1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/mutex.h> 40 #include <linux/buffer_head.h> /* for invalidate_bdev */ 41 #include <linux/poll.h> 42 #include <linux/ctype.h> 43 #include <linux/string.h> 44 #include <linux/hdreg.h> 45 #include <linux/proc_fs.h> 46 #include <linux/random.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #define DEBUG 0 58 #define dprintk(x...) ((void)(DEBUG && printk(x))) 59 60 #ifndef MODULE 61 static void autostart_arrays(int part); 62 #endif 63 64 static LIST_HEAD(pers_list); 65 static DEFINE_SPINLOCK(pers_lock); 66 67 static void md_print_devices(void); 68 69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 70 static struct workqueue_struct *md_wq; 71 static struct workqueue_struct *md_misc_wq; 72 73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 74 75 /* 76 * Default number of read corrections we'll attempt on an rdev 77 * before ejecting it from the array. We divide the read error 78 * count by 2 for every hour elapsed between read errors. 79 */ 80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 81 /* 82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 83 * is 1000 KB/sec, so the extra system load does not show up that much. 84 * Increase it if you want to have more _guaranteed_ speed. Note that 85 * the RAID driver will use the maximum available bandwidth if the IO 86 * subsystem is idle. There is also an 'absolute maximum' reconstruction 87 * speed limit - in case reconstruction slows down your system despite 88 * idle IO detection. 89 * 90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 91 * or /sys/block/mdX/md/sync_speed_{min,max} 92 */ 93 94 static int sysctl_speed_limit_min = 1000; 95 static int sysctl_speed_limit_max = 200000; 96 static inline int speed_min(mddev_t *mddev) 97 { 98 return mddev->sync_speed_min ? 99 mddev->sync_speed_min : sysctl_speed_limit_min; 100 } 101 102 static inline int speed_max(mddev_t *mddev) 103 { 104 return mddev->sync_speed_max ? 105 mddev->sync_speed_max : sysctl_speed_limit_max; 106 } 107 108 static struct ctl_table_header *raid_table_header; 109 110 static ctl_table raid_table[] = { 111 { 112 .procname = "speed_limit_min", 113 .data = &sysctl_speed_limit_min, 114 .maxlen = sizeof(int), 115 .mode = S_IRUGO|S_IWUSR, 116 .proc_handler = proc_dointvec, 117 }, 118 { 119 .procname = "speed_limit_max", 120 .data = &sysctl_speed_limit_max, 121 .maxlen = sizeof(int), 122 .mode = S_IRUGO|S_IWUSR, 123 .proc_handler = proc_dointvec, 124 }, 125 { } 126 }; 127 128 static ctl_table raid_dir_table[] = { 129 { 130 .procname = "raid", 131 .maxlen = 0, 132 .mode = S_IRUGO|S_IXUGO, 133 .child = raid_table, 134 }, 135 { } 136 }; 137 138 static ctl_table raid_root_table[] = { 139 { 140 .procname = "dev", 141 .maxlen = 0, 142 .mode = 0555, 143 .child = raid_dir_table, 144 }, 145 { } 146 }; 147 148 static const struct block_device_operations md_fops; 149 150 static int start_readonly; 151 152 /* bio_clone_mddev 153 * like bio_clone, but with a local bio set 154 */ 155 156 static void mddev_bio_destructor(struct bio *bio) 157 { 158 mddev_t *mddev, **mddevp; 159 160 mddevp = (void*)bio; 161 mddev = mddevp[-1]; 162 163 bio_free(bio, mddev->bio_set); 164 } 165 166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 167 mddev_t *mddev) 168 { 169 struct bio *b; 170 mddev_t **mddevp; 171 172 if (!mddev || !mddev->bio_set) 173 return bio_alloc(gfp_mask, nr_iovecs); 174 175 b = bio_alloc_bioset(gfp_mask, nr_iovecs, 176 mddev->bio_set); 177 if (!b) 178 return NULL; 179 mddevp = (void*)b; 180 mddevp[-1] = mddev; 181 b->bi_destructor = mddev_bio_destructor; 182 return b; 183 } 184 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 185 186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 187 mddev_t *mddev) 188 { 189 struct bio *b; 190 mddev_t **mddevp; 191 192 if (!mddev || !mddev->bio_set) 193 return bio_clone(bio, gfp_mask); 194 195 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, 196 mddev->bio_set); 197 if (!b) 198 return NULL; 199 mddevp = (void*)b; 200 mddevp[-1] = mddev; 201 b->bi_destructor = mddev_bio_destructor; 202 __bio_clone(b, bio); 203 if (bio_integrity(bio)) { 204 int ret; 205 206 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set); 207 208 if (ret < 0) { 209 bio_put(b); 210 return NULL; 211 } 212 } 213 214 return b; 215 } 216 EXPORT_SYMBOL_GPL(bio_clone_mddev); 217 218 /* 219 * We have a system wide 'event count' that is incremented 220 * on any 'interesting' event, and readers of /proc/mdstat 221 * can use 'poll' or 'select' to find out when the event 222 * count increases. 223 * 224 * Events are: 225 * start array, stop array, error, add device, remove device, 226 * start build, activate spare 227 */ 228 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 229 static atomic_t md_event_count; 230 void md_new_event(mddev_t *mddev) 231 { 232 atomic_inc(&md_event_count); 233 wake_up(&md_event_waiters); 234 } 235 EXPORT_SYMBOL_GPL(md_new_event); 236 237 /* Alternate version that can be called from interrupts 238 * when calling sysfs_notify isn't needed. 239 */ 240 static void md_new_event_inintr(mddev_t *mddev) 241 { 242 atomic_inc(&md_event_count); 243 wake_up(&md_event_waiters); 244 } 245 246 /* 247 * Enables to iterate over all existing md arrays 248 * all_mddevs_lock protects this list. 249 */ 250 static LIST_HEAD(all_mddevs); 251 static DEFINE_SPINLOCK(all_mddevs_lock); 252 253 254 /* 255 * iterates through all used mddevs in the system. 256 * We take care to grab the all_mddevs_lock whenever navigating 257 * the list, and to always hold a refcount when unlocked. 258 * Any code which breaks out of this loop while own 259 * a reference to the current mddev and must mddev_put it. 260 */ 261 #define for_each_mddev(mddev,tmp) \ 262 \ 263 for (({ spin_lock(&all_mddevs_lock); \ 264 tmp = all_mddevs.next; \ 265 mddev = NULL;}); \ 266 ({ if (tmp != &all_mddevs) \ 267 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 268 spin_unlock(&all_mddevs_lock); \ 269 if (mddev) mddev_put(mddev); \ 270 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 271 tmp != &all_mddevs;}); \ 272 ({ spin_lock(&all_mddevs_lock); \ 273 tmp = tmp->next;}) \ 274 ) 275 276 277 /* Rather than calling directly into the personality make_request function, 278 * IO requests come here first so that we can check if the device is 279 * being suspended pending a reconfiguration. 280 * We hold a refcount over the call to ->make_request. By the time that 281 * call has finished, the bio has been linked into some internal structure 282 * and so is visible to ->quiesce(), so we don't need the refcount any more. 283 */ 284 static int md_make_request(struct request_queue *q, struct bio *bio) 285 { 286 const int rw = bio_data_dir(bio); 287 mddev_t *mddev = q->queuedata; 288 int rv; 289 int cpu; 290 unsigned int sectors; 291 292 if (mddev == NULL || mddev->pers == NULL 293 || !mddev->ready) { 294 bio_io_error(bio); 295 return 0; 296 } 297 smp_rmb(); /* Ensure implications of 'active' are visible */ 298 rcu_read_lock(); 299 if (mddev->suspended) { 300 DEFINE_WAIT(__wait); 301 for (;;) { 302 prepare_to_wait(&mddev->sb_wait, &__wait, 303 TASK_UNINTERRUPTIBLE); 304 if (!mddev->suspended) 305 break; 306 rcu_read_unlock(); 307 schedule(); 308 rcu_read_lock(); 309 } 310 finish_wait(&mddev->sb_wait, &__wait); 311 } 312 atomic_inc(&mddev->active_io); 313 rcu_read_unlock(); 314 315 /* 316 * save the sectors now since our bio can 317 * go away inside make_request 318 */ 319 sectors = bio_sectors(bio); 320 rv = mddev->pers->make_request(mddev, bio); 321 322 cpu = part_stat_lock(); 323 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 324 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 325 part_stat_unlock(); 326 327 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 328 wake_up(&mddev->sb_wait); 329 330 return rv; 331 } 332 333 /* mddev_suspend makes sure no new requests are submitted 334 * to the device, and that any requests that have been submitted 335 * are completely handled. 336 * Once ->stop is called and completes, the module will be completely 337 * unused. 338 */ 339 void mddev_suspend(mddev_t *mddev) 340 { 341 BUG_ON(mddev->suspended); 342 mddev->suspended = 1; 343 synchronize_rcu(); 344 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 345 mddev->pers->quiesce(mddev, 1); 346 } 347 EXPORT_SYMBOL_GPL(mddev_suspend); 348 349 void mddev_resume(mddev_t *mddev) 350 { 351 mddev->suspended = 0; 352 wake_up(&mddev->sb_wait); 353 mddev->pers->quiesce(mddev, 0); 354 355 md_wakeup_thread(mddev->thread); 356 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 357 } 358 EXPORT_SYMBOL_GPL(mddev_resume); 359 360 int mddev_congested(mddev_t *mddev, int bits) 361 { 362 return mddev->suspended; 363 } 364 EXPORT_SYMBOL(mddev_congested); 365 366 /* 367 * Generic flush handling for md 368 */ 369 370 static void md_end_flush(struct bio *bio, int err) 371 { 372 mdk_rdev_t *rdev = bio->bi_private; 373 mddev_t *mddev = rdev->mddev; 374 375 rdev_dec_pending(rdev, mddev); 376 377 if (atomic_dec_and_test(&mddev->flush_pending)) { 378 /* The pre-request flush has finished */ 379 queue_work(md_wq, &mddev->flush_work); 380 } 381 bio_put(bio); 382 } 383 384 static void md_submit_flush_data(struct work_struct *ws); 385 386 static void submit_flushes(struct work_struct *ws) 387 { 388 mddev_t *mddev = container_of(ws, mddev_t, flush_work); 389 mdk_rdev_t *rdev; 390 391 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 392 atomic_set(&mddev->flush_pending, 1); 393 rcu_read_lock(); 394 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 395 if (rdev->raid_disk >= 0 && 396 !test_bit(Faulty, &rdev->flags)) { 397 /* Take two references, one is dropped 398 * when request finishes, one after 399 * we reclaim rcu_read_lock 400 */ 401 struct bio *bi; 402 atomic_inc(&rdev->nr_pending); 403 atomic_inc(&rdev->nr_pending); 404 rcu_read_unlock(); 405 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev); 406 bi->bi_end_io = md_end_flush; 407 bi->bi_private = rdev; 408 bi->bi_bdev = rdev->bdev; 409 atomic_inc(&mddev->flush_pending); 410 submit_bio(WRITE_FLUSH, bi); 411 rcu_read_lock(); 412 rdev_dec_pending(rdev, mddev); 413 } 414 rcu_read_unlock(); 415 if (atomic_dec_and_test(&mddev->flush_pending)) 416 queue_work(md_wq, &mddev->flush_work); 417 } 418 419 static void md_submit_flush_data(struct work_struct *ws) 420 { 421 mddev_t *mddev = container_of(ws, mddev_t, flush_work); 422 struct bio *bio = mddev->flush_bio; 423 424 if (bio->bi_size == 0) 425 /* an empty barrier - all done */ 426 bio_endio(bio, 0); 427 else { 428 bio->bi_rw &= ~REQ_FLUSH; 429 if (mddev->pers->make_request(mddev, bio)) 430 generic_make_request(bio); 431 } 432 433 mddev->flush_bio = NULL; 434 wake_up(&mddev->sb_wait); 435 } 436 437 void md_flush_request(mddev_t *mddev, struct bio *bio) 438 { 439 spin_lock_irq(&mddev->write_lock); 440 wait_event_lock_irq(mddev->sb_wait, 441 !mddev->flush_bio, 442 mddev->write_lock, /*nothing*/); 443 mddev->flush_bio = bio; 444 spin_unlock_irq(&mddev->write_lock); 445 446 INIT_WORK(&mddev->flush_work, submit_flushes); 447 queue_work(md_wq, &mddev->flush_work); 448 } 449 EXPORT_SYMBOL(md_flush_request); 450 451 /* Support for plugging. 452 * This mirrors the plugging support in request_queue, but does not 453 * require having a whole queue or request structures. 454 * We allocate an md_plug_cb for each md device and each thread it gets 455 * plugged on. This links tot the private plug_handle structure in the 456 * personality data where we keep a count of the number of outstanding 457 * plugs so other code can see if a plug is active. 458 */ 459 struct md_plug_cb { 460 struct blk_plug_cb cb; 461 mddev_t *mddev; 462 }; 463 464 static void plugger_unplug(struct blk_plug_cb *cb) 465 { 466 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb); 467 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt)) 468 md_wakeup_thread(mdcb->mddev->thread); 469 kfree(mdcb); 470 } 471 472 /* Check that an unplug wakeup will come shortly. 473 * If not, wakeup the md thread immediately 474 */ 475 int mddev_check_plugged(mddev_t *mddev) 476 { 477 struct blk_plug *plug = current->plug; 478 struct md_plug_cb *mdcb; 479 480 if (!plug) 481 return 0; 482 483 list_for_each_entry(mdcb, &plug->cb_list, cb.list) { 484 if (mdcb->cb.callback == plugger_unplug && 485 mdcb->mddev == mddev) { 486 /* Already on the list, move to top */ 487 if (mdcb != list_first_entry(&plug->cb_list, 488 struct md_plug_cb, 489 cb.list)) 490 list_move(&mdcb->cb.list, &plug->cb_list); 491 return 1; 492 } 493 } 494 /* Not currently on the callback list */ 495 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC); 496 if (!mdcb) 497 return 0; 498 499 mdcb->mddev = mddev; 500 mdcb->cb.callback = plugger_unplug; 501 atomic_inc(&mddev->plug_cnt); 502 list_add(&mdcb->cb.list, &plug->cb_list); 503 return 1; 504 } 505 EXPORT_SYMBOL_GPL(mddev_check_plugged); 506 507 static inline mddev_t *mddev_get(mddev_t *mddev) 508 { 509 atomic_inc(&mddev->active); 510 return mddev; 511 } 512 513 static void mddev_delayed_delete(struct work_struct *ws); 514 515 static void mddev_put(mddev_t *mddev) 516 { 517 struct bio_set *bs = NULL; 518 519 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 520 return; 521 if (!mddev->raid_disks && list_empty(&mddev->disks) && 522 mddev->ctime == 0 && !mddev->hold_active) { 523 /* Array is not configured at all, and not held active, 524 * so destroy it */ 525 list_del(&mddev->all_mddevs); 526 bs = mddev->bio_set; 527 mddev->bio_set = NULL; 528 if (mddev->gendisk) { 529 /* We did a probe so need to clean up. Call 530 * queue_work inside the spinlock so that 531 * flush_workqueue() after mddev_find will 532 * succeed in waiting for the work to be done. 533 */ 534 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 535 queue_work(md_misc_wq, &mddev->del_work); 536 } else 537 kfree(mddev); 538 } 539 spin_unlock(&all_mddevs_lock); 540 if (bs) 541 bioset_free(bs); 542 } 543 544 void mddev_init(mddev_t *mddev) 545 { 546 mutex_init(&mddev->open_mutex); 547 mutex_init(&mddev->reconfig_mutex); 548 mutex_init(&mddev->bitmap_info.mutex); 549 INIT_LIST_HEAD(&mddev->disks); 550 INIT_LIST_HEAD(&mddev->all_mddevs); 551 init_timer(&mddev->safemode_timer); 552 atomic_set(&mddev->active, 1); 553 atomic_set(&mddev->openers, 0); 554 atomic_set(&mddev->active_io, 0); 555 atomic_set(&mddev->plug_cnt, 0); 556 spin_lock_init(&mddev->write_lock); 557 atomic_set(&mddev->flush_pending, 0); 558 init_waitqueue_head(&mddev->sb_wait); 559 init_waitqueue_head(&mddev->recovery_wait); 560 mddev->reshape_position = MaxSector; 561 mddev->resync_min = 0; 562 mddev->resync_max = MaxSector; 563 mddev->level = LEVEL_NONE; 564 } 565 EXPORT_SYMBOL_GPL(mddev_init); 566 567 static mddev_t * mddev_find(dev_t unit) 568 { 569 mddev_t *mddev, *new = NULL; 570 571 if (unit && MAJOR(unit) != MD_MAJOR) 572 unit &= ~((1<<MdpMinorShift)-1); 573 574 retry: 575 spin_lock(&all_mddevs_lock); 576 577 if (unit) { 578 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 579 if (mddev->unit == unit) { 580 mddev_get(mddev); 581 spin_unlock(&all_mddevs_lock); 582 kfree(new); 583 return mddev; 584 } 585 586 if (new) { 587 list_add(&new->all_mddevs, &all_mddevs); 588 spin_unlock(&all_mddevs_lock); 589 new->hold_active = UNTIL_IOCTL; 590 return new; 591 } 592 } else if (new) { 593 /* find an unused unit number */ 594 static int next_minor = 512; 595 int start = next_minor; 596 int is_free = 0; 597 int dev = 0; 598 while (!is_free) { 599 dev = MKDEV(MD_MAJOR, next_minor); 600 next_minor++; 601 if (next_minor > MINORMASK) 602 next_minor = 0; 603 if (next_minor == start) { 604 /* Oh dear, all in use. */ 605 spin_unlock(&all_mddevs_lock); 606 kfree(new); 607 return NULL; 608 } 609 610 is_free = 1; 611 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 612 if (mddev->unit == dev) { 613 is_free = 0; 614 break; 615 } 616 } 617 new->unit = dev; 618 new->md_minor = MINOR(dev); 619 new->hold_active = UNTIL_STOP; 620 list_add(&new->all_mddevs, &all_mddevs); 621 spin_unlock(&all_mddevs_lock); 622 return new; 623 } 624 spin_unlock(&all_mddevs_lock); 625 626 new = kzalloc(sizeof(*new), GFP_KERNEL); 627 if (!new) 628 return NULL; 629 630 new->unit = unit; 631 if (MAJOR(unit) == MD_MAJOR) 632 new->md_minor = MINOR(unit); 633 else 634 new->md_minor = MINOR(unit) >> MdpMinorShift; 635 636 mddev_init(new); 637 638 goto retry; 639 } 640 641 static inline int mddev_lock(mddev_t * mddev) 642 { 643 return mutex_lock_interruptible(&mddev->reconfig_mutex); 644 } 645 646 static inline int mddev_is_locked(mddev_t *mddev) 647 { 648 return mutex_is_locked(&mddev->reconfig_mutex); 649 } 650 651 static inline int mddev_trylock(mddev_t * mddev) 652 { 653 return mutex_trylock(&mddev->reconfig_mutex); 654 } 655 656 static struct attribute_group md_redundancy_group; 657 658 static void mddev_unlock(mddev_t * mddev) 659 { 660 if (mddev->to_remove) { 661 /* These cannot be removed under reconfig_mutex as 662 * an access to the files will try to take reconfig_mutex 663 * while holding the file unremovable, which leads to 664 * a deadlock. 665 * So hold set sysfs_active while the remove in happeing, 666 * and anything else which might set ->to_remove or my 667 * otherwise change the sysfs namespace will fail with 668 * -EBUSY if sysfs_active is still set. 669 * We set sysfs_active under reconfig_mutex and elsewhere 670 * test it under the same mutex to ensure its correct value 671 * is seen. 672 */ 673 struct attribute_group *to_remove = mddev->to_remove; 674 mddev->to_remove = NULL; 675 mddev->sysfs_active = 1; 676 mutex_unlock(&mddev->reconfig_mutex); 677 678 if (mddev->kobj.sd) { 679 if (to_remove != &md_redundancy_group) 680 sysfs_remove_group(&mddev->kobj, to_remove); 681 if (mddev->pers == NULL || 682 mddev->pers->sync_request == NULL) { 683 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 684 if (mddev->sysfs_action) 685 sysfs_put(mddev->sysfs_action); 686 mddev->sysfs_action = NULL; 687 } 688 } 689 mddev->sysfs_active = 0; 690 } else 691 mutex_unlock(&mddev->reconfig_mutex); 692 693 md_wakeup_thread(mddev->thread); 694 } 695 696 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 697 { 698 mdk_rdev_t *rdev; 699 700 list_for_each_entry(rdev, &mddev->disks, same_set) 701 if (rdev->desc_nr == nr) 702 return rdev; 703 704 return NULL; 705 } 706 707 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 708 { 709 mdk_rdev_t *rdev; 710 711 list_for_each_entry(rdev, &mddev->disks, same_set) 712 if (rdev->bdev->bd_dev == dev) 713 return rdev; 714 715 return NULL; 716 } 717 718 static struct mdk_personality *find_pers(int level, char *clevel) 719 { 720 struct mdk_personality *pers; 721 list_for_each_entry(pers, &pers_list, list) { 722 if (level != LEVEL_NONE && pers->level == level) 723 return pers; 724 if (strcmp(pers->name, clevel)==0) 725 return pers; 726 } 727 return NULL; 728 } 729 730 /* return the offset of the super block in 512byte sectors */ 731 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev) 732 { 733 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 734 return MD_NEW_SIZE_SECTORS(num_sectors); 735 } 736 737 static int alloc_disk_sb(mdk_rdev_t * rdev) 738 { 739 if (rdev->sb_page) 740 MD_BUG(); 741 742 rdev->sb_page = alloc_page(GFP_KERNEL); 743 if (!rdev->sb_page) { 744 printk(KERN_ALERT "md: out of memory.\n"); 745 return -ENOMEM; 746 } 747 748 return 0; 749 } 750 751 static void free_disk_sb(mdk_rdev_t * rdev) 752 { 753 if (rdev->sb_page) { 754 put_page(rdev->sb_page); 755 rdev->sb_loaded = 0; 756 rdev->sb_page = NULL; 757 rdev->sb_start = 0; 758 rdev->sectors = 0; 759 } 760 } 761 762 763 static void super_written(struct bio *bio, int error) 764 { 765 mdk_rdev_t *rdev = bio->bi_private; 766 mddev_t *mddev = rdev->mddev; 767 768 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 769 printk("md: super_written gets error=%d, uptodate=%d\n", 770 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 771 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 772 md_error(mddev, rdev); 773 } 774 775 if (atomic_dec_and_test(&mddev->pending_writes)) 776 wake_up(&mddev->sb_wait); 777 bio_put(bio); 778 } 779 780 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 781 sector_t sector, int size, struct page *page) 782 { 783 /* write first size bytes of page to sector of rdev 784 * Increment mddev->pending_writes before returning 785 * and decrement it on completion, waking up sb_wait 786 * if zero is reached. 787 * If an error occurred, call md_error 788 */ 789 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 790 791 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 792 bio->bi_sector = sector; 793 bio_add_page(bio, page, size, 0); 794 bio->bi_private = rdev; 795 bio->bi_end_io = super_written; 796 797 atomic_inc(&mddev->pending_writes); 798 submit_bio(REQ_WRITE | REQ_SYNC | REQ_FLUSH | REQ_FUA, bio); 799 } 800 801 void md_super_wait(mddev_t *mddev) 802 { 803 /* wait for all superblock writes that were scheduled to complete */ 804 DEFINE_WAIT(wq); 805 for(;;) { 806 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 807 if (atomic_read(&mddev->pending_writes)==0) 808 break; 809 schedule(); 810 } 811 finish_wait(&mddev->sb_wait, &wq); 812 } 813 814 static void bi_complete(struct bio *bio, int error) 815 { 816 complete((struct completion*)bio->bi_private); 817 } 818 819 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size, 820 struct page *page, int rw, bool metadata_op) 821 { 822 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 823 struct completion event; 824 int ret; 825 826 rw |= REQ_SYNC; 827 828 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 829 rdev->meta_bdev : rdev->bdev; 830 if (metadata_op) 831 bio->bi_sector = sector + rdev->sb_start; 832 else 833 bio->bi_sector = sector + rdev->data_offset; 834 bio_add_page(bio, page, size, 0); 835 init_completion(&event); 836 bio->bi_private = &event; 837 bio->bi_end_io = bi_complete; 838 submit_bio(rw, bio); 839 wait_for_completion(&event); 840 841 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 842 bio_put(bio); 843 return ret; 844 } 845 EXPORT_SYMBOL_GPL(sync_page_io); 846 847 static int read_disk_sb(mdk_rdev_t * rdev, int size) 848 { 849 char b[BDEVNAME_SIZE]; 850 if (!rdev->sb_page) { 851 MD_BUG(); 852 return -EINVAL; 853 } 854 if (rdev->sb_loaded) 855 return 0; 856 857 858 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 859 goto fail; 860 rdev->sb_loaded = 1; 861 return 0; 862 863 fail: 864 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 865 bdevname(rdev->bdev,b)); 866 return -EINVAL; 867 } 868 869 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 870 { 871 return sb1->set_uuid0 == sb2->set_uuid0 && 872 sb1->set_uuid1 == sb2->set_uuid1 && 873 sb1->set_uuid2 == sb2->set_uuid2 && 874 sb1->set_uuid3 == sb2->set_uuid3; 875 } 876 877 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 878 { 879 int ret; 880 mdp_super_t *tmp1, *tmp2; 881 882 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 883 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 884 885 if (!tmp1 || !tmp2) { 886 ret = 0; 887 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 888 goto abort; 889 } 890 891 *tmp1 = *sb1; 892 *tmp2 = *sb2; 893 894 /* 895 * nr_disks is not constant 896 */ 897 tmp1->nr_disks = 0; 898 tmp2->nr_disks = 0; 899 900 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 901 abort: 902 kfree(tmp1); 903 kfree(tmp2); 904 return ret; 905 } 906 907 908 static u32 md_csum_fold(u32 csum) 909 { 910 csum = (csum & 0xffff) + (csum >> 16); 911 return (csum & 0xffff) + (csum >> 16); 912 } 913 914 static unsigned int calc_sb_csum(mdp_super_t * sb) 915 { 916 u64 newcsum = 0; 917 u32 *sb32 = (u32*)sb; 918 int i; 919 unsigned int disk_csum, csum; 920 921 disk_csum = sb->sb_csum; 922 sb->sb_csum = 0; 923 924 for (i = 0; i < MD_SB_BYTES/4 ; i++) 925 newcsum += sb32[i]; 926 csum = (newcsum & 0xffffffff) + (newcsum>>32); 927 928 929 #ifdef CONFIG_ALPHA 930 /* This used to use csum_partial, which was wrong for several 931 * reasons including that different results are returned on 932 * different architectures. It isn't critical that we get exactly 933 * the same return value as before (we always csum_fold before 934 * testing, and that removes any differences). However as we 935 * know that csum_partial always returned a 16bit value on 936 * alphas, do a fold to maximise conformity to previous behaviour. 937 */ 938 sb->sb_csum = md_csum_fold(disk_csum); 939 #else 940 sb->sb_csum = disk_csum; 941 #endif 942 return csum; 943 } 944 945 946 /* 947 * Handle superblock details. 948 * We want to be able to handle multiple superblock formats 949 * so we have a common interface to them all, and an array of 950 * different handlers. 951 * We rely on user-space to write the initial superblock, and support 952 * reading and updating of superblocks. 953 * Interface methods are: 954 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 955 * loads and validates a superblock on dev. 956 * if refdev != NULL, compare superblocks on both devices 957 * Return: 958 * 0 - dev has a superblock that is compatible with refdev 959 * 1 - dev has a superblock that is compatible and newer than refdev 960 * so dev should be used as the refdev in future 961 * -EINVAL superblock incompatible or invalid 962 * -othererror e.g. -EIO 963 * 964 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 965 * Verify that dev is acceptable into mddev. 966 * The first time, mddev->raid_disks will be 0, and data from 967 * dev should be merged in. Subsequent calls check that dev 968 * is new enough. Return 0 or -EINVAL 969 * 970 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 971 * Update the superblock for rdev with data in mddev 972 * This does not write to disc. 973 * 974 */ 975 976 struct super_type { 977 char *name; 978 struct module *owner; 979 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 980 int minor_version); 981 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 982 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 983 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 984 sector_t num_sectors); 985 }; 986 987 /* 988 * Check that the given mddev has no bitmap. 989 * 990 * This function is called from the run method of all personalities that do not 991 * support bitmaps. It prints an error message and returns non-zero if mddev 992 * has a bitmap. Otherwise, it returns 0. 993 * 994 */ 995 int md_check_no_bitmap(mddev_t *mddev) 996 { 997 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 998 return 0; 999 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 1000 mdname(mddev), mddev->pers->name); 1001 return 1; 1002 } 1003 EXPORT_SYMBOL(md_check_no_bitmap); 1004 1005 /* 1006 * load_super for 0.90.0 1007 */ 1008 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1009 { 1010 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1011 mdp_super_t *sb; 1012 int ret; 1013 1014 /* 1015 * Calculate the position of the superblock (512byte sectors), 1016 * it's at the end of the disk. 1017 * 1018 * It also happens to be a multiple of 4Kb. 1019 */ 1020 rdev->sb_start = calc_dev_sboffset(rdev); 1021 1022 ret = read_disk_sb(rdev, MD_SB_BYTES); 1023 if (ret) return ret; 1024 1025 ret = -EINVAL; 1026 1027 bdevname(rdev->bdev, b); 1028 sb = (mdp_super_t*)page_address(rdev->sb_page); 1029 1030 if (sb->md_magic != MD_SB_MAGIC) { 1031 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 1032 b); 1033 goto abort; 1034 } 1035 1036 if (sb->major_version != 0 || 1037 sb->minor_version < 90 || 1038 sb->minor_version > 91) { 1039 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1040 sb->major_version, sb->minor_version, 1041 b); 1042 goto abort; 1043 } 1044 1045 if (sb->raid_disks <= 0) 1046 goto abort; 1047 1048 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1049 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1050 b); 1051 goto abort; 1052 } 1053 1054 rdev->preferred_minor = sb->md_minor; 1055 rdev->data_offset = 0; 1056 rdev->sb_size = MD_SB_BYTES; 1057 1058 if (sb->level == LEVEL_MULTIPATH) 1059 rdev->desc_nr = -1; 1060 else 1061 rdev->desc_nr = sb->this_disk.number; 1062 1063 if (!refdev) { 1064 ret = 1; 1065 } else { 1066 __u64 ev1, ev2; 1067 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 1068 if (!uuid_equal(refsb, sb)) { 1069 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1070 b, bdevname(refdev->bdev,b2)); 1071 goto abort; 1072 } 1073 if (!sb_equal(refsb, sb)) { 1074 printk(KERN_WARNING "md: %s has same UUID" 1075 " but different superblock to %s\n", 1076 b, bdevname(refdev->bdev, b2)); 1077 goto abort; 1078 } 1079 ev1 = md_event(sb); 1080 ev2 = md_event(refsb); 1081 if (ev1 > ev2) 1082 ret = 1; 1083 else 1084 ret = 0; 1085 } 1086 rdev->sectors = rdev->sb_start; 1087 1088 if (rdev->sectors < sb->size * 2 && sb->level > 1) 1089 /* "this cannot possibly happen" ... */ 1090 ret = -EINVAL; 1091 1092 abort: 1093 return ret; 1094 } 1095 1096 /* 1097 * validate_super for 0.90.0 1098 */ 1099 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1100 { 1101 mdp_disk_t *desc; 1102 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 1103 __u64 ev1 = md_event(sb); 1104 1105 rdev->raid_disk = -1; 1106 clear_bit(Faulty, &rdev->flags); 1107 clear_bit(In_sync, &rdev->flags); 1108 clear_bit(WriteMostly, &rdev->flags); 1109 1110 if (mddev->raid_disks == 0) { 1111 mddev->major_version = 0; 1112 mddev->minor_version = sb->minor_version; 1113 mddev->patch_version = sb->patch_version; 1114 mddev->external = 0; 1115 mddev->chunk_sectors = sb->chunk_size >> 9; 1116 mddev->ctime = sb->ctime; 1117 mddev->utime = sb->utime; 1118 mddev->level = sb->level; 1119 mddev->clevel[0] = 0; 1120 mddev->layout = sb->layout; 1121 mddev->raid_disks = sb->raid_disks; 1122 mddev->dev_sectors = sb->size * 2; 1123 mddev->events = ev1; 1124 mddev->bitmap_info.offset = 0; 1125 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1126 1127 if (mddev->minor_version >= 91) { 1128 mddev->reshape_position = sb->reshape_position; 1129 mddev->delta_disks = sb->delta_disks; 1130 mddev->new_level = sb->new_level; 1131 mddev->new_layout = sb->new_layout; 1132 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1133 } else { 1134 mddev->reshape_position = MaxSector; 1135 mddev->delta_disks = 0; 1136 mddev->new_level = mddev->level; 1137 mddev->new_layout = mddev->layout; 1138 mddev->new_chunk_sectors = mddev->chunk_sectors; 1139 } 1140 1141 if (sb->state & (1<<MD_SB_CLEAN)) 1142 mddev->recovery_cp = MaxSector; 1143 else { 1144 if (sb->events_hi == sb->cp_events_hi && 1145 sb->events_lo == sb->cp_events_lo) { 1146 mddev->recovery_cp = sb->recovery_cp; 1147 } else 1148 mddev->recovery_cp = 0; 1149 } 1150 1151 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1152 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1153 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1154 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1155 1156 mddev->max_disks = MD_SB_DISKS; 1157 1158 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1159 mddev->bitmap_info.file == NULL) 1160 mddev->bitmap_info.offset = 1161 mddev->bitmap_info.default_offset; 1162 1163 } else if (mddev->pers == NULL) { 1164 /* Insist on good event counter while assembling, except 1165 * for spares (which don't need an event count) */ 1166 ++ev1; 1167 if (sb->disks[rdev->desc_nr].state & ( 1168 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1169 if (ev1 < mddev->events) 1170 return -EINVAL; 1171 } else if (mddev->bitmap) { 1172 /* if adding to array with a bitmap, then we can accept an 1173 * older device ... but not too old. 1174 */ 1175 if (ev1 < mddev->bitmap->events_cleared) 1176 return 0; 1177 } else { 1178 if (ev1 < mddev->events) 1179 /* just a hot-add of a new device, leave raid_disk at -1 */ 1180 return 0; 1181 } 1182 1183 if (mddev->level != LEVEL_MULTIPATH) { 1184 desc = sb->disks + rdev->desc_nr; 1185 1186 if (desc->state & (1<<MD_DISK_FAULTY)) 1187 set_bit(Faulty, &rdev->flags); 1188 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1189 desc->raid_disk < mddev->raid_disks */) { 1190 set_bit(In_sync, &rdev->flags); 1191 rdev->raid_disk = desc->raid_disk; 1192 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1193 /* active but not in sync implies recovery up to 1194 * reshape position. We don't know exactly where 1195 * that is, so set to zero for now */ 1196 if (mddev->minor_version >= 91) { 1197 rdev->recovery_offset = 0; 1198 rdev->raid_disk = desc->raid_disk; 1199 } 1200 } 1201 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1202 set_bit(WriteMostly, &rdev->flags); 1203 } else /* MULTIPATH are always insync */ 1204 set_bit(In_sync, &rdev->flags); 1205 return 0; 1206 } 1207 1208 /* 1209 * sync_super for 0.90.0 1210 */ 1211 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1212 { 1213 mdp_super_t *sb; 1214 mdk_rdev_t *rdev2; 1215 int next_spare = mddev->raid_disks; 1216 1217 1218 /* make rdev->sb match mddev data.. 1219 * 1220 * 1/ zero out disks 1221 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1222 * 3/ any empty disks < next_spare become removed 1223 * 1224 * disks[0] gets initialised to REMOVED because 1225 * we cannot be sure from other fields if it has 1226 * been initialised or not. 1227 */ 1228 int i; 1229 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1230 1231 rdev->sb_size = MD_SB_BYTES; 1232 1233 sb = (mdp_super_t*)page_address(rdev->sb_page); 1234 1235 memset(sb, 0, sizeof(*sb)); 1236 1237 sb->md_magic = MD_SB_MAGIC; 1238 sb->major_version = mddev->major_version; 1239 sb->patch_version = mddev->patch_version; 1240 sb->gvalid_words = 0; /* ignored */ 1241 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1242 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1243 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1244 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1245 1246 sb->ctime = mddev->ctime; 1247 sb->level = mddev->level; 1248 sb->size = mddev->dev_sectors / 2; 1249 sb->raid_disks = mddev->raid_disks; 1250 sb->md_minor = mddev->md_minor; 1251 sb->not_persistent = 0; 1252 sb->utime = mddev->utime; 1253 sb->state = 0; 1254 sb->events_hi = (mddev->events>>32); 1255 sb->events_lo = (u32)mddev->events; 1256 1257 if (mddev->reshape_position == MaxSector) 1258 sb->minor_version = 90; 1259 else { 1260 sb->minor_version = 91; 1261 sb->reshape_position = mddev->reshape_position; 1262 sb->new_level = mddev->new_level; 1263 sb->delta_disks = mddev->delta_disks; 1264 sb->new_layout = mddev->new_layout; 1265 sb->new_chunk = mddev->new_chunk_sectors << 9; 1266 } 1267 mddev->minor_version = sb->minor_version; 1268 if (mddev->in_sync) 1269 { 1270 sb->recovery_cp = mddev->recovery_cp; 1271 sb->cp_events_hi = (mddev->events>>32); 1272 sb->cp_events_lo = (u32)mddev->events; 1273 if (mddev->recovery_cp == MaxSector) 1274 sb->state = (1<< MD_SB_CLEAN); 1275 } else 1276 sb->recovery_cp = 0; 1277 1278 sb->layout = mddev->layout; 1279 sb->chunk_size = mddev->chunk_sectors << 9; 1280 1281 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1282 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1283 1284 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1285 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1286 mdp_disk_t *d; 1287 int desc_nr; 1288 int is_active = test_bit(In_sync, &rdev2->flags); 1289 1290 if (rdev2->raid_disk >= 0 && 1291 sb->minor_version >= 91) 1292 /* we have nowhere to store the recovery_offset, 1293 * but if it is not below the reshape_position, 1294 * we can piggy-back on that. 1295 */ 1296 is_active = 1; 1297 if (rdev2->raid_disk < 0 || 1298 test_bit(Faulty, &rdev2->flags)) 1299 is_active = 0; 1300 if (is_active) 1301 desc_nr = rdev2->raid_disk; 1302 else 1303 desc_nr = next_spare++; 1304 rdev2->desc_nr = desc_nr; 1305 d = &sb->disks[rdev2->desc_nr]; 1306 nr_disks++; 1307 d->number = rdev2->desc_nr; 1308 d->major = MAJOR(rdev2->bdev->bd_dev); 1309 d->minor = MINOR(rdev2->bdev->bd_dev); 1310 if (is_active) 1311 d->raid_disk = rdev2->raid_disk; 1312 else 1313 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1314 if (test_bit(Faulty, &rdev2->flags)) 1315 d->state = (1<<MD_DISK_FAULTY); 1316 else if (is_active) { 1317 d->state = (1<<MD_DISK_ACTIVE); 1318 if (test_bit(In_sync, &rdev2->flags)) 1319 d->state |= (1<<MD_DISK_SYNC); 1320 active++; 1321 working++; 1322 } else { 1323 d->state = 0; 1324 spare++; 1325 working++; 1326 } 1327 if (test_bit(WriteMostly, &rdev2->flags)) 1328 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1329 } 1330 /* now set the "removed" and "faulty" bits on any missing devices */ 1331 for (i=0 ; i < mddev->raid_disks ; i++) { 1332 mdp_disk_t *d = &sb->disks[i]; 1333 if (d->state == 0 && d->number == 0) { 1334 d->number = i; 1335 d->raid_disk = i; 1336 d->state = (1<<MD_DISK_REMOVED); 1337 d->state |= (1<<MD_DISK_FAULTY); 1338 failed++; 1339 } 1340 } 1341 sb->nr_disks = nr_disks; 1342 sb->active_disks = active; 1343 sb->working_disks = working; 1344 sb->failed_disks = failed; 1345 sb->spare_disks = spare; 1346 1347 sb->this_disk = sb->disks[rdev->desc_nr]; 1348 sb->sb_csum = calc_sb_csum(sb); 1349 } 1350 1351 /* 1352 * rdev_size_change for 0.90.0 1353 */ 1354 static unsigned long long 1355 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1356 { 1357 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1358 return 0; /* component must fit device */ 1359 if (rdev->mddev->bitmap_info.offset) 1360 return 0; /* can't move bitmap */ 1361 rdev->sb_start = calc_dev_sboffset(rdev); 1362 if (!num_sectors || num_sectors > rdev->sb_start) 1363 num_sectors = rdev->sb_start; 1364 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1365 rdev->sb_page); 1366 md_super_wait(rdev->mddev); 1367 return num_sectors; 1368 } 1369 1370 1371 /* 1372 * version 1 superblock 1373 */ 1374 1375 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1376 { 1377 __le32 disk_csum; 1378 u32 csum; 1379 unsigned long long newcsum; 1380 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1381 __le32 *isuper = (__le32*)sb; 1382 int i; 1383 1384 disk_csum = sb->sb_csum; 1385 sb->sb_csum = 0; 1386 newcsum = 0; 1387 for (i=0; size>=4; size -= 4 ) 1388 newcsum += le32_to_cpu(*isuper++); 1389 1390 if (size == 2) 1391 newcsum += le16_to_cpu(*(__le16*) isuper); 1392 1393 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1394 sb->sb_csum = disk_csum; 1395 return cpu_to_le32(csum); 1396 } 1397 1398 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1399 { 1400 struct mdp_superblock_1 *sb; 1401 int ret; 1402 sector_t sb_start; 1403 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1404 int bmask; 1405 1406 /* 1407 * Calculate the position of the superblock in 512byte sectors. 1408 * It is always aligned to a 4K boundary and 1409 * depeding on minor_version, it can be: 1410 * 0: At least 8K, but less than 12K, from end of device 1411 * 1: At start of device 1412 * 2: 4K from start of device. 1413 */ 1414 switch(minor_version) { 1415 case 0: 1416 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1417 sb_start -= 8*2; 1418 sb_start &= ~(sector_t)(4*2-1); 1419 break; 1420 case 1: 1421 sb_start = 0; 1422 break; 1423 case 2: 1424 sb_start = 8; 1425 break; 1426 default: 1427 return -EINVAL; 1428 } 1429 rdev->sb_start = sb_start; 1430 1431 /* superblock is rarely larger than 1K, but it can be larger, 1432 * and it is safe to read 4k, so we do that 1433 */ 1434 ret = read_disk_sb(rdev, 4096); 1435 if (ret) return ret; 1436 1437 1438 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1439 1440 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1441 sb->major_version != cpu_to_le32(1) || 1442 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1443 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1444 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1445 return -EINVAL; 1446 1447 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1448 printk("md: invalid superblock checksum on %s\n", 1449 bdevname(rdev->bdev,b)); 1450 return -EINVAL; 1451 } 1452 if (le64_to_cpu(sb->data_size) < 10) { 1453 printk("md: data_size too small on %s\n", 1454 bdevname(rdev->bdev,b)); 1455 return -EINVAL; 1456 } 1457 1458 rdev->preferred_minor = 0xffff; 1459 rdev->data_offset = le64_to_cpu(sb->data_offset); 1460 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1461 1462 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1463 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1464 if (rdev->sb_size & bmask) 1465 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1466 1467 if (minor_version 1468 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1469 return -EINVAL; 1470 1471 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1472 rdev->desc_nr = -1; 1473 else 1474 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1475 1476 if (!refdev) { 1477 ret = 1; 1478 } else { 1479 __u64 ev1, ev2; 1480 struct mdp_superblock_1 *refsb = 1481 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1482 1483 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1484 sb->level != refsb->level || 1485 sb->layout != refsb->layout || 1486 sb->chunksize != refsb->chunksize) { 1487 printk(KERN_WARNING "md: %s has strangely different" 1488 " superblock to %s\n", 1489 bdevname(rdev->bdev,b), 1490 bdevname(refdev->bdev,b2)); 1491 return -EINVAL; 1492 } 1493 ev1 = le64_to_cpu(sb->events); 1494 ev2 = le64_to_cpu(refsb->events); 1495 1496 if (ev1 > ev2) 1497 ret = 1; 1498 else 1499 ret = 0; 1500 } 1501 if (minor_version) 1502 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 1503 le64_to_cpu(sb->data_offset); 1504 else 1505 rdev->sectors = rdev->sb_start; 1506 if (rdev->sectors < le64_to_cpu(sb->data_size)) 1507 return -EINVAL; 1508 rdev->sectors = le64_to_cpu(sb->data_size); 1509 if (le64_to_cpu(sb->size) > rdev->sectors) 1510 return -EINVAL; 1511 return ret; 1512 } 1513 1514 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1515 { 1516 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1517 __u64 ev1 = le64_to_cpu(sb->events); 1518 1519 rdev->raid_disk = -1; 1520 clear_bit(Faulty, &rdev->flags); 1521 clear_bit(In_sync, &rdev->flags); 1522 clear_bit(WriteMostly, &rdev->flags); 1523 1524 if (mddev->raid_disks == 0) { 1525 mddev->major_version = 1; 1526 mddev->patch_version = 0; 1527 mddev->external = 0; 1528 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1529 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1530 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1531 mddev->level = le32_to_cpu(sb->level); 1532 mddev->clevel[0] = 0; 1533 mddev->layout = le32_to_cpu(sb->layout); 1534 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1535 mddev->dev_sectors = le64_to_cpu(sb->size); 1536 mddev->events = ev1; 1537 mddev->bitmap_info.offset = 0; 1538 mddev->bitmap_info.default_offset = 1024 >> 9; 1539 1540 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1541 memcpy(mddev->uuid, sb->set_uuid, 16); 1542 1543 mddev->max_disks = (4096-256)/2; 1544 1545 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1546 mddev->bitmap_info.file == NULL ) 1547 mddev->bitmap_info.offset = 1548 (__s32)le32_to_cpu(sb->bitmap_offset); 1549 1550 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1551 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1552 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1553 mddev->new_level = le32_to_cpu(sb->new_level); 1554 mddev->new_layout = le32_to_cpu(sb->new_layout); 1555 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1556 } else { 1557 mddev->reshape_position = MaxSector; 1558 mddev->delta_disks = 0; 1559 mddev->new_level = mddev->level; 1560 mddev->new_layout = mddev->layout; 1561 mddev->new_chunk_sectors = mddev->chunk_sectors; 1562 } 1563 1564 } else if (mddev->pers == NULL) { 1565 /* Insist of good event counter while assembling, except for 1566 * spares (which don't need an event count) */ 1567 ++ev1; 1568 if (rdev->desc_nr >= 0 && 1569 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1570 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1571 if (ev1 < mddev->events) 1572 return -EINVAL; 1573 } else if (mddev->bitmap) { 1574 /* If adding to array with a bitmap, then we can accept an 1575 * older device, but not too old. 1576 */ 1577 if (ev1 < mddev->bitmap->events_cleared) 1578 return 0; 1579 } else { 1580 if (ev1 < mddev->events) 1581 /* just a hot-add of a new device, leave raid_disk at -1 */ 1582 return 0; 1583 } 1584 if (mddev->level != LEVEL_MULTIPATH) { 1585 int role; 1586 if (rdev->desc_nr < 0 || 1587 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1588 role = 0xffff; 1589 rdev->desc_nr = -1; 1590 } else 1591 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1592 switch(role) { 1593 case 0xffff: /* spare */ 1594 break; 1595 case 0xfffe: /* faulty */ 1596 set_bit(Faulty, &rdev->flags); 1597 break; 1598 default: 1599 if ((le32_to_cpu(sb->feature_map) & 1600 MD_FEATURE_RECOVERY_OFFSET)) 1601 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1602 else 1603 set_bit(In_sync, &rdev->flags); 1604 rdev->raid_disk = role; 1605 break; 1606 } 1607 if (sb->devflags & WriteMostly1) 1608 set_bit(WriteMostly, &rdev->flags); 1609 } else /* MULTIPATH are always insync */ 1610 set_bit(In_sync, &rdev->flags); 1611 1612 return 0; 1613 } 1614 1615 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1616 { 1617 struct mdp_superblock_1 *sb; 1618 mdk_rdev_t *rdev2; 1619 int max_dev, i; 1620 /* make rdev->sb match mddev and rdev data. */ 1621 1622 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1623 1624 sb->feature_map = 0; 1625 sb->pad0 = 0; 1626 sb->recovery_offset = cpu_to_le64(0); 1627 memset(sb->pad1, 0, sizeof(sb->pad1)); 1628 memset(sb->pad2, 0, sizeof(sb->pad2)); 1629 memset(sb->pad3, 0, sizeof(sb->pad3)); 1630 1631 sb->utime = cpu_to_le64((__u64)mddev->utime); 1632 sb->events = cpu_to_le64(mddev->events); 1633 if (mddev->in_sync) 1634 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1635 else 1636 sb->resync_offset = cpu_to_le64(0); 1637 1638 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1639 1640 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1641 sb->size = cpu_to_le64(mddev->dev_sectors); 1642 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1643 sb->level = cpu_to_le32(mddev->level); 1644 sb->layout = cpu_to_le32(mddev->layout); 1645 1646 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1647 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1648 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1649 } 1650 1651 if (rdev->raid_disk >= 0 && 1652 !test_bit(In_sync, &rdev->flags)) { 1653 sb->feature_map |= 1654 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1655 sb->recovery_offset = 1656 cpu_to_le64(rdev->recovery_offset); 1657 } 1658 1659 if (mddev->reshape_position != MaxSector) { 1660 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1661 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1662 sb->new_layout = cpu_to_le32(mddev->new_layout); 1663 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1664 sb->new_level = cpu_to_le32(mddev->new_level); 1665 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1666 } 1667 1668 max_dev = 0; 1669 list_for_each_entry(rdev2, &mddev->disks, same_set) 1670 if (rdev2->desc_nr+1 > max_dev) 1671 max_dev = rdev2->desc_nr+1; 1672 1673 if (max_dev > le32_to_cpu(sb->max_dev)) { 1674 int bmask; 1675 sb->max_dev = cpu_to_le32(max_dev); 1676 rdev->sb_size = max_dev * 2 + 256; 1677 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1678 if (rdev->sb_size & bmask) 1679 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1680 } else 1681 max_dev = le32_to_cpu(sb->max_dev); 1682 1683 for (i=0; i<max_dev;i++) 1684 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1685 1686 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1687 i = rdev2->desc_nr; 1688 if (test_bit(Faulty, &rdev2->flags)) 1689 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1690 else if (test_bit(In_sync, &rdev2->flags)) 1691 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1692 else if (rdev2->raid_disk >= 0) 1693 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1694 else 1695 sb->dev_roles[i] = cpu_to_le16(0xffff); 1696 } 1697 1698 sb->sb_csum = calc_sb_1_csum(sb); 1699 } 1700 1701 static unsigned long long 1702 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1703 { 1704 struct mdp_superblock_1 *sb; 1705 sector_t max_sectors; 1706 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1707 return 0; /* component must fit device */ 1708 if (rdev->sb_start < rdev->data_offset) { 1709 /* minor versions 1 and 2; superblock before data */ 1710 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1711 max_sectors -= rdev->data_offset; 1712 if (!num_sectors || num_sectors > max_sectors) 1713 num_sectors = max_sectors; 1714 } else if (rdev->mddev->bitmap_info.offset) { 1715 /* minor version 0 with bitmap we can't move */ 1716 return 0; 1717 } else { 1718 /* minor version 0; superblock after data */ 1719 sector_t sb_start; 1720 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1721 sb_start &= ~(sector_t)(4*2 - 1); 1722 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1723 if (!num_sectors || num_sectors > max_sectors) 1724 num_sectors = max_sectors; 1725 rdev->sb_start = sb_start; 1726 } 1727 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1728 sb->data_size = cpu_to_le64(num_sectors); 1729 sb->super_offset = rdev->sb_start; 1730 sb->sb_csum = calc_sb_1_csum(sb); 1731 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1732 rdev->sb_page); 1733 md_super_wait(rdev->mddev); 1734 return num_sectors; 1735 } 1736 1737 static struct super_type super_types[] = { 1738 [0] = { 1739 .name = "0.90.0", 1740 .owner = THIS_MODULE, 1741 .load_super = super_90_load, 1742 .validate_super = super_90_validate, 1743 .sync_super = super_90_sync, 1744 .rdev_size_change = super_90_rdev_size_change, 1745 }, 1746 [1] = { 1747 .name = "md-1", 1748 .owner = THIS_MODULE, 1749 .load_super = super_1_load, 1750 .validate_super = super_1_validate, 1751 .sync_super = super_1_sync, 1752 .rdev_size_change = super_1_rdev_size_change, 1753 }, 1754 }; 1755 1756 static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev) 1757 { 1758 if (mddev->sync_super) { 1759 mddev->sync_super(mddev, rdev); 1760 return; 1761 } 1762 1763 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1764 1765 super_types[mddev->major_version].sync_super(mddev, rdev); 1766 } 1767 1768 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1769 { 1770 mdk_rdev_t *rdev, *rdev2; 1771 1772 rcu_read_lock(); 1773 rdev_for_each_rcu(rdev, mddev1) 1774 rdev_for_each_rcu(rdev2, mddev2) 1775 if (rdev->bdev->bd_contains == 1776 rdev2->bdev->bd_contains) { 1777 rcu_read_unlock(); 1778 return 1; 1779 } 1780 rcu_read_unlock(); 1781 return 0; 1782 } 1783 1784 static LIST_HEAD(pending_raid_disks); 1785 1786 /* 1787 * Try to register data integrity profile for an mddev 1788 * 1789 * This is called when an array is started and after a disk has been kicked 1790 * from the array. It only succeeds if all working and active component devices 1791 * are integrity capable with matching profiles. 1792 */ 1793 int md_integrity_register(mddev_t *mddev) 1794 { 1795 mdk_rdev_t *rdev, *reference = NULL; 1796 1797 if (list_empty(&mddev->disks)) 1798 return 0; /* nothing to do */ 1799 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1800 return 0; /* shouldn't register, or already is */ 1801 list_for_each_entry(rdev, &mddev->disks, same_set) { 1802 /* skip spares and non-functional disks */ 1803 if (test_bit(Faulty, &rdev->flags)) 1804 continue; 1805 if (rdev->raid_disk < 0) 1806 continue; 1807 if (!reference) { 1808 /* Use the first rdev as the reference */ 1809 reference = rdev; 1810 continue; 1811 } 1812 /* does this rdev's profile match the reference profile? */ 1813 if (blk_integrity_compare(reference->bdev->bd_disk, 1814 rdev->bdev->bd_disk) < 0) 1815 return -EINVAL; 1816 } 1817 if (!reference || !bdev_get_integrity(reference->bdev)) 1818 return 0; 1819 /* 1820 * All component devices are integrity capable and have matching 1821 * profiles, register the common profile for the md device. 1822 */ 1823 if (blk_integrity_register(mddev->gendisk, 1824 bdev_get_integrity(reference->bdev)) != 0) { 1825 printk(KERN_ERR "md: failed to register integrity for %s\n", 1826 mdname(mddev)); 1827 return -EINVAL; 1828 } 1829 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 1830 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 1831 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 1832 mdname(mddev)); 1833 return -EINVAL; 1834 } 1835 return 0; 1836 } 1837 EXPORT_SYMBOL(md_integrity_register); 1838 1839 /* Disable data integrity if non-capable/non-matching disk is being added */ 1840 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 1841 { 1842 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 1843 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 1844 1845 if (!bi_mddev) /* nothing to do */ 1846 return; 1847 if (rdev->raid_disk < 0) /* skip spares */ 1848 return; 1849 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 1850 rdev->bdev->bd_disk) >= 0) 1851 return; 1852 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 1853 blk_integrity_unregister(mddev->gendisk); 1854 } 1855 EXPORT_SYMBOL(md_integrity_add_rdev); 1856 1857 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1858 { 1859 char b[BDEVNAME_SIZE]; 1860 struct kobject *ko; 1861 char *s; 1862 int err; 1863 1864 if (rdev->mddev) { 1865 MD_BUG(); 1866 return -EINVAL; 1867 } 1868 1869 /* prevent duplicates */ 1870 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1871 return -EEXIST; 1872 1873 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 1874 if (rdev->sectors && (mddev->dev_sectors == 0 || 1875 rdev->sectors < mddev->dev_sectors)) { 1876 if (mddev->pers) { 1877 /* Cannot change size, so fail 1878 * If mddev->level <= 0, then we don't care 1879 * about aligning sizes (e.g. linear) 1880 */ 1881 if (mddev->level > 0) 1882 return -ENOSPC; 1883 } else 1884 mddev->dev_sectors = rdev->sectors; 1885 } 1886 1887 /* Verify rdev->desc_nr is unique. 1888 * If it is -1, assign a free number, else 1889 * check number is not in use 1890 */ 1891 if (rdev->desc_nr < 0) { 1892 int choice = 0; 1893 if (mddev->pers) choice = mddev->raid_disks; 1894 while (find_rdev_nr(mddev, choice)) 1895 choice++; 1896 rdev->desc_nr = choice; 1897 } else { 1898 if (find_rdev_nr(mddev, rdev->desc_nr)) 1899 return -EBUSY; 1900 } 1901 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 1902 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 1903 mdname(mddev), mddev->max_disks); 1904 return -EBUSY; 1905 } 1906 bdevname(rdev->bdev,b); 1907 while ( (s=strchr(b, '/')) != NULL) 1908 *s = '!'; 1909 1910 rdev->mddev = mddev; 1911 printk(KERN_INFO "md: bind<%s>\n", b); 1912 1913 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1914 goto fail; 1915 1916 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 1917 if (sysfs_create_link(&rdev->kobj, ko, "block")) 1918 /* failure here is OK */; 1919 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 1920 1921 list_add_rcu(&rdev->same_set, &mddev->disks); 1922 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 1923 1924 /* May as well allow recovery to be retried once */ 1925 mddev->recovery_disabled = 0; 1926 1927 return 0; 1928 1929 fail: 1930 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1931 b, mdname(mddev)); 1932 return err; 1933 } 1934 1935 static void md_delayed_delete(struct work_struct *ws) 1936 { 1937 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1938 kobject_del(&rdev->kobj); 1939 kobject_put(&rdev->kobj); 1940 } 1941 1942 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1943 { 1944 char b[BDEVNAME_SIZE]; 1945 if (!rdev->mddev) { 1946 MD_BUG(); 1947 return; 1948 } 1949 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 1950 list_del_rcu(&rdev->same_set); 1951 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1952 rdev->mddev = NULL; 1953 sysfs_remove_link(&rdev->kobj, "block"); 1954 sysfs_put(rdev->sysfs_state); 1955 rdev->sysfs_state = NULL; 1956 /* We need to delay this, otherwise we can deadlock when 1957 * writing to 'remove' to "dev/state". We also need 1958 * to delay it due to rcu usage. 1959 */ 1960 synchronize_rcu(); 1961 INIT_WORK(&rdev->del_work, md_delayed_delete); 1962 kobject_get(&rdev->kobj); 1963 queue_work(md_misc_wq, &rdev->del_work); 1964 } 1965 1966 /* 1967 * prevent the device from being mounted, repartitioned or 1968 * otherwise reused by a RAID array (or any other kernel 1969 * subsystem), by bd_claiming the device. 1970 */ 1971 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1972 { 1973 int err = 0; 1974 struct block_device *bdev; 1975 char b[BDEVNAME_SIZE]; 1976 1977 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 1978 shared ? (mdk_rdev_t *)lock_rdev : rdev); 1979 if (IS_ERR(bdev)) { 1980 printk(KERN_ERR "md: could not open %s.\n", 1981 __bdevname(dev, b)); 1982 return PTR_ERR(bdev); 1983 } 1984 rdev->bdev = bdev; 1985 return err; 1986 } 1987 1988 static void unlock_rdev(mdk_rdev_t *rdev) 1989 { 1990 struct block_device *bdev = rdev->bdev; 1991 rdev->bdev = NULL; 1992 if (!bdev) 1993 MD_BUG(); 1994 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1995 } 1996 1997 void md_autodetect_dev(dev_t dev); 1998 1999 static void export_rdev(mdk_rdev_t * rdev) 2000 { 2001 char b[BDEVNAME_SIZE]; 2002 printk(KERN_INFO "md: export_rdev(%s)\n", 2003 bdevname(rdev->bdev,b)); 2004 if (rdev->mddev) 2005 MD_BUG(); 2006 free_disk_sb(rdev); 2007 #ifndef MODULE 2008 if (test_bit(AutoDetected, &rdev->flags)) 2009 md_autodetect_dev(rdev->bdev->bd_dev); 2010 #endif 2011 unlock_rdev(rdev); 2012 kobject_put(&rdev->kobj); 2013 } 2014 2015 static void kick_rdev_from_array(mdk_rdev_t * rdev) 2016 { 2017 unbind_rdev_from_array(rdev); 2018 export_rdev(rdev); 2019 } 2020 2021 static void export_array(mddev_t *mddev) 2022 { 2023 mdk_rdev_t *rdev, *tmp; 2024 2025 rdev_for_each(rdev, tmp, mddev) { 2026 if (!rdev->mddev) { 2027 MD_BUG(); 2028 continue; 2029 } 2030 kick_rdev_from_array(rdev); 2031 } 2032 if (!list_empty(&mddev->disks)) 2033 MD_BUG(); 2034 mddev->raid_disks = 0; 2035 mddev->major_version = 0; 2036 } 2037 2038 static void print_desc(mdp_disk_t *desc) 2039 { 2040 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2041 desc->major,desc->minor,desc->raid_disk,desc->state); 2042 } 2043 2044 static void print_sb_90(mdp_super_t *sb) 2045 { 2046 int i; 2047 2048 printk(KERN_INFO 2049 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2050 sb->major_version, sb->minor_version, sb->patch_version, 2051 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2052 sb->ctime); 2053 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2054 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2055 sb->md_minor, sb->layout, sb->chunk_size); 2056 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2057 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2058 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2059 sb->failed_disks, sb->spare_disks, 2060 sb->sb_csum, (unsigned long)sb->events_lo); 2061 2062 printk(KERN_INFO); 2063 for (i = 0; i < MD_SB_DISKS; i++) { 2064 mdp_disk_t *desc; 2065 2066 desc = sb->disks + i; 2067 if (desc->number || desc->major || desc->minor || 2068 desc->raid_disk || (desc->state && (desc->state != 4))) { 2069 printk(" D %2d: ", i); 2070 print_desc(desc); 2071 } 2072 } 2073 printk(KERN_INFO "md: THIS: "); 2074 print_desc(&sb->this_disk); 2075 } 2076 2077 static void print_sb_1(struct mdp_superblock_1 *sb) 2078 { 2079 __u8 *uuid; 2080 2081 uuid = sb->set_uuid; 2082 printk(KERN_INFO 2083 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2084 "md: Name: \"%s\" CT:%llu\n", 2085 le32_to_cpu(sb->major_version), 2086 le32_to_cpu(sb->feature_map), 2087 uuid, 2088 sb->set_name, 2089 (unsigned long long)le64_to_cpu(sb->ctime) 2090 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2091 2092 uuid = sb->device_uuid; 2093 printk(KERN_INFO 2094 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2095 " RO:%llu\n" 2096 "md: Dev:%08x UUID: %pU\n" 2097 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2098 "md: (MaxDev:%u) \n", 2099 le32_to_cpu(sb->level), 2100 (unsigned long long)le64_to_cpu(sb->size), 2101 le32_to_cpu(sb->raid_disks), 2102 le32_to_cpu(sb->layout), 2103 le32_to_cpu(sb->chunksize), 2104 (unsigned long long)le64_to_cpu(sb->data_offset), 2105 (unsigned long long)le64_to_cpu(sb->data_size), 2106 (unsigned long long)le64_to_cpu(sb->super_offset), 2107 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2108 le32_to_cpu(sb->dev_number), 2109 uuid, 2110 sb->devflags, 2111 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2112 (unsigned long long)le64_to_cpu(sb->events), 2113 (unsigned long long)le64_to_cpu(sb->resync_offset), 2114 le32_to_cpu(sb->sb_csum), 2115 le32_to_cpu(sb->max_dev) 2116 ); 2117 } 2118 2119 static void print_rdev(mdk_rdev_t *rdev, int major_version) 2120 { 2121 char b[BDEVNAME_SIZE]; 2122 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2123 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2124 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2125 rdev->desc_nr); 2126 if (rdev->sb_loaded) { 2127 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2128 switch (major_version) { 2129 case 0: 2130 print_sb_90((mdp_super_t*)page_address(rdev->sb_page)); 2131 break; 2132 case 1: 2133 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page)); 2134 break; 2135 } 2136 } else 2137 printk(KERN_INFO "md: no rdev superblock!\n"); 2138 } 2139 2140 static void md_print_devices(void) 2141 { 2142 struct list_head *tmp; 2143 mdk_rdev_t *rdev; 2144 mddev_t *mddev; 2145 char b[BDEVNAME_SIZE]; 2146 2147 printk("\n"); 2148 printk("md: **********************************\n"); 2149 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2150 printk("md: **********************************\n"); 2151 for_each_mddev(mddev, tmp) { 2152 2153 if (mddev->bitmap) 2154 bitmap_print_sb(mddev->bitmap); 2155 else 2156 printk("%s: ", mdname(mddev)); 2157 list_for_each_entry(rdev, &mddev->disks, same_set) 2158 printk("<%s>", bdevname(rdev->bdev,b)); 2159 printk("\n"); 2160 2161 list_for_each_entry(rdev, &mddev->disks, same_set) 2162 print_rdev(rdev, mddev->major_version); 2163 } 2164 printk("md: **********************************\n"); 2165 printk("\n"); 2166 } 2167 2168 2169 static void sync_sbs(mddev_t * mddev, int nospares) 2170 { 2171 /* Update each superblock (in-memory image), but 2172 * if we are allowed to, skip spares which already 2173 * have the right event counter, or have one earlier 2174 * (which would mean they aren't being marked as dirty 2175 * with the rest of the array) 2176 */ 2177 mdk_rdev_t *rdev; 2178 list_for_each_entry(rdev, &mddev->disks, same_set) { 2179 if (rdev->sb_events == mddev->events || 2180 (nospares && 2181 rdev->raid_disk < 0 && 2182 rdev->sb_events+1 == mddev->events)) { 2183 /* Don't update this superblock */ 2184 rdev->sb_loaded = 2; 2185 } else { 2186 sync_super(mddev, rdev); 2187 rdev->sb_loaded = 1; 2188 } 2189 } 2190 } 2191 2192 static void md_update_sb(mddev_t * mddev, int force_change) 2193 { 2194 mdk_rdev_t *rdev; 2195 int sync_req; 2196 int nospares = 0; 2197 2198 repeat: 2199 /* First make sure individual recovery_offsets are correct */ 2200 list_for_each_entry(rdev, &mddev->disks, same_set) { 2201 if (rdev->raid_disk >= 0 && 2202 mddev->delta_disks >= 0 && 2203 !test_bit(In_sync, &rdev->flags) && 2204 mddev->curr_resync_completed > rdev->recovery_offset) 2205 rdev->recovery_offset = mddev->curr_resync_completed; 2206 2207 } 2208 if (!mddev->persistent) { 2209 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2210 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2211 if (!mddev->external) 2212 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2213 wake_up(&mddev->sb_wait); 2214 return; 2215 } 2216 2217 spin_lock_irq(&mddev->write_lock); 2218 2219 mddev->utime = get_seconds(); 2220 2221 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2222 force_change = 1; 2223 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2224 /* just a clean<-> dirty transition, possibly leave spares alone, 2225 * though if events isn't the right even/odd, we will have to do 2226 * spares after all 2227 */ 2228 nospares = 1; 2229 if (force_change) 2230 nospares = 0; 2231 if (mddev->degraded) 2232 /* If the array is degraded, then skipping spares is both 2233 * dangerous and fairly pointless. 2234 * Dangerous because a device that was removed from the array 2235 * might have a event_count that still looks up-to-date, 2236 * so it can be re-added without a resync. 2237 * Pointless because if there are any spares to skip, 2238 * then a recovery will happen and soon that array won't 2239 * be degraded any more and the spare can go back to sleep then. 2240 */ 2241 nospares = 0; 2242 2243 sync_req = mddev->in_sync; 2244 2245 /* If this is just a dirty<->clean transition, and the array is clean 2246 * and 'events' is odd, we can roll back to the previous clean state */ 2247 if (nospares 2248 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2249 && mddev->can_decrease_events 2250 && mddev->events != 1) { 2251 mddev->events--; 2252 mddev->can_decrease_events = 0; 2253 } else { 2254 /* otherwise we have to go forward and ... */ 2255 mddev->events ++; 2256 mddev->can_decrease_events = nospares; 2257 } 2258 2259 if (!mddev->events) { 2260 /* 2261 * oops, this 64-bit counter should never wrap. 2262 * Either we are in around ~1 trillion A.C., assuming 2263 * 1 reboot per second, or we have a bug: 2264 */ 2265 MD_BUG(); 2266 mddev->events --; 2267 } 2268 sync_sbs(mddev, nospares); 2269 spin_unlock_irq(&mddev->write_lock); 2270 2271 dprintk(KERN_INFO 2272 "md: updating %s RAID superblock on device (in sync %d)\n", 2273 mdname(mddev),mddev->in_sync); 2274 2275 bitmap_update_sb(mddev->bitmap); 2276 list_for_each_entry(rdev, &mddev->disks, same_set) { 2277 char b[BDEVNAME_SIZE]; 2278 dprintk(KERN_INFO "md: "); 2279 if (rdev->sb_loaded != 1) 2280 continue; /* no noise on spare devices */ 2281 if (test_bit(Faulty, &rdev->flags)) 2282 dprintk("(skipping faulty "); 2283 2284 dprintk("%s ", bdevname(rdev->bdev,b)); 2285 if (!test_bit(Faulty, &rdev->flags)) { 2286 md_super_write(mddev,rdev, 2287 rdev->sb_start, rdev->sb_size, 2288 rdev->sb_page); 2289 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 2290 bdevname(rdev->bdev,b), 2291 (unsigned long long)rdev->sb_start); 2292 rdev->sb_events = mddev->events; 2293 2294 } else 2295 dprintk(")\n"); 2296 if (mddev->level == LEVEL_MULTIPATH) 2297 /* only need to write one superblock... */ 2298 break; 2299 } 2300 md_super_wait(mddev); 2301 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2302 2303 spin_lock_irq(&mddev->write_lock); 2304 if (mddev->in_sync != sync_req || 2305 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2306 /* have to write it out again */ 2307 spin_unlock_irq(&mddev->write_lock); 2308 goto repeat; 2309 } 2310 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2311 spin_unlock_irq(&mddev->write_lock); 2312 wake_up(&mddev->sb_wait); 2313 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2314 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2315 2316 } 2317 2318 /* words written to sysfs files may, or may not, be \n terminated. 2319 * We want to accept with case. For this we use cmd_match. 2320 */ 2321 static int cmd_match(const char *cmd, const char *str) 2322 { 2323 /* See if cmd, written into a sysfs file, matches 2324 * str. They must either be the same, or cmd can 2325 * have a trailing newline 2326 */ 2327 while (*cmd && *str && *cmd == *str) { 2328 cmd++; 2329 str++; 2330 } 2331 if (*cmd == '\n') 2332 cmd++; 2333 if (*str || *cmd) 2334 return 0; 2335 return 1; 2336 } 2337 2338 struct rdev_sysfs_entry { 2339 struct attribute attr; 2340 ssize_t (*show)(mdk_rdev_t *, char *); 2341 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 2342 }; 2343 2344 static ssize_t 2345 state_show(mdk_rdev_t *rdev, char *page) 2346 { 2347 char *sep = ""; 2348 size_t len = 0; 2349 2350 if (test_bit(Faulty, &rdev->flags)) { 2351 len+= sprintf(page+len, "%sfaulty",sep); 2352 sep = ","; 2353 } 2354 if (test_bit(In_sync, &rdev->flags)) { 2355 len += sprintf(page+len, "%sin_sync",sep); 2356 sep = ","; 2357 } 2358 if (test_bit(WriteMostly, &rdev->flags)) { 2359 len += sprintf(page+len, "%swrite_mostly",sep); 2360 sep = ","; 2361 } 2362 if (test_bit(Blocked, &rdev->flags)) { 2363 len += sprintf(page+len, "%sblocked", sep); 2364 sep = ","; 2365 } 2366 if (!test_bit(Faulty, &rdev->flags) && 2367 !test_bit(In_sync, &rdev->flags)) { 2368 len += sprintf(page+len, "%sspare", sep); 2369 sep = ","; 2370 } 2371 return len+sprintf(page+len, "\n"); 2372 } 2373 2374 static ssize_t 2375 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2376 { 2377 /* can write 2378 * faulty - simulates and error 2379 * remove - disconnects the device 2380 * writemostly - sets write_mostly 2381 * -writemostly - clears write_mostly 2382 * blocked - sets the Blocked flag 2383 * -blocked - clears the Blocked flag 2384 * insync - sets Insync providing device isn't active 2385 */ 2386 int err = -EINVAL; 2387 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2388 md_error(rdev->mddev, rdev); 2389 err = 0; 2390 } else if (cmd_match(buf, "remove")) { 2391 if (rdev->raid_disk >= 0) 2392 err = -EBUSY; 2393 else { 2394 mddev_t *mddev = rdev->mddev; 2395 kick_rdev_from_array(rdev); 2396 if (mddev->pers) 2397 md_update_sb(mddev, 1); 2398 md_new_event(mddev); 2399 err = 0; 2400 } 2401 } else if (cmd_match(buf, "writemostly")) { 2402 set_bit(WriteMostly, &rdev->flags); 2403 err = 0; 2404 } else if (cmd_match(buf, "-writemostly")) { 2405 clear_bit(WriteMostly, &rdev->flags); 2406 err = 0; 2407 } else if (cmd_match(buf, "blocked")) { 2408 set_bit(Blocked, &rdev->flags); 2409 err = 0; 2410 } else if (cmd_match(buf, "-blocked")) { 2411 clear_bit(Blocked, &rdev->flags); 2412 wake_up(&rdev->blocked_wait); 2413 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2414 md_wakeup_thread(rdev->mddev->thread); 2415 2416 err = 0; 2417 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2418 set_bit(In_sync, &rdev->flags); 2419 err = 0; 2420 } 2421 if (!err) 2422 sysfs_notify_dirent_safe(rdev->sysfs_state); 2423 return err ? err : len; 2424 } 2425 static struct rdev_sysfs_entry rdev_state = 2426 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2427 2428 static ssize_t 2429 errors_show(mdk_rdev_t *rdev, char *page) 2430 { 2431 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2432 } 2433 2434 static ssize_t 2435 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2436 { 2437 char *e; 2438 unsigned long n = simple_strtoul(buf, &e, 10); 2439 if (*buf && (*e == 0 || *e == '\n')) { 2440 atomic_set(&rdev->corrected_errors, n); 2441 return len; 2442 } 2443 return -EINVAL; 2444 } 2445 static struct rdev_sysfs_entry rdev_errors = 2446 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2447 2448 static ssize_t 2449 slot_show(mdk_rdev_t *rdev, char *page) 2450 { 2451 if (rdev->raid_disk < 0) 2452 return sprintf(page, "none\n"); 2453 else 2454 return sprintf(page, "%d\n", rdev->raid_disk); 2455 } 2456 2457 static ssize_t 2458 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2459 { 2460 char *e; 2461 int err; 2462 char nm[20]; 2463 int slot = simple_strtoul(buf, &e, 10); 2464 if (strncmp(buf, "none", 4)==0) 2465 slot = -1; 2466 else if (e==buf || (*e && *e!= '\n')) 2467 return -EINVAL; 2468 if (rdev->mddev->pers && slot == -1) { 2469 /* Setting 'slot' on an active array requires also 2470 * updating the 'rd%d' link, and communicating 2471 * with the personality with ->hot_*_disk. 2472 * For now we only support removing 2473 * failed/spare devices. This normally happens automatically, 2474 * but not when the metadata is externally managed. 2475 */ 2476 if (rdev->raid_disk == -1) 2477 return -EEXIST; 2478 /* personality does all needed checks */ 2479 if (rdev->mddev->pers->hot_remove_disk == NULL) 2480 return -EINVAL; 2481 err = rdev->mddev->pers-> 2482 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2483 if (err) 2484 return err; 2485 sprintf(nm, "rd%d", rdev->raid_disk); 2486 sysfs_remove_link(&rdev->mddev->kobj, nm); 2487 rdev->raid_disk = -1; 2488 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2489 md_wakeup_thread(rdev->mddev->thread); 2490 } else if (rdev->mddev->pers) { 2491 mdk_rdev_t *rdev2; 2492 /* Activating a spare .. or possibly reactivating 2493 * if we ever get bitmaps working here. 2494 */ 2495 2496 if (rdev->raid_disk != -1) 2497 return -EBUSY; 2498 2499 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2500 return -EBUSY; 2501 2502 if (rdev->mddev->pers->hot_add_disk == NULL) 2503 return -EINVAL; 2504 2505 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) 2506 if (rdev2->raid_disk == slot) 2507 return -EEXIST; 2508 2509 if (slot >= rdev->mddev->raid_disks && 2510 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2511 return -ENOSPC; 2512 2513 rdev->raid_disk = slot; 2514 if (test_bit(In_sync, &rdev->flags)) 2515 rdev->saved_raid_disk = slot; 2516 else 2517 rdev->saved_raid_disk = -1; 2518 err = rdev->mddev->pers-> 2519 hot_add_disk(rdev->mddev, rdev); 2520 if (err) { 2521 rdev->raid_disk = -1; 2522 return err; 2523 } else 2524 sysfs_notify_dirent_safe(rdev->sysfs_state); 2525 sprintf(nm, "rd%d", rdev->raid_disk); 2526 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2527 /* failure here is OK */; 2528 /* don't wakeup anyone, leave that to userspace. */ 2529 } else { 2530 if (slot >= rdev->mddev->raid_disks && 2531 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2532 return -ENOSPC; 2533 rdev->raid_disk = slot; 2534 /* assume it is working */ 2535 clear_bit(Faulty, &rdev->flags); 2536 clear_bit(WriteMostly, &rdev->flags); 2537 set_bit(In_sync, &rdev->flags); 2538 sysfs_notify_dirent_safe(rdev->sysfs_state); 2539 } 2540 return len; 2541 } 2542 2543 2544 static struct rdev_sysfs_entry rdev_slot = 2545 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2546 2547 static ssize_t 2548 offset_show(mdk_rdev_t *rdev, char *page) 2549 { 2550 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2551 } 2552 2553 static ssize_t 2554 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2555 { 2556 char *e; 2557 unsigned long long offset = simple_strtoull(buf, &e, 10); 2558 if (e==buf || (*e && *e != '\n')) 2559 return -EINVAL; 2560 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2561 return -EBUSY; 2562 if (rdev->sectors && rdev->mddev->external) 2563 /* Must set offset before size, so overlap checks 2564 * can be sane */ 2565 return -EBUSY; 2566 rdev->data_offset = offset; 2567 return len; 2568 } 2569 2570 static struct rdev_sysfs_entry rdev_offset = 2571 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2572 2573 static ssize_t 2574 rdev_size_show(mdk_rdev_t *rdev, char *page) 2575 { 2576 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2577 } 2578 2579 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2580 { 2581 /* check if two start/length pairs overlap */ 2582 if (s1+l1 <= s2) 2583 return 0; 2584 if (s2+l2 <= s1) 2585 return 0; 2586 return 1; 2587 } 2588 2589 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2590 { 2591 unsigned long long blocks; 2592 sector_t new; 2593 2594 if (strict_strtoull(buf, 10, &blocks) < 0) 2595 return -EINVAL; 2596 2597 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2598 return -EINVAL; /* sector conversion overflow */ 2599 2600 new = blocks * 2; 2601 if (new != blocks * 2) 2602 return -EINVAL; /* unsigned long long to sector_t overflow */ 2603 2604 *sectors = new; 2605 return 0; 2606 } 2607 2608 static ssize_t 2609 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2610 { 2611 mddev_t *my_mddev = rdev->mddev; 2612 sector_t oldsectors = rdev->sectors; 2613 sector_t sectors; 2614 2615 if (strict_blocks_to_sectors(buf, §ors) < 0) 2616 return -EINVAL; 2617 if (my_mddev->pers && rdev->raid_disk >= 0) { 2618 if (my_mddev->persistent) { 2619 sectors = super_types[my_mddev->major_version]. 2620 rdev_size_change(rdev, sectors); 2621 if (!sectors) 2622 return -EBUSY; 2623 } else if (!sectors) 2624 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2625 rdev->data_offset; 2626 } 2627 if (sectors < my_mddev->dev_sectors) 2628 return -EINVAL; /* component must fit device */ 2629 2630 rdev->sectors = sectors; 2631 if (sectors > oldsectors && my_mddev->external) { 2632 /* need to check that all other rdevs with the same ->bdev 2633 * do not overlap. We need to unlock the mddev to avoid 2634 * a deadlock. We have already changed rdev->sectors, and if 2635 * we have to change it back, we will have the lock again. 2636 */ 2637 mddev_t *mddev; 2638 int overlap = 0; 2639 struct list_head *tmp; 2640 2641 mddev_unlock(my_mddev); 2642 for_each_mddev(mddev, tmp) { 2643 mdk_rdev_t *rdev2; 2644 2645 mddev_lock(mddev); 2646 list_for_each_entry(rdev2, &mddev->disks, same_set) 2647 if (rdev->bdev == rdev2->bdev && 2648 rdev != rdev2 && 2649 overlaps(rdev->data_offset, rdev->sectors, 2650 rdev2->data_offset, 2651 rdev2->sectors)) { 2652 overlap = 1; 2653 break; 2654 } 2655 mddev_unlock(mddev); 2656 if (overlap) { 2657 mddev_put(mddev); 2658 break; 2659 } 2660 } 2661 mddev_lock(my_mddev); 2662 if (overlap) { 2663 /* Someone else could have slipped in a size 2664 * change here, but doing so is just silly. 2665 * We put oldsectors back because we *know* it is 2666 * safe, and trust userspace not to race with 2667 * itself 2668 */ 2669 rdev->sectors = oldsectors; 2670 return -EBUSY; 2671 } 2672 } 2673 return len; 2674 } 2675 2676 static struct rdev_sysfs_entry rdev_size = 2677 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2678 2679 2680 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page) 2681 { 2682 unsigned long long recovery_start = rdev->recovery_offset; 2683 2684 if (test_bit(In_sync, &rdev->flags) || 2685 recovery_start == MaxSector) 2686 return sprintf(page, "none\n"); 2687 2688 return sprintf(page, "%llu\n", recovery_start); 2689 } 2690 2691 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2692 { 2693 unsigned long long recovery_start; 2694 2695 if (cmd_match(buf, "none")) 2696 recovery_start = MaxSector; 2697 else if (strict_strtoull(buf, 10, &recovery_start)) 2698 return -EINVAL; 2699 2700 if (rdev->mddev->pers && 2701 rdev->raid_disk >= 0) 2702 return -EBUSY; 2703 2704 rdev->recovery_offset = recovery_start; 2705 if (recovery_start == MaxSector) 2706 set_bit(In_sync, &rdev->flags); 2707 else 2708 clear_bit(In_sync, &rdev->flags); 2709 return len; 2710 } 2711 2712 static struct rdev_sysfs_entry rdev_recovery_start = 2713 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 2714 2715 static struct attribute *rdev_default_attrs[] = { 2716 &rdev_state.attr, 2717 &rdev_errors.attr, 2718 &rdev_slot.attr, 2719 &rdev_offset.attr, 2720 &rdev_size.attr, 2721 &rdev_recovery_start.attr, 2722 NULL, 2723 }; 2724 static ssize_t 2725 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2726 { 2727 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2728 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2729 mddev_t *mddev = rdev->mddev; 2730 ssize_t rv; 2731 2732 if (!entry->show) 2733 return -EIO; 2734 2735 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2736 if (!rv) { 2737 if (rdev->mddev == NULL) 2738 rv = -EBUSY; 2739 else 2740 rv = entry->show(rdev, page); 2741 mddev_unlock(mddev); 2742 } 2743 return rv; 2744 } 2745 2746 static ssize_t 2747 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2748 const char *page, size_t length) 2749 { 2750 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2751 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2752 ssize_t rv; 2753 mddev_t *mddev = rdev->mddev; 2754 2755 if (!entry->store) 2756 return -EIO; 2757 if (!capable(CAP_SYS_ADMIN)) 2758 return -EACCES; 2759 rv = mddev ? mddev_lock(mddev): -EBUSY; 2760 if (!rv) { 2761 if (rdev->mddev == NULL) 2762 rv = -EBUSY; 2763 else 2764 rv = entry->store(rdev, page, length); 2765 mddev_unlock(mddev); 2766 } 2767 return rv; 2768 } 2769 2770 static void rdev_free(struct kobject *ko) 2771 { 2772 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2773 kfree(rdev); 2774 } 2775 static const struct sysfs_ops rdev_sysfs_ops = { 2776 .show = rdev_attr_show, 2777 .store = rdev_attr_store, 2778 }; 2779 static struct kobj_type rdev_ktype = { 2780 .release = rdev_free, 2781 .sysfs_ops = &rdev_sysfs_ops, 2782 .default_attrs = rdev_default_attrs, 2783 }; 2784 2785 void md_rdev_init(mdk_rdev_t *rdev) 2786 { 2787 rdev->desc_nr = -1; 2788 rdev->saved_raid_disk = -1; 2789 rdev->raid_disk = -1; 2790 rdev->flags = 0; 2791 rdev->data_offset = 0; 2792 rdev->sb_events = 0; 2793 rdev->last_read_error.tv_sec = 0; 2794 rdev->last_read_error.tv_nsec = 0; 2795 atomic_set(&rdev->nr_pending, 0); 2796 atomic_set(&rdev->read_errors, 0); 2797 atomic_set(&rdev->corrected_errors, 0); 2798 2799 INIT_LIST_HEAD(&rdev->same_set); 2800 init_waitqueue_head(&rdev->blocked_wait); 2801 } 2802 EXPORT_SYMBOL_GPL(md_rdev_init); 2803 /* 2804 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2805 * 2806 * mark the device faulty if: 2807 * 2808 * - the device is nonexistent (zero size) 2809 * - the device has no valid superblock 2810 * 2811 * a faulty rdev _never_ has rdev->sb set. 2812 */ 2813 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2814 { 2815 char b[BDEVNAME_SIZE]; 2816 int err; 2817 mdk_rdev_t *rdev; 2818 sector_t size; 2819 2820 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2821 if (!rdev) { 2822 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2823 return ERR_PTR(-ENOMEM); 2824 } 2825 2826 md_rdev_init(rdev); 2827 if ((err = alloc_disk_sb(rdev))) 2828 goto abort_free; 2829 2830 err = lock_rdev(rdev, newdev, super_format == -2); 2831 if (err) 2832 goto abort_free; 2833 2834 kobject_init(&rdev->kobj, &rdev_ktype); 2835 2836 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 2837 if (!size) { 2838 printk(KERN_WARNING 2839 "md: %s has zero or unknown size, marking faulty!\n", 2840 bdevname(rdev->bdev,b)); 2841 err = -EINVAL; 2842 goto abort_free; 2843 } 2844 2845 if (super_format >= 0) { 2846 err = super_types[super_format]. 2847 load_super(rdev, NULL, super_minor); 2848 if (err == -EINVAL) { 2849 printk(KERN_WARNING 2850 "md: %s does not have a valid v%d.%d " 2851 "superblock, not importing!\n", 2852 bdevname(rdev->bdev,b), 2853 super_format, super_minor); 2854 goto abort_free; 2855 } 2856 if (err < 0) { 2857 printk(KERN_WARNING 2858 "md: could not read %s's sb, not importing!\n", 2859 bdevname(rdev->bdev,b)); 2860 goto abort_free; 2861 } 2862 } 2863 2864 return rdev; 2865 2866 abort_free: 2867 if (rdev->sb_page) { 2868 if (rdev->bdev) 2869 unlock_rdev(rdev); 2870 free_disk_sb(rdev); 2871 } 2872 kfree(rdev); 2873 return ERR_PTR(err); 2874 } 2875 2876 /* 2877 * Check a full RAID array for plausibility 2878 */ 2879 2880 2881 static void analyze_sbs(mddev_t * mddev) 2882 { 2883 int i; 2884 mdk_rdev_t *rdev, *freshest, *tmp; 2885 char b[BDEVNAME_SIZE]; 2886 2887 freshest = NULL; 2888 rdev_for_each(rdev, tmp, mddev) 2889 switch (super_types[mddev->major_version]. 2890 load_super(rdev, freshest, mddev->minor_version)) { 2891 case 1: 2892 freshest = rdev; 2893 break; 2894 case 0: 2895 break; 2896 default: 2897 printk( KERN_ERR \ 2898 "md: fatal superblock inconsistency in %s" 2899 " -- removing from array\n", 2900 bdevname(rdev->bdev,b)); 2901 kick_rdev_from_array(rdev); 2902 } 2903 2904 2905 super_types[mddev->major_version]. 2906 validate_super(mddev, freshest); 2907 2908 i = 0; 2909 rdev_for_each(rdev, tmp, mddev) { 2910 if (mddev->max_disks && 2911 (rdev->desc_nr >= mddev->max_disks || 2912 i > mddev->max_disks)) { 2913 printk(KERN_WARNING 2914 "md: %s: %s: only %d devices permitted\n", 2915 mdname(mddev), bdevname(rdev->bdev, b), 2916 mddev->max_disks); 2917 kick_rdev_from_array(rdev); 2918 continue; 2919 } 2920 if (rdev != freshest) 2921 if (super_types[mddev->major_version]. 2922 validate_super(mddev, rdev)) { 2923 printk(KERN_WARNING "md: kicking non-fresh %s" 2924 " from array!\n", 2925 bdevname(rdev->bdev,b)); 2926 kick_rdev_from_array(rdev); 2927 continue; 2928 } 2929 if (mddev->level == LEVEL_MULTIPATH) { 2930 rdev->desc_nr = i++; 2931 rdev->raid_disk = rdev->desc_nr; 2932 set_bit(In_sync, &rdev->flags); 2933 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 2934 rdev->raid_disk = -1; 2935 clear_bit(In_sync, &rdev->flags); 2936 } 2937 } 2938 } 2939 2940 /* Read a fixed-point number. 2941 * Numbers in sysfs attributes should be in "standard" units where 2942 * possible, so time should be in seconds. 2943 * However we internally use a a much smaller unit such as 2944 * milliseconds or jiffies. 2945 * This function takes a decimal number with a possible fractional 2946 * component, and produces an integer which is the result of 2947 * multiplying that number by 10^'scale'. 2948 * all without any floating-point arithmetic. 2949 */ 2950 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 2951 { 2952 unsigned long result = 0; 2953 long decimals = -1; 2954 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 2955 if (*cp == '.') 2956 decimals = 0; 2957 else if (decimals < scale) { 2958 unsigned int value; 2959 value = *cp - '0'; 2960 result = result * 10 + value; 2961 if (decimals >= 0) 2962 decimals++; 2963 } 2964 cp++; 2965 } 2966 if (*cp == '\n') 2967 cp++; 2968 if (*cp) 2969 return -EINVAL; 2970 if (decimals < 0) 2971 decimals = 0; 2972 while (decimals < scale) { 2973 result *= 10; 2974 decimals ++; 2975 } 2976 *res = result; 2977 return 0; 2978 } 2979 2980 2981 static void md_safemode_timeout(unsigned long data); 2982 2983 static ssize_t 2984 safe_delay_show(mddev_t *mddev, char *page) 2985 { 2986 int msec = (mddev->safemode_delay*1000)/HZ; 2987 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2988 } 2989 static ssize_t 2990 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2991 { 2992 unsigned long msec; 2993 2994 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 2995 return -EINVAL; 2996 if (msec == 0) 2997 mddev->safemode_delay = 0; 2998 else { 2999 unsigned long old_delay = mddev->safemode_delay; 3000 mddev->safemode_delay = (msec*HZ)/1000; 3001 if (mddev->safemode_delay == 0) 3002 mddev->safemode_delay = 1; 3003 if (mddev->safemode_delay < old_delay) 3004 md_safemode_timeout((unsigned long)mddev); 3005 } 3006 return len; 3007 } 3008 static struct md_sysfs_entry md_safe_delay = 3009 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3010 3011 static ssize_t 3012 level_show(mddev_t *mddev, char *page) 3013 { 3014 struct mdk_personality *p = mddev->pers; 3015 if (p) 3016 return sprintf(page, "%s\n", p->name); 3017 else if (mddev->clevel[0]) 3018 return sprintf(page, "%s\n", mddev->clevel); 3019 else if (mddev->level != LEVEL_NONE) 3020 return sprintf(page, "%d\n", mddev->level); 3021 else 3022 return 0; 3023 } 3024 3025 static ssize_t 3026 level_store(mddev_t *mddev, const char *buf, size_t len) 3027 { 3028 char clevel[16]; 3029 ssize_t rv = len; 3030 struct mdk_personality *pers; 3031 long level; 3032 void *priv; 3033 mdk_rdev_t *rdev; 3034 3035 if (mddev->pers == NULL) { 3036 if (len == 0) 3037 return 0; 3038 if (len >= sizeof(mddev->clevel)) 3039 return -ENOSPC; 3040 strncpy(mddev->clevel, buf, len); 3041 if (mddev->clevel[len-1] == '\n') 3042 len--; 3043 mddev->clevel[len] = 0; 3044 mddev->level = LEVEL_NONE; 3045 return rv; 3046 } 3047 3048 /* request to change the personality. Need to ensure: 3049 * - array is not engaged in resync/recovery/reshape 3050 * - old personality can be suspended 3051 * - new personality will access other array. 3052 */ 3053 3054 if (mddev->sync_thread || 3055 mddev->reshape_position != MaxSector || 3056 mddev->sysfs_active) 3057 return -EBUSY; 3058 3059 if (!mddev->pers->quiesce) { 3060 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3061 mdname(mddev), mddev->pers->name); 3062 return -EINVAL; 3063 } 3064 3065 /* Now find the new personality */ 3066 if (len == 0 || len >= sizeof(clevel)) 3067 return -EINVAL; 3068 strncpy(clevel, buf, len); 3069 if (clevel[len-1] == '\n') 3070 len--; 3071 clevel[len] = 0; 3072 if (strict_strtol(clevel, 10, &level)) 3073 level = LEVEL_NONE; 3074 3075 if (request_module("md-%s", clevel) != 0) 3076 request_module("md-level-%s", clevel); 3077 spin_lock(&pers_lock); 3078 pers = find_pers(level, clevel); 3079 if (!pers || !try_module_get(pers->owner)) { 3080 spin_unlock(&pers_lock); 3081 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3082 return -EINVAL; 3083 } 3084 spin_unlock(&pers_lock); 3085 3086 if (pers == mddev->pers) { 3087 /* Nothing to do! */ 3088 module_put(pers->owner); 3089 return rv; 3090 } 3091 if (!pers->takeover) { 3092 module_put(pers->owner); 3093 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3094 mdname(mddev), clevel); 3095 return -EINVAL; 3096 } 3097 3098 list_for_each_entry(rdev, &mddev->disks, same_set) 3099 rdev->new_raid_disk = rdev->raid_disk; 3100 3101 /* ->takeover must set new_* and/or delta_disks 3102 * if it succeeds, and may set them when it fails. 3103 */ 3104 priv = pers->takeover(mddev); 3105 if (IS_ERR(priv)) { 3106 mddev->new_level = mddev->level; 3107 mddev->new_layout = mddev->layout; 3108 mddev->new_chunk_sectors = mddev->chunk_sectors; 3109 mddev->raid_disks -= mddev->delta_disks; 3110 mddev->delta_disks = 0; 3111 module_put(pers->owner); 3112 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3113 mdname(mddev), clevel); 3114 return PTR_ERR(priv); 3115 } 3116 3117 /* Looks like we have a winner */ 3118 mddev_suspend(mddev); 3119 mddev->pers->stop(mddev); 3120 3121 if (mddev->pers->sync_request == NULL && 3122 pers->sync_request != NULL) { 3123 /* need to add the md_redundancy_group */ 3124 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3125 printk(KERN_WARNING 3126 "md: cannot register extra attributes for %s\n", 3127 mdname(mddev)); 3128 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3129 } 3130 if (mddev->pers->sync_request != NULL && 3131 pers->sync_request == NULL) { 3132 /* need to remove the md_redundancy_group */ 3133 if (mddev->to_remove == NULL) 3134 mddev->to_remove = &md_redundancy_group; 3135 } 3136 3137 if (mddev->pers->sync_request == NULL && 3138 mddev->external) { 3139 /* We are converting from a no-redundancy array 3140 * to a redundancy array and metadata is managed 3141 * externally so we need to be sure that writes 3142 * won't block due to a need to transition 3143 * clean->dirty 3144 * until external management is started. 3145 */ 3146 mddev->in_sync = 0; 3147 mddev->safemode_delay = 0; 3148 mddev->safemode = 0; 3149 } 3150 3151 list_for_each_entry(rdev, &mddev->disks, same_set) { 3152 char nm[20]; 3153 if (rdev->raid_disk < 0) 3154 continue; 3155 if (rdev->new_raid_disk >= mddev->raid_disks) 3156 rdev->new_raid_disk = -1; 3157 if (rdev->new_raid_disk == rdev->raid_disk) 3158 continue; 3159 sprintf(nm, "rd%d", rdev->raid_disk); 3160 sysfs_remove_link(&mddev->kobj, nm); 3161 } 3162 list_for_each_entry(rdev, &mddev->disks, same_set) { 3163 if (rdev->raid_disk < 0) 3164 continue; 3165 if (rdev->new_raid_disk == rdev->raid_disk) 3166 continue; 3167 rdev->raid_disk = rdev->new_raid_disk; 3168 if (rdev->raid_disk < 0) 3169 clear_bit(In_sync, &rdev->flags); 3170 else { 3171 char nm[20]; 3172 sprintf(nm, "rd%d", rdev->raid_disk); 3173 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3174 printk("md: cannot register %s for %s after level change\n", 3175 nm, mdname(mddev)); 3176 } 3177 } 3178 3179 module_put(mddev->pers->owner); 3180 mddev->pers = pers; 3181 mddev->private = priv; 3182 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3183 mddev->level = mddev->new_level; 3184 mddev->layout = mddev->new_layout; 3185 mddev->chunk_sectors = mddev->new_chunk_sectors; 3186 mddev->delta_disks = 0; 3187 mddev->degraded = 0; 3188 if (mddev->pers->sync_request == NULL) { 3189 /* this is now an array without redundancy, so 3190 * it must always be in_sync 3191 */ 3192 mddev->in_sync = 1; 3193 del_timer_sync(&mddev->safemode_timer); 3194 } 3195 pers->run(mddev); 3196 mddev_resume(mddev); 3197 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3198 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3199 md_wakeup_thread(mddev->thread); 3200 sysfs_notify(&mddev->kobj, NULL, "level"); 3201 md_new_event(mddev); 3202 return rv; 3203 } 3204 3205 static struct md_sysfs_entry md_level = 3206 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3207 3208 3209 static ssize_t 3210 layout_show(mddev_t *mddev, char *page) 3211 { 3212 /* just a number, not meaningful for all levels */ 3213 if (mddev->reshape_position != MaxSector && 3214 mddev->layout != mddev->new_layout) 3215 return sprintf(page, "%d (%d)\n", 3216 mddev->new_layout, mddev->layout); 3217 return sprintf(page, "%d\n", mddev->layout); 3218 } 3219 3220 static ssize_t 3221 layout_store(mddev_t *mddev, const char *buf, size_t len) 3222 { 3223 char *e; 3224 unsigned long n = simple_strtoul(buf, &e, 10); 3225 3226 if (!*buf || (*e && *e != '\n')) 3227 return -EINVAL; 3228 3229 if (mddev->pers) { 3230 int err; 3231 if (mddev->pers->check_reshape == NULL) 3232 return -EBUSY; 3233 mddev->new_layout = n; 3234 err = mddev->pers->check_reshape(mddev); 3235 if (err) { 3236 mddev->new_layout = mddev->layout; 3237 return err; 3238 } 3239 } else { 3240 mddev->new_layout = n; 3241 if (mddev->reshape_position == MaxSector) 3242 mddev->layout = n; 3243 } 3244 return len; 3245 } 3246 static struct md_sysfs_entry md_layout = 3247 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3248 3249 3250 static ssize_t 3251 raid_disks_show(mddev_t *mddev, char *page) 3252 { 3253 if (mddev->raid_disks == 0) 3254 return 0; 3255 if (mddev->reshape_position != MaxSector && 3256 mddev->delta_disks != 0) 3257 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3258 mddev->raid_disks - mddev->delta_disks); 3259 return sprintf(page, "%d\n", mddev->raid_disks); 3260 } 3261 3262 static int update_raid_disks(mddev_t *mddev, int raid_disks); 3263 3264 static ssize_t 3265 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 3266 { 3267 char *e; 3268 int rv = 0; 3269 unsigned long n = simple_strtoul(buf, &e, 10); 3270 3271 if (!*buf || (*e && *e != '\n')) 3272 return -EINVAL; 3273 3274 if (mddev->pers) 3275 rv = update_raid_disks(mddev, n); 3276 else if (mddev->reshape_position != MaxSector) { 3277 int olddisks = mddev->raid_disks - mddev->delta_disks; 3278 mddev->delta_disks = n - olddisks; 3279 mddev->raid_disks = n; 3280 } else 3281 mddev->raid_disks = n; 3282 return rv ? rv : len; 3283 } 3284 static struct md_sysfs_entry md_raid_disks = 3285 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3286 3287 static ssize_t 3288 chunk_size_show(mddev_t *mddev, char *page) 3289 { 3290 if (mddev->reshape_position != MaxSector && 3291 mddev->chunk_sectors != mddev->new_chunk_sectors) 3292 return sprintf(page, "%d (%d)\n", 3293 mddev->new_chunk_sectors << 9, 3294 mddev->chunk_sectors << 9); 3295 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3296 } 3297 3298 static ssize_t 3299 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 3300 { 3301 char *e; 3302 unsigned long n = simple_strtoul(buf, &e, 10); 3303 3304 if (!*buf || (*e && *e != '\n')) 3305 return -EINVAL; 3306 3307 if (mddev->pers) { 3308 int err; 3309 if (mddev->pers->check_reshape == NULL) 3310 return -EBUSY; 3311 mddev->new_chunk_sectors = n >> 9; 3312 err = mddev->pers->check_reshape(mddev); 3313 if (err) { 3314 mddev->new_chunk_sectors = mddev->chunk_sectors; 3315 return err; 3316 } 3317 } else { 3318 mddev->new_chunk_sectors = n >> 9; 3319 if (mddev->reshape_position == MaxSector) 3320 mddev->chunk_sectors = n >> 9; 3321 } 3322 return len; 3323 } 3324 static struct md_sysfs_entry md_chunk_size = 3325 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3326 3327 static ssize_t 3328 resync_start_show(mddev_t *mddev, char *page) 3329 { 3330 if (mddev->recovery_cp == MaxSector) 3331 return sprintf(page, "none\n"); 3332 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3333 } 3334 3335 static ssize_t 3336 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 3337 { 3338 char *e; 3339 unsigned long long n = simple_strtoull(buf, &e, 10); 3340 3341 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3342 return -EBUSY; 3343 if (cmd_match(buf, "none")) 3344 n = MaxSector; 3345 else if (!*buf || (*e && *e != '\n')) 3346 return -EINVAL; 3347 3348 mddev->recovery_cp = n; 3349 return len; 3350 } 3351 static struct md_sysfs_entry md_resync_start = 3352 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3353 3354 /* 3355 * The array state can be: 3356 * 3357 * clear 3358 * No devices, no size, no level 3359 * Equivalent to STOP_ARRAY ioctl 3360 * inactive 3361 * May have some settings, but array is not active 3362 * all IO results in error 3363 * When written, doesn't tear down array, but just stops it 3364 * suspended (not supported yet) 3365 * All IO requests will block. The array can be reconfigured. 3366 * Writing this, if accepted, will block until array is quiescent 3367 * readonly 3368 * no resync can happen. no superblocks get written. 3369 * write requests fail 3370 * read-auto 3371 * like readonly, but behaves like 'clean' on a write request. 3372 * 3373 * clean - no pending writes, but otherwise active. 3374 * When written to inactive array, starts without resync 3375 * If a write request arrives then 3376 * if metadata is known, mark 'dirty' and switch to 'active'. 3377 * if not known, block and switch to write-pending 3378 * If written to an active array that has pending writes, then fails. 3379 * active 3380 * fully active: IO and resync can be happening. 3381 * When written to inactive array, starts with resync 3382 * 3383 * write-pending 3384 * clean, but writes are blocked waiting for 'active' to be written. 3385 * 3386 * active-idle 3387 * like active, but no writes have been seen for a while (100msec). 3388 * 3389 */ 3390 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3391 write_pending, active_idle, bad_word}; 3392 static char *array_states[] = { 3393 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3394 "write-pending", "active-idle", NULL }; 3395 3396 static int match_word(const char *word, char **list) 3397 { 3398 int n; 3399 for (n=0; list[n]; n++) 3400 if (cmd_match(word, list[n])) 3401 break; 3402 return n; 3403 } 3404 3405 static ssize_t 3406 array_state_show(mddev_t *mddev, char *page) 3407 { 3408 enum array_state st = inactive; 3409 3410 if (mddev->pers) 3411 switch(mddev->ro) { 3412 case 1: 3413 st = readonly; 3414 break; 3415 case 2: 3416 st = read_auto; 3417 break; 3418 case 0: 3419 if (mddev->in_sync) 3420 st = clean; 3421 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3422 st = write_pending; 3423 else if (mddev->safemode) 3424 st = active_idle; 3425 else 3426 st = active; 3427 } 3428 else { 3429 if (list_empty(&mddev->disks) && 3430 mddev->raid_disks == 0 && 3431 mddev->dev_sectors == 0) 3432 st = clear; 3433 else 3434 st = inactive; 3435 } 3436 return sprintf(page, "%s\n", array_states[st]); 3437 } 3438 3439 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 3440 static int md_set_readonly(mddev_t * mddev, int is_open); 3441 static int do_md_run(mddev_t * mddev); 3442 static int restart_array(mddev_t *mddev); 3443 3444 static ssize_t 3445 array_state_store(mddev_t *mddev, const char *buf, size_t len) 3446 { 3447 int err = -EINVAL; 3448 enum array_state st = match_word(buf, array_states); 3449 switch(st) { 3450 case bad_word: 3451 break; 3452 case clear: 3453 /* stopping an active array */ 3454 if (atomic_read(&mddev->openers) > 0) 3455 return -EBUSY; 3456 err = do_md_stop(mddev, 0, 0); 3457 break; 3458 case inactive: 3459 /* stopping an active array */ 3460 if (mddev->pers) { 3461 if (atomic_read(&mddev->openers) > 0) 3462 return -EBUSY; 3463 err = do_md_stop(mddev, 2, 0); 3464 } else 3465 err = 0; /* already inactive */ 3466 break; 3467 case suspended: 3468 break; /* not supported yet */ 3469 case readonly: 3470 if (mddev->pers) 3471 err = md_set_readonly(mddev, 0); 3472 else { 3473 mddev->ro = 1; 3474 set_disk_ro(mddev->gendisk, 1); 3475 err = do_md_run(mddev); 3476 } 3477 break; 3478 case read_auto: 3479 if (mddev->pers) { 3480 if (mddev->ro == 0) 3481 err = md_set_readonly(mddev, 0); 3482 else if (mddev->ro == 1) 3483 err = restart_array(mddev); 3484 if (err == 0) { 3485 mddev->ro = 2; 3486 set_disk_ro(mddev->gendisk, 0); 3487 } 3488 } else { 3489 mddev->ro = 2; 3490 err = do_md_run(mddev); 3491 } 3492 break; 3493 case clean: 3494 if (mddev->pers) { 3495 restart_array(mddev); 3496 spin_lock_irq(&mddev->write_lock); 3497 if (atomic_read(&mddev->writes_pending) == 0) { 3498 if (mddev->in_sync == 0) { 3499 mddev->in_sync = 1; 3500 if (mddev->safemode == 1) 3501 mddev->safemode = 0; 3502 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3503 } 3504 err = 0; 3505 } else 3506 err = -EBUSY; 3507 spin_unlock_irq(&mddev->write_lock); 3508 } else 3509 err = -EINVAL; 3510 break; 3511 case active: 3512 if (mddev->pers) { 3513 restart_array(mddev); 3514 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3515 wake_up(&mddev->sb_wait); 3516 err = 0; 3517 } else { 3518 mddev->ro = 0; 3519 set_disk_ro(mddev->gendisk, 0); 3520 err = do_md_run(mddev); 3521 } 3522 break; 3523 case write_pending: 3524 case active_idle: 3525 /* these cannot be set */ 3526 break; 3527 } 3528 if (err) 3529 return err; 3530 else { 3531 sysfs_notify_dirent_safe(mddev->sysfs_state); 3532 return len; 3533 } 3534 } 3535 static struct md_sysfs_entry md_array_state = 3536 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3537 3538 static ssize_t 3539 max_corrected_read_errors_show(mddev_t *mddev, char *page) { 3540 return sprintf(page, "%d\n", 3541 atomic_read(&mddev->max_corr_read_errors)); 3542 } 3543 3544 static ssize_t 3545 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len) 3546 { 3547 char *e; 3548 unsigned long n = simple_strtoul(buf, &e, 10); 3549 3550 if (*buf && (*e == 0 || *e == '\n')) { 3551 atomic_set(&mddev->max_corr_read_errors, n); 3552 return len; 3553 } 3554 return -EINVAL; 3555 } 3556 3557 static struct md_sysfs_entry max_corr_read_errors = 3558 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3559 max_corrected_read_errors_store); 3560 3561 static ssize_t 3562 null_show(mddev_t *mddev, char *page) 3563 { 3564 return -EINVAL; 3565 } 3566 3567 static ssize_t 3568 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 3569 { 3570 /* buf must be %d:%d\n? giving major and minor numbers */ 3571 /* The new device is added to the array. 3572 * If the array has a persistent superblock, we read the 3573 * superblock to initialise info and check validity. 3574 * Otherwise, only checking done is that in bind_rdev_to_array, 3575 * which mainly checks size. 3576 */ 3577 char *e; 3578 int major = simple_strtoul(buf, &e, 10); 3579 int minor; 3580 dev_t dev; 3581 mdk_rdev_t *rdev; 3582 int err; 3583 3584 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3585 return -EINVAL; 3586 minor = simple_strtoul(e+1, &e, 10); 3587 if (*e && *e != '\n') 3588 return -EINVAL; 3589 dev = MKDEV(major, minor); 3590 if (major != MAJOR(dev) || 3591 minor != MINOR(dev)) 3592 return -EOVERFLOW; 3593 3594 3595 if (mddev->persistent) { 3596 rdev = md_import_device(dev, mddev->major_version, 3597 mddev->minor_version); 3598 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3599 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3600 mdk_rdev_t, same_set); 3601 err = super_types[mddev->major_version] 3602 .load_super(rdev, rdev0, mddev->minor_version); 3603 if (err < 0) 3604 goto out; 3605 } 3606 } else if (mddev->external) 3607 rdev = md_import_device(dev, -2, -1); 3608 else 3609 rdev = md_import_device(dev, -1, -1); 3610 3611 if (IS_ERR(rdev)) 3612 return PTR_ERR(rdev); 3613 err = bind_rdev_to_array(rdev, mddev); 3614 out: 3615 if (err) 3616 export_rdev(rdev); 3617 return err ? err : len; 3618 } 3619 3620 static struct md_sysfs_entry md_new_device = 3621 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3622 3623 static ssize_t 3624 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 3625 { 3626 char *end; 3627 unsigned long chunk, end_chunk; 3628 3629 if (!mddev->bitmap) 3630 goto out; 3631 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3632 while (*buf) { 3633 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3634 if (buf == end) break; 3635 if (*end == '-') { /* range */ 3636 buf = end + 1; 3637 end_chunk = simple_strtoul(buf, &end, 0); 3638 if (buf == end) break; 3639 } 3640 if (*end && !isspace(*end)) break; 3641 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3642 buf = skip_spaces(end); 3643 } 3644 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3645 out: 3646 return len; 3647 } 3648 3649 static struct md_sysfs_entry md_bitmap = 3650 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3651 3652 static ssize_t 3653 size_show(mddev_t *mddev, char *page) 3654 { 3655 return sprintf(page, "%llu\n", 3656 (unsigned long long)mddev->dev_sectors / 2); 3657 } 3658 3659 static int update_size(mddev_t *mddev, sector_t num_sectors); 3660 3661 static ssize_t 3662 size_store(mddev_t *mddev, const char *buf, size_t len) 3663 { 3664 /* If array is inactive, we can reduce the component size, but 3665 * not increase it (except from 0). 3666 * If array is active, we can try an on-line resize 3667 */ 3668 sector_t sectors; 3669 int err = strict_blocks_to_sectors(buf, §ors); 3670 3671 if (err < 0) 3672 return err; 3673 if (mddev->pers) { 3674 err = update_size(mddev, sectors); 3675 md_update_sb(mddev, 1); 3676 } else { 3677 if (mddev->dev_sectors == 0 || 3678 mddev->dev_sectors > sectors) 3679 mddev->dev_sectors = sectors; 3680 else 3681 err = -ENOSPC; 3682 } 3683 return err ? err : len; 3684 } 3685 3686 static struct md_sysfs_entry md_size = 3687 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 3688 3689 3690 /* Metdata version. 3691 * This is one of 3692 * 'none' for arrays with no metadata (good luck...) 3693 * 'external' for arrays with externally managed metadata, 3694 * or N.M for internally known formats 3695 */ 3696 static ssize_t 3697 metadata_show(mddev_t *mddev, char *page) 3698 { 3699 if (mddev->persistent) 3700 return sprintf(page, "%d.%d\n", 3701 mddev->major_version, mddev->minor_version); 3702 else if (mddev->external) 3703 return sprintf(page, "external:%s\n", mddev->metadata_type); 3704 else 3705 return sprintf(page, "none\n"); 3706 } 3707 3708 static ssize_t 3709 metadata_store(mddev_t *mddev, const char *buf, size_t len) 3710 { 3711 int major, minor; 3712 char *e; 3713 /* Changing the details of 'external' metadata is 3714 * always permitted. Otherwise there must be 3715 * no devices attached to the array. 3716 */ 3717 if (mddev->external && strncmp(buf, "external:", 9) == 0) 3718 ; 3719 else if (!list_empty(&mddev->disks)) 3720 return -EBUSY; 3721 3722 if (cmd_match(buf, "none")) { 3723 mddev->persistent = 0; 3724 mddev->external = 0; 3725 mddev->major_version = 0; 3726 mddev->minor_version = 90; 3727 return len; 3728 } 3729 if (strncmp(buf, "external:", 9) == 0) { 3730 size_t namelen = len-9; 3731 if (namelen >= sizeof(mddev->metadata_type)) 3732 namelen = sizeof(mddev->metadata_type)-1; 3733 strncpy(mddev->metadata_type, buf+9, namelen); 3734 mddev->metadata_type[namelen] = 0; 3735 if (namelen && mddev->metadata_type[namelen-1] == '\n') 3736 mddev->metadata_type[--namelen] = 0; 3737 mddev->persistent = 0; 3738 mddev->external = 1; 3739 mddev->major_version = 0; 3740 mddev->minor_version = 90; 3741 return len; 3742 } 3743 major = simple_strtoul(buf, &e, 10); 3744 if (e==buf || *e != '.') 3745 return -EINVAL; 3746 buf = e+1; 3747 minor = simple_strtoul(buf, &e, 10); 3748 if (e==buf || (*e && *e != '\n') ) 3749 return -EINVAL; 3750 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 3751 return -ENOENT; 3752 mddev->major_version = major; 3753 mddev->minor_version = minor; 3754 mddev->persistent = 1; 3755 mddev->external = 0; 3756 return len; 3757 } 3758 3759 static struct md_sysfs_entry md_metadata = 3760 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 3761 3762 static ssize_t 3763 action_show(mddev_t *mddev, char *page) 3764 { 3765 char *type = "idle"; 3766 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3767 type = "frozen"; 3768 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3769 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 3770 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3771 type = "reshape"; 3772 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3773 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3774 type = "resync"; 3775 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3776 type = "check"; 3777 else 3778 type = "repair"; 3779 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3780 type = "recover"; 3781 } 3782 return sprintf(page, "%s\n", type); 3783 } 3784 3785 static void reap_sync_thread(mddev_t *mddev); 3786 3787 static ssize_t 3788 action_store(mddev_t *mddev, const char *page, size_t len) 3789 { 3790 if (!mddev->pers || !mddev->pers->sync_request) 3791 return -EINVAL; 3792 3793 if (cmd_match(page, "frozen")) 3794 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3795 else 3796 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3797 3798 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 3799 if (mddev->sync_thread) { 3800 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3801 reap_sync_thread(mddev); 3802 } 3803 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3804 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3805 return -EBUSY; 3806 else if (cmd_match(page, "resync")) 3807 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3808 else if (cmd_match(page, "recover")) { 3809 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3810 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3811 } else if (cmd_match(page, "reshape")) { 3812 int err; 3813 if (mddev->pers->start_reshape == NULL) 3814 return -EINVAL; 3815 err = mddev->pers->start_reshape(mddev); 3816 if (err) 3817 return err; 3818 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3819 } else { 3820 if (cmd_match(page, "check")) 3821 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3822 else if (!cmd_match(page, "repair")) 3823 return -EINVAL; 3824 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3825 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3826 } 3827 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3828 md_wakeup_thread(mddev->thread); 3829 sysfs_notify_dirent_safe(mddev->sysfs_action); 3830 return len; 3831 } 3832 3833 static ssize_t 3834 mismatch_cnt_show(mddev_t *mddev, char *page) 3835 { 3836 return sprintf(page, "%llu\n", 3837 (unsigned long long) mddev->resync_mismatches); 3838 } 3839 3840 static struct md_sysfs_entry md_scan_mode = 3841 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3842 3843 3844 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3845 3846 static ssize_t 3847 sync_min_show(mddev_t *mddev, char *page) 3848 { 3849 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3850 mddev->sync_speed_min ? "local": "system"); 3851 } 3852 3853 static ssize_t 3854 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3855 { 3856 int min; 3857 char *e; 3858 if (strncmp(buf, "system", 6)==0) { 3859 mddev->sync_speed_min = 0; 3860 return len; 3861 } 3862 min = simple_strtoul(buf, &e, 10); 3863 if (buf == e || (*e && *e != '\n') || min <= 0) 3864 return -EINVAL; 3865 mddev->sync_speed_min = min; 3866 return len; 3867 } 3868 3869 static struct md_sysfs_entry md_sync_min = 3870 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3871 3872 static ssize_t 3873 sync_max_show(mddev_t *mddev, char *page) 3874 { 3875 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3876 mddev->sync_speed_max ? "local": "system"); 3877 } 3878 3879 static ssize_t 3880 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3881 { 3882 int max; 3883 char *e; 3884 if (strncmp(buf, "system", 6)==0) { 3885 mddev->sync_speed_max = 0; 3886 return len; 3887 } 3888 max = simple_strtoul(buf, &e, 10); 3889 if (buf == e || (*e && *e != '\n') || max <= 0) 3890 return -EINVAL; 3891 mddev->sync_speed_max = max; 3892 return len; 3893 } 3894 3895 static struct md_sysfs_entry md_sync_max = 3896 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3897 3898 static ssize_t 3899 degraded_show(mddev_t *mddev, char *page) 3900 { 3901 return sprintf(page, "%d\n", mddev->degraded); 3902 } 3903 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3904 3905 static ssize_t 3906 sync_force_parallel_show(mddev_t *mddev, char *page) 3907 { 3908 return sprintf(page, "%d\n", mddev->parallel_resync); 3909 } 3910 3911 static ssize_t 3912 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3913 { 3914 long n; 3915 3916 if (strict_strtol(buf, 10, &n)) 3917 return -EINVAL; 3918 3919 if (n != 0 && n != 1) 3920 return -EINVAL; 3921 3922 mddev->parallel_resync = n; 3923 3924 if (mddev->sync_thread) 3925 wake_up(&resync_wait); 3926 3927 return len; 3928 } 3929 3930 /* force parallel resync, even with shared block devices */ 3931 static struct md_sysfs_entry md_sync_force_parallel = 3932 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3933 sync_force_parallel_show, sync_force_parallel_store); 3934 3935 static ssize_t 3936 sync_speed_show(mddev_t *mddev, char *page) 3937 { 3938 unsigned long resync, dt, db; 3939 if (mddev->curr_resync == 0) 3940 return sprintf(page, "none\n"); 3941 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3942 dt = (jiffies - mddev->resync_mark) / HZ; 3943 if (!dt) dt++; 3944 db = resync - mddev->resync_mark_cnt; 3945 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3946 } 3947 3948 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3949 3950 static ssize_t 3951 sync_completed_show(mddev_t *mddev, char *page) 3952 { 3953 unsigned long long max_sectors, resync; 3954 3955 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3956 return sprintf(page, "none\n"); 3957 3958 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3959 max_sectors = mddev->resync_max_sectors; 3960 else 3961 max_sectors = mddev->dev_sectors; 3962 3963 resync = mddev->curr_resync_completed; 3964 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 3965 } 3966 3967 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3968 3969 static ssize_t 3970 min_sync_show(mddev_t *mddev, char *page) 3971 { 3972 return sprintf(page, "%llu\n", 3973 (unsigned long long)mddev->resync_min); 3974 } 3975 static ssize_t 3976 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3977 { 3978 unsigned long long min; 3979 if (strict_strtoull(buf, 10, &min)) 3980 return -EINVAL; 3981 if (min > mddev->resync_max) 3982 return -EINVAL; 3983 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3984 return -EBUSY; 3985 3986 /* Must be a multiple of chunk_size */ 3987 if (mddev->chunk_sectors) { 3988 sector_t temp = min; 3989 if (sector_div(temp, mddev->chunk_sectors)) 3990 return -EINVAL; 3991 } 3992 mddev->resync_min = min; 3993 3994 return len; 3995 } 3996 3997 static struct md_sysfs_entry md_min_sync = 3998 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3999 4000 static ssize_t 4001 max_sync_show(mddev_t *mddev, char *page) 4002 { 4003 if (mddev->resync_max == MaxSector) 4004 return sprintf(page, "max\n"); 4005 else 4006 return sprintf(page, "%llu\n", 4007 (unsigned long long)mddev->resync_max); 4008 } 4009 static ssize_t 4010 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 4011 { 4012 if (strncmp(buf, "max", 3) == 0) 4013 mddev->resync_max = MaxSector; 4014 else { 4015 unsigned long long max; 4016 if (strict_strtoull(buf, 10, &max)) 4017 return -EINVAL; 4018 if (max < mddev->resync_min) 4019 return -EINVAL; 4020 if (max < mddev->resync_max && 4021 mddev->ro == 0 && 4022 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4023 return -EBUSY; 4024 4025 /* Must be a multiple of chunk_size */ 4026 if (mddev->chunk_sectors) { 4027 sector_t temp = max; 4028 if (sector_div(temp, mddev->chunk_sectors)) 4029 return -EINVAL; 4030 } 4031 mddev->resync_max = max; 4032 } 4033 wake_up(&mddev->recovery_wait); 4034 return len; 4035 } 4036 4037 static struct md_sysfs_entry md_max_sync = 4038 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4039 4040 static ssize_t 4041 suspend_lo_show(mddev_t *mddev, char *page) 4042 { 4043 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4044 } 4045 4046 static ssize_t 4047 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 4048 { 4049 char *e; 4050 unsigned long long new = simple_strtoull(buf, &e, 10); 4051 unsigned long long old = mddev->suspend_lo; 4052 4053 if (mddev->pers == NULL || 4054 mddev->pers->quiesce == NULL) 4055 return -EINVAL; 4056 if (buf == e || (*e && *e != '\n')) 4057 return -EINVAL; 4058 4059 mddev->suspend_lo = new; 4060 if (new >= old) 4061 /* Shrinking suspended region */ 4062 mddev->pers->quiesce(mddev, 2); 4063 else { 4064 /* Expanding suspended region - need to wait */ 4065 mddev->pers->quiesce(mddev, 1); 4066 mddev->pers->quiesce(mddev, 0); 4067 } 4068 return len; 4069 } 4070 static struct md_sysfs_entry md_suspend_lo = 4071 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4072 4073 4074 static ssize_t 4075 suspend_hi_show(mddev_t *mddev, char *page) 4076 { 4077 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4078 } 4079 4080 static ssize_t 4081 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 4082 { 4083 char *e; 4084 unsigned long long new = simple_strtoull(buf, &e, 10); 4085 unsigned long long old = mddev->suspend_hi; 4086 4087 if (mddev->pers == NULL || 4088 mddev->pers->quiesce == NULL) 4089 return -EINVAL; 4090 if (buf == e || (*e && *e != '\n')) 4091 return -EINVAL; 4092 4093 mddev->suspend_hi = new; 4094 if (new <= old) 4095 /* Shrinking suspended region */ 4096 mddev->pers->quiesce(mddev, 2); 4097 else { 4098 /* Expanding suspended region - need to wait */ 4099 mddev->pers->quiesce(mddev, 1); 4100 mddev->pers->quiesce(mddev, 0); 4101 } 4102 return len; 4103 } 4104 static struct md_sysfs_entry md_suspend_hi = 4105 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4106 4107 static ssize_t 4108 reshape_position_show(mddev_t *mddev, char *page) 4109 { 4110 if (mddev->reshape_position != MaxSector) 4111 return sprintf(page, "%llu\n", 4112 (unsigned long long)mddev->reshape_position); 4113 strcpy(page, "none\n"); 4114 return 5; 4115 } 4116 4117 static ssize_t 4118 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 4119 { 4120 char *e; 4121 unsigned long long new = simple_strtoull(buf, &e, 10); 4122 if (mddev->pers) 4123 return -EBUSY; 4124 if (buf == e || (*e && *e != '\n')) 4125 return -EINVAL; 4126 mddev->reshape_position = new; 4127 mddev->delta_disks = 0; 4128 mddev->new_level = mddev->level; 4129 mddev->new_layout = mddev->layout; 4130 mddev->new_chunk_sectors = mddev->chunk_sectors; 4131 return len; 4132 } 4133 4134 static struct md_sysfs_entry md_reshape_position = 4135 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4136 reshape_position_store); 4137 4138 static ssize_t 4139 array_size_show(mddev_t *mddev, char *page) 4140 { 4141 if (mddev->external_size) 4142 return sprintf(page, "%llu\n", 4143 (unsigned long long)mddev->array_sectors/2); 4144 else 4145 return sprintf(page, "default\n"); 4146 } 4147 4148 static ssize_t 4149 array_size_store(mddev_t *mddev, const char *buf, size_t len) 4150 { 4151 sector_t sectors; 4152 4153 if (strncmp(buf, "default", 7) == 0) { 4154 if (mddev->pers) 4155 sectors = mddev->pers->size(mddev, 0, 0); 4156 else 4157 sectors = mddev->array_sectors; 4158 4159 mddev->external_size = 0; 4160 } else { 4161 if (strict_blocks_to_sectors(buf, §ors) < 0) 4162 return -EINVAL; 4163 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4164 return -E2BIG; 4165 4166 mddev->external_size = 1; 4167 } 4168 4169 mddev->array_sectors = sectors; 4170 if (mddev->pers) { 4171 set_capacity(mddev->gendisk, mddev->array_sectors); 4172 revalidate_disk(mddev->gendisk); 4173 } 4174 return len; 4175 } 4176 4177 static struct md_sysfs_entry md_array_size = 4178 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4179 array_size_store); 4180 4181 static struct attribute *md_default_attrs[] = { 4182 &md_level.attr, 4183 &md_layout.attr, 4184 &md_raid_disks.attr, 4185 &md_chunk_size.attr, 4186 &md_size.attr, 4187 &md_resync_start.attr, 4188 &md_metadata.attr, 4189 &md_new_device.attr, 4190 &md_safe_delay.attr, 4191 &md_array_state.attr, 4192 &md_reshape_position.attr, 4193 &md_array_size.attr, 4194 &max_corr_read_errors.attr, 4195 NULL, 4196 }; 4197 4198 static struct attribute *md_redundancy_attrs[] = { 4199 &md_scan_mode.attr, 4200 &md_mismatches.attr, 4201 &md_sync_min.attr, 4202 &md_sync_max.attr, 4203 &md_sync_speed.attr, 4204 &md_sync_force_parallel.attr, 4205 &md_sync_completed.attr, 4206 &md_min_sync.attr, 4207 &md_max_sync.attr, 4208 &md_suspend_lo.attr, 4209 &md_suspend_hi.attr, 4210 &md_bitmap.attr, 4211 &md_degraded.attr, 4212 NULL, 4213 }; 4214 static struct attribute_group md_redundancy_group = { 4215 .name = NULL, 4216 .attrs = md_redundancy_attrs, 4217 }; 4218 4219 4220 static ssize_t 4221 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4222 { 4223 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4224 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4225 ssize_t rv; 4226 4227 if (!entry->show) 4228 return -EIO; 4229 rv = mddev_lock(mddev); 4230 if (!rv) { 4231 rv = entry->show(mddev, page); 4232 mddev_unlock(mddev); 4233 } 4234 return rv; 4235 } 4236 4237 static ssize_t 4238 md_attr_store(struct kobject *kobj, struct attribute *attr, 4239 const char *page, size_t length) 4240 { 4241 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4242 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4243 ssize_t rv; 4244 4245 if (!entry->store) 4246 return -EIO; 4247 if (!capable(CAP_SYS_ADMIN)) 4248 return -EACCES; 4249 rv = mddev_lock(mddev); 4250 if (mddev->hold_active == UNTIL_IOCTL) 4251 mddev->hold_active = 0; 4252 if (!rv) { 4253 rv = entry->store(mddev, page, length); 4254 mddev_unlock(mddev); 4255 } 4256 return rv; 4257 } 4258 4259 static void md_free(struct kobject *ko) 4260 { 4261 mddev_t *mddev = container_of(ko, mddev_t, kobj); 4262 4263 if (mddev->sysfs_state) 4264 sysfs_put(mddev->sysfs_state); 4265 4266 if (mddev->gendisk) { 4267 del_gendisk(mddev->gendisk); 4268 put_disk(mddev->gendisk); 4269 } 4270 if (mddev->queue) 4271 blk_cleanup_queue(mddev->queue); 4272 4273 kfree(mddev); 4274 } 4275 4276 static const struct sysfs_ops md_sysfs_ops = { 4277 .show = md_attr_show, 4278 .store = md_attr_store, 4279 }; 4280 static struct kobj_type md_ktype = { 4281 .release = md_free, 4282 .sysfs_ops = &md_sysfs_ops, 4283 .default_attrs = md_default_attrs, 4284 }; 4285 4286 int mdp_major = 0; 4287 4288 static void mddev_delayed_delete(struct work_struct *ws) 4289 { 4290 mddev_t *mddev = container_of(ws, mddev_t, del_work); 4291 4292 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4293 kobject_del(&mddev->kobj); 4294 kobject_put(&mddev->kobj); 4295 } 4296 4297 static int md_alloc(dev_t dev, char *name) 4298 { 4299 static DEFINE_MUTEX(disks_mutex); 4300 mddev_t *mddev = mddev_find(dev); 4301 struct gendisk *disk; 4302 int partitioned; 4303 int shift; 4304 int unit; 4305 int error; 4306 4307 if (!mddev) 4308 return -ENODEV; 4309 4310 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4311 shift = partitioned ? MdpMinorShift : 0; 4312 unit = MINOR(mddev->unit) >> shift; 4313 4314 /* wait for any previous instance of this device to be 4315 * completely removed (mddev_delayed_delete). 4316 */ 4317 flush_workqueue(md_misc_wq); 4318 4319 mutex_lock(&disks_mutex); 4320 error = -EEXIST; 4321 if (mddev->gendisk) 4322 goto abort; 4323 4324 if (name) { 4325 /* Need to ensure that 'name' is not a duplicate. 4326 */ 4327 mddev_t *mddev2; 4328 spin_lock(&all_mddevs_lock); 4329 4330 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4331 if (mddev2->gendisk && 4332 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4333 spin_unlock(&all_mddevs_lock); 4334 goto abort; 4335 } 4336 spin_unlock(&all_mddevs_lock); 4337 } 4338 4339 error = -ENOMEM; 4340 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4341 if (!mddev->queue) 4342 goto abort; 4343 mddev->queue->queuedata = mddev; 4344 4345 blk_queue_make_request(mddev->queue, md_make_request); 4346 4347 disk = alloc_disk(1 << shift); 4348 if (!disk) { 4349 blk_cleanup_queue(mddev->queue); 4350 mddev->queue = NULL; 4351 goto abort; 4352 } 4353 disk->major = MAJOR(mddev->unit); 4354 disk->first_minor = unit << shift; 4355 if (name) 4356 strcpy(disk->disk_name, name); 4357 else if (partitioned) 4358 sprintf(disk->disk_name, "md_d%d", unit); 4359 else 4360 sprintf(disk->disk_name, "md%d", unit); 4361 disk->fops = &md_fops; 4362 disk->private_data = mddev; 4363 disk->queue = mddev->queue; 4364 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4365 /* Allow extended partitions. This makes the 4366 * 'mdp' device redundant, but we can't really 4367 * remove it now. 4368 */ 4369 disk->flags |= GENHD_FL_EXT_DEVT; 4370 mddev->gendisk = disk; 4371 /* As soon as we call add_disk(), another thread could get 4372 * through to md_open, so make sure it doesn't get too far 4373 */ 4374 mutex_lock(&mddev->open_mutex); 4375 add_disk(disk); 4376 4377 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4378 &disk_to_dev(disk)->kobj, "%s", "md"); 4379 if (error) { 4380 /* This isn't possible, but as kobject_init_and_add is marked 4381 * __must_check, we must do something with the result 4382 */ 4383 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4384 disk->disk_name); 4385 error = 0; 4386 } 4387 if (mddev->kobj.sd && 4388 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4389 printk(KERN_DEBUG "pointless warning\n"); 4390 mutex_unlock(&mddev->open_mutex); 4391 abort: 4392 mutex_unlock(&disks_mutex); 4393 if (!error && mddev->kobj.sd) { 4394 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4395 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4396 } 4397 mddev_put(mddev); 4398 return error; 4399 } 4400 4401 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4402 { 4403 md_alloc(dev, NULL); 4404 return NULL; 4405 } 4406 4407 static int add_named_array(const char *val, struct kernel_param *kp) 4408 { 4409 /* val must be "md_*" where * is not all digits. 4410 * We allocate an array with a large free minor number, and 4411 * set the name to val. val must not already be an active name. 4412 */ 4413 int len = strlen(val); 4414 char buf[DISK_NAME_LEN]; 4415 4416 while (len && val[len-1] == '\n') 4417 len--; 4418 if (len >= DISK_NAME_LEN) 4419 return -E2BIG; 4420 strlcpy(buf, val, len+1); 4421 if (strncmp(buf, "md_", 3) != 0) 4422 return -EINVAL; 4423 return md_alloc(0, buf); 4424 } 4425 4426 static void md_safemode_timeout(unsigned long data) 4427 { 4428 mddev_t *mddev = (mddev_t *) data; 4429 4430 if (!atomic_read(&mddev->writes_pending)) { 4431 mddev->safemode = 1; 4432 if (mddev->external) 4433 sysfs_notify_dirent_safe(mddev->sysfs_state); 4434 } 4435 md_wakeup_thread(mddev->thread); 4436 } 4437 4438 static int start_dirty_degraded; 4439 4440 int md_run(mddev_t *mddev) 4441 { 4442 int err; 4443 mdk_rdev_t *rdev; 4444 struct mdk_personality *pers; 4445 4446 if (list_empty(&mddev->disks)) 4447 /* cannot run an array with no devices.. */ 4448 return -EINVAL; 4449 4450 if (mddev->pers) 4451 return -EBUSY; 4452 /* Cannot run until previous stop completes properly */ 4453 if (mddev->sysfs_active) 4454 return -EBUSY; 4455 4456 /* 4457 * Analyze all RAID superblock(s) 4458 */ 4459 if (!mddev->raid_disks) { 4460 if (!mddev->persistent) 4461 return -EINVAL; 4462 analyze_sbs(mddev); 4463 } 4464 4465 if (mddev->level != LEVEL_NONE) 4466 request_module("md-level-%d", mddev->level); 4467 else if (mddev->clevel[0]) 4468 request_module("md-%s", mddev->clevel); 4469 4470 /* 4471 * Drop all container device buffers, from now on 4472 * the only valid external interface is through the md 4473 * device. 4474 */ 4475 list_for_each_entry(rdev, &mddev->disks, same_set) { 4476 if (test_bit(Faulty, &rdev->flags)) 4477 continue; 4478 sync_blockdev(rdev->bdev); 4479 invalidate_bdev(rdev->bdev); 4480 4481 /* perform some consistency tests on the device. 4482 * We don't want the data to overlap the metadata, 4483 * Internal Bitmap issues have been handled elsewhere. 4484 */ 4485 if (rdev->meta_bdev) { 4486 /* Nothing to check */; 4487 } else if (rdev->data_offset < rdev->sb_start) { 4488 if (mddev->dev_sectors && 4489 rdev->data_offset + mddev->dev_sectors 4490 > rdev->sb_start) { 4491 printk("md: %s: data overlaps metadata\n", 4492 mdname(mddev)); 4493 return -EINVAL; 4494 } 4495 } else { 4496 if (rdev->sb_start + rdev->sb_size/512 4497 > rdev->data_offset) { 4498 printk("md: %s: metadata overlaps data\n", 4499 mdname(mddev)); 4500 return -EINVAL; 4501 } 4502 } 4503 sysfs_notify_dirent_safe(rdev->sysfs_state); 4504 } 4505 4506 if (mddev->bio_set == NULL) 4507 mddev->bio_set = bioset_create(BIO_POOL_SIZE, sizeof(mddev)); 4508 4509 spin_lock(&pers_lock); 4510 pers = find_pers(mddev->level, mddev->clevel); 4511 if (!pers || !try_module_get(pers->owner)) { 4512 spin_unlock(&pers_lock); 4513 if (mddev->level != LEVEL_NONE) 4514 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4515 mddev->level); 4516 else 4517 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4518 mddev->clevel); 4519 return -EINVAL; 4520 } 4521 mddev->pers = pers; 4522 spin_unlock(&pers_lock); 4523 if (mddev->level != pers->level) { 4524 mddev->level = pers->level; 4525 mddev->new_level = pers->level; 4526 } 4527 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4528 4529 if (mddev->reshape_position != MaxSector && 4530 pers->start_reshape == NULL) { 4531 /* This personality cannot handle reshaping... */ 4532 mddev->pers = NULL; 4533 module_put(pers->owner); 4534 return -EINVAL; 4535 } 4536 4537 if (pers->sync_request) { 4538 /* Warn if this is a potentially silly 4539 * configuration. 4540 */ 4541 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4542 mdk_rdev_t *rdev2; 4543 int warned = 0; 4544 4545 list_for_each_entry(rdev, &mddev->disks, same_set) 4546 list_for_each_entry(rdev2, &mddev->disks, same_set) { 4547 if (rdev < rdev2 && 4548 rdev->bdev->bd_contains == 4549 rdev2->bdev->bd_contains) { 4550 printk(KERN_WARNING 4551 "%s: WARNING: %s appears to be" 4552 " on the same physical disk as" 4553 " %s.\n", 4554 mdname(mddev), 4555 bdevname(rdev->bdev,b), 4556 bdevname(rdev2->bdev,b2)); 4557 warned = 1; 4558 } 4559 } 4560 4561 if (warned) 4562 printk(KERN_WARNING 4563 "True protection against single-disk" 4564 " failure might be compromised.\n"); 4565 } 4566 4567 mddev->recovery = 0; 4568 /* may be over-ridden by personality */ 4569 mddev->resync_max_sectors = mddev->dev_sectors; 4570 4571 mddev->ok_start_degraded = start_dirty_degraded; 4572 4573 if (start_readonly && mddev->ro == 0) 4574 mddev->ro = 2; /* read-only, but switch on first write */ 4575 4576 err = mddev->pers->run(mddev); 4577 if (err) 4578 printk(KERN_ERR "md: pers->run() failed ...\n"); 4579 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 4580 WARN_ONCE(!mddev->external_size, "%s: default size too small," 4581 " but 'external_size' not in effect?\n", __func__); 4582 printk(KERN_ERR 4583 "md: invalid array_size %llu > default size %llu\n", 4584 (unsigned long long)mddev->array_sectors / 2, 4585 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 4586 err = -EINVAL; 4587 mddev->pers->stop(mddev); 4588 } 4589 if (err == 0 && mddev->pers->sync_request) { 4590 err = bitmap_create(mddev); 4591 if (err) { 4592 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 4593 mdname(mddev), err); 4594 mddev->pers->stop(mddev); 4595 } 4596 } 4597 if (err) { 4598 module_put(mddev->pers->owner); 4599 mddev->pers = NULL; 4600 bitmap_destroy(mddev); 4601 return err; 4602 } 4603 if (mddev->pers->sync_request) { 4604 if (mddev->kobj.sd && 4605 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4606 printk(KERN_WARNING 4607 "md: cannot register extra attributes for %s\n", 4608 mdname(mddev)); 4609 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 4610 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 4611 mddev->ro = 0; 4612 4613 atomic_set(&mddev->writes_pending,0); 4614 atomic_set(&mddev->max_corr_read_errors, 4615 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 4616 mddev->safemode = 0; 4617 mddev->safemode_timer.function = md_safemode_timeout; 4618 mddev->safemode_timer.data = (unsigned long) mddev; 4619 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 4620 mddev->in_sync = 1; 4621 smp_wmb(); 4622 mddev->ready = 1; 4623 list_for_each_entry(rdev, &mddev->disks, same_set) 4624 if (rdev->raid_disk >= 0) { 4625 char nm[20]; 4626 sprintf(nm, "rd%d", rdev->raid_disk); 4627 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 4628 /* failure here is OK */; 4629 } 4630 4631 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4632 4633 if (mddev->flags) 4634 md_update_sb(mddev, 0); 4635 4636 md_new_event(mddev); 4637 sysfs_notify_dirent_safe(mddev->sysfs_state); 4638 sysfs_notify_dirent_safe(mddev->sysfs_action); 4639 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4640 return 0; 4641 } 4642 EXPORT_SYMBOL_GPL(md_run); 4643 4644 static int do_md_run(mddev_t *mddev) 4645 { 4646 int err; 4647 4648 err = md_run(mddev); 4649 if (err) 4650 goto out; 4651 err = bitmap_load(mddev); 4652 if (err) { 4653 bitmap_destroy(mddev); 4654 goto out; 4655 } 4656 4657 md_wakeup_thread(mddev->thread); 4658 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 4659 4660 set_capacity(mddev->gendisk, mddev->array_sectors); 4661 revalidate_disk(mddev->gendisk); 4662 mddev->changed = 1; 4663 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4664 out: 4665 return err; 4666 } 4667 4668 static int restart_array(mddev_t *mddev) 4669 { 4670 struct gendisk *disk = mddev->gendisk; 4671 4672 /* Complain if it has no devices */ 4673 if (list_empty(&mddev->disks)) 4674 return -ENXIO; 4675 if (!mddev->pers) 4676 return -EINVAL; 4677 if (!mddev->ro) 4678 return -EBUSY; 4679 mddev->safemode = 0; 4680 mddev->ro = 0; 4681 set_disk_ro(disk, 0); 4682 printk(KERN_INFO "md: %s switched to read-write mode.\n", 4683 mdname(mddev)); 4684 /* Kick recovery or resync if necessary */ 4685 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4686 md_wakeup_thread(mddev->thread); 4687 md_wakeup_thread(mddev->sync_thread); 4688 sysfs_notify_dirent_safe(mddev->sysfs_state); 4689 return 0; 4690 } 4691 4692 /* similar to deny_write_access, but accounts for our holding a reference 4693 * to the file ourselves */ 4694 static int deny_bitmap_write_access(struct file * file) 4695 { 4696 struct inode *inode = file->f_mapping->host; 4697 4698 spin_lock(&inode->i_lock); 4699 if (atomic_read(&inode->i_writecount) > 1) { 4700 spin_unlock(&inode->i_lock); 4701 return -ETXTBSY; 4702 } 4703 atomic_set(&inode->i_writecount, -1); 4704 spin_unlock(&inode->i_lock); 4705 4706 return 0; 4707 } 4708 4709 void restore_bitmap_write_access(struct file *file) 4710 { 4711 struct inode *inode = file->f_mapping->host; 4712 4713 spin_lock(&inode->i_lock); 4714 atomic_set(&inode->i_writecount, 1); 4715 spin_unlock(&inode->i_lock); 4716 } 4717 4718 static void md_clean(mddev_t *mddev) 4719 { 4720 mddev->array_sectors = 0; 4721 mddev->external_size = 0; 4722 mddev->dev_sectors = 0; 4723 mddev->raid_disks = 0; 4724 mddev->recovery_cp = 0; 4725 mddev->resync_min = 0; 4726 mddev->resync_max = MaxSector; 4727 mddev->reshape_position = MaxSector; 4728 mddev->external = 0; 4729 mddev->persistent = 0; 4730 mddev->level = LEVEL_NONE; 4731 mddev->clevel[0] = 0; 4732 mddev->flags = 0; 4733 mddev->ro = 0; 4734 mddev->metadata_type[0] = 0; 4735 mddev->chunk_sectors = 0; 4736 mddev->ctime = mddev->utime = 0; 4737 mddev->layout = 0; 4738 mddev->max_disks = 0; 4739 mddev->events = 0; 4740 mddev->can_decrease_events = 0; 4741 mddev->delta_disks = 0; 4742 mddev->new_level = LEVEL_NONE; 4743 mddev->new_layout = 0; 4744 mddev->new_chunk_sectors = 0; 4745 mddev->curr_resync = 0; 4746 mddev->resync_mismatches = 0; 4747 mddev->suspend_lo = mddev->suspend_hi = 0; 4748 mddev->sync_speed_min = mddev->sync_speed_max = 0; 4749 mddev->recovery = 0; 4750 mddev->in_sync = 0; 4751 mddev->changed = 0; 4752 mddev->degraded = 0; 4753 mddev->safemode = 0; 4754 mddev->bitmap_info.offset = 0; 4755 mddev->bitmap_info.default_offset = 0; 4756 mddev->bitmap_info.chunksize = 0; 4757 mddev->bitmap_info.daemon_sleep = 0; 4758 mddev->bitmap_info.max_write_behind = 0; 4759 } 4760 4761 static void __md_stop_writes(mddev_t *mddev) 4762 { 4763 if (mddev->sync_thread) { 4764 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4765 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4766 reap_sync_thread(mddev); 4767 } 4768 4769 del_timer_sync(&mddev->safemode_timer); 4770 4771 bitmap_flush(mddev); 4772 md_super_wait(mddev); 4773 4774 if (!mddev->in_sync || mddev->flags) { 4775 /* mark array as shutdown cleanly */ 4776 mddev->in_sync = 1; 4777 md_update_sb(mddev, 1); 4778 } 4779 } 4780 4781 void md_stop_writes(mddev_t *mddev) 4782 { 4783 mddev_lock(mddev); 4784 __md_stop_writes(mddev); 4785 mddev_unlock(mddev); 4786 } 4787 EXPORT_SYMBOL_GPL(md_stop_writes); 4788 4789 void md_stop(mddev_t *mddev) 4790 { 4791 mddev->ready = 0; 4792 mddev->pers->stop(mddev); 4793 if (mddev->pers->sync_request && mddev->to_remove == NULL) 4794 mddev->to_remove = &md_redundancy_group; 4795 module_put(mddev->pers->owner); 4796 mddev->pers = NULL; 4797 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4798 } 4799 EXPORT_SYMBOL_GPL(md_stop); 4800 4801 static int md_set_readonly(mddev_t *mddev, int is_open) 4802 { 4803 int err = 0; 4804 mutex_lock(&mddev->open_mutex); 4805 if (atomic_read(&mddev->openers) > is_open) { 4806 printk("md: %s still in use.\n",mdname(mddev)); 4807 err = -EBUSY; 4808 goto out; 4809 } 4810 if (mddev->pers) { 4811 __md_stop_writes(mddev); 4812 4813 err = -ENXIO; 4814 if (mddev->ro==1) 4815 goto out; 4816 mddev->ro = 1; 4817 set_disk_ro(mddev->gendisk, 1); 4818 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4819 sysfs_notify_dirent_safe(mddev->sysfs_state); 4820 err = 0; 4821 } 4822 out: 4823 mutex_unlock(&mddev->open_mutex); 4824 return err; 4825 } 4826 4827 /* mode: 4828 * 0 - completely stop and dis-assemble array 4829 * 2 - stop but do not disassemble array 4830 */ 4831 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 4832 { 4833 struct gendisk *disk = mddev->gendisk; 4834 mdk_rdev_t *rdev; 4835 4836 mutex_lock(&mddev->open_mutex); 4837 if (atomic_read(&mddev->openers) > is_open || 4838 mddev->sysfs_active) { 4839 printk("md: %s still in use.\n",mdname(mddev)); 4840 mutex_unlock(&mddev->open_mutex); 4841 return -EBUSY; 4842 } 4843 4844 if (mddev->pers) { 4845 if (mddev->ro) 4846 set_disk_ro(disk, 0); 4847 4848 __md_stop_writes(mddev); 4849 md_stop(mddev); 4850 mddev->queue->merge_bvec_fn = NULL; 4851 mddev->queue->backing_dev_info.congested_fn = NULL; 4852 4853 /* tell userspace to handle 'inactive' */ 4854 sysfs_notify_dirent_safe(mddev->sysfs_state); 4855 4856 list_for_each_entry(rdev, &mddev->disks, same_set) 4857 if (rdev->raid_disk >= 0) { 4858 char nm[20]; 4859 sprintf(nm, "rd%d", rdev->raid_disk); 4860 sysfs_remove_link(&mddev->kobj, nm); 4861 } 4862 4863 set_capacity(disk, 0); 4864 mutex_unlock(&mddev->open_mutex); 4865 mddev->changed = 1; 4866 revalidate_disk(disk); 4867 4868 if (mddev->ro) 4869 mddev->ro = 0; 4870 } else 4871 mutex_unlock(&mddev->open_mutex); 4872 /* 4873 * Free resources if final stop 4874 */ 4875 if (mode == 0) { 4876 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 4877 4878 bitmap_destroy(mddev); 4879 if (mddev->bitmap_info.file) { 4880 restore_bitmap_write_access(mddev->bitmap_info.file); 4881 fput(mddev->bitmap_info.file); 4882 mddev->bitmap_info.file = NULL; 4883 } 4884 mddev->bitmap_info.offset = 0; 4885 4886 export_array(mddev); 4887 4888 md_clean(mddev); 4889 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4890 if (mddev->hold_active == UNTIL_STOP) 4891 mddev->hold_active = 0; 4892 } 4893 blk_integrity_unregister(disk); 4894 md_new_event(mddev); 4895 sysfs_notify_dirent_safe(mddev->sysfs_state); 4896 return 0; 4897 } 4898 4899 #ifndef MODULE 4900 static void autorun_array(mddev_t *mddev) 4901 { 4902 mdk_rdev_t *rdev; 4903 int err; 4904 4905 if (list_empty(&mddev->disks)) 4906 return; 4907 4908 printk(KERN_INFO "md: running: "); 4909 4910 list_for_each_entry(rdev, &mddev->disks, same_set) { 4911 char b[BDEVNAME_SIZE]; 4912 printk("<%s>", bdevname(rdev->bdev,b)); 4913 } 4914 printk("\n"); 4915 4916 err = do_md_run(mddev); 4917 if (err) { 4918 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 4919 do_md_stop(mddev, 0, 0); 4920 } 4921 } 4922 4923 /* 4924 * lets try to run arrays based on all disks that have arrived 4925 * until now. (those are in pending_raid_disks) 4926 * 4927 * the method: pick the first pending disk, collect all disks with 4928 * the same UUID, remove all from the pending list and put them into 4929 * the 'same_array' list. Then order this list based on superblock 4930 * update time (freshest comes first), kick out 'old' disks and 4931 * compare superblocks. If everything's fine then run it. 4932 * 4933 * If "unit" is allocated, then bump its reference count 4934 */ 4935 static void autorun_devices(int part) 4936 { 4937 mdk_rdev_t *rdev0, *rdev, *tmp; 4938 mddev_t *mddev; 4939 char b[BDEVNAME_SIZE]; 4940 4941 printk(KERN_INFO "md: autorun ...\n"); 4942 while (!list_empty(&pending_raid_disks)) { 4943 int unit; 4944 dev_t dev; 4945 LIST_HEAD(candidates); 4946 rdev0 = list_entry(pending_raid_disks.next, 4947 mdk_rdev_t, same_set); 4948 4949 printk(KERN_INFO "md: considering %s ...\n", 4950 bdevname(rdev0->bdev,b)); 4951 INIT_LIST_HEAD(&candidates); 4952 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 4953 if (super_90_load(rdev, rdev0, 0) >= 0) { 4954 printk(KERN_INFO "md: adding %s ...\n", 4955 bdevname(rdev->bdev,b)); 4956 list_move(&rdev->same_set, &candidates); 4957 } 4958 /* 4959 * now we have a set of devices, with all of them having 4960 * mostly sane superblocks. It's time to allocate the 4961 * mddev. 4962 */ 4963 if (part) { 4964 dev = MKDEV(mdp_major, 4965 rdev0->preferred_minor << MdpMinorShift); 4966 unit = MINOR(dev) >> MdpMinorShift; 4967 } else { 4968 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4969 unit = MINOR(dev); 4970 } 4971 if (rdev0->preferred_minor != unit) { 4972 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4973 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4974 break; 4975 } 4976 4977 md_probe(dev, NULL, NULL); 4978 mddev = mddev_find(dev); 4979 if (!mddev || !mddev->gendisk) { 4980 if (mddev) 4981 mddev_put(mddev); 4982 printk(KERN_ERR 4983 "md: cannot allocate memory for md drive.\n"); 4984 break; 4985 } 4986 if (mddev_lock(mddev)) 4987 printk(KERN_WARNING "md: %s locked, cannot run\n", 4988 mdname(mddev)); 4989 else if (mddev->raid_disks || mddev->major_version 4990 || !list_empty(&mddev->disks)) { 4991 printk(KERN_WARNING 4992 "md: %s already running, cannot run %s\n", 4993 mdname(mddev), bdevname(rdev0->bdev,b)); 4994 mddev_unlock(mddev); 4995 } else { 4996 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4997 mddev->persistent = 1; 4998 rdev_for_each_list(rdev, tmp, &candidates) { 4999 list_del_init(&rdev->same_set); 5000 if (bind_rdev_to_array(rdev, mddev)) 5001 export_rdev(rdev); 5002 } 5003 autorun_array(mddev); 5004 mddev_unlock(mddev); 5005 } 5006 /* on success, candidates will be empty, on error 5007 * it won't... 5008 */ 5009 rdev_for_each_list(rdev, tmp, &candidates) { 5010 list_del_init(&rdev->same_set); 5011 export_rdev(rdev); 5012 } 5013 mddev_put(mddev); 5014 } 5015 printk(KERN_INFO "md: ... autorun DONE.\n"); 5016 } 5017 #endif /* !MODULE */ 5018 5019 static int get_version(void __user * arg) 5020 { 5021 mdu_version_t ver; 5022 5023 ver.major = MD_MAJOR_VERSION; 5024 ver.minor = MD_MINOR_VERSION; 5025 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5026 5027 if (copy_to_user(arg, &ver, sizeof(ver))) 5028 return -EFAULT; 5029 5030 return 0; 5031 } 5032 5033 static int get_array_info(mddev_t * mddev, void __user * arg) 5034 { 5035 mdu_array_info_t info; 5036 int nr,working,insync,failed,spare; 5037 mdk_rdev_t *rdev; 5038 5039 nr=working=insync=failed=spare=0; 5040 list_for_each_entry(rdev, &mddev->disks, same_set) { 5041 nr++; 5042 if (test_bit(Faulty, &rdev->flags)) 5043 failed++; 5044 else { 5045 working++; 5046 if (test_bit(In_sync, &rdev->flags)) 5047 insync++; 5048 else 5049 spare++; 5050 } 5051 } 5052 5053 info.major_version = mddev->major_version; 5054 info.minor_version = mddev->minor_version; 5055 info.patch_version = MD_PATCHLEVEL_VERSION; 5056 info.ctime = mddev->ctime; 5057 info.level = mddev->level; 5058 info.size = mddev->dev_sectors / 2; 5059 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5060 info.size = -1; 5061 info.nr_disks = nr; 5062 info.raid_disks = mddev->raid_disks; 5063 info.md_minor = mddev->md_minor; 5064 info.not_persistent= !mddev->persistent; 5065 5066 info.utime = mddev->utime; 5067 info.state = 0; 5068 if (mddev->in_sync) 5069 info.state = (1<<MD_SB_CLEAN); 5070 if (mddev->bitmap && mddev->bitmap_info.offset) 5071 info.state = (1<<MD_SB_BITMAP_PRESENT); 5072 info.active_disks = insync; 5073 info.working_disks = working; 5074 info.failed_disks = failed; 5075 info.spare_disks = spare; 5076 5077 info.layout = mddev->layout; 5078 info.chunk_size = mddev->chunk_sectors << 9; 5079 5080 if (copy_to_user(arg, &info, sizeof(info))) 5081 return -EFAULT; 5082 5083 return 0; 5084 } 5085 5086 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 5087 { 5088 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5089 char *ptr, *buf = NULL; 5090 int err = -ENOMEM; 5091 5092 if (md_allow_write(mddev)) 5093 file = kmalloc(sizeof(*file), GFP_NOIO); 5094 else 5095 file = kmalloc(sizeof(*file), GFP_KERNEL); 5096 5097 if (!file) 5098 goto out; 5099 5100 /* bitmap disabled, zero the first byte and copy out */ 5101 if (!mddev->bitmap || !mddev->bitmap->file) { 5102 file->pathname[0] = '\0'; 5103 goto copy_out; 5104 } 5105 5106 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5107 if (!buf) 5108 goto out; 5109 5110 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 5111 if (IS_ERR(ptr)) 5112 goto out; 5113 5114 strcpy(file->pathname, ptr); 5115 5116 copy_out: 5117 err = 0; 5118 if (copy_to_user(arg, file, sizeof(*file))) 5119 err = -EFAULT; 5120 out: 5121 kfree(buf); 5122 kfree(file); 5123 return err; 5124 } 5125 5126 static int get_disk_info(mddev_t * mddev, void __user * arg) 5127 { 5128 mdu_disk_info_t info; 5129 mdk_rdev_t *rdev; 5130 5131 if (copy_from_user(&info, arg, sizeof(info))) 5132 return -EFAULT; 5133 5134 rdev = find_rdev_nr(mddev, info.number); 5135 if (rdev) { 5136 info.major = MAJOR(rdev->bdev->bd_dev); 5137 info.minor = MINOR(rdev->bdev->bd_dev); 5138 info.raid_disk = rdev->raid_disk; 5139 info.state = 0; 5140 if (test_bit(Faulty, &rdev->flags)) 5141 info.state |= (1<<MD_DISK_FAULTY); 5142 else if (test_bit(In_sync, &rdev->flags)) { 5143 info.state |= (1<<MD_DISK_ACTIVE); 5144 info.state |= (1<<MD_DISK_SYNC); 5145 } 5146 if (test_bit(WriteMostly, &rdev->flags)) 5147 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5148 } else { 5149 info.major = info.minor = 0; 5150 info.raid_disk = -1; 5151 info.state = (1<<MD_DISK_REMOVED); 5152 } 5153 5154 if (copy_to_user(arg, &info, sizeof(info))) 5155 return -EFAULT; 5156 5157 return 0; 5158 } 5159 5160 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 5161 { 5162 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5163 mdk_rdev_t *rdev; 5164 dev_t dev = MKDEV(info->major,info->minor); 5165 5166 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5167 return -EOVERFLOW; 5168 5169 if (!mddev->raid_disks) { 5170 int err; 5171 /* expecting a device which has a superblock */ 5172 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5173 if (IS_ERR(rdev)) { 5174 printk(KERN_WARNING 5175 "md: md_import_device returned %ld\n", 5176 PTR_ERR(rdev)); 5177 return PTR_ERR(rdev); 5178 } 5179 if (!list_empty(&mddev->disks)) { 5180 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 5181 mdk_rdev_t, same_set); 5182 err = super_types[mddev->major_version] 5183 .load_super(rdev, rdev0, mddev->minor_version); 5184 if (err < 0) { 5185 printk(KERN_WARNING 5186 "md: %s has different UUID to %s\n", 5187 bdevname(rdev->bdev,b), 5188 bdevname(rdev0->bdev,b2)); 5189 export_rdev(rdev); 5190 return -EINVAL; 5191 } 5192 } 5193 err = bind_rdev_to_array(rdev, mddev); 5194 if (err) 5195 export_rdev(rdev); 5196 return err; 5197 } 5198 5199 /* 5200 * add_new_disk can be used once the array is assembled 5201 * to add "hot spares". They must already have a superblock 5202 * written 5203 */ 5204 if (mddev->pers) { 5205 int err; 5206 if (!mddev->pers->hot_add_disk) { 5207 printk(KERN_WARNING 5208 "%s: personality does not support diskops!\n", 5209 mdname(mddev)); 5210 return -EINVAL; 5211 } 5212 if (mddev->persistent) 5213 rdev = md_import_device(dev, mddev->major_version, 5214 mddev->minor_version); 5215 else 5216 rdev = md_import_device(dev, -1, -1); 5217 if (IS_ERR(rdev)) { 5218 printk(KERN_WARNING 5219 "md: md_import_device returned %ld\n", 5220 PTR_ERR(rdev)); 5221 return PTR_ERR(rdev); 5222 } 5223 /* set saved_raid_disk if appropriate */ 5224 if (!mddev->persistent) { 5225 if (info->state & (1<<MD_DISK_SYNC) && 5226 info->raid_disk < mddev->raid_disks) { 5227 rdev->raid_disk = info->raid_disk; 5228 set_bit(In_sync, &rdev->flags); 5229 } else 5230 rdev->raid_disk = -1; 5231 } else 5232 super_types[mddev->major_version]. 5233 validate_super(mddev, rdev); 5234 if ((info->state & (1<<MD_DISK_SYNC)) && 5235 (!test_bit(In_sync, &rdev->flags) || 5236 rdev->raid_disk != info->raid_disk)) { 5237 /* This was a hot-add request, but events doesn't 5238 * match, so reject it. 5239 */ 5240 export_rdev(rdev); 5241 return -EINVAL; 5242 } 5243 5244 if (test_bit(In_sync, &rdev->flags)) 5245 rdev->saved_raid_disk = rdev->raid_disk; 5246 else 5247 rdev->saved_raid_disk = -1; 5248 5249 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5250 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5251 set_bit(WriteMostly, &rdev->flags); 5252 else 5253 clear_bit(WriteMostly, &rdev->flags); 5254 5255 rdev->raid_disk = -1; 5256 err = bind_rdev_to_array(rdev, mddev); 5257 if (!err && !mddev->pers->hot_remove_disk) { 5258 /* If there is hot_add_disk but no hot_remove_disk 5259 * then added disks for geometry changes, 5260 * and should be added immediately. 5261 */ 5262 super_types[mddev->major_version]. 5263 validate_super(mddev, rdev); 5264 err = mddev->pers->hot_add_disk(mddev, rdev); 5265 if (err) 5266 unbind_rdev_from_array(rdev); 5267 } 5268 if (err) 5269 export_rdev(rdev); 5270 else 5271 sysfs_notify_dirent_safe(rdev->sysfs_state); 5272 5273 md_update_sb(mddev, 1); 5274 if (mddev->degraded) 5275 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5276 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5277 if (!err) 5278 md_new_event(mddev); 5279 md_wakeup_thread(mddev->thread); 5280 return err; 5281 } 5282 5283 /* otherwise, add_new_disk is only allowed 5284 * for major_version==0 superblocks 5285 */ 5286 if (mddev->major_version != 0) { 5287 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5288 mdname(mddev)); 5289 return -EINVAL; 5290 } 5291 5292 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5293 int err; 5294 rdev = md_import_device(dev, -1, 0); 5295 if (IS_ERR(rdev)) { 5296 printk(KERN_WARNING 5297 "md: error, md_import_device() returned %ld\n", 5298 PTR_ERR(rdev)); 5299 return PTR_ERR(rdev); 5300 } 5301 rdev->desc_nr = info->number; 5302 if (info->raid_disk < mddev->raid_disks) 5303 rdev->raid_disk = info->raid_disk; 5304 else 5305 rdev->raid_disk = -1; 5306 5307 if (rdev->raid_disk < mddev->raid_disks) 5308 if (info->state & (1<<MD_DISK_SYNC)) 5309 set_bit(In_sync, &rdev->flags); 5310 5311 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5312 set_bit(WriteMostly, &rdev->flags); 5313 5314 if (!mddev->persistent) { 5315 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5316 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5317 } else 5318 rdev->sb_start = calc_dev_sboffset(rdev); 5319 rdev->sectors = rdev->sb_start; 5320 5321 err = bind_rdev_to_array(rdev, mddev); 5322 if (err) { 5323 export_rdev(rdev); 5324 return err; 5325 } 5326 } 5327 5328 return 0; 5329 } 5330 5331 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 5332 { 5333 char b[BDEVNAME_SIZE]; 5334 mdk_rdev_t *rdev; 5335 5336 rdev = find_rdev(mddev, dev); 5337 if (!rdev) 5338 return -ENXIO; 5339 5340 if (rdev->raid_disk >= 0) 5341 goto busy; 5342 5343 kick_rdev_from_array(rdev); 5344 md_update_sb(mddev, 1); 5345 md_new_event(mddev); 5346 5347 return 0; 5348 busy: 5349 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5350 bdevname(rdev->bdev,b), mdname(mddev)); 5351 return -EBUSY; 5352 } 5353 5354 static int hot_add_disk(mddev_t * mddev, dev_t dev) 5355 { 5356 char b[BDEVNAME_SIZE]; 5357 int err; 5358 mdk_rdev_t *rdev; 5359 5360 if (!mddev->pers) 5361 return -ENODEV; 5362 5363 if (mddev->major_version != 0) { 5364 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5365 " version-0 superblocks.\n", 5366 mdname(mddev)); 5367 return -EINVAL; 5368 } 5369 if (!mddev->pers->hot_add_disk) { 5370 printk(KERN_WARNING 5371 "%s: personality does not support diskops!\n", 5372 mdname(mddev)); 5373 return -EINVAL; 5374 } 5375 5376 rdev = md_import_device(dev, -1, 0); 5377 if (IS_ERR(rdev)) { 5378 printk(KERN_WARNING 5379 "md: error, md_import_device() returned %ld\n", 5380 PTR_ERR(rdev)); 5381 return -EINVAL; 5382 } 5383 5384 if (mddev->persistent) 5385 rdev->sb_start = calc_dev_sboffset(rdev); 5386 else 5387 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5388 5389 rdev->sectors = rdev->sb_start; 5390 5391 if (test_bit(Faulty, &rdev->flags)) { 5392 printk(KERN_WARNING 5393 "md: can not hot-add faulty %s disk to %s!\n", 5394 bdevname(rdev->bdev,b), mdname(mddev)); 5395 err = -EINVAL; 5396 goto abort_export; 5397 } 5398 clear_bit(In_sync, &rdev->flags); 5399 rdev->desc_nr = -1; 5400 rdev->saved_raid_disk = -1; 5401 err = bind_rdev_to_array(rdev, mddev); 5402 if (err) 5403 goto abort_export; 5404 5405 /* 5406 * The rest should better be atomic, we can have disk failures 5407 * noticed in interrupt contexts ... 5408 */ 5409 5410 rdev->raid_disk = -1; 5411 5412 md_update_sb(mddev, 1); 5413 5414 /* 5415 * Kick recovery, maybe this spare has to be added to the 5416 * array immediately. 5417 */ 5418 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5419 md_wakeup_thread(mddev->thread); 5420 md_new_event(mddev); 5421 return 0; 5422 5423 abort_export: 5424 export_rdev(rdev); 5425 return err; 5426 } 5427 5428 static int set_bitmap_file(mddev_t *mddev, int fd) 5429 { 5430 int err; 5431 5432 if (mddev->pers) { 5433 if (!mddev->pers->quiesce) 5434 return -EBUSY; 5435 if (mddev->recovery || mddev->sync_thread) 5436 return -EBUSY; 5437 /* we should be able to change the bitmap.. */ 5438 } 5439 5440 5441 if (fd >= 0) { 5442 if (mddev->bitmap) 5443 return -EEXIST; /* cannot add when bitmap is present */ 5444 mddev->bitmap_info.file = fget(fd); 5445 5446 if (mddev->bitmap_info.file == NULL) { 5447 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5448 mdname(mddev)); 5449 return -EBADF; 5450 } 5451 5452 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5453 if (err) { 5454 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5455 mdname(mddev)); 5456 fput(mddev->bitmap_info.file); 5457 mddev->bitmap_info.file = NULL; 5458 return err; 5459 } 5460 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5461 } else if (mddev->bitmap == NULL) 5462 return -ENOENT; /* cannot remove what isn't there */ 5463 err = 0; 5464 if (mddev->pers) { 5465 mddev->pers->quiesce(mddev, 1); 5466 if (fd >= 0) { 5467 err = bitmap_create(mddev); 5468 if (!err) 5469 err = bitmap_load(mddev); 5470 } 5471 if (fd < 0 || err) { 5472 bitmap_destroy(mddev); 5473 fd = -1; /* make sure to put the file */ 5474 } 5475 mddev->pers->quiesce(mddev, 0); 5476 } 5477 if (fd < 0) { 5478 if (mddev->bitmap_info.file) { 5479 restore_bitmap_write_access(mddev->bitmap_info.file); 5480 fput(mddev->bitmap_info.file); 5481 } 5482 mddev->bitmap_info.file = NULL; 5483 } 5484 5485 return err; 5486 } 5487 5488 /* 5489 * set_array_info is used two different ways 5490 * The original usage is when creating a new array. 5491 * In this usage, raid_disks is > 0 and it together with 5492 * level, size, not_persistent,layout,chunksize determine the 5493 * shape of the array. 5494 * This will always create an array with a type-0.90.0 superblock. 5495 * The newer usage is when assembling an array. 5496 * In this case raid_disks will be 0, and the major_version field is 5497 * use to determine which style super-blocks are to be found on the devices. 5498 * The minor and patch _version numbers are also kept incase the 5499 * super_block handler wishes to interpret them. 5500 */ 5501 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 5502 { 5503 5504 if (info->raid_disks == 0) { 5505 /* just setting version number for superblock loading */ 5506 if (info->major_version < 0 || 5507 info->major_version >= ARRAY_SIZE(super_types) || 5508 super_types[info->major_version].name == NULL) { 5509 /* maybe try to auto-load a module? */ 5510 printk(KERN_INFO 5511 "md: superblock version %d not known\n", 5512 info->major_version); 5513 return -EINVAL; 5514 } 5515 mddev->major_version = info->major_version; 5516 mddev->minor_version = info->minor_version; 5517 mddev->patch_version = info->patch_version; 5518 mddev->persistent = !info->not_persistent; 5519 /* ensure mddev_put doesn't delete this now that there 5520 * is some minimal configuration. 5521 */ 5522 mddev->ctime = get_seconds(); 5523 return 0; 5524 } 5525 mddev->major_version = MD_MAJOR_VERSION; 5526 mddev->minor_version = MD_MINOR_VERSION; 5527 mddev->patch_version = MD_PATCHLEVEL_VERSION; 5528 mddev->ctime = get_seconds(); 5529 5530 mddev->level = info->level; 5531 mddev->clevel[0] = 0; 5532 mddev->dev_sectors = 2 * (sector_t)info->size; 5533 mddev->raid_disks = info->raid_disks; 5534 /* don't set md_minor, it is determined by which /dev/md* was 5535 * openned 5536 */ 5537 if (info->state & (1<<MD_SB_CLEAN)) 5538 mddev->recovery_cp = MaxSector; 5539 else 5540 mddev->recovery_cp = 0; 5541 mddev->persistent = ! info->not_persistent; 5542 mddev->external = 0; 5543 5544 mddev->layout = info->layout; 5545 mddev->chunk_sectors = info->chunk_size >> 9; 5546 5547 mddev->max_disks = MD_SB_DISKS; 5548 5549 if (mddev->persistent) 5550 mddev->flags = 0; 5551 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5552 5553 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 5554 mddev->bitmap_info.offset = 0; 5555 5556 mddev->reshape_position = MaxSector; 5557 5558 /* 5559 * Generate a 128 bit UUID 5560 */ 5561 get_random_bytes(mddev->uuid, 16); 5562 5563 mddev->new_level = mddev->level; 5564 mddev->new_chunk_sectors = mddev->chunk_sectors; 5565 mddev->new_layout = mddev->layout; 5566 mddev->delta_disks = 0; 5567 5568 return 0; 5569 } 5570 5571 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors) 5572 { 5573 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 5574 5575 if (mddev->external_size) 5576 return; 5577 5578 mddev->array_sectors = array_sectors; 5579 } 5580 EXPORT_SYMBOL(md_set_array_sectors); 5581 5582 static int update_size(mddev_t *mddev, sector_t num_sectors) 5583 { 5584 mdk_rdev_t *rdev; 5585 int rv; 5586 int fit = (num_sectors == 0); 5587 5588 if (mddev->pers->resize == NULL) 5589 return -EINVAL; 5590 /* The "num_sectors" is the number of sectors of each device that 5591 * is used. This can only make sense for arrays with redundancy. 5592 * linear and raid0 always use whatever space is available. We can only 5593 * consider changing this number if no resync or reconstruction is 5594 * happening, and if the new size is acceptable. It must fit before the 5595 * sb_start or, if that is <data_offset, it must fit before the size 5596 * of each device. If num_sectors is zero, we find the largest size 5597 * that fits. 5598 */ 5599 if (mddev->sync_thread) 5600 return -EBUSY; 5601 if (mddev->bitmap) 5602 /* Sorry, cannot grow a bitmap yet, just remove it, 5603 * grow, and re-add. 5604 */ 5605 return -EBUSY; 5606 list_for_each_entry(rdev, &mddev->disks, same_set) { 5607 sector_t avail = rdev->sectors; 5608 5609 if (fit && (num_sectors == 0 || num_sectors > avail)) 5610 num_sectors = avail; 5611 if (avail < num_sectors) 5612 return -ENOSPC; 5613 } 5614 rv = mddev->pers->resize(mddev, num_sectors); 5615 if (!rv) 5616 revalidate_disk(mddev->gendisk); 5617 return rv; 5618 } 5619 5620 static int update_raid_disks(mddev_t *mddev, int raid_disks) 5621 { 5622 int rv; 5623 /* change the number of raid disks */ 5624 if (mddev->pers->check_reshape == NULL) 5625 return -EINVAL; 5626 if (raid_disks <= 0 || 5627 (mddev->max_disks && raid_disks >= mddev->max_disks)) 5628 return -EINVAL; 5629 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 5630 return -EBUSY; 5631 mddev->delta_disks = raid_disks - mddev->raid_disks; 5632 5633 rv = mddev->pers->check_reshape(mddev); 5634 if (rv < 0) 5635 mddev->delta_disks = 0; 5636 return rv; 5637 } 5638 5639 5640 /* 5641 * update_array_info is used to change the configuration of an 5642 * on-line array. 5643 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 5644 * fields in the info are checked against the array. 5645 * Any differences that cannot be handled will cause an error. 5646 * Normally, only one change can be managed at a time. 5647 */ 5648 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 5649 { 5650 int rv = 0; 5651 int cnt = 0; 5652 int state = 0; 5653 5654 /* calculate expected state,ignoring low bits */ 5655 if (mddev->bitmap && mddev->bitmap_info.offset) 5656 state |= (1 << MD_SB_BITMAP_PRESENT); 5657 5658 if (mddev->major_version != info->major_version || 5659 mddev->minor_version != info->minor_version || 5660 /* mddev->patch_version != info->patch_version || */ 5661 mddev->ctime != info->ctime || 5662 mddev->level != info->level || 5663 /* mddev->layout != info->layout || */ 5664 !mddev->persistent != info->not_persistent|| 5665 mddev->chunk_sectors != info->chunk_size >> 9 || 5666 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 5667 ((state^info->state) & 0xfffffe00) 5668 ) 5669 return -EINVAL; 5670 /* Check there is only one change */ 5671 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5672 cnt++; 5673 if (mddev->raid_disks != info->raid_disks) 5674 cnt++; 5675 if (mddev->layout != info->layout) 5676 cnt++; 5677 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 5678 cnt++; 5679 if (cnt == 0) 5680 return 0; 5681 if (cnt > 1) 5682 return -EINVAL; 5683 5684 if (mddev->layout != info->layout) { 5685 /* Change layout 5686 * we don't need to do anything at the md level, the 5687 * personality will take care of it all. 5688 */ 5689 if (mddev->pers->check_reshape == NULL) 5690 return -EINVAL; 5691 else { 5692 mddev->new_layout = info->layout; 5693 rv = mddev->pers->check_reshape(mddev); 5694 if (rv) 5695 mddev->new_layout = mddev->layout; 5696 return rv; 5697 } 5698 } 5699 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5700 rv = update_size(mddev, (sector_t)info->size * 2); 5701 5702 if (mddev->raid_disks != info->raid_disks) 5703 rv = update_raid_disks(mddev, info->raid_disks); 5704 5705 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 5706 if (mddev->pers->quiesce == NULL) 5707 return -EINVAL; 5708 if (mddev->recovery || mddev->sync_thread) 5709 return -EBUSY; 5710 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 5711 /* add the bitmap */ 5712 if (mddev->bitmap) 5713 return -EEXIST; 5714 if (mddev->bitmap_info.default_offset == 0) 5715 return -EINVAL; 5716 mddev->bitmap_info.offset = 5717 mddev->bitmap_info.default_offset; 5718 mddev->pers->quiesce(mddev, 1); 5719 rv = bitmap_create(mddev); 5720 if (!rv) 5721 rv = bitmap_load(mddev); 5722 if (rv) 5723 bitmap_destroy(mddev); 5724 mddev->pers->quiesce(mddev, 0); 5725 } else { 5726 /* remove the bitmap */ 5727 if (!mddev->bitmap) 5728 return -ENOENT; 5729 if (mddev->bitmap->file) 5730 return -EINVAL; 5731 mddev->pers->quiesce(mddev, 1); 5732 bitmap_destroy(mddev); 5733 mddev->pers->quiesce(mddev, 0); 5734 mddev->bitmap_info.offset = 0; 5735 } 5736 } 5737 md_update_sb(mddev, 1); 5738 return rv; 5739 } 5740 5741 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 5742 { 5743 mdk_rdev_t *rdev; 5744 5745 if (mddev->pers == NULL) 5746 return -ENODEV; 5747 5748 rdev = find_rdev(mddev, dev); 5749 if (!rdev) 5750 return -ENODEV; 5751 5752 md_error(mddev, rdev); 5753 return 0; 5754 } 5755 5756 /* 5757 * We have a problem here : there is no easy way to give a CHS 5758 * virtual geometry. We currently pretend that we have a 2 heads 5759 * 4 sectors (with a BIG number of cylinders...). This drives 5760 * dosfs just mad... ;-) 5761 */ 5762 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 5763 { 5764 mddev_t *mddev = bdev->bd_disk->private_data; 5765 5766 geo->heads = 2; 5767 geo->sectors = 4; 5768 geo->cylinders = mddev->array_sectors / 8; 5769 return 0; 5770 } 5771 5772 static int md_ioctl(struct block_device *bdev, fmode_t mode, 5773 unsigned int cmd, unsigned long arg) 5774 { 5775 int err = 0; 5776 void __user *argp = (void __user *)arg; 5777 mddev_t *mddev = NULL; 5778 int ro; 5779 5780 if (!capable(CAP_SYS_ADMIN)) 5781 return -EACCES; 5782 5783 /* 5784 * Commands dealing with the RAID driver but not any 5785 * particular array: 5786 */ 5787 switch (cmd) 5788 { 5789 case RAID_VERSION: 5790 err = get_version(argp); 5791 goto done; 5792 5793 case PRINT_RAID_DEBUG: 5794 err = 0; 5795 md_print_devices(); 5796 goto done; 5797 5798 #ifndef MODULE 5799 case RAID_AUTORUN: 5800 err = 0; 5801 autostart_arrays(arg); 5802 goto done; 5803 #endif 5804 default:; 5805 } 5806 5807 /* 5808 * Commands creating/starting a new array: 5809 */ 5810 5811 mddev = bdev->bd_disk->private_data; 5812 5813 if (!mddev) { 5814 BUG(); 5815 goto abort; 5816 } 5817 5818 err = mddev_lock(mddev); 5819 if (err) { 5820 printk(KERN_INFO 5821 "md: ioctl lock interrupted, reason %d, cmd %d\n", 5822 err, cmd); 5823 goto abort; 5824 } 5825 5826 switch (cmd) 5827 { 5828 case SET_ARRAY_INFO: 5829 { 5830 mdu_array_info_t info; 5831 if (!arg) 5832 memset(&info, 0, sizeof(info)); 5833 else if (copy_from_user(&info, argp, sizeof(info))) { 5834 err = -EFAULT; 5835 goto abort_unlock; 5836 } 5837 if (mddev->pers) { 5838 err = update_array_info(mddev, &info); 5839 if (err) { 5840 printk(KERN_WARNING "md: couldn't update" 5841 " array info. %d\n", err); 5842 goto abort_unlock; 5843 } 5844 goto done_unlock; 5845 } 5846 if (!list_empty(&mddev->disks)) { 5847 printk(KERN_WARNING 5848 "md: array %s already has disks!\n", 5849 mdname(mddev)); 5850 err = -EBUSY; 5851 goto abort_unlock; 5852 } 5853 if (mddev->raid_disks) { 5854 printk(KERN_WARNING 5855 "md: array %s already initialised!\n", 5856 mdname(mddev)); 5857 err = -EBUSY; 5858 goto abort_unlock; 5859 } 5860 err = set_array_info(mddev, &info); 5861 if (err) { 5862 printk(KERN_WARNING "md: couldn't set" 5863 " array info. %d\n", err); 5864 goto abort_unlock; 5865 } 5866 } 5867 goto done_unlock; 5868 5869 default:; 5870 } 5871 5872 /* 5873 * Commands querying/configuring an existing array: 5874 */ 5875 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 5876 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 5877 if ((!mddev->raid_disks && !mddev->external) 5878 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 5879 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 5880 && cmd != GET_BITMAP_FILE) { 5881 err = -ENODEV; 5882 goto abort_unlock; 5883 } 5884 5885 /* 5886 * Commands even a read-only array can execute: 5887 */ 5888 switch (cmd) 5889 { 5890 case GET_ARRAY_INFO: 5891 err = get_array_info(mddev, argp); 5892 goto done_unlock; 5893 5894 case GET_BITMAP_FILE: 5895 err = get_bitmap_file(mddev, argp); 5896 goto done_unlock; 5897 5898 case GET_DISK_INFO: 5899 err = get_disk_info(mddev, argp); 5900 goto done_unlock; 5901 5902 case RESTART_ARRAY_RW: 5903 err = restart_array(mddev); 5904 goto done_unlock; 5905 5906 case STOP_ARRAY: 5907 err = do_md_stop(mddev, 0, 1); 5908 goto done_unlock; 5909 5910 case STOP_ARRAY_RO: 5911 err = md_set_readonly(mddev, 1); 5912 goto done_unlock; 5913 5914 case BLKROSET: 5915 if (get_user(ro, (int __user *)(arg))) { 5916 err = -EFAULT; 5917 goto done_unlock; 5918 } 5919 err = -EINVAL; 5920 5921 /* if the bdev is going readonly the value of mddev->ro 5922 * does not matter, no writes are coming 5923 */ 5924 if (ro) 5925 goto done_unlock; 5926 5927 /* are we are already prepared for writes? */ 5928 if (mddev->ro != 1) 5929 goto done_unlock; 5930 5931 /* transitioning to readauto need only happen for 5932 * arrays that call md_write_start 5933 */ 5934 if (mddev->pers) { 5935 err = restart_array(mddev); 5936 if (err == 0) { 5937 mddev->ro = 2; 5938 set_disk_ro(mddev->gendisk, 0); 5939 } 5940 } 5941 goto done_unlock; 5942 } 5943 5944 /* 5945 * The remaining ioctls are changing the state of the 5946 * superblock, so we do not allow them on read-only arrays. 5947 * However non-MD ioctls (e.g. get-size) will still come through 5948 * here and hit the 'default' below, so only disallow 5949 * 'md' ioctls, and switch to rw mode if started auto-readonly. 5950 */ 5951 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 5952 if (mddev->ro == 2) { 5953 mddev->ro = 0; 5954 sysfs_notify_dirent_safe(mddev->sysfs_state); 5955 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5956 md_wakeup_thread(mddev->thread); 5957 } else { 5958 err = -EROFS; 5959 goto abort_unlock; 5960 } 5961 } 5962 5963 switch (cmd) 5964 { 5965 case ADD_NEW_DISK: 5966 { 5967 mdu_disk_info_t info; 5968 if (copy_from_user(&info, argp, sizeof(info))) 5969 err = -EFAULT; 5970 else 5971 err = add_new_disk(mddev, &info); 5972 goto done_unlock; 5973 } 5974 5975 case HOT_REMOVE_DISK: 5976 err = hot_remove_disk(mddev, new_decode_dev(arg)); 5977 goto done_unlock; 5978 5979 case HOT_ADD_DISK: 5980 err = hot_add_disk(mddev, new_decode_dev(arg)); 5981 goto done_unlock; 5982 5983 case SET_DISK_FAULTY: 5984 err = set_disk_faulty(mddev, new_decode_dev(arg)); 5985 goto done_unlock; 5986 5987 case RUN_ARRAY: 5988 err = do_md_run(mddev); 5989 goto done_unlock; 5990 5991 case SET_BITMAP_FILE: 5992 err = set_bitmap_file(mddev, (int)arg); 5993 goto done_unlock; 5994 5995 default: 5996 err = -EINVAL; 5997 goto abort_unlock; 5998 } 5999 6000 done_unlock: 6001 abort_unlock: 6002 if (mddev->hold_active == UNTIL_IOCTL && 6003 err != -EINVAL) 6004 mddev->hold_active = 0; 6005 mddev_unlock(mddev); 6006 6007 return err; 6008 done: 6009 if (err) 6010 MD_BUG(); 6011 abort: 6012 return err; 6013 } 6014 #ifdef CONFIG_COMPAT 6015 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6016 unsigned int cmd, unsigned long arg) 6017 { 6018 switch (cmd) { 6019 case HOT_REMOVE_DISK: 6020 case HOT_ADD_DISK: 6021 case SET_DISK_FAULTY: 6022 case SET_BITMAP_FILE: 6023 /* These take in integer arg, do not convert */ 6024 break; 6025 default: 6026 arg = (unsigned long)compat_ptr(arg); 6027 break; 6028 } 6029 6030 return md_ioctl(bdev, mode, cmd, arg); 6031 } 6032 #endif /* CONFIG_COMPAT */ 6033 6034 static int md_open(struct block_device *bdev, fmode_t mode) 6035 { 6036 /* 6037 * Succeed if we can lock the mddev, which confirms that 6038 * it isn't being stopped right now. 6039 */ 6040 mddev_t *mddev = mddev_find(bdev->bd_dev); 6041 int err; 6042 6043 if (mddev->gendisk != bdev->bd_disk) { 6044 /* we are racing with mddev_put which is discarding this 6045 * bd_disk. 6046 */ 6047 mddev_put(mddev); 6048 /* Wait until bdev->bd_disk is definitely gone */ 6049 flush_workqueue(md_misc_wq); 6050 /* Then retry the open from the top */ 6051 return -ERESTARTSYS; 6052 } 6053 BUG_ON(mddev != bdev->bd_disk->private_data); 6054 6055 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6056 goto out; 6057 6058 err = 0; 6059 atomic_inc(&mddev->openers); 6060 mutex_unlock(&mddev->open_mutex); 6061 6062 check_disk_change(bdev); 6063 out: 6064 return err; 6065 } 6066 6067 static int md_release(struct gendisk *disk, fmode_t mode) 6068 { 6069 mddev_t *mddev = disk->private_data; 6070 6071 BUG_ON(!mddev); 6072 atomic_dec(&mddev->openers); 6073 mddev_put(mddev); 6074 6075 return 0; 6076 } 6077 6078 static int md_media_changed(struct gendisk *disk) 6079 { 6080 mddev_t *mddev = disk->private_data; 6081 6082 return mddev->changed; 6083 } 6084 6085 static int md_revalidate(struct gendisk *disk) 6086 { 6087 mddev_t *mddev = disk->private_data; 6088 6089 mddev->changed = 0; 6090 return 0; 6091 } 6092 static const struct block_device_operations md_fops = 6093 { 6094 .owner = THIS_MODULE, 6095 .open = md_open, 6096 .release = md_release, 6097 .ioctl = md_ioctl, 6098 #ifdef CONFIG_COMPAT 6099 .compat_ioctl = md_compat_ioctl, 6100 #endif 6101 .getgeo = md_getgeo, 6102 .media_changed = md_media_changed, 6103 .revalidate_disk= md_revalidate, 6104 }; 6105 6106 static int md_thread(void * arg) 6107 { 6108 mdk_thread_t *thread = arg; 6109 6110 /* 6111 * md_thread is a 'system-thread', it's priority should be very 6112 * high. We avoid resource deadlocks individually in each 6113 * raid personality. (RAID5 does preallocation) We also use RR and 6114 * the very same RT priority as kswapd, thus we will never get 6115 * into a priority inversion deadlock. 6116 * 6117 * we definitely have to have equal or higher priority than 6118 * bdflush, otherwise bdflush will deadlock if there are too 6119 * many dirty RAID5 blocks. 6120 */ 6121 6122 allow_signal(SIGKILL); 6123 while (!kthread_should_stop()) { 6124 6125 /* We need to wait INTERRUPTIBLE so that 6126 * we don't add to the load-average. 6127 * That means we need to be sure no signals are 6128 * pending 6129 */ 6130 if (signal_pending(current)) 6131 flush_signals(current); 6132 6133 wait_event_interruptible_timeout 6134 (thread->wqueue, 6135 test_bit(THREAD_WAKEUP, &thread->flags) 6136 || kthread_should_stop(), 6137 thread->timeout); 6138 6139 clear_bit(THREAD_WAKEUP, &thread->flags); 6140 if (!kthread_should_stop()) 6141 thread->run(thread->mddev); 6142 } 6143 6144 return 0; 6145 } 6146 6147 void md_wakeup_thread(mdk_thread_t *thread) 6148 { 6149 if (thread) { 6150 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 6151 set_bit(THREAD_WAKEUP, &thread->flags); 6152 wake_up(&thread->wqueue); 6153 } 6154 } 6155 6156 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 6157 const char *name) 6158 { 6159 mdk_thread_t *thread; 6160 6161 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 6162 if (!thread) 6163 return NULL; 6164 6165 init_waitqueue_head(&thread->wqueue); 6166 6167 thread->run = run; 6168 thread->mddev = mddev; 6169 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6170 thread->tsk = kthread_run(md_thread, thread, 6171 "%s_%s", 6172 mdname(thread->mddev), 6173 name ?: mddev->pers->name); 6174 if (IS_ERR(thread->tsk)) { 6175 kfree(thread); 6176 return NULL; 6177 } 6178 return thread; 6179 } 6180 6181 void md_unregister_thread(mdk_thread_t *thread) 6182 { 6183 if (!thread) 6184 return; 6185 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6186 6187 kthread_stop(thread->tsk); 6188 kfree(thread); 6189 } 6190 6191 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 6192 { 6193 if (!mddev) { 6194 MD_BUG(); 6195 return; 6196 } 6197 6198 if (!rdev || test_bit(Faulty, &rdev->flags)) 6199 return; 6200 6201 if (mddev->external) 6202 set_bit(Blocked, &rdev->flags); 6203 /* 6204 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 6205 mdname(mddev), 6206 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 6207 __builtin_return_address(0),__builtin_return_address(1), 6208 __builtin_return_address(2),__builtin_return_address(3)); 6209 */ 6210 if (!mddev->pers) 6211 return; 6212 if (!mddev->pers->error_handler) 6213 return; 6214 mddev->pers->error_handler(mddev,rdev); 6215 if (mddev->degraded) 6216 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6217 sysfs_notify_dirent_safe(rdev->sysfs_state); 6218 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6219 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6220 md_wakeup_thread(mddev->thread); 6221 if (mddev->event_work.func) 6222 queue_work(md_misc_wq, &mddev->event_work); 6223 md_new_event_inintr(mddev); 6224 } 6225 6226 /* seq_file implementation /proc/mdstat */ 6227 6228 static void status_unused(struct seq_file *seq) 6229 { 6230 int i = 0; 6231 mdk_rdev_t *rdev; 6232 6233 seq_printf(seq, "unused devices: "); 6234 6235 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6236 char b[BDEVNAME_SIZE]; 6237 i++; 6238 seq_printf(seq, "%s ", 6239 bdevname(rdev->bdev,b)); 6240 } 6241 if (!i) 6242 seq_printf(seq, "<none>"); 6243 6244 seq_printf(seq, "\n"); 6245 } 6246 6247 6248 static void status_resync(struct seq_file *seq, mddev_t * mddev) 6249 { 6250 sector_t max_sectors, resync, res; 6251 unsigned long dt, db; 6252 sector_t rt; 6253 int scale; 6254 unsigned int per_milli; 6255 6256 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 6257 6258 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6259 max_sectors = mddev->resync_max_sectors; 6260 else 6261 max_sectors = mddev->dev_sectors; 6262 6263 /* 6264 * Should not happen. 6265 */ 6266 if (!max_sectors) { 6267 MD_BUG(); 6268 return; 6269 } 6270 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6271 * in a sector_t, and (max_sectors>>scale) will fit in a 6272 * u32, as those are the requirements for sector_div. 6273 * Thus 'scale' must be at least 10 6274 */ 6275 scale = 10; 6276 if (sizeof(sector_t) > sizeof(unsigned long)) { 6277 while ( max_sectors/2 > (1ULL<<(scale+32))) 6278 scale++; 6279 } 6280 res = (resync>>scale)*1000; 6281 sector_div(res, (u32)((max_sectors>>scale)+1)); 6282 6283 per_milli = res; 6284 { 6285 int i, x = per_milli/50, y = 20-x; 6286 seq_printf(seq, "["); 6287 for (i = 0; i < x; i++) 6288 seq_printf(seq, "="); 6289 seq_printf(seq, ">"); 6290 for (i = 0; i < y; i++) 6291 seq_printf(seq, "."); 6292 seq_printf(seq, "] "); 6293 } 6294 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6295 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6296 "reshape" : 6297 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6298 "check" : 6299 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6300 "resync" : "recovery"))), 6301 per_milli/10, per_milli % 10, 6302 (unsigned long long) resync/2, 6303 (unsigned long long) max_sectors/2); 6304 6305 /* 6306 * dt: time from mark until now 6307 * db: blocks written from mark until now 6308 * rt: remaining time 6309 * 6310 * rt is a sector_t, so could be 32bit or 64bit. 6311 * So we divide before multiply in case it is 32bit and close 6312 * to the limit. 6313 * We scale the divisor (db) by 32 to avoid losing precision 6314 * near the end of resync when the number of remaining sectors 6315 * is close to 'db'. 6316 * We then divide rt by 32 after multiplying by db to compensate. 6317 * The '+1' avoids division by zero if db is very small. 6318 */ 6319 dt = ((jiffies - mddev->resync_mark) / HZ); 6320 if (!dt) dt++; 6321 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6322 - mddev->resync_mark_cnt; 6323 6324 rt = max_sectors - resync; /* number of remaining sectors */ 6325 sector_div(rt, db/32+1); 6326 rt *= dt; 6327 rt >>= 5; 6328 6329 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6330 ((unsigned long)rt % 60)/6); 6331 6332 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6333 } 6334 6335 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6336 { 6337 struct list_head *tmp; 6338 loff_t l = *pos; 6339 mddev_t *mddev; 6340 6341 if (l >= 0x10000) 6342 return NULL; 6343 if (!l--) 6344 /* header */ 6345 return (void*)1; 6346 6347 spin_lock(&all_mddevs_lock); 6348 list_for_each(tmp,&all_mddevs) 6349 if (!l--) { 6350 mddev = list_entry(tmp, mddev_t, all_mddevs); 6351 mddev_get(mddev); 6352 spin_unlock(&all_mddevs_lock); 6353 return mddev; 6354 } 6355 spin_unlock(&all_mddevs_lock); 6356 if (!l--) 6357 return (void*)2;/* tail */ 6358 return NULL; 6359 } 6360 6361 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6362 { 6363 struct list_head *tmp; 6364 mddev_t *next_mddev, *mddev = v; 6365 6366 ++*pos; 6367 if (v == (void*)2) 6368 return NULL; 6369 6370 spin_lock(&all_mddevs_lock); 6371 if (v == (void*)1) 6372 tmp = all_mddevs.next; 6373 else 6374 tmp = mddev->all_mddevs.next; 6375 if (tmp != &all_mddevs) 6376 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 6377 else { 6378 next_mddev = (void*)2; 6379 *pos = 0x10000; 6380 } 6381 spin_unlock(&all_mddevs_lock); 6382 6383 if (v != (void*)1) 6384 mddev_put(mddev); 6385 return next_mddev; 6386 6387 } 6388 6389 static void md_seq_stop(struct seq_file *seq, void *v) 6390 { 6391 mddev_t *mddev = v; 6392 6393 if (mddev && v != (void*)1 && v != (void*)2) 6394 mddev_put(mddev); 6395 } 6396 6397 struct mdstat_info { 6398 int event; 6399 }; 6400 6401 static int md_seq_show(struct seq_file *seq, void *v) 6402 { 6403 mddev_t *mddev = v; 6404 sector_t sectors; 6405 mdk_rdev_t *rdev; 6406 struct mdstat_info *mi = seq->private; 6407 struct bitmap *bitmap; 6408 6409 if (v == (void*)1) { 6410 struct mdk_personality *pers; 6411 seq_printf(seq, "Personalities : "); 6412 spin_lock(&pers_lock); 6413 list_for_each_entry(pers, &pers_list, list) 6414 seq_printf(seq, "[%s] ", pers->name); 6415 6416 spin_unlock(&pers_lock); 6417 seq_printf(seq, "\n"); 6418 mi->event = atomic_read(&md_event_count); 6419 return 0; 6420 } 6421 if (v == (void*)2) { 6422 status_unused(seq); 6423 return 0; 6424 } 6425 6426 if (mddev_lock(mddev) < 0) 6427 return -EINTR; 6428 6429 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6430 seq_printf(seq, "%s : %sactive", mdname(mddev), 6431 mddev->pers ? "" : "in"); 6432 if (mddev->pers) { 6433 if (mddev->ro==1) 6434 seq_printf(seq, " (read-only)"); 6435 if (mddev->ro==2) 6436 seq_printf(seq, " (auto-read-only)"); 6437 seq_printf(seq, " %s", mddev->pers->name); 6438 } 6439 6440 sectors = 0; 6441 list_for_each_entry(rdev, &mddev->disks, same_set) { 6442 char b[BDEVNAME_SIZE]; 6443 seq_printf(seq, " %s[%d]", 6444 bdevname(rdev->bdev,b), rdev->desc_nr); 6445 if (test_bit(WriteMostly, &rdev->flags)) 6446 seq_printf(seq, "(W)"); 6447 if (test_bit(Faulty, &rdev->flags)) { 6448 seq_printf(seq, "(F)"); 6449 continue; 6450 } else if (rdev->raid_disk < 0) 6451 seq_printf(seq, "(S)"); /* spare */ 6452 sectors += rdev->sectors; 6453 } 6454 6455 if (!list_empty(&mddev->disks)) { 6456 if (mddev->pers) 6457 seq_printf(seq, "\n %llu blocks", 6458 (unsigned long long) 6459 mddev->array_sectors / 2); 6460 else 6461 seq_printf(seq, "\n %llu blocks", 6462 (unsigned long long)sectors / 2); 6463 } 6464 if (mddev->persistent) { 6465 if (mddev->major_version != 0 || 6466 mddev->minor_version != 90) { 6467 seq_printf(seq," super %d.%d", 6468 mddev->major_version, 6469 mddev->minor_version); 6470 } 6471 } else if (mddev->external) 6472 seq_printf(seq, " super external:%s", 6473 mddev->metadata_type); 6474 else 6475 seq_printf(seq, " super non-persistent"); 6476 6477 if (mddev->pers) { 6478 mddev->pers->status(seq, mddev); 6479 seq_printf(seq, "\n "); 6480 if (mddev->pers->sync_request) { 6481 if (mddev->curr_resync > 2) { 6482 status_resync(seq, mddev); 6483 seq_printf(seq, "\n "); 6484 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 6485 seq_printf(seq, "\tresync=DELAYED\n "); 6486 else if (mddev->recovery_cp < MaxSector) 6487 seq_printf(seq, "\tresync=PENDING\n "); 6488 } 6489 } else 6490 seq_printf(seq, "\n "); 6491 6492 if ((bitmap = mddev->bitmap)) { 6493 unsigned long chunk_kb; 6494 unsigned long flags; 6495 spin_lock_irqsave(&bitmap->lock, flags); 6496 chunk_kb = mddev->bitmap_info.chunksize >> 10; 6497 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 6498 "%lu%s chunk", 6499 bitmap->pages - bitmap->missing_pages, 6500 bitmap->pages, 6501 (bitmap->pages - bitmap->missing_pages) 6502 << (PAGE_SHIFT - 10), 6503 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize, 6504 chunk_kb ? "KB" : "B"); 6505 if (bitmap->file) { 6506 seq_printf(seq, ", file: "); 6507 seq_path(seq, &bitmap->file->f_path, " \t\n"); 6508 } 6509 6510 seq_printf(seq, "\n"); 6511 spin_unlock_irqrestore(&bitmap->lock, flags); 6512 } 6513 6514 seq_printf(seq, "\n"); 6515 } 6516 mddev_unlock(mddev); 6517 6518 return 0; 6519 } 6520 6521 static const struct seq_operations md_seq_ops = { 6522 .start = md_seq_start, 6523 .next = md_seq_next, 6524 .stop = md_seq_stop, 6525 .show = md_seq_show, 6526 }; 6527 6528 static int md_seq_open(struct inode *inode, struct file *file) 6529 { 6530 int error; 6531 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 6532 if (mi == NULL) 6533 return -ENOMEM; 6534 6535 error = seq_open(file, &md_seq_ops); 6536 if (error) 6537 kfree(mi); 6538 else { 6539 struct seq_file *p = file->private_data; 6540 p->private = mi; 6541 mi->event = atomic_read(&md_event_count); 6542 } 6543 return error; 6544 } 6545 6546 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 6547 { 6548 struct seq_file *m = filp->private_data; 6549 struct mdstat_info *mi = m->private; 6550 int mask; 6551 6552 poll_wait(filp, &md_event_waiters, wait); 6553 6554 /* always allow read */ 6555 mask = POLLIN | POLLRDNORM; 6556 6557 if (mi->event != atomic_read(&md_event_count)) 6558 mask |= POLLERR | POLLPRI; 6559 return mask; 6560 } 6561 6562 static const struct file_operations md_seq_fops = { 6563 .owner = THIS_MODULE, 6564 .open = md_seq_open, 6565 .read = seq_read, 6566 .llseek = seq_lseek, 6567 .release = seq_release_private, 6568 .poll = mdstat_poll, 6569 }; 6570 6571 int register_md_personality(struct mdk_personality *p) 6572 { 6573 spin_lock(&pers_lock); 6574 list_add_tail(&p->list, &pers_list); 6575 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 6576 spin_unlock(&pers_lock); 6577 return 0; 6578 } 6579 6580 int unregister_md_personality(struct mdk_personality *p) 6581 { 6582 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 6583 spin_lock(&pers_lock); 6584 list_del_init(&p->list); 6585 spin_unlock(&pers_lock); 6586 return 0; 6587 } 6588 6589 static int is_mddev_idle(mddev_t *mddev, int init) 6590 { 6591 mdk_rdev_t * rdev; 6592 int idle; 6593 int curr_events; 6594 6595 idle = 1; 6596 rcu_read_lock(); 6597 rdev_for_each_rcu(rdev, mddev) { 6598 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 6599 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 6600 (int)part_stat_read(&disk->part0, sectors[1]) - 6601 atomic_read(&disk->sync_io); 6602 /* sync IO will cause sync_io to increase before the disk_stats 6603 * as sync_io is counted when a request starts, and 6604 * disk_stats is counted when it completes. 6605 * So resync activity will cause curr_events to be smaller than 6606 * when there was no such activity. 6607 * non-sync IO will cause disk_stat to increase without 6608 * increasing sync_io so curr_events will (eventually) 6609 * be larger than it was before. Once it becomes 6610 * substantially larger, the test below will cause 6611 * the array to appear non-idle, and resync will slow 6612 * down. 6613 * If there is a lot of outstanding resync activity when 6614 * we set last_event to curr_events, then all that activity 6615 * completing might cause the array to appear non-idle 6616 * and resync will be slowed down even though there might 6617 * not have been non-resync activity. This will only 6618 * happen once though. 'last_events' will soon reflect 6619 * the state where there is little or no outstanding 6620 * resync requests, and further resync activity will 6621 * always make curr_events less than last_events. 6622 * 6623 */ 6624 if (init || curr_events - rdev->last_events > 64) { 6625 rdev->last_events = curr_events; 6626 idle = 0; 6627 } 6628 } 6629 rcu_read_unlock(); 6630 return idle; 6631 } 6632 6633 void md_done_sync(mddev_t *mddev, int blocks, int ok) 6634 { 6635 /* another "blocks" (512byte) blocks have been synced */ 6636 atomic_sub(blocks, &mddev->recovery_active); 6637 wake_up(&mddev->recovery_wait); 6638 if (!ok) { 6639 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6640 md_wakeup_thread(mddev->thread); 6641 // stop recovery, signal do_sync .... 6642 } 6643 } 6644 6645 6646 /* md_write_start(mddev, bi) 6647 * If we need to update some array metadata (e.g. 'active' flag 6648 * in superblock) before writing, schedule a superblock update 6649 * and wait for it to complete. 6650 */ 6651 void md_write_start(mddev_t *mddev, struct bio *bi) 6652 { 6653 int did_change = 0; 6654 if (bio_data_dir(bi) != WRITE) 6655 return; 6656 6657 BUG_ON(mddev->ro == 1); 6658 if (mddev->ro == 2) { 6659 /* need to switch to read/write */ 6660 mddev->ro = 0; 6661 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6662 md_wakeup_thread(mddev->thread); 6663 md_wakeup_thread(mddev->sync_thread); 6664 did_change = 1; 6665 } 6666 atomic_inc(&mddev->writes_pending); 6667 if (mddev->safemode == 1) 6668 mddev->safemode = 0; 6669 if (mddev->in_sync) { 6670 spin_lock_irq(&mddev->write_lock); 6671 if (mddev->in_sync) { 6672 mddev->in_sync = 0; 6673 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6674 set_bit(MD_CHANGE_PENDING, &mddev->flags); 6675 md_wakeup_thread(mddev->thread); 6676 did_change = 1; 6677 } 6678 spin_unlock_irq(&mddev->write_lock); 6679 } 6680 if (did_change) 6681 sysfs_notify_dirent_safe(mddev->sysfs_state); 6682 wait_event(mddev->sb_wait, 6683 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6684 } 6685 6686 void md_write_end(mddev_t *mddev) 6687 { 6688 if (atomic_dec_and_test(&mddev->writes_pending)) { 6689 if (mddev->safemode == 2) 6690 md_wakeup_thread(mddev->thread); 6691 else if (mddev->safemode_delay) 6692 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 6693 } 6694 } 6695 6696 /* md_allow_write(mddev) 6697 * Calling this ensures that the array is marked 'active' so that writes 6698 * may proceed without blocking. It is important to call this before 6699 * attempting a GFP_KERNEL allocation while holding the mddev lock. 6700 * Must be called with mddev_lock held. 6701 * 6702 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 6703 * is dropped, so return -EAGAIN after notifying userspace. 6704 */ 6705 int md_allow_write(mddev_t *mddev) 6706 { 6707 if (!mddev->pers) 6708 return 0; 6709 if (mddev->ro) 6710 return 0; 6711 if (!mddev->pers->sync_request) 6712 return 0; 6713 6714 spin_lock_irq(&mddev->write_lock); 6715 if (mddev->in_sync) { 6716 mddev->in_sync = 0; 6717 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6718 set_bit(MD_CHANGE_PENDING, &mddev->flags); 6719 if (mddev->safemode_delay && 6720 mddev->safemode == 0) 6721 mddev->safemode = 1; 6722 spin_unlock_irq(&mddev->write_lock); 6723 md_update_sb(mddev, 0); 6724 sysfs_notify_dirent_safe(mddev->sysfs_state); 6725 } else 6726 spin_unlock_irq(&mddev->write_lock); 6727 6728 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 6729 return -EAGAIN; 6730 else 6731 return 0; 6732 } 6733 EXPORT_SYMBOL_GPL(md_allow_write); 6734 6735 #define SYNC_MARKS 10 6736 #define SYNC_MARK_STEP (3*HZ) 6737 void md_do_sync(mddev_t *mddev) 6738 { 6739 mddev_t *mddev2; 6740 unsigned int currspeed = 0, 6741 window; 6742 sector_t max_sectors,j, io_sectors; 6743 unsigned long mark[SYNC_MARKS]; 6744 sector_t mark_cnt[SYNC_MARKS]; 6745 int last_mark,m; 6746 struct list_head *tmp; 6747 sector_t last_check; 6748 int skipped = 0; 6749 mdk_rdev_t *rdev; 6750 char *desc; 6751 6752 /* just incase thread restarts... */ 6753 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 6754 return; 6755 if (mddev->ro) /* never try to sync a read-only array */ 6756 return; 6757 6758 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6759 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 6760 desc = "data-check"; 6761 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6762 desc = "requested-resync"; 6763 else 6764 desc = "resync"; 6765 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6766 desc = "reshape"; 6767 else 6768 desc = "recovery"; 6769 6770 /* we overload curr_resync somewhat here. 6771 * 0 == not engaged in resync at all 6772 * 2 == checking that there is no conflict with another sync 6773 * 1 == like 2, but have yielded to allow conflicting resync to 6774 * commense 6775 * other == active in resync - this many blocks 6776 * 6777 * Before starting a resync we must have set curr_resync to 6778 * 2, and then checked that every "conflicting" array has curr_resync 6779 * less than ours. When we find one that is the same or higher 6780 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 6781 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 6782 * This will mean we have to start checking from the beginning again. 6783 * 6784 */ 6785 6786 do { 6787 mddev->curr_resync = 2; 6788 6789 try_again: 6790 if (kthread_should_stop()) 6791 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6792 6793 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6794 goto skip; 6795 for_each_mddev(mddev2, tmp) { 6796 if (mddev2 == mddev) 6797 continue; 6798 if (!mddev->parallel_resync 6799 && mddev2->curr_resync 6800 && match_mddev_units(mddev, mddev2)) { 6801 DEFINE_WAIT(wq); 6802 if (mddev < mddev2 && mddev->curr_resync == 2) { 6803 /* arbitrarily yield */ 6804 mddev->curr_resync = 1; 6805 wake_up(&resync_wait); 6806 } 6807 if (mddev > mddev2 && mddev->curr_resync == 1) 6808 /* no need to wait here, we can wait the next 6809 * time 'round when curr_resync == 2 6810 */ 6811 continue; 6812 /* We need to wait 'interruptible' so as not to 6813 * contribute to the load average, and not to 6814 * be caught by 'softlockup' 6815 */ 6816 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 6817 if (!kthread_should_stop() && 6818 mddev2->curr_resync >= mddev->curr_resync) { 6819 printk(KERN_INFO "md: delaying %s of %s" 6820 " until %s has finished (they" 6821 " share one or more physical units)\n", 6822 desc, mdname(mddev), mdname(mddev2)); 6823 mddev_put(mddev2); 6824 if (signal_pending(current)) 6825 flush_signals(current); 6826 schedule(); 6827 finish_wait(&resync_wait, &wq); 6828 goto try_again; 6829 } 6830 finish_wait(&resync_wait, &wq); 6831 } 6832 } 6833 } while (mddev->curr_resync < 2); 6834 6835 j = 0; 6836 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6837 /* resync follows the size requested by the personality, 6838 * which defaults to physical size, but can be virtual size 6839 */ 6840 max_sectors = mddev->resync_max_sectors; 6841 mddev->resync_mismatches = 0; 6842 /* we don't use the checkpoint if there's a bitmap */ 6843 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6844 j = mddev->resync_min; 6845 else if (!mddev->bitmap) 6846 j = mddev->recovery_cp; 6847 6848 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6849 max_sectors = mddev->dev_sectors; 6850 else { 6851 /* recovery follows the physical size of devices */ 6852 max_sectors = mddev->dev_sectors; 6853 j = MaxSector; 6854 rcu_read_lock(); 6855 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6856 if (rdev->raid_disk >= 0 && 6857 !test_bit(Faulty, &rdev->flags) && 6858 !test_bit(In_sync, &rdev->flags) && 6859 rdev->recovery_offset < j) 6860 j = rdev->recovery_offset; 6861 rcu_read_unlock(); 6862 } 6863 6864 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 6865 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 6866 " %d KB/sec/disk.\n", speed_min(mddev)); 6867 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 6868 "(but not more than %d KB/sec) for %s.\n", 6869 speed_max(mddev), desc); 6870 6871 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 6872 6873 io_sectors = 0; 6874 for (m = 0; m < SYNC_MARKS; m++) { 6875 mark[m] = jiffies; 6876 mark_cnt[m] = io_sectors; 6877 } 6878 last_mark = 0; 6879 mddev->resync_mark = mark[last_mark]; 6880 mddev->resync_mark_cnt = mark_cnt[last_mark]; 6881 6882 /* 6883 * Tune reconstruction: 6884 */ 6885 window = 32*(PAGE_SIZE/512); 6886 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 6887 window/2, (unsigned long long)max_sectors/2); 6888 6889 atomic_set(&mddev->recovery_active, 0); 6890 last_check = 0; 6891 6892 if (j>2) { 6893 printk(KERN_INFO 6894 "md: resuming %s of %s from checkpoint.\n", 6895 desc, mdname(mddev)); 6896 mddev->curr_resync = j; 6897 } 6898 mddev->curr_resync_completed = j; 6899 6900 while (j < max_sectors) { 6901 sector_t sectors; 6902 6903 skipped = 0; 6904 6905 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 6906 ((mddev->curr_resync > mddev->curr_resync_completed && 6907 (mddev->curr_resync - mddev->curr_resync_completed) 6908 > (max_sectors >> 4)) || 6909 (j - mddev->curr_resync_completed)*2 6910 >= mddev->resync_max - mddev->curr_resync_completed 6911 )) { 6912 /* time to update curr_resync_completed */ 6913 wait_event(mddev->recovery_wait, 6914 atomic_read(&mddev->recovery_active) == 0); 6915 mddev->curr_resync_completed = j; 6916 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6917 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6918 } 6919 6920 while (j >= mddev->resync_max && !kthread_should_stop()) { 6921 /* As this condition is controlled by user-space, 6922 * we can block indefinitely, so use '_interruptible' 6923 * to avoid triggering warnings. 6924 */ 6925 flush_signals(current); /* just in case */ 6926 wait_event_interruptible(mddev->recovery_wait, 6927 mddev->resync_max > j 6928 || kthread_should_stop()); 6929 } 6930 6931 if (kthread_should_stop()) 6932 goto interrupted; 6933 6934 sectors = mddev->pers->sync_request(mddev, j, &skipped, 6935 currspeed < speed_min(mddev)); 6936 if (sectors == 0) { 6937 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6938 goto out; 6939 } 6940 6941 if (!skipped) { /* actual IO requested */ 6942 io_sectors += sectors; 6943 atomic_add(sectors, &mddev->recovery_active); 6944 } 6945 6946 j += sectors; 6947 if (j>1) mddev->curr_resync = j; 6948 mddev->curr_mark_cnt = io_sectors; 6949 if (last_check == 0) 6950 /* this is the earliers that rebuilt will be 6951 * visible in /proc/mdstat 6952 */ 6953 md_new_event(mddev); 6954 6955 if (last_check + window > io_sectors || j == max_sectors) 6956 continue; 6957 6958 last_check = io_sectors; 6959 6960 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6961 break; 6962 6963 repeat: 6964 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 6965 /* step marks */ 6966 int next = (last_mark+1) % SYNC_MARKS; 6967 6968 mddev->resync_mark = mark[next]; 6969 mddev->resync_mark_cnt = mark_cnt[next]; 6970 mark[next] = jiffies; 6971 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 6972 last_mark = next; 6973 } 6974 6975 6976 if (kthread_should_stop()) 6977 goto interrupted; 6978 6979 6980 /* 6981 * this loop exits only if either when we are slower than 6982 * the 'hard' speed limit, or the system was IO-idle for 6983 * a jiffy. 6984 * the system might be non-idle CPU-wise, but we only care 6985 * about not overloading the IO subsystem. (things like an 6986 * e2fsck being done on the RAID array should execute fast) 6987 */ 6988 cond_resched(); 6989 6990 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 6991 /((jiffies-mddev->resync_mark)/HZ +1) +1; 6992 6993 if (currspeed > speed_min(mddev)) { 6994 if ((currspeed > speed_max(mddev)) || 6995 !is_mddev_idle(mddev, 0)) { 6996 msleep(500); 6997 goto repeat; 6998 } 6999 } 7000 } 7001 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 7002 /* 7003 * this also signals 'finished resyncing' to md_stop 7004 */ 7005 out: 7006 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7007 7008 /* tell personality that we are finished */ 7009 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7010 7011 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7012 mddev->curr_resync > 2) { 7013 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7014 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7015 if (mddev->curr_resync >= mddev->recovery_cp) { 7016 printk(KERN_INFO 7017 "md: checkpointing %s of %s.\n", 7018 desc, mdname(mddev)); 7019 mddev->recovery_cp = mddev->curr_resync; 7020 } 7021 } else 7022 mddev->recovery_cp = MaxSector; 7023 } else { 7024 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7025 mddev->curr_resync = MaxSector; 7026 rcu_read_lock(); 7027 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 7028 if (rdev->raid_disk >= 0 && 7029 mddev->delta_disks >= 0 && 7030 !test_bit(Faulty, &rdev->flags) && 7031 !test_bit(In_sync, &rdev->flags) && 7032 rdev->recovery_offset < mddev->curr_resync) 7033 rdev->recovery_offset = mddev->curr_resync; 7034 rcu_read_unlock(); 7035 } 7036 } 7037 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7038 7039 skip: 7040 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7041 /* We completed so min/max setting can be forgotten if used. */ 7042 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7043 mddev->resync_min = 0; 7044 mddev->resync_max = MaxSector; 7045 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7046 mddev->resync_min = mddev->curr_resync_completed; 7047 mddev->curr_resync = 0; 7048 wake_up(&resync_wait); 7049 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7050 md_wakeup_thread(mddev->thread); 7051 return; 7052 7053 interrupted: 7054 /* 7055 * got a signal, exit. 7056 */ 7057 printk(KERN_INFO 7058 "md: md_do_sync() got signal ... exiting\n"); 7059 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7060 goto out; 7061 7062 } 7063 EXPORT_SYMBOL_GPL(md_do_sync); 7064 7065 static int remove_and_add_spares(mddev_t *mddev) 7066 { 7067 mdk_rdev_t *rdev; 7068 int spares = 0; 7069 7070 mddev->curr_resync_completed = 0; 7071 7072 list_for_each_entry(rdev, &mddev->disks, same_set) 7073 if (rdev->raid_disk >= 0 && 7074 !test_bit(Blocked, &rdev->flags) && 7075 (test_bit(Faulty, &rdev->flags) || 7076 ! test_bit(In_sync, &rdev->flags)) && 7077 atomic_read(&rdev->nr_pending)==0) { 7078 if (mddev->pers->hot_remove_disk( 7079 mddev, rdev->raid_disk)==0) { 7080 char nm[20]; 7081 sprintf(nm,"rd%d", rdev->raid_disk); 7082 sysfs_remove_link(&mddev->kobj, nm); 7083 rdev->raid_disk = -1; 7084 } 7085 } 7086 7087 if (mddev->degraded && !mddev->recovery_disabled) { 7088 list_for_each_entry(rdev, &mddev->disks, same_set) { 7089 if (rdev->raid_disk >= 0 && 7090 !test_bit(In_sync, &rdev->flags) && 7091 !test_bit(Blocked, &rdev->flags)) 7092 spares++; 7093 if (rdev->raid_disk < 0 7094 && !test_bit(Faulty, &rdev->flags)) { 7095 rdev->recovery_offset = 0; 7096 if (mddev->pers-> 7097 hot_add_disk(mddev, rdev) == 0) { 7098 char nm[20]; 7099 sprintf(nm, "rd%d", rdev->raid_disk); 7100 if (sysfs_create_link(&mddev->kobj, 7101 &rdev->kobj, nm)) 7102 /* failure here is OK */; 7103 spares++; 7104 md_new_event(mddev); 7105 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7106 } else 7107 break; 7108 } 7109 } 7110 } 7111 return spares; 7112 } 7113 7114 static void reap_sync_thread(mddev_t *mddev) 7115 { 7116 mdk_rdev_t *rdev; 7117 7118 /* resync has finished, collect result */ 7119 md_unregister_thread(mddev->sync_thread); 7120 mddev->sync_thread = NULL; 7121 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7122 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7123 /* success...*/ 7124 /* activate any spares */ 7125 if (mddev->pers->spare_active(mddev)) 7126 sysfs_notify(&mddev->kobj, NULL, 7127 "degraded"); 7128 } 7129 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7130 mddev->pers->finish_reshape) 7131 mddev->pers->finish_reshape(mddev); 7132 md_update_sb(mddev, 1); 7133 7134 /* if array is no-longer degraded, then any saved_raid_disk 7135 * information must be scrapped 7136 */ 7137 if (!mddev->degraded) 7138 list_for_each_entry(rdev, &mddev->disks, same_set) 7139 rdev->saved_raid_disk = -1; 7140 7141 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7142 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7143 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7144 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7145 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7146 /* flag recovery needed just to double check */ 7147 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7148 sysfs_notify_dirent_safe(mddev->sysfs_action); 7149 md_new_event(mddev); 7150 } 7151 7152 /* 7153 * This routine is regularly called by all per-raid-array threads to 7154 * deal with generic issues like resync and super-block update. 7155 * Raid personalities that don't have a thread (linear/raid0) do not 7156 * need this as they never do any recovery or update the superblock. 7157 * 7158 * It does not do any resync itself, but rather "forks" off other threads 7159 * to do that as needed. 7160 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7161 * "->recovery" and create a thread at ->sync_thread. 7162 * When the thread finishes it sets MD_RECOVERY_DONE 7163 * and wakeups up this thread which will reap the thread and finish up. 7164 * This thread also removes any faulty devices (with nr_pending == 0). 7165 * 7166 * The overall approach is: 7167 * 1/ if the superblock needs updating, update it. 7168 * 2/ If a recovery thread is running, don't do anything else. 7169 * 3/ If recovery has finished, clean up, possibly marking spares active. 7170 * 4/ If there are any faulty devices, remove them. 7171 * 5/ If array is degraded, try to add spares devices 7172 * 6/ If array has spares or is not in-sync, start a resync thread. 7173 */ 7174 void md_check_recovery(mddev_t *mddev) 7175 { 7176 if (mddev->suspended) 7177 return; 7178 7179 if (mddev->bitmap) 7180 bitmap_daemon_work(mddev); 7181 7182 if (mddev->ro) 7183 return; 7184 7185 if (signal_pending(current)) { 7186 if (mddev->pers->sync_request && !mddev->external) { 7187 printk(KERN_INFO "md: %s in immediate safe mode\n", 7188 mdname(mddev)); 7189 mddev->safemode = 2; 7190 } 7191 flush_signals(current); 7192 } 7193 7194 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7195 return; 7196 if ( ! ( 7197 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7198 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7199 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7200 (mddev->external == 0 && mddev->safemode == 1) || 7201 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7202 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7203 )) 7204 return; 7205 7206 if (mddev_trylock(mddev)) { 7207 int spares = 0; 7208 7209 if (mddev->ro) { 7210 /* Only thing we do on a ro array is remove 7211 * failed devices. 7212 */ 7213 mdk_rdev_t *rdev; 7214 list_for_each_entry(rdev, &mddev->disks, same_set) 7215 if (rdev->raid_disk >= 0 && 7216 !test_bit(Blocked, &rdev->flags) && 7217 test_bit(Faulty, &rdev->flags) && 7218 atomic_read(&rdev->nr_pending)==0) { 7219 if (mddev->pers->hot_remove_disk( 7220 mddev, rdev->raid_disk)==0) { 7221 char nm[20]; 7222 sprintf(nm,"rd%d", rdev->raid_disk); 7223 sysfs_remove_link(&mddev->kobj, nm); 7224 rdev->raid_disk = -1; 7225 } 7226 } 7227 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7228 goto unlock; 7229 } 7230 7231 if (!mddev->external) { 7232 int did_change = 0; 7233 spin_lock_irq(&mddev->write_lock); 7234 if (mddev->safemode && 7235 !atomic_read(&mddev->writes_pending) && 7236 !mddev->in_sync && 7237 mddev->recovery_cp == MaxSector) { 7238 mddev->in_sync = 1; 7239 did_change = 1; 7240 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7241 } 7242 if (mddev->safemode == 1) 7243 mddev->safemode = 0; 7244 spin_unlock_irq(&mddev->write_lock); 7245 if (did_change) 7246 sysfs_notify_dirent_safe(mddev->sysfs_state); 7247 } 7248 7249 if (mddev->flags) 7250 md_update_sb(mddev, 0); 7251 7252 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7253 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7254 /* resync/recovery still happening */ 7255 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7256 goto unlock; 7257 } 7258 if (mddev->sync_thread) { 7259 reap_sync_thread(mddev); 7260 goto unlock; 7261 } 7262 /* Set RUNNING before clearing NEEDED to avoid 7263 * any transients in the value of "sync_action". 7264 */ 7265 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7266 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7267 /* Clear some bits that don't mean anything, but 7268 * might be left set 7269 */ 7270 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7271 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7272 7273 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7274 goto unlock; 7275 /* no recovery is running. 7276 * remove any failed drives, then 7277 * add spares if possible. 7278 * Spare are also removed and re-added, to allow 7279 * the personality to fail the re-add. 7280 */ 7281 7282 if (mddev->reshape_position != MaxSector) { 7283 if (mddev->pers->check_reshape == NULL || 7284 mddev->pers->check_reshape(mddev) != 0) 7285 /* Cannot proceed */ 7286 goto unlock; 7287 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7288 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7289 } else if ((spares = remove_and_add_spares(mddev))) { 7290 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7291 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7292 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7293 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7294 } else if (mddev->recovery_cp < MaxSector) { 7295 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7296 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7297 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7298 /* nothing to be done ... */ 7299 goto unlock; 7300 7301 if (mddev->pers->sync_request) { 7302 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 7303 /* We are adding a device or devices to an array 7304 * which has the bitmap stored on all devices. 7305 * So make sure all bitmap pages get written 7306 */ 7307 bitmap_write_all(mddev->bitmap); 7308 } 7309 mddev->sync_thread = md_register_thread(md_do_sync, 7310 mddev, 7311 "resync"); 7312 if (!mddev->sync_thread) { 7313 printk(KERN_ERR "%s: could not start resync" 7314 " thread...\n", 7315 mdname(mddev)); 7316 /* leave the spares where they are, it shouldn't hurt */ 7317 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7318 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7319 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7320 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7321 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7322 } else 7323 md_wakeup_thread(mddev->sync_thread); 7324 sysfs_notify_dirent_safe(mddev->sysfs_action); 7325 md_new_event(mddev); 7326 } 7327 unlock: 7328 if (!mddev->sync_thread) { 7329 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7330 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7331 &mddev->recovery)) 7332 if (mddev->sysfs_action) 7333 sysfs_notify_dirent_safe(mddev->sysfs_action); 7334 } 7335 mddev_unlock(mddev); 7336 } 7337 } 7338 7339 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 7340 { 7341 sysfs_notify_dirent_safe(rdev->sysfs_state); 7342 wait_event_timeout(rdev->blocked_wait, 7343 !test_bit(Blocked, &rdev->flags), 7344 msecs_to_jiffies(5000)); 7345 rdev_dec_pending(rdev, mddev); 7346 } 7347 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7348 7349 static int md_notify_reboot(struct notifier_block *this, 7350 unsigned long code, void *x) 7351 { 7352 struct list_head *tmp; 7353 mddev_t *mddev; 7354 7355 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 7356 7357 printk(KERN_INFO "md: stopping all md devices.\n"); 7358 7359 for_each_mddev(mddev, tmp) 7360 if (mddev_trylock(mddev)) { 7361 /* Force a switch to readonly even array 7362 * appears to still be in use. Hence 7363 * the '100'. 7364 */ 7365 md_set_readonly(mddev, 100); 7366 mddev_unlock(mddev); 7367 } 7368 /* 7369 * certain more exotic SCSI devices are known to be 7370 * volatile wrt too early system reboots. While the 7371 * right place to handle this issue is the given 7372 * driver, we do want to have a safe RAID driver ... 7373 */ 7374 mdelay(1000*1); 7375 } 7376 return NOTIFY_DONE; 7377 } 7378 7379 static struct notifier_block md_notifier = { 7380 .notifier_call = md_notify_reboot, 7381 .next = NULL, 7382 .priority = INT_MAX, /* before any real devices */ 7383 }; 7384 7385 static void md_geninit(void) 7386 { 7387 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 7388 7389 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 7390 } 7391 7392 static int __init md_init(void) 7393 { 7394 int ret = -ENOMEM; 7395 7396 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 7397 if (!md_wq) 7398 goto err_wq; 7399 7400 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 7401 if (!md_misc_wq) 7402 goto err_misc_wq; 7403 7404 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 7405 goto err_md; 7406 7407 if ((ret = register_blkdev(0, "mdp")) < 0) 7408 goto err_mdp; 7409 mdp_major = ret; 7410 7411 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 7412 md_probe, NULL, NULL); 7413 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 7414 md_probe, NULL, NULL); 7415 7416 register_reboot_notifier(&md_notifier); 7417 raid_table_header = register_sysctl_table(raid_root_table); 7418 7419 md_geninit(); 7420 return 0; 7421 7422 err_mdp: 7423 unregister_blkdev(MD_MAJOR, "md"); 7424 err_md: 7425 destroy_workqueue(md_misc_wq); 7426 err_misc_wq: 7427 destroy_workqueue(md_wq); 7428 err_wq: 7429 return ret; 7430 } 7431 7432 #ifndef MODULE 7433 7434 /* 7435 * Searches all registered partitions for autorun RAID arrays 7436 * at boot time. 7437 */ 7438 7439 static LIST_HEAD(all_detected_devices); 7440 struct detected_devices_node { 7441 struct list_head list; 7442 dev_t dev; 7443 }; 7444 7445 void md_autodetect_dev(dev_t dev) 7446 { 7447 struct detected_devices_node *node_detected_dev; 7448 7449 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 7450 if (node_detected_dev) { 7451 node_detected_dev->dev = dev; 7452 list_add_tail(&node_detected_dev->list, &all_detected_devices); 7453 } else { 7454 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 7455 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 7456 } 7457 } 7458 7459 7460 static void autostart_arrays(int part) 7461 { 7462 mdk_rdev_t *rdev; 7463 struct detected_devices_node *node_detected_dev; 7464 dev_t dev; 7465 int i_scanned, i_passed; 7466 7467 i_scanned = 0; 7468 i_passed = 0; 7469 7470 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 7471 7472 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 7473 i_scanned++; 7474 node_detected_dev = list_entry(all_detected_devices.next, 7475 struct detected_devices_node, list); 7476 list_del(&node_detected_dev->list); 7477 dev = node_detected_dev->dev; 7478 kfree(node_detected_dev); 7479 rdev = md_import_device(dev,0, 90); 7480 if (IS_ERR(rdev)) 7481 continue; 7482 7483 if (test_bit(Faulty, &rdev->flags)) { 7484 MD_BUG(); 7485 continue; 7486 } 7487 set_bit(AutoDetected, &rdev->flags); 7488 list_add(&rdev->same_set, &pending_raid_disks); 7489 i_passed++; 7490 } 7491 7492 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 7493 i_scanned, i_passed); 7494 7495 autorun_devices(part); 7496 } 7497 7498 #endif /* !MODULE */ 7499 7500 static __exit void md_exit(void) 7501 { 7502 mddev_t *mddev; 7503 struct list_head *tmp; 7504 7505 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 7506 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 7507 7508 unregister_blkdev(MD_MAJOR,"md"); 7509 unregister_blkdev(mdp_major, "mdp"); 7510 unregister_reboot_notifier(&md_notifier); 7511 unregister_sysctl_table(raid_table_header); 7512 remove_proc_entry("mdstat", NULL); 7513 for_each_mddev(mddev, tmp) { 7514 export_array(mddev); 7515 mddev->hold_active = 0; 7516 } 7517 destroy_workqueue(md_misc_wq); 7518 destroy_workqueue(md_wq); 7519 } 7520 7521 subsys_initcall(md_init); 7522 module_exit(md_exit) 7523 7524 static int get_ro(char *buffer, struct kernel_param *kp) 7525 { 7526 return sprintf(buffer, "%d", start_readonly); 7527 } 7528 static int set_ro(const char *val, struct kernel_param *kp) 7529 { 7530 char *e; 7531 int num = simple_strtoul(val, &e, 10); 7532 if (*val && (*e == '\0' || *e == '\n')) { 7533 start_readonly = num; 7534 return 0; 7535 } 7536 return -EINVAL; 7537 } 7538 7539 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 7540 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 7541 7542 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 7543 7544 EXPORT_SYMBOL(register_md_personality); 7545 EXPORT_SYMBOL(unregister_md_personality); 7546 EXPORT_SYMBOL(md_error); 7547 EXPORT_SYMBOL(md_done_sync); 7548 EXPORT_SYMBOL(md_write_start); 7549 EXPORT_SYMBOL(md_write_end); 7550 EXPORT_SYMBOL(md_register_thread); 7551 EXPORT_SYMBOL(md_unregister_thread); 7552 EXPORT_SYMBOL(md_wakeup_thread); 7553 EXPORT_SYMBOL(md_check_recovery); 7554 MODULE_LICENSE("GPL"); 7555 MODULE_DESCRIPTION("MD RAID framework"); 7556 MODULE_ALIAS("md"); 7557 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 7558