wait,
7231 			   !test_bit(Blocked, &rdev->flags),
7232 			   msecs_to_jiffies(5000));
7233 	rdev_dec_pending(rdev, mddev);
7234 }
7235 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7236 
7237 static int md_notify_reboot(struct notifier_block *this,
7238 			    unsigned long code, void *x)
7239 {
7240 	struct list_head *tmp;
7241 	mddev_t *mddev;
7242 
7243 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7244 
7245 		printk(KERN_INFO "md: stopping all md devices.\n");
7246 
7247 		for_each_mddev(mddev, tmp)
7248 			if (mddev_trylock(mddev)) {
7249 				/* Force a switch to readonly even array
7250 				 * appears to still be in use.  Hence
7251 				 * the '100'.
7252 				 */
7253 				md_set_readonly(mddev, 100);
7254 				mddev_unlock(mddev);
7255 			}
7256 		/*
7257 		 * certain more exotic SCSI devices are known to be
7258 		 * volatile wrt too early system reboots. While the
7259 		 * right place to handle this issue is the given
7260 		 * driver, we do want to have a safe RAID driver ...
7261 		 */
7262 		mdelay(1000*1);
7263 	}
7264 	return NOTIFY_DONE;
7265 }
7266 
7267 static struct notifier_block md_notifier = {
7268 	.notifier_call	= md_notify_reboot,
7269 	.next		= NULL,
7270 	.priority	= INT_MAX, /* before any real devices */
7271 };
7272 
7273 static void md_geninit(void)
7274 {
7275 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7276 
7277 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7278 }
7279 
7280 static int __init md_init(void)
7281 {
7282 	if (register_blkdev(MD_MAJOR, "md"))
7283 		return -1;
7284 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7285 		unregister_blkdev(MD_MAJOR, "md");
7286 		return -1;
7287 	}
7288 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7289 			    md_probe, NULL, NULL);
7290 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7291 			    md_probe, NULL, NULL);
7292 
7293 	register_reboot_notifier(&md_notifier);
7294 	raid_table_header = register_sysctl_table(raid_root_table);
7295 
7296 	md_geninit();
7297 	return 0;
7298 }
7299 
7300 
7301 #ifndef MODULE
7302 
7303 /*
7304  * Searches all registered partitions for autorun RAID arrays
7305  * at boot time.
7306  */
7307 
7308 static LIST_HEAD(all_detected_devices);
7309 struct detected_devices_node {
7310 	struct list_head list;
7311 	dev_t dev;
7312 };
7313 
7314 void md_autodetect_dev(dev_t dev)
7315 {
7316 	struct detected_devices_node *node_detected_dev;
7317 
7318 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7319 	if (node_detected_dev) {
7320 		node_detected_dev->dev = dev;
7321 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
7322 	} else {
7323 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7324 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7325 	}
7326 }
7327 
7328 
7329 static void autostart_arrays(int part)
7330 {
7331 	mdk_rdev_t *rdev;
7332 	struct detected_devices_node *node_detected_dev;
7333 	dev_t dev;
7334 	int i_scanned, i_passed;
7335 
7336 	i_scanned = 0;
7337 	i_passed = 0;
7338 
7339 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7340 
7341 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7342 		i_scanned++;
7343 		node_detected_dev = list_entry(all_detected_devices.next,
7344 					struct detected_devices_node, list);
7345 		list_del(&node_detected_dev->list);
7346 		dev = node_detected_dev->dev;
7347 		kfree(node_detected_dev);
7348 		rdev = md_import_device(dev,0, 90);
7349 		if (IS_ERR(rdev))
7350 			continue;
7351 
7352 		if (test_bit(Faulty, &rdev->flags)) {
7353 			MD_BUG();
7354 			continue;
7355 		}
7356 		set_bit(AutoDetected, &rdev->flags);
7357 		list_add(&rdev->same_set, &pending_raid_disks);
7358 		i_passed++;
7359 	}
7360 
7361 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7362 						i_scanned, i_passed);
7363 
7364 	autorun_devices(part);
7365 }
7366 
7367 #endif /* !MODULE */
7368 
7369 static __exit void md_exit(void)
7370 {
7371 	mddev_t *mddev;
7372 	struct list_head *tmp;
7373 
7374 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7375 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7376 
7377 	unregister_blkdev(MD_MAJOR,"md");
7378 	unregister_blkdev(mdp_major, "mdp");
7379 	unregister_reboot_notifier(&md_notifier);
7380 	unregister_sysctl_table(raid_table_header);
7381 	remove_proc_entry("mdstat", NULL);
7382 	for_each_mddev(mddev, tmp) {
7383 		export_array(mddev);
7384 		mddev->hold_active = 0;
7385 	}
7386 }
7387 
7388 subsys_initcall(md_init);
7389 module_exit(md_exit)
7390 
7391 static int get_ro(char *buffer, struct kernel_param *kp)
7392 {
7393 	return sprintf(buffer, "%d", start_readonly);
7394 }
7395 static int set_ro(const char *val, struct kernel_param *kp)
7396 {
7397 	char *e;
7398 	int num = simple_strtoul(val, &e, 10);
7399 	if (*val && (*e == '\0' || *e == '\n')) {
7400 		start_readonly = num;
7401 		return 0;
7402 	}
7403 	return -EINVAL;
7404 }
7405 
7406 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7407 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7408 
7409 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7410 
7411 EXPORT_SYMBOL(register_md_personality);
7412 EXPORT_SYMBOL(unregister_md_personality);
7413 EXPORT_SYMBOL(md_error);
7414 EXPORT_SYMBOL(md_done_sync);
7415 EXPORT_SYMBOL(md_write_start);
7416 EXPORT_SYMBOL(md_write_end);
7417 EXPORT_SYMBOL(md_register_thread);
7418 EXPORT_SYMBOL(md_unregister_thread);
7419 EXPORT_SYMBOL(md_wakeup_thread);
7420 EXPORT_SYMBOL(md_check_recovery);
7421 MODULE_LICENSE("GPL");
7422 MODULE_DESCRIPTION("MD RAID framework");
7423 MODULE_ALIAS("md");
7424 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
7425