1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * bitmap.c two-level bitmap (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003 4 * 5 * bitmap_create - sets up the bitmap structure 6 * bitmap_destroy - destroys the bitmap structure 7 * 8 * additions, Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.: 9 * - added disk storage for bitmap 10 * - changes to allow various bitmap chunk sizes 11 */ 12 13 /* 14 * Still to do: 15 * 16 * flush after percent set rather than just time based. (maybe both). 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/timer.h> 25 #include <linux/sched.h> 26 #include <linux/list.h> 27 #include <linux/file.h> 28 #include <linux/mount.h> 29 #include <linux/buffer_head.h> 30 #include <linux/seq_file.h> 31 #include <trace/events/block.h> 32 #include "md.h" 33 #include "md-bitmap.h" 34 35 #define BITMAP_MAJOR_LO 3 36 /* version 4 insists the bitmap is in little-endian order 37 * with version 3, it is host-endian which is non-portable 38 * Version 5 is currently set only for clustered devices 39 */ 40 #define BITMAP_MAJOR_HI 4 41 #define BITMAP_MAJOR_CLUSTERED 5 42 #define BITMAP_MAJOR_HOSTENDIAN 3 43 44 /* 45 * in-memory bitmap: 46 * 47 * Use 16 bit block counters to track pending writes to each "chunk". 48 * The 2 high order bits are special-purpose, the first is a flag indicating 49 * whether a resync is needed. The second is a flag indicating whether a 50 * resync is active. 51 * This means that the counter is actually 14 bits: 52 * 53 * +--------+--------+------------------------------------------------+ 54 * | resync | resync | counter | 55 * | needed | active | | 56 * | (0-1) | (0-1) | (0-16383) | 57 * +--------+--------+------------------------------------------------+ 58 * 59 * The "resync needed" bit is set when: 60 * a '1' bit is read from storage at startup. 61 * a write request fails on some drives 62 * a resync is aborted on a chunk with 'resync active' set 63 * It is cleared (and resync-active set) when a resync starts across all drives 64 * of the chunk. 65 * 66 * 67 * The "resync active" bit is set when: 68 * a resync is started on all drives, and resync_needed is set. 69 * resync_needed will be cleared (as long as resync_active wasn't already set). 70 * It is cleared when a resync completes. 71 * 72 * The counter counts pending write requests, plus the on-disk bit. 73 * When the counter is '1' and the resync bits are clear, the on-disk 74 * bit can be cleared as well, thus setting the counter to 0. 75 * When we set a bit, or in the counter (to start a write), if the fields is 76 * 0, we first set the disk bit and set the counter to 1. 77 * 78 * If the counter is 0, the on-disk bit is clear and the stripe is clean 79 * Anything that dirties the stripe pushes the counter to 2 (at least) 80 * and sets the on-disk bit (lazily). 81 * If a periodic sweep find the counter at 2, it is decremented to 1. 82 * If the sweep find the counter at 1, the on-disk bit is cleared and the 83 * counter goes to zero. 84 * 85 * Also, we'll hijack the "map" pointer itself and use it as two 16 bit block 86 * counters as a fallback when "page" memory cannot be allocated: 87 * 88 * Normal case (page memory allocated): 89 * 90 * page pointer (32-bit) 91 * 92 * [ ] ------+ 93 * | 94 * +-------> [ ][ ]..[ ] (4096 byte page == 2048 counters) 95 * c1 c2 c2048 96 * 97 * Hijacked case (page memory allocation failed): 98 * 99 * hijacked page pointer (32-bit) 100 * 101 * [ ][ ] (no page memory allocated) 102 * counter #1 (16-bit) counter #2 (16-bit) 103 * 104 */ 105 106 #define PAGE_BITS (PAGE_SIZE << 3) 107 #define PAGE_BIT_SHIFT (PAGE_SHIFT + 3) 108 109 #define NEEDED(x) (((bitmap_counter_t) x) & NEEDED_MASK) 110 #define RESYNC(x) (((bitmap_counter_t) x) & RESYNC_MASK) 111 #define COUNTER(x) (((bitmap_counter_t) x) & COUNTER_MAX) 112 113 /* how many counters per page? */ 114 #define PAGE_COUNTER_RATIO (PAGE_BITS / COUNTER_BITS) 115 /* same, except a shift value for more efficient bitops */ 116 #define PAGE_COUNTER_SHIFT (PAGE_BIT_SHIFT - COUNTER_BIT_SHIFT) 117 /* same, except a mask value for more efficient bitops */ 118 #define PAGE_COUNTER_MASK (PAGE_COUNTER_RATIO - 1) 119 120 #define BITMAP_BLOCK_SHIFT 9 121 122 /* 123 * bitmap structures: 124 */ 125 126 /* the in-memory bitmap is represented by bitmap_pages */ 127 struct bitmap_page { 128 /* 129 * map points to the actual memory page 130 */ 131 char *map; 132 /* 133 * in emergencies (when map cannot be alloced), hijack the map 134 * pointer and use it as two counters itself 135 */ 136 unsigned int hijacked:1; 137 /* 138 * If any counter in this page is '1' or '2' - and so could be 139 * cleared then that page is marked as 'pending' 140 */ 141 unsigned int pending:1; 142 /* 143 * count of dirty bits on the page 144 */ 145 unsigned int count:30; 146 }; 147 148 /* the main bitmap structure - one per mddev */ 149 struct bitmap { 150 151 struct bitmap_counts { 152 spinlock_t lock; 153 struct bitmap_page *bp; 154 /* total number of pages in the bitmap */ 155 unsigned long pages; 156 /* number of pages not yet allocated */ 157 unsigned long missing_pages; 158 /* chunksize = 2^chunkshift (for bitops) */ 159 unsigned long chunkshift; 160 /* total number of data chunks for the array */ 161 unsigned long chunks; 162 } counts; 163 164 struct mddev *mddev; /* the md device that the bitmap is for */ 165 166 __u64 events_cleared; 167 int need_sync; 168 169 struct bitmap_storage { 170 /* backing disk file */ 171 struct file *file; 172 /* cached copy of the bitmap file superblock */ 173 struct page *sb_page; 174 unsigned long sb_index; 175 /* list of cache pages for the file */ 176 struct page **filemap; 177 /* attributes associated filemap pages */ 178 unsigned long *filemap_attr; 179 /* number of pages in the file */ 180 unsigned long file_pages; 181 /* total bytes in the bitmap */ 182 unsigned long bytes; 183 } storage; 184 185 unsigned long flags; 186 187 int allclean; 188 189 atomic_t behind_writes; 190 /* highest actual value at runtime */ 191 unsigned long behind_writes_used; 192 193 /* 194 * the bitmap daemon - periodically wakes up and sweeps the bitmap 195 * file, cleaning up bits and flushing out pages to disk as necessary 196 */ 197 unsigned long daemon_lastrun; /* jiffies of last run */ 198 /* 199 * when we lasted called end_sync to update bitmap with resync 200 * progress. 201 */ 202 unsigned long last_end_sync; 203 204 /* pending writes to the bitmap file */ 205 atomic_t pending_writes; 206 wait_queue_head_t write_wait; 207 wait_queue_head_t overflow_wait; 208 wait_queue_head_t behind_wait; 209 210 struct kernfs_node *sysfs_can_clear; 211 /* slot offset for clustered env */ 212 int cluster_slot; 213 }; 214 215 static int __bitmap_resize(struct bitmap *bitmap, sector_t blocks, 216 int chunksize, bool init); 217 218 static inline char *bmname(struct bitmap *bitmap) 219 { 220 return bitmap->mddev ? mdname(bitmap->mddev) : "mdX"; 221 } 222 223 static bool __bitmap_enabled(struct bitmap *bitmap) 224 { 225 return bitmap->storage.filemap && 226 !test_bit(BITMAP_STALE, &bitmap->flags); 227 } 228 229 static bool bitmap_enabled(struct mddev *mddev) 230 { 231 struct bitmap *bitmap = mddev->bitmap; 232 233 if (!bitmap) 234 return false; 235 236 return __bitmap_enabled(bitmap); 237 } 238 239 /* 240 * check a page and, if necessary, allocate it (or hijack it if the alloc fails) 241 * 242 * 1) check to see if this page is allocated, if it's not then try to alloc 243 * 2) if the alloc fails, set the page's hijacked flag so we'll use the 244 * page pointer directly as a counter 245 * 246 * if we find our page, we increment the page's refcount so that it stays 247 * allocated while we're using it 248 */ 249 static int md_bitmap_checkpage(struct bitmap_counts *bitmap, 250 unsigned long page, int create, int no_hijack) 251 __releases(bitmap->lock) 252 __acquires(bitmap->lock) 253 { 254 unsigned char *mappage; 255 256 WARN_ON_ONCE(page >= bitmap->pages); 257 if (bitmap->bp[page].hijacked) /* it's hijacked, don't try to alloc */ 258 return 0; 259 260 if (bitmap->bp[page].map) /* page is already allocated, just return */ 261 return 0; 262 263 if (!create) 264 return -ENOENT; 265 266 /* this page has not been allocated yet */ 267 268 spin_unlock_irq(&bitmap->lock); 269 /* It is possible that this is being called inside a 270 * prepare_to_wait/finish_wait loop from raid5c:make_request(). 271 * In general it is not permitted to sleep in that context as it 272 * can cause the loop to spin freely. 273 * That doesn't apply here as we can only reach this point 274 * once with any loop. 275 * When this function completes, either bp[page].map or 276 * bp[page].hijacked. In either case, this function will 277 * abort before getting to this point again. So there is 278 * no risk of a free-spin, and so it is safe to assert 279 * that sleeping here is allowed. 280 */ 281 sched_annotate_sleep(); 282 mappage = kzalloc(PAGE_SIZE, GFP_NOIO); 283 spin_lock_irq(&bitmap->lock); 284 285 if (mappage == NULL) { 286 pr_debug("md/bitmap: map page allocation failed, hijacking\n"); 287 /* We don't support hijack for cluster raid */ 288 if (no_hijack) 289 return -ENOMEM; 290 /* failed - set the hijacked flag so that we can use the 291 * pointer as a counter */ 292 if (!bitmap->bp[page].map) 293 bitmap->bp[page].hijacked = 1; 294 } else if (bitmap->bp[page].map || 295 bitmap->bp[page].hijacked) { 296 /* somebody beat us to getting the page */ 297 kfree(mappage); 298 } else { 299 300 /* no page was in place and we have one, so install it */ 301 302 bitmap->bp[page].map = mappage; 303 bitmap->missing_pages--; 304 } 305 return 0; 306 } 307 308 /* if page is completely empty, put it back on the free list, or dealloc it */ 309 /* if page was hijacked, unmark the flag so it might get alloced next time */ 310 /* Note: lock should be held when calling this */ 311 static void md_bitmap_checkfree(struct bitmap_counts *bitmap, unsigned long page) 312 { 313 char *ptr; 314 315 if (bitmap->bp[page].count) /* page is still busy */ 316 return; 317 318 /* page is no longer in use, it can be released */ 319 320 if (bitmap->bp[page].hijacked) { /* page was hijacked, undo this now */ 321 bitmap->bp[page].hijacked = 0; 322 bitmap->bp[page].map = NULL; 323 } else { 324 /* normal case, free the page */ 325 ptr = bitmap->bp[page].map; 326 bitmap->bp[page].map = NULL; 327 bitmap->missing_pages++; 328 kfree(ptr); 329 } 330 } 331 332 /* 333 * bitmap file handling - read and write the bitmap file and its superblock 334 */ 335 336 /* 337 * basic page I/O operations 338 */ 339 340 /* IO operations when bitmap is stored near all superblocks */ 341 342 /* choose a good rdev and read the page from there */ 343 static int read_sb_page(struct mddev *mddev, loff_t offset, 344 struct page *page, unsigned long index, int size) 345 { 346 347 sector_t sector = mddev->bitmap_info.offset + offset + 348 index * (PAGE_SIZE / SECTOR_SIZE); 349 struct md_rdev *rdev; 350 351 rdev_for_each(rdev, mddev) { 352 u32 iosize = roundup(size, bdev_logical_block_size(rdev->bdev)); 353 354 if (!test_bit(In_sync, &rdev->flags) || 355 test_bit(Faulty, &rdev->flags) || 356 test_bit(Bitmap_sync, &rdev->flags)) 357 continue; 358 359 if (sync_page_io(rdev, sector, iosize, page, REQ_OP_READ, true)) 360 return 0; 361 } 362 return -EIO; 363 } 364 365 static struct md_rdev *next_active_rdev(struct md_rdev *rdev, struct mddev *mddev) 366 { 367 /* Iterate the disks of an mddev, using rcu to protect access to the 368 * linked list, and raising the refcount of devices we return to ensure 369 * they don't disappear while in use. 370 * As devices are only added or removed when raid_disk is < 0 and 371 * nr_pending is 0 and In_sync is clear, the entries we return will 372 * still be in the same position on the list when we re-enter 373 * list_for_each_entry_continue_rcu. 374 * 375 * Note that if entered with 'rdev == NULL' to start at the 376 * beginning, we temporarily assign 'rdev' to an address which 377 * isn't really an rdev, but which can be used by 378 * list_for_each_entry_continue_rcu() to find the first entry. 379 */ 380 rcu_read_lock(); 381 if (rdev == NULL) 382 /* start at the beginning */ 383 rdev = list_entry(&mddev->disks, struct md_rdev, same_set); 384 else { 385 /* release the previous rdev and start from there. */ 386 rdev_dec_pending(rdev, mddev); 387 } 388 list_for_each_entry_continue_rcu(rdev, &mddev->disks, same_set) { 389 if (rdev->raid_disk >= 0 && 390 !test_bit(Faulty, &rdev->flags)) { 391 /* this is a usable devices */ 392 atomic_inc(&rdev->nr_pending); 393 rcu_read_unlock(); 394 return rdev; 395 } 396 } 397 rcu_read_unlock(); 398 return NULL; 399 } 400 401 static unsigned int optimal_io_size(struct block_device *bdev, 402 unsigned int last_page_size, 403 unsigned int io_size) 404 { 405 if (bdev_io_opt(bdev) > bdev_logical_block_size(bdev)) 406 return roundup(last_page_size, bdev_io_opt(bdev)); 407 return io_size; 408 } 409 410 static unsigned int bitmap_io_size(unsigned int io_size, unsigned int opt_size, 411 loff_t start, loff_t boundary) 412 { 413 if (io_size != opt_size && 414 start + opt_size / SECTOR_SIZE <= boundary) 415 return opt_size; 416 if (start + io_size / SECTOR_SIZE <= boundary) 417 return io_size; 418 419 /* Overflows boundary */ 420 return 0; 421 } 422 423 static int __write_sb_page(struct md_rdev *rdev, struct bitmap *bitmap, 424 unsigned long pg_index, struct page *page) 425 { 426 struct block_device *bdev; 427 struct mddev *mddev = bitmap->mddev; 428 struct bitmap_storage *store = &bitmap->storage; 429 unsigned int bitmap_limit = (bitmap->storage.file_pages - pg_index) << 430 PAGE_SHIFT; 431 loff_t sboff, offset = mddev->bitmap_info.offset; 432 sector_t ps = pg_index * PAGE_SIZE / SECTOR_SIZE; 433 unsigned int size = PAGE_SIZE; 434 unsigned int opt_size = PAGE_SIZE; 435 sector_t doff; 436 437 bdev = (rdev->meta_bdev) ? rdev->meta_bdev : rdev->bdev; 438 /* we compare length (page numbers), not page offset. */ 439 if ((pg_index - store->sb_index) == store->file_pages - 1) { 440 unsigned int last_page_size = store->bytes & (PAGE_SIZE - 1); 441 442 if (last_page_size == 0) 443 last_page_size = PAGE_SIZE; 444 size = roundup(last_page_size, bdev_logical_block_size(bdev)); 445 opt_size = optimal_io_size(bdev, last_page_size, size); 446 } 447 448 sboff = rdev->sb_start + offset; 449 doff = rdev->data_offset; 450 451 /* Just make sure we aren't corrupting data or metadata */ 452 if (mddev->external) { 453 /* Bitmap could be anywhere. */ 454 if (sboff + ps > doff && 455 sboff < (doff + mddev->dev_sectors + PAGE_SIZE / SECTOR_SIZE)) 456 return -EINVAL; 457 } else if (offset < 0) { 458 /* DATA BITMAP METADATA */ 459 size = bitmap_io_size(size, opt_size, offset + ps, 0); 460 if (size == 0) 461 /* bitmap runs in to metadata */ 462 return -EINVAL; 463 464 if (doff + mddev->dev_sectors > sboff) 465 /* data runs in to bitmap */ 466 return -EINVAL; 467 } else if (rdev->sb_start < rdev->data_offset) { 468 /* METADATA BITMAP DATA */ 469 size = bitmap_io_size(size, opt_size, sboff + ps, doff); 470 if (size == 0) 471 /* bitmap runs in to data */ 472 return -EINVAL; 473 } 474 475 md_super_write(mddev, rdev, sboff + ps, (int)min(size, bitmap_limit), page); 476 return 0; 477 } 478 479 static void write_sb_page(struct bitmap *bitmap, unsigned long pg_index, 480 struct page *page, bool wait) 481 { 482 struct mddev *mddev = bitmap->mddev; 483 484 do { 485 struct md_rdev *rdev = NULL; 486 487 while ((rdev = next_active_rdev(rdev, mddev)) != NULL) { 488 if (__write_sb_page(rdev, bitmap, pg_index, page) < 0) { 489 set_bit(BITMAP_WRITE_ERROR, &bitmap->flags); 490 return; 491 } 492 } 493 } while (wait && md_super_wait(mddev) < 0); 494 } 495 496 static void md_bitmap_file_kick(struct bitmap *bitmap); 497 498 #ifdef CONFIG_MD_BITMAP_FILE 499 static void write_file_page(struct bitmap *bitmap, struct page *page, int wait) 500 { 501 struct buffer_head *bh = page_buffers(page); 502 503 while (bh && bh->b_blocknr) { 504 atomic_inc(&bitmap->pending_writes); 505 set_buffer_locked(bh); 506 set_buffer_mapped(bh); 507 submit_bh(REQ_OP_WRITE | REQ_SYNC, bh); 508 bh = bh->b_this_page; 509 } 510 511 if (wait) 512 wait_event(bitmap->write_wait, 513 atomic_read(&bitmap->pending_writes) == 0); 514 } 515 516 static void end_bitmap_write(struct buffer_head *bh, int uptodate) 517 { 518 struct bitmap *bitmap = bh->b_private; 519 520 if (!uptodate) 521 set_bit(BITMAP_WRITE_ERROR, &bitmap->flags); 522 if (atomic_dec_and_test(&bitmap->pending_writes)) 523 wake_up(&bitmap->write_wait); 524 } 525 526 static void free_buffers(struct page *page) 527 { 528 struct buffer_head *bh; 529 530 if (!PagePrivate(page)) 531 return; 532 533 bh = page_buffers(page); 534 while (bh) { 535 struct buffer_head *next = bh->b_this_page; 536 free_buffer_head(bh); 537 bh = next; 538 } 539 detach_page_private(page); 540 put_page(page); 541 } 542 543 /* read a page from a file. 544 * We both read the page, and attach buffers to the page to record the 545 * address of each block (using bmap). These addresses will be used 546 * to write the block later, completely bypassing the filesystem. 547 * This usage is similar to how swap files are handled, and allows us 548 * to write to a file with no concerns of memory allocation failing. 549 */ 550 static int read_file_page(struct file *file, unsigned long index, 551 struct bitmap *bitmap, unsigned long count, struct page *page) 552 { 553 int ret = 0; 554 struct inode *inode = file_inode(file); 555 struct buffer_head *bh; 556 sector_t block, blk_cur; 557 unsigned long blocksize = i_blocksize(inode); 558 559 pr_debug("read bitmap file (%dB @ %llu)\n", (int)PAGE_SIZE, 560 (unsigned long long)index << PAGE_SHIFT); 561 562 bh = alloc_page_buffers(page, blocksize); 563 if (!bh) { 564 ret = -ENOMEM; 565 goto out; 566 } 567 attach_page_private(page, bh); 568 blk_cur = index << (PAGE_SHIFT - inode->i_blkbits); 569 while (bh) { 570 block = blk_cur; 571 572 if (count == 0) 573 bh->b_blocknr = 0; 574 else { 575 ret = bmap(inode, &block); 576 if (ret || !block) { 577 ret = -EINVAL; 578 bh->b_blocknr = 0; 579 goto out; 580 } 581 582 bh->b_blocknr = block; 583 bh->b_bdev = inode->i_sb->s_bdev; 584 if (count < blocksize) 585 count = 0; 586 else 587 count -= blocksize; 588 589 bh->b_end_io = end_bitmap_write; 590 bh->b_private = bitmap; 591 atomic_inc(&bitmap->pending_writes); 592 set_buffer_locked(bh); 593 set_buffer_mapped(bh); 594 submit_bh(REQ_OP_READ, bh); 595 } 596 blk_cur++; 597 bh = bh->b_this_page; 598 } 599 600 wait_event(bitmap->write_wait, 601 atomic_read(&bitmap->pending_writes)==0); 602 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) 603 ret = -EIO; 604 out: 605 if (ret) 606 pr_err("md: bitmap read error: (%dB @ %llu): %d\n", 607 (int)PAGE_SIZE, 608 (unsigned long long)index << PAGE_SHIFT, 609 ret); 610 return ret; 611 } 612 #else /* CONFIG_MD_BITMAP_FILE */ 613 static void write_file_page(struct bitmap *bitmap, struct page *page, int wait) 614 { 615 } 616 static int read_file_page(struct file *file, unsigned long index, 617 struct bitmap *bitmap, unsigned long count, struct page *page) 618 { 619 return -EIO; 620 } 621 static void free_buffers(struct page *page) 622 { 623 put_page(page); 624 } 625 #endif /* CONFIG_MD_BITMAP_FILE */ 626 627 /* 628 * bitmap file superblock operations 629 */ 630 631 /* 632 * write out a page to a file 633 */ 634 static void filemap_write_page(struct bitmap *bitmap, unsigned long pg_index, 635 bool wait) 636 { 637 struct bitmap_storage *store = &bitmap->storage; 638 struct page *page = store->filemap[pg_index]; 639 640 if (mddev_is_clustered(bitmap->mddev)) { 641 /* go to node bitmap area starting point */ 642 pg_index += store->sb_index; 643 } 644 645 if (store->file) 646 write_file_page(bitmap, page, wait); 647 else 648 write_sb_page(bitmap, pg_index, page, wait); 649 } 650 651 /* 652 * md_bitmap_wait_writes() should be called before writing any bitmap 653 * blocks, to ensure previous writes, particularly from 654 * md_bitmap_daemon_work(), have completed. 655 */ 656 static void md_bitmap_wait_writes(struct bitmap *bitmap) 657 { 658 if (bitmap->storage.file) 659 wait_event(bitmap->write_wait, 660 atomic_read(&bitmap->pending_writes)==0); 661 else 662 /* Note that we ignore the return value. The writes 663 * might have failed, but that would just mean that 664 * some bits which should be cleared haven't been, 665 * which is safe. The relevant bitmap blocks will 666 * probably get written again, but there is no great 667 * loss if they aren't. 668 */ 669 md_super_wait(bitmap->mddev); 670 } 671 672 673 /* update the event counter and sync the superblock to disk */ 674 static void bitmap_update_sb(void *data) 675 { 676 bitmap_super_t *sb; 677 struct bitmap *bitmap = data; 678 679 if (!bitmap || !bitmap->mddev) /* no bitmap for this array */ 680 return; 681 if (bitmap->mddev->bitmap_info.external) 682 return; 683 if (!bitmap->storage.sb_page) /* no superblock */ 684 return; 685 sb = kmap_atomic(bitmap->storage.sb_page); 686 sb->events = cpu_to_le64(bitmap->mddev->events); 687 if (bitmap->mddev->events < bitmap->events_cleared) 688 /* rocking back to read-only */ 689 bitmap->events_cleared = bitmap->mddev->events; 690 sb->events_cleared = cpu_to_le64(bitmap->events_cleared); 691 /* 692 * clear BITMAP_WRITE_ERROR bit to protect against the case that 693 * a bitmap write error occurred but the later writes succeeded. 694 */ 695 sb->state = cpu_to_le32(bitmap->flags & ~BIT(BITMAP_WRITE_ERROR)); 696 /* Just in case these have been changed via sysfs: */ 697 sb->daemon_sleep = cpu_to_le32(bitmap->mddev->bitmap_info.daemon_sleep/HZ); 698 sb->write_behind = cpu_to_le32(bitmap->mddev->bitmap_info.max_write_behind); 699 /* This might have been changed by a reshape */ 700 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors); 701 sb->chunksize = cpu_to_le32(bitmap->mddev->bitmap_info.chunksize); 702 sb->nodes = cpu_to_le32(bitmap->mddev->bitmap_info.nodes); 703 sb->sectors_reserved = cpu_to_le32(bitmap->mddev-> 704 bitmap_info.space); 705 kunmap_atomic(sb); 706 707 if (bitmap->storage.file) 708 write_file_page(bitmap, bitmap->storage.sb_page, 1); 709 else 710 write_sb_page(bitmap, bitmap->storage.sb_index, 711 bitmap->storage.sb_page, 1); 712 } 713 714 static void bitmap_print_sb(struct bitmap *bitmap) 715 { 716 bitmap_super_t *sb; 717 718 if (!bitmap || !bitmap->storage.sb_page) 719 return; 720 sb = kmap_atomic(bitmap->storage.sb_page); 721 pr_debug("%s: bitmap file superblock:\n", bmname(bitmap)); 722 pr_debug(" magic: %08x\n", le32_to_cpu(sb->magic)); 723 pr_debug(" version: %u\n", le32_to_cpu(sb->version)); 724 pr_debug(" uuid: %08x.%08x.%08x.%08x\n", 725 le32_to_cpu(*(__le32 *)(sb->uuid+0)), 726 le32_to_cpu(*(__le32 *)(sb->uuid+4)), 727 le32_to_cpu(*(__le32 *)(sb->uuid+8)), 728 le32_to_cpu(*(__le32 *)(sb->uuid+12))); 729 pr_debug(" events: %llu\n", 730 (unsigned long long) le64_to_cpu(sb->events)); 731 pr_debug("events cleared: %llu\n", 732 (unsigned long long) le64_to_cpu(sb->events_cleared)); 733 pr_debug(" state: %08x\n", le32_to_cpu(sb->state)); 734 pr_debug(" chunksize: %u B\n", le32_to_cpu(sb->chunksize)); 735 pr_debug(" daemon sleep: %us\n", le32_to_cpu(sb->daemon_sleep)); 736 pr_debug(" sync size: %llu KB\n", 737 (unsigned long long)le64_to_cpu(sb->sync_size)/2); 738 pr_debug("max write behind: %u\n", le32_to_cpu(sb->write_behind)); 739 kunmap_atomic(sb); 740 } 741 742 /* 743 * bitmap_new_disk_sb 744 * @bitmap 745 * 746 * This function is somewhat the reverse of bitmap_read_sb. bitmap_read_sb 747 * reads and verifies the on-disk bitmap superblock and populates bitmap_info. 748 * This function verifies 'bitmap_info' and populates the on-disk bitmap 749 * structure, which is to be written to disk. 750 * 751 * Returns: 0 on success, -Exxx on error 752 */ 753 static int md_bitmap_new_disk_sb(struct bitmap *bitmap) 754 { 755 bitmap_super_t *sb; 756 unsigned long chunksize, daemon_sleep, write_behind; 757 758 bitmap->storage.sb_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 759 if (bitmap->storage.sb_page == NULL) 760 return -ENOMEM; 761 bitmap->storage.sb_index = 0; 762 763 sb = kmap_atomic(bitmap->storage.sb_page); 764 765 sb->magic = cpu_to_le32(BITMAP_MAGIC); 766 sb->version = cpu_to_le32(BITMAP_MAJOR_HI); 767 768 chunksize = bitmap->mddev->bitmap_info.chunksize; 769 BUG_ON(!chunksize); 770 if (!is_power_of_2(chunksize)) { 771 kunmap_atomic(sb); 772 pr_warn("bitmap chunksize not a power of 2\n"); 773 return -EINVAL; 774 } 775 sb->chunksize = cpu_to_le32(chunksize); 776 777 daemon_sleep = bitmap->mddev->bitmap_info.daemon_sleep; 778 if (!daemon_sleep || (daemon_sleep > MAX_SCHEDULE_TIMEOUT)) { 779 pr_debug("Choosing daemon_sleep default (5 sec)\n"); 780 daemon_sleep = 5 * HZ; 781 } 782 sb->daemon_sleep = cpu_to_le32(daemon_sleep); 783 bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep; 784 785 /* 786 * FIXME: write_behind for RAID1. If not specified, what 787 * is a good choice? We choose COUNTER_MAX / 2 arbitrarily. 788 */ 789 write_behind = bitmap->mddev->bitmap_info.max_write_behind; 790 if (write_behind > COUNTER_MAX) 791 write_behind = COUNTER_MAX / 2; 792 sb->write_behind = cpu_to_le32(write_behind); 793 bitmap->mddev->bitmap_info.max_write_behind = write_behind; 794 795 /* keep the array size field of the bitmap superblock up to date */ 796 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors); 797 798 memcpy(sb->uuid, bitmap->mddev->uuid, 16); 799 800 set_bit(BITMAP_STALE, &bitmap->flags); 801 sb->state = cpu_to_le32(bitmap->flags); 802 bitmap->events_cleared = bitmap->mddev->events; 803 sb->events_cleared = cpu_to_le64(bitmap->mddev->events); 804 bitmap->mddev->bitmap_info.nodes = 0; 805 806 kunmap_atomic(sb); 807 808 return 0; 809 } 810 811 /* read the superblock from the bitmap file and initialize some bitmap fields */ 812 static int md_bitmap_read_sb(struct bitmap *bitmap) 813 { 814 char *reason = NULL; 815 bitmap_super_t *sb; 816 unsigned long chunksize, daemon_sleep, write_behind; 817 unsigned long long events; 818 int nodes = 0; 819 unsigned long sectors_reserved = 0; 820 int err = -EINVAL; 821 struct page *sb_page; 822 loff_t offset = 0; 823 824 if (!bitmap->storage.file && !bitmap->mddev->bitmap_info.offset) { 825 chunksize = 128 * 1024 * 1024; 826 daemon_sleep = 5 * HZ; 827 write_behind = 0; 828 set_bit(BITMAP_STALE, &bitmap->flags); 829 err = 0; 830 goto out_no_sb; 831 } 832 /* page 0 is the superblock, read it... */ 833 sb_page = alloc_page(GFP_KERNEL); 834 if (!sb_page) 835 return -ENOMEM; 836 bitmap->storage.sb_page = sb_page; 837 838 re_read: 839 /* If cluster_slot is set, the cluster is setup */ 840 if (bitmap->cluster_slot >= 0) { 841 sector_t bm_blocks = bitmap->mddev->resync_max_sectors; 842 843 bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks, 844 (bitmap->mddev->bitmap_info.chunksize >> 9)); 845 /* bits to bytes */ 846 bm_blocks = ((bm_blocks+7) >> 3) + sizeof(bitmap_super_t); 847 /* to 4k blocks */ 848 bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks, 4096); 849 offset = bitmap->cluster_slot * (bm_blocks << 3); 850 pr_debug("%s:%d bm slot: %d offset: %llu\n", __func__, __LINE__, 851 bitmap->cluster_slot, offset); 852 } 853 854 if (bitmap->storage.file) { 855 loff_t isize = i_size_read(bitmap->storage.file->f_mapping->host); 856 int bytes = isize > PAGE_SIZE ? PAGE_SIZE : isize; 857 858 err = read_file_page(bitmap->storage.file, 0, 859 bitmap, bytes, sb_page); 860 } else { 861 err = read_sb_page(bitmap->mddev, offset, sb_page, 0, 862 sizeof(bitmap_super_t)); 863 } 864 if (err) 865 return err; 866 867 err = -EINVAL; 868 sb = kmap_atomic(sb_page); 869 870 chunksize = le32_to_cpu(sb->chunksize); 871 daemon_sleep = le32_to_cpu(sb->daemon_sleep) * HZ; 872 write_behind = le32_to_cpu(sb->write_behind); 873 sectors_reserved = le32_to_cpu(sb->sectors_reserved); 874 875 /* verify that the bitmap-specific fields are valid */ 876 if (sb->magic != cpu_to_le32(BITMAP_MAGIC)) 877 reason = "bad magic"; 878 else if (le32_to_cpu(sb->version) < BITMAP_MAJOR_LO || 879 le32_to_cpu(sb->version) > BITMAP_MAJOR_CLUSTERED) 880 reason = "unrecognized superblock version"; 881 else if (chunksize < 512) 882 reason = "bitmap chunksize too small"; 883 else if (!is_power_of_2(chunksize)) 884 reason = "bitmap chunksize not a power of 2"; 885 else if (daemon_sleep < 1 || daemon_sleep > MAX_SCHEDULE_TIMEOUT) 886 reason = "daemon sleep period out of range"; 887 else if (write_behind > COUNTER_MAX) 888 reason = "write-behind limit out of range (0 - 16383)"; 889 if (reason) { 890 pr_warn("%s: invalid bitmap file superblock: %s\n", 891 bmname(bitmap), reason); 892 goto out; 893 } 894 895 /* 896 * Setup nodes/clustername only if bitmap version is 897 * cluster-compatible 898 */ 899 if (sb->version == cpu_to_le32(BITMAP_MAJOR_CLUSTERED)) { 900 nodes = le32_to_cpu(sb->nodes); 901 strscpy(bitmap->mddev->bitmap_info.cluster_name, 902 sb->cluster_name, 64); 903 } 904 905 /* keep the array size field of the bitmap superblock up to date */ 906 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors); 907 908 if (bitmap->mddev->persistent) { 909 /* 910 * We have a persistent array superblock, so compare the 911 * bitmap's UUID and event counter to the mddev's 912 */ 913 if (memcmp(sb->uuid, bitmap->mddev->uuid, 16)) { 914 pr_warn("%s: bitmap superblock UUID mismatch\n", 915 bmname(bitmap)); 916 goto out; 917 } 918 events = le64_to_cpu(sb->events); 919 if (!nodes && (events < bitmap->mddev->events)) { 920 pr_warn("%s: bitmap file is out of date (%llu < %llu) -- forcing full recovery\n", 921 bmname(bitmap), events, 922 (unsigned long long) bitmap->mddev->events); 923 set_bit(BITMAP_STALE, &bitmap->flags); 924 } 925 } 926 927 /* assign fields using values from superblock */ 928 bitmap->flags |= le32_to_cpu(sb->state); 929 if (le32_to_cpu(sb->version) == BITMAP_MAJOR_HOSTENDIAN) 930 set_bit(BITMAP_HOSTENDIAN, &bitmap->flags); 931 bitmap->events_cleared = le64_to_cpu(sb->events_cleared); 932 err = 0; 933 934 out: 935 kunmap_atomic(sb); 936 if (err == 0 && nodes && (bitmap->cluster_slot < 0)) { 937 /* Assigning chunksize is required for "re_read" */ 938 bitmap->mddev->bitmap_info.chunksize = chunksize; 939 err = md_setup_cluster(bitmap->mddev, nodes); 940 if (err) { 941 pr_warn("%s: Could not setup cluster service (%d)\n", 942 bmname(bitmap), err); 943 goto out_no_sb; 944 } 945 bitmap->cluster_slot = md_cluster_ops->slot_number(bitmap->mddev); 946 goto re_read; 947 } 948 949 out_no_sb: 950 if (err == 0) { 951 if (test_bit(BITMAP_STALE, &bitmap->flags)) 952 bitmap->events_cleared = bitmap->mddev->events; 953 bitmap->mddev->bitmap_info.chunksize = chunksize; 954 bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep; 955 bitmap->mddev->bitmap_info.max_write_behind = write_behind; 956 bitmap->mddev->bitmap_info.nodes = nodes; 957 if (bitmap->mddev->bitmap_info.space == 0 || 958 bitmap->mddev->bitmap_info.space > sectors_reserved) 959 bitmap->mddev->bitmap_info.space = sectors_reserved; 960 } else { 961 bitmap_print_sb(bitmap); 962 if (bitmap->cluster_slot < 0) 963 md_cluster_stop(bitmap->mddev); 964 } 965 return err; 966 } 967 968 /* 969 * general bitmap file operations 970 */ 971 972 /* 973 * on-disk bitmap: 974 * 975 * Use one bit per "chunk" (block set). We do the disk I/O on the bitmap 976 * file a page at a time. There's a superblock at the start of the file. 977 */ 978 /* calculate the index of the page that contains this bit */ 979 static inline unsigned long file_page_index(struct bitmap_storage *store, 980 unsigned long chunk) 981 { 982 if (store->sb_page) 983 chunk += sizeof(bitmap_super_t) << 3; 984 return chunk >> PAGE_BIT_SHIFT; 985 } 986 987 /* calculate the (bit) offset of this bit within a page */ 988 static inline unsigned long file_page_offset(struct bitmap_storage *store, 989 unsigned long chunk) 990 { 991 if (store->sb_page) 992 chunk += sizeof(bitmap_super_t) << 3; 993 return chunk & (PAGE_BITS - 1); 994 } 995 996 /* 997 * return a pointer to the page in the filemap that contains the given bit 998 * 999 */ 1000 static inline struct page *filemap_get_page(struct bitmap_storage *store, 1001 unsigned long chunk) 1002 { 1003 if (file_page_index(store, chunk) >= store->file_pages) 1004 return NULL; 1005 return store->filemap[file_page_index(store, chunk)]; 1006 } 1007 1008 static int md_bitmap_storage_alloc(struct bitmap_storage *store, 1009 unsigned long chunks, int with_super, 1010 int slot_number) 1011 { 1012 int pnum, offset = 0; 1013 unsigned long num_pages; 1014 unsigned long bytes; 1015 1016 bytes = DIV_ROUND_UP(chunks, 8); 1017 if (with_super) 1018 bytes += sizeof(bitmap_super_t); 1019 1020 num_pages = DIV_ROUND_UP(bytes, PAGE_SIZE); 1021 offset = slot_number * num_pages; 1022 1023 store->filemap = kmalloc_array(num_pages, sizeof(struct page *), 1024 GFP_KERNEL); 1025 if (!store->filemap) 1026 return -ENOMEM; 1027 1028 if (with_super && !store->sb_page) { 1029 store->sb_page = alloc_page(GFP_KERNEL|__GFP_ZERO); 1030 if (store->sb_page == NULL) 1031 return -ENOMEM; 1032 } 1033 1034 pnum = 0; 1035 if (store->sb_page) { 1036 store->filemap[0] = store->sb_page; 1037 pnum = 1; 1038 store->sb_index = offset; 1039 } 1040 1041 for ( ; pnum < num_pages; pnum++) { 1042 store->filemap[pnum] = alloc_page(GFP_KERNEL|__GFP_ZERO); 1043 if (!store->filemap[pnum]) { 1044 store->file_pages = pnum; 1045 return -ENOMEM; 1046 } 1047 } 1048 store->file_pages = pnum; 1049 1050 /* We need 4 bits per page, rounded up to a multiple 1051 * of sizeof(unsigned long) */ 1052 store->filemap_attr = kzalloc( 1053 roundup(DIV_ROUND_UP(num_pages*4, 8), sizeof(unsigned long)), 1054 GFP_KERNEL); 1055 if (!store->filemap_attr) 1056 return -ENOMEM; 1057 1058 store->bytes = bytes; 1059 1060 return 0; 1061 } 1062 1063 static void md_bitmap_file_unmap(struct bitmap_storage *store) 1064 { 1065 struct file *file = store->file; 1066 struct page *sb_page = store->sb_page; 1067 struct page **map = store->filemap; 1068 int pages = store->file_pages; 1069 1070 while (pages--) 1071 if (map[pages] != sb_page) /* 0 is sb_page, release it below */ 1072 free_buffers(map[pages]); 1073 kfree(map); 1074 kfree(store->filemap_attr); 1075 1076 if (sb_page) 1077 free_buffers(sb_page); 1078 1079 if (file) { 1080 struct inode *inode = file_inode(file); 1081 invalidate_mapping_pages(inode->i_mapping, 0, -1); 1082 fput(file); 1083 } 1084 } 1085 1086 /* 1087 * bitmap_file_kick - if an error occurs while manipulating the bitmap file 1088 * then it is no longer reliable, so we stop using it and we mark the file 1089 * as failed in the superblock 1090 */ 1091 static void md_bitmap_file_kick(struct bitmap *bitmap) 1092 { 1093 if (!test_and_set_bit(BITMAP_STALE, &bitmap->flags)) { 1094 bitmap_update_sb(bitmap); 1095 1096 if (bitmap->storage.file) { 1097 pr_warn("%s: kicking failed bitmap file %pD4 from array!\n", 1098 bmname(bitmap), bitmap->storage.file); 1099 1100 } else 1101 pr_warn("%s: disabling internal bitmap due to errors\n", 1102 bmname(bitmap)); 1103 } 1104 } 1105 1106 enum bitmap_page_attr { 1107 BITMAP_PAGE_DIRTY = 0, /* there are set bits that need to be synced */ 1108 BITMAP_PAGE_PENDING = 1, /* there are bits that are being cleaned. 1109 * i.e. counter is 1 or 2. */ 1110 BITMAP_PAGE_NEEDWRITE = 2, /* there are cleared bits that need to be synced */ 1111 }; 1112 1113 static inline void set_page_attr(struct bitmap *bitmap, int pnum, 1114 enum bitmap_page_attr attr) 1115 { 1116 set_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); 1117 } 1118 1119 static inline void clear_page_attr(struct bitmap *bitmap, int pnum, 1120 enum bitmap_page_attr attr) 1121 { 1122 clear_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); 1123 } 1124 1125 static inline int test_page_attr(struct bitmap *bitmap, int pnum, 1126 enum bitmap_page_attr attr) 1127 { 1128 return test_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); 1129 } 1130 1131 static inline int test_and_clear_page_attr(struct bitmap *bitmap, int pnum, 1132 enum bitmap_page_attr attr) 1133 { 1134 return test_and_clear_bit((pnum<<2) + attr, 1135 bitmap->storage.filemap_attr); 1136 } 1137 /* 1138 * bitmap_file_set_bit -- called before performing a write to the md device 1139 * to set (and eventually sync) a particular bit in the bitmap file 1140 * 1141 * we set the bit immediately, then we record the page number so that 1142 * when an unplug occurs, we can flush the dirty pages out to disk 1143 */ 1144 static void md_bitmap_file_set_bit(struct bitmap *bitmap, sector_t block) 1145 { 1146 unsigned long bit; 1147 struct page *page; 1148 void *kaddr; 1149 unsigned long chunk = block >> bitmap->counts.chunkshift; 1150 struct bitmap_storage *store = &bitmap->storage; 1151 unsigned long index = file_page_index(store, chunk); 1152 unsigned long node_offset = 0; 1153 1154 index += store->sb_index; 1155 if (mddev_is_clustered(bitmap->mddev)) 1156 node_offset = bitmap->cluster_slot * store->file_pages; 1157 1158 page = filemap_get_page(&bitmap->storage, chunk); 1159 if (!page) 1160 return; 1161 bit = file_page_offset(&bitmap->storage, chunk); 1162 1163 /* set the bit */ 1164 kaddr = kmap_atomic(page); 1165 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) 1166 set_bit(bit, kaddr); 1167 else 1168 set_bit_le(bit, kaddr); 1169 kunmap_atomic(kaddr); 1170 pr_debug("set file bit %lu page %lu\n", bit, index); 1171 /* record page number so it gets flushed to disk when unplug occurs */ 1172 set_page_attr(bitmap, index - node_offset, BITMAP_PAGE_DIRTY); 1173 } 1174 1175 static void md_bitmap_file_clear_bit(struct bitmap *bitmap, sector_t block) 1176 { 1177 unsigned long bit; 1178 struct page *page; 1179 void *paddr; 1180 unsigned long chunk = block >> bitmap->counts.chunkshift; 1181 struct bitmap_storage *store = &bitmap->storage; 1182 unsigned long index = file_page_index(store, chunk); 1183 unsigned long node_offset = 0; 1184 1185 index += store->sb_index; 1186 if (mddev_is_clustered(bitmap->mddev)) 1187 node_offset = bitmap->cluster_slot * store->file_pages; 1188 1189 page = filemap_get_page(&bitmap->storage, chunk); 1190 if (!page) 1191 return; 1192 bit = file_page_offset(&bitmap->storage, chunk); 1193 paddr = kmap_atomic(page); 1194 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) 1195 clear_bit(bit, paddr); 1196 else 1197 clear_bit_le(bit, paddr); 1198 kunmap_atomic(paddr); 1199 if (!test_page_attr(bitmap, index - node_offset, BITMAP_PAGE_NEEDWRITE)) { 1200 set_page_attr(bitmap, index - node_offset, BITMAP_PAGE_PENDING); 1201 bitmap->allclean = 0; 1202 } 1203 } 1204 1205 static int md_bitmap_file_test_bit(struct bitmap *bitmap, sector_t block) 1206 { 1207 unsigned long bit; 1208 struct page *page; 1209 void *paddr; 1210 unsigned long chunk = block >> bitmap->counts.chunkshift; 1211 int set = 0; 1212 1213 page = filemap_get_page(&bitmap->storage, chunk); 1214 if (!page) 1215 return -EINVAL; 1216 bit = file_page_offset(&bitmap->storage, chunk); 1217 paddr = kmap_atomic(page); 1218 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) 1219 set = test_bit(bit, paddr); 1220 else 1221 set = test_bit_le(bit, paddr); 1222 kunmap_atomic(paddr); 1223 return set; 1224 } 1225 1226 /* this gets called when the md device is ready to unplug its underlying 1227 * (slave) device queues -- before we let any writes go down, we need to 1228 * sync the dirty pages of the bitmap file to disk */ 1229 static void __bitmap_unplug(struct bitmap *bitmap) 1230 { 1231 unsigned long i; 1232 int dirty, need_write; 1233 int writing = 0; 1234 1235 if (!__bitmap_enabled(bitmap)) 1236 return; 1237 1238 /* look at each page to see if there are any set bits that need to be 1239 * flushed out to disk */ 1240 for (i = 0; i < bitmap->storage.file_pages; i++) { 1241 dirty = test_and_clear_page_attr(bitmap, i, BITMAP_PAGE_DIRTY); 1242 need_write = test_and_clear_page_attr(bitmap, i, 1243 BITMAP_PAGE_NEEDWRITE); 1244 if (dirty || need_write) { 1245 if (!writing) { 1246 md_bitmap_wait_writes(bitmap); 1247 mddev_add_trace_msg(bitmap->mddev, 1248 "md bitmap_unplug"); 1249 } 1250 clear_page_attr(bitmap, i, BITMAP_PAGE_PENDING); 1251 filemap_write_page(bitmap, i, false); 1252 writing = 1; 1253 } 1254 } 1255 if (writing) 1256 md_bitmap_wait_writes(bitmap); 1257 1258 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) 1259 md_bitmap_file_kick(bitmap); 1260 } 1261 1262 struct bitmap_unplug_work { 1263 struct work_struct work; 1264 struct bitmap *bitmap; 1265 struct completion *done; 1266 }; 1267 1268 static void md_bitmap_unplug_fn(struct work_struct *work) 1269 { 1270 struct bitmap_unplug_work *unplug_work = 1271 container_of(work, struct bitmap_unplug_work, work); 1272 1273 __bitmap_unplug(unplug_work->bitmap); 1274 complete(unplug_work->done); 1275 } 1276 1277 static void bitmap_unplug_async(struct bitmap *bitmap) 1278 { 1279 DECLARE_COMPLETION_ONSTACK(done); 1280 struct bitmap_unplug_work unplug_work; 1281 1282 INIT_WORK_ONSTACK(&unplug_work.work, md_bitmap_unplug_fn); 1283 unplug_work.bitmap = bitmap; 1284 unplug_work.done = &done; 1285 1286 queue_work(md_bitmap_wq, &unplug_work.work); 1287 wait_for_completion(&done); 1288 destroy_work_on_stack(&unplug_work.work); 1289 } 1290 1291 static void bitmap_unplug(struct mddev *mddev, bool sync) 1292 { 1293 struct bitmap *bitmap = mddev->bitmap; 1294 1295 if (!bitmap) 1296 return; 1297 1298 if (sync) 1299 __bitmap_unplug(bitmap); 1300 else 1301 bitmap_unplug_async(bitmap); 1302 } 1303 1304 static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed); 1305 1306 /* 1307 * Initialize the in-memory bitmap from the on-disk bitmap and set up the memory 1308 * mapping of the bitmap file. 1309 * 1310 * Special case: If there's no bitmap file, or if the bitmap file had been 1311 * previously kicked from the array, we mark all the bits as 1's in order to 1312 * cause a full resync. 1313 * 1314 * We ignore all bits for sectors that end earlier than 'start'. 1315 * This is used when reading an out-of-date bitmap. 1316 */ 1317 static int md_bitmap_init_from_disk(struct bitmap *bitmap, sector_t start) 1318 { 1319 bool outofdate = test_bit(BITMAP_STALE, &bitmap->flags); 1320 struct mddev *mddev = bitmap->mddev; 1321 unsigned long chunks = bitmap->counts.chunks; 1322 struct bitmap_storage *store = &bitmap->storage; 1323 struct file *file = store->file; 1324 unsigned long node_offset = 0; 1325 unsigned long bit_cnt = 0; 1326 unsigned long i; 1327 int ret; 1328 1329 if (!file && !mddev->bitmap_info.offset) { 1330 /* No permanent bitmap - fill with '1s'. */ 1331 store->filemap = NULL; 1332 store->file_pages = 0; 1333 for (i = 0; i < chunks ; i++) { 1334 /* if the disk bit is set, set the memory bit */ 1335 int needed = ((sector_t)(i+1) << (bitmap->counts.chunkshift) 1336 >= start); 1337 md_bitmap_set_memory_bits(bitmap, 1338 (sector_t)i << bitmap->counts.chunkshift, 1339 needed); 1340 } 1341 return 0; 1342 } 1343 1344 if (file && i_size_read(file->f_mapping->host) < store->bytes) { 1345 pr_warn("%s: bitmap file too short %lu < %lu\n", 1346 bmname(bitmap), 1347 (unsigned long) i_size_read(file->f_mapping->host), 1348 store->bytes); 1349 ret = -ENOSPC; 1350 goto err; 1351 } 1352 1353 if (mddev_is_clustered(mddev)) 1354 node_offset = bitmap->cluster_slot * (DIV_ROUND_UP(store->bytes, PAGE_SIZE)); 1355 1356 for (i = 0; i < store->file_pages; i++) { 1357 struct page *page = store->filemap[i]; 1358 int count; 1359 1360 /* unmap the old page, we're done with it */ 1361 if (i == store->file_pages - 1) 1362 count = store->bytes - i * PAGE_SIZE; 1363 else 1364 count = PAGE_SIZE; 1365 1366 if (file) 1367 ret = read_file_page(file, i, bitmap, count, page); 1368 else 1369 ret = read_sb_page(mddev, 0, page, i + node_offset, 1370 count); 1371 if (ret) 1372 goto err; 1373 } 1374 1375 if (outofdate) { 1376 pr_warn("%s: bitmap file is out of date, doing full recovery\n", 1377 bmname(bitmap)); 1378 1379 for (i = 0; i < store->file_pages; i++) { 1380 struct page *page = store->filemap[i]; 1381 unsigned long offset = 0; 1382 void *paddr; 1383 1384 if (i == 0 && !mddev->bitmap_info.external) 1385 offset = sizeof(bitmap_super_t); 1386 1387 /* 1388 * If the bitmap is out of date, dirty the whole page 1389 * and write it out 1390 */ 1391 paddr = kmap_atomic(page); 1392 memset(paddr + offset, 0xff, PAGE_SIZE - offset); 1393 kunmap_atomic(paddr); 1394 1395 filemap_write_page(bitmap, i, true); 1396 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) { 1397 ret = -EIO; 1398 goto err; 1399 } 1400 } 1401 } 1402 1403 for (i = 0; i < chunks; i++) { 1404 struct page *page = filemap_get_page(&bitmap->storage, i); 1405 unsigned long bit = file_page_offset(&bitmap->storage, i); 1406 void *paddr; 1407 bool was_set; 1408 1409 paddr = kmap_atomic(page); 1410 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) 1411 was_set = test_bit(bit, paddr); 1412 else 1413 was_set = test_bit_le(bit, paddr); 1414 kunmap_atomic(paddr); 1415 1416 if (was_set) { 1417 /* if the disk bit is set, set the memory bit */ 1418 int needed = ((sector_t)(i+1) << bitmap->counts.chunkshift 1419 >= start); 1420 md_bitmap_set_memory_bits(bitmap, 1421 (sector_t)i << bitmap->counts.chunkshift, 1422 needed); 1423 bit_cnt++; 1424 } 1425 } 1426 1427 pr_debug("%s: bitmap initialized from disk: read %lu pages, set %lu of %lu bits\n", 1428 bmname(bitmap), store->file_pages, 1429 bit_cnt, chunks); 1430 1431 return 0; 1432 1433 err: 1434 pr_warn("%s: bitmap initialisation failed: %d\n", 1435 bmname(bitmap), ret); 1436 return ret; 1437 } 1438 1439 /* just flag bitmap pages as needing to be written. */ 1440 static void bitmap_write_all(struct mddev *mddev) 1441 { 1442 int i; 1443 struct bitmap *bitmap = mddev->bitmap; 1444 1445 if (!bitmap || !bitmap->storage.filemap) 1446 return; 1447 1448 /* Only one copy, so nothing needed */ 1449 if (bitmap->storage.file) 1450 return; 1451 1452 for (i = 0; i < bitmap->storage.file_pages; i++) 1453 set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE); 1454 bitmap->allclean = 0; 1455 } 1456 1457 static void md_bitmap_count_page(struct bitmap_counts *bitmap, 1458 sector_t offset, int inc) 1459 { 1460 sector_t chunk = offset >> bitmap->chunkshift; 1461 unsigned long page = chunk >> PAGE_COUNTER_SHIFT; 1462 bitmap->bp[page].count += inc; 1463 md_bitmap_checkfree(bitmap, page); 1464 } 1465 1466 static void md_bitmap_set_pending(struct bitmap_counts *bitmap, sector_t offset) 1467 { 1468 sector_t chunk = offset >> bitmap->chunkshift; 1469 unsigned long page = chunk >> PAGE_COUNTER_SHIFT; 1470 struct bitmap_page *bp = &bitmap->bp[page]; 1471 1472 if (!bp->pending) 1473 bp->pending = 1; 1474 } 1475 1476 static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap, 1477 sector_t offset, sector_t *blocks, 1478 int create); 1479 1480 static void mddev_set_timeout(struct mddev *mddev, unsigned long timeout, 1481 bool force) 1482 { 1483 struct md_thread *thread; 1484 1485 rcu_read_lock(); 1486 thread = rcu_dereference(mddev->thread); 1487 1488 if (!thread) 1489 goto out; 1490 1491 if (force || thread->timeout < MAX_SCHEDULE_TIMEOUT) 1492 thread->timeout = timeout; 1493 1494 out: 1495 rcu_read_unlock(); 1496 } 1497 1498 /* 1499 * bitmap daemon -- periodically wakes up to clean bits and flush pages 1500 * out to disk 1501 */ 1502 static void bitmap_daemon_work(struct mddev *mddev) 1503 { 1504 struct bitmap *bitmap; 1505 unsigned long j; 1506 unsigned long nextpage; 1507 sector_t blocks; 1508 struct bitmap_counts *counts; 1509 1510 /* Use a mutex to guard daemon_work against 1511 * bitmap_destroy. 1512 */ 1513 mutex_lock(&mddev->bitmap_info.mutex); 1514 bitmap = mddev->bitmap; 1515 if (bitmap == NULL) { 1516 mutex_unlock(&mddev->bitmap_info.mutex); 1517 return; 1518 } 1519 if (time_before(jiffies, bitmap->daemon_lastrun 1520 + mddev->bitmap_info.daemon_sleep)) 1521 goto done; 1522 1523 bitmap->daemon_lastrun = jiffies; 1524 if (bitmap->allclean) { 1525 mddev_set_timeout(mddev, MAX_SCHEDULE_TIMEOUT, true); 1526 goto done; 1527 } 1528 bitmap->allclean = 1; 1529 1530 mddev_add_trace_msg(bitmap->mddev, "md bitmap_daemon_work"); 1531 1532 /* Any file-page which is PENDING now needs to be written. 1533 * So set NEEDWRITE now, then after we make any last-minute changes 1534 * we will write it. 1535 */ 1536 for (j = 0; j < bitmap->storage.file_pages; j++) 1537 if (test_and_clear_page_attr(bitmap, j, 1538 BITMAP_PAGE_PENDING)) 1539 set_page_attr(bitmap, j, 1540 BITMAP_PAGE_NEEDWRITE); 1541 1542 if (bitmap->need_sync && 1543 mddev->bitmap_info.external == 0) { 1544 /* Arrange for superblock update as well as 1545 * other changes */ 1546 bitmap_super_t *sb; 1547 bitmap->need_sync = 0; 1548 if (bitmap->storage.filemap) { 1549 sb = kmap_atomic(bitmap->storage.sb_page); 1550 sb->events_cleared = 1551 cpu_to_le64(bitmap->events_cleared); 1552 kunmap_atomic(sb); 1553 set_page_attr(bitmap, 0, 1554 BITMAP_PAGE_NEEDWRITE); 1555 } 1556 } 1557 /* Now look at the bitmap counters and if any are '2' or '1', 1558 * decrement and handle accordingly. 1559 */ 1560 counts = &bitmap->counts; 1561 spin_lock_irq(&counts->lock); 1562 nextpage = 0; 1563 for (j = 0; j < counts->chunks; j++) { 1564 bitmap_counter_t *bmc; 1565 sector_t block = (sector_t)j << counts->chunkshift; 1566 1567 if (j == nextpage) { 1568 nextpage += PAGE_COUNTER_RATIO; 1569 if (!counts->bp[j >> PAGE_COUNTER_SHIFT].pending) { 1570 j |= PAGE_COUNTER_MASK; 1571 continue; 1572 } 1573 counts->bp[j >> PAGE_COUNTER_SHIFT].pending = 0; 1574 } 1575 1576 bmc = md_bitmap_get_counter(counts, block, &blocks, 0); 1577 if (!bmc) { 1578 j |= PAGE_COUNTER_MASK; 1579 continue; 1580 } 1581 if (*bmc == 1 && !bitmap->need_sync) { 1582 /* We can clear the bit */ 1583 *bmc = 0; 1584 md_bitmap_count_page(counts, block, -1); 1585 md_bitmap_file_clear_bit(bitmap, block); 1586 } else if (*bmc && *bmc <= 2) { 1587 *bmc = 1; 1588 md_bitmap_set_pending(counts, block); 1589 bitmap->allclean = 0; 1590 } 1591 } 1592 spin_unlock_irq(&counts->lock); 1593 1594 md_bitmap_wait_writes(bitmap); 1595 /* Now start writeout on any page in NEEDWRITE that isn't DIRTY. 1596 * DIRTY pages need to be written by bitmap_unplug so it can wait 1597 * for them. 1598 * If we find any DIRTY page we stop there and let bitmap_unplug 1599 * handle all the rest. This is important in the case where 1600 * the first blocking holds the superblock and it has been updated. 1601 * We mustn't write any other blocks before the superblock. 1602 */ 1603 for (j = 0; 1604 j < bitmap->storage.file_pages 1605 && !test_bit(BITMAP_STALE, &bitmap->flags); 1606 j++) { 1607 if (test_page_attr(bitmap, j, 1608 BITMAP_PAGE_DIRTY)) 1609 /* bitmap_unplug will handle the rest */ 1610 break; 1611 if (bitmap->storage.filemap && 1612 test_and_clear_page_attr(bitmap, j, 1613 BITMAP_PAGE_NEEDWRITE)) 1614 filemap_write_page(bitmap, j, false); 1615 } 1616 1617 done: 1618 if (bitmap->allclean == 0) 1619 mddev_set_timeout(mddev, mddev->bitmap_info.daemon_sleep, true); 1620 mutex_unlock(&mddev->bitmap_info.mutex); 1621 } 1622 1623 static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap, 1624 sector_t offset, sector_t *blocks, 1625 int create) 1626 __releases(bitmap->lock) 1627 __acquires(bitmap->lock) 1628 { 1629 /* If 'create', we might release the lock and reclaim it. 1630 * The lock must have been taken with interrupts enabled. 1631 * If !create, we don't release the lock. 1632 */ 1633 sector_t chunk = offset >> bitmap->chunkshift; 1634 unsigned long page = chunk >> PAGE_COUNTER_SHIFT; 1635 unsigned long pageoff = (chunk & PAGE_COUNTER_MASK) << COUNTER_BYTE_SHIFT; 1636 sector_t csize = ((sector_t)1) << bitmap->chunkshift; 1637 int err; 1638 1639 if (page >= bitmap->pages) { 1640 /* 1641 * This can happen if bitmap_start_sync goes beyond 1642 * End-of-device while looking for a whole page or 1643 * user set a huge number to sysfs bitmap_set_bits. 1644 */ 1645 *blocks = csize - (offset & (csize - 1)); 1646 return NULL; 1647 } 1648 err = md_bitmap_checkpage(bitmap, page, create, 0); 1649 1650 if (bitmap->bp[page].hijacked || 1651 bitmap->bp[page].map == NULL) 1652 csize = ((sector_t)1) << (bitmap->chunkshift + 1653 PAGE_COUNTER_SHIFT); 1654 1655 *blocks = csize - (offset & (csize - 1)); 1656 1657 if (err < 0) 1658 return NULL; 1659 1660 /* now locked ... */ 1661 1662 if (bitmap->bp[page].hijacked) { /* hijacked pointer */ 1663 /* should we use the first or second counter field 1664 * of the hijacked pointer? */ 1665 int hi = (pageoff > PAGE_COUNTER_MASK); 1666 return &((bitmap_counter_t *) 1667 &bitmap->bp[page].map)[hi]; 1668 } else /* page is allocated */ 1669 return (bitmap_counter_t *) 1670 &(bitmap->bp[page].map[pageoff]); 1671 } 1672 1673 static int bitmap_startwrite(struct mddev *mddev, sector_t offset, 1674 unsigned long sectors, bool behind) 1675 { 1676 struct bitmap *bitmap = mddev->bitmap; 1677 1678 if (!bitmap) 1679 return 0; 1680 1681 if (behind) { 1682 int bw; 1683 atomic_inc(&bitmap->behind_writes); 1684 bw = atomic_read(&bitmap->behind_writes); 1685 if (bw > bitmap->behind_writes_used) 1686 bitmap->behind_writes_used = bw; 1687 1688 pr_debug("inc write-behind count %d/%lu\n", 1689 bw, bitmap->mddev->bitmap_info.max_write_behind); 1690 } 1691 1692 while (sectors) { 1693 sector_t blocks; 1694 bitmap_counter_t *bmc; 1695 1696 spin_lock_irq(&bitmap->counts.lock); 1697 bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 1); 1698 if (!bmc) { 1699 spin_unlock_irq(&bitmap->counts.lock); 1700 return 0; 1701 } 1702 1703 if (unlikely(COUNTER(*bmc) == COUNTER_MAX)) { 1704 DEFINE_WAIT(__wait); 1705 /* note that it is safe to do the prepare_to_wait 1706 * after the test as long as we do it before dropping 1707 * the spinlock. 1708 */ 1709 prepare_to_wait(&bitmap->overflow_wait, &__wait, 1710 TASK_UNINTERRUPTIBLE); 1711 spin_unlock_irq(&bitmap->counts.lock); 1712 schedule(); 1713 finish_wait(&bitmap->overflow_wait, &__wait); 1714 continue; 1715 } 1716 1717 switch (*bmc) { 1718 case 0: 1719 md_bitmap_file_set_bit(bitmap, offset); 1720 md_bitmap_count_page(&bitmap->counts, offset, 1); 1721 fallthrough; 1722 case 1: 1723 *bmc = 2; 1724 } 1725 1726 (*bmc)++; 1727 1728 spin_unlock_irq(&bitmap->counts.lock); 1729 1730 offset += blocks; 1731 if (sectors > blocks) 1732 sectors -= blocks; 1733 else 1734 sectors = 0; 1735 } 1736 return 0; 1737 } 1738 1739 static void bitmap_endwrite(struct mddev *mddev, sector_t offset, 1740 unsigned long sectors, bool success, bool behind) 1741 { 1742 struct bitmap *bitmap = mddev->bitmap; 1743 1744 if (!bitmap) 1745 return; 1746 1747 if (behind) { 1748 if (atomic_dec_and_test(&bitmap->behind_writes)) 1749 wake_up(&bitmap->behind_wait); 1750 pr_debug("dec write-behind count %d/%lu\n", 1751 atomic_read(&bitmap->behind_writes), 1752 bitmap->mddev->bitmap_info.max_write_behind); 1753 } 1754 1755 while (sectors) { 1756 sector_t blocks; 1757 unsigned long flags; 1758 bitmap_counter_t *bmc; 1759 1760 spin_lock_irqsave(&bitmap->counts.lock, flags); 1761 bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 0); 1762 if (!bmc) { 1763 spin_unlock_irqrestore(&bitmap->counts.lock, flags); 1764 return; 1765 } 1766 1767 if (success && !bitmap->mddev->degraded && 1768 bitmap->events_cleared < bitmap->mddev->events) { 1769 bitmap->events_cleared = bitmap->mddev->events; 1770 bitmap->need_sync = 1; 1771 sysfs_notify_dirent_safe(bitmap->sysfs_can_clear); 1772 } 1773 1774 if (!success && !NEEDED(*bmc)) 1775 *bmc |= NEEDED_MASK; 1776 1777 if (COUNTER(*bmc) == COUNTER_MAX) 1778 wake_up(&bitmap->overflow_wait); 1779 1780 (*bmc)--; 1781 if (*bmc <= 2) { 1782 md_bitmap_set_pending(&bitmap->counts, offset); 1783 bitmap->allclean = 0; 1784 } 1785 spin_unlock_irqrestore(&bitmap->counts.lock, flags); 1786 offset += blocks; 1787 if (sectors > blocks) 1788 sectors -= blocks; 1789 else 1790 sectors = 0; 1791 } 1792 } 1793 1794 static bool __bitmap_start_sync(struct bitmap *bitmap, sector_t offset, 1795 sector_t *blocks, bool degraded) 1796 { 1797 bitmap_counter_t *bmc; 1798 bool rv; 1799 1800 if (bitmap == NULL) {/* FIXME or bitmap set as 'failed' */ 1801 *blocks = 1024; 1802 return true; /* always resync if no bitmap */ 1803 } 1804 spin_lock_irq(&bitmap->counts.lock); 1805 1806 rv = false; 1807 bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0); 1808 if (bmc) { 1809 /* locked */ 1810 if (RESYNC(*bmc)) { 1811 rv = true; 1812 } else if (NEEDED(*bmc)) { 1813 rv = true; 1814 if (!degraded) { /* don't set/clear bits if degraded */ 1815 *bmc |= RESYNC_MASK; 1816 *bmc &= ~NEEDED_MASK; 1817 } 1818 } 1819 } 1820 spin_unlock_irq(&bitmap->counts.lock); 1821 1822 return rv; 1823 } 1824 1825 static bool bitmap_start_sync(struct mddev *mddev, sector_t offset, 1826 sector_t *blocks, bool degraded) 1827 { 1828 /* bitmap_start_sync must always report on multiples of whole 1829 * pages, otherwise resync (which is very PAGE_SIZE based) will 1830 * get confused. 1831 * So call __bitmap_start_sync repeatedly (if needed) until 1832 * At least PAGE_SIZE>>9 blocks are covered. 1833 * Return the 'or' of the result. 1834 */ 1835 bool rv = false; 1836 sector_t blocks1; 1837 1838 *blocks = 0; 1839 while (*blocks < (PAGE_SIZE>>9)) { 1840 rv |= __bitmap_start_sync(mddev->bitmap, offset, 1841 &blocks1, degraded); 1842 offset += blocks1; 1843 *blocks += blocks1; 1844 } 1845 1846 return rv; 1847 } 1848 1849 static void __bitmap_end_sync(struct bitmap *bitmap, sector_t offset, 1850 sector_t *blocks, bool aborted) 1851 { 1852 bitmap_counter_t *bmc; 1853 unsigned long flags; 1854 1855 if (bitmap == NULL) { 1856 *blocks = 1024; 1857 return; 1858 } 1859 spin_lock_irqsave(&bitmap->counts.lock, flags); 1860 bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0); 1861 if (bmc == NULL) 1862 goto unlock; 1863 /* locked */ 1864 if (RESYNC(*bmc)) { 1865 *bmc &= ~RESYNC_MASK; 1866 1867 if (!NEEDED(*bmc) && aborted) 1868 *bmc |= NEEDED_MASK; 1869 else { 1870 if (*bmc <= 2) { 1871 md_bitmap_set_pending(&bitmap->counts, offset); 1872 bitmap->allclean = 0; 1873 } 1874 } 1875 } 1876 unlock: 1877 spin_unlock_irqrestore(&bitmap->counts.lock, flags); 1878 } 1879 1880 static void bitmap_end_sync(struct mddev *mddev, sector_t offset, 1881 sector_t *blocks) 1882 { 1883 __bitmap_end_sync(mddev->bitmap, offset, blocks, true); 1884 } 1885 1886 static void bitmap_close_sync(struct mddev *mddev) 1887 { 1888 /* Sync has finished, and any bitmap chunks that weren't synced 1889 * properly have been aborted. It remains to us to clear the 1890 * RESYNC bit wherever it is still on 1891 */ 1892 sector_t sector = 0; 1893 sector_t blocks; 1894 struct bitmap *bitmap = mddev->bitmap; 1895 1896 if (!bitmap) 1897 return; 1898 1899 while (sector < bitmap->mddev->resync_max_sectors) { 1900 __bitmap_end_sync(bitmap, sector, &blocks, false); 1901 sector += blocks; 1902 } 1903 } 1904 1905 static void bitmap_cond_end_sync(struct mddev *mddev, sector_t sector, 1906 bool force) 1907 { 1908 sector_t s = 0; 1909 sector_t blocks; 1910 struct bitmap *bitmap = mddev->bitmap; 1911 1912 if (!bitmap) 1913 return; 1914 if (sector == 0) { 1915 bitmap->last_end_sync = jiffies; 1916 return; 1917 } 1918 if (!force && time_before(jiffies, (bitmap->last_end_sync 1919 + bitmap->mddev->bitmap_info.daemon_sleep))) 1920 return; 1921 wait_event(bitmap->mddev->recovery_wait, 1922 atomic_read(&bitmap->mddev->recovery_active) == 0); 1923 1924 bitmap->mddev->curr_resync_completed = sector; 1925 set_bit(MD_SB_CHANGE_CLEAN, &bitmap->mddev->sb_flags); 1926 sector &= ~((1ULL << bitmap->counts.chunkshift) - 1); 1927 s = 0; 1928 while (s < sector && s < bitmap->mddev->resync_max_sectors) { 1929 __bitmap_end_sync(bitmap, s, &blocks, false); 1930 s += blocks; 1931 } 1932 bitmap->last_end_sync = jiffies; 1933 sysfs_notify_dirent_safe(bitmap->mddev->sysfs_completed); 1934 } 1935 1936 static void bitmap_sync_with_cluster(struct mddev *mddev, 1937 sector_t old_lo, sector_t old_hi, 1938 sector_t new_lo, sector_t new_hi) 1939 { 1940 struct bitmap *bitmap = mddev->bitmap; 1941 sector_t sector, blocks = 0; 1942 1943 for (sector = old_lo; sector < new_lo; ) { 1944 __bitmap_end_sync(bitmap, sector, &blocks, false); 1945 sector += blocks; 1946 } 1947 WARN((blocks > new_lo) && old_lo, "alignment is not correct for lo\n"); 1948 1949 for (sector = old_hi; sector < new_hi; ) { 1950 bitmap_start_sync(mddev, sector, &blocks, false); 1951 sector += blocks; 1952 } 1953 WARN((blocks > new_hi) && old_hi, "alignment is not correct for hi\n"); 1954 } 1955 1956 static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed) 1957 { 1958 /* For each chunk covered by any of these sectors, set the 1959 * counter to 2 and possibly set resync_needed. They should all 1960 * be 0 at this point 1961 */ 1962 1963 sector_t secs; 1964 bitmap_counter_t *bmc; 1965 spin_lock_irq(&bitmap->counts.lock); 1966 bmc = md_bitmap_get_counter(&bitmap->counts, offset, &secs, 1); 1967 if (!bmc) { 1968 spin_unlock_irq(&bitmap->counts.lock); 1969 return; 1970 } 1971 if (!*bmc) { 1972 *bmc = 2; 1973 md_bitmap_count_page(&bitmap->counts, offset, 1); 1974 md_bitmap_set_pending(&bitmap->counts, offset); 1975 bitmap->allclean = 0; 1976 } 1977 if (needed) 1978 *bmc |= NEEDED_MASK; 1979 spin_unlock_irq(&bitmap->counts.lock); 1980 } 1981 1982 /* dirty the memory and file bits for bitmap chunks "s" to "e" */ 1983 static void bitmap_dirty_bits(struct mddev *mddev, unsigned long s, 1984 unsigned long e) 1985 { 1986 unsigned long chunk; 1987 struct bitmap *bitmap = mddev->bitmap; 1988 1989 if (!bitmap) 1990 return; 1991 1992 for (chunk = s; chunk <= e; chunk++) { 1993 sector_t sec = (sector_t)chunk << bitmap->counts.chunkshift; 1994 1995 md_bitmap_set_memory_bits(bitmap, sec, 1); 1996 md_bitmap_file_set_bit(bitmap, sec); 1997 if (sec < bitmap->mddev->recovery_cp) 1998 /* We are asserting that the array is dirty, 1999 * so move the recovery_cp address back so 2000 * that it is obvious that it is dirty 2001 */ 2002 bitmap->mddev->recovery_cp = sec; 2003 } 2004 } 2005 2006 static void bitmap_flush(struct mddev *mddev) 2007 { 2008 struct bitmap *bitmap = mddev->bitmap; 2009 long sleep; 2010 2011 if (!bitmap) /* there was no bitmap */ 2012 return; 2013 2014 /* run the daemon_work three time to ensure everything is flushed 2015 * that can be 2016 */ 2017 sleep = mddev->bitmap_info.daemon_sleep * 2; 2018 bitmap->daemon_lastrun -= sleep; 2019 bitmap_daemon_work(mddev); 2020 bitmap->daemon_lastrun -= sleep; 2021 bitmap_daemon_work(mddev); 2022 bitmap->daemon_lastrun -= sleep; 2023 bitmap_daemon_work(mddev); 2024 if (mddev->bitmap_info.external) 2025 md_super_wait(mddev); 2026 bitmap_update_sb(bitmap); 2027 } 2028 2029 static void md_bitmap_free(void *data) 2030 { 2031 unsigned long k, pages; 2032 struct bitmap_page *bp; 2033 struct bitmap *bitmap = data; 2034 2035 if (!bitmap) /* there was no bitmap */ 2036 return; 2037 2038 if (bitmap->sysfs_can_clear) 2039 sysfs_put(bitmap->sysfs_can_clear); 2040 2041 if (mddev_is_clustered(bitmap->mddev) && bitmap->mddev->cluster_info && 2042 bitmap->cluster_slot == md_cluster_ops->slot_number(bitmap->mddev)) 2043 md_cluster_stop(bitmap->mddev); 2044 2045 /* Shouldn't be needed - but just in case.... */ 2046 wait_event(bitmap->write_wait, 2047 atomic_read(&bitmap->pending_writes) == 0); 2048 2049 /* release the bitmap file */ 2050 md_bitmap_file_unmap(&bitmap->storage); 2051 2052 bp = bitmap->counts.bp; 2053 pages = bitmap->counts.pages; 2054 2055 /* free all allocated memory */ 2056 2057 if (bp) /* deallocate the page memory */ 2058 for (k = 0; k < pages; k++) 2059 if (bp[k].map && !bp[k].hijacked) 2060 kfree(bp[k].map); 2061 kfree(bp); 2062 kfree(bitmap); 2063 } 2064 2065 static void bitmap_wait_behind_writes(struct mddev *mddev) 2066 { 2067 struct bitmap *bitmap = mddev->bitmap; 2068 2069 /* wait for behind writes to complete */ 2070 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2071 pr_debug("md:%s: behind writes in progress - waiting to stop.\n", 2072 mdname(mddev)); 2073 /* need to kick something here to make sure I/O goes? */ 2074 wait_event(bitmap->behind_wait, 2075 atomic_read(&bitmap->behind_writes) == 0); 2076 } 2077 } 2078 2079 static void bitmap_destroy(struct mddev *mddev) 2080 { 2081 struct bitmap *bitmap = mddev->bitmap; 2082 2083 if (!bitmap) /* there was no bitmap */ 2084 return; 2085 2086 bitmap_wait_behind_writes(mddev); 2087 if (!mddev->serialize_policy) 2088 mddev_destroy_serial_pool(mddev, NULL); 2089 2090 mutex_lock(&mddev->bitmap_info.mutex); 2091 spin_lock(&mddev->lock); 2092 mddev->bitmap = NULL; /* disconnect from the md device */ 2093 spin_unlock(&mddev->lock); 2094 mutex_unlock(&mddev->bitmap_info.mutex); 2095 mddev_set_timeout(mddev, MAX_SCHEDULE_TIMEOUT, true); 2096 2097 md_bitmap_free(bitmap); 2098 } 2099 2100 /* 2101 * initialize the bitmap structure 2102 * if this returns an error, bitmap_destroy must be called to do clean up 2103 * once mddev->bitmap is set 2104 */ 2105 static struct bitmap *__bitmap_create(struct mddev *mddev, int slot) 2106 { 2107 struct bitmap *bitmap; 2108 sector_t blocks = mddev->resync_max_sectors; 2109 struct file *file = mddev->bitmap_info.file; 2110 int err; 2111 struct kernfs_node *bm = NULL; 2112 2113 BUILD_BUG_ON(sizeof(bitmap_super_t) != 256); 2114 2115 BUG_ON(file && mddev->bitmap_info.offset); 2116 2117 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 2118 pr_notice("md/raid:%s: array with journal cannot have bitmap\n", 2119 mdname(mddev)); 2120 return ERR_PTR(-EBUSY); 2121 } 2122 2123 bitmap = kzalloc(sizeof(*bitmap), GFP_KERNEL); 2124 if (!bitmap) 2125 return ERR_PTR(-ENOMEM); 2126 2127 spin_lock_init(&bitmap->counts.lock); 2128 atomic_set(&bitmap->pending_writes, 0); 2129 init_waitqueue_head(&bitmap->write_wait); 2130 init_waitqueue_head(&bitmap->overflow_wait); 2131 init_waitqueue_head(&bitmap->behind_wait); 2132 2133 bitmap->mddev = mddev; 2134 bitmap->cluster_slot = slot; 2135 2136 if (mddev->kobj.sd) 2137 bm = sysfs_get_dirent(mddev->kobj.sd, "bitmap"); 2138 if (bm) { 2139 bitmap->sysfs_can_clear = sysfs_get_dirent(bm, "can_clear"); 2140 sysfs_put(bm); 2141 } else 2142 bitmap->sysfs_can_clear = NULL; 2143 2144 bitmap->storage.file = file; 2145 if (file) { 2146 get_file(file); 2147 /* As future accesses to this file will use bmap, 2148 * and bypass the page cache, we must sync the file 2149 * first. 2150 */ 2151 vfs_fsync(file, 1); 2152 } 2153 /* read superblock from bitmap file (this sets mddev->bitmap_info.chunksize) */ 2154 if (!mddev->bitmap_info.external) { 2155 /* 2156 * If 'MD_ARRAY_FIRST_USE' is set, then device-mapper is 2157 * instructing us to create a new on-disk bitmap instance. 2158 */ 2159 if (test_and_clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags)) 2160 err = md_bitmap_new_disk_sb(bitmap); 2161 else 2162 err = md_bitmap_read_sb(bitmap); 2163 } else { 2164 err = 0; 2165 if (mddev->bitmap_info.chunksize == 0 || 2166 mddev->bitmap_info.daemon_sleep == 0) 2167 /* chunksize and time_base need to be 2168 * set first. */ 2169 err = -EINVAL; 2170 } 2171 if (err) 2172 goto error; 2173 2174 bitmap->daemon_lastrun = jiffies; 2175 err = __bitmap_resize(bitmap, blocks, mddev->bitmap_info.chunksize, 2176 true); 2177 if (err) 2178 goto error; 2179 2180 pr_debug("created bitmap (%lu pages) for device %s\n", 2181 bitmap->counts.pages, bmname(bitmap)); 2182 2183 err = test_bit(BITMAP_WRITE_ERROR, &bitmap->flags) ? -EIO : 0; 2184 if (err) 2185 goto error; 2186 2187 return bitmap; 2188 error: 2189 md_bitmap_free(bitmap); 2190 return ERR_PTR(err); 2191 } 2192 2193 static int bitmap_create(struct mddev *mddev, int slot) 2194 { 2195 struct bitmap *bitmap = __bitmap_create(mddev, slot); 2196 2197 if (IS_ERR(bitmap)) 2198 return PTR_ERR(bitmap); 2199 2200 mddev->bitmap = bitmap; 2201 return 0; 2202 } 2203 2204 static int bitmap_load(struct mddev *mddev) 2205 { 2206 int err = 0; 2207 sector_t start = 0; 2208 sector_t sector = 0; 2209 struct bitmap *bitmap = mddev->bitmap; 2210 struct md_rdev *rdev; 2211 2212 if (!bitmap) 2213 goto out; 2214 2215 rdev_for_each(rdev, mddev) 2216 mddev_create_serial_pool(mddev, rdev); 2217 2218 if (mddev_is_clustered(mddev)) 2219 md_cluster_ops->load_bitmaps(mddev, mddev->bitmap_info.nodes); 2220 2221 /* Clear out old bitmap info first: Either there is none, or we 2222 * are resuming after someone else has possibly changed things, 2223 * so we should forget old cached info. 2224 * All chunks should be clean, but some might need_sync. 2225 */ 2226 while (sector < mddev->resync_max_sectors) { 2227 sector_t blocks; 2228 bitmap_start_sync(mddev, sector, &blocks, false); 2229 sector += blocks; 2230 } 2231 bitmap_close_sync(mddev); 2232 2233 if (mddev->degraded == 0 2234 || bitmap->events_cleared == mddev->events) 2235 /* no need to keep dirty bits to optimise a 2236 * re-add of a missing device */ 2237 start = mddev->recovery_cp; 2238 2239 mutex_lock(&mddev->bitmap_info.mutex); 2240 err = md_bitmap_init_from_disk(bitmap, start); 2241 mutex_unlock(&mddev->bitmap_info.mutex); 2242 2243 if (err) 2244 goto out; 2245 clear_bit(BITMAP_STALE, &bitmap->flags); 2246 2247 /* Kick recovery in case any bits were set */ 2248 set_bit(MD_RECOVERY_NEEDED, &bitmap->mddev->recovery); 2249 2250 mddev_set_timeout(mddev, mddev->bitmap_info.daemon_sleep, true); 2251 md_wakeup_thread(mddev->thread); 2252 2253 bitmap_update_sb(bitmap); 2254 2255 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) 2256 err = -EIO; 2257 out: 2258 return err; 2259 } 2260 2261 /* caller need to free returned bitmap with md_bitmap_free() */ 2262 static void *bitmap_get_from_slot(struct mddev *mddev, int slot) 2263 { 2264 int rv = 0; 2265 struct bitmap *bitmap; 2266 2267 bitmap = __bitmap_create(mddev, slot); 2268 if (IS_ERR(bitmap)) { 2269 rv = PTR_ERR(bitmap); 2270 return ERR_PTR(rv); 2271 } 2272 2273 rv = md_bitmap_init_from_disk(bitmap, 0); 2274 if (rv) { 2275 md_bitmap_free(bitmap); 2276 return ERR_PTR(rv); 2277 } 2278 2279 return bitmap; 2280 } 2281 2282 /* Loads the bitmap associated with slot and copies the resync information 2283 * to our bitmap 2284 */ 2285 static int bitmap_copy_from_slot(struct mddev *mddev, int slot, sector_t *low, 2286 sector_t *high, bool clear_bits) 2287 { 2288 int rv = 0, i, j; 2289 sector_t block, lo = 0, hi = 0; 2290 struct bitmap_counts *counts; 2291 struct bitmap *bitmap; 2292 2293 bitmap = bitmap_get_from_slot(mddev, slot); 2294 if (IS_ERR(bitmap)) { 2295 pr_err("%s can't get bitmap from slot %d\n", __func__, slot); 2296 return -1; 2297 } 2298 2299 counts = &bitmap->counts; 2300 for (j = 0; j < counts->chunks; j++) { 2301 block = (sector_t)j << counts->chunkshift; 2302 if (md_bitmap_file_test_bit(bitmap, block)) { 2303 if (!lo) 2304 lo = block; 2305 hi = block; 2306 md_bitmap_file_clear_bit(bitmap, block); 2307 md_bitmap_set_memory_bits(mddev->bitmap, block, 1); 2308 md_bitmap_file_set_bit(mddev->bitmap, block); 2309 } 2310 } 2311 2312 if (clear_bits) { 2313 bitmap_update_sb(bitmap); 2314 /* BITMAP_PAGE_PENDING is set, but bitmap_unplug needs 2315 * BITMAP_PAGE_DIRTY or _NEEDWRITE to write ... */ 2316 for (i = 0; i < bitmap->storage.file_pages; i++) 2317 if (test_page_attr(bitmap, i, BITMAP_PAGE_PENDING)) 2318 set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE); 2319 __bitmap_unplug(bitmap); 2320 } 2321 __bitmap_unplug(mddev->bitmap); 2322 *low = lo; 2323 *high = hi; 2324 md_bitmap_free(bitmap); 2325 2326 return rv; 2327 } 2328 2329 static void bitmap_set_pages(void *data, unsigned long pages) 2330 { 2331 struct bitmap *bitmap = data; 2332 2333 bitmap->counts.pages = pages; 2334 } 2335 2336 static int bitmap_get_stats(void *data, struct md_bitmap_stats *stats) 2337 { 2338 struct bitmap_storage *storage; 2339 struct bitmap_counts *counts; 2340 struct bitmap *bitmap = data; 2341 bitmap_super_t *sb; 2342 2343 if (!bitmap) 2344 return -ENOENT; 2345 2346 sb = kmap_local_page(bitmap->storage.sb_page); 2347 stats->sync_size = le64_to_cpu(sb->sync_size); 2348 kunmap_local(sb); 2349 2350 counts = &bitmap->counts; 2351 stats->missing_pages = counts->missing_pages; 2352 stats->pages = counts->pages; 2353 2354 storage = &bitmap->storage; 2355 stats->file_pages = storage->file_pages; 2356 stats->file = storage->file; 2357 2358 stats->behind_writes = atomic_read(&bitmap->behind_writes); 2359 stats->behind_wait = wq_has_sleeper(&bitmap->behind_wait); 2360 stats->events_cleared = bitmap->events_cleared; 2361 return 0; 2362 } 2363 2364 static int __bitmap_resize(struct bitmap *bitmap, sector_t blocks, 2365 int chunksize, bool init) 2366 { 2367 /* If chunk_size is 0, choose an appropriate chunk size. 2368 * Then possibly allocate new storage space. 2369 * Then quiesce, copy bits, replace bitmap, and re-start 2370 * 2371 * This function is called both to set up the initial bitmap 2372 * and to resize the bitmap while the array is active. 2373 * If this happens as a result of the array being resized, 2374 * chunksize will be zero, and we need to choose a suitable 2375 * chunksize, otherwise we use what we are given. 2376 */ 2377 struct bitmap_storage store; 2378 struct bitmap_counts old_counts; 2379 unsigned long chunks; 2380 sector_t block; 2381 sector_t old_blocks, new_blocks; 2382 int chunkshift; 2383 int ret = 0; 2384 long pages; 2385 struct bitmap_page *new_bp; 2386 2387 if (bitmap->storage.file && !init) { 2388 pr_info("md: cannot resize file-based bitmap\n"); 2389 return -EINVAL; 2390 } 2391 2392 if (chunksize == 0) { 2393 /* If there is enough space, leave the chunk size unchanged, 2394 * else increase by factor of two until there is enough space. 2395 */ 2396 long bytes; 2397 long space = bitmap->mddev->bitmap_info.space; 2398 2399 if (space == 0) { 2400 /* We don't know how much space there is, so limit 2401 * to current size - in sectors. 2402 */ 2403 bytes = DIV_ROUND_UP(bitmap->counts.chunks, 8); 2404 if (!bitmap->mddev->bitmap_info.external) 2405 bytes += sizeof(bitmap_super_t); 2406 space = DIV_ROUND_UP(bytes, 512); 2407 bitmap->mddev->bitmap_info.space = space; 2408 } 2409 chunkshift = bitmap->counts.chunkshift; 2410 chunkshift--; 2411 do { 2412 /* 'chunkshift' is shift from block size to chunk size */ 2413 chunkshift++; 2414 chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift); 2415 bytes = DIV_ROUND_UP(chunks, 8); 2416 if (!bitmap->mddev->bitmap_info.external) 2417 bytes += sizeof(bitmap_super_t); 2418 } while (bytes > (space << 9) && (chunkshift + BITMAP_BLOCK_SHIFT) < 2419 (BITS_PER_BYTE * sizeof(((bitmap_super_t *)0)->chunksize) - 1)); 2420 } else 2421 chunkshift = ffz(~chunksize) - BITMAP_BLOCK_SHIFT; 2422 2423 chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift); 2424 memset(&store, 0, sizeof(store)); 2425 if (bitmap->mddev->bitmap_info.offset || bitmap->mddev->bitmap_info.file) 2426 ret = md_bitmap_storage_alloc(&store, chunks, 2427 !bitmap->mddev->bitmap_info.external, 2428 mddev_is_clustered(bitmap->mddev) 2429 ? bitmap->cluster_slot : 0); 2430 if (ret) { 2431 md_bitmap_file_unmap(&store); 2432 goto err; 2433 } 2434 2435 pages = DIV_ROUND_UP(chunks, PAGE_COUNTER_RATIO); 2436 2437 new_bp = kcalloc(pages, sizeof(*new_bp), GFP_KERNEL); 2438 ret = -ENOMEM; 2439 if (!new_bp) { 2440 md_bitmap_file_unmap(&store); 2441 goto err; 2442 } 2443 2444 if (!init) 2445 bitmap->mddev->pers->quiesce(bitmap->mddev, 1); 2446 2447 store.file = bitmap->storage.file; 2448 bitmap->storage.file = NULL; 2449 2450 if (store.sb_page && bitmap->storage.sb_page) 2451 memcpy(page_address(store.sb_page), 2452 page_address(bitmap->storage.sb_page), 2453 sizeof(bitmap_super_t)); 2454 spin_lock_irq(&bitmap->counts.lock); 2455 md_bitmap_file_unmap(&bitmap->storage); 2456 bitmap->storage = store; 2457 2458 old_counts = bitmap->counts; 2459 bitmap->counts.bp = new_bp; 2460 bitmap->counts.pages = pages; 2461 bitmap->counts.missing_pages = pages; 2462 bitmap->counts.chunkshift = chunkshift; 2463 bitmap->counts.chunks = chunks; 2464 bitmap->mddev->bitmap_info.chunksize = 1UL << (chunkshift + 2465 BITMAP_BLOCK_SHIFT); 2466 2467 blocks = min(old_counts.chunks << old_counts.chunkshift, 2468 chunks << chunkshift); 2469 2470 /* For cluster raid, need to pre-allocate bitmap */ 2471 if (mddev_is_clustered(bitmap->mddev)) { 2472 unsigned long page; 2473 for (page = 0; page < pages; page++) { 2474 ret = md_bitmap_checkpage(&bitmap->counts, page, 1, 1); 2475 if (ret) { 2476 unsigned long k; 2477 2478 /* deallocate the page memory */ 2479 for (k = 0; k < page; k++) { 2480 kfree(new_bp[k].map); 2481 } 2482 kfree(new_bp); 2483 2484 /* restore some fields from old_counts */ 2485 bitmap->counts.bp = old_counts.bp; 2486 bitmap->counts.pages = old_counts.pages; 2487 bitmap->counts.missing_pages = old_counts.pages; 2488 bitmap->counts.chunkshift = old_counts.chunkshift; 2489 bitmap->counts.chunks = old_counts.chunks; 2490 bitmap->mddev->bitmap_info.chunksize = 2491 1UL << (old_counts.chunkshift + BITMAP_BLOCK_SHIFT); 2492 blocks = old_counts.chunks << old_counts.chunkshift; 2493 pr_warn("Could not pre-allocate in-memory bitmap for cluster raid\n"); 2494 break; 2495 } else 2496 bitmap->counts.bp[page].count += 1; 2497 } 2498 } 2499 2500 for (block = 0; block < blocks; ) { 2501 bitmap_counter_t *bmc_old, *bmc_new; 2502 int set; 2503 2504 bmc_old = md_bitmap_get_counter(&old_counts, block, &old_blocks, 0); 2505 set = bmc_old && NEEDED(*bmc_old); 2506 2507 if (set) { 2508 bmc_new = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1); 2509 if (bmc_new) { 2510 if (*bmc_new == 0) { 2511 /* need to set on-disk bits too. */ 2512 sector_t end = block + new_blocks; 2513 sector_t start = block >> chunkshift; 2514 2515 start <<= chunkshift; 2516 while (start < end) { 2517 md_bitmap_file_set_bit(bitmap, block); 2518 start += 1 << chunkshift; 2519 } 2520 *bmc_new = 2; 2521 md_bitmap_count_page(&bitmap->counts, block, 1); 2522 md_bitmap_set_pending(&bitmap->counts, block); 2523 } 2524 *bmc_new |= NEEDED_MASK; 2525 } 2526 if (new_blocks < old_blocks) 2527 old_blocks = new_blocks; 2528 } 2529 block += old_blocks; 2530 } 2531 2532 if (bitmap->counts.bp != old_counts.bp) { 2533 unsigned long k; 2534 for (k = 0; k < old_counts.pages; k++) 2535 if (!old_counts.bp[k].hijacked) 2536 kfree(old_counts.bp[k].map); 2537 kfree(old_counts.bp); 2538 } 2539 2540 if (!init) { 2541 int i; 2542 while (block < (chunks << chunkshift)) { 2543 bitmap_counter_t *bmc; 2544 bmc = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1); 2545 if (bmc) { 2546 /* new space. It needs to be resynced, so 2547 * we set NEEDED_MASK. 2548 */ 2549 if (*bmc == 0) { 2550 *bmc = NEEDED_MASK | 2; 2551 md_bitmap_count_page(&bitmap->counts, block, 1); 2552 md_bitmap_set_pending(&bitmap->counts, block); 2553 } 2554 } 2555 block += new_blocks; 2556 } 2557 for (i = 0; i < bitmap->storage.file_pages; i++) 2558 set_page_attr(bitmap, i, BITMAP_PAGE_DIRTY); 2559 } 2560 spin_unlock_irq(&bitmap->counts.lock); 2561 2562 if (!init) { 2563 __bitmap_unplug(bitmap); 2564 bitmap->mddev->pers->quiesce(bitmap->mddev, 0); 2565 } 2566 ret = 0; 2567 err: 2568 return ret; 2569 } 2570 2571 static int bitmap_resize(struct mddev *mddev, sector_t blocks, int chunksize, 2572 bool init) 2573 { 2574 struct bitmap *bitmap = mddev->bitmap; 2575 2576 if (!bitmap) 2577 return 0; 2578 2579 return __bitmap_resize(bitmap, blocks, chunksize, init); 2580 } 2581 2582 static ssize_t 2583 location_show(struct mddev *mddev, char *page) 2584 { 2585 ssize_t len; 2586 if (mddev->bitmap_info.file) 2587 len = sprintf(page, "file"); 2588 else if (mddev->bitmap_info.offset) 2589 len = sprintf(page, "%+lld", (long long)mddev->bitmap_info.offset); 2590 else 2591 len = sprintf(page, "none"); 2592 len += sprintf(page+len, "\n"); 2593 return len; 2594 } 2595 2596 static ssize_t 2597 location_store(struct mddev *mddev, const char *buf, size_t len) 2598 { 2599 int rv; 2600 2601 rv = mddev_suspend_and_lock(mddev); 2602 if (rv) 2603 return rv; 2604 2605 if (mddev->pers) { 2606 if (mddev->recovery || mddev->sync_thread) { 2607 rv = -EBUSY; 2608 goto out; 2609 } 2610 } 2611 2612 if (mddev->bitmap || mddev->bitmap_info.file || 2613 mddev->bitmap_info.offset) { 2614 /* bitmap already configured. Only option is to clear it */ 2615 if (strncmp(buf, "none", 4) != 0) { 2616 rv = -EBUSY; 2617 goto out; 2618 } 2619 2620 bitmap_destroy(mddev); 2621 mddev->bitmap_info.offset = 0; 2622 if (mddev->bitmap_info.file) { 2623 struct file *f = mddev->bitmap_info.file; 2624 mddev->bitmap_info.file = NULL; 2625 fput(f); 2626 } 2627 } else { 2628 /* No bitmap, OK to set a location */ 2629 long long offset; 2630 2631 if (strncmp(buf, "none", 4) == 0) 2632 /* nothing to be done */; 2633 else if (strncmp(buf, "file:", 5) == 0) { 2634 /* Not supported yet */ 2635 rv = -EINVAL; 2636 goto out; 2637 } else { 2638 if (buf[0] == '+') 2639 rv = kstrtoll(buf+1, 10, &offset); 2640 else 2641 rv = kstrtoll(buf, 10, &offset); 2642 if (rv) 2643 goto out; 2644 if (offset == 0) { 2645 rv = -EINVAL; 2646 goto out; 2647 } 2648 if (mddev->bitmap_info.external == 0 && 2649 mddev->major_version == 0 && 2650 offset != mddev->bitmap_info.default_offset) { 2651 rv = -EINVAL; 2652 goto out; 2653 } 2654 2655 mddev->bitmap_info.offset = offset; 2656 rv = bitmap_create(mddev, -1); 2657 if (rv) 2658 goto out; 2659 2660 rv = bitmap_load(mddev); 2661 if (rv) { 2662 mddev->bitmap_info.offset = 0; 2663 bitmap_destroy(mddev); 2664 goto out; 2665 } 2666 } 2667 } 2668 if (!mddev->external) { 2669 /* Ensure new bitmap info is stored in 2670 * metadata promptly. 2671 */ 2672 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2673 md_wakeup_thread(mddev->thread); 2674 } 2675 rv = 0; 2676 out: 2677 mddev_unlock_and_resume(mddev); 2678 if (rv) 2679 return rv; 2680 return len; 2681 } 2682 2683 static struct md_sysfs_entry bitmap_location = 2684 __ATTR(location, S_IRUGO|S_IWUSR, location_show, location_store); 2685 2686 /* 'bitmap/space' is the space available at 'location' for the 2687 * bitmap. This allows the kernel to know when it is safe to 2688 * resize the bitmap to match a resized array. 2689 */ 2690 static ssize_t 2691 space_show(struct mddev *mddev, char *page) 2692 { 2693 return sprintf(page, "%lu\n", mddev->bitmap_info.space); 2694 } 2695 2696 static ssize_t 2697 space_store(struct mddev *mddev, const char *buf, size_t len) 2698 { 2699 struct bitmap *bitmap; 2700 unsigned long sectors; 2701 int rv; 2702 2703 rv = kstrtoul(buf, 10, §ors); 2704 if (rv) 2705 return rv; 2706 2707 if (sectors == 0) 2708 return -EINVAL; 2709 2710 bitmap = mddev->bitmap; 2711 if (bitmap && sectors < (bitmap->storage.bytes + 511) >> 9) 2712 return -EFBIG; /* Bitmap is too big for this small space */ 2713 2714 /* could make sure it isn't too big, but that isn't really 2715 * needed - user-space should be careful. 2716 */ 2717 mddev->bitmap_info.space = sectors; 2718 return len; 2719 } 2720 2721 static struct md_sysfs_entry bitmap_space = 2722 __ATTR(space, S_IRUGO|S_IWUSR, space_show, space_store); 2723 2724 static ssize_t 2725 timeout_show(struct mddev *mddev, char *page) 2726 { 2727 ssize_t len; 2728 unsigned long secs = mddev->bitmap_info.daemon_sleep / HZ; 2729 unsigned long jifs = mddev->bitmap_info.daemon_sleep % HZ; 2730 2731 len = sprintf(page, "%lu", secs); 2732 if (jifs) 2733 len += sprintf(page+len, ".%03u", jiffies_to_msecs(jifs)); 2734 len += sprintf(page+len, "\n"); 2735 return len; 2736 } 2737 2738 static ssize_t 2739 timeout_store(struct mddev *mddev, const char *buf, size_t len) 2740 { 2741 /* timeout can be set at any time */ 2742 unsigned long timeout; 2743 int rv = strict_strtoul_scaled(buf, &timeout, 4); 2744 if (rv) 2745 return rv; 2746 2747 /* just to make sure we don't overflow... */ 2748 if (timeout >= LONG_MAX / HZ) 2749 return -EINVAL; 2750 2751 timeout = timeout * HZ / 10000; 2752 2753 if (timeout >= MAX_SCHEDULE_TIMEOUT) 2754 timeout = MAX_SCHEDULE_TIMEOUT-1; 2755 if (timeout < 1) 2756 timeout = 1; 2757 2758 mddev->bitmap_info.daemon_sleep = timeout; 2759 mddev_set_timeout(mddev, timeout, false); 2760 md_wakeup_thread(mddev->thread); 2761 2762 return len; 2763 } 2764 2765 static struct md_sysfs_entry bitmap_timeout = 2766 __ATTR(time_base, S_IRUGO|S_IWUSR, timeout_show, timeout_store); 2767 2768 static ssize_t 2769 backlog_show(struct mddev *mddev, char *page) 2770 { 2771 return sprintf(page, "%lu\n", mddev->bitmap_info.max_write_behind); 2772 } 2773 2774 static ssize_t 2775 backlog_store(struct mddev *mddev, const char *buf, size_t len) 2776 { 2777 unsigned long backlog; 2778 unsigned long old_mwb = mddev->bitmap_info.max_write_behind; 2779 struct md_rdev *rdev; 2780 bool has_write_mostly = false; 2781 int rv = kstrtoul(buf, 10, &backlog); 2782 if (rv) 2783 return rv; 2784 if (backlog > COUNTER_MAX) 2785 return -EINVAL; 2786 2787 rv = mddev_suspend_and_lock(mddev); 2788 if (rv) 2789 return rv; 2790 2791 /* 2792 * Without write mostly device, it doesn't make sense to set 2793 * backlog for max_write_behind. 2794 */ 2795 rdev_for_each(rdev, mddev) { 2796 if (test_bit(WriteMostly, &rdev->flags)) { 2797 has_write_mostly = true; 2798 break; 2799 } 2800 } 2801 if (!has_write_mostly) { 2802 pr_warn_ratelimited("%s: can't set backlog, no write mostly device available\n", 2803 mdname(mddev)); 2804 mddev_unlock(mddev); 2805 return -EINVAL; 2806 } 2807 2808 mddev->bitmap_info.max_write_behind = backlog; 2809 if (!backlog && mddev->serial_info_pool) { 2810 /* serial_info_pool is not needed if backlog is zero */ 2811 if (!mddev->serialize_policy) 2812 mddev_destroy_serial_pool(mddev, NULL); 2813 } else if (backlog && !mddev->serial_info_pool) { 2814 /* serial_info_pool is needed since backlog is not zero */ 2815 rdev_for_each(rdev, mddev) 2816 mddev_create_serial_pool(mddev, rdev); 2817 } 2818 if (old_mwb != backlog) 2819 bitmap_update_sb(mddev->bitmap); 2820 2821 mddev_unlock_and_resume(mddev); 2822 return len; 2823 } 2824 2825 static struct md_sysfs_entry bitmap_backlog = 2826 __ATTR(backlog, S_IRUGO|S_IWUSR, backlog_show, backlog_store); 2827 2828 static ssize_t 2829 chunksize_show(struct mddev *mddev, char *page) 2830 { 2831 return sprintf(page, "%lu\n", mddev->bitmap_info.chunksize); 2832 } 2833 2834 static ssize_t 2835 chunksize_store(struct mddev *mddev, const char *buf, size_t len) 2836 { 2837 /* Can only be changed when no bitmap is active */ 2838 int rv; 2839 unsigned long csize; 2840 if (mddev->bitmap) 2841 return -EBUSY; 2842 rv = kstrtoul(buf, 10, &csize); 2843 if (rv) 2844 return rv; 2845 if (csize < 512 || 2846 !is_power_of_2(csize)) 2847 return -EINVAL; 2848 if (BITS_PER_LONG > 32 && csize >= (1ULL << (BITS_PER_BYTE * 2849 sizeof(((bitmap_super_t *)0)->chunksize)))) 2850 return -EOVERFLOW; 2851 mddev->bitmap_info.chunksize = csize; 2852 return len; 2853 } 2854 2855 static struct md_sysfs_entry bitmap_chunksize = 2856 __ATTR(chunksize, S_IRUGO|S_IWUSR, chunksize_show, chunksize_store); 2857 2858 static ssize_t metadata_show(struct mddev *mddev, char *page) 2859 { 2860 if (mddev_is_clustered(mddev)) 2861 return sprintf(page, "clustered\n"); 2862 return sprintf(page, "%s\n", (mddev->bitmap_info.external 2863 ? "external" : "internal")); 2864 } 2865 2866 static ssize_t metadata_store(struct mddev *mddev, const char *buf, size_t len) 2867 { 2868 if (mddev->bitmap || 2869 mddev->bitmap_info.file || 2870 mddev->bitmap_info.offset) 2871 return -EBUSY; 2872 if (strncmp(buf, "external", 8) == 0) 2873 mddev->bitmap_info.external = 1; 2874 else if ((strncmp(buf, "internal", 8) == 0) || 2875 (strncmp(buf, "clustered", 9) == 0)) 2876 mddev->bitmap_info.external = 0; 2877 else 2878 return -EINVAL; 2879 return len; 2880 } 2881 2882 static struct md_sysfs_entry bitmap_metadata = 2883 __ATTR(metadata, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 2884 2885 static ssize_t can_clear_show(struct mddev *mddev, char *page) 2886 { 2887 int len; 2888 struct bitmap *bitmap; 2889 2890 spin_lock(&mddev->lock); 2891 bitmap = mddev->bitmap; 2892 if (bitmap) 2893 len = sprintf(page, "%s\n", (bitmap->need_sync ? "false" : 2894 "true")); 2895 else 2896 len = sprintf(page, "\n"); 2897 spin_unlock(&mddev->lock); 2898 return len; 2899 } 2900 2901 static ssize_t can_clear_store(struct mddev *mddev, const char *buf, size_t len) 2902 { 2903 struct bitmap *bitmap = mddev->bitmap; 2904 2905 if (!bitmap) 2906 return -ENOENT; 2907 2908 if (strncmp(buf, "false", 5) == 0) { 2909 bitmap->need_sync = 1; 2910 return len; 2911 } 2912 2913 if (strncmp(buf, "true", 4) == 0) { 2914 if (mddev->degraded) 2915 return -EBUSY; 2916 bitmap->need_sync = 0; 2917 return len; 2918 } 2919 2920 return -EINVAL; 2921 } 2922 2923 static struct md_sysfs_entry bitmap_can_clear = 2924 __ATTR(can_clear, S_IRUGO|S_IWUSR, can_clear_show, can_clear_store); 2925 2926 static ssize_t 2927 behind_writes_used_show(struct mddev *mddev, char *page) 2928 { 2929 ssize_t ret; 2930 struct bitmap *bitmap; 2931 2932 spin_lock(&mddev->lock); 2933 bitmap = mddev->bitmap; 2934 if (!bitmap) 2935 ret = sprintf(page, "0\n"); 2936 else 2937 ret = sprintf(page, "%lu\n", bitmap->behind_writes_used); 2938 spin_unlock(&mddev->lock); 2939 2940 return ret; 2941 } 2942 2943 static ssize_t 2944 behind_writes_used_reset(struct mddev *mddev, const char *buf, size_t len) 2945 { 2946 struct bitmap *bitmap = mddev->bitmap; 2947 2948 if (bitmap) 2949 bitmap->behind_writes_used = 0; 2950 return len; 2951 } 2952 2953 static struct md_sysfs_entry max_backlog_used = 2954 __ATTR(max_backlog_used, S_IRUGO | S_IWUSR, 2955 behind_writes_used_show, behind_writes_used_reset); 2956 2957 static struct attribute *md_bitmap_attrs[] = { 2958 &bitmap_location.attr, 2959 &bitmap_space.attr, 2960 &bitmap_timeout.attr, 2961 &bitmap_backlog.attr, 2962 &bitmap_chunksize.attr, 2963 &bitmap_metadata.attr, 2964 &bitmap_can_clear.attr, 2965 &max_backlog_used.attr, 2966 NULL 2967 }; 2968 const struct attribute_group md_bitmap_group = { 2969 .name = "bitmap", 2970 .attrs = md_bitmap_attrs, 2971 }; 2972 2973 static struct bitmap_operations bitmap_ops = { 2974 .enabled = bitmap_enabled, 2975 .create = bitmap_create, 2976 .resize = bitmap_resize, 2977 .load = bitmap_load, 2978 .destroy = bitmap_destroy, 2979 .flush = bitmap_flush, 2980 .write_all = bitmap_write_all, 2981 .dirty_bits = bitmap_dirty_bits, 2982 .unplug = bitmap_unplug, 2983 .daemon_work = bitmap_daemon_work, 2984 .wait_behind_writes = bitmap_wait_behind_writes, 2985 2986 .startwrite = bitmap_startwrite, 2987 .endwrite = bitmap_endwrite, 2988 .start_sync = bitmap_start_sync, 2989 .end_sync = bitmap_end_sync, 2990 .cond_end_sync = bitmap_cond_end_sync, 2991 .close_sync = bitmap_close_sync, 2992 2993 .update_sb = bitmap_update_sb, 2994 .get_stats = bitmap_get_stats, 2995 2996 .sync_with_cluster = bitmap_sync_with_cluster, 2997 .get_from_slot = bitmap_get_from_slot, 2998 .copy_from_slot = bitmap_copy_from_slot, 2999 .set_pages = bitmap_set_pages, 3000 .free = md_bitmap_free, 3001 }; 3002 3003 void mddev_set_bitmap_ops(struct mddev *mddev) 3004 { 3005 mddev->bitmap_ops = &bitmap_ops; 3006 } 3007