1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/mutex.h> 40 #include <linux/buffer_head.h> /* for invalidate_bdev */ 41 #include <linux/poll.h> 42 #include <linux/ctype.h> 43 #include <linux/string.h> 44 #include <linux/hdreg.h> 45 #include <linux/proc_fs.h> 46 #include <linux/random.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #define DEBUG 0 58 #define dprintk(x...) ((void)(DEBUG && printk(x))) 59 60 static DEFINE_MUTEX(md_mutex); 61 62 #ifndef MODULE 63 static void autostart_arrays(int part); 64 #endif 65 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 74 75 /* 76 * Default number of read corrections we'll attempt on an rdev 77 * before ejecting it from the array. We divide the read error 78 * count by 2 for every hour elapsed between read errors. 79 */ 80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 81 /* 82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 83 * is 1000 KB/sec, so the extra system load does not show up that much. 84 * Increase it if you want to have more _guaranteed_ speed. Note that 85 * the RAID driver will use the maximum available bandwidth if the IO 86 * subsystem is idle. There is also an 'absolute maximum' reconstruction 87 * speed limit - in case reconstruction slows down your system despite 88 * idle IO detection. 89 * 90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 91 * or /sys/block/mdX/md/sync_speed_{min,max} 92 */ 93 94 static int sysctl_speed_limit_min = 1000; 95 static int sysctl_speed_limit_max = 200000; 96 static inline int speed_min(mddev_t *mddev) 97 { 98 return mddev->sync_speed_min ? 99 mddev->sync_speed_min : sysctl_speed_limit_min; 100 } 101 102 static inline int speed_max(mddev_t *mddev) 103 { 104 return mddev->sync_speed_max ? 105 mddev->sync_speed_max : sysctl_speed_limit_max; 106 } 107 108 static struct ctl_table_header *raid_table_header; 109 110 static ctl_table raid_table[] = { 111 { 112 .procname = "speed_limit_min", 113 .data = &sysctl_speed_limit_min, 114 .maxlen = sizeof(int), 115 .mode = S_IRUGO|S_IWUSR, 116 .proc_handler = proc_dointvec, 117 }, 118 { 119 .procname = "speed_limit_max", 120 .data = &sysctl_speed_limit_max, 121 .maxlen = sizeof(int), 122 .mode = S_IRUGO|S_IWUSR, 123 .proc_handler = proc_dointvec, 124 }, 125 { } 126 }; 127 128 static ctl_table raid_dir_table[] = { 129 { 130 .procname = "raid", 131 .maxlen = 0, 132 .mode = S_IRUGO|S_IXUGO, 133 .child = raid_table, 134 }, 135 { } 136 }; 137 138 static ctl_table raid_root_table[] = { 139 { 140 .procname = "dev", 141 .maxlen = 0, 142 .mode = 0555, 143 .child = raid_dir_table, 144 }, 145 { } 146 }; 147 148 static const struct block_device_operations md_fops; 149 150 static int start_readonly; 151 152 /* 153 * We have a system wide 'event count' that is incremented 154 * on any 'interesting' event, and readers of /proc/mdstat 155 * can use 'poll' or 'select' to find out when the event 156 * count increases. 157 * 158 * Events are: 159 * start array, stop array, error, add device, remove device, 160 * start build, activate spare 161 */ 162 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 163 static atomic_t md_event_count; 164 void md_new_event(mddev_t *mddev) 165 { 166 atomic_inc(&md_event_count); 167 wake_up(&md_event_waiters); 168 } 169 EXPORT_SYMBOL_GPL(md_new_event); 170 171 /* Alternate version that can be called from interrupts 172 * when calling sysfs_notify isn't needed. 173 */ 174 static void md_new_event_inintr(mddev_t *mddev) 175 { 176 atomic_inc(&md_event_count); 177 wake_up(&md_event_waiters); 178 } 179 180 /* 181 * Enables to iterate over all existing md arrays 182 * all_mddevs_lock protects this list. 183 */ 184 static LIST_HEAD(all_mddevs); 185 static DEFINE_SPINLOCK(all_mddevs_lock); 186 187 188 /* 189 * iterates through all used mddevs in the system. 190 * We take care to grab the all_mddevs_lock whenever navigating 191 * the list, and to always hold a refcount when unlocked. 192 * Any code which breaks out of this loop while own 193 * a reference to the current mddev and must mddev_put it. 194 */ 195 #define for_each_mddev(mddev,tmp) \ 196 \ 197 for (({ spin_lock(&all_mddevs_lock); \ 198 tmp = all_mddevs.next; \ 199 mddev = NULL;}); \ 200 ({ if (tmp != &all_mddevs) \ 201 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 202 spin_unlock(&all_mddevs_lock); \ 203 if (mddev) mddev_put(mddev); \ 204 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 205 tmp != &all_mddevs;}); \ 206 ({ spin_lock(&all_mddevs_lock); \ 207 tmp = tmp->next;}) \ 208 ) 209 210 211 /* Rather than calling directly into the personality make_request function, 212 * IO requests come here first so that we can check if the device is 213 * being suspended pending a reconfiguration. 214 * We hold a refcount over the call to ->make_request. By the time that 215 * call has finished, the bio has been linked into some internal structure 216 * and so is visible to ->quiesce(), so we don't need the refcount any more. 217 */ 218 static int md_make_request(struct request_queue *q, struct bio *bio) 219 { 220 const int rw = bio_data_dir(bio); 221 mddev_t *mddev = q->queuedata; 222 int rv; 223 int cpu; 224 225 if (mddev == NULL || mddev->pers == NULL) { 226 bio_io_error(bio); 227 return 0; 228 } 229 rcu_read_lock(); 230 if (mddev->suspended || mddev->barrier) { 231 DEFINE_WAIT(__wait); 232 for (;;) { 233 prepare_to_wait(&mddev->sb_wait, &__wait, 234 TASK_UNINTERRUPTIBLE); 235 if (!mddev->suspended && !mddev->barrier) 236 break; 237 rcu_read_unlock(); 238 schedule(); 239 rcu_read_lock(); 240 } 241 finish_wait(&mddev->sb_wait, &__wait); 242 } 243 atomic_inc(&mddev->active_io); 244 rcu_read_unlock(); 245 246 rv = mddev->pers->make_request(mddev, bio); 247 248 cpu = part_stat_lock(); 249 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 250 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 251 bio_sectors(bio)); 252 part_stat_unlock(); 253 254 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 255 wake_up(&mddev->sb_wait); 256 257 return rv; 258 } 259 260 /* mddev_suspend makes sure no new requests are submitted 261 * to the device, and that any requests that have been submitted 262 * are completely handled. 263 * Once ->stop is called and completes, the module will be completely 264 * unused. 265 */ 266 void mddev_suspend(mddev_t *mddev) 267 { 268 BUG_ON(mddev->suspended); 269 mddev->suspended = 1; 270 synchronize_rcu(); 271 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 272 mddev->pers->quiesce(mddev, 1); 273 } 274 EXPORT_SYMBOL_GPL(mddev_suspend); 275 276 void mddev_resume(mddev_t *mddev) 277 { 278 mddev->suspended = 0; 279 wake_up(&mddev->sb_wait); 280 mddev->pers->quiesce(mddev, 0); 281 } 282 EXPORT_SYMBOL_GPL(mddev_resume); 283 284 int mddev_congested(mddev_t *mddev, int bits) 285 { 286 if (mddev->barrier) 287 return 1; 288 return mddev->suspended; 289 } 290 EXPORT_SYMBOL(mddev_congested); 291 292 /* 293 * Generic barrier handling for md 294 */ 295 296 #define POST_REQUEST_BARRIER ((void*)1) 297 298 static void md_end_barrier(struct bio *bio, int err) 299 { 300 mdk_rdev_t *rdev = bio->bi_private; 301 mddev_t *mddev = rdev->mddev; 302 if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER) 303 set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags); 304 305 rdev_dec_pending(rdev, mddev); 306 307 if (atomic_dec_and_test(&mddev->flush_pending)) { 308 if (mddev->barrier == POST_REQUEST_BARRIER) { 309 /* This was a post-request barrier */ 310 mddev->barrier = NULL; 311 wake_up(&mddev->sb_wait); 312 } else 313 /* The pre-request barrier has finished */ 314 schedule_work(&mddev->barrier_work); 315 } 316 bio_put(bio); 317 } 318 319 static void submit_barriers(mddev_t *mddev) 320 { 321 mdk_rdev_t *rdev; 322 323 rcu_read_lock(); 324 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 325 if (rdev->raid_disk >= 0 && 326 !test_bit(Faulty, &rdev->flags)) { 327 /* Take two references, one is dropped 328 * when request finishes, one after 329 * we reclaim rcu_read_lock 330 */ 331 struct bio *bi; 332 atomic_inc(&rdev->nr_pending); 333 atomic_inc(&rdev->nr_pending); 334 rcu_read_unlock(); 335 bi = bio_alloc(GFP_KERNEL, 0); 336 bi->bi_end_io = md_end_barrier; 337 bi->bi_private = rdev; 338 bi->bi_bdev = rdev->bdev; 339 atomic_inc(&mddev->flush_pending); 340 submit_bio(WRITE_BARRIER, bi); 341 rcu_read_lock(); 342 rdev_dec_pending(rdev, mddev); 343 } 344 rcu_read_unlock(); 345 } 346 347 static void md_submit_barrier(struct work_struct *ws) 348 { 349 mddev_t *mddev = container_of(ws, mddev_t, barrier_work); 350 struct bio *bio = mddev->barrier; 351 352 atomic_set(&mddev->flush_pending, 1); 353 354 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags)) 355 bio_endio(bio, -EOPNOTSUPP); 356 else if (bio->bi_size == 0) 357 /* an empty barrier - all done */ 358 bio_endio(bio, 0); 359 else { 360 bio->bi_rw &= ~REQ_HARDBARRIER; 361 if (mddev->pers->make_request(mddev, bio)) 362 generic_make_request(bio); 363 mddev->barrier = POST_REQUEST_BARRIER; 364 submit_barriers(mddev); 365 } 366 if (atomic_dec_and_test(&mddev->flush_pending)) { 367 mddev->barrier = NULL; 368 wake_up(&mddev->sb_wait); 369 } 370 } 371 372 void md_barrier_request(mddev_t *mddev, struct bio *bio) 373 { 374 spin_lock_irq(&mddev->write_lock); 375 wait_event_lock_irq(mddev->sb_wait, 376 !mddev->barrier, 377 mddev->write_lock, /*nothing*/); 378 mddev->barrier = bio; 379 spin_unlock_irq(&mddev->write_lock); 380 381 atomic_set(&mddev->flush_pending, 1); 382 INIT_WORK(&mddev->barrier_work, md_submit_barrier); 383 384 submit_barriers(mddev); 385 386 if (atomic_dec_and_test(&mddev->flush_pending)) 387 schedule_work(&mddev->barrier_work); 388 } 389 EXPORT_SYMBOL(md_barrier_request); 390 391 /* Support for plugging. 392 * This mirrors the plugging support in request_queue, but does not 393 * require having a whole queue 394 */ 395 static void plugger_work(struct work_struct *work) 396 { 397 struct plug_handle *plug = 398 container_of(work, struct plug_handle, unplug_work); 399 plug->unplug_fn(plug); 400 } 401 static void plugger_timeout(unsigned long data) 402 { 403 struct plug_handle *plug = (void *)data; 404 kblockd_schedule_work(NULL, &plug->unplug_work); 405 } 406 void plugger_init(struct plug_handle *plug, 407 void (*unplug_fn)(struct plug_handle *)) 408 { 409 plug->unplug_flag = 0; 410 plug->unplug_fn = unplug_fn; 411 init_timer(&plug->unplug_timer); 412 plug->unplug_timer.function = plugger_timeout; 413 plug->unplug_timer.data = (unsigned long)plug; 414 INIT_WORK(&plug->unplug_work, plugger_work); 415 } 416 EXPORT_SYMBOL_GPL(plugger_init); 417 418 void plugger_set_plug(struct plug_handle *plug) 419 { 420 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag)) 421 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1); 422 } 423 EXPORT_SYMBOL_GPL(plugger_set_plug); 424 425 int plugger_remove_plug(struct plug_handle *plug) 426 { 427 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) { 428 del_timer(&plug->unplug_timer); 429 return 1; 430 } else 431 return 0; 432 } 433 EXPORT_SYMBOL_GPL(plugger_remove_plug); 434 435 436 static inline mddev_t *mddev_get(mddev_t *mddev) 437 { 438 atomic_inc(&mddev->active); 439 return mddev; 440 } 441 442 static void mddev_delayed_delete(struct work_struct *ws); 443 444 static void mddev_put(mddev_t *mddev) 445 { 446 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 447 return; 448 if (!mddev->raid_disks && list_empty(&mddev->disks) && 449 mddev->ctime == 0 && !mddev->hold_active) { 450 /* Array is not configured at all, and not held active, 451 * so destroy it */ 452 list_del(&mddev->all_mddevs); 453 if (mddev->gendisk) { 454 /* we did a probe so need to clean up. 455 * Call schedule_work inside the spinlock 456 * so that flush_scheduled_work() after 457 * mddev_find will succeed in waiting for the 458 * work to be done. 459 */ 460 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 461 schedule_work(&mddev->del_work); 462 } else 463 kfree(mddev); 464 } 465 spin_unlock(&all_mddevs_lock); 466 } 467 468 void mddev_init(mddev_t *mddev) 469 { 470 mutex_init(&mddev->open_mutex); 471 mutex_init(&mddev->reconfig_mutex); 472 mutex_init(&mddev->bitmap_info.mutex); 473 INIT_LIST_HEAD(&mddev->disks); 474 INIT_LIST_HEAD(&mddev->all_mddevs); 475 init_timer(&mddev->safemode_timer); 476 atomic_set(&mddev->active, 1); 477 atomic_set(&mddev->openers, 0); 478 atomic_set(&mddev->active_io, 0); 479 spin_lock_init(&mddev->write_lock); 480 atomic_set(&mddev->flush_pending, 0); 481 init_waitqueue_head(&mddev->sb_wait); 482 init_waitqueue_head(&mddev->recovery_wait); 483 mddev->reshape_position = MaxSector; 484 mddev->resync_min = 0; 485 mddev->resync_max = MaxSector; 486 mddev->level = LEVEL_NONE; 487 } 488 EXPORT_SYMBOL_GPL(mddev_init); 489 490 static mddev_t * mddev_find(dev_t unit) 491 { 492 mddev_t *mddev, *new = NULL; 493 494 retry: 495 spin_lock(&all_mddevs_lock); 496 497 if (unit) { 498 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 499 if (mddev->unit == unit) { 500 mddev_get(mddev); 501 spin_unlock(&all_mddevs_lock); 502 kfree(new); 503 return mddev; 504 } 505 506 if (new) { 507 list_add(&new->all_mddevs, &all_mddevs); 508 spin_unlock(&all_mddevs_lock); 509 new->hold_active = UNTIL_IOCTL; 510 return new; 511 } 512 } else if (new) { 513 /* find an unused unit number */ 514 static int next_minor = 512; 515 int start = next_minor; 516 int is_free = 0; 517 int dev = 0; 518 while (!is_free) { 519 dev = MKDEV(MD_MAJOR, next_minor); 520 next_minor++; 521 if (next_minor > MINORMASK) 522 next_minor = 0; 523 if (next_minor == start) { 524 /* Oh dear, all in use. */ 525 spin_unlock(&all_mddevs_lock); 526 kfree(new); 527 return NULL; 528 } 529 530 is_free = 1; 531 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 532 if (mddev->unit == dev) { 533 is_free = 0; 534 break; 535 } 536 } 537 new->unit = dev; 538 new->md_minor = MINOR(dev); 539 new->hold_active = UNTIL_STOP; 540 list_add(&new->all_mddevs, &all_mddevs); 541 spin_unlock(&all_mddevs_lock); 542 return new; 543 } 544 spin_unlock(&all_mddevs_lock); 545 546 new = kzalloc(sizeof(*new), GFP_KERNEL); 547 if (!new) 548 return NULL; 549 550 new->unit = unit; 551 if (MAJOR(unit) == MD_MAJOR) 552 new->md_minor = MINOR(unit); 553 else 554 new->md_minor = MINOR(unit) >> MdpMinorShift; 555 556 mddev_init(new); 557 558 goto retry; 559 } 560 561 static inline int mddev_lock(mddev_t * mddev) 562 { 563 return mutex_lock_interruptible(&mddev->reconfig_mutex); 564 } 565 566 static inline int mddev_is_locked(mddev_t *mddev) 567 { 568 return mutex_is_locked(&mddev->reconfig_mutex); 569 } 570 571 static inline int mddev_trylock(mddev_t * mddev) 572 { 573 return mutex_trylock(&mddev->reconfig_mutex); 574 } 575 576 static struct attribute_group md_redundancy_group; 577 578 static void mddev_unlock(mddev_t * mddev) 579 { 580 if (mddev->to_remove) { 581 /* These cannot be removed under reconfig_mutex as 582 * an access to the files will try to take reconfig_mutex 583 * while holding the file unremovable, which leads to 584 * a deadlock. 585 * So hold set sysfs_active while the remove in happeing, 586 * and anything else which might set ->to_remove or my 587 * otherwise change the sysfs namespace will fail with 588 * -EBUSY if sysfs_active is still set. 589 * We set sysfs_active under reconfig_mutex and elsewhere 590 * test it under the same mutex to ensure its correct value 591 * is seen. 592 */ 593 struct attribute_group *to_remove = mddev->to_remove; 594 mddev->to_remove = NULL; 595 mddev->sysfs_active = 1; 596 mutex_unlock(&mddev->reconfig_mutex); 597 598 if (mddev->kobj.sd) { 599 if (to_remove != &md_redundancy_group) 600 sysfs_remove_group(&mddev->kobj, to_remove); 601 if (mddev->pers == NULL || 602 mddev->pers->sync_request == NULL) { 603 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 604 if (mddev->sysfs_action) 605 sysfs_put(mddev->sysfs_action); 606 mddev->sysfs_action = NULL; 607 } 608 } 609 mddev->sysfs_active = 0; 610 } else 611 mutex_unlock(&mddev->reconfig_mutex); 612 613 md_wakeup_thread(mddev->thread); 614 } 615 616 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 617 { 618 mdk_rdev_t *rdev; 619 620 list_for_each_entry(rdev, &mddev->disks, same_set) 621 if (rdev->desc_nr == nr) 622 return rdev; 623 624 return NULL; 625 } 626 627 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 628 { 629 mdk_rdev_t *rdev; 630 631 list_for_each_entry(rdev, &mddev->disks, same_set) 632 if (rdev->bdev->bd_dev == dev) 633 return rdev; 634 635 return NULL; 636 } 637 638 static struct mdk_personality *find_pers(int level, char *clevel) 639 { 640 struct mdk_personality *pers; 641 list_for_each_entry(pers, &pers_list, list) { 642 if (level != LEVEL_NONE && pers->level == level) 643 return pers; 644 if (strcmp(pers->name, clevel)==0) 645 return pers; 646 } 647 return NULL; 648 } 649 650 /* return the offset of the super block in 512byte sectors */ 651 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 652 { 653 sector_t num_sectors = bdev->bd_inode->i_size / 512; 654 return MD_NEW_SIZE_SECTORS(num_sectors); 655 } 656 657 static int alloc_disk_sb(mdk_rdev_t * rdev) 658 { 659 if (rdev->sb_page) 660 MD_BUG(); 661 662 rdev->sb_page = alloc_page(GFP_KERNEL); 663 if (!rdev->sb_page) { 664 printk(KERN_ALERT "md: out of memory.\n"); 665 return -ENOMEM; 666 } 667 668 return 0; 669 } 670 671 static void free_disk_sb(mdk_rdev_t * rdev) 672 { 673 if (rdev->sb_page) { 674 put_page(rdev->sb_page); 675 rdev->sb_loaded = 0; 676 rdev->sb_page = NULL; 677 rdev->sb_start = 0; 678 rdev->sectors = 0; 679 } 680 } 681 682 683 static void super_written(struct bio *bio, int error) 684 { 685 mdk_rdev_t *rdev = bio->bi_private; 686 mddev_t *mddev = rdev->mddev; 687 688 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 689 printk("md: super_written gets error=%d, uptodate=%d\n", 690 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 691 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 692 md_error(mddev, rdev); 693 } 694 695 if (atomic_dec_and_test(&mddev->pending_writes)) 696 wake_up(&mddev->sb_wait); 697 bio_put(bio); 698 } 699 700 static void super_written_barrier(struct bio *bio, int error) 701 { 702 struct bio *bio2 = bio->bi_private; 703 mdk_rdev_t *rdev = bio2->bi_private; 704 mddev_t *mddev = rdev->mddev; 705 706 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 707 error == -EOPNOTSUPP) { 708 unsigned long flags; 709 /* barriers don't appear to be supported :-( */ 710 set_bit(BarriersNotsupp, &rdev->flags); 711 mddev->barriers_work = 0; 712 spin_lock_irqsave(&mddev->write_lock, flags); 713 bio2->bi_next = mddev->biolist; 714 mddev->biolist = bio2; 715 spin_unlock_irqrestore(&mddev->write_lock, flags); 716 wake_up(&mddev->sb_wait); 717 bio_put(bio); 718 } else { 719 bio_put(bio2); 720 bio->bi_private = rdev; 721 super_written(bio, error); 722 } 723 } 724 725 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 726 sector_t sector, int size, struct page *page) 727 { 728 /* write first size bytes of page to sector of rdev 729 * Increment mddev->pending_writes before returning 730 * and decrement it on completion, waking up sb_wait 731 * if zero is reached. 732 * If an error occurred, call md_error 733 * 734 * As we might need to resubmit the request if REQ_HARDBARRIER 735 * causes ENOTSUPP, we allocate a spare bio... 736 */ 737 struct bio *bio = bio_alloc(GFP_NOIO, 1); 738 int rw = REQ_WRITE | REQ_SYNC | REQ_UNPLUG; 739 740 bio->bi_bdev = rdev->bdev; 741 bio->bi_sector = sector; 742 bio_add_page(bio, page, size, 0); 743 bio->bi_private = rdev; 744 bio->bi_end_io = super_written; 745 bio->bi_rw = rw; 746 747 atomic_inc(&mddev->pending_writes); 748 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 749 struct bio *rbio; 750 rw |= REQ_HARDBARRIER; 751 rbio = bio_clone(bio, GFP_NOIO); 752 rbio->bi_private = bio; 753 rbio->bi_end_io = super_written_barrier; 754 submit_bio(rw, rbio); 755 } else 756 submit_bio(rw, bio); 757 } 758 759 void md_super_wait(mddev_t *mddev) 760 { 761 /* wait for all superblock writes that were scheduled to complete. 762 * if any had to be retried (due to BARRIER problems), retry them 763 */ 764 DEFINE_WAIT(wq); 765 for(;;) { 766 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 767 if (atomic_read(&mddev->pending_writes)==0) 768 break; 769 while (mddev->biolist) { 770 struct bio *bio; 771 spin_lock_irq(&mddev->write_lock); 772 bio = mddev->biolist; 773 mddev->biolist = bio->bi_next ; 774 bio->bi_next = NULL; 775 spin_unlock_irq(&mddev->write_lock); 776 submit_bio(bio->bi_rw, bio); 777 } 778 schedule(); 779 } 780 finish_wait(&mddev->sb_wait, &wq); 781 } 782 783 static void bi_complete(struct bio *bio, int error) 784 { 785 complete((struct completion*)bio->bi_private); 786 } 787 788 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 789 struct page *page, int rw) 790 { 791 struct bio *bio = bio_alloc(GFP_NOIO, 1); 792 struct completion event; 793 int ret; 794 795 rw |= REQ_SYNC | REQ_UNPLUG; 796 797 bio->bi_bdev = bdev; 798 bio->bi_sector = sector; 799 bio_add_page(bio, page, size, 0); 800 init_completion(&event); 801 bio->bi_private = &event; 802 bio->bi_end_io = bi_complete; 803 submit_bio(rw, bio); 804 wait_for_completion(&event); 805 806 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 807 bio_put(bio); 808 return ret; 809 } 810 EXPORT_SYMBOL_GPL(sync_page_io); 811 812 static int read_disk_sb(mdk_rdev_t * rdev, int size) 813 { 814 char b[BDEVNAME_SIZE]; 815 if (!rdev->sb_page) { 816 MD_BUG(); 817 return -EINVAL; 818 } 819 if (rdev->sb_loaded) 820 return 0; 821 822 823 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ)) 824 goto fail; 825 rdev->sb_loaded = 1; 826 return 0; 827 828 fail: 829 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 830 bdevname(rdev->bdev,b)); 831 return -EINVAL; 832 } 833 834 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 835 { 836 return sb1->set_uuid0 == sb2->set_uuid0 && 837 sb1->set_uuid1 == sb2->set_uuid1 && 838 sb1->set_uuid2 == sb2->set_uuid2 && 839 sb1->set_uuid3 == sb2->set_uuid3; 840 } 841 842 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 843 { 844 int ret; 845 mdp_super_t *tmp1, *tmp2; 846 847 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 848 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 849 850 if (!tmp1 || !tmp2) { 851 ret = 0; 852 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 853 goto abort; 854 } 855 856 *tmp1 = *sb1; 857 *tmp2 = *sb2; 858 859 /* 860 * nr_disks is not constant 861 */ 862 tmp1->nr_disks = 0; 863 tmp2->nr_disks = 0; 864 865 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 866 abort: 867 kfree(tmp1); 868 kfree(tmp2); 869 return ret; 870 } 871 872 873 static u32 md_csum_fold(u32 csum) 874 { 875 csum = (csum & 0xffff) + (csum >> 16); 876 return (csum & 0xffff) + (csum >> 16); 877 } 878 879 static unsigned int calc_sb_csum(mdp_super_t * sb) 880 { 881 u64 newcsum = 0; 882 u32 *sb32 = (u32*)sb; 883 int i; 884 unsigned int disk_csum, csum; 885 886 disk_csum = sb->sb_csum; 887 sb->sb_csum = 0; 888 889 for (i = 0; i < MD_SB_BYTES/4 ; i++) 890 newcsum += sb32[i]; 891 csum = (newcsum & 0xffffffff) + (newcsum>>32); 892 893 894 #ifdef CONFIG_ALPHA 895 /* This used to use csum_partial, which was wrong for several 896 * reasons including that different results are returned on 897 * different architectures. It isn't critical that we get exactly 898 * the same return value as before (we always csum_fold before 899 * testing, and that removes any differences). However as we 900 * know that csum_partial always returned a 16bit value on 901 * alphas, do a fold to maximise conformity to previous behaviour. 902 */ 903 sb->sb_csum = md_csum_fold(disk_csum); 904 #else 905 sb->sb_csum = disk_csum; 906 #endif 907 return csum; 908 } 909 910 911 /* 912 * Handle superblock details. 913 * We want to be able to handle multiple superblock formats 914 * so we have a common interface to them all, and an array of 915 * different handlers. 916 * We rely on user-space to write the initial superblock, and support 917 * reading and updating of superblocks. 918 * Interface methods are: 919 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 920 * loads and validates a superblock on dev. 921 * if refdev != NULL, compare superblocks on both devices 922 * Return: 923 * 0 - dev has a superblock that is compatible with refdev 924 * 1 - dev has a superblock that is compatible and newer than refdev 925 * so dev should be used as the refdev in future 926 * -EINVAL superblock incompatible or invalid 927 * -othererror e.g. -EIO 928 * 929 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 930 * Verify that dev is acceptable into mddev. 931 * The first time, mddev->raid_disks will be 0, and data from 932 * dev should be merged in. Subsequent calls check that dev 933 * is new enough. Return 0 or -EINVAL 934 * 935 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 936 * Update the superblock for rdev with data in mddev 937 * This does not write to disc. 938 * 939 */ 940 941 struct super_type { 942 char *name; 943 struct module *owner; 944 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 945 int minor_version); 946 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 947 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 948 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 949 sector_t num_sectors); 950 }; 951 952 /* 953 * Check that the given mddev has no bitmap. 954 * 955 * This function is called from the run method of all personalities that do not 956 * support bitmaps. It prints an error message and returns non-zero if mddev 957 * has a bitmap. Otherwise, it returns 0. 958 * 959 */ 960 int md_check_no_bitmap(mddev_t *mddev) 961 { 962 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 963 return 0; 964 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 965 mdname(mddev), mddev->pers->name); 966 return 1; 967 } 968 EXPORT_SYMBOL(md_check_no_bitmap); 969 970 /* 971 * load_super for 0.90.0 972 */ 973 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 974 { 975 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 976 mdp_super_t *sb; 977 int ret; 978 979 /* 980 * Calculate the position of the superblock (512byte sectors), 981 * it's at the end of the disk. 982 * 983 * It also happens to be a multiple of 4Kb. 984 */ 985 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 986 987 ret = read_disk_sb(rdev, MD_SB_BYTES); 988 if (ret) return ret; 989 990 ret = -EINVAL; 991 992 bdevname(rdev->bdev, b); 993 sb = (mdp_super_t*)page_address(rdev->sb_page); 994 995 if (sb->md_magic != MD_SB_MAGIC) { 996 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 997 b); 998 goto abort; 999 } 1000 1001 if (sb->major_version != 0 || 1002 sb->minor_version < 90 || 1003 sb->minor_version > 91) { 1004 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1005 sb->major_version, sb->minor_version, 1006 b); 1007 goto abort; 1008 } 1009 1010 if (sb->raid_disks <= 0) 1011 goto abort; 1012 1013 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1014 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1015 b); 1016 goto abort; 1017 } 1018 1019 rdev->preferred_minor = sb->md_minor; 1020 rdev->data_offset = 0; 1021 rdev->sb_size = MD_SB_BYTES; 1022 1023 if (sb->level == LEVEL_MULTIPATH) 1024 rdev->desc_nr = -1; 1025 else 1026 rdev->desc_nr = sb->this_disk.number; 1027 1028 if (!refdev) { 1029 ret = 1; 1030 } else { 1031 __u64 ev1, ev2; 1032 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 1033 if (!uuid_equal(refsb, sb)) { 1034 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1035 b, bdevname(refdev->bdev,b2)); 1036 goto abort; 1037 } 1038 if (!sb_equal(refsb, sb)) { 1039 printk(KERN_WARNING "md: %s has same UUID" 1040 " but different superblock to %s\n", 1041 b, bdevname(refdev->bdev, b2)); 1042 goto abort; 1043 } 1044 ev1 = md_event(sb); 1045 ev2 = md_event(refsb); 1046 if (ev1 > ev2) 1047 ret = 1; 1048 else 1049 ret = 0; 1050 } 1051 rdev->sectors = rdev->sb_start; 1052 1053 if (rdev->sectors < sb->size * 2 && sb->level > 1) 1054 /* "this cannot possibly happen" ... */ 1055 ret = -EINVAL; 1056 1057 abort: 1058 return ret; 1059 } 1060 1061 /* 1062 * validate_super for 0.90.0 1063 */ 1064 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1065 { 1066 mdp_disk_t *desc; 1067 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 1068 __u64 ev1 = md_event(sb); 1069 1070 rdev->raid_disk = -1; 1071 clear_bit(Faulty, &rdev->flags); 1072 clear_bit(In_sync, &rdev->flags); 1073 clear_bit(WriteMostly, &rdev->flags); 1074 clear_bit(BarriersNotsupp, &rdev->flags); 1075 1076 if (mddev->raid_disks == 0) { 1077 mddev->major_version = 0; 1078 mddev->minor_version = sb->minor_version; 1079 mddev->patch_version = sb->patch_version; 1080 mddev->external = 0; 1081 mddev->chunk_sectors = sb->chunk_size >> 9; 1082 mddev->ctime = sb->ctime; 1083 mddev->utime = sb->utime; 1084 mddev->level = sb->level; 1085 mddev->clevel[0] = 0; 1086 mddev->layout = sb->layout; 1087 mddev->raid_disks = sb->raid_disks; 1088 mddev->dev_sectors = sb->size * 2; 1089 mddev->events = ev1; 1090 mddev->bitmap_info.offset = 0; 1091 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1092 1093 if (mddev->minor_version >= 91) { 1094 mddev->reshape_position = sb->reshape_position; 1095 mddev->delta_disks = sb->delta_disks; 1096 mddev->new_level = sb->new_level; 1097 mddev->new_layout = sb->new_layout; 1098 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1099 } else { 1100 mddev->reshape_position = MaxSector; 1101 mddev->delta_disks = 0; 1102 mddev->new_level = mddev->level; 1103 mddev->new_layout = mddev->layout; 1104 mddev->new_chunk_sectors = mddev->chunk_sectors; 1105 } 1106 1107 if (sb->state & (1<<MD_SB_CLEAN)) 1108 mddev->recovery_cp = MaxSector; 1109 else { 1110 if (sb->events_hi == sb->cp_events_hi && 1111 sb->events_lo == sb->cp_events_lo) { 1112 mddev->recovery_cp = sb->recovery_cp; 1113 } else 1114 mddev->recovery_cp = 0; 1115 } 1116 1117 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1118 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1119 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1120 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1121 1122 mddev->max_disks = MD_SB_DISKS; 1123 1124 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1125 mddev->bitmap_info.file == NULL) 1126 mddev->bitmap_info.offset = 1127 mddev->bitmap_info.default_offset; 1128 1129 } else if (mddev->pers == NULL) { 1130 /* Insist on good event counter while assembling, except 1131 * for spares (which don't need an event count) */ 1132 ++ev1; 1133 if (sb->disks[rdev->desc_nr].state & ( 1134 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1135 if (ev1 < mddev->events) 1136 return -EINVAL; 1137 } else if (mddev->bitmap) { 1138 /* if adding to array with a bitmap, then we can accept an 1139 * older device ... but not too old. 1140 */ 1141 if (ev1 < mddev->bitmap->events_cleared) 1142 return 0; 1143 } else { 1144 if (ev1 < mddev->events) 1145 /* just a hot-add of a new device, leave raid_disk at -1 */ 1146 return 0; 1147 } 1148 1149 if (mddev->level != LEVEL_MULTIPATH) { 1150 desc = sb->disks + rdev->desc_nr; 1151 1152 if (desc->state & (1<<MD_DISK_FAULTY)) 1153 set_bit(Faulty, &rdev->flags); 1154 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1155 desc->raid_disk < mddev->raid_disks */) { 1156 set_bit(In_sync, &rdev->flags); 1157 rdev->raid_disk = desc->raid_disk; 1158 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1159 /* active but not in sync implies recovery up to 1160 * reshape position. We don't know exactly where 1161 * that is, so set to zero for now */ 1162 if (mddev->minor_version >= 91) { 1163 rdev->recovery_offset = 0; 1164 rdev->raid_disk = desc->raid_disk; 1165 } 1166 } 1167 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1168 set_bit(WriteMostly, &rdev->flags); 1169 } else /* MULTIPATH are always insync */ 1170 set_bit(In_sync, &rdev->flags); 1171 return 0; 1172 } 1173 1174 /* 1175 * sync_super for 0.90.0 1176 */ 1177 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1178 { 1179 mdp_super_t *sb; 1180 mdk_rdev_t *rdev2; 1181 int next_spare = mddev->raid_disks; 1182 1183 1184 /* make rdev->sb match mddev data.. 1185 * 1186 * 1/ zero out disks 1187 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1188 * 3/ any empty disks < next_spare become removed 1189 * 1190 * disks[0] gets initialised to REMOVED because 1191 * we cannot be sure from other fields if it has 1192 * been initialised or not. 1193 */ 1194 int i; 1195 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1196 1197 rdev->sb_size = MD_SB_BYTES; 1198 1199 sb = (mdp_super_t*)page_address(rdev->sb_page); 1200 1201 memset(sb, 0, sizeof(*sb)); 1202 1203 sb->md_magic = MD_SB_MAGIC; 1204 sb->major_version = mddev->major_version; 1205 sb->patch_version = mddev->patch_version; 1206 sb->gvalid_words = 0; /* ignored */ 1207 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1208 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1209 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1210 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1211 1212 sb->ctime = mddev->ctime; 1213 sb->level = mddev->level; 1214 sb->size = mddev->dev_sectors / 2; 1215 sb->raid_disks = mddev->raid_disks; 1216 sb->md_minor = mddev->md_minor; 1217 sb->not_persistent = 0; 1218 sb->utime = mddev->utime; 1219 sb->state = 0; 1220 sb->events_hi = (mddev->events>>32); 1221 sb->events_lo = (u32)mddev->events; 1222 1223 if (mddev->reshape_position == MaxSector) 1224 sb->minor_version = 90; 1225 else { 1226 sb->minor_version = 91; 1227 sb->reshape_position = mddev->reshape_position; 1228 sb->new_level = mddev->new_level; 1229 sb->delta_disks = mddev->delta_disks; 1230 sb->new_layout = mddev->new_layout; 1231 sb->new_chunk = mddev->new_chunk_sectors << 9; 1232 } 1233 mddev->minor_version = sb->minor_version; 1234 if (mddev->in_sync) 1235 { 1236 sb->recovery_cp = mddev->recovery_cp; 1237 sb->cp_events_hi = (mddev->events>>32); 1238 sb->cp_events_lo = (u32)mddev->events; 1239 if (mddev->recovery_cp == MaxSector) 1240 sb->state = (1<< MD_SB_CLEAN); 1241 } else 1242 sb->recovery_cp = 0; 1243 1244 sb->layout = mddev->layout; 1245 sb->chunk_size = mddev->chunk_sectors << 9; 1246 1247 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1248 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1249 1250 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1251 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1252 mdp_disk_t *d; 1253 int desc_nr; 1254 int is_active = test_bit(In_sync, &rdev2->flags); 1255 1256 if (rdev2->raid_disk >= 0 && 1257 sb->minor_version >= 91) 1258 /* we have nowhere to store the recovery_offset, 1259 * but if it is not below the reshape_position, 1260 * we can piggy-back on that. 1261 */ 1262 is_active = 1; 1263 if (rdev2->raid_disk < 0 || 1264 test_bit(Faulty, &rdev2->flags)) 1265 is_active = 0; 1266 if (is_active) 1267 desc_nr = rdev2->raid_disk; 1268 else 1269 desc_nr = next_spare++; 1270 rdev2->desc_nr = desc_nr; 1271 d = &sb->disks[rdev2->desc_nr]; 1272 nr_disks++; 1273 d->number = rdev2->desc_nr; 1274 d->major = MAJOR(rdev2->bdev->bd_dev); 1275 d->minor = MINOR(rdev2->bdev->bd_dev); 1276 if (is_active) 1277 d->raid_disk = rdev2->raid_disk; 1278 else 1279 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1280 if (test_bit(Faulty, &rdev2->flags)) 1281 d->state = (1<<MD_DISK_FAULTY); 1282 else if (is_active) { 1283 d->state = (1<<MD_DISK_ACTIVE); 1284 if (test_bit(In_sync, &rdev2->flags)) 1285 d->state |= (1<<MD_DISK_SYNC); 1286 active++; 1287 working++; 1288 } else { 1289 d->state = 0; 1290 spare++; 1291 working++; 1292 } 1293 if (test_bit(WriteMostly, &rdev2->flags)) 1294 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1295 } 1296 /* now set the "removed" and "faulty" bits on any missing devices */ 1297 for (i=0 ; i < mddev->raid_disks ; i++) { 1298 mdp_disk_t *d = &sb->disks[i]; 1299 if (d->state == 0 && d->number == 0) { 1300 d->number = i; 1301 d->raid_disk = i; 1302 d->state = (1<<MD_DISK_REMOVED); 1303 d->state |= (1<<MD_DISK_FAULTY); 1304 failed++; 1305 } 1306 } 1307 sb->nr_disks = nr_disks; 1308 sb->active_disks = active; 1309 sb->working_disks = working; 1310 sb->failed_disks = failed; 1311 sb->spare_disks = spare; 1312 1313 sb->this_disk = sb->disks[rdev->desc_nr]; 1314 sb->sb_csum = calc_sb_csum(sb); 1315 } 1316 1317 /* 1318 * rdev_size_change for 0.90.0 1319 */ 1320 static unsigned long long 1321 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1322 { 1323 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1324 return 0; /* component must fit device */ 1325 if (rdev->mddev->bitmap_info.offset) 1326 return 0; /* can't move bitmap */ 1327 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 1328 if (!num_sectors || num_sectors > rdev->sb_start) 1329 num_sectors = rdev->sb_start; 1330 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1331 rdev->sb_page); 1332 md_super_wait(rdev->mddev); 1333 return num_sectors / 2; /* kB for sysfs */ 1334 } 1335 1336 1337 /* 1338 * version 1 superblock 1339 */ 1340 1341 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1342 { 1343 __le32 disk_csum; 1344 u32 csum; 1345 unsigned long long newcsum; 1346 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1347 __le32 *isuper = (__le32*)sb; 1348 int i; 1349 1350 disk_csum = sb->sb_csum; 1351 sb->sb_csum = 0; 1352 newcsum = 0; 1353 for (i=0; size>=4; size -= 4 ) 1354 newcsum += le32_to_cpu(*isuper++); 1355 1356 if (size == 2) 1357 newcsum += le16_to_cpu(*(__le16*) isuper); 1358 1359 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1360 sb->sb_csum = disk_csum; 1361 return cpu_to_le32(csum); 1362 } 1363 1364 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1365 { 1366 struct mdp_superblock_1 *sb; 1367 int ret; 1368 sector_t sb_start; 1369 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1370 int bmask; 1371 1372 /* 1373 * Calculate the position of the superblock in 512byte sectors. 1374 * It is always aligned to a 4K boundary and 1375 * depeding on minor_version, it can be: 1376 * 0: At least 8K, but less than 12K, from end of device 1377 * 1: At start of device 1378 * 2: 4K from start of device. 1379 */ 1380 switch(minor_version) { 1381 case 0: 1382 sb_start = rdev->bdev->bd_inode->i_size >> 9; 1383 sb_start -= 8*2; 1384 sb_start &= ~(sector_t)(4*2-1); 1385 break; 1386 case 1: 1387 sb_start = 0; 1388 break; 1389 case 2: 1390 sb_start = 8; 1391 break; 1392 default: 1393 return -EINVAL; 1394 } 1395 rdev->sb_start = sb_start; 1396 1397 /* superblock is rarely larger than 1K, but it can be larger, 1398 * and it is safe to read 4k, so we do that 1399 */ 1400 ret = read_disk_sb(rdev, 4096); 1401 if (ret) return ret; 1402 1403 1404 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1405 1406 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1407 sb->major_version != cpu_to_le32(1) || 1408 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1409 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1410 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1411 return -EINVAL; 1412 1413 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1414 printk("md: invalid superblock checksum on %s\n", 1415 bdevname(rdev->bdev,b)); 1416 return -EINVAL; 1417 } 1418 if (le64_to_cpu(sb->data_size) < 10) { 1419 printk("md: data_size too small on %s\n", 1420 bdevname(rdev->bdev,b)); 1421 return -EINVAL; 1422 } 1423 1424 rdev->preferred_minor = 0xffff; 1425 rdev->data_offset = le64_to_cpu(sb->data_offset); 1426 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1427 1428 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1429 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1430 if (rdev->sb_size & bmask) 1431 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1432 1433 if (minor_version 1434 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1435 return -EINVAL; 1436 1437 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1438 rdev->desc_nr = -1; 1439 else 1440 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1441 1442 if (!refdev) { 1443 ret = 1; 1444 } else { 1445 __u64 ev1, ev2; 1446 struct mdp_superblock_1 *refsb = 1447 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1448 1449 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1450 sb->level != refsb->level || 1451 sb->layout != refsb->layout || 1452 sb->chunksize != refsb->chunksize) { 1453 printk(KERN_WARNING "md: %s has strangely different" 1454 " superblock to %s\n", 1455 bdevname(rdev->bdev,b), 1456 bdevname(refdev->bdev,b2)); 1457 return -EINVAL; 1458 } 1459 ev1 = le64_to_cpu(sb->events); 1460 ev2 = le64_to_cpu(refsb->events); 1461 1462 if (ev1 > ev2) 1463 ret = 1; 1464 else 1465 ret = 0; 1466 } 1467 if (minor_version) 1468 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) - 1469 le64_to_cpu(sb->data_offset); 1470 else 1471 rdev->sectors = rdev->sb_start; 1472 if (rdev->sectors < le64_to_cpu(sb->data_size)) 1473 return -EINVAL; 1474 rdev->sectors = le64_to_cpu(sb->data_size); 1475 if (le64_to_cpu(sb->size) > rdev->sectors) 1476 return -EINVAL; 1477 return ret; 1478 } 1479 1480 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1481 { 1482 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1483 __u64 ev1 = le64_to_cpu(sb->events); 1484 1485 rdev->raid_disk = -1; 1486 clear_bit(Faulty, &rdev->flags); 1487 clear_bit(In_sync, &rdev->flags); 1488 clear_bit(WriteMostly, &rdev->flags); 1489 clear_bit(BarriersNotsupp, &rdev->flags); 1490 1491 if (mddev->raid_disks == 0) { 1492 mddev->major_version = 1; 1493 mddev->patch_version = 0; 1494 mddev->external = 0; 1495 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1496 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1497 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1498 mddev->level = le32_to_cpu(sb->level); 1499 mddev->clevel[0] = 0; 1500 mddev->layout = le32_to_cpu(sb->layout); 1501 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1502 mddev->dev_sectors = le64_to_cpu(sb->size); 1503 mddev->events = ev1; 1504 mddev->bitmap_info.offset = 0; 1505 mddev->bitmap_info.default_offset = 1024 >> 9; 1506 1507 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1508 memcpy(mddev->uuid, sb->set_uuid, 16); 1509 1510 mddev->max_disks = (4096-256)/2; 1511 1512 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1513 mddev->bitmap_info.file == NULL ) 1514 mddev->bitmap_info.offset = 1515 (__s32)le32_to_cpu(sb->bitmap_offset); 1516 1517 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1518 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1519 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1520 mddev->new_level = le32_to_cpu(sb->new_level); 1521 mddev->new_layout = le32_to_cpu(sb->new_layout); 1522 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1523 } else { 1524 mddev->reshape_position = MaxSector; 1525 mddev->delta_disks = 0; 1526 mddev->new_level = mddev->level; 1527 mddev->new_layout = mddev->layout; 1528 mddev->new_chunk_sectors = mddev->chunk_sectors; 1529 } 1530 1531 } else if (mddev->pers == NULL) { 1532 /* Insist of good event counter while assembling, except for 1533 * spares (which don't need an event count) */ 1534 ++ev1; 1535 if (rdev->desc_nr >= 0 && 1536 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1537 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1538 if (ev1 < mddev->events) 1539 return -EINVAL; 1540 } else if (mddev->bitmap) { 1541 /* If adding to array with a bitmap, then we can accept an 1542 * older device, but not too old. 1543 */ 1544 if (ev1 < mddev->bitmap->events_cleared) 1545 return 0; 1546 } else { 1547 if (ev1 < mddev->events) 1548 /* just a hot-add of a new device, leave raid_disk at -1 */ 1549 return 0; 1550 } 1551 if (mddev->level != LEVEL_MULTIPATH) { 1552 int role; 1553 if (rdev->desc_nr < 0 || 1554 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1555 role = 0xffff; 1556 rdev->desc_nr = -1; 1557 } else 1558 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1559 switch(role) { 1560 case 0xffff: /* spare */ 1561 break; 1562 case 0xfffe: /* faulty */ 1563 set_bit(Faulty, &rdev->flags); 1564 break; 1565 default: 1566 if ((le32_to_cpu(sb->feature_map) & 1567 MD_FEATURE_RECOVERY_OFFSET)) 1568 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1569 else 1570 set_bit(In_sync, &rdev->flags); 1571 rdev->raid_disk = role; 1572 break; 1573 } 1574 if (sb->devflags & WriteMostly1) 1575 set_bit(WriteMostly, &rdev->flags); 1576 } else /* MULTIPATH are always insync */ 1577 set_bit(In_sync, &rdev->flags); 1578 1579 return 0; 1580 } 1581 1582 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1583 { 1584 struct mdp_superblock_1 *sb; 1585 mdk_rdev_t *rdev2; 1586 int max_dev, i; 1587 /* make rdev->sb match mddev and rdev data. */ 1588 1589 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1590 1591 sb->feature_map = 0; 1592 sb->pad0 = 0; 1593 sb->recovery_offset = cpu_to_le64(0); 1594 memset(sb->pad1, 0, sizeof(sb->pad1)); 1595 memset(sb->pad2, 0, sizeof(sb->pad2)); 1596 memset(sb->pad3, 0, sizeof(sb->pad3)); 1597 1598 sb->utime = cpu_to_le64((__u64)mddev->utime); 1599 sb->events = cpu_to_le64(mddev->events); 1600 if (mddev->in_sync) 1601 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1602 else 1603 sb->resync_offset = cpu_to_le64(0); 1604 1605 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1606 1607 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1608 sb->size = cpu_to_le64(mddev->dev_sectors); 1609 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1610 sb->level = cpu_to_le32(mddev->level); 1611 sb->layout = cpu_to_le32(mddev->layout); 1612 1613 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1614 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1615 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1616 } 1617 1618 if (rdev->raid_disk >= 0 && 1619 !test_bit(In_sync, &rdev->flags)) { 1620 sb->feature_map |= 1621 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1622 sb->recovery_offset = 1623 cpu_to_le64(rdev->recovery_offset); 1624 } 1625 1626 if (mddev->reshape_position != MaxSector) { 1627 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1628 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1629 sb->new_layout = cpu_to_le32(mddev->new_layout); 1630 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1631 sb->new_level = cpu_to_le32(mddev->new_level); 1632 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1633 } 1634 1635 max_dev = 0; 1636 list_for_each_entry(rdev2, &mddev->disks, same_set) 1637 if (rdev2->desc_nr+1 > max_dev) 1638 max_dev = rdev2->desc_nr+1; 1639 1640 if (max_dev > le32_to_cpu(sb->max_dev)) { 1641 int bmask; 1642 sb->max_dev = cpu_to_le32(max_dev); 1643 rdev->sb_size = max_dev * 2 + 256; 1644 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1645 if (rdev->sb_size & bmask) 1646 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1647 } else 1648 max_dev = le32_to_cpu(sb->max_dev); 1649 1650 for (i=0; i<max_dev;i++) 1651 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1652 1653 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1654 i = rdev2->desc_nr; 1655 if (test_bit(Faulty, &rdev2->flags)) 1656 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1657 else if (test_bit(In_sync, &rdev2->flags)) 1658 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1659 else if (rdev2->raid_disk >= 0) 1660 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1661 else 1662 sb->dev_roles[i] = cpu_to_le16(0xffff); 1663 } 1664 1665 sb->sb_csum = calc_sb_1_csum(sb); 1666 } 1667 1668 static unsigned long long 1669 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1670 { 1671 struct mdp_superblock_1 *sb; 1672 sector_t max_sectors; 1673 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1674 return 0; /* component must fit device */ 1675 if (rdev->sb_start < rdev->data_offset) { 1676 /* minor versions 1 and 2; superblock before data */ 1677 max_sectors = rdev->bdev->bd_inode->i_size >> 9; 1678 max_sectors -= rdev->data_offset; 1679 if (!num_sectors || num_sectors > max_sectors) 1680 num_sectors = max_sectors; 1681 } else if (rdev->mddev->bitmap_info.offset) { 1682 /* minor version 0 with bitmap we can't move */ 1683 return 0; 1684 } else { 1685 /* minor version 0; superblock after data */ 1686 sector_t sb_start; 1687 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2; 1688 sb_start &= ~(sector_t)(4*2 - 1); 1689 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1690 if (!num_sectors || num_sectors > max_sectors) 1691 num_sectors = max_sectors; 1692 rdev->sb_start = sb_start; 1693 } 1694 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1695 sb->data_size = cpu_to_le64(num_sectors); 1696 sb->super_offset = rdev->sb_start; 1697 sb->sb_csum = calc_sb_1_csum(sb); 1698 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1699 rdev->sb_page); 1700 md_super_wait(rdev->mddev); 1701 return num_sectors / 2; /* kB for sysfs */ 1702 } 1703 1704 static struct super_type super_types[] = { 1705 [0] = { 1706 .name = "0.90.0", 1707 .owner = THIS_MODULE, 1708 .load_super = super_90_load, 1709 .validate_super = super_90_validate, 1710 .sync_super = super_90_sync, 1711 .rdev_size_change = super_90_rdev_size_change, 1712 }, 1713 [1] = { 1714 .name = "md-1", 1715 .owner = THIS_MODULE, 1716 .load_super = super_1_load, 1717 .validate_super = super_1_validate, 1718 .sync_super = super_1_sync, 1719 .rdev_size_change = super_1_rdev_size_change, 1720 }, 1721 }; 1722 1723 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1724 { 1725 mdk_rdev_t *rdev, *rdev2; 1726 1727 rcu_read_lock(); 1728 rdev_for_each_rcu(rdev, mddev1) 1729 rdev_for_each_rcu(rdev2, mddev2) 1730 if (rdev->bdev->bd_contains == 1731 rdev2->bdev->bd_contains) { 1732 rcu_read_unlock(); 1733 return 1; 1734 } 1735 rcu_read_unlock(); 1736 return 0; 1737 } 1738 1739 static LIST_HEAD(pending_raid_disks); 1740 1741 /* 1742 * Try to register data integrity profile for an mddev 1743 * 1744 * This is called when an array is started and after a disk has been kicked 1745 * from the array. It only succeeds if all working and active component devices 1746 * are integrity capable with matching profiles. 1747 */ 1748 int md_integrity_register(mddev_t *mddev) 1749 { 1750 mdk_rdev_t *rdev, *reference = NULL; 1751 1752 if (list_empty(&mddev->disks)) 1753 return 0; /* nothing to do */ 1754 if (blk_get_integrity(mddev->gendisk)) 1755 return 0; /* already registered */ 1756 list_for_each_entry(rdev, &mddev->disks, same_set) { 1757 /* skip spares and non-functional disks */ 1758 if (test_bit(Faulty, &rdev->flags)) 1759 continue; 1760 if (rdev->raid_disk < 0) 1761 continue; 1762 /* 1763 * If at least one rdev is not integrity capable, we can not 1764 * enable data integrity for the md device. 1765 */ 1766 if (!bdev_get_integrity(rdev->bdev)) 1767 return -EINVAL; 1768 if (!reference) { 1769 /* Use the first rdev as the reference */ 1770 reference = rdev; 1771 continue; 1772 } 1773 /* does this rdev's profile match the reference profile? */ 1774 if (blk_integrity_compare(reference->bdev->bd_disk, 1775 rdev->bdev->bd_disk) < 0) 1776 return -EINVAL; 1777 } 1778 /* 1779 * All component devices are integrity capable and have matching 1780 * profiles, register the common profile for the md device. 1781 */ 1782 if (blk_integrity_register(mddev->gendisk, 1783 bdev_get_integrity(reference->bdev)) != 0) { 1784 printk(KERN_ERR "md: failed to register integrity for %s\n", 1785 mdname(mddev)); 1786 return -EINVAL; 1787 } 1788 printk(KERN_NOTICE "md: data integrity on %s enabled\n", 1789 mdname(mddev)); 1790 return 0; 1791 } 1792 EXPORT_SYMBOL(md_integrity_register); 1793 1794 /* Disable data integrity if non-capable/non-matching disk is being added */ 1795 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 1796 { 1797 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 1798 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 1799 1800 if (!bi_mddev) /* nothing to do */ 1801 return; 1802 if (rdev->raid_disk < 0) /* skip spares */ 1803 return; 1804 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 1805 rdev->bdev->bd_disk) >= 0) 1806 return; 1807 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 1808 blk_integrity_unregister(mddev->gendisk); 1809 } 1810 EXPORT_SYMBOL(md_integrity_add_rdev); 1811 1812 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1813 { 1814 char b[BDEVNAME_SIZE]; 1815 struct kobject *ko; 1816 char *s; 1817 int err; 1818 1819 if (rdev->mddev) { 1820 MD_BUG(); 1821 return -EINVAL; 1822 } 1823 1824 /* prevent duplicates */ 1825 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1826 return -EEXIST; 1827 1828 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 1829 if (rdev->sectors && (mddev->dev_sectors == 0 || 1830 rdev->sectors < mddev->dev_sectors)) { 1831 if (mddev->pers) { 1832 /* Cannot change size, so fail 1833 * If mddev->level <= 0, then we don't care 1834 * about aligning sizes (e.g. linear) 1835 */ 1836 if (mddev->level > 0) 1837 return -ENOSPC; 1838 } else 1839 mddev->dev_sectors = rdev->sectors; 1840 } 1841 1842 /* Verify rdev->desc_nr is unique. 1843 * If it is -1, assign a free number, else 1844 * check number is not in use 1845 */ 1846 if (rdev->desc_nr < 0) { 1847 int choice = 0; 1848 if (mddev->pers) choice = mddev->raid_disks; 1849 while (find_rdev_nr(mddev, choice)) 1850 choice++; 1851 rdev->desc_nr = choice; 1852 } else { 1853 if (find_rdev_nr(mddev, rdev->desc_nr)) 1854 return -EBUSY; 1855 } 1856 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 1857 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 1858 mdname(mddev), mddev->max_disks); 1859 return -EBUSY; 1860 } 1861 bdevname(rdev->bdev,b); 1862 while ( (s=strchr(b, '/')) != NULL) 1863 *s = '!'; 1864 1865 rdev->mddev = mddev; 1866 printk(KERN_INFO "md: bind<%s>\n", b); 1867 1868 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1869 goto fail; 1870 1871 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 1872 if (sysfs_create_link(&rdev->kobj, ko, "block")) 1873 /* failure here is OK */; 1874 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 1875 1876 list_add_rcu(&rdev->same_set, &mddev->disks); 1877 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); 1878 1879 /* May as well allow recovery to be retried once */ 1880 mddev->recovery_disabled = 0; 1881 1882 return 0; 1883 1884 fail: 1885 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1886 b, mdname(mddev)); 1887 return err; 1888 } 1889 1890 static void md_delayed_delete(struct work_struct *ws) 1891 { 1892 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1893 kobject_del(&rdev->kobj); 1894 kobject_put(&rdev->kobj); 1895 } 1896 1897 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1898 { 1899 char b[BDEVNAME_SIZE]; 1900 if (!rdev->mddev) { 1901 MD_BUG(); 1902 return; 1903 } 1904 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1905 list_del_rcu(&rdev->same_set); 1906 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1907 rdev->mddev = NULL; 1908 sysfs_remove_link(&rdev->kobj, "block"); 1909 sysfs_put(rdev->sysfs_state); 1910 rdev->sysfs_state = NULL; 1911 /* We need to delay this, otherwise we can deadlock when 1912 * writing to 'remove' to "dev/state". We also need 1913 * to delay it due to rcu usage. 1914 */ 1915 synchronize_rcu(); 1916 INIT_WORK(&rdev->del_work, md_delayed_delete); 1917 kobject_get(&rdev->kobj); 1918 schedule_work(&rdev->del_work); 1919 } 1920 1921 /* 1922 * prevent the device from being mounted, repartitioned or 1923 * otherwise reused by a RAID array (or any other kernel 1924 * subsystem), by bd_claiming the device. 1925 */ 1926 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1927 { 1928 int err = 0; 1929 struct block_device *bdev; 1930 char b[BDEVNAME_SIZE]; 1931 1932 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1933 if (IS_ERR(bdev)) { 1934 printk(KERN_ERR "md: could not open %s.\n", 1935 __bdevname(dev, b)); 1936 return PTR_ERR(bdev); 1937 } 1938 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); 1939 if (err) { 1940 printk(KERN_ERR "md: could not bd_claim %s.\n", 1941 bdevname(bdev, b)); 1942 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1943 return err; 1944 } 1945 if (!shared) 1946 set_bit(AllReserved, &rdev->flags); 1947 rdev->bdev = bdev; 1948 return err; 1949 } 1950 1951 static void unlock_rdev(mdk_rdev_t *rdev) 1952 { 1953 struct block_device *bdev = rdev->bdev; 1954 rdev->bdev = NULL; 1955 if (!bdev) 1956 MD_BUG(); 1957 bd_release(bdev); 1958 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1959 } 1960 1961 void md_autodetect_dev(dev_t dev); 1962 1963 static void export_rdev(mdk_rdev_t * rdev) 1964 { 1965 char b[BDEVNAME_SIZE]; 1966 printk(KERN_INFO "md: export_rdev(%s)\n", 1967 bdevname(rdev->bdev,b)); 1968 if (rdev->mddev) 1969 MD_BUG(); 1970 free_disk_sb(rdev); 1971 #ifndef MODULE 1972 if (test_bit(AutoDetected, &rdev->flags)) 1973 md_autodetect_dev(rdev->bdev->bd_dev); 1974 #endif 1975 unlock_rdev(rdev); 1976 kobject_put(&rdev->kobj); 1977 } 1978 1979 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1980 { 1981 unbind_rdev_from_array(rdev); 1982 export_rdev(rdev); 1983 } 1984 1985 static void export_array(mddev_t *mddev) 1986 { 1987 mdk_rdev_t *rdev, *tmp; 1988 1989 rdev_for_each(rdev, tmp, mddev) { 1990 if (!rdev->mddev) { 1991 MD_BUG(); 1992 continue; 1993 } 1994 kick_rdev_from_array(rdev); 1995 } 1996 if (!list_empty(&mddev->disks)) 1997 MD_BUG(); 1998 mddev->raid_disks = 0; 1999 mddev->major_version = 0; 2000 } 2001 2002 static void print_desc(mdp_disk_t *desc) 2003 { 2004 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2005 desc->major,desc->minor,desc->raid_disk,desc->state); 2006 } 2007 2008 static void print_sb_90(mdp_super_t *sb) 2009 { 2010 int i; 2011 2012 printk(KERN_INFO 2013 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2014 sb->major_version, sb->minor_version, sb->patch_version, 2015 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2016 sb->ctime); 2017 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2018 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2019 sb->md_minor, sb->layout, sb->chunk_size); 2020 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2021 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2022 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2023 sb->failed_disks, sb->spare_disks, 2024 sb->sb_csum, (unsigned long)sb->events_lo); 2025 2026 printk(KERN_INFO); 2027 for (i = 0; i < MD_SB_DISKS; i++) { 2028 mdp_disk_t *desc; 2029 2030 desc = sb->disks + i; 2031 if (desc->number || desc->major || desc->minor || 2032 desc->raid_disk || (desc->state && (desc->state != 4))) { 2033 printk(" D %2d: ", i); 2034 print_desc(desc); 2035 } 2036 } 2037 printk(KERN_INFO "md: THIS: "); 2038 print_desc(&sb->this_disk); 2039 } 2040 2041 static void print_sb_1(struct mdp_superblock_1 *sb) 2042 { 2043 __u8 *uuid; 2044 2045 uuid = sb->set_uuid; 2046 printk(KERN_INFO 2047 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2048 "md: Name: \"%s\" CT:%llu\n", 2049 le32_to_cpu(sb->major_version), 2050 le32_to_cpu(sb->feature_map), 2051 uuid, 2052 sb->set_name, 2053 (unsigned long long)le64_to_cpu(sb->ctime) 2054 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2055 2056 uuid = sb->device_uuid; 2057 printk(KERN_INFO 2058 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2059 " RO:%llu\n" 2060 "md: Dev:%08x UUID: %pU\n" 2061 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2062 "md: (MaxDev:%u) \n", 2063 le32_to_cpu(sb->level), 2064 (unsigned long long)le64_to_cpu(sb->size), 2065 le32_to_cpu(sb->raid_disks), 2066 le32_to_cpu(sb->layout), 2067 le32_to_cpu(sb->chunksize), 2068 (unsigned long long)le64_to_cpu(sb->data_offset), 2069 (unsigned long long)le64_to_cpu(sb->data_size), 2070 (unsigned long long)le64_to_cpu(sb->super_offset), 2071 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2072 le32_to_cpu(sb->dev_number), 2073 uuid, 2074 sb->devflags, 2075 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2076 (unsigned long long)le64_to_cpu(sb->events), 2077 (unsigned long long)le64_to_cpu(sb->resync_offset), 2078 le32_to_cpu(sb->sb_csum), 2079 le32_to_cpu(sb->max_dev) 2080 ); 2081 } 2082 2083 static void print_rdev(mdk_rdev_t *rdev, int major_version) 2084 { 2085 char b[BDEVNAME_SIZE]; 2086 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2087 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2088 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2089 rdev->desc_nr); 2090 if (rdev->sb_loaded) { 2091 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2092 switch (major_version) { 2093 case 0: 2094 print_sb_90((mdp_super_t*)page_address(rdev->sb_page)); 2095 break; 2096 case 1: 2097 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page)); 2098 break; 2099 } 2100 } else 2101 printk(KERN_INFO "md: no rdev superblock!\n"); 2102 } 2103 2104 static void md_print_devices(void) 2105 { 2106 struct list_head *tmp; 2107 mdk_rdev_t *rdev; 2108 mddev_t *mddev; 2109 char b[BDEVNAME_SIZE]; 2110 2111 printk("\n"); 2112 printk("md: **********************************\n"); 2113 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2114 printk("md: **********************************\n"); 2115 for_each_mddev(mddev, tmp) { 2116 2117 if (mddev->bitmap) 2118 bitmap_print_sb(mddev->bitmap); 2119 else 2120 printk("%s: ", mdname(mddev)); 2121 list_for_each_entry(rdev, &mddev->disks, same_set) 2122 printk("<%s>", bdevname(rdev->bdev,b)); 2123 printk("\n"); 2124 2125 list_for_each_entry(rdev, &mddev->disks, same_set) 2126 print_rdev(rdev, mddev->major_version); 2127 } 2128 printk("md: **********************************\n"); 2129 printk("\n"); 2130 } 2131 2132 2133 static void sync_sbs(mddev_t * mddev, int nospares) 2134 { 2135 /* Update each superblock (in-memory image), but 2136 * if we are allowed to, skip spares which already 2137 * have the right event counter, or have one earlier 2138 * (which would mean they aren't being marked as dirty 2139 * with the rest of the array) 2140 */ 2141 mdk_rdev_t *rdev; 2142 list_for_each_entry(rdev, &mddev->disks, same_set) { 2143 if (rdev->sb_events == mddev->events || 2144 (nospares && 2145 rdev->raid_disk < 0 && 2146 rdev->sb_events+1 == mddev->events)) { 2147 /* Don't update this superblock */ 2148 rdev->sb_loaded = 2; 2149 } else { 2150 super_types[mddev->major_version]. 2151 sync_super(mddev, rdev); 2152 rdev->sb_loaded = 1; 2153 } 2154 } 2155 } 2156 2157 static void md_update_sb(mddev_t * mddev, int force_change) 2158 { 2159 mdk_rdev_t *rdev; 2160 int sync_req; 2161 int nospares = 0; 2162 2163 repeat: 2164 /* First make sure individual recovery_offsets are correct */ 2165 list_for_each_entry(rdev, &mddev->disks, same_set) { 2166 if (rdev->raid_disk >= 0 && 2167 mddev->delta_disks >= 0 && 2168 !test_bit(In_sync, &rdev->flags) && 2169 mddev->curr_resync_completed > rdev->recovery_offset) 2170 rdev->recovery_offset = mddev->curr_resync_completed; 2171 2172 } 2173 if (!mddev->persistent) { 2174 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2175 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2176 wake_up(&mddev->sb_wait); 2177 return; 2178 } 2179 2180 spin_lock_irq(&mddev->write_lock); 2181 2182 mddev->utime = get_seconds(); 2183 2184 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2185 force_change = 1; 2186 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2187 /* just a clean<-> dirty transition, possibly leave spares alone, 2188 * though if events isn't the right even/odd, we will have to do 2189 * spares after all 2190 */ 2191 nospares = 1; 2192 if (force_change) 2193 nospares = 0; 2194 if (mddev->degraded) 2195 /* If the array is degraded, then skipping spares is both 2196 * dangerous and fairly pointless. 2197 * Dangerous because a device that was removed from the array 2198 * might have a event_count that still looks up-to-date, 2199 * so it can be re-added without a resync. 2200 * Pointless because if there are any spares to skip, 2201 * then a recovery will happen and soon that array won't 2202 * be degraded any more and the spare can go back to sleep then. 2203 */ 2204 nospares = 0; 2205 2206 sync_req = mddev->in_sync; 2207 2208 /* If this is just a dirty<->clean transition, and the array is clean 2209 * and 'events' is odd, we can roll back to the previous clean state */ 2210 if (nospares 2211 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2212 && mddev->can_decrease_events 2213 && mddev->events != 1) { 2214 mddev->events--; 2215 mddev->can_decrease_events = 0; 2216 } else { 2217 /* otherwise we have to go forward and ... */ 2218 mddev->events ++; 2219 mddev->can_decrease_events = nospares; 2220 } 2221 2222 if (!mddev->events) { 2223 /* 2224 * oops, this 64-bit counter should never wrap. 2225 * Either we are in around ~1 trillion A.C., assuming 2226 * 1 reboot per second, or we have a bug: 2227 */ 2228 MD_BUG(); 2229 mddev->events --; 2230 } 2231 sync_sbs(mddev, nospares); 2232 spin_unlock_irq(&mddev->write_lock); 2233 2234 dprintk(KERN_INFO 2235 "md: updating %s RAID superblock on device (in sync %d)\n", 2236 mdname(mddev),mddev->in_sync); 2237 2238 bitmap_update_sb(mddev->bitmap); 2239 list_for_each_entry(rdev, &mddev->disks, same_set) { 2240 char b[BDEVNAME_SIZE]; 2241 dprintk(KERN_INFO "md: "); 2242 if (rdev->sb_loaded != 1) 2243 continue; /* no noise on spare devices */ 2244 if (test_bit(Faulty, &rdev->flags)) 2245 dprintk("(skipping faulty "); 2246 2247 dprintk("%s ", bdevname(rdev->bdev,b)); 2248 if (!test_bit(Faulty, &rdev->flags)) { 2249 md_super_write(mddev,rdev, 2250 rdev->sb_start, rdev->sb_size, 2251 rdev->sb_page); 2252 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 2253 bdevname(rdev->bdev,b), 2254 (unsigned long long)rdev->sb_start); 2255 rdev->sb_events = mddev->events; 2256 2257 } else 2258 dprintk(")\n"); 2259 if (mddev->level == LEVEL_MULTIPATH) 2260 /* only need to write one superblock... */ 2261 break; 2262 } 2263 md_super_wait(mddev); 2264 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2265 2266 spin_lock_irq(&mddev->write_lock); 2267 if (mddev->in_sync != sync_req || 2268 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2269 /* have to write it out again */ 2270 spin_unlock_irq(&mddev->write_lock); 2271 goto repeat; 2272 } 2273 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2274 spin_unlock_irq(&mddev->write_lock); 2275 wake_up(&mddev->sb_wait); 2276 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2277 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2278 2279 } 2280 2281 /* words written to sysfs files may, or may not, be \n terminated. 2282 * We want to accept with case. For this we use cmd_match. 2283 */ 2284 static int cmd_match(const char *cmd, const char *str) 2285 { 2286 /* See if cmd, written into a sysfs file, matches 2287 * str. They must either be the same, or cmd can 2288 * have a trailing newline 2289 */ 2290 while (*cmd && *str && *cmd == *str) { 2291 cmd++; 2292 str++; 2293 } 2294 if (*cmd == '\n') 2295 cmd++; 2296 if (*str || *cmd) 2297 return 0; 2298 return 1; 2299 } 2300 2301 struct rdev_sysfs_entry { 2302 struct attribute attr; 2303 ssize_t (*show)(mdk_rdev_t *, char *); 2304 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 2305 }; 2306 2307 static ssize_t 2308 state_show(mdk_rdev_t *rdev, char *page) 2309 { 2310 char *sep = ""; 2311 size_t len = 0; 2312 2313 if (test_bit(Faulty, &rdev->flags)) { 2314 len+= sprintf(page+len, "%sfaulty",sep); 2315 sep = ","; 2316 } 2317 if (test_bit(In_sync, &rdev->flags)) { 2318 len += sprintf(page+len, "%sin_sync",sep); 2319 sep = ","; 2320 } 2321 if (test_bit(WriteMostly, &rdev->flags)) { 2322 len += sprintf(page+len, "%swrite_mostly",sep); 2323 sep = ","; 2324 } 2325 if (test_bit(Blocked, &rdev->flags)) { 2326 len += sprintf(page+len, "%sblocked", sep); 2327 sep = ","; 2328 } 2329 if (!test_bit(Faulty, &rdev->flags) && 2330 !test_bit(In_sync, &rdev->flags)) { 2331 len += sprintf(page+len, "%sspare", sep); 2332 sep = ","; 2333 } 2334 return len+sprintf(page+len, "\n"); 2335 } 2336 2337 static ssize_t 2338 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2339 { 2340 /* can write 2341 * faulty - simulates and error 2342 * remove - disconnects the device 2343 * writemostly - sets write_mostly 2344 * -writemostly - clears write_mostly 2345 * blocked - sets the Blocked flag 2346 * -blocked - clears the Blocked flag 2347 * insync - sets Insync providing device isn't active 2348 */ 2349 int err = -EINVAL; 2350 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2351 md_error(rdev->mddev, rdev); 2352 err = 0; 2353 } else if (cmd_match(buf, "remove")) { 2354 if (rdev->raid_disk >= 0) 2355 err = -EBUSY; 2356 else { 2357 mddev_t *mddev = rdev->mddev; 2358 kick_rdev_from_array(rdev); 2359 if (mddev->pers) 2360 md_update_sb(mddev, 1); 2361 md_new_event(mddev); 2362 err = 0; 2363 } 2364 } else if (cmd_match(buf, "writemostly")) { 2365 set_bit(WriteMostly, &rdev->flags); 2366 err = 0; 2367 } else if (cmd_match(buf, "-writemostly")) { 2368 clear_bit(WriteMostly, &rdev->flags); 2369 err = 0; 2370 } else if (cmd_match(buf, "blocked")) { 2371 set_bit(Blocked, &rdev->flags); 2372 err = 0; 2373 } else if (cmd_match(buf, "-blocked")) { 2374 clear_bit(Blocked, &rdev->flags); 2375 wake_up(&rdev->blocked_wait); 2376 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2377 md_wakeup_thread(rdev->mddev->thread); 2378 2379 err = 0; 2380 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2381 set_bit(In_sync, &rdev->flags); 2382 err = 0; 2383 } 2384 if (!err) 2385 sysfs_notify_dirent_safe(rdev->sysfs_state); 2386 return err ? err : len; 2387 } 2388 static struct rdev_sysfs_entry rdev_state = 2389 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2390 2391 static ssize_t 2392 errors_show(mdk_rdev_t *rdev, char *page) 2393 { 2394 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2395 } 2396 2397 static ssize_t 2398 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2399 { 2400 char *e; 2401 unsigned long n = simple_strtoul(buf, &e, 10); 2402 if (*buf && (*e == 0 || *e == '\n')) { 2403 atomic_set(&rdev->corrected_errors, n); 2404 return len; 2405 } 2406 return -EINVAL; 2407 } 2408 static struct rdev_sysfs_entry rdev_errors = 2409 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2410 2411 static ssize_t 2412 slot_show(mdk_rdev_t *rdev, char *page) 2413 { 2414 if (rdev->raid_disk < 0) 2415 return sprintf(page, "none\n"); 2416 else 2417 return sprintf(page, "%d\n", rdev->raid_disk); 2418 } 2419 2420 static ssize_t 2421 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2422 { 2423 char *e; 2424 int err; 2425 char nm[20]; 2426 int slot = simple_strtoul(buf, &e, 10); 2427 if (strncmp(buf, "none", 4)==0) 2428 slot = -1; 2429 else if (e==buf || (*e && *e!= '\n')) 2430 return -EINVAL; 2431 if (rdev->mddev->pers && slot == -1) { 2432 /* Setting 'slot' on an active array requires also 2433 * updating the 'rd%d' link, and communicating 2434 * with the personality with ->hot_*_disk. 2435 * For now we only support removing 2436 * failed/spare devices. This normally happens automatically, 2437 * but not when the metadata is externally managed. 2438 */ 2439 if (rdev->raid_disk == -1) 2440 return -EEXIST; 2441 /* personality does all needed checks */ 2442 if (rdev->mddev->pers->hot_add_disk == NULL) 2443 return -EINVAL; 2444 err = rdev->mddev->pers-> 2445 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2446 if (err) 2447 return err; 2448 sprintf(nm, "rd%d", rdev->raid_disk); 2449 sysfs_remove_link(&rdev->mddev->kobj, nm); 2450 rdev->raid_disk = -1; 2451 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2452 md_wakeup_thread(rdev->mddev->thread); 2453 } else if (rdev->mddev->pers) { 2454 mdk_rdev_t *rdev2; 2455 /* Activating a spare .. or possibly reactivating 2456 * if we ever get bitmaps working here. 2457 */ 2458 2459 if (rdev->raid_disk != -1) 2460 return -EBUSY; 2461 2462 if (rdev->mddev->pers->hot_add_disk == NULL) 2463 return -EINVAL; 2464 2465 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) 2466 if (rdev2->raid_disk == slot) 2467 return -EEXIST; 2468 2469 rdev->raid_disk = slot; 2470 if (test_bit(In_sync, &rdev->flags)) 2471 rdev->saved_raid_disk = slot; 2472 else 2473 rdev->saved_raid_disk = -1; 2474 err = rdev->mddev->pers-> 2475 hot_add_disk(rdev->mddev, rdev); 2476 if (err) { 2477 rdev->raid_disk = -1; 2478 return err; 2479 } else 2480 sysfs_notify_dirent_safe(rdev->sysfs_state); 2481 sprintf(nm, "rd%d", rdev->raid_disk); 2482 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2483 /* failure here is OK */; 2484 /* don't wakeup anyone, leave that to userspace. */ 2485 } else { 2486 if (slot >= rdev->mddev->raid_disks) 2487 return -ENOSPC; 2488 rdev->raid_disk = slot; 2489 /* assume it is working */ 2490 clear_bit(Faulty, &rdev->flags); 2491 clear_bit(WriteMostly, &rdev->flags); 2492 set_bit(In_sync, &rdev->flags); 2493 sysfs_notify_dirent_safe(rdev->sysfs_state); 2494 } 2495 return len; 2496 } 2497 2498 2499 static struct rdev_sysfs_entry rdev_slot = 2500 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2501 2502 static ssize_t 2503 offset_show(mdk_rdev_t *rdev, char *page) 2504 { 2505 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2506 } 2507 2508 static ssize_t 2509 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2510 { 2511 char *e; 2512 unsigned long long offset = simple_strtoull(buf, &e, 10); 2513 if (e==buf || (*e && *e != '\n')) 2514 return -EINVAL; 2515 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2516 return -EBUSY; 2517 if (rdev->sectors && rdev->mddev->external) 2518 /* Must set offset before size, so overlap checks 2519 * can be sane */ 2520 return -EBUSY; 2521 rdev->data_offset = offset; 2522 return len; 2523 } 2524 2525 static struct rdev_sysfs_entry rdev_offset = 2526 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2527 2528 static ssize_t 2529 rdev_size_show(mdk_rdev_t *rdev, char *page) 2530 { 2531 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2532 } 2533 2534 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2535 { 2536 /* check if two start/length pairs overlap */ 2537 if (s1+l1 <= s2) 2538 return 0; 2539 if (s2+l2 <= s1) 2540 return 0; 2541 return 1; 2542 } 2543 2544 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2545 { 2546 unsigned long long blocks; 2547 sector_t new; 2548 2549 if (strict_strtoull(buf, 10, &blocks) < 0) 2550 return -EINVAL; 2551 2552 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2553 return -EINVAL; /* sector conversion overflow */ 2554 2555 new = blocks * 2; 2556 if (new != blocks * 2) 2557 return -EINVAL; /* unsigned long long to sector_t overflow */ 2558 2559 *sectors = new; 2560 return 0; 2561 } 2562 2563 static ssize_t 2564 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2565 { 2566 mddev_t *my_mddev = rdev->mddev; 2567 sector_t oldsectors = rdev->sectors; 2568 sector_t sectors; 2569 2570 if (strict_blocks_to_sectors(buf, §ors) < 0) 2571 return -EINVAL; 2572 if (my_mddev->pers && rdev->raid_disk >= 0) { 2573 if (my_mddev->persistent) { 2574 sectors = super_types[my_mddev->major_version]. 2575 rdev_size_change(rdev, sectors); 2576 if (!sectors) 2577 return -EBUSY; 2578 } else if (!sectors) 2579 sectors = (rdev->bdev->bd_inode->i_size >> 9) - 2580 rdev->data_offset; 2581 } 2582 if (sectors < my_mddev->dev_sectors) 2583 return -EINVAL; /* component must fit device */ 2584 2585 rdev->sectors = sectors; 2586 if (sectors > oldsectors && my_mddev->external) { 2587 /* need to check that all other rdevs with the same ->bdev 2588 * do not overlap. We need to unlock the mddev to avoid 2589 * a deadlock. We have already changed rdev->sectors, and if 2590 * we have to change it back, we will have the lock again. 2591 */ 2592 mddev_t *mddev; 2593 int overlap = 0; 2594 struct list_head *tmp; 2595 2596 mddev_unlock(my_mddev); 2597 for_each_mddev(mddev, tmp) { 2598 mdk_rdev_t *rdev2; 2599 2600 mddev_lock(mddev); 2601 list_for_each_entry(rdev2, &mddev->disks, same_set) 2602 if (test_bit(AllReserved, &rdev2->flags) || 2603 (rdev->bdev == rdev2->bdev && 2604 rdev != rdev2 && 2605 overlaps(rdev->data_offset, rdev->sectors, 2606 rdev2->data_offset, 2607 rdev2->sectors))) { 2608 overlap = 1; 2609 break; 2610 } 2611 mddev_unlock(mddev); 2612 if (overlap) { 2613 mddev_put(mddev); 2614 break; 2615 } 2616 } 2617 mddev_lock(my_mddev); 2618 if (overlap) { 2619 /* Someone else could have slipped in a size 2620 * change here, but doing so is just silly. 2621 * We put oldsectors back because we *know* it is 2622 * safe, and trust userspace not to race with 2623 * itself 2624 */ 2625 rdev->sectors = oldsectors; 2626 return -EBUSY; 2627 } 2628 } 2629 return len; 2630 } 2631 2632 static struct rdev_sysfs_entry rdev_size = 2633 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2634 2635 2636 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page) 2637 { 2638 unsigned long long recovery_start = rdev->recovery_offset; 2639 2640 if (test_bit(In_sync, &rdev->flags) || 2641 recovery_start == MaxSector) 2642 return sprintf(page, "none\n"); 2643 2644 return sprintf(page, "%llu\n", recovery_start); 2645 } 2646 2647 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2648 { 2649 unsigned long long recovery_start; 2650 2651 if (cmd_match(buf, "none")) 2652 recovery_start = MaxSector; 2653 else if (strict_strtoull(buf, 10, &recovery_start)) 2654 return -EINVAL; 2655 2656 if (rdev->mddev->pers && 2657 rdev->raid_disk >= 0) 2658 return -EBUSY; 2659 2660 rdev->recovery_offset = recovery_start; 2661 if (recovery_start == MaxSector) 2662 set_bit(In_sync, &rdev->flags); 2663 else 2664 clear_bit(In_sync, &rdev->flags); 2665 return len; 2666 } 2667 2668 static struct rdev_sysfs_entry rdev_recovery_start = 2669 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 2670 2671 static struct attribute *rdev_default_attrs[] = { 2672 &rdev_state.attr, 2673 &rdev_errors.attr, 2674 &rdev_slot.attr, 2675 &rdev_offset.attr, 2676 &rdev_size.attr, 2677 &rdev_recovery_start.attr, 2678 NULL, 2679 }; 2680 static ssize_t 2681 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2682 { 2683 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2684 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2685 mddev_t *mddev = rdev->mddev; 2686 ssize_t rv; 2687 2688 if (!entry->show) 2689 return -EIO; 2690 2691 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2692 if (!rv) { 2693 if (rdev->mddev == NULL) 2694 rv = -EBUSY; 2695 else 2696 rv = entry->show(rdev, page); 2697 mddev_unlock(mddev); 2698 } 2699 return rv; 2700 } 2701 2702 static ssize_t 2703 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2704 const char *page, size_t length) 2705 { 2706 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2707 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2708 ssize_t rv; 2709 mddev_t *mddev = rdev->mddev; 2710 2711 if (!entry->store) 2712 return -EIO; 2713 if (!capable(CAP_SYS_ADMIN)) 2714 return -EACCES; 2715 rv = mddev ? mddev_lock(mddev): -EBUSY; 2716 if (!rv) { 2717 if (rdev->mddev == NULL) 2718 rv = -EBUSY; 2719 else 2720 rv = entry->store(rdev, page, length); 2721 mddev_unlock(mddev); 2722 } 2723 return rv; 2724 } 2725 2726 static void rdev_free(struct kobject *ko) 2727 { 2728 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2729 kfree(rdev); 2730 } 2731 static const struct sysfs_ops rdev_sysfs_ops = { 2732 .show = rdev_attr_show, 2733 .store = rdev_attr_store, 2734 }; 2735 static struct kobj_type rdev_ktype = { 2736 .release = rdev_free, 2737 .sysfs_ops = &rdev_sysfs_ops, 2738 .default_attrs = rdev_default_attrs, 2739 }; 2740 2741 void md_rdev_init(mdk_rdev_t *rdev) 2742 { 2743 rdev->desc_nr = -1; 2744 rdev->saved_raid_disk = -1; 2745 rdev->raid_disk = -1; 2746 rdev->flags = 0; 2747 rdev->data_offset = 0; 2748 rdev->sb_events = 0; 2749 rdev->last_read_error.tv_sec = 0; 2750 rdev->last_read_error.tv_nsec = 0; 2751 atomic_set(&rdev->nr_pending, 0); 2752 atomic_set(&rdev->read_errors, 0); 2753 atomic_set(&rdev->corrected_errors, 0); 2754 2755 INIT_LIST_HEAD(&rdev->same_set); 2756 init_waitqueue_head(&rdev->blocked_wait); 2757 } 2758 EXPORT_SYMBOL_GPL(md_rdev_init); 2759 /* 2760 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2761 * 2762 * mark the device faulty if: 2763 * 2764 * - the device is nonexistent (zero size) 2765 * - the device has no valid superblock 2766 * 2767 * a faulty rdev _never_ has rdev->sb set. 2768 */ 2769 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2770 { 2771 char b[BDEVNAME_SIZE]; 2772 int err; 2773 mdk_rdev_t *rdev; 2774 sector_t size; 2775 2776 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2777 if (!rdev) { 2778 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2779 return ERR_PTR(-ENOMEM); 2780 } 2781 2782 md_rdev_init(rdev); 2783 if ((err = alloc_disk_sb(rdev))) 2784 goto abort_free; 2785 2786 err = lock_rdev(rdev, newdev, super_format == -2); 2787 if (err) 2788 goto abort_free; 2789 2790 kobject_init(&rdev->kobj, &rdev_ktype); 2791 2792 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2793 if (!size) { 2794 printk(KERN_WARNING 2795 "md: %s has zero or unknown size, marking faulty!\n", 2796 bdevname(rdev->bdev,b)); 2797 err = -EINVAL; 2798 goto abort_free; 2799 } 2800 2801 if (super_format >= 0) { 2802 err = super_types[super_format]. 2803 load_super(rdev, NULL, super_minor); 2804 if (err == -EINVAL) { 2805 printk(KERN_WARNING 2806 "md: %s does not have a valid v%d.%d " 2807 "superblock, not importing!\n", 2808 bdevname(rdev->bdev,b), 2809 super_format, super_minor); 2810 goto abort_free; 2811 } 2812 if (err < 0) { 2813 printk(KERN_WARNING 2814 "md: could not read %s's sb, not importing!\n", 2815 bdevname(rdev->bdev,b)); 2816 goto abort_free; 2817 } 2818 } 2819 2820 return rdev; 2821 2822 abort_free: 2823 if (rdev->sb_page) { 2824 if (rdev->bdev) 2825 unlock_rdev(rdev); 2826 free_disk_sb(rdev); 2827 } 2828 kfree(rdev); 2829 return ERR_PTR(err); 2830 } 2831 2832 /* 2833 * Check a full RAID array for plausibility 2834 */ 2835 2836 2837 static void analyze_sbs(mddev_t * mddev) 2838 { 2839 int i; 2840 mdk_rdev_t *rdev, *freshest, *tmp; 2841 char b[BDEVNAME_SIZE]; 2842 2843 freshest = NULL; 2844 rdev_for_each(rdev, tmp, mddev) 2845 switch (super_types[mddev->major_version]. 2846 load_super(rdev, freshest, mddev->minor_version)) { 2847 case 1: 2848 freshest = rdev; 2849 break; 2850 case 0: 2851 break; 2852 default: 2853 printk( KERN_ERR \ 2854 "md: fatal superblock inconsistency in %s" 2855 " -- removing from array\n", 2856 bdevname(rdev->bdev,b)); 2857 kick_rdev_from_array(rdev); 2858 } 2859 2860 2861 super_types[mddev->major_version]. 2862 validate_super(mddev, freshest); 2863 2864 i = 0; 2865 rdev_for_each(rdev, tmp, mddev) { 2866 if (mddev->max_disks && 2867 (rdev->desc_nr >= mddev->max_disks || 2868 i > mddev->max_disks)) { 2869 printk(KERN_WARNING 2870 "md: %s: %s: only %d devices permitted\n", 2871 mdname(mddev), bdevname(rdev->bdev, b), 2872 mddev->max_disks); 2873 kick_rdev_from_array(rdev); 2874 continue; 2875 } 2876 if (rdev != freshest) 2877 if (super_types[mddev->major_version]. 2878 validate_super(mddev, rdev)) { 2879 printk(KERN_WARNING "md: kicking non-fresh %s" 2880 " from array!\n", 2881 bdevname(rdev->bdev,b)); 2882 kick_rdev_from_array(rdev); 2883 continue; 2884 } 2885 if (mddev->level == LEVEL_MULTIPATH) { 2886 rdev->desc_nr = i++; 2887 rdev->raid_disk = rdev->desc_nr; 2888 set_bit(In_sync, &rdev->flags); 2889 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 2890 rdev->raid_disk = -1; 2891 clear_bit(In_sync, &rdev->flags); 2892 } 2893 } 2894 } 2895 2896 /* Read a fixed-point number. 2897 * Numbers in sysfs attributes should be in "standard" units where 2898 * possible, so time should be in seconds. 2899 * However we internally use a a much smaller unit such as 2900 * milliseconds or jiffies. 2901 * This function takes a decimal number with a possible fractional 2902 * component, and produces an integer which is the result of 2903 * multiplying that number by 10^'scale'. 2904 * all without any floating-point arithmetic. 2905 */ 2906 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 2907 { 2908 unsigned long result = 0; 2909 long decimals = -1; 2910 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 2911 if (*cp == '.') 2912 decimals = 0; 2913 else if (decimals < scale) { 2914 unsigned int value; 2915 value = *cp - '0'; 2916 result = result * 10 + value; 2917 if (decimals >= 0) 2918 decimals++; 2919 } 2920 cp++; 2921 } 2922 if (*cp == '\n') 2923 cp++; 2924 if (*cp) 2925 return -EINVAL; 2926 if (decimals < 0) 2927 decimals = 0; 2928 while (decimals < scale) { 2929 result *= 10; 2930 decimals ++; 2931 } 2932 *res = result; 2933 return 0; 2934 } 2935 2936 2937 static void md_safemode_timeout(unsigned long data); 2938 2939 static ssize_t 2940 safe_delay_show(mddev_t *mddev, char *page) 2941 { 2942 int msec = (mddev->safemode_delay*1000)/HZ; 2943 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2944 } 2945 static ssize_t 2946 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2947 { 2948 unsigned long msec; 2949 2950 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 2951 return -EINVAL; 2952 if (msec == 0) 2953 mddev->safemode_delay = 0; 2954 else { 2955 unsigned long old_delay = mddev->safemode_delay; 2956 mddev->safemode_delay = (msec*HZ)/1000; 2957 if (mddev->safemode_delay == 0) 2958 mddev->safemode_delay = 1; 2959 if (mddev->safemode_delay < old_delay) 2960 md_safemode_timeout((unsigned long)mddev); 2961 } 2962 return len; 2963 } 2964 static struct md_sysfs_entry md_safe_delay = 2965 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2966 2967 static ssize_t 2968 level_show(mddev_t *mddev, char *page) 2969 { 2970 struct mdk_personality *p = mddev->pers; 2971 if (p) 2972 return sprintf(page, "%s\n", p->name); 2973 else if (mddev->clevel[0]) 2974 return sprintf(page, "%s\n", mddev->clevel); 2975 else if (mddev->level != LEVEL_NONE) 2976 return sprintf(page, "%d\n", mddev->level); 2977 else 2978 return 0; 2979 } 2980 2981 static ssize_t 2982 level_store(mddev_t *mddev, const char *buf, size_t len) 2983 { 2984 char clevel[16]; 2985 ssize_t rv = len; 2986 struct mdk_personality *pers; 2987 long level; 2988 void *priv; 2989 mdk_rdev_t *rdev; 2990 2991 if (mddev->pers == NULL) { 2992 if (len == 0) 2993 return 0; 2994 if (len >= sizeof(mddev->clevel)) 2995 return -ENOSPC; 2996 strncpy(mddev->clevel, buf, len); 2997 if (mddev->clevel[len-1] == '\n') 2998 len--; 2999 mddev->clevel[len] = 0; 3000 mddev->level = LEVEL_NONE; 3001 return rv; 3002 } 3003 3004 /* request to change the personality. Need to ensure: 3005 * - array is not engaged in resync/recovery/reshape 3006 * - old personality can be suspended 3007 * - new personality will access other array. 3008 */ 3009 3010 if (mddev->sync_thread || 3011 mddev->reshape_position != MaxSector || 3012 mddev->sysfs_active) 3013 return -EBUSY; 3014 3015 if (!mddev->pers->quiesce) { 3016 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3017 mdname(mddev), mddev->pers->name); 3018 return -EINVAL; 3019 } 3020 3021 /* Now find the new personality */ 3022 if (len == 0 || len >= sizeof(clevel)) 3023 return -EINVAL; 3024 strncpy(clevel, buf, len); 3025 if (clevel[len-1] == '\n') 3026 len--; 3027 clevel[len] = 0; 3028 if (strict_strtol(clevel, 10, &level)) 3029 level = LEVEL_NONE; 3030 3031 if (request_module("md-%s", clevel) != 0) 3032 request_module("md-level-%s", clevel); 3033 spin_lock(&pers_lock); 3034 pers = find_pers(level, clevel); 3035 if (!pers || !try_module_get(pers->owner)) { 3036 spin_unlock(&pers_lock); 3037 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3038 return -EINVAL; 3039 } 3040 spin_unlock(&pers_lock); 3041 3042 if (pers == mddev->pers) { 3043 /* Nothing to do! */ 3044 module_put(pers->owner); 3045 return rv; 3046 } 3047 if (!pers->takeover) { 3048 module_put(pers->owner); 3049 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3050 mdname(mddev), clevel); 3051 return -EINVAL; 3052 } 3053 3054 list_for_each_entry(rdev, &mddev->disks, same_set) 3055 rdev->new_raid_disk = rdev->raid_disk; 3056 3057 /* ->takeover must set new_* and/or delta_disks 3058 * if it succeeds, and may set them when it fails. 3059 */ 3060 priv = pers->takeover(mddev); 3061 if (IS_ERR(priv)) { 3062 mddev->new_level = mddev->level; 3063 mddev->new_layout = mddev->layout; 3064 mddev->new_chunk_sectors = mddev->chunk_sectors; 3065 mddev->raid_disks -= mddev->delta_disks; 3066 mddev->delta_disks = 0; 3067 module_put(pers->owner); 3068 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3069 mdname(mddev), clevel); 3070 return PTR_ERR(priv); 3071 } 3072 3073 /* Looks like we have a winner */ 3074 mddev_suspend(mddev); 3075 mddev->pers->stop(mddev); 3076 3077 if (mddev->pers->sync_request == NULL && 3078 pers->sync_request != NULL) { 3079 /* need to add the md_redundancy_group */ 3080 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3081 printk(KERN_WARNING 3082 "md: cannot register extra attributes for %s\n", 3083 mdname(mddev)); 3084 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3085 } 3086 if (mddev->pers->sync_request != NULL && 3087 pers->sync_request == NULL) { 3088 /* need to remove the md_redundancy_group */ 3089 if (mddev->to_remove == NULL) 3090 mddev->to_remove = &md_redundancy_group; 3091 } 3092 3093 if (mddev->pers->sync_request == NULL && 3094 mddev->external) { 3095 /* We are converting from a no-redundancy array 3096 * to a redundancy array and metadata is managed 3097 * externally so we need to be sure that writes 3098 * won't block due to a need to transition 3099 * clean->dirty 3100 * until external management is started. 3101 */ 3102 mddev->in_sync = 0; 3103 mddev->safemode_delay = 0; 3104 mddev->safemode = 0; 3105 } 3106 3107 list_for_each_entry(rdev, &mddev->disks, same_set) { 3108 char nm[20]; 3109 if (rdev->raid_disk < 0) 3110 continue; 3111 if (rdev->new_raid_disk > mddev->raid_disks) 3112 rdev->new_raid_disk = -1; 3113 if (rdev->new_raid_disk == rdev->raid_disk) 3114 continue; 3115 sprintf(nm, "rd%d", rdev->raid_disk); 3116 sysfs_remove_link(&mddev->kobj, nm); 3117 } 3118 list_for_each_entry(rdev, &mddev->disks, same_set) { 3119 if (rdev->raid_disk < 0) 3120 continue; 3121 if (rdev->new_raid_disk == rdev->raid_disk) 3122 continue; 3123 rdev->raid_disk = rdev->new_raid_disk; 3124 if (rdev->raid_disk < 0) 3125 clear_bit(In_sync, &rdev->flags); 3126 else { 3127 char nm[20]; 3128 sprintf(nm, "rd%d", rdev->raid_disk); 3129 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3130 printk("md: cannot register %s for %s after level change\n", 3131 nm, mdname(mddev)); 3132 } 3133 } 3134 3135 module_put(mddev->pers->owner); 3136 mddev->pers = pers; 3137 mddev->private = priv; 3138 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3139 mddev->level = mddev->new_level; 3140 mddev->layout = mddev->new_layout; 3141 mddev->chunk_sectors = mddev->new_chunk_sectors; 3142 mddev->delta_disks = 0; 3143 if (mddev->pers->sync_request == NULL) { 3144 /* this is now an array without redundancy, so 3145 * it must always be in_sync 3146 */ 3147 mddev->in_sync = 1; 3148 del_timer_sync(&mddev->safemode_timer); 3149 } 3150 pers->run(mddev); 3151 mddev_resume(mddev); 3152 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3154 md_wakeup_thread(mddev->thread); 3155 sysfs_notify(&mddev->kobj, NULL, "level"); 3156 md_new_event(mddev); 3157 return rv; 3158 } 3159 3160 static struct md_sysfs_entry md_level = 3161 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3162 3163 3164 static ssize_t 3165 layout_show(mddev_t *mddev, char *page) 3166 { 3167 /* just a number, not meaningful for all levels */ 3168 if (mddev->reshape_position != MaxSector && 3169 mddev->layout != mddev->new_layout) 3170 return sprintf(page, "%d (%d)\n", 3171 mddev->new_layout, mddev->layout); 3172 return sprintf(page, "%d\n", mddev->layout); 3173 } 3174 3175 static ssize_t 3176 layout_store(mddev_t *mddev, const char *buf, size_t len) 3177 { 3178 char *e; 3179 unsigned long n = simple_strtoul(buf, &e, 10); 3180 3181 if (!*buf || (*e && *e != '\n')) 3182 return -EINVAL; 3183 3184 if (mddev->pers) { 3185 int err; 3186 if (mddev->pers->check_reshape == NULL) 3187 return -EBUSY; 3188 mddev->new_layout = n; 3189 err = mddev->pers->check_reshape(mddev); 3190 if (err) { 3191 mddev->new_layout = mddev->layout; 3192 return err; 3193 } 3194 } else { 3195 mddev->new_layout = n; 3196 if (mddev->reshape_position == MaxSector) 3197 mddev->layout = n; 3198 } 3199 return len; 3200 } 3201 static struct md_sysfs_entry md_layout = 3202 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3203 3204 3205 static ssize_t 3206 raid_disks_show(mddev_t *mddev, char *page) 3207 { 3208 if (mddev->raid_disks == 0) 3209 return 0; 3210 if (mddev->reshape_position != MaxSector && 3211 mddev->delta_disks != 0) 3212 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3213 mddev->raid_disks - mddev->delta_disks); 3214 return sprintf(page, "%d\n", mddev->raid_disks); 3215 } 3216 3217 static int update_raid_disks(mddev_t *mddev, int raid_disks); 3218 3219 static ssize_t 3220 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 3221 { 3222 char *e; 3223 int rv = 0; 3224 unsigned long n = simple_strtoul(buf, &e, 10); 3225 3226 if (!*buf || (*e && *e != '\n')) 3227 return -EINVAL; 3228 3229 if (mddev->pers) 3230 rv = update_raid_disks(mddev, n); 3231 else if (mddev->reshape_position != MaxSector) { 3232 int olddisks = mddev->raid_disks - mddev->delta_disks; 3233 mddev->delta_disks = n - olddisks; 3234 mddev->raid_disks = n; 3235 } else 3236 mddev->raid_disks = n; 3237 return rv ? rv : len; 3238 } 3239 static struct md_sysfs_entry md_raid_disks = 3240 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3241 3242 static ssize_t 3243 chunk_size_show(mddev_t *mddev, char *page) 3244 { 3245 if (mddev->reshape_position != MaxSector && 3246 mddev->chunk_sectors != mddev->new_chunk_sectors) 3247 return sprintf(page, "%d (%d)\n", 3248 mddev->new_chunk_sectors << 9, 3249 mddev->chunk_sectors << 9); 3250 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3251 } 3252 3253 static ssize_t 3254 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 3255 { 3256 char *e; 3257 unsigned long n = simple_strtoul(buf, &e, 10); 3258 3259 if (!*buf || (*e && *e != '\n')) 3260 return -EINVAL; 3261 3262 if (mddev->pers) { 3263 int err; 3264 if (mddev->pers->check_reshape == NULL) 3265 return -EBUSY; 3266 mddev->new_chunk_sectors = n >> 9; 3267 err = mddev->pers->check_reshape(mddev); 3268 if (err) { 3269 mddev->new_chunk_sectors = mddev->chunk_sectors; 3270 return err; 3271 } 3272 } else { 3273 mddev->new_chunk_sectors = n >> 9; 3274 if (mddev->reshape_position == MaxSector) 3275 mddev->chunk_sectors = n >> 9; 3276 } 3277 return len; 3278 } 3279 static struct md_sysfs_entry md_chunk_size = 3280 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3281 3282 static ssize_t 3283 resync_start_show(mddev_t *mddev, char *page) 3284 { 3285 if (mddev->recovery_cp == MaxSector) 3286 return sprintf(page, "none\n"); 3287 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3288 } 3289 3290 static ssize_t 3291 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 3292 { 3293 char *e; 3294 unsigned long long n = simple_strtoull(buf, &e, 10); 3295 3296 if (mddev->pers) 3297 return -EBUSY; 3298 if (cmd_match(buf, "none")) 3299 n = MaxSector; 3300 else if (!*buf || (*e && *e != '\n')) 3301 return -EINVAL; 3302 3303 mddev->recovery_cp = n; 3304 return len; 3305 } 3306 static struct md_sysfs_entry md_resync_start = 3307 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3308 3309 /* 3310 * The array state can be: 3311 * 3312 * clear 3313 * No devices, no size, no level 3314 * Equivalent to STOP_ARRAY ioctl 3315 * inactive 3316 * May have some settings, but array is not active 3317 * all IO results in error 3318 * When written, doesn't tear down array, but just stops it 3319 * suspended (not supported yet) 3320 * All IO requests will block. The array can be reconfigured. 3321 * Writing this, if accepted, will block until array is quiescent 3322 * readonly 3323 * no resync can happen. no superblocks get written. 3324 * write requests fail 3325 * read-auto 3326 * like readonly, but behaves like 'clean' on a write request. 3327 * 3328 * clean - no pending writes, but otherwise active. 3329 * When written to inactive array, starts without resync 3330 * If a write request arrives then 3331 * if metadata is known, mark 'dirty' and switch to 'active'. 3332 * if not known, block and switch to write-pending 3333 * If written to an active array that has pending writes, then fails. 3334 * active 3335 * fully active: IO and resync can be happening. 3336 * When written to inactive array, starts with resync 3337 * 3338 * write-pending 3339 * clean, but writes are blocked waiting for 'active' to be written. 3340 * 3341 * active-idle 3342 * like active, but no writes have been seen for a while (100msec). 3343 * 3344 */ 3345 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3346 write_pending, active_idle, bad_word}; 3347 static char *array_states[] = { 3348 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3349 "write-pending", "active-idle", NULL }; 3350 3351 static int match_word(const char *word, char **list) 3352 { 3353 int n; 3354 for (n=0; list[n]; n++) 3355 if (cmd_match(word, list[n])) 3356 break; 3357 return n; 3358 } 3359 3360 static ssize_t 3361 array_state_show(mddev_t *mddev, char *page) 3362 { 3363 enum array_state st = inactive; 3364 3365 if (mddev->pers) 3366 switch(mddev->ro) { 3367 case 1: 3368 st = readonly; 3369 break; 3370 case 2: 3371 st = read_auto; 3372 break; 3373 case 0: 3374 if (mddev->in_sync) 3375 st = clean; 3376 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3377 st = write_pending; 3378 else if (mddev->safemode) 3379 st = active_idle; 3380 else 3381 st = active; 3382 } 3383 else { 3384 if (list_empty(&mddev->disks) && 3385 mddev->raid_disks == 0 && 3386 mddev->dev_sectors == 0) 3387 st = clear; 3388 else 3389 st = inactive; 3390 } 3391 return sprintf(page, "%s\n", array_states[st]); 3392 } 3393 3394 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 3395 static int md_set_readonly(mddev_t * mddev, int is_open); 3396 static int do_md_run(mddev_t * mddev); 3397 static int restart_array(mddev_t *mddev); 3398 3399 static ssize_t 3400 array_state_store(mddev_t *mddev, const char *buf, size_t len) 3401 { 3402 int err = -EINVAL; 3403 enum array_state st = match_word(buf, array_states); 3404 switch(st) { 3405 case bad_word: 3406 break; 3407 case clear: 3408 /* stopping an active array */ 3409 if (atomic_read(&mddev->openers) > 0) 3410 return -EBUSY; 3411 err = do_md_stop(mddev, 0, 0); 3412 break; 3413 case inactive: 3414 /* stopping an active array */ 3415 if (mddev->pers) { 3416 if (atomic_read(&mddev->openers) > 0) 3417 return -EBUSY; 3418 err = do_md_stop(mddev, 2, 0); 3419 } else 3420 err = 0; /* already inactive */ 3421 break; 3422 case suspended: 3423 break; /* not supported yet */ 3424 case readonly: 3425 if (mddev->pers) 3426 err = md_set_readonly(mddev, 0); 3427 else { 3428 mddev->ro = 1; 3429 set_disk_ro(mddev->gendisk, 1); 3430 err = do_md_run(mddev); 3431 } 3432 break; 3433 case read_auto: 3434 if (mddev->pers) { 3435 if (mddev->ro == 0) 3436 err = md_set_readonly(mddev, 0); 3437 else if (mddev->ro == 1) 3438 err = restart_array(mddev); 3439 if (err == 0) { 3440 mddev->ro = 2; 3441 set_disk_ro(mddev->gendisk, 0); 3442 } 3443 } else { 3444 mddev->ro = 2; 3445 err = do_md_run(mddev); 3446 } 3447 break; 3448 case clean: 3449 if (mddev->pers) { 3450 restart_array(mddev); 3451 spin_lock_irq(&mddev->write_lock); 3452 if (atomic_read(&mddev->writes_pending) == 0) { 3453 if (mddev->in_sync == 0) { 3454 mddev->in_sync = 1; 3455 if (mddev->safemode == 1) 3456 mddev->safemode = 0; 3457 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3458 } 3459 err = 0; 3460 } else 3461 err = -EBUSY; 3462 spin_unlock_irq(&mddev->write_lock); 3463 } else 3464 err = -EINVAL; 3465 break; 3466 case active: 3467 if (mddev->pers) { 3468 restart_array(mddev); 3469 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3470 wake_up(&mddev->sb_wait); 3471 err = 0; 3472 } else { 3473 mddev->ro = 0; 3474 set_disk_ro(mddev->gendisk, 0); 3475 err = do_md_run(mddev); 3476 } 3477 break; 3478 case write_pending: 3479 case active_idle: 3480 /* these cannot be set */ 3481 break; 3482 } 3483 if (err) 3484 return err; 3485 else { 3486 sysfs_notify_dirent_safe(mddev->sysfs_state); 3487 return len; 3488 } 3489 } 3490 static struct md_sysfs_entry md_array_state = 3491 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3492 3493 static ssize_t 3494 max_corrected_read_errors_show(mddev_t *mddev, char *page) { 3495 return sprintf(page, "%d\n", 3496 atomic_read(&mddev->max_corr_read_errors)); 3497 } 3498 3499 static ssize_t 3500 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len) 3501 { 3502 char *e; 3503 unsigned long n = simple_strtoul(buf, &e, 10); 3504 3505 if (*buf && (*e == 0 || *e == '\n')) { 3506 atomic_set(&mddev->max_corr_read_errors, n); 3507 return len; 3508 } 3509 return -EINVAL; 3510 } 3511 3512 static struct md_sysfs_entry max_corr_read_errors = 3513 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3514 max_corrected_read_errors_store); 3515 3516 static ssize_t 3517 null_show(mddev_t *mddev, char *page) 3518 { 3519 return -EINVAL; 3520 } 3521 3522 static ssize_t 3523 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 3524 { 3525 /* buf must be %d:%d\n? giving major and minor numbers */ 3526 /* The new device is added to the array. 3527 * If the array has a persistent superblock, we read the 3528 * superblock to initialise info and check validity. 3529 * Otherwise, only checking done is that in bind_rdev_to_array, 3530 * which mainly checks size. 3531 */ 3532 char *e; 3533 int major = simple_strtoul(buf, &e, 10); 3534 int minor; 3535 dev_t dev; 3536 mdk_rdev_t *rdev; 3537 int err; 3538 3539 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3540 return -EINVAL; 3541 minor = simple_strtoul(e+1, &e, 10); 3542 if (*e && *e != '\n') 3543 return -EINVAL; 3544 dev = MKDEV(major, minor); 3545 if (major != MAJOR(dev) || 3546 minor != MINOR(dev)) 3547 return -EOVERFLOW; 3548 3549 3550 if (mddev->persistent) { 3551 rdev = md_import_device(dev, mddev->major_version, 3552 mddev->minor_version); 3553 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3554 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3555 mdk_rdev_t, same_set); 3556 err = super_types[mddev->major_version] 3557 .load_super(rdev, rdev0, mddev->minor_version); 3558 if (err < 0) 3559 goto out; 3560 } 3561 } else if (mddev->external) 3562 rdev = md_import_device(dev, -2, -1); 3563 else 3564 rdev = md_import_device(dev, -1, -1); 3565 3566 if (IS_ERR(rdev)) 3567 return PTR_ERR(rdev); 3568 err = bind_rdev_to_array(rdev, mddev); 3569 out: 3570 if (err) 3571 export_rdev(rdev); 3572 return err ? err : len; 3573 } 3574 3575 static struct md_sysfs_entry md_new_device = 3576 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3577 3578 static ssize_t 3579 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 3580 { 3581 char *end; 3582 unsigned long chunk, end_chunk; 3583 3584 if (!mddev->bitmap) 3585 goto out; 3586 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3587 while (*buf) { 3588 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3589 if (buf == end) break; 3590 if (*end == '-') { /* range */ 3591 buf = end + 1; 3592 end_chunk = simple_strtoul(buf, &end, 0); 3593 if (buf == end) break; 3594 } 3595 if (*end && !isspace(*end)) break; 3596 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3597 buf = skip_spaces(end); 3598 } 3599 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3600 out: 3601 return len; 3602 } 3603 3604 static struct md_sysfs_entry md_bitmap = 3605 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3606 3607 static ssize_t 3608 size_show(mddev_t *mddev, char *page) 3609 { 3610 return sprintf(page, "%llu\n", 3611 (unsigned long long)mddev->dev_sectors / 2); 3612 } 3613 3614 static int update_size(mddev_t *mddev, sector_t num_sectors); 3615 3616 static ssize_t 3617 size_store(mddev_t *mddev, const char *buf, size_t len) 3618 { 3619 /* If array is inactive, we can reduce the component size, but 3620 * not increase it (except from 0). 3621 * If array is active, we can try an on-line resize 3622 */ 3623 sector_t sectors; 3624 int err = strict_blocks_to_sectors(buf, §ors); 3625 3626 if (err < 0) 3627 return err; 3628 if (mddev->pers) { 3629 err = update_size(mddev, sectors); 3630 md_update_sb(mddev, 1); 3631 } else { 3632 if (mddev->dev_sectors == 0 || 3633 mddev->dev_sectors > sectors) 3634 mddev->dev_sectors = sectors; 3635 else 3636 err = -ENOSPC; 3637 } 3638 return err ? err : len; 3639 } 3640 3641 static struct md_sysfs_entry md_size = 3642 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 3643 3644 3645 /* Metdata version. 3646 * This is one of 3647 * 'none' for arrays with no metadata (good luck...) 3648 * 'external' for arrays with externally managed metadata, 3649 * or N.M for internally known formats 3650 */ 3651 static ssize_t 3652 metadata_show(mddev_t *mddev, char *page) 3653 { 3654 if (mddev->persistent) 3655 return sprintf(page, "%d.%d\n", 3656 mddev->major_version, mddev->minor_version); 3657 else if (mddev->external) 3658 return sprintf(page, "external:%s\n", mddev->metadata_type); 3659 else 3660 return sprintf(page, "none\n"); 3661 } 3662 3663 static ssize_t 3664 metadata_store(mddev_t *mddev, const char *buf, size_t len) 3665 { 3666 int major, minor; 3667 char *e; 3668 /* Changing the details of 'external' metadata is 3669 * always permitted. Otherwise there must be 3670 * no devices attached to the array. 3671 */ 3672 if (mddev->external && strncmp(buf, "external:", 9) == 0) 3673 ; 3674 else if (!list_empty(&mddev->disks)) 3675 return -EBUSY; 3676 3677 if (cmd_match(buf, "none")) { 3678 mddev->persistent = 0; 3679 mddev->external = 0; 3680 mddev->major_version = 0; 3681 mddev->minor_version = 90; 3682 return len; 3683 } 3684 if (strncmp(buf, "external:", 9) == 0) { 3685 size_t namelen = len-9; 3686 if (namelen >= sizeof(mddev->metadata_type)) 3687 namelen = sizeof(mddev->metadata_type)-1; 3688 strncpy(mddev->metadata_type, buf+9, namelen); 3689 mddev->metadata_type[namelen] = 0; 3690 if (namelen && mddev->metadata_type[namelen-1] == '\n') 3691 mddev->metadata_type[--namelen] = 0; 3692 mddev->persistent = 0; 3693 mddev->external = 1; 3694 mddev->major_version = 0; 3695 mddev->minor_version = 90; 3696 return len; 3697 } 3698 major = simple_strtoul(buf, &e, 10); 3699 if (e==buf || *e != '.') 3700 return -EINVAL; 3701 buf = e+1; 3702 minor = simple_strtoul(buf, &e, 10); 3703 if (e==buf || (*e && *e != '\n') ) 3704 return -EINVAL; 3705 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 3706 return -ENOENT; 3707 mddev->major_version = major; 3708 mddev->minor_version = minor; 3709 mddev->persistent = 1; 3710 mddev->external = 0; 3711 return len; 3712 } 3713 3714 static struct md_sysfs_entry md_metadata = 3715 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 3716 3717 static ssize_t 3718 action_show(mddev_t *mddev, char *page) 3719 { 3720 char *type = "idle"; 3721 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3722 type = "frozen"; 3723 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3724 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 3725 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3726 type = "reshape"; 3727 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3728 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3729 type = "resync"; 3730 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3731 type = "check"; 3732 else 3733 type = "repair"; 3734 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3735 type = "recover"; 3736 } 3737 return sprintf(page, "%s\n", type); 3738 } 3739 3740 static ssize_t 3741 action_store(mddev_t *mddev, const char *page, size_t len) 3742 { 3743 if (!mddev->pers || !mddev->pers->sync_request) 3744 return -EINVAL; 3745 3746 if (cmd_match(page, "frozen")) 3747 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3748 else 3749 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3750 3751 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 3752 if (mddev->sync_thread) { 3753 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3754 md_unregister_thread(mddev->sync_thread); 3755 mddev->sync_thread = NULL; 3756 mddev->recovery = 0; 3757 } 3758 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3759 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3760 return -EBUSY; 3761 else if (cmd_match(page, "resync")) 3762 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3763 else if (cmd_match(page, "recover")) { 3764 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3765 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3766 } else if (cmd_match(page, "reshape")) { 3767 int err; 3768 if (mddev->pers->start_reshape == NULL) 3769 return -EINVAL; 3770 err = mddev->pers->start_reshape(mddev); 3771 if (err) 3772 return err; 3773 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3774 } else { 3775 if (cmd_match(page, "check")) 3776 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3777 else if (!cmd_match(page, "repair")) 3778 return -EINVAL; 3779 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3780 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3781 } 3782 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3783 md_wakeup_thread(mddev->thread); 3784 sysfs_notify_dirent_safe(mddev->sysfs_action); 3785 return len; 3786 } 3787 3788 static ssize_t 3789 mismatch_cnt_show(mddev_t *mddev, char *page) 3790 { 3791 return sprintf(page, "%llu\n", 3792 (unsigned long long) mddev->resync_mismatches); 3793 } 3794 3795 static struct md_sysfs_entry md_scan_mode = 3796 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3797 3798 3799 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3800 3801 static ssize_t 3802 sync_min_show(mddev_t *mddev, char *page) 3803 { 3804 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3805 mddev->sync_speed_min ? "local": "system"); 3806 } 3807 3808 static ssize_t 3809 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3810 { 3811 int min; 3812 char *e; 3813 if (strncmp(buf, "system", 6)==0) { 3814 mddev->sync_speed_min = 0; 3815 return len; 3816 } 3817 min = simple_strtoul(buf, &e, 10); 3818 if (buf == e || (*e && *e != '\n') || min <= 0) 3819 return -EINVAL; 3820 mddev->sync_speed_min = min; 3821 return len; 3822 } 3823 3824 static struct md_sysfs_entry md_sync_min = 3825 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3826 3827 static ssize_t 3828 sync_max_show(mddev_t *mddev, char *page) 3829 { 3830 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3831 mddev->sync_speed_max ? "local": "system"); 3832 } 3833 3834 static ssize_t 3835 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3836 { 3837 int max; 3838 char *e; 3839 if (strncmp(buf, "system", 6)==0) { 3840 mddev->sync_speed_max = 0; 3841 return len; 3842 } 3843 max = simple_strtoul(buf, &e, 10); 3844 if (buf == e || (*e && *e != '\n') || max <= 0) 3845 return -EINVAL; 3846 mddev->sync_speed_max = max; 3847 return len; 3848 } 3849 3850 static struct md_sysfs_entry md_sync_max = 3851 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3852 3853 static ssize_t 3854 degraded_show(mddev_t *mddev, char *page) 3855 { 3856 return sprintf(page, "%d\n", mddev->degraded); 3857 } 3858 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3859 3860 static ssize_t 3861 sync_force_parallel_show(mddev_t *mddev, char *page) 3862 { 3863 return sprintf(page, "%d\n", mddev->parallel_resync); 3864 } 3865 3866 static ssize_t 3867 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3868 { 3869 long n; 3870 3871 if (strict_strtol(buf, 10, &n)) 3872 return -EINVAL; 3873 3874 if (n != 0 && n != 1) 3875 return -EINVAL; 3876 3877 mddev->parallel_resync = n; 3878 3879 if (mddev->sync_thread) 3880 wake_up(&resync_wait); 3881 3882 return len; 3883 } 3884 3885 /* force parallel resync, even with shared block devices */ 3886 static struct md_sysfs_entry md_sync_force_parallel = 3887 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3888 sync_force_parallel_show, sync_force_parallel_store); 3889 3890 static ssize_t 3891 sync_speed_show(mddev_t *mddev, char *page) 3892 { 3893 unsigned long resync, dt, db; 3894 if (mddev->curr_resync == 0) 3895 return sprintf(page, "none\n"); 3896 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3897 dt = (jiffies - mddev->resync_mark) / HZ; 3898 if (!dt) dt++; 3899 db = resync - mddev->resync_mark_cnt; 3900 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3901 } 3902 3903 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3904 3905 static ssize_t 3906 sync_completed_show(mddev_t *mddev, char *page) 3907 { 3908 unsigned long max_sectors, resync; 3909 3910 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3911 return sprintf(page, "none\n"); 3912 3913 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3914 max_sectors = mddev->resync_max_sectors; 3915 else 3916 max_sectors = mddev->dev_sectors; 3917 3918 resync = mddev->curr_resync_completed; 3919 return sprintf(page, "%lu / %lu\n", resync, max_sectors); 3920 } 3921 3922 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3923 3924 static ssize_t 3925 min_sync_show(mddev_t *mddev, char *page) 3926 { 3927 return sprintf(page, "%llu\n", 3928 (unsigned long long)mddev->resync_min); 3929 } 3930 static ssize_t 3931 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3932 { 3933 unsigned long long min; 3934 if (strict_strtoull(buf, 10, &min)) 3935 return -EINVAL; 3936 if (min > mddev->resync_max) 3937 return -EINVAL; 3938 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3939 return -EBUSY; 3940 3941 /* Must be a multiple of chunk_size */ 3942 if (mddev->chunk_sectors) { 3943 sector_t temp = min; 3944 if (sector_div(temp, mddev->chunk_sectors)) 3945 return -EINVAL; 3946 } 3947 mddev->resync_min = min; 3948 3949 return len; 3950 } 3951 3952 static struct md_sysfs_entry md_min_sync = 3953 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3954 3955 static ssize_t 3956 max_sync_show(mddev_t *mddev, char *page) 3957 { 3958 if (mddev->resync_max == MaxSector) 3959 return sprintf(page, "max\n"); 3960 else 3961 return sprintf(page, "%llu\n", 3962 (unsigned long long)mddev->resync_max); 3963 } 3964 static ssize_t 3965 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3966 { 3967 if (strncmp(buf, "max", 3) == 0) 3968 mddev->resync_max = MaxSector; 3969 else { 3970 unsigned long long max; 3971 if (strict_strtoull(buf, 10, &max)) 3972 return -EINVAL; 3973 if (max < mddev->resync_min) 3974 return -EINVAL; 3975 if (max < mddev->resync_max && 3976 mddev->ro == 0 && 3977 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3978 return -EBUSY; 3979 3980 /* Must be a multiple of chunk_size */ 3981 if (mddev->chunk_sectors) { 3982 sector_t temp = max; 3983 if (sector_div(temp, mddev->chunk_sectors)) 3984 return -EINVAL; 3985 } 3986 mddev->resync_max = max; 3987 } 3988 wake_up(&mddev->recovery_wait); 3989 return len; 3990 } 3991 3992 static struct md_sysfs_entry md_max_sync = 3993 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 3994 3995 static ssize_t 3996 suspend_lo_show(mddev_t *mddev, char *page) 3997 { 3998 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 3999 } 4000 4001 static ssize_t 4002 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 4003 { 4004 char *e; 4005 unsigned long long new = simple_strtoull(buf, &e, 10); 4006 4007 if (mddev->pers == NULL || 4008 mddev->pers->quiesce == NULL) 4009 return -EINVAL; 4010 if (buf == e || (*e && *e != '\n')) 4011 return -EINVAL; 4012 if (new >= mddev->suspend_hi || 4013 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 4014 mddev->suspend_lo = new; 4015 mddev->pers->quiesce(mddev, 2); 4016 return len; 4017 } else 4018 return -EINVAL; 4019 } 4020 static struct md_sysfs_entry md_suspend_lo = 4021 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4022 4023 4024 static ssize_t 4025 suspend_hi_show(mddev_t *mddev, char *page) 4026 { 4027 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4028 } 4029 4030 static ssize_t 4031 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 4032 { 4033 char *e; 4034 unsigned long long new = simple_strtoull(buf, &e, 10); 4035 4036 if (mddev->pers == NULL || 4037 mddev->pers->quiesce == NULL) 4038 return -EINVAL; 4039 if (buf == e || (*e && *e != '\n')) 4040 return -EINVAL; 4041 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 4042 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 4043 mddev->suspend_hi = new; 4044 mddev->pers->quiesce(mddev, 1); 4045 mddev->pers->quiesce(mddev, 0); 4046 return len; 4047 } else 4048 return -EINVAL; 4049 } 4050 static struct md_sysfs_entry md_suspend_hi = 4051 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4052 4053 static ssize_t 4054 reshape_position_show(mddev_t *mddev, char *page) 4055 { 4056 if (mddev->reshape_position != MaxSector) 4057 return sprintf(page, "%llu\n", 4058 (unsigned long long)mddev->reshape_position); 4059 strcpy(page, "none\n"); 4060 return 5; 4061 } 4062 4063 static ssize_t 4064 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 4065 { 4066 char *e; 4067 unsigned long long new = simple_strtoull(buf, &e, 10); 4068 if (mddev->pers) 4069 return -EBUSY; 4070 if (buf == e || (*e && *e != '\n')) 4071 return -EINVAL; 4072 mddev->reshape_position = new; 4073 mddev->delta_disks = 0; 4074 mddev->new_level = mddev->level; 4075 mddev->new_layout = mddev->layout; 4076 mddev->new_chunk_sectors = mddev->chunk_sectors; 4077 return len; 4078 } 4079 4080 static struct md_sysfs_entry md_reshape_position = 4081 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4082 reshape_position_store); 4083 4084 static ssize_t 4085 array_size_show(mddev_t *mddev, char *page) 4086 { 4087 if (mddev->external_size) 4088 return sprintf(page, "%llu\n", 4089 (unsigned long long)mddev->array_sectors/2); 4090 else 4091 return sprintf(page, "default\n"); 4092 } 4093 4094 static ssize_t 4095 array_size_store(mddev_t *mddev, const char *buf, size_t len) 4096 { 4097 sector_t sectors; 4098 4099 if (strncmp(buf, "default", 7) == 0) { 4100 if (mddev->pers) 4101 sectors = mddev->pers->size(mddev, 0, 0); 4102 else 4103 sectors = mddev->array_sectors; 4104 4105 mddev->external_size = 0; 4106 } else { 4107 if (strict_blocks_to_sectors(buf, §ors) < 0) 4108 return -EINVAL; 4109 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4110 return -E2BIG; 4111 4112 mddev->external_size = 1; 4113 } 4114 4115 mddev->array_sectors = sectors; 4116 set_capacity(mddev->gendisk, mddev->array_sectors); 4117 if (mddev->pers) 4118 revalidate_disk(mddev->gendisk); 4119 4120 return len; 4121 } 4122 4123 static struct md_sysfs_entry md_array_size = 4124 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4125 array_size_store); 4126 4127 static struct attribute *md_default_attrs[] = { 4128 &md_level.attr, 4129 &md_layout.attr, 4130 &md_raid_disks.attr, 4131 &md_chunk_size.attr, 4132 &md_size.attr, 4133 &md_resync_start.attr, 4134 &md_metadata.attr, 4135 &md_new_device.attr, 4136 &md_safe_delay.attr, 4137 &md_array_state.attr, 4138 &md_reshape_position.attr, 4139 &md_array_size.attr, 4140 &max_corr_read_errors.attr, 4141 NULL, 4142 }; 4143 4144 static struct attribute *md_redundancy_attrs[] = { 4145 &md_scan_mode.attr, 4146 &md_mismatches.attr, 4147 &md_sync_min.attr, 4148 &md_sync_max.attr, 4149 &md_sync_speed.attr, 4150 &md_sync_force_parallel.attr, 4151 &md_sync_completed.attr, 4152 &md_min_sync.attr, 4153 &md_max_sync.attr, 4154 &md_suspend_lo.attr, 4155 &md_suspend_hi.attr, 4156 &md_bitmap.attr, 4157 &md_degraded.attr, 4158 NULL, 4159 }; 4160 static struct attribute_group md_redundancy_group = { 4161 .name = NULL, 4162 .attrs = md_redundancy_attrs, 4163 }; 4164 4165 4166 static ssize_t 4167 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4168 { 4169 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4170 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4171 ssize_t rv; 4172 4173 if (!entry->show) 4174 return -EIO; 4175 rv = mddev_lock(mddev); 4176 if (!rv) { 4177 rv = entry->show(mddev, page); 4178 mddev_unlock(mddev); 4179 } 4180 return rv; 4181 } 4182 4183 static ssize_t 4184 md_attr_store(struct kobject *kobj, struct attribute *attr, 4185 const char *page, size_t length) 4186 { 4187 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4188 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4189 ssize_t rv; 4190 4191 if (!entry->store) 4192 return -EIO; 4193 if (!capable(CAP_SYS_ADMIN)) 4194 return -EACCES; 4195 rv = mddev_lock(mddev); 4196 if (mddev->hold_active == UNTIL_IOCTL) 4197 mddev->hold_active = 0; 4198 if (!rv) { 4199 rv = entry->store(mddev, page, length); 4200 mddev_unlock(mddev); 4201 } 4202 return rv; 4203 } 4204 4205 static void md_free(struct kobject *ko) 4206 { 4207 mddev_t *mddev = container_of(ko, mddev_t, kobj); 4208 4209 if (mddev->sysfs_state) 4210 sysfs_put(mddev->sysfs_state); 4211 4212 if (mddev->gendisk) { 4213 del_gendisk(mddev->gendisk); 4214 put_disk(mddev->gendisk); 4215 } 4216 if (mddev->queue) 4217 blk_cleanup_queue(mddev->queue); 4218 4219 kfree(mddev); 4220 } 4221 4222 static const struct sysfs_ops md_sysfs_ops = { 4223 .show = md_attr_show, 4224 .store = md_attr_store, 4225 }; 4226 static struct kobj_type md_ktype = { 4227 .release = md_free, 4228 .sysfs_ops = &md_sysfs_ops, 4229 .default_attrs = md_default_attrs, 4230 }; 4231 4232 int mdp_major = 0; 4233 4234 static void mddev_delayed_delete(struct work_struct *ws) 4235 { 4236 mddev_t *mddev = container_of(ws, mddev_t, del_work); 4237 4238 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4239 kobject_del(&mddev->kobj); 4240 kobject_put(&mddev->kobj); 4241 } 4242 4243 static int md_alloc(dev_t dev, char *name) 4244 { 4245 static DEFINE_MUTEX(disks_mutex); 4246 mddev_t *mddev = mddev_find(dev); 4247 struct gendisk *disk; 4248 int partitioned; 4249 int shift; 4250 int unit; 4251 int error; 4252 4253 if (!mddev) 4254 return -ENODEV; 4255 4256 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4257 shift = partitioned ? MdpMinorShift : 0; 4258 unit = MINOR(mddev->unit) >> shift; 4259 4260 /* wait for any previous instance if this device 4261 * to be completed removed (mddev_delayed_delete). 4262 */ 4263 flush_scheduled_work(); 4264 4265 mutex_lock(&disks_mutex); 4266 error = -EEXIST; 4267 if (mddev->gendisk) 4268 goto abort; 4269 4270 if (name) { 4271 /* Need to ensure that 'name' is not a duplicate. 4272 */ 4273 mddev_t *mddev2; 4274 spin_lock(&all_mddevs_lock); 4275 4276 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4277 if (mddev2->gendisk && 4278 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4279 spin_unlock(&all_mddevs_lock); 4280 goto abort; 4281 } 4282 spin_unlock(&all_mddevs_lock); 4283 } 4284 4285 error = -ENOMEM; 4286 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4287 if (!mddev->queue) 4288 goto abort; 4289 mddev->queue->queuedata = mddev; 4290 4291 /* Can be unlocked because the queue is new: no concurrency */ 4292 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue); 4293 4294 blk_queue_make_request(mddev->queue, md_make_request); 4295 4296 disk = alloc_disk(1 << shift); 4297 if (!disk) { 4298 blk_cleanup_queue(mddev->queue); 4299 mddev->queue = NULL; 4300 goto abort; 4301 } 4302 disk->major = MAJOR(mddev->unit); 4303 disk->first_minor = unit << shift; 4304 if (name) 4305 strcpy(disk->disk_name, name); 4306 else if (partitioned) 4307 sprintf(disk->disk_name, "md_d%d", unit); 4308 else 4309 sprintf(disk->disk_name, "md%d", unit); 4310 disk->fops = &md_fops; 4311 disk->private_data = mddev; 4312 disk->queue = mddev->queue; 4313 /* Allow extended partitions. This makes the 4314 * 'mdp' device redundant, but we can't really 4315 * remove it now. 4316 */ 4317 disk->flags |= GENHD_FL_EXT_DEVT; 4318 add_disk(disk); 4319 mddev->gendisk = disk; 4320 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4321 &disk_to_dev(disk)->kobj, "%s", "md"); 4322 if (error) { 4323 /* This isn't possible, but as kobject_init_and_add is marked 4324 * __must_check, we must do something with the result 4325 */ 4326 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4327 disk->disk_name); 4328 error = 0; 4329 } 4330 if (mddev->kobj.sd && 4331 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4332 printk(KERN_DEBUG "pointless warning\n"); 4333 abort: 4334 mutex_unlock(&disks_mutex); 4335 if (!error && mddev->kobj.sd) { 4336 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4337 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4338 } 4339 mddev_put(mddev); 4340 return error; 4341 } 4342 4343 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4344 { 4345 md_alloc(dev, NULL); 4346 return NULL; 4347 } 4348 4349 static int add_named_array(const char *val, struct kernel_param *kp) 4350 { 4351 /* val must be "md_*" where * is not all digits. 4352 * We allocate an array with a large free minor number, and 4353 * set the name to val. val must not already be an active name. 4354 */ 4355 int len = strlen(val); 4356 char buf[DISK_NAME_LEN]; 4357 4358 while (len && val[len-1] == '\n') 4359 len--; 4360 if (len >= DISK_NAME_LEN) 4361 return -E2BIG; 4362 strlcpy(buf, val, len+1); 4363 if (strncmp(buf, "md_", 3) != 0) 4364 return -EINVAL; 4365 return md_alloc(0, buf); 4366 } 4367 4368 static void md_safemode_timeout(unsigned long data) 4369 { 4370 mddev_t *mddev = (mddev_t *) data; 4371 4372 if (!atomic_read(&mddev->writes_pending)) { 4373 mddev->safemode = 1; 4374 if (mddev->external) 4375 sysfs_notify_dirent_safe(mddev->sysfs_state); 4376 } 4377 md_wakeup_thread(mddev->thread); 4378 } 4379 4380 static int start_dirty_degraded; 4381 4382 int md_run(mddev_t *mddev) 4383 { 4384 int err; 4385 mdk_rdev_t *rdev; 4386 struct mdk_personality *pers; 4387 4388 if (list_empty(&mddev->disks)) 4389 /* cannot run an array with no devices.. */ 4390 return -EINVAL; 4391 4392 if (mddev->pers) 4393 return -EBUSY; 4394 /* Cannot run until previous stop completes properly */ 4395 if (mddev->sysfs_active) 4396 return -EBUSY; 4397 4398 /* 4399 * Analyze all RAID superblock(s) 4400 */ 4401 if (!mddev->raid_disks) { 4402 if (!mddev->persistent) 4403 return -EINVAL; 4404 analyze_sbs(mddev); 4405 } 4406 4407 if (mddev->level != LEVEL_NONE) 4408 request_module("md-level-%d", mddev->level); 4409 else if (mddev->clevel[0]) 4410 request_module("md-%s", mddev->clevel); 4411 4412 /* 4413 * Drop all container device buffers, from now on 4414 * the only valid external interface is through the md 4415 * device. 4416 */ 4417 list_for_each_entry(rdev, &mddev->disks, same_set) { 4418 if (test_bit(Faulty, &rdev->flags)) 4419 continue; 4420 sync_blockdev(rdev->bdev); 4421 invalidate_bdev(rdev->bdev); 4422 4423 /* perform some consistency tests on the device. 4424 * We don't want the data to overlap the metadata, 4425 * Internal Bitmap issues have been handled elsewhere. 4426 */ 4427 if (rdev->data_offset < rdev->sb_start) { 4428 if (mddev->dev_sectors && 4429 rdev->data_offset + mddev->dev_sectors 4430 > rdev->sb_start) { 4431 printk("md: %s: data overlaps metadata\n", 4432 mdname(mddev)); 4433 return -EINVAL; 4434 } 4435 } else { 4436 if (rdev->sb_start + rdev->sb_size/512 4437 > rdev->data_offset) { 4438 printk("md: %s: metadata overlaps data\n", 4439 mdname(mddev)); 4440 return -EINVAL; 4441 } 4442 } 4443 sysfs_notify_dirent_safe(rdev->sysfs_state); 4444 } 4445 4446 spin_lock(&pers_lock); 4447 pers = find_pers(mddev->level, mddev->clevel); 4448 if (!pers || !try_module_get(pers->owner)) { 4449 spin_unlock(&pers_lock); 4450 if (mddev->level != LEVEL_NONE) 4451 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4452 mddev->level); 4453 else 4454 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4455 mddev->clevel); 4456 return -EINVAL; 4457 } 4458 mddev->pers = pers; 4459 spin_unlock(&pers_lock); 4460 if (mddev->level != pers->level) { 4461 mddev->level = pers->level; 4462 mddev->new_level = pers->level; 4463 } 4464 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4465 4466 if (mddev->reshape_position != MaxSector && 4467 pers->start_reshape == NULL) { 4468 /* This personality cannot handle reshaping... */ 4469 mddev->pers = NULL; 4470 module_put(pers->owner); 4471 return -EINVAL; 4472 } 4473 4474 if (pers->sync_request) { 4475 /* Warn if this is a potentially silly 4476 * configuration. 4477 */ 4478 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4479 mdk_rdev_t *rdev2; 4480 int warned = 0; 4481 4482 list_for_each_entry(rdev, &mddev->disks, same_set) 4483 list_for_each_entry(rdev2, &mddev->disks, same_set) { 4484 if (rdev < rdev2 && 4485 rdev->bdev->bd_contains == 4486 rdev2->bdev->bd_contains) { 4487 printk(KERN_WARNING 4488 "%s: WARNING: %s appears to be" 4489 " on the same physical disk as" 4490 " %s.\n", 4491 mdname(mddev), 4492 bdevname(rdev->bdev,b), 4493 bdevname(rdev2->bdev,b2)); 4494 warned = 1; 4495 } 4496 } 4497 4498 if (warned) 4499 printk(KERN_WARNING 4500 "True protection against single-disk" 4501 " failure might be compromised.\n"); 4502 } 4503 4504 mddev->recovery = 0; 4505 /* may be over-ridden by personality */ 4506 mddev->resync_max_sectors = mddev->dev_sectors; 4507 4508 mddev->barriers_work = 1; 4509 mddev->ok_start_degraded = start_dirty_degraded; 4510 4511 if (start_readonly && mddev->ro == 0) 4512 mddev->ro = 2; /* read-only, but switch on first write */ 4513 4514 err = mddev->pers->run(mddev); 4515 if (err) 4516 printk(KERN_ERR "md: pers->run() failed ...\n"); 4517 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 4518 WARN_ONCE(!mddev->external_size, "%s: default size too small," 4519 " but 'external_size' not in effect?\n", __func__); 4520 printk(KERN_ERR 4521 "md: invalid array_size %llu > default size %llu\n", 4522 (unsigned long long)mddev->array_sectors / 2, 4523 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 4524 err = -EINVAL; 4525 mddev->pers->stop(mddev); 4526 } 4527 if (err == 0 && mddev->pers->sync_request) { 4528 err = bitmap_create(mddev); 4529 if (err) { 4530 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 4531 mdname(mddev), err); 4532 mddev->pers->stop(mddev); 4533 } 4534 } 4535 if (err) { 4536 module_put(mddev->pers->owner); 4537 mddev->pers = NULL; 4538 bitmap_destroy(mddev); 4539 return err; 4540 } 4541 if (mddev->pers->sync_request) { 4542 if (mddev->kobj.sd && 4543 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4544 printk(KERN_WARNING 4545 "md: cannot register extra attributes for %s\n", 4546 mdname(mddev)); 4547 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 4548 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 4549 mddev->ro = 0; 4550 4551 atomic_set(&mddev->writes_pending,0); 4552 atomic_set(&mddev->max_corr_read_errors, 4553 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 4554 mddev->safemode = 0; 4555 mddev->safemode_timer.function = md_safemode_timeout; 4556 mddev->safemode_timer.data = (unsigned long) mddev; 4557 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 4558 mddev->in_sync = 1; 4559 4560 list_for_each_entry(rdev, &mddev->disks, same_set) 4561 if (rdev->raid_disk >= 0) { 4562 char nm[20]; 4563 sprintf(nm, "rd%d", rdev->raid_disk); 4564 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 4565 /* failure here is OK */; 4566 } 4567 4568 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4569 4570 if (mddev->flags) 4571 md_update_sb(mddev, 0); 4572 4573 md_wakeup_thread(mddev->thread); 4574 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 4575 4576 md_new_event(mddev); 4577 sysfs_notify_dirent_safe(mddev->sysfs_state); 4578 sysfs_notify_dirent_safe(mddev->sysfs_action); 4579 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4580 return 0; 4581 } 4582 EXPORT_SYMBOL_GPL(md_run); 4583 4584 static int do_md_run(mddev_t *mddev) 4585 { 4586 int err; 4587 4588 err = md_run(mddev); 4589 if (err) 4590 goto out; 4591 err = bitmap_load(mddev); 4592 if (err) { 4593 bitmap_destroy(mddev); 4594 goto out; 4595 } 4596 set_capacity(mddev->gendisk, mddev->array_sectors); 4597 revalidate_disk(mddev->gendisk); 4598 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4599 out: 4600 return err; 4601 } 4602 4603 static int restart_array(mddev_t *mddev) 4604 { 4605 struct gendisk *disk = mddev->gendisk; 4606 4607 /* Complain if it has no devices */ 4608 if (list_empty(&mddev->disks)) 4609 return -ENXIO; 4610 if (!mddev->pers) 4611 return -EINVAL; 4612 if (!mddev->ro) 4613 return -EBUSY; 4614 mddev->safemode = 0; 4615 mddev->ro = 0; 4616 set_disk_ro(disk, 0); 4617 printk(KERN_INFO "md: %s switched to read-write mode.\n", 4618 mdname(mddev)); 4619 /* Kick recovery or resync if necessary */ 4620 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4621 md_wakeup_thread(mddev->thread); 4622 md_wakeup_thread(mddev->sync_thread); 4623 sysfs_notify_dirent_safe(mddev->sysfs_state); 4624 return 0; 4625 } 4626 4627 /* similar to deny_write_access, but accounts for our holding a reference 4628 * to the file ourselves */ 4629 static int deny_bitmap_write_access(struct file * file) 4630 { 4631 struct inode *inode = file->f_mapping->host; 4632 4633 spin_lock(&inode->i_lock); 4634 if (atomic_read(&inode->i_writecount) > 1) { 4635 spin_unlock(&inode->i_lock); 4636 return -ETXTBSY; 4637 } 4638 atomic_set(&inode->i_writecount, -1); 4639 spin_unlock(&inode->i_lock); 4640 4641 return 0; 4642 } 4643 4644 void restore_bitmap_write_access(struct file *file) 4645 { 4646 struct inode *inode = file->f_mapping->host; 4647 4648 spin_lock(&inode->i_lock); 4649 atomic_set(&inode->i_writecount, 1); 4650 spin_unlock(&inode->i_lock); 4651 } 4652 4653 static void md_clean(mddev_t *mddev) 4654 { 4655 mddev->array_sectors = 0; 4656 mddev->external_size = 0; 4657 mddev->dev_sectors = 0; 4658 mddev->raid_disks = 0; 4659 mddev->recovery_cp = 0; 4660 mddev->resync_min = 0; 4661 mddev->resync_max = MaxSector; 4662 mddev->reshape_position = MaxSector; 4663 mddev->external = 0; 4664 mddev->persistent = 0; 4665 mddev->level = LEVEL_NONE; 4666 mddev->clevel[0] = 0; 4667 mddev->flags = 0; 4668 mddev->ro = 0; 4669 mddev->metadata_type[0] = 0; 4670 mddev->chunk_sectors = 0; 4671 mddev->ctime = mddev->utime = 0; 4672 mddev->layout = 0; 4673 mddev->max_disks = 0; 4674 mddev->events = 0; 4675 mddev->can_decrease_events = 0; 4676 mddev->delta_disks = 0; 4677 mddev->new_level = LEVEL_NONE; 4678 mddev->new_layout = 0; 4679 mddev->new_chunk_sectors = 0; 4680 mddev->curr_resync = 0; 4681 mddev->resync_mismatches = 0; 4682 mddev->suspend_lo = mddev->suspend_hi = 0; 4683 mddev->sync_speed_min = mddev->sync_speed_max = 0; 4684 mddev->recovery = 0; 4685 mddev->in_sync = 0; 4686 mddev->degraded = 0; 4687 mddev->barriers_work = 0; 4688 mddev->safemode = 0; 4689 mddev->bitmap_info.offset = 0; 4690 mddev->bitmap_info.default_offset = 0; 4691 mddev->bitmap_info.chunksize = 0; 4692 mddev->bitmap_info.daemon_sleep = 0; 4693 mddev->bitmap_info.max_write_behind = 0; 4694 mddev->plug = NULL; 4695 } 4696 4697 void md_stop_writes(mddev_t *mddev) 4698 { 4699 if (mddev->sync_thread) { 4700 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4701 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4702 md_unregister_thread(mddev->sync_thread); 4703 mddev->sync_thread = NULL; 4704 } 4705 4706 del_timer_sync(&mddev->safemode_timer); 4707 4708 bitmap_flush(mddev); 4709 md_super_wait(mddev); 4710 4711 if (!mddev->in_sync || mddev->flags) { 4712 /* mark array as shutdown cleanly */ 4713 mddev->in_sync = 1; 4714 md_update_sb(mddev, 1); 4715 } 4716 } 4717 EXPORT_SYMBOL_GPL(md_stop_writes); 4718 4719 void md_stop(mddev_t *mddev) 4720 { 4721 mddev->pers->stop(mddev); 4722 if (mddev->pers->sync_request && mddev->to_remove == NULL) 4723 mddev->to_remove = &md_redundancy_group; 4724 module_put(mddev->pers->owner); 4725 mddev->pers = NULL; 4726 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4727 } 4728 EXPORT_SYMBOL_GPL(md_stop); 4729 4730 static int md_set_readonly(mddev_t *mddev, int is_open) 4731 { 4732 int err = 0; 4733 mutex_lock(&mddev->open_mutex); 4734 if (atomic_read(&mddev->openers) > is_open) { 4735 printk("md: %s still in use.\n",mdname(mddev)); 4736 err = -EBUSY; 4737 goto out; 4738 } 4739 if (mddev->pers) { 4740 md_stop_writes(mddev); 4741 4742 err = -ENXIO; 4743 if (mddev->ro==1) 4744 goto out; 4745 mddev->ro = 1; 4746 set_disk_ro(mddev->gendisk, 1); 4747 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4748 sysfs_notify_dirent_safe(mddev->sysfs_state); 4749 err = 0; 4750 } 4751 out: 4752 mutex_unlock(&mddev->open_mutex); 4753 return err; 4754 } 4755 4756 /* mode: 4757 * 0 - completely stop and dis-assemble array 4758 * 2 - stop but do not disassemble array 4759 */ 4760 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 4761 { 4762 struct gendisk *disk = mddev->gendisk; 4763 mdk_rdev_t *rdev; 4764 4765 mutex_lock(&mddev->open_mutex); 4766 if (atomic_read(&mddev->openers) > is_open || 4767 mddev->sysfs_active) { 4768 printk("md: %s still in use.\n",mdname(mddev)); 4769 mutex_unlock(&mddev->open_mutex); 4770 return -EBUSY; 4771 } 4772 4773 if (mddev->pers) { 4774 if (mddev->ro) 4775 set_disk_ro(disk, 0); 4776 4777 md_stop_writes(mddev); 4778 md_stop(mddev); 4779 mddev->queue->merge_bvec_fn = NULL; 4780 mddev->queue->unplug_fn = NULL; 4781 mddev->queue->backing_dev_info.congested_fn = NULL; 4782 4783 /* tell userspace to handle 'inactive' */ 4784 sysfs_notify_dirent_safe(mddev->sysfs_state); 4785 4786 list_for_each_entry(rdev, &mddev->disks, same_set) 4787 if (rdev->raid_disk >= 0) { 4788 char nm[20]; 4789 sprintf(nm, "rd%d", rdev->raid_disk); 4790 sysfs_remove_link(&mddev->kobj, nm); 4791 } 4792 4793 set_capacity(disk, 0); 4794 mutex_unlock(&mddev->open_mutex); 4795 revalidate_disk(disk); 4796 4797 if (mddev->ro) 4798 mddev->ro = 0; 4799 } else 4800 mutex_unlock(&mddev->open_mutex); 4801 /* 4802 * Free resources if final stop 4803 */ 4804 if (mode == 0) { 4805 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 4806 4807 bitmap_destroy(mddev); 4808 if (mddev->bitmap_info.file) { 4809 restore_bitmap_write_access(mddev->bitmap_info.file); 4810 fput(mddev->bitmap_info.file); 4811 mddev->bitmap_info.file = NULL; 4812 } 4813 mddev->bitmap_info.offset = 0; 4814 4815 export_array(mddev); 4816 4817 md_clean(mddev); 4818 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4819 if (mddev->hold_active == UNTIL_STOP) 4820 mddev->hold_active = 0; 4821 } 4822 blk_integrity_unregister(disk); 4823 md_new_event(mddev); 4824 sysfs_notify_dirent_safe(mddev->sysfs_state); 4825 return 0; 4826 } 4827 4828 #ifndef MODULE 4829 static void autorun_array(mddev_t *mddev) 4830 { 4831 mdk_rdev_t *rdev; 4832 int err; 4833 4834 if (list_empty(&mddev->disks)) 4835 return; 4836 4837 printk(KERN_INFO "md: running: "); 4838 4839 list_for_each_entry(rdev, &mddev->disks, same_set) { 4840 char b[BDEVNAME_SIZE]; 4841 printk("<%s>", bdevname(rdev->bdev,b)); 4842 } 4843 printk("\n"); 4844 4845 err = do_md_run(mddev); 4846 if (err) { 4847 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 4848 do_md_stop(mddev, 0, 0); 4849 } 4850 } 4851 4852 /* 4853 * lets try to run arrays based on all disks that have arrived 4854 * until now. (those are in pending_raid_disks) 4855 * 4856 * the method: pick the first pending disk, collect all disks with 4857 * the same UUID, remove all from the pending list and put them into 4858 * the 'same_array' list. Then order this list based on superblock 4859 * update time (freshest comes first), kick out 'old' disks and 4860 * compare superblocks. If everything's fine then run it. 4861 * 4862 * If "unit" is allocated, then bump its reference count 4863 */ 4864 static void autorun_devices(int part) 4865 { 4866 mdk_rdev_t *rdev0, *rdev, *tmp; 4867 mddev_t *mddev; 4868 char b[BDEVNAME_SIZE]; 4869 4870 printk(KERN_INFO "md: autorun ...\n"); 4871 while (!list_empty(&pending_raid_disks)) { 4872 int unit; 4873 dev_t dev; 4874 LIST_HEAD(candidates); 4875 rdev0 = list_entry(pending_raid_disks.next, 4876 mdk_rdev_t, same_set); 4877 4878 printk(KERN_INFO "md: considering %s ...\n", 4879 bdevname(rdev0->bdev,b)); 4880 INIT_LIST_HEAD(&candidates); 4881 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 4882 if (super_90_load(rdev, rdev0, 0) >= 0) { 4883 printk(KERN_INFO "md: adding %s ...\n", 4884 bdevname(rdev->bdev,b)); 4885 list_move(&rdev->same_set, &candidates); 4886 } 4887 /* 4888 * now we have a set of devices, with all of them having 4889 * mostly sane superblocks. It's time to allocate the 4890 * mddev. 4891 */ 4892 if (part) { 4893 dev = MKDEV(mdp_major, 4894 rdev0->preferred_minor << MdpMinorShift); 4895 unit = MINOR(dev) >> MdpMinorShift; 4896 } else { 4897 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4898 unit = MINOR(dev); 4899 } 4900 if (rdev0->preferred_minor != unit) { 4901 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4902 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4903 break; 4904 } 4905 4906 md_probe(dev, NULL, NULL); 4907 mddev = mddev_find(dev); 4908 if (!mddev || !mddev->gendisk) { 4909 if (mddev) 4910 mddev_put(mddev); 4911 printk(KERN_ERR 4912 "md: cannot allocate memory for md drive.\n"); 4913 break; 4914 } 4915 if (mddev_lock(mddev)) 4916 printk(KERN_WARNING "md: %s locked, cannot run\n", 4917 mdname(mddev)); 4918 else if (mddev->raid_disks || mddev->major_version 4919 || !list_empty(&mddev->disks)) { 4920 printk(KERN_WARNING 4921 "md: %s already running, cannot run %s\n", 4922 mdname(mddev), bdevname(rdev0->bdev,b)); 4923 mddev_unlock(mddev); 4924 } else { 4925 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4926 mddev->persistent = 1; 4927 rdev_for_each_list(rdev, tmp, &candidates) { 4928 list_del_init(&rdev->same_set); 4929 if (bind_rdev_to_array(rdev, mddev)) 4930 export_rdev(rdev); 4931 } 4932 autorun_array(mddev); 4933 mddev_unlock(mddev); 4934 } 4935 /* on success, candidates will be empty, on error 4936 * it won't... 4937 */ 4938 rdev_for_each_list(rdev, tmp, &candidates) { 4939 list_del_init(&rdev->same_set); 4940 export_rdev(rdev); 4941 } 4942 mddev_put(mddev); 4943 } 4944 printk(KERN_INFO "md: ... autorun DONE.\n"); 4945 } 4946 #endif /* !MODULE */ 4947 4948 static int get_version(void __user * arg) 4949 { 4950 mdu_version_t ver; 4951 4952 ver.major = MD_MAJOR_VERSION; 4953 ver.minor = MD_MINOR_VERSION; 4954 ver.patchlevel = MD_PATCHLEVEL_VERSION; 4955 4956 if (copy_to_user(arg, &ver, sizeof(ver))) 4957 return -EFAULT; 4958 4959 return 0; 4960 } 4961 4962 static int get_array_info(mddev_t * mddev, void __user * arg) 4963 { 4964 mdu_array_info_t info; 4965 int nr,working,insync,failed,spare; 4966 mdk_rdev_t *rdev; 4967 4968 nr=working=insync=failed=spare=0; 4969 list_for_each_entry(rdev, &mddev->disks, same_set) { 4970 nr++; 4971 if (test_bit(Faulty, &rdev->flags)) 4972 failed++; 4973 else { 4974 working++; 4975 if (test_bit(In_sync, &rdev->flags)) 4976 insync++; 4977 else 4978 spare++; 4979 } 4980 } 4981 4982 info.major_version = mddev->major_version; 4983 info.minor_version = mddev->minor_version; 4984 info.patch_version = MD_PATCHLEVEL_VERSION; 4985 info.ctime = mddev->ctime; 4986 info.level = mddev->level; 4987 info.size = mddev->dev_sectors / 2; 4988 if (info.size != mddev->dev_sectors / 2) /* overflow */ 4989 info.size = -1; 4990 info.nr_disks = nr; 4991 info.raid_disks = mddev->raid_disks; 4992 info.md_minor = mddev->md_minor; 4993 info.not_persistent= !mddev->persistent; 4994 4995 info.utime = mddev->utime; 4996 info.state = 0; 4997 if (mddev->in_sync) 4998 info.state = (1<<MD_SB_CLEAN); 4999 if (mddev->bitmap && mddev->bitmap_info.offset) 5000 info.state = (1<<MD_SB_BITMAP_PRESENT); 5001 info.active_disks = insync; 5002 info.working_disks = working; 5003 info.failed_disks = failed; 5004 info.spare_disks = spare; 5005 5006 info.layout = mddev->layout; 5007 info.chunk_size = mddev->chunk_sectors << 9; 5008 5009 if (copy_to_user(arg, &info, sizeof(info))) 5010 return -EFAULT; 5011 5012 return 0; 5013 } 5014 5015 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 5016 { 5017 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5018 char *ptr, *buf = NULL; 5019 int err = -ENOMEM; 5020 5021 if (md_allow_write(mddev)) 5022 file = kmalloc(sizeof(*file), GFP_NOIO); 5023 else 5024 file = kmalloc(sizeof(*file), GFP_KERNEL); 5025 5026 if (!file) 5027 goto out; 5028 5029 /* bitmap disabled, zero the first byte and copy out */ 5030 if (!mddev->bitmap || !mddev->bitmap->file) { 5031 file->pathname[0] = '\0'; 5032 goto copy_out; 5033 } 5034 5035 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5036 if (!buf) 5037 goto out; 5038 5039 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 5040 if (IS_ERR(ptr)) 5041 goto out; 5042 5043 strcpy(file->pathname, ptr); 5044 5045 copy_out: 5046 err = 0; 5047 if (copy_to_user(arg, file, sizeof(*file))) 5048 err = -EFAULT; 5049 out: 5050 kfree(buf); 5051 kfree(file); 5052 return err; 5053 } 5054 5055 static int get_disk_info(mddev_t * mddev, void __user * arg) 5056 { 5057 mdu_disk_info_t info; 5058 mdk_rdev_t *rdev; 5059 5060 if (copy_from_user(&info, arg, sizeof(info))) 5061 return -EFAULT; 5062 5063 rdev = find_rdev_nr(mddev, info.number); 5064 if (rdev) { 5065 info.major = MAJOR(rdev->bdev->bd_dev); 5066 info.minor = MINOR(rdev->bdev->bd_dev); 5067 info.raid_disk = rdev->raid_disk; 5068 info.state = 0; 5069 if (test_bit(Faulty, &rdev->flags)) 5070 info.state |= (1<<MD_DISK_FAULTY); 5071 else if (test_bit(In_sync, &rdev->flags)) { 5072 info.state |= (1<<MD_DISK_ACTIVE); 5073 info.state |= (1<<MD_DISK_SYNC); 5074 } 5075 if (test_bit(WriteMostly, &rdev->flags)) 5076 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5077 } else { 5078 info.major = info.minor = 0; 5079 info.raid_disk = -1; 5080 info.state = (1<<MD_DISK_REMOVED); 5081 } 5082 5083 if (copy_to_user(arg, &info, sizeof(info))) 5084 return -EFAULT; 5085 5086 return 0; 5087 } 5088 5089 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 5090 { 5091 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5092 mdk_rdev_t *rdev; 5093 dev_t dev = MKDEV(info->major,info->minor); 5094 5095 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5096 return -EOVERFLOW; 5097 5098 if (!mddev->raid_disks) { 5099 int err; 5100 /* expecting a device which has a superblock */ 5101 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5102 if (IS_ERR(rdev)) { 5103 printk(KERN_WARNING 5104 "md: md_import_device returned %ld\n", 5105 PTR_ERR(rdev)); 5106 return PTR_ERR(rdev); 5107 } 5108 if (!list_empty(&mddev->disks)) { 5109 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 5110 mdk_rdev_t, same_set); 5111 err = super_types[mddev->major_version] 5112 .load_super(rdev, rdev0, mddev->minor_version); 5113 if (err < 0) { 5114 printk(KERN_WARNING 5115 "md: %s has different UUID to %s\n", 5116 bdevname(rdev->bdev,b), 5117 bdevname(rdev0->bdev,b2)); 5118 export_rdev(rdev); 5119 return -EINVAL; 5120 } 5121 } 5122 err = bind_rdev_to_array(rdev, mddev); 5123 if (err) 5124 export_rdev(rdev); 5125 return err; 5126 } 5127 5128 /* 5129 * add_new_disk can be used once the array is assembled 5130 * to add "hot spares". They must already have a superblock 5131 * written 5132 */ 5133 if (mddev->pers) { 5134 int err; 5135 if (!mddev->pers->hot_add_disk) { 5136 printk(KERN_WARNING 5137 "%s: personality does not support diskops!\n", 5138 mdname(mddev)); 5139 return -EINVAL; 5140 } 5141 if (mddev->persistent) 5142 rdev = md_import_device(dev, mddev->major_version, 5143 mddev->minor_version); 5144 else 5145 rdev = md_import_device(dev, -1, -1); 5146 if (IS_ERR(rdev)) { 5147 printk(KERN_WARNING 5148 "md: md_import_device returned %ld\n", 5149 PTR_ERR(rdev)); 5150 return PTR_ERR(rdev); 5151 } 5152 /* set save_raid_disk if appropriate */ 5153 if (!mddev->persistent) { 5154 if (info->state & (1<<MD_DISK_SYNC) && 5155 info->raid_disk < mddev->raid_disks) 5156 rdev->raid_disk = info->raid_disk; 5157 else 5158 rdev->raid_disk = -1; 5159 } else 5160 super_types[mddev->major_version]. 5161 validate_super(mddev, rdev); 5162 rdev->saved_raid_disk = rdev->raid_disk; 5163 5164 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5165 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5166 set_bit(WriteMostly, &rdev->flags); 5167 else 5168 clear_bit(WriteMostly, &rdev->flags); 5169 5170 rdev->raid_disk = -1; 5171 err = bind_rdev_to_array(rdev, mddev); 5172 if (!err && !mddev->pers->hot_remove_disk) { 5173 /* If there is hot_add_disk but no hot_remove_disk 5174 * then added disks for geometry changes, 5175 * and should be added immediately. 5176 */ 5177 super_types[mddev->major_version]. 5178 validate_super(mddev, rdev); 5179 err = mddev->pers->hot_add_disk(mddev, rdev); 5180 if (err) 5181 unbind_rdev_from_array(rdev); 5182 } 5183 if (err) 5184 export_rdev(rdev); 5185 else 5186 sysfs_notify_dirent_safe(rdev->sysfs_state); 5187 5188 md_update_sb(mddev, 1); 5189 if (mddev->degraded) 5190 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5191 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5192 md_wakeup_thread(mddev->thread); 5193 return err; 5194 } 5195 5196 /* otherwise, add_new_disk is only allowed 5197 * for major_version==0 superblocks 5198 */ 5199 if (mddev->major_version != 0) { 5200 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5201 mdname(mddev)); 5202 return -EINVAL; 5203 } 5204 5205 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5206 int err; 5207 rdev = md_import_device(dev, -1, 0); 5208 if (IS_ERR(rdev)) { 5209 printk(KERN_WARNING 5210 "md: error, md_import_device() returned %ld\n", 5211 PTR_ERR(rdev)); 5212 return PTR_ERR(rdev); 5213 } 5214 rdev->desc_nr = info->number; 5215 if (info->raid_disk < mddev->raid_disks) 5216 rdev->raid_disk = info->raid_disk; 5217 else 5218 rdev->raid_disk = -1; 5219 5220 if (rdev->raid_disk < mddev->raid_disks) 5221 if (info->state & (1<<MD_DISK_SYNC)) 5222 set_bit(In_sync, &rdev->flags); 5223 5224 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5225 set_bit(WriteMostly, &rdev->flags); 5226 5227 if (!mddev->persistent) { 5228 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5229 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 5230 } else 5231 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 5232 rdev->sectors = rdev->sb_start; 5233 5234 err = bind_rdev_to_array(rdev, mddev); 5235 if (err) { 5236 export_rdev(rdev); 5237 return err; 5238 } 5239 } 5240 5241 return 0; 5242 } 5243 5244 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 5245 { 5246 char b[BDEVNAME_SIZE]; 5247 mdk_rdev_t *rdev; 5248 5249 rdev = find_rdev(mddev, dev); 5250 if (!rdev) 5251 return -ENXIO; 5252 5253 if (rdev->raid_disk >= 0) 5254 goto busy; 5255 5256 kick_rdev_from_array(rdev); 5257 md_update_sb(mddev, 1); 5258 md_new_event(mddev); 5259 5260 return 0; 5261 busy: 5262 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5263 bdevname(rdev->bdev,b), mdname(mddev)); 5264 return -EBUSY; 5265 } 5266 5267 static int hot_add_disk(mddev_t * mddev, dev_t dev) 5268 { 5269 char b[BDEVNAME_SIZE]; 5270 int err; 5271 mdk_rdev_t *rdev; 5272 5273 if (!mddev->pers) 5274 return -ENODEV; 5275 5276 if (mddev->major_version != 0) { 5277 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5278 " version-0 superblocks.\n", 5279 mdname(mddev)); 5280 return -EINVAL; 5281 } 5282 if (!mddev->pers->hot_add_disk) { 5283 printk(KERN_WARNING 5284 "%s: personality does not support diskops!\n", 5285 mdname(mddev)); 5286 return -EINVAL; 5287 } 5288 5289 rdev = md_import_device(dev, -1, 0); 5290 if (IS_ERR(rdev)) { 5291 printk(KERN_WARNING 5292 "md: error, md_import_device() returned %ld\n", 5293 PTR_ERR(rdev)); 5294 return -EINVAL; 5295 } 5296 5297 if (mddev->persistent) 5298 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 5299 else 5300 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 5301 5302 rdev->sectors = rdev->sb_start; 5303 5304 if (test_bit(Faulty, &rdev->flags)) { 5305 printk(KERN_WARNING 5306 "md: can not hot-add faulty %s disk to %s!\n", 5307 bdevname(rdev->bdev,b), mdname(mddev)); 5308 err = -EINVAL; 5309 goto abort_export; 5310 } 5311 clear_bit(In_sync, &rdev->flags); 5312 rdev->desc_nr = -1; 5313 rdev->saved_raid_disk = -1; 5314 err = bind_rdev_to_array(rdev, mddev); 5315 if (err) 5316 goto abort_export; 5317 5318 /* 5319 * The rest should better be atomic, we can have disk failures 5320 * noticed in interrupt contexts ... 5321 */ 5322 5323 rdev->raid_disk = -1; 5324 5325 md_update_sb(mddev, 1); 5326 5327 /* 5328 * Kick recovery, maybe this spare has to be added to the 5329 * array immediately. 5330 */ 5331 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5332 md_wakeup_thread(mddev->thread); 5333 md_new_event(mddev); 5334 return 0; 5335 5336 abort_export: 5337 export_rdev(rdev); 5338 return err; 5339 } 5340 5341 static int set_bitmap_file(mddev_t *mddev, int fd) 5342 { 5343 int err; 5344 5345 if (mddev->pers) { 5346 if (!mddev->pers->quiesce) 5347 return -EBUSY; 5348 if (mddev->recovery || mddev->sync_thread) 5349 return -EBUSY; 5350 /* we should be able to change the bitmap.. */ 5351 } 5352 5353 5354 if (fd >= 0) { 5355 if (mddev->bitmap) 5356 return -EEXIST; /* cannot add when bitmap is present */ 5357 mddev->bitmap_info.file = fget(fd); 5358 5359 if (mddev->bitmap_info.file == NULL) { 5360 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5361 mdname(mddev)); 5362 return -EBADF; 5363 } 5364 5365 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5366 if (err) { 5367 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5368 mdname(mddev)); 5369 fput(mddev->bitmap_info.file); 5370 mddev->bitmap_info.file = NULL; 5371 return err; 5372 } 5373 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5374 } else if (mddev->bitmap == NULL) 5375 return -ENOENT; /* cannot remove what isn't there */ 5376 err = 0; 5377 if (mddev->pers) { 5378 mddev->pers->quiesce(mddev, 1); 5379 if (fd >= 0) { 5380 err = bitmap_create(mddev); 5381 if (!err) 5382 err = bitmap_load(mddev); 5383 } 5384 if (fd < 0 || err) { 5385 bitmap_destroy(mddev); 5386 fd = -1; /* make sure to put the file */ 5387 } 5388 mddev->pers->quiesce(mddev, 0); 5389 } 5390 if (fd < 0) { 5391 if (mddev->bitmap_info.file) { 5392 restore_bitmap_write_access(mddev->bitmap_info.file); 5393 fput(mddev->bitmap_info.file); 5394 } 5395 mddev->bitmap_info.file = NULL; 5396 } 5397 5398 return err; 5399 } 5400 5401 /* 5402 * set_array_info is used two different ways 5403 * The original usage is when creating a new array. 5404 * In this usage, raid_disks is > 0 and it together with 5405 * level, size, not_persistent,layout,chunksize determine the 5406 * shape of the array. 5407 * This will always create an array with a type-0.90.0 superblock. 5408 * The newer usage is when assembling an array. 5409 * In this case raid_disks will be 0, and the major_version field is 5410 * use to determine which style super-blocks are to be found on the devices. 5411 * The minor and patch _version numbers are also kept incase the 5412 * super_block handler wishes to interpret them. 5413 */ 5414 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 5415 { 5416 5417 if (info->raid_disks == 0) { 5418 /* just setting version number for superblock loading */ 5419 if (info->major_version < 0 || 5420 info->major_version >= ARRAY_SIZE(super_types) || 5421 super_types[info->major_version].name == NULL) { 5422 /* maybe try to auto-load a module? */ 5423 printk(KERN_INFO 5424 "md: superblock version %d not known\n", 5425 info->major_version); 5426 return -EINVAL; 5427 } 5428 mddev->major_version = info->major_version; 5429 mddev->minor_version = info->minor_version; 5430 mddev->patch_version = info->patch_version; 5431 mddev->persistent = !info->not_persistent; 5432 /* ensure mddev_put doesn't delete this now that there 5433 * is some minimal configuration. 5434 */ 5435 mddev->ctime = get_seconds(); 5436 return 0; 5437 } 5438 mddev->major_version = MD_MAJOR_VERSION; 5439 mddev->minor_version = MD_MINOR_VERSION; 5440 mddev->patch_version = MD_PATCHLEVEL_VERSION; 5441 mddev->ctime = get_seconds(); 5442 5443 mddev->level = info->level; 5444 mddev->clevel[0] = 0; 5445 mddev->dev_sectors = 2 * (sector_t)info->size; 5446 mddev->raid_disks = info->raid_disks; 5447 /* don't set md_minor, it is determined by which /dev/md* was 5448 * openned 5449 */ 5450 if (info->state & (1<<MD_SB_CLEAN)) 5451 mddev->recovery_cp = MaxSector; 5452 else 5453 mddev->recovery_cp = 0; 5454 mddev->persistent = ! info->not_persistent; 5455 mddev->external = 0; 5456 5457 mddev->layout = info->layout; 5458 mddev->chunk_sectors = info->chunk_size >> 9; 5459 5460 mddev->max_disks = MD_SB_DISKS; 5461 5462 if (mddev->persistent) 5463 mddev->flags = 0; 5464 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5465 5466 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 5467 mddev->bitmap_info.offset = 0; 5468 5469 mddev->reshape_position = MaxSector; 5470 5471 /* 5472 * Generate a 128 bit UUID 5473 */ 5474 get_random_bytes(mddev->uuid, 16); 5475 5476 mddev->new_level = mddev->level; 5477 mddev->new_chunk_sectors = mddev->chunk_sectors; 5478 mddev->new_layout = mddev->layout; 5479 mddev->delta_disks = 0; 5480 5481 return 0; 5482 } 5483 5484 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors) 5485 { 5486 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 5487 5488 if (mddev->external_size) 5489 return; 5490 5491 mddev->array_sectors = array_sectors; 5492 } 5493 EXPORT_SYMBOL(md_set_array_sectors); 5494 5495 static int update_size(mddev_t *mddev, sector_t num_sectors) 5496 { 5497 mdk_rdev_t *rdev; 5498 int rv; 5499 int fit = (num_sectors == 0); 5500 5501 if (mddev->pers->resize == NULL) 5502 return -EINVAL; 5503 /* The "num_sectors" is the number of sectors of each device that 5504 * is used. This can only make sense for arrays with redundancy. 5505 * linear and raid0 always use whatever space is available. We can only 5506 * consider changing this number if no resync or reconstruction is 5507 * happening, and if the new size is acceptable. It must fit before the 5508 * sb_start or, if that is <data_offset, it must fit before the size 5509 * of each device. If num_sectors is zero, we find the largest size 5510 * that fits. 5511 5512 */ 5513 if (mddev->sync_thread) 5514 return -EBUSY; 5515 if (mddev->bitmap) 5516 /* Sorry, cannot grow a bitmap yet, just remove it, 5517 * grow, and re-add. 5518 */ 5519 return -EBUSY; 5520 list_for_each_entry(rdev, &mddev->disks, same_set) { 5521 sector_t avail = rdev->sectors; 5522 5523 if (fit && (num_sectors == 0 || num_sectors > avail)) 5524 num_sectors = avail; 5525 if (avail < num_sectors) 5526 return -ENOSPC; 5527 } 5528 rv = mddev->pers->resize(mddev, num_sectors); 5529 if (!rv) 5530 revalidate_disk(mddev->gendisk); 5531 return rv; 5532 } 5533 5534 static int update_raid_disks(mddev_t *mddev, int raid_disks) 5535 { 5536 int rv; 5537 /* change the number of raid disks */ 5538 if (mddev->pers->check_reshape == NULL) 5539 return -EINVAL; 5540 if (raid_disks <= 0 || 5541 (mddev->max_disks && raid_disks >= mddev->max_disks)) 5542 return -EINVAL; 5543 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 5544 return -EBUSY; 5545 mddev->delta_disks = raid_disks - mddev->raid_disks; 5546 5547 rv = mddev->pers->check_reshape(mddev); 5548 return rv; 5549 } 5550 5551 5552 /* 5553 * update_array_info is used to change the configuration of an 5554 * on-line array. 5555 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 5556 * fields in the info are checked against the array. 5557 * Any differences that cannot be handled will cause an error. 5558 * Normally, only one change can be managed at a time. 5559 */ 5560 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 5561 { 5562 int rv = 0; 5563 int cnt = 0; 5564 int state = 0; 5565 5566 /* calculate expected state,ignoring low bits */ 5567 if (mddev->bitmap && mddev->bitmap_info.offset) 5568 state |= (1 << MD_SB_BITMAP_PRESENT); 5569 5570 if (mddev->major_version != info->major_version || 5571 mddev->minor_version != info->minor_version || 5572 /* mddev->patch_version != info->patch_version || */ 5573 mddev->ctime != info->ctime || 5574 mddev->level != info->level || 5575 /* mddev->layout != info->layout || */ 5576 !mddev->persistent != info->not_persistent|| 5577 mddev->chunk_sectors != info->chunk_size >> 9 || 5578 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 5579 ((state^info->state) & 0xfffffe00) 5580 ) 5581 return -EINVAL; 5582 /* Check there is only one change */ 5583 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5584 cnt++; 5585 if (mddev->raid_disks != info->raid_disks) 5586 cnt++; 5587 if (mddev->layout != info->layout) 5588 cnt++; 5589 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 5590 cnt++; 5591 if (cnt == 0) 5592 return 0; 5593 if (cnt > 1) 5594 return -EINVAL; 5595 5596 if (mddev->layout != info->layout) { 5597 /* Change layout 5598 * we don't need to do anything at the md level, the 5599 * personality will take care of it all. 5600 */ 5601 if (mddev->pers->check_reshape == NULL) 5602 return -EINVAL; 5603 else { 5604 mddev->new_layout = info->layout; 5605 rv = mddev->pers->check_reshape(mddev); 5606 if (rv) 5607 mddev->new_layout = mddev->layout; 5608 return rv; 5609 } 5610 } 5611 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5612 rv = update_size(mddev, (sector_t)info->size * 2); 5613 5614 if (mddev->raid_disks != info->raid_disks) 5615 rv = update_raid_disks(mddev, info->raid_disks); 5616 5617 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 5618 if (mddev->pers->quiesce == NULL) 5619 return -EINVAL; 5620 if (mddev->recovery || mddev->sync_thread) 5621 return -EBUSY; 5622 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 5623 /* add the bitmap */ 5624 if (mddev->bitmap) 5625 return -EEXIST; 5626 if (mddev->bitmap_info.default_offset == 0) 5627 return -EINVAL; 5628 mddev->bitmap_info.offset = 5629 mddev->bitmap_info.default_offset; 5630 mddev->pers->quiesce(mddev, 1); 5631 rv = bitmap_create(mddev); 5632 if (!rv) 5633 rv = bitmap_load(mddev); 5634 if (rv) 5635 bitmap_destroy(mddev); 5636 mddev->pers->quiesce(mddev, 0); 5637 } else { 5638 /* remove the bitmap */ 5639 if (!mddev->bitmap) 5640 return -ENOENT; 5641 if (mddev->bitmap->file) 5642 return -EINVAL; 5643 mddev->pers->quiesce(mddev, 1); 5644 bitmap_destroy(mddev); 5645 mddev->pers->quiesce(mddev, 0); 5646 mddev->bitmap_info.offset = 0; 5647 } 5648 } 5649 md_update_sb(mddev, 1); 5650 return rv; 5651 } 5652 5653 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 5654 { 5655 mdk_rdev_t *rdev; 5656 5657 if (mddev->pers == NULL) 5658 return -ENODEV; 5659 5660 rdev = find_rdev(mddev, dev); 5661 if (!rdev) 5662 return -ENODEV; 5663 5664 md_error(mddev, rdev); 5665 return 0; 5666 } 5667 5668 /* 5669 * We have a problem here : there is no easy way to give a CHS 5670 * virtual geometry. We currently pretend that we have a 2 heads 5671 * 4 sectors (with a BIG number of cylinders...). This drives 5672 * dosfs just mad... ;-) 5673 */ 5674 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 5675 { 5676 mddev_t *mddev = bdev->bd_disk->private_data; 5677 5678 geo->heads = 2; 5679 geo->sectors = 4; 5680 geo->cylinders = mddev->array_sectors / 8; 5681 return 0; 5682 } 5683 5684 static int md_ioctl(struct block_device *bdev, fmode_t mode, 5685 unsigned int cmd, unsigned long arg) 5686 { 5687 int err = 0; 5688 void __user *argp = (void __user *)arg; 5689 mddev_t *mddev = NULL; 5690 int ro; 5691 5692 if (!capable(CAP_SYS_ADMIN)) 5693 return -EACCES; 5694 5695 /* 5696 * Commands dealing with the RAID driver but not any 5697 * particular array: 5698 */ 5699 switch (cmd) 5700 { 5701 case RAID_VERSION: 5702 err = get_version(argp); 5703 goto done; 5704 5705 case PRINT_RAID_DEBUG: 5706 err = 0; 5707 md_print_devices(); 5708 goto done; 5709 5710 #ifndef MODULE 5711 case RAID_AUTORUN: 5712 err = 0; 5713 autostart_arrays(arg); 5714 goto done; 5715 #endif 5716 default:; 5717 } 5718 5719 /* 5720 * Commands creating/starting a new array: 5721 */ 5722 5723 mddev = bdev->bd_disk->private_data; 5724 5725 if (!mddev) { 5726 BUG(); 5727 goto abort; 5728 } 5729 5730 err = mddev_lock(mddev); 5731 if (err) { 5732 printk(KERN_INFO 5733 "md: ioctl lock interrupted, reason %d, cmd %d\n", 5734 err, cmd); 5735 goto abort; 5736 } 5737 5738 switch (cmd) 5739 { 5740 case SET_ARRAY_INFO: 5741 { 5742 mdu_array_info_t info; 5743 if (!arg) 5744 memset(&info, 0, sizeof(info)); 5745 else if (copy_from_user(&info, argp, sizeof(info))) { 5746 err = -EFAULT; 5747 goto abort_unlock; 5748 } 5749 if (mddev->pers) { 5750 err = update_array_info(mddev, &info); 5751 if (err) { 5752 printk(KERN_WARNING "md: couldn't update" 5753 " array info. %d\n", err); 5754 goto abort_unlock; 5755 } 5756 goto done_unlock; 5757 } 5758 if (!list_empty(&mddev->disks)) { 5759 printk(KERN_WARNING 5760 "md: array %s already has disks!\n", 5761 mdname(mddev)); 5762 err = -EBUSY; 5763 goto abort_unlock; 5764 } 5765 if (mddev->raid_disks) { 5766 printk(KERN_WARNING 5767 "md: array %s already initialised!\n", 5768 mdname(mddev)); 5769 err = -EBUSY; 5770 goto abort_unlock; 5771 } 5772 err = set_array_info(mddev, &info); 5773 if (err) { 5774 printk(KERN_WARNING "md: couldn't set" 5775 " array info. %d\n", err); 5776 goto abort_unlock; 5777 } 5778 } 5779 goto done_unlock; 5780 5781 default:; 5782 } 5783 5784 /* 5785 * Commands querying/configuring an existing array: 5786 */ 5787 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 5788 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 5789 if ((!mddev->raid_disks && !mddev->external) 5790 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 5791 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 5792 && cmd != GET_BITMAP_FILE) { 5793 err = -ENODEV; 5794 goto abort_unlock; 5795 } 5796 5797 /* 5798 * Commands even a read-only array can execute: 5799 */ 5800 switch (cmd) 5801 { 5802 case GET_ARRAY_INFO: 5803 err = get_array_info(mddev, argp); 5804 goto done_unlock; 5805 5806 case GET_BITMAP_FILE: 5807 err = get_bitmap_file(mddev, argp); 5808 goto done_unlock; 5809 5810 case GET_DISK_INFO: 5811 err = get_disk_info(mddev, argp); 5812 goto done_unlock; 5813 5814 case RESTART_ARRAY_RW: 5815 err = restart_array(mddev); 5816 goto done_unlock; 5817 5818 case STOP_ARRAY: 5819 err = do_md_stop(mddev, 0, 1); 5820 goto done_unlock; 5821 5822 case STOP_ARRAY_RO: 5823 err = md_set_readonly(mddev, 1); 5824 goto done_unlock; 5825 5826 case BLKROSET: 5827 if (get_user(ro, (int __user *)(arg))) { 5828 err = -EFAULT; 5829 goto done_unlock; 5830 } 5831 err = -EINVAL; 5832 5833 /* if the bdev is going readonly the value of mddev->ro 5834 * does not matter, no writes are coming 5835 */ 5836 if (ro) 5837 goto done_unlock; 5838 5839 /* are we are already prepared for writes? */ 5840 if (mddev->ro != 1) 5841 goto done_unlock; 5842 5843 /* transitioning to readauto need only happen for 5844 * arrays that call md_write_start 5845 */ 5846 if (mddev->pers) { 5847 err = restart_array(mddev); 5848 if (err == 0) { 5849 mddev->ro = 2; 5850 set_disk_ro(mddev->gendisk, 0); 5851 } 5852 } 5853 goto done_unlock; 5854 } 5855 5856 /* 5857 * The remaining ioctls are changing the state of the 5858 * superblock, so we do not allow them on read-only arrays. 5859 * However non-MD ioctls (e.g. get-size) will still come through 5860 * here and hit the 'default' below, so only disallow 5861 * 'md' ioctls, and switch to rw mode if started auto-readonly. 5862 */ 5863 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 5864 if (mddev->ro == 2) { 5865 mddev->ro = 0; 5866 sysfs_notify_dirent_safe(mddev->sysfs_state); 5867 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5868 md_wakeup_thread(mddev->thread); 5869 } else { 5870 err = -EROFS; 5871 goto abort_unlock; 5872 } 5873 } 5874 5875 switch (cmd) 5876 { 5877 case ADD_NEW_DISK: 5878 { 5879 mdu_disk_info_t info; 5880 if (copy_from_user(&info, argp, sizeof(info))) 5881 err = -EFAULT; 5882 else 5883 err = add_new_disk(mddev, &info); 5884 goto done_unlock; 5885 } 5886 5887 case HOT_REMOVE_DISK: 5888 err = hot_remove_disk(mddev, new_decode_dev(arg)); 5889 goto done_unlock; 5890 5891 case HOT_ADD_DISK: 5892 err = hot_add_disk(mddev, new_decode_dev(arg)); 5893 goto done_unlock; 5894 5895 case SET_DISK_FAULTY: 5896 err = set_disk_faulty(mddev, new_decode_dev(arg)); 5897 goto done_unlock; 5898 5899 case RUN_ARRAY: 5900 err = do_md_run(mddev); 5901 goto done_unlock; 5902 5903 case SET_BITMAP_FILE: 5904 err = set_bitmap_file(mddev, (int)arg); 5905 goto done_unlock; 5906 5907 default: 5908 err = -EINVAL; 5909 goto abort_unlock; 5910 } 5911 5912 done_unlock: 5913 abort_unlock: 5914 if (mddev->hold_active == UNTIL_IOCTL && 5915 err != -EINVAL) 5916 mddev->hold_active = 0; 5917 mddev_unlock(mddev); 5918 5919 return err; 5920 done: 5921 if (err) 5922 MD_BUG(); 5923 abort: 5924 return err; 5925 } 5926 #ifdef CONFIG_COMPAT 5927 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 5928 unsigned int cmd, unsigned long arg) 5929 { 5930 switch (cmd) { 5931 case HOT_REMOVE_DISK: 5932 case HOT_ADD_DISK: 5933 case SET_DISK_FAULTY: 5934 case SET_BITMAP_FILE: 5935 /* These take in integer arg, do not convert */ 5936 break; 5937 default: 5938 arg = (unsigned long)compat_ptr(arg); 5939 break; 5940 } 5941 5942 return md_ioctl(bdev, mode, cmd, arg); 5943 } 5944 #endif /* CONFIG_COMPAT */ 5945 5946 static int md_open(struct block_device *bdev, fmode_t mode) 5947 { 5948 /* 5949 * Succeed if we can lock the mddev, which confirms that 5950 * it isn't being stopped right now. 5951 */ 5952 mddev_t *mddev = mddev_find(bdev->bd_dev); 5953 int err; 5954 5955 mutex_lock(&md_mutex); 5956 if (mddev->gendisk != bdev->bd_disk) { 5957 /* we are racing with mddev_put which is discarding this 5958 * bd_disk. 5959 */ 5960 mddev_put(mddev); 5961 /* Wait until bdev->bd_disk is definitely gone */ 5962 flush_scheduled_work(); 5963 /* Then retry the open from the top */ 5964 mutex_unlock(&md_mutex); 5965 return -ERESTARTSYS; 5966 } 5967 BUG_ON(mddev != bdev->bd_disk->private_data); 5968 5969 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 5970 goto out; 5971 5972 err = 0; 5973 atomic_inc(&mddev->openers); 5974 mutex_unlock(&mddev->open_mutex); 5975 5976 check_disk_size_change(mddev->gendisk, bdev); 5977 out: 5978 mutex_unlock(&md_mutex); 5979 return err; 5980 } 5981 5982 static int md_release(struct gendisk *disk, fmode_t mode) 5983 { 5984 mddev_t *mddev = disk->private_data; 5985 5986 BUG_ON(!mddev); 5987 mutex_lock(&md_mutex); 5988 atomic_dec(&mddev->openers); 5989 mddev_put(mddev); 5990 mutex_unlock(&md_mutex); 5991 5992 return 0; 5993 } 5994 static const struct block_device_operations md_fops = 5995 { 5996 .owner = THIS_MODULE, 5997 .open = md_open, 5998 .release = md_release, 5999 .ioctl = md_ioctl, 6000 #ifdef CONFIG_COMPAT 6001 .compat_ioctl = md_compat_ioctl, 6002 #endif 6003 .getgeo = md_getgeo, 6004 }; 6005 6006 static int md_thread(void * arg) 6007 { 6008 mdk_thread_t *thread = arg; 6009 6010 /* 6011 * md_thread is a 'system-thread', it's priority should be very 6012 * high. We avoid resource deadlocks individually in each 6013 * raid personality. (RAID5 does preallocation) We also use RR and 6014 * the very same RT priority as kswapd, thus we will never get 6015 * into a priority inversion deadlock. 6016 * 6017 * we definitely have to have equal or higher priority than 6018 * bdflush, otherwise bdflush will deadlock if there are too 6019 * many dirty RAID5 blocks. 6020 */ 6021 6022 allow_signal(SIGKILL); 6023 while (!kthread_should_stop()) { 6024 6025 /* We need to wait INTERRUPTIBLE so that 6026 * we don't add to the load-average. 6027 * That means we need to be sure no signals are 6028 * pending 6029 */ 6030 if (signal_pending(current)) 6031 flush_signals(current); 6032 6033 wait_event_interruptible_timeout 6034 (thread->wqueue, 6035 test_bit(THREAD_WAKEUP, &thread->flags) 6036 || kthread_should_stop(), 6037 thread->timeout); 6038 6039 clear_bit(THREAD_WAKEUP, &thread->flags); 6040 6041 thread->run(thread->mddev); 6042 } 6043 6044 return 0; 6045 } 6046 6047 void md_wakeup_thread(mdk_thread_t *thread) 6048 { 6049 if (thread) { 6050 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 6051 set_bit(THREAD_WAKEUP, &thread->flags); 6052 wake_up(&thread->wqueue); 6053 } 6054 } 6055 6056 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 6057 const char *name) 6058 { 6059 mdk_thread_t *thread; 6060 6061 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 6062 if (!thread) 6063 return NULL; 6064 6065 init_waitqueue_head(&thread->wqueue); 6066 6067 thread->run = run; 6068 thread->mddev = mddev; 6069 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6070 thread->tsk = kthread_run(md_thread, thread, 6071 "%s_%s", 6072 mdname(thread->mddev), 6073 name ?: mddev->pers->name); 6074 if (IS_ERR(thread->tsk)) { 6075 kfree(thread); 6076 return NULL; 6077 } 6078 return thread; 6079 } 6080 6081 void md_unregister_thread(mdk_thread_t *thread) 6082 { 6083 if (!thread) 6084 return; 6085 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6086 6087 kthread_stop(thread->tsk); 6088 kfree(thread); 6089 } 6090 6091 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 6092 { 6093 if (!mddev) { 6094 MD_BUG(); 6095 return; 6096 } 6097 6098 if (!rdev || test_bit(Faulty, &rdev->flags)) 6099 return; 6100 6101 if (mddev->external) 6102 set_bit(Blocked, &rdev->flags); 6103 /* 6104 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 6105 mdname(mddev), 6106 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 6107 __builtin_return_address(0),__builtin_return_address(1), 6108 __builtin_return_address(2),__builtin_return_address(3)); 6109 */ 6110 if (!mddev->pers) 6111 return; 6112 if (!mddev->pers->error_handler) 6113 return; 6114 mddev->pers->error_handler(mddev,rdev); 6115 if (mddev->degraded) 6116 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6117 sysfs_notify_dirent_safe(rdev->sysfs_state); 6118 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6119 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6120 md_wakeup_thread(mddev->thread); 6121 if (mddev->event_work.func) 6122 schedule_work(&mddev->event_work); 6123 md_new_event_inintr(mddev); 6124 } 6125 6126 /* seq_file implementation /proc/mdstat */ 6127 6128 static void status_unused(struct seq_file *seq) 6129 { 6130 int i = 0; 6131 mdk_rdev_t *rdev; 6132 6133 seq_printf(seq, "unused devices: "); 6134 6135 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6136 char b[BDEVNAME_SIZE]; 6137 i++; 6138 seq_printf(seq, "%s ", 6139 bdevname(rdev->bdev,b)); 6140 } 6141 if (!i) 6142 seq_printf(seq, "<none>"); 6143 6144 seq_printf(seq, "\n"); 6145 } 6146 6147 6148 static void status_resync(struct seq_file *seq, mddev_t * mddev) 6149 { 6150 sector_t max_sectors, resync, res; 6151 unsigned long dt, db; 6152 sector_t rt; 6153 int scale; 6154 unsigned int per_milli; 6155 6156 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 6157 6158 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6159 max_sectors = mddev->resync_max_sectors; 6160 else 6161 max_sectors = mddev->dev_sectors; 6162 6163 /* 6164 * Should not happen. 6165 */ 6166 if (!max_sectors) { 6167 MD_BUG(); 6168 return; 6169 } 6170 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6171 * in a sector_t, and (max_sectors>>scale) will fit in a 6172 * u32, as those are the requirements for sector_div. 6173 * Thus 'scale' must be at least 10 6174 */ 6175 scale = 10; 6176 if (sizeof(sector_t) > sizeof(unsigned long)) { 6177 while ( max_sectors/2 > (1ULL<<(scale+32))) 6178 scale++; 6179 } 6180 res = (resync>>scale)*1000; 6181 sector_div(res, (u32)((max_sectors>>scale)+1)); 6182 6183 per_milli = res; 6184 { 6185 int i, x = per_milli/50, y = 20-x; 6186 seq_printf(seq, "["); 6187 for (i = 0; i < x; i++) 6188 seq_printf(seq, "="); 6189 seq_printf(seq, ">"); 6190 for (i = 0; i < y; i++) 6191 seq_printf(seq, "."); 6192 seq_printf(seq, "] "); 6193 } 6194 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6195 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6196 "reshape" : 6197 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6198 "check" : 6199 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6200 "resync" : "recovery"))), 6201 per_milli/10, per_milli % 10, 6202 (unsigned long long) resync/2, 6203 (unsigned long long) max_sectors/2); 6204 6205 /* 6206 * dt: time from mark until now 6207 * db: blocks written from mark until now 6208 * rt: remaining time 6209 * 6210 * rt is a sector_t, so could be 32bit or 64bit. 6211 * So we divide before multiply in case it is 32bit and close 6212 * to the limit. 6213 * We scale the divisor (db) by 32 to avoid loosing precision 6214 * near the end of resync when the number of remaining sectors 6215 * is close to 'db'. 6216 * We then divide rt by 32 after multiplying by db to compensate. 6217 * The '+1' avoids division by zero if db is very small. 6218 */ 6219 dt = ((jiffies - mddev->resync_mark) / HZ); 6220 if (!dt) dt++; 6221 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6222 - mddev->resync_mark_cnt; 6223 6224 rt = max_sectors - resync; /* number of remaining sectors */ 6225 sector_div(rt, db/32+1); 6226 rt *= dt; 6227 rt >>= 5; 6228 6229 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6230 ((unsigned long)rt % 60)/6); 6231 6232 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6233 } 6234 6235 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6236 { 6237 struct list_head *tmp; 6238 loff_t l = *pos; 6239 mddev_t *mddev; 6240 6241 if (l >= 0x10000) 6242 return NULL; 6243 if (!l--) 6244 /* header */ 6245 return (void*)1; 6246 6247 spin_lock(&all_mddevs_lock); 6248 list_for_each(tmp,&all_mddevs) 6249 if (!l--) { 6250 mddev = list_entry(tmp, mddev_t, all_mddevs); 6251 mddev_get(mddev); 6252 spin_unlock(&all_mddevs_lock); 6253 return mddev; 6254 } 6255 spin_unlock(&all_mddevs_lock); 6256 if (!l--) 6257 return (void*)2;/* tail */ 6258 return NULL; 6259 } 6260 6261 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6262 { 6263 struct list_head *tmp; 6264 mddev_t *next_mddev, *mddev = v; 6265 6266 ++*pos; 6267 if (v == (void*)2) 6268 return NULL; 6269 6270 spin_lock(&all_mddevs_lock); 6271 if (v == (void*)1) 6272 tmp = all_mddevs.next; 6273 else 6274 tmp = mddev->all_mddevs.next; 6275 if (tmp != &all_mddevs) 6276 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 6277 else { 6278 next_mddev = (void*)2; 6279 *pos = 0x10000; 6280 } 6281 spin_unlock(&all_mddevs_lock); 6282 6283 if (v != (void*)1) 6284 mddev_put(mddev); 6285 return next_mddev; 6286 6287 } 6288 6289 static void md_seq_stop(struct seq_file *seq, void *v) 6290 { 6291 mddev_t *mddev = v; 6292 6293 if (mddev && v != (void*)1 && v != (void*)2) 6294 mddev_put(mddev); 6295 } 6296 6297 struct mdstat_info { 6298 int event; 6299 }; 6300 6301 static int md_seq_show(struct seq_file *seq, void *v) 6302 { 6303 mddev_t *mddev = v; 6304 sector_t sectors; 6305 mdk_rdev_t *rdev; 6306 struct mdstat_info *mi = seq->private; 6307 struct bitmap *bitmap; 6308 6309 if (v == (void*)1) { 6310 struct mdk_personality *pers; 6311 seq_printf(seq, "Personalities : "); 6312 spin_lock(&pers_lock); 6313 list_for_each_entry(pers, &pers_list, list) 6314 seq_printf(seq, "[%s] ", pers->name); 6315 6316 spin_unlock(&pers_lock); 6317 seq_printf(seq, "\n"); 6318 mi->event = atomic_read(&md_event_count); 6319 return 0; 6320 } 6321 if (v == (void*)2) { 6322 status_unused(seq); 6323 return 0; 6324 } 6325 6326 if (mddev_lock(mddev) < 0) 6327 return -EINTR; 6328 6329 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6330 seq_printf(seq, "%s : %sactive", mdname(mddev), 6331 mddev->pers ? "" : "in"); 6332 if (mddev->pers) { 6333 if (mddev->ro==1) 6334 seq_printf(seq, " (read-only)"); 6335 if (mddev->ro==2) 6336 seq_printf(seq, " (auto-read-only)"); 6337 seq_printf(seq, " %s", mddev->pers->name); 6338 } 6339 6340 sectors = 0; 6341 list_for_each_entry(rdev, &mddev->disks, same_set) { 6342 char b[BDEVNAME_SIZE]; 6343 seq_printf(seq, " %s[%d]", 6344 bdevname(rdev->bdev,b), rdev->desc_nr); 6345 if (test_bit(WriteMostly, &rdev->flags)) 6346 seq_printf(seq, "(W)"); 6347 if (test_bit(Faulty, &rdev->flags)) { 6348 seq_printf(seq, "(F)"); 6349 continue; 6350 } else if (rdev->raid_disk < 0) 6351 seq_printf(seq, "(S)"); /* spare */ 6352 sectors += rdev->sectors; 6353 } 6354 6355 if (!list_empty(&mddev->disks)) { 6356 if (mddev->pers) 6357 seq_printf(seq, "\n %llu blocks", 6358 (unsigned long long) 6359 mddev->array_sectors / 2); 6360 else 6361 seq_printf(seq, "\n %llu blocks", 6362 (unsigned long long)sectors / 2); 6363 } 6364 if (mddev->persistent) { 6365 if (mddev->major_version != 0 || 6366 mddev->minor_version != 90) { 6367 seq_printf(seq," super %d.%d", 6368 mddev->major_version, 6369 mddev->minor_version); 6370 } 6371 } else if (mddev->external) 6372 seq_printf(seq, " super external:%s", 6373 mddev->metadata_type); 6374 else 6375 seq_printf(seq, " super non-persistent"); 6376 6377 if (mddev->pers) { 6378 mddev->pers->status(seq, mddev); 6379 seq_printf(seq, "\n "); 6380 if (mddev->pers->sync_request) { 6381 if (mddev->curr_resync > 2) { 6382 status_resync(seq, mddev); 6383 seq_printf(seq, "\n "); 6384 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 6385 seq_printf(seq, "\tresync=DELAYED\n "); 6386 else if (mddev->recovery_cp < MaxSector) 6387 seq_printf(seq, "\tresync=PENDING\n "); 6388 } 6389 } else 6390 seq_printf(seq, "\n "); 6391 6392 if ((bitmap = mddev->bitmap)) { 6393 unsigned long chunk_kb; 6394 unsigned long flags; 6395 spin_lock_irqsave(&bitmap->lock, flags); 6396 chunk_kb = mddev->bitmap_info.chunksize >> 10; 6397 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 6398 "%lu%s chunk", 6399 bitmap->pages - bitmap->missing_pages, 6400 bitmap->pages, 6401 (bitmap->pages - bitmap->missing_pages) 6402 << (PAGE_SHIFT - 10), 6403 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize, 6404 chunk_kb ? "KB" : "B"); 6405 if (bitmap->file) { 6406 seq_printf(seq, ", file: "); 6407 seq_path(seq, &bitmap->file->f_path, " \t\n"); 6408 } 6409 6410 seq_printf(seq, "\n"); 6411 spin_unlock_irqrestore(&bitmap->lock, flags); 6412 } 6413 6414 seq_printf(seq, "\n"); 6415 } 6416 mddev_unlock(mddev); 6417 6418 return 0; 6419 } 6420 6421 static const struct seq_operations md_seq_ops = { 6422 .start = md_seq_start, 6423 .next = md_seq_next, 6424 .stop = md_seq_stop, 6425 .show = md_seq_show, 6426 }; 6427 6428 static int md_seq_open(struct inode *inode, struct file *file) 6429 { 6430 int error; 6431 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 6432 if (mi == NULL) 6433 return -ENOMEM; 6434 6435 error = seq_open(file, &md_seq_ops); 6436 if (error) 6437 kfree(mi); 6438 else { 6439 struct seq_file *p = file->private_data; 6440 p->private = mi; 6441 mi->event = atomic_read(&md_event_count); 6442 } 6443 return error; 6444 } 6445 6446 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 6447 { 6448 struct seq_file *m = filp->private_data; 6449 struct mdstat_info *mi = m->private; 6450 int mask; 6451 6452 poll_wait(filp, &md_event_waiters, wait); 6453 6454 /* always allow read */ 6455 mask = POLLIN | POLLRDNORM; 6456 6457 if (mi->event != atomic_read(&md_event_count)) 6458 mask |= POLLERR | POLLPRI; 6459 return mask; 6460 } 6461 6462 static const struct file_operations md_seq_fops = { 6463 .owner = THIS_MODULE, 6464 .open = md_seq_open, 6465 .read = seq_read, 6466 .llseek = seq_lseek, 6467 .release = seq_release_private, 6468 .poll = mdstat_poll, 6469 }; 6470 6471 int register_md_personality(struct mdk_personality *p) 6472 { 6473 spin_lock(&pers_lock); 6474 list_add_tail(&p->list, &pers_list); 6475 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 6476 spin_unlock(&pers_lock); 6477 return 0; 6478 } 6479 6480 int unregister_md_personality(struct mdk_personality *p) 6481 { 6482 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 6483 spin_lock(&pers_lock); 6484 list_del_init(&p->list); 6485 spin_unlock(&pers_lock); 6486 return 0; 6487 } 6488 6489 static int is_mddev_idle(mddev_t *mddev, int init) 6490 { 6491 mdk_rdev_t * rdev; 6492 int idle; 6493 int curr_events; 6494 6495 idle = 1; 6496 rcu_read_lock(); 6497 rdev_for_each_rcu(rdev, mddev) { 6498 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 6499 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 6500 (int)part_stat_read(&disk->part0, sectors[1]) - 6501 atomic_read(&disk->sync_io); 6502 /* sync IO will cause sync_io to increase before the disk_stats 6503 * as sync_io is counted when a request starts, and 6504 * disk_stats is counted when it completes. 6505 * So resync activity will cause curr_events to be smaller than 6506 * when there was no such activity. 6507 * non-sync IO will cause disk_stat to increase without 6508 * increasing sync_io so curr_events will (eventually) 6509 * be larger than it was before. Once it becomes 6510 * substantially larger, the test below will cause 6511 * the array to appear non-idle, and resync will slow 6512 * down. 6513 * If there is a lot of outstanding resync activity when 6514 * we set last_event to curr_events, then all that activity 6515 * completing might cause the array to appear non-idle 6516 * and resync will be slowed down even though there might 6517 * not have been non-resync activity. This will only 6518 * happen once though. 'last_events' will soon reflect 6519 * the state where there is little or no outstanding 6520 * resync requests, and further resync activity will 6521 * always make curr_events less than last_events. 6522 * 6523 */ 6524 if (init || curr_events - rdev->last_events > 64) { 6525 rdev->last_events = curr_events; 6526 idle = 0; 6527 } 6528 } 6529 rcu_read_unlock(); 6530 return idle; 6531 } 6532 6533 void md_done_sync(mddev_t *mddev, int blocks, int ok) 6534 { 6535 /* another "blocks" (512byte) blocks have been synced */ 6536 atomic_sub(blocks, &mddev->recovery_active); 6537 wake_up(&mddev->recovery_wait); 6538 if (!ok) { 6539 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6540 md_wakeup_thread(mddev->thread); 6541 // stop recovery, signal do_sync .... 6542 } 6543 } 6544 6545 6546 /* md_write_start(mddev, bi) 6547 * If we need to update some array metadata (e.g. 'active' flag 6548 * in superblock) before writing, schedule a superblock update 6549 * and wait for it to complete. 6550 */ 6551 void md_write_start(mddev_t *mddev, struct bio *bi) 6552 { 6553 int did_change = 0; 6554 if (bio_data_dir(bi) != WRITE) 6555 return; 6556 6557 BUG_ON(mddev->ro == 1); 6558 if (mddev->ro == 2) { 6559 /* need to switch to read/write */ 6560 mddev->ro = 0; 6561 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6562 md_wakeup_thread(mddev->thread); 6563 md_wakeup_thread(mddev->sync_thread); 6564 did_change = 1; 6565 } 6566 atomic_inc(&mddev->writes_pending); 6567 if (mddev->safemode == 1) 6568 mddev->safemode = 0; 6569 if (mddev->in_sync) { 6570 spin_lock_irq(&mddev->write_lock); 6571 if (mddev->in_sync) { 6572 mddev->in_sync = 0; 6573 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6574 set_bit(MD_CHANGE_PENDING, &mddev->flags); 6575 md_wakeup_thread(mddev->thread); 6576 did_change = 1; 6577 } 6578 spin_unlock_irq(&mddev->write_lock); 6579 } 6580 if (did_change) 6581 sysfs_notify_dirent_safe(mddev->sysfs_state); 6582 wait_event(mddev->sb_wait, 6583 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6584 } 6585 6586 void md_write_end(mddev_t *mddev) 6587 { 6588 if (atomic_dec_and_test(&mddev->writes_pending)) { 6589 if (mddev->safemode == 2) 6590 md_wakeup_thread(mddev->thread); 6591 else if (mddev->safemode_delay) 6592 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 6593 } 6594 } 6595 6596 /* md_allow_write(mddev) 6597 * Calling this ensures that the array is marked 'active' so that writes 6598 * may proceed without blocking. It is important to call this before 6599 * attempting a GFP_KERNEL allocation while holding the mddev lock. 6600 * Must be called with mddev_lock held. 6601 * 6602 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 6603 * is dropped, so return -EAGAIN after notifying userspace. 6604 */ 6605 int md_allow_write(mddev_t *mddev) 6606 { 6607 if (!mddev->pers) 6608 return 0; 6609 if (mddev->ro) 6610 return 0; 6611 if (!mddev->pers->sync_request) 6612 return 0; 6613 6614 spin_lock_irq(&mddev->write_lock); 6615 if (mddev->in_sync) { 6616 mddev->in_sync = 0; 6617 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6618 set_bit(MD_CHANGE_PENDING, &mddev->flags); 6619 if (mddev->safemode_delay && 6620 mddev->safemode == 0) 6621 mddev->safemode = 1; 6622 spin_unlock_irq(&mddev->write_lock); 6623 md_update_sb(mddev, 0); 6624 sysfs_notify_dirent_safe(mddev->sysfs_state); 6625 } else 6626 spin_unlock_irq(&mddev->write_lock); 6627 6628 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 6629 return -EAGAIN; 6630 else 6631 return 0; 6632 } 6633 EXPORT_SYMBOL_GPL(md_allow_write); 6634 6635 void md_unplug(mddev_t *mddev) 6636 { 6637 if (mddev->queue) 6638 blk_unplug(mddev->queue); 6639 if (mddev->plug) 6640 mddev->plug->unplug_fn(mddev->plug); 6641 } 6642 6643 #define SYNC_MARKS 10 6644 #define SYNC_MARK_STEP (3*HZ) 6645 void md_do_sync(mddev_t *mddev) 6646 { 6647 mddev_t *mddev2; 6648 unsigned int currspeed = 0, 6649 window; 6650 sector_t max_sectors,j, io_sectors; 6651 unsigned long mark[SYNC_MARKS]; 6652 sector_t mark_cnt[SYNC_MARKS]; 6653 int last_mark,m; 6654 struct list_head *tmp; 6655 sector_t last_check; 6656 int skipped = 0; 6657 mdk_rdev_t *rdev; 6658 char *desc; 6659 6660 /* just incase thread restarts... */ 6661 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 6662 return; 6663 if (mddev->ro) /* never try to sync a read-only array */ 6664 return; 6665 6666 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6667 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 6668 desc = "data-check"; 6669 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6670 desc = "requested-resync"; 6671 else 6672 desc = "resync"; 6673 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6674 desc = "reshape"; 6675 else 6676 desc = "recovery"; 6677 6678 /* we overload curr_resync somewhat here. 6679 * 0 == not engaged in resync at all 6680 * 2 == checking that there is no conflict with another sync 6681 * 1 == like 2, but have yielded to allow conflicting resync to 6682 * commense 6683 * other == active in resync - this many blocks 6684 * 6685 * Before starting a resync we must have set curr_resync to 6686 * 2, and then checked that every "conflicting" array has curr_resync 6687 * less than ours. When we find one that is the same or higher 6688 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 6689 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 6690 * This will mean we have to start checking from the beginning again. 6691 * 6692 */ 6693 6694 do { 6695 mddev->curr_resync = 2; 6696 6697 try_again: 6698 if (kthread_should_stop()) 6699 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6700 6701 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6702 goto skip; 6703 for_each_mddev(mddev2, tmp) { 6704 if (mddev2 == mddev) 6705 continue; 6706 if (!mddev->parallel_resync 6707 && mddev2->curr_resync 6708 && match_mddev_units(mddev, mddev2)) { 6709 DEFINE_WAIT(wq); 6710 if (mddev < mddev2 && mddev->curr_resync == 2) { 6711 /* arbitrarily yield */ 6712 mddev->curr_resync = 1; 6713 wake_up(&resync_wait); 6714 } 6715 if (mddev > mddev2 && mddev->curr_resync == 1) 6716 /* no need to wait here, we can wait the next 6717 * time 'round when curr_resync == 2 6718 */ 6719 continue; 6720 /* We need to wait 'interruptible' so as not to 6721 * contribute to the load average, and not to 6722 * be caught by 'softlockup' 6723 */ 6724 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 6725 if (!kthread_should_stop() && 6726 mddev2->curr_resync >= mddev->curr_resync) { 6727 printk(KERN_INFO "md: delaying %s of %s" 6728 " until %s has finished (they" 6729 " share one or more physical units)\n", 6730 desc, mdname(mddev), mdname(mddev2)); 6731 mddev_put(mddev2); 6732 if (signal_pending(current)) 6733 flush_signals(current); 6734 schedule(); 6735 finish_wait(&resync_wait, &wq); 6736 goto try_again; 6737 } 6738 finish_wait(&resync_wait, &wq); 6739 } 6740 } 6741 } while (mddev->curr_resync < 2); 6742 6743 j = 0; 6744 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6745 /* resync follows the size requested by the personality, 6746 * which defaults to physical size, but can be virtual size 6747 */ 6748 max_sectors = mddev->resync_max_sectors; 6749 mddev->resync_mismatches = 0; 6750 /* we don't use the checkpoint if there's a bitmap */ 6751 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6752 j = mddev->resync_min; 6753 else if (!mddev->bitmap) 6754 j = mddev->recovery_cp; 6755 6756 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6757 max_sectors = mddev->dev_sectors; 6758 else { 6759 /* recovery follows the physical size of devices */ 6760 max_sectors = mddev->dev_sectors; 6761 j = MaxSector; 6762 rcu_read_lock(); 6763 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6764 if (rdev->raid_disk >= 0 && 6765 !test_bit(Faulty, &rdev->flags) && 6766 !test_bit(In_sync, &rdev->flags) && 6767 rdev->recovery_offset < j) 6768 j = rdev->recovery_offset; 6769 rcu_read_unlock(); 6770 } 6771 6772 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 6773 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 6774 " %d KB/sec/disk.\n", speed_min(mddev)); 6775 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 6776 "(but not more than %d KB/sec) for %s.\n", 6777 speed_max(mddev), desc); 6778 6779 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 6780 6781 io_sectors = 0; 6782 for (m = 0; m < SYNC_MARKS; m++) { 6783 mark[m] = jiffies; 6784 mark_cnt[m] = io_sectors; 6785 } 6786 last_mark = 0; 6787 mddev->resync_mark = mark[last_mark]; 6788 mddev->resync_mark_cnt = mark_cnt[last_mark]; 6789 6790 /* 6791 * Tune reconstruction: 6792 */ 6793 window = 32*(PAGE_SIZE/512); 6794 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 6795 window/2,(unsigned long long) max_sectors/2); 6796 6797 atomic_set(&mddev->recovery_active, 0); 6798 last_check = 0; 6799 6800 if (j>2) { 6801 printk(KERN_INFO 6802 "md: resuming %s of %s from checkpoint.\n", 6803 desc, mdname(mddev)); 6804 mddev->curr_resync = j; 6805 } 6806 mddev->curr_resync_completed = mddev->curr_resync; 6807 6808 while (j < max_sectors) { 6809 sector_t sectors; 6810 6811 skipped = 0; 6812 6813 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 6814 ((mddev->curr_resync > mddev->curr_resync_completed && 6815 (mddev->curr_resync - mddev->curr_resync_completed) 6816 > (max_sectors >> 4)) || 6817 (j - mddev->curr_resync_completed)*2 6818 >= mddev->resync_max - mddev->curr_resync_completed 6819 )) { 6820 /* time to update curr_resync_completed */ 6821 md_unplug(mddev); 6822 wait_event(mddev->recovery_wait, 6823 atomic_read(&mddev->recovery_active) == 0); 6824 mddev->curr_resync_completed = 6825 mddev->curr_resync; 6826 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6827 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6828 } 6829 6830 while (j >= mddev->resync_max && !kthread_should_stop()) { 6831 /* As this condition is controlled by user-space, 6832 * we can block indefinitely, so use '_interruptible' 6833 * to avoid triggering warnings. 6834 */ 6835 flush_signals(current); /* just in case */ 6836 wait_event_interruptible(mddev->recovery_wait, 6837 mddev->resync_max > j 6838 || kthread_should_stop()); 6839 } 6840 6841 if (kthread_should_stop()) 6842 goto interrupted; 6843 6844 sectors = mddev->pers->sync_request(mddev, j, &skipped, 6845 currspeed < speed_min(mddev)); 6846 if (sectors == 0) { 6847 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6848 goto out; 6849 } 6850 6851 if (!skipped) { /* actual IO requested */ 6852 io_sectors += sectors; 6853 atomic_add(sectors, &mddev->recovery_active); 6854 } 6855 6856 j += sectors; 6857 if (j>1) mddev->curr_resync = j; 6858 mddev->curr_mark_cnt = io_sectors; 6859 if (last_check == 0) 6860 /* this is the earliers that rebuilt will be 6861 * visible in /proc/mdstat 6862 */ 6863 md_new_event(mddev); 6864 6865 if (last_check + window > io_sectors || j == max_sectors) 6866 continue; 6867 6868 last_check = io_sectors; 6869 6870 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6871 break; 6872 6873 repeat: 6874 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 6875 /* step marks */ 6876 int next = (last_mark+1) % SYNC_MARKS; 6877 6878 mddev->resync_mark = mark[next]; 6879 mddev->resync_mark_cnt = mark_cnt[next]; 6880 mark[next] = jiffies; 6881 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 6882 last_mark = next; 6883 } 6884 6885 6886 if (kthread_should_stop()) 6887 goto interrupted; 6888 6889 6890 /* 6891 * this loop exits only if either when we are slower than 6892 * the 'hard' speed limit, or the system was IO-idle for 6893 * a jiffy. 6894 * the system might be non-idle CPU-wise, but we only care 6895 * about not overloading the IO subsystem. (things like an 6896 * e2fsck being done on the RAID array should execute fast) 6897 */ 6898 md_unplug(mddev); 6899 cond_resched(); 6900 6901 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 6902 /((jiffies-mddev->resync_mark)/HZ +1) +1; 6903 6904 if (currspeed > speed_min(mddev)) { 6905 if ((currspeed > speed_max(mddev)) || 6906 !is_mddev_idle(mddev, 0)) { 6907 msleep(500); 6908 goto repeat; 6909 } 6910 } 6911 } 6912 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 6913 /* 6914 * this also signals 'finished resyncing' to md_stop 6915 */ 6916 out: 6917 md_unplug(mddev); 6918 6919 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 6920 6921 /* tell personality that we are finished */ 6922 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 6923 6924 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 6925 mddev->curr_resync > 2) { 6926 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6927 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6928 if (mddev->curr_resync >= mddev->recovery_cp) { 6929 printk(KERN_INFO 6930 "md: checkpointing %s of %s.\n", 6931 desc, mdname(mddev)); 6932 mddev->recovery_cp = mddev->curr_resync; 6933 } 6934 } else 6935 mddev->recovery_cp = MaxSector; 6936 } else { 6937 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6938 mddev->curr_resync = MaxSector; 6939 rcu_read_lock(); 6940 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6941 if (rdev->raid_disk >= 0 && 6942 mddev->delta_disks >= 0 && 6943 !test_bit(Faulty, &rdev->flags) && 6944 !test_bit(In_sync, &rdev->flags) && 6945 rdev->recovery_offset < mddev->curr_resync) 6946 rdev->recovery_offset = mddev->curr_resync; 6947 rcu_read_unlock(); 6948 } 6949 } 6950 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6951 6952 skip: 6953 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6954 /* We completed so min/max setting can be forgotten if used. */ 6955 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6956 mddev->resync_min = 0; 6957 mddev->resync_max = MaxSector; 6958 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6959 mddev->resync_min = mddev->curr_resync_completed; 6960 mddev->curr_resync = 0; 6961 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6962 mddev->curr_resync_completed = 0; 6963 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6964 wake_up(&resync_wait); 6965 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 6966 md_wakeup_thread(mddev->thread); 6967 return; 6968 6969 interrupted: 6970 /* 6971 * got a signal, exit. 6972 */ 6973 printk(KERN_INFO 6974 "md: md_do_sync() got signal ... exiting\n"); 6975 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6976 goto out; 6977 6978 } 6979 EXPORT_SYMBOL_GPL(md_do_sync); 6980 6981 6982 static int remove_and_add_spares(mddev_t *mddev) 6983 { 6984 mdk_rdev_t *rdev; 6985 int spares = 0; 6986 6987 mddev->curr_resync_completed = 0; 6988 6989 list_for_each_entry(rdev, &mddev->disks, same_set) 6990 if (rdev->raid_disk >= 0 && 6991 !test_bit(Blocked, &rdev->flags) && 6992 (test_bit(Faulty, &rdev->flags) || 6993 ! test_bit(In_sync, &rdev->flags)) && 6994 atomic_read(&rdev->nr_pending)==0) { 6995 if (mddev->pers->hot_remove_disk( 6996 mddev, rdev->raid_disk)==0) { 6997 char nm[20]; 6998 sprintf(nm,"rd%d", rdev->raid_disk); 6999 sysfs_remove_link(&mddev->kobj, nm); 7000 rdev->raid_disk = -1; 7001 } 7002 } 7003 7004 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) { 7005 list_for_each_entry(rdev, &mddev->disks, same_set) { 7006 if (rdev->raid_disk >= 0 && 7007 !test_bit(In_sync, &rdev->flags) && 7008 !test_bit(Blocked, &rdev->flags)) 7009 spares++; 7010 if (rdev->raid_disk < 0 7011 && !test_bit(Faulty, &rdev->flags)) { 7012 rdev->recovery_offset = 0; 7013 if (mddev->pers-> 7014 hot_add_disk(mddev, rdev) == 0) { 7015 char nm[20]; 7016 sprintf(nm, "rd%d", rdev->raid_disk); 7017 if (sysfs_create_link(&mddev->kobj, 7018 &rdev->kobj, nm)) 7019 /* failure here is OK */; 7020 spares++; 7021 md_new_event(mddev); 7022 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7023 } else 7024 break; 7025 } 7026 } 7027 } 7028 return spares; 7029 } 7030 /* 7031 * This routine is regularly called by all per-raid-array threads to 7032 * deal with generic issues like resync and super-block update. 7033 * Raid personalities that don't have a thread (linear/raid0) do not 7034 * need this as they never do any recovery or update the superblock. 7035 * 7036 * It does not do any resync itself, but rather "forks" off other threads 7037 * to do that as needed. 7038 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7039 * "->recovery" and create a thread at ->sync_thread. 7040 * When the thread finishes it sets MD_RECOVERY_DONE 7041 * and wakeups up this thread which will reap the thread and finish up. 7042 * This thread also removes any faulty devices (with nr_pending == 0). 7043 * 7044 * The overall approach is: 7045 * 1/ if the superblock needs updating, update it. 7046 * 2/ If a recovery thread is running, don't do anything else. 7047 * 3/ If recovery has finished, clean up, possibly marking spares active. 7048 * 4/ If there are any faulty devices, remove them. 7049 * 5/ If array is degraded, try to add spares devices 7050 * 6/ If array has spares or is not in-sync, start a resync thread. 7051 */ 7052 void md_check_recovery(mddev_t *mddev) 7053 { 7054 mdk_rdev_t *rdev; 7055 7056 7057 if (mddev->bitmap) 7058 bitmap_daemon_work(mddev); 7059 7060 if (mddev->ro) 7061 return; 7062 7063 if (signal_pending(current)) { 7064 if (mddev->pers->sync_request && !mddev->external) { 7065 printk(KERN_INFO "md: %s in immediate safe mode\n", 7066 mdname(mddev)); 7067 mddev->safemode = 2; 7068 } 7069 flush_signals(current); 7070 } 7071 7072 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7073 return; 7074 if ( ! ( 7075 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7076 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7077 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7078 (mddev->external == 0 && mddev->safemode == 1) || 7079 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7080 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7081 )) 7082 return; 7083 7084 if (mddev_trylock(mddev)) { 7085 int spares = 0; 7086 7087 if (mddev->ro) { 7088 /* Only thing we do on a ro array is remove 7089 * failed devices. 7090 */ 7091 remove_and_add_spares(mddev); 7092 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7093 goto unlock; 7094 } 7095 7096 if (!mddev->external) { 7097 int did_change = 0; 7098 spin_lock_irq(&mddev->write_lock); 7099 if (mddev->safemode && 7100 !atomic_read(&mddev->writes_pending) && 7101 !mddev->in_sync && 7102 mddev->recovery_cp == MaxSector) { 7103 mddev->in_sync = 1; 7104 did_change = 1; 7105 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7106 } 7107 if (mddev->safemode == 1) 7108 mddev->safemode = 0; 7109 spin_unlock_irq(&mddev->write_lock); 7110 if (did_change) 7111 sysfs_notify_dirent_safe(mddev->sysfs_state); 7112 } 7113 7114 if (mddev->flags) 7115 md_update_sb(mddev, 0); 7116 7117 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7118 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7119 /* resync/recovery still happening */ 7120 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7121 goto unlock; 7122 } 7123 if (mddev->sync_thread) { 7124 /* resync has finished, collect result */ 7125 md_unregister_thread(mddev->sync_thread); 7126 mddev->sync_thread = NULL; 7127 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7128 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7129 /* success...*/ 7130 /* activate any spares */ 7131 if (mddev->pers->spare_active(mddev)) 7132 sysfs_notify(&mddev->kobj, NULL, 7133 "degraded"); 7134 } 7135 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7136 mddev->pers->finish_reshape) 7137 mddev->pers->finish_reshape(mddev); 7138 md_update_sb(mddev, 1); 7139 7140 /* if array is no-longer degraded, then any saved_raid_disk 7141 * information must be scrapped 7142 */ 7143 if (!mddev->degraded) 7144 list_for_each_entry(rdev, &mddev->disks, same_set) 7145 rdev->saved_raid_disk = -1; 7146 7147 mddev->recovery = 0; 7148 /* flag recovery needed just to double check */ 7149 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7150 sysfs_notify_dirent_safe(mddev->sysfs_action); 7151 md_new_event(mddev); 7152 goto unlock; 7153 } 7154 /* Set RUNNING before clearing NEEDED to avoid 7155 * any transients in the value of "sync_action". 7156 */ 7157 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7158 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7159 /* Clear some bits that don't mean anything, but 7160 * might be left set 7161 */ 7162 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7163 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7164 7165 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7166 goto unlock; 7167 /* no recovery is running. 7168 * remove any failed drives, then 7169 * add spares if possible. 7170 * Spare are also removed and re-added, to allow 7171 * the personality to fail the re-add. 7172 */ 7173 7174 if (mddev->reshape_position != MaxSector) { 7175 if (mddev->pers->check_reshape == NULL || 7176 mddev->pers->check_reshape(mddev) != 0) 7177 /* Cannot proceed */ 7178 goto unlock; 7179 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7180 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7181 } else if ((spares = remove_and_add_spares(mddev))) { 7182 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7183 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7184 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7185 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7186 } else if (mddev->recovery_cp < MaxSector) { 7187 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7188 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7189 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7190 /* nothing to be done ... */ 7191 goto unlock; 7192 7193 if (mddev->pers->sync_request) { 7194 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 7195 /* We are adding a device or devices to an array 7196 * which has the bitmap stored on all devices. 7197 * So make sure all bitmap pages get written 7198 */ 7199 bitmap_write_all(mddev->bitmap); 7200 } 7201 mddev->sync_thread = md_register_thread(md_do_sync, 7202 mddev, 7203 "resync"); 7204 if (!mddev->sync_thread) { 7205 printk(KERN_ERR "%s: could not start resync" 7206 " thread...\n", 7207 mdname(mddev)); 7208 /* leave the spares where they are, it shouldn't hurt */ 7209 mddev->recovery = 0; 7210 } else 7211 md_wakeup_thread(mddev->sync_thread); 7212 sysfs_notify_dirent_safe(mddev->sysfs_action); 7213 md_new_event(mddev); 7214 } 7215 unlock: 7216 if (!mddev->sync_thread) { 7217 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7218 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7219 &mddev->recovery)) 7220 if (mddev->sysfs_action) 7221 sysfs_notify_dirent_safe(mddev->sysfs_action); 7222 } 7223 mddev_unlock(mddev); 7224 } 7225 } 7226 7227 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 7228 { 7229 sysfs_notify_dirent_safe(rdev->sysfs_state); 7230 wait_event_timeout(rdev->blocked_wait, 7231 !test_bit(Blocked, &rdev->flags), 7232 msecs_to_jiffies(5000)); 7233 rdev_dec_pending(rdev, mddev); 7234 } 7235 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7236 7237 static int md_notify_reboot(struct notifier_block *this, 7238 unsigned long code, void *x) 7239 { 7240 struct list_head *tmp; 7241 mddev_t *mddev; 7242 7243 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 7244 7245 printk(KERN_INFO "md: stopping all md devices.\n"); 7246 7247 for_each_mddev(mddev, tmp) 7248 if (mddev_trylock(mddev)) { 7249 /* Force a switch to readonly even array 7250 * appears to still be in use. Hence 7251 * the '100'. 7252 */ 7253 md_set_readonly(mddev, 100); 7254 mddev_unlock(mddev); 7255 } 7256 /* 7257 * certain more exotic SCSI devices are known to be 7258 * volatile wrt too early system reboots. While the 7259 * right place to handle this issue is the given 7260 * driver, we do want to have a safe RAID driver ... 7261 */ 7262 mdelay(1000*1); 7263 } 7264 return NOTIFY_DONE; 7265 } 7266 7267 static struct notifier_block md_notifier = { 7268 .notifier_call = md_notify_reboot, 7269 .next = NULL, 7270 .priority = INT_MAX, /* before any real devices */ 7271 }; 7272 7273 static void md_geninit(void) 7274 { 7275 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 7276 7277 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 7278 } 7279 7280 static int __init md_init(void) 7281 { 7282 if (register_blkdev(MD_MAJOR, "md")) 7283 return -1; 7284 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 7285 unregister_blkdev(MD_MAJOR, "md"); 7286 return -1; 7287 } 7288 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 7289 md_probe, NULL, NULL); 7290 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 7291 md_probe, NULL, NULL); 7292 7293 register_reboot_notifier(&md_notifier); 7294 raid_table_header = register_sysctl_table(raid_root_table); 7295 7296 md_geninit(); 7297 return 0; 7298 } 7299 7300 7301 #ifndef MODULE 7302 7303 /* 7304 * Searches all registered partitions for autorun RAID arrays 7305 * at boot time. 7306 */ 7307 7308 static LIST_HEAD(all_detected_devices); 7309 struct detected_devices_node { 7310 struct list_head list; 7311 dev_t dev; 7312 }; 7313 7314 void md_autodetect_dev(dev_t dev) 7315 { 7316 struct detected_devices_node *node_detected_dev; 7317 7318 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 7319 if (node_detected_dev) { 7320 node_detected_dev->dev = dev; 7321 list_add_tail(&node_detected_dev->list, &all_detected_devices); 7322 } else { 7323 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 7324 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 7325 } 7326 } 7327 7328 7329 static void autostart_arrays(int part) 7330 { 7331 mdk_rdev_t *rdev; 7332 struct detected_devices_node *node_detected_dev; 7333 dev_t dev; 7334 int i_scanned, i_passed; 7335 7336 i_scanned = 0; 7337 i_passed = 0; 7338 7339 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 7340 7341 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 7342 i_scanned++; 7343 node_detected_dev = list_entry(all_detected_devices.next, 7344 struct detected_devices_node, list); 7345 list_del(&node_detected_dev->list); 7346 dev = node_detected_dev->dev; 7347 kfree(node_detected_dev); 7348 rdev = md_import_device(dev,0, 90); 7349 if (IS_ERR(rdev)) 7350 continue; 7351 7352 if (test_bit(Faulty, &rdev->flags)) { 7353 MD_BUG(); 7354 continue; 7355 } 7356 set_bit(AutoDetected, &rdev->flags); 7357 list_add(&rdev->same_set, &pending_raid_disks); 7358 i_passed++; 7359 } 7360 7361 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 7362 i_scanned, i_passed); 7363 7364 autorun_devices(part); 7365 } 7366 7367 #endif /* !MODULE */ 7368 7369 static __exit void md_exit(void) 7370 { 7371 mddev_t *mddev; 7372 struct list_head *tmp; 7373 7374 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 7375 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 7376 7377 unregister_blkdev(MD_MAJOR,"md"); 7378 unregister_blkdev(mdp_major, "mdp"); 7379 unregister_reboot_notifier(&md_notifier); 7380 unregister_sysctl_table(raid_table_header); 7381 remove_proc_entry("mdstat", NULL); 7382 for_each_mddev(mddev, tmp) { 7383 export_array(mddev); 7384 mddev->hold_active = 0; 7385 } 7386 } 7387 7388 subsys_initcall(md_init); 7389 module_exit(md_exit) 7390 7391 static int get_ro(char *buffer, struct kernel_param *kp) 7392 { 7393 return sprintf(buffer, "%d", start_readonly); 7394 } 7395 static int set_ro(const char *val, struct kernel_param *kp) 7396 { 7397 char *e; 7398 int num = simple_strtoul(val, &e, 10); 7399 if (*val && (*e == '\0' || *e == '\n')) { 7400 start_readonly = num; 7401 return 0; 7402 } 7403 return -EINVAL; 7404 } 7405 7406 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 7407 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 7408 7409 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 7410 7411 EXPORT_SYMBOL(register_md_personality); 7412 EXPORT_SYMBOL(unregister_md_personality); 7413 EXPORT_SYMBOL(md_error); 7414 EXPORT_SYMBOL(md_done_sync); 7415 EXPORT_SYMBOL(md_write_start); 7416 EXPORT_SYMBOL(md_write_end); 7417 EXPORT_SYMBOL(md_register_thread); 7418 EXPORT_SYMBOL(md_unregister_thread); 7419 EXPORT_SYMBOL(md_wakeup_thread); 7420 EXPORT_SYMBOL(md_check_recovery); 7421 MODULE_LICENSE("GPL"); 7422 MODULE_DESCRIPTION("MD RAID framework"); 7423 MODULE_ALIAS("md"); 7424 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 7425