1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * bitmap.c two-level bitmap (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003 4 * 5 * bitmap_create - sets up the bitmap structure 6 * bitmap_destroy - destroys the bitmap structure 7 * 8 * additions, Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.: 9 * - added disk storage for bitmap 10 * - changes to allow various bitmap chunk sizes 11 */ 12 13 /* 14 * Still to do: 15 * 16 * flush after percent set rather than just time based. (maybe both). 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/timer.h> 25 #include <linux/sched.h> 26 #include <linux/list.h> 27 #include <linux/file.h> 28 #include <linux/mount.h> 29 #include <linux/buffer_head.h> 30 #include <linux/seq_file.h> 31 #include <trace/events/block.h> 32 #include "md.h" 33 #include "md-bitmap.h" 34 35 #define BITMAP_MAJOR_LO 3 36 /* version 4 insists the bitmap is in little-endian order 37 * with version 3, it is host-endian which is non-portable 38 * Version 5 is currently set only for clustered devices 39 */ 40 #define BITMAP_MAJOR_HI 4 41 #define BITMAP_MAJOR_CLUSTERED 5 42 #define BITMAP_MAJOR_HOSTENDIAN 3 43 44 /* 45 * in-memory bitmap: 46 * 47 * Use 16 bit block counters to track pending writes to each "chunk". 48 * The 2 high order bits are special-purpose, the first is a flag indicating 49 * whether a resync is needed. The second is a flag indicating whether a 50 * resync is active. 51 * This means that the counter is actually 14 bits: 52 * 53 * +--------+--------+------------------------------------------------+ 54 * | resync | resync | counter | 55 * | needed | active | | 56 * | (0-1) | (0-1) | (0-16383) | 57 * +--------+--------+------------------------------------------------+ 58 * 59 * The "resync needed" bit is set when: 60 * a '1' bit is read from storage at startup. 61 * a write request fails on some drives 62 * a resync is aborted on a chunk with 'resync active' set 63 * It is cleared (and resync-active set) when a resync starts across all drives 64 * of the chunk. 65 * 66 * 67 * The "resync active" bit is set when: 68 * a resync is started on all drives, and resync_needed is set. 69 * resync_needed will be cleared (as long as resync_active wasn't already set). 70 * It is cleared when a resync completes. 71 * 72 * The counter counts pending write requests, plus the on-disk bit. 73 * When the counter is '1' and the resync bits are clear, the on-disk 74 * bit can be cleared as well, thus setting the counter to 0. 75 * When we set a bit, or in the counter (to start a write), if the fields is 76 * 0, we first set the disk bit and set the counter to 1. 77 * 78 * If the counter is 0, the on-disk bit is clear and the stripe is clean 79 * Anything that dirties the stripe pushes the counter to 2 (at least) 80 * and sets the on-disk bit (lazily). 81 * If a periodic sweep find the counter at 2, it is decremented to 1. 82 * If the sweep find the counter at 1, the on-disk bit is cleared and the 83 * counter goes to zero. 84 * 85 * Also, we'll hijack the "map" pointer itself and use it as two 16 bit block 86 * counters as a fallback when "page" memory cannot be allocated: 87 * 88 * Normal case (page memory allocated): 89 * 90 * page pointer (32-bit) 91 * 92 * [ ] ------+ 93 * | 94 * +-------> [ ][ ]..[ ] (4096 byte page == 2048 counters) 95 * c1 c2 c2048 96 * 97 * Hijacked case (page memory allocation failed): 98 * 99 * hijacked page pointer (32-bit) 100 * 101 * [ ][ ] (no page memory allocated) 102 * counter #1 (16-bit) counter #2 (16-bit) 103 * 104 */ 105 106 #define PAGE_BITS (PAGE_SIZE << 3) 107 #define PAGE_BIT_SHIFT (PAGE_SHIFT + 3) 108 109 #define NEEDED(x) (((bitmap_counter_t) x) & NEEDED_MASK) 110 #define RESYNC(x) (((bitmap_counter_t) x) & RESYNC_MASK) 111 #define COUNTER(x) (((bitmap_counter_t) x) & COUNTER_MAX) 112 113 /* how many counters per page? */ 114 #define PAGE_COUNTER_RATIO (PAGE_BITS / COUNTER_BITS) 115 /* same, except a shift value for more efficient bitops */ 116 #define PAGE_COUNTER_SHIFT (PAGE_BIT_SHIFT - COUNTER_BIT_SHIFT) 117 /* same, except a mask value for more efficient bitops */ 118 #define PAGE_COUNTER_MASK (PAGE_COUNTER_RATIO - 1) 119 120 #define BITMAP_BLOCK_SHIFT 9 121 122 /* 123 * bitmap structures: 124 */ 125 126 /* the in-memory bitmap is represented by bitmap_pages */ 127 struct bitmap_page { 128 /* 129 * map points to the actual memory page 130 */ 131 char *map; 132 /* 133 * in emergencies (when map cannot be alloced), hijack the map 134 * pointer and use it as two counters itself 135 */ 136 unsigned int hijacked:1; 137 /* 138 * If any counter in this page is '1' or '2' - and so could be 139 * cleared then that page is marked as 'pending' 140 */ 141 unsigned int pending:1; 142 /* 143 * count of dirty bits on the page 144 */ 145 unsigned int count:30; 146 }; 147 148 /* the main bitmap structure - one per mddev */ 149 struct bitmap { 150 151 struct bitmap_counts { 152 spinlock_t lock; 153 struct bitmap_page *bp; 154 /* total number of pages in the bitmap */ 155 unsigned long pages; 156 /* number of pages not yet allocated */ 157 unsigned long missing_pages; 158 /* chunksize = 2^chunkshift (for bitops) */ 159 unsigned long chunkshift; 160 /* total number of data chunks for the array */ 161 unsigned long chunks; 162 } counts; 163 164 struct mddev *mddev; /* the md device that the bitmap is for */ 165 166 __u64 events_cleared; 167 int need_sync; 168 169 struct bitmap_storage { 170 /* backing disk file */ 171 struct file *file; 172 /* cached copy of the bitmap file superblock */ 173 struct page *sb_page; 174 unsigned long sb_index; 175 /* list of cache pages for the file */ 176 struct page **filemap; 177 /* attributes associated filemap pages */ 178 unsigned long *filemap_attr; 179 /* number of pages in the file */ 180 unsigned long file_pages; 181 /* total bytes in the bitmap */ 182 unsigned long bytes; 183 } storage; 184 185 unsigned long flags; 186 187 int allclean; 188 189 atomic_t behind_writes; 190 /* highest actual value at runtime */ 191 unsigned long behind_writes_used; 192 193 /* 194 * the bitmap daemon - periodically wakes up and sweeps the bitmap 195 * file, cleaning up bits and flushing out pages to disk as necessary 196 */ 197 unsigned long daemon_lastrun; /* jiffies of last run */ 198 /* 199 * when we lasted called end_sync to update bitmap with resync 200 * progress. 201 */ 202 unsigned long last_end_sync; 203 204 /* pending writes to the bitmap file */ 205 atomic_t pending_writes; 206 wait_queue_head_t write_wait; 207 wait_queue_head_t overflow_wait; 208 wait_queue_head_t behind_wait; 209 210 struct kernfs_node *sysfs_can_clear; 211 /* slot offset for clustered env */ 212 int cluster_slot; 213 }; 214 215 static int __bitmap_resize(struct bitmap *bitmap, sector_t blocks, 216 int chunksize, bool init); 217 218 static inline char *bmname(struct bitmap *bitmap) 219 { 220 return bitmap->mddev ? mdname(bitmap->mddev) : "mdX"; 221 } 222 223 static bool __bitmap_enabled(struct bitmap *bitmap) 224 { 225 return bitmap->storage.filemap && 226 !test_bit(BITMAP_STALE, &bitmap->flags); 227 } 228 229 static bool bitmap_enabled(struct mddev *mddev) 230 { 231 struct bitmap *bitmap = mddev->bitmap; 232 233 if (!bitmap) 234 return false; 235 236 return __bitmap_enabled(bitmap); 237 } 238 239 /* 240 * check a page and, if necessary, allocate it (or hijack it if the alloc fails) 241 * 242 * 1) check to see if this page is allocated, if it's not then try to alloc 243 * 2) if the alloc fails, set the page's hijacked flag so we'll use the 244 * page pointer directly as a counter 245 * 246 * if we find our page, we increment the page's refcount so that it stays 247 * allocated while we're using it 248 */ 249 static int md_bitmap_checkpage(struct bitmap_counts *bitmap, 250 unsigned long page, int create, int no_hijack) 251 __releases(bitmap->lock) 252 __acquires(bitmap->lock) 253 { 254 unsigned char *mappage; 255 256 WARN_ON_ONCE(page >= bitmap->pages); 257 if (bitmap->bp[page].hijacked) /* it's hijacked, don't try to alloc */ 258 return 0; 259 260 if (bitmap->bp[page].map) /* page is already allocated, just return */ 261 return 0; 262 263 if (!create) 264 return -ENOENT; 265 266 /* this page has not been allocated yet */ 267 268 spin_unlock_irq(&bitmap->lock); 269 /* It is possible that this is being called inside a 270 * prepare_to_wait/finish_wait loop from raid5c:make_request(). 271 * In general it is not permitted to sleep in that context as it 272 * can cause the loop to spin freely. 273 * That doesn't apply here as we can only reach this point 274 * once with any loop. 275 * When this function completes, either bp[page].map or 276 * bp[page].hijacked. In either case, this function will 277 * abort before getting to this point again. So there is 278 * no risk of a free-spin, and so it is safe to assert 279 * that sleeping here is allowed. 280 */ 281 sched_annotate_sleep(); 282 mappage = kzalloc(PAGE_SIZE, GFP_NOIO); 283 spin_lock_irq(&bitmap->lock); 284 285 if (mappage == NULL) { 286 pr_debug("md/bitmap: map page allocation failed, hijacking\n"); 287 /* We don't support hijack for cluster raid */ 288 if (no_hijack) 289 return -ENOMEM; 290 /* failed - set the hijacked flag so that we can use the 291 * pointer as a counter */ 292 if (!bitmap->bp[page].map) 293 bitmap->bp[page].hijacked = 1; 294 } else if (bitmap->bp[page].map || 295 bitmap->bp[page].hijacked) { 296 /* somebody beat us to getting the page */ 297 kfree(mappage); 298 } else { 299 300 /* no page was in place and we have one, so install it */ 301 302 bitmap->bp[page].map = mappage; 303 bitmap->missing_pages--; 304 } 305 return 0; 306 } 307 308 /* if page is completely empty, put it back on the free list, or dealloc it */ 309 /* if page was hijacked, unmark the flag so it might get alloced next time */ 310 /* Note: lock should be held when calling this */ 311 static void md_bitmap_checkfree(struct bitmap_counts *bitmap, unsigned long page) 312 { 313 char *ptr; 314 315 if (bitmap->bp[page].count) /* page is still busy */ 316 return; 317 318 /* page is no longer in use, it can be released */ 319 320 if (bitmap->bp[page].hijacked) { /* page was hijacked, undo this now */ 321 bitmap->bp[page].hijacked = 0; 322 bitmap->bp[page].map = NULL; 323 } else { 324 /* normal case, free the page */ 325 ptr = bitmap->bp[page].map; 326 bitmap->bp[page].map = NULL; 327 bitmap->missing_pages++; 328 kfree(ptr); 329 } 330 } 331 332 /* 333 * bitmap file handling - read and write the bitmap file and its superblock 334 */ 335 336 /* 337 * basic page I/O operations 338 */ 339 340 /* IO operations when bitmap is stored near all superblocks */ 341 342 /* choose a good rdev and read the page from there */ 343 static int read_sb_page(struct mddev *mddev, loff_t offset, 344 struct page *page, unsigned long index, int size) 345 { 346 347 sector_t sector = mddev->bitmap_info.offset + offset + 348 index * (PAGE_SIZE / SECTOR_SIZE); 349 struct md_rdev *rdev; 350 351 rdev_for_each(rdev, mddev) { 352 u32 iosize = roundup(size, bdev_logical_block_size(rdev->bdev)); 353 354 if (!test_bit(In_sync, &rdev->flags) || 355 test_bit(Faulty, &rdev->flags) || 356 test_bit(Bitmap_sync, &rdev->flags)) 357 continue; 358 359 if (sync_page_io(rdev, sector, iosize, page, REQ_OP_READ, true)) 360 return 0; 361 } 362 return -EIO; 363 } 364 365 static struct md_rdev *next_active_rdev(struct md_rdev *rdev, struct mddev *mddev) 366 { 367 /* Iterate the disks of an mddev, using rcu to protect access to the 368 * linked list, and raising the refcount of devices we return to ensure 369 * they don't disappear while in use. 370 * As devices are only added or removed when raid_disk is < 0 and 371 * nr_pending is 0 and In_sync is clear, the entries we return will 372 * still be in the same position on the list when we re-enter 373 * list_for_each_entry_continue_rcu. 374 * 375 * Note that if entered with 'rdev == NULL' to start at the 376 * beginning, we temporarily assign 'rdev' to an address which 377 * isn't really an rdev, but which can be used by 378 * list_for_each_entry_continue_rcu() to find the first entry. 379 */ 380 rcu_read_lock(); 381 if (rdev == NULL) 382 /* start at the beginning */ 383 rdev = list_entry(&mddev->disks, struct md_rdev, same_set); 384 else { 385 /* release the previous rdev and start from there. */ 386 rdev_dec_pending(rdev, mddev); 387 } 388 list_for_each_entry_continue_rcu(rdev, &mddev->disks, same_set) { 389 if (rdev->raid_disk >= 0 && 390 !test_bit(Faulty, &rdev->flags)) { 391 /* this is a usable devices */ 392 atomic_inc(&rdev->nr_pending); 393 rcu_read_unlock(); 394 return rdev; 395 } 396 } 397 rcu_read_unlock(); 398 return NULL; 399 } 400 401 static unsigned int optimal_io_size(struct block_device *bdev, 402 unsigned int last_page_size, 403 unsigned int io_size) 404 { 405 if (bdev_io_opt(bdev) > bdev_logical_block_size(bdev)) 406 return roundup(last_page_size, bdev_io_opt(bdev)); 407 return io_size; 408 } 409 410 static unsigned int bitmap_io_size(unsigned int io_size, unsigned int opt_size, 411 loff_t start, loff_t boundary) 412 { 413 if (io_size != opt_size && 414 start + opt_size / SECTOR_SIZE <= boundary) 415 return opt_size; 416 if (start + io_size / SECTOR_SIZE <= boundary) 417 return io_size; 418 419 /* Overflows boundary */ 420 return 0; 421 } 422 423 static int __write_sb_page(struct md_rdev *rdev, struct bitmap *bitmap, 424 unsigned long pg_index, struct page *page) 425 { 426 struct block_device *bdev; 427 struct mddev *mddev = bitmap->mddev; 428 struct bitmap_storage *store = &bitmap->storage; 429 unsigned int bitmap_limit = (bitmap->storage.file_pages - pg_index) << 430 PAGE_SHIFT; 431 loff_t sboff, offset = mddev->bitmap_info.offset; 432 sector_t ps = pg_index * PAGE_SIZE / SECTOR_SIZE; 433 unsigned int size = PAGE_SIZE; 434 unsigned int opt_size = PAGE_SIZE; 435 sector_t doff; 436 437 bdev = (rdev->meta_bdev) ? rdev->meta_bdev : rdev->bdev; 438 /* we compare length (page numbers), not page offset. */ 439 if ((pg_index - store->sb_index) == store->file_pages - 1) { 440 unsigned int last_page_size = store->bytes & (PAGE_SIZE - 1); 441 442 if (last_page_size == 0) 443 last_page_size = PAGE_SIZE; 444 size = roundup(last_page_size, bdev_logical_block_size(bdev)); 445 opt_size = optimal_io_size(bdev, last_page_size, size); 446 } 447 448 sboff = rdev->sb_start + offset; 449 doff = rdev->data_offset; 450 451 /* Just make sure we aren't corrupting data or metadata */ 452 if (mddev->external) { 453 /* Bitmap could be anywhere. */ 454 if (sboff + ps > doff && 455 sboff < (doff + mddev->dev_sectors + PAGE_SIZE / SECTOR_SIZE)) 456 return -EINVAL; 457 } else if (offset < 0) { 458 /* DATA BITMAP METADATA */ 459 size = bitmap_io_size(size, opt_size, offset + ps, 0); 460 if (size == 0) 461 /* bitmap runs in to metadata */ 462 return -EINVAL; 463 464 if (doff + mddev->dev_sectors > sboff) 465 /* data runs in to bitmap */ 466 return -EINVAL; 467 } else if (rdev->sb_start < rdev->data_offset) { 468 /* METADATA BITMAP DATA */ 469 size = bitmap_io_size(size, opt_size, sboff + ps, doff); 470 if (size == 0) 471 /* bitmap runs in to data */ 472 return -EINVAL; 473 } 474 475 md_super_write(mddev, rdev, sboff + ps, (int)min(size, bitmap_limit), page); 476 return 0; 477 } 478 479 static void write_sb_page(struct bitmap *bitmap, unsigned long pg_index, 480 struct page *page, bool wait) 481 { 482 struct mddev *mddev = bitmap->mddev; 483 484 do { 485 struct md_rdev *rdev = NULL; 486 487 while ((rdev = next_active_rdev(rdev, mddev)) != NULL) { 488 if (__write_sb_page(rdev, bitmap, pg_index, page) < 0) { 489 set_bit(BITMAP_WRITE_ERROR, &bitmap->flags); 490 return; 491 } 492 } 493 } while (wait && md_super_wait(mddev) < 0); 494 } 495 496 static void md_bitmap_file_kick(struct bitmap *bitmap); 497 498 #ifdef CONFIG_MD_BITMAP_FILE 499 static void write_file_page(struct bitmap *bitmap, struct page *page, int wait) 500 { 501 struct buffer_head *bh = page_buffers(page); 502 503 while (bh && bh->b_blocknr) { 504 atomic_inc(&bitmap->pending_writes); 505 set_buffer_locked(bh); 506 set_buffer_mapped(bh); 507 submit_bh(REQ_OP_WRITE | REQ_SYNC, bh); 508 bh = bh->b_this_page; 509 } 510 511 if (wait) 512 wait_event(bitmap->write_wait, 513 atomic_read(&bitmap->pending_writes) == 0); 514 } 515 516 static void end_bitmap_write(struct buffer_head *bh, int uptodate) 517 { 518 struct bitmap *bitmap = bh->b_private; 519 520 if (!uptodate) 521 set_bit(BITMAP_WRITE_ERROR, &bitmap->flags); 522 if (atomic_dec_and_test(&bitmap->pending_writes)) 523 wake_up(&bitmap->write_wait); 524 } 525 526 static void free_buffers(struct page *page) 527 { 528 struct buffer_head *bh; 529 530 if (!PagePrivate(page)) 531 return; 532 533 bh = page_buffers(page); 534 while (bh) { 535 struct buffer_head *next = bh->b_this_page; 536 free_buffer_head(bh); 537 bh = next; 538 } 539 detach_page_private(page); 540 put_page(page); 541 } 542 543 /* read a page from a file. 544 * We both read the page, and attach buffers to the page to record the 545 * address of each block (using bmap). These addresses will be used 546 * to write the block later, completely bypassing the filesystem. 547 * This usage is similar to how swap files are handled, and allows us 548 * to write to a file with no concerns of memory allocation failing. 549 */ 550 static int read_file_page(struct file *file, unsigned long index, 551 struct bitmap *bitmap, unsigned long count, struct page *page) 552 { 553 int ret = 0; 554 struct inode *inode = file_inode(file); 555 struct buffer_head *bh; 556 sector_t block, blk_cur; 557 unsigned long blocksize = i_blocksize(inode); 558 559 pr_debug("read bitmap file (%dB @ %llu)\n", (int)PAGE_SIZE, 560 (unsigned long long)index << PAGE_SHIFT); 561 562 bh = alloc_page_buffers(page, blocksize); 563 if (!bh) { 564 ret = -ENOMEM; 565 goto out; 566 } 567 attach_page_private(page, bh); 568 blk_cur = index << (PAGE_SHIFT - inode->i_blkbits); 569 while (bh) { 570 block = blk_cur; 571 572 if (count == 0) 573 bh->b_blocknr = 0; 574 else { 575 ret = bmap(inode, &block); 576 if (ret || !block) { 577 ret = -EINVAL; 578 bh->b_blocknr = 0; 579 goto out; 580 } 581 582 bh->b_blocknr = block; 583 bh->b_bdev = inode->i_sb->s_bdev; 584 if (count < blocksize) 585 count = 0; 586 else 587 count -= blocksize; 588 589 bh->b_end_io = end_bitmap_write; 590 bh->b_private = bitmap; 591 atomic_inc(&bitmap->pending_writes); 592 set_buffer_locked(bh); 593 set_buffer_mapped(bh); 594 submit_bh(REQ_OP_READ, bh); 595 } 596 blk_cur++; 597 bh = bh->b_this_page; 598 } 599 600 wait_event(bitmap->write_wait, 601 atomic_read(&bitmap->pending_writes)==0); 602 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) 603 ret = -EIO; 604 out: 605 if (ret) 606 pr_err("md: bitmap read error: (%dB @ %llu): %d\n", 607 (int)PAGE_SIZE, 608 (unsigned long long)index << PAGE_SHIFT, 609 ret); 610 return ret; 611 } 612 #else /* CONFIG_MD_BITMAP_FILE */ 613 static void write_file_page(struct bitmap *bitmap, struct page *page, int wait) 614 { 615 } 616 static int read_file_page(struct file *file, unsigned long index, 617 struct bitmap *bitmap, unsigned long count, struct page *page) 618 { 619 return -EIO; 620 } 621 static void free_buffers(struct page *page) 622 { 623 put_page(page); 624 } 625 #endif /* CONFIG_MD_BITMAP_FILE */ 626 627 /* 628 * bitmap file superblock operations 629 */ 630 631 /* 632 * write out a page to a file 633 */ 634 static void filemap_write_page(struct bitmap *bitmap, unsigned long pg_index, 635 bool wait) 636 { 637 struct bitmap_storage *store = &bitmap->storage; 638 struct page *page = store->filemap[pg_index]; 639 640 if (mddev_is_clustered(bitmap->mddev)) { 641 /* go to node bitmap area starting point */ 642 pg_index += store->sb_index; 643 } 644 645 if (store->file) 646 write_file_page(bitmap, page, wait); 647 else 648 write_sb_page(bitmap, pg_index, page, wait); 649 } 650 651 /* 652 * md_bitmap_wait_writes() should be called before writing any bitmap 653 * blocks, to ensure previous writes, particularly from 654 * md_bitmap_daemon_work(), have completed. 655 */ 656 static void md_bitmap_wait_writes(struct bitmap *bitmap) 657 { 658 if (bitmap->storage.file) 659 wait_event(bitmap->write_wait, 660 atomic_read(&bitmap->pending_writes)==0); 661 else 662 /* Note that we ignore the return value. The writes 663 * might have failed, but that would just mean that 664 * some bits which should be cleared haven't been, 665 * which is safe. The relevant bitmap blocks will 666 * probably get written again, but there is no great 667 * loss if they aren't. 668 */ 669 md_super_wait(bitmap->mddev); 670 } 671 672 673 /* update the event counter and sync the superblock to disk */ 674 static void bitmap_update_sb(void *data) 675 { 676 bitmap_super_t *sb; 677 struct bitmap *bitmap = data; 678 679 if (!bitmap || !bitmap->mddev) /* no bitmap for this array */ 680 return; 681 if (bitmap->mddev->bitmap_info.external) 682 return; 683 if (!bitmap->storage.sb_page) /* no superblock */ 684 return; 685 sb = kmap_atomic(bitmap->storage.sb_page); 686 sb->events = cpu_to_le64(bitmap->mddev->events); 687 if (bitmap->mddev->events < bitmap->events_cleared) 688 /* rocking back to read-only */ 689 bitmap->events_cleared = bitmap->mddev->events; 690 sb->events_cleared = cpu_to_le64(bitmap->events_cleared); 691 /* 692 * clear BITMAP_WRITE_ERROR bit to protect against the case that 693 * a bitmap write error occurred but the later writes succeeded. 694 */ 695 sb->state = cpu_to_le32(bitmap->flags & ~BIT(BITMAP_WRITE_ERROR)); 696 /* Just in case these have been changed via sysfs: */ 697 sb->daemon_sleep = cpu_to_le32(bitmap->mddev->bitmap_info.daemon_sleep/HZ); 698 sb->write_behind = cpu_to_le32(bitmap->mddev->bitmap_info.max_write_behind); 699 /* This might have been changed by a reshape */ 700 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors); 701 sb->chunksize = cpu_to_le32(bitmap->mddev->bitmap_info.chunksize); 702 sb->nodes = cpu_to_le32(bitmap->mddev->bitmap_info.nodes); 703 sb->sectors_reserved = cpu_to_le32(bitmap->mddev-> 704 bitmap_info.space); 705 kunmap_atomic(sb); 706 707 if (bitmap->storage.file) 708 write_file_page(bitmap, bitmap->storage.sb_page, 1); 709 else 710 write_sb_page(bitmap, bitmap->storage.sb_index, 711 bitmap->storage.sb_page, 1); 712 } 713 714 static void bitmap_print_sb(struct bitmap *bitmap) 715 { 716 bitmap_super_t *sb; 717 718 if (!bitmap || !bitmap->storage.sb_page) 719 return; 720 sb = kmap_atomic(bitmap->storage.sb_page); 721 pr_debug("%s: bitmap file superblock:\n", bmname(bitmap)); 722 pr_debug(" magic: %08x\n", le32_to_cpu(sb->magic)); 723 pr_debug(" version: %u\n", le32_to_cpu(sb->version)); 724 pr_debug(" uuid: %08x.%08x.%08x.%08x\n", 725 le32_to_cpu(*(__le32 *)(sb->uuid+0)), 726 le32_to_cpu(*(__le32 *)(sb->uuid+4)), 727 le32_to_cpu(*(__le32 *)(sb->uuid+8)), 728 le32_to_cpu(*(__le32 *)(sb->uuid+12))); 729 pr_debug(" events: %llu\n", 730 (unsigned long long) le64_to_cpu(sb->events)); 731 pr_debug("events cleared: %llu\n", 732 (unsigned long long) le64_to_cpu(sb->events_cleared)); 733 pr_debug(" state: %08x\n", le32_to_cpu(sb->state)); 734 pr_debug(" chunksize: %u B\n", le32_to_cpu(sb->chunksize)); 735 pr_debug(" daemon sleep: %us\n", le32_to_cpu(sb->daemon_sleep)); 736 pr_debug(" sync size: %llu KB\n", 737 (unsigned long long)le64_to_cpu(sb->sync_size)/2); 738 pr_debug("max write behind: %u\n", le32_to_cpu(sb->write_behind)); 739 kunmap_atomic(sb); 740 } 741 742 /* 743 * bitmap_new_disk_sb 744 * @bitmap 745 * 746 * This function is somewhat the reverse of bitmap_read_sb. bitmap_read_sb 747 * reads and verifies the on-disk bitmap superblock and populates bitmap_info. 748 * This function verifies 'bitmap_info' and populates the on-disk bitmap 749 * structure, which is to be written to disk. 750 * 751 * Returns: 0 on success, -Exxx on error 752 */ 753 static int md_bitmap_new_disk_sb(struct bitmap *bitmap) 754 { 755 bitmap_super_t *sb; 756 unsigned long chunksize, daemon_sleep, write_behind; 757 758 bitmap->storage.sb_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 759 if (bitmap->storage.sb_page == NULL) 760 return -ENOMEM; 761 bitmap->storage.sb_index = 0; 762 763 sb = kmap_atomic(bitmap->storage.sb_page); 764 765 sb->magic = cpu_to_le32(BITMAP_MAGIC); 766 sb->version = cpu_to_le32(BITMAP_MAJOR_HI); 767 768 chunksize = bitmap->mddev->bitmap_info.chunksize; 769 BUG_ON(!chunksize); 770 if (!is_power_of_2(chunksize)) { 771 kunmap_atomic(sb); 772 pr_warn("bitmap chunksize not a power of 2\n"); 773 return -EINVAL; 774 } 775 sb->chunksize = cpu_to_le32(chunksize); 776 777 daemon_sleep = bitmap->mddev->bitmap_info.daemon_sleep; 778 if (!daemon_sleep || (daemon_sleep > MAX_SCHEDULE_TIMEOUT)) { 779 pr_debug("Choosing daemon_sleep default (5 sec)\n"); 780 daemon_sleep = 5 * HZ; 781 } 782 sb->daemon_sleep = cpu_to_le32(daemon_sleep); 783 bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep; 784 785 /* 786 * FIXME: write_behind for RAID1. If not specified, what 787 * is a good choice? We choose COUNTER_MAX / 2 arbitrarily. 788 */ 789 write_behind = bitmap->mddev->bitmap_info.max_write_behind; 790 if (write_behind > COUNTER_MAX) 791 write_behind = COUNTER_MAX / 2; 792 sb->write_behind = cpu_to_le32(write_behind); 793 bitmap->mddev->bitmap_info.max_write_behind = write_behind; 794 795 /* keep the array size field of the bitmap superblock up to date */ 796 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors); 797 798 memcpy(sb->uuid, bitmap->mddev->uuid, 16); 799 800 set_bit(BITMAP_STALE, &bitmap->flags); 801 sb->state = cpu_to_le32(bitmap->flags); 802 bitmap->events_cleared = bitmap->mddev->events; 803 sb->events_cleared = cpu_to_le64(bitmap->mddev->events); 804 bitmap->mddev->bitmap_info.nodes = 0; 805 806 kunmap_atomic(sb); 807 808 return 0; 809 } 810 811 /* read the superblock from the bitmap file and initialize some bitmap fields */ 812 static int md_bitmap_read_sb(struct bitmap *bitmap) 813 { 814 char *reason = NULL; 815 bitmap_super_t *sb; 816 unsigned long chunksize, daemon_sleep, write_behind; 817 unsigned long long events; 818 int nodes = 0; 819 unsigned long sectors_reserved = 0; 820 int err = -EINVAL; 821 struct page *sb_page; 822 loff_t offset = 0; 823 824 if (!bitmap->storage.file && !bitmap->mddev->bitmap_info.offset) { 825 chunksize = 128 * 1024 * 1024; 826 daemon_sleep = 5 * HZ; 827 write_behind = 0; 828 set_bit(BITMAP_STALE, &bitmap->flags); 829 err = 0; 830 goto out_no_sb; 831 } 832 /* page 0 is the superblock, read it... */ 833 sb_page = alloc_page(GFP_KERNEL); 834 if (!sb_page) 835 return -ENOMEM; 836 bitmap->storage.sb_page = sb_page; 837 838 re_read: 839 /* If cluster_slot is set, the cluster is setup */ 840 if (bitmap->cluster_slot >= 0) { 841 sector_t bm_blocks = bitmap->mddev->resync_max_sectors; 842 843 bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks, 844 (bitmap->mddev->bitmap_info.chunksize >> 9)); 845 /* bits to bytes */ 846 bm_blocks = ((bm_blocks+7) >> 3) + sizeof(bitmap_super_t); 847 /* to 4k blocks */ 848 bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks, 4096); 849 offset = bitmap->cluster_slot * (bm_blocks << 3); 850 pr_debug("%s:%d bm slot: %d offset: %llu\n", __func__, __LINE__, 851 bitmap->cluster_slot, offset); 852 } 853 854 if (bitmap->storage.file) { 855 loff_t isize = i_size_read(bitmap->storage.file->f_mapping->host); 856 int bytes = isize > PAGE_SIZE ? PAGE_SIZE : isize; 857 858 err = read_file_page(bitmap->storage.file, 0, 859 bitmap, bytes, sb_page); 860 } else { 861 err = read_sb_page(bitmap->mddev, offset, sb_page, 0, 862 sizeof(bitmap_super_t)); 863 } 864 if (err) 865 return err; 866 867 err = -EINVAL; 868 sb = kmap_atomic(sb_page); 869 870 chunksize = le32_to_cpu(sb->chunksize); 871 daemon_sleep = le32_to_cpu(sb->daemon_sleep) * HZ; 872 write_behind = le32_to_cpu(sb->write_behind); 873 sectors_reserved = le32_to_cpu(sb->sectors_reserved); 874 875 /* verify that the bitmap-specific fields are valid */ 876 if (sb->magic != cpu_to_le32(BITMAP_MAGIC)) 877 reason = "bad magic"; 878 else if (le32_to_cpu(sb->version) < BITMAP_MAJOR_LO || 879 le32_to_cpu(sb->version) > BITMAP_MAJOR_CLUSTERED) 880 reason = "unrecognized superblock version"; 881 else if (chunksize < 512) 882 reason = "bitmap chunksize too small"; 883 else if (!is_power_of_2(chunksize)) 884 reason = "bitmap chunksize not a power of 2"; 885 else if (daemon_sleep < 1 || daemon_sleep > MAX_SCHEDULE_TIMEOUT) 886 reason = "daemon sleep period out of range"; 887 else if (write_behind > COUNTER_MAX) 888 reason = "write-behind limit out of range (0 - 16383)"; 889 if (reason) { 890 pr_warn("%s: invalid bitmap file superblock: %s\n", 891 bmname(bitmap), reason); 892 goto out; 893 } 894 895 /* 896 * Setup nodes/clustername only if bitmap version is 897 * cluster-compatible 898 */ 899 if (sb->version == cpu_to_le32(BITMAP_MAJOR_CLUSTERED)) { 900 nodes = le32_to_cpu(sb->nodes); 901 strscpy(bitmap->mddev->bitmap_info.cluster_name, 902 sb->cluster_name, 64); 903 } 904 905 /* keep the array size field of the bitmap superblock up to date */ 906 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors); 907 908 if (bitmap->mddev->persistent) { 909 /* 910 * We have a persistent array superblock, so compare the 911 * bitmap's UUID and event counter to the mddev's 912 */ 913 if (memcmp(sb->uuid, bitmap->mddev->uuid, 16)) { 914 pr_warn("%s: bitmap superblock UUID mismatch\n", 915 bmname(bitmap)); 916 goto out; 917 } 918 events = le64_to_cpu(sb->events); 919 if (!nodes && (events < bitmap->mddev->events)) { 920 pr_warn("%s: bitmap file is out of date (%llu < %llu) -- forcing full recovery\n", 921 bmname(bitmap), events, 922 (unsigned long long) bitmap->mddev->events); 923 set_bit(BITMAP_STALE, &bitmap->flags); 924 } 925 } 926 927 /* assign fields using values from superblock */ 928 bitmap->flags |= le32_to_cpu(sb->state); 929 if (le32_to_cpu(sb->version) == BITMAP_MAJOR_HOSTENDIAN) 930 set_bit(BITMAP_HOSTENDIAN, &bitmap->flags); 931 bitmap->events_cleared = le64_to_cpu(sb->events_cleared); 932 err = 0; 933 934 out: 935 kunmap_atomic(sb); 936 if (err == 0 && nodes && (bitmap->cluster_slot < 0)) { 937 /* Assigning chunksize is required for "re_read" */ 938 bitmap->mddev->bitmap_info.chunksize = chunksize; 939 err = md_setup_cluster(bitmap->mddev, nodes); 940 if (err) { 941 pr_warn("%s: Could not setup cluster service (%d)\n", 942 bmname(bitmap), err); 943 goto out_no_sb; 944 } 945 bitmap->cluster_slot = md_cluster_ops->slot_number(bitmap->mddev); 946 goto re_read; 947 } 948 949 out_no_sb: 950 if (err == 0) { 951 if (test_bit(BITMAP_STALE, &bitmap->flags)) 952 bitmap->events_cleared = bitmap->mddev->events; 953 bitmap->mddev->bitmap_info.chunksize = chunksize; 954 bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep; 955 bitmap->mddev->bitmap_info.max_write_behind = write_behind; 956 bitmap->mddev->bitmap_info.nodes = nodes; 957 if (bitmap->mddev->bitmap_info.space == 0 || 958 bitmap->mddev->bitmap_info.space > sectors_reserved) 959 bitmap->mddev->bitmap_info.space = sectors_reserved; 960 } else { 961 bitmap_print_sb(bitmap); 962 if (bitmap->cluster_slot < 0) 963 md_cluster_stop(bitmap->mddev); 964 } 965 return err; 966 } 967 968 /* 969 * general bitmap file operations 970 */ 971 972 /* 973 * on-disk bitmap: 974 * 975 * Use one bit per "chunk" (block set). We do the disk I/O on the bitmap 976 * file a page at a time. There's a superblock at the start of the file. 977 */ 978 /* calculate the index of the page that contains this bit */ 979 static inline unsigned long file_page_index(struct bitmap_storage *store, 980 unsigned long chunk) 981 { 982 if (store->sb_page) 983 chunk += sizeof(bitmap_super_t) << 3; 984 return chunk >> PAGE_BIT_SHIFT; 985 } 986 987 /* calculate the (bit) offset of this bit within a page */ 988 static inline unsigned long file_page_offset(struct bitmap_storage *store, 989 unsigned long chunk) 990 { 991 if (store->sb_page) 992 chunk += sizeof(bitmap_super_t) << 3; 993 return chunk & (PAGE_BITS - 1); 994 } 995 996 /* 997 * return a pointer to the page in the filemap that contains the given bit 998 * 999 */ 1000 static inline struct page *filemap_get_page(struct bitmap_storage *store, 1001 unsigned long chunk) 1002 { 1003 if (file_page_index(store, chunk) >= store->file_pages) 1004 return NULL; 1005 return store->filemap[file_page_index(store, chunk)]; 1006 } 1007 1008 static int md_bitmap_storage_alloc(struct bitmap_storage *store, 1009 unsigned long chunks, int with_super, 1010 int slot_number) 1011 { 1012 int pnum, offset = 0; 1013 unsigned long num_pages; 1014 unsigned long bytes; 1015 1016 bytes = DIV_ROUND_UP(chunks, 8); 1017 if (with_super) 1018 bytes += sizeof(bitmap_super_t); 1019 1020 num_pages = DIV_ROUND_UP(bytes, PAGE_SIZE); 1021 offset = slot_number * num_pages; 1022 1023 store->filemap = kmalloc_array(num_pages, sizeof(struct page *), 1024 GFP_KERNEL); 1025 if (!store->filemap) 1026 return -ENOMEM; 1027 1028 if (with_super && !store->sb_page) { 1029 store->sb_page = alloc_page(GFP_KERNEL|__GFP_ZERO); 1030 if (store->sb_page == NULL) 1031 return -ENOMEM; 1032 } 1033 1034 pnum = 0; 1035 if (store->sb_page) { 1036 store->filemap[0] = store->sb_page; 1037 pnum = 1; 1038 store->sb_index = offset; 1039 } 1040 1041 for ( ; pnum < num_pages; pnum++) { 1042 store->filemap[pnum] = alloc_page(GFP_KERNEL|__GFP_ZERO); 1043 if (!store->filemap[pnum]) { 1044 store->file_pages = pnum; 1045 return -ENOMEM; 1046 } 1047 } 1048 store->file_pages = pnum; 1049 1050 /* We need 4 bits per page, rounded up to a multiple 1051 * of sizeof(unsigned long) */ 1052 store->filemap_attr = kzalloc( 1053 roundup(DIV_ROUND_UP(num_pages*4, 8), sizeof(unsigned long)), 1054 GFP_KERNEL); 1055 if (!store->filemap_attr) 1056 return -ENOMEM; 1057 1058 store->bytes = bytes; 1059 1060 return 0; 1061 } 1062 1063 static void md_bitmap_file_unmap(struct bitmap_storage *store) 1064 { 1065 struct file *file = store->file; 1066 struct page *sb_page = store->sb_page; 1067 struct page **map = store->filemap; 1068 int pages = store->file_pages; 1069 1070 while (pages--) 1071 if (map[pages] != sb_page) /* 0 is sb_page, release it below */ 1072 free_buffers(map[pages]); 1073 kfree(map); 1074 kfree(store->filemap_attr); 1075 1076 if (sb_page) 1077 free_buffers(sb_page); 1078 1079 if (file) { 1080 struct inode *inode = file_inode(file); 1081 invalidate_mapping_pages(inode->i_mapping, 0, -1); 1082 fput(file); 1083 } 1084 } 1085 1086 /* 1087 * bitmap_file_kick - if an error occurs while manipulating the bitmap file 1088 * then it is no longer reliable, so we stop using it and we mark the file 1089 * as failed in the superblock 1090 */ 1091 static void md_bitmap_file_kick(struct bitmap *bitmap) 1092 { 1093 if (!test_and_set_bit(BITMAP_STALE, &bitmap->flags)) { 1094 bitmap_update_sb(bitmap); 1095 1096 if (bitmap->storage.file) { 1097 pr_warn("%s: kicking failed bitmap file %pD4 from array!\n", 1098 bmname(bitmap), bitmap->storage.file); 1099 1100 } else 1101 pr_warn("%s: disabling internal bitmap due to errors\n", 1102 bmname(bitmap)); 1103 } 1104 } 1105 1106 enum bitmap_page_attr { 1107 BITMAP_PAGE_DIRTY = 0, /* there are set bits that need to be synced */ 1108 BITMAP_PAGE_PENDING = 1, /* there are bits that are being cleaned. 1109 * i.e. counter is 1 or 2. */ 1110 BITMAP_PAGE_NEEDWRITE = 2, /* there are cleared bits that need to be synced */ 1111 }; 1112 1113 static inline void set_page_attr(struct bitmap *bitmap, int pnum, 1114 enum bitmap_page_attr attr) 1115 { 1116 set_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); 1117 } 1118 1119 static inline void clear_page_attr(struct bitmap *bitmap, int pnum, 1120 enum bitmap_page_attr attr) 1121 { 1122 clear_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); 1123 } 1124 1125 static inline int test_page_attr(struct bitmap *bitmap, int pnum, 1126 enum bitmap_page_attr attr) 1127 { 1128 return test_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); 1129 } 1130 1131 static inline int test_and_clear_page_attr(struct bitmap *bitmap, int pnum, 1132 enum bitmap_page_attr attr) 1133 { 1134 return test_and_clear_bit((pnum<<2) + attr, 1135 bitmap->storage.filemap_attr); 1136 } 1137 /* 1138 * bitmap_file_set_bit -- called before performing a write to the md device 1139 * to set (and eventually sync) a particular bit in the bitmap file 1140 * 1141 * we set the bit immediately, then we record the page number so that 1142 * when an unplug occurs, we can flush the dirty pages out to disk 1143 */ 1144 static void md_bitmap_file_set_bit(struct bitmap *bitmap, sector_t block) 1145 { 1146 unsigned long bit; 1147 struct page *page; 1148 void *kaddr; 1149 unsigned long chunk = block >> bitmap->counts.chunkshift; 1150 struct bitmap_storage *store = &bitmap->storage; 1151 unsigned long index = file_page_index(store, chunk); 1152 unsigned long node_offset = 0; 1153 1154 index += store->sb_index; 1155 if (mddev_is_clustered(bitmap->mddev)) 1156 node_offset = bitmap->cluster_slot * store->file_pages; 1157 1158 page = filemap_get_page(&bitmap->storage, chunk); 1159 if (!page) 1160 return; 1161 bit = file_page_offset(&bitmap->storage, chunk); 1162 1163 /* set the bit */ 1164 kaddr = kmap_atomic(page); 1165 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) 1166 set_bit(bit, kaddr); 1167 else 1168 set_bit_le(bit, kaddr); 1169 kunmap_atomic(kaddr); 1170 pr_debug("set file bit %lu page %lu\n", bit, index); 1171 /* record page number so it gets flushed to disk when unplug occurs */ 1172 set_page_attr(bitmap, index - node_offset, BITMAP_PAGE_DIRTY); 1173 } 1174 1175 static void md_bitmap_file_clear_bit(struct bitmap *bitmap, sector_t block) 1176 { 1177 unsigned long bit; 1178 struct page *page; 1179 void *paddr; 1180 unsigned long chunk = block >> bitmap->counts.chunkshift; 1181 struct bitmap_storage *store = &bitmap->storage; 1182 unsigned long index = file_page_index(store, chunk); 1183 unsigned long node_offset = 0; 1184 1185 index += store->sb_index; 1186 if (mddev_is_clustered(bitmap->mddev)) 1187 node_offset = bitmap->cluster_slot * store->file_pages; 1188 1189 page = filemap_get_page(&bitmap->storage, chunk); 1190 if (!page) 1191 return; 1192 bit = file_page_offset(&bitmap->storage, chunk); 1193 paddr = kmap_atomic(page); 1194 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) 1195 clear_bit(bit, paddr); 1196 else 1197 clear_bit_le(bit, paddr); 1198 kunmap_atomic(paddr); 1199 if (!test_page_attr(bitmap, index - node_offset, BITMAP_PAGE_NEEDWRITE)) { 1200 set_page_attr(bitmap, index - node_offset, BITMAP_PAGE_PENDING); 1201 bitmap->allclean = 0; 1202 } 1203 } 1204 1205 static int md_bitmap_file_test_bit(struct bitmap *bitmap, sector_t block) 1206 { 1207 unsigned long bit; 1208 struct page *page; 1209 void *paddr; 1210 unsigned long chunk = block >> bitmap->counts.chunkshift; 1211 int set = 0; 1212 1213 page = filemap_get_page(&bitmap->storage, chunk); 1214 if (!page) 1215 return -EINVAL; 1216 bit = file_page_offset(&bitmap->storage, chunk); 1217 paddr = kmap_atomic(page); 1218 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) 1219 set = test_bit(bit, paddr); 1220 else 1221 set = test_bit_le(bit, paddr); 1222 kunmap_atomic(paddr); 1223 return set; 1224 } 1225 1226 /* this gets called when the md device is ready to unplug its underlying 1227 * (slave) device queues -- before we let any writes go down, we need to 1228 * sync the dirty pages of the bitmap file to disk */ 1229 static void __bitmap_unplug(struct bitmap *bitmap) 1230 { 1231 unsigned long i; 1232 int dirty, need_write; 1233 int writing = 0; 1234 1235 if (!__bitmap_enabled(bitmap)) 1236 return; 1237 1238 /* look at each page to see if there are any set bits that need to be 1239 * flushed out to disk */ 1240 for (i = 0; i < bitmap->storage.file_pages; i++) { 1241 dirty = test_and_clear_page_attr(bitmap, i, BITMAP_PAGE_DIRTY); 1242 need_write = test_and_clear_page_attr(bitmap, i, 1243 BITMAP_PAGE_NEEDWRITE); 1244 if (dirty || need_write) { 1245 if (!writing) { 1246 md_bitmap_wait_writes(bitmap); 1247 mddev_add_trace_msg(bitmap->mddev, 1248 "md bitmap_unplug"); 1249 } 1250 clear_page_attr(bitmap, i, BITMAP_PAGE_PENDING); 1251 filemap_write_page(bitmap, i, false); 1252 writing = 1; 1253 } 1254 } 1255 if (writing) 1256 md_bitmap_wait_writes(bitmap); 1257 1258 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) 1259 md_bitmap_file_kick(bitmap); 1260 } 1261 1262 struct bitmap_unplug_work { 1263 struct work_struct work; 1264 struct bitmap *bitmap; 1265 struct completion *done; 1266 }; 1267 1268 static void md_bitmap_unplug_fn(struct work_struct *work) 1269 { 1270 struct bitmap_unplug_work *unplug_work = 1271 container_of(work, struct bitmap_unplug_work, work); 1272 1273 __bitmap_unplug(unplug_work->bitmap); 1274 complete(unplug_work->done); 1275 } 1276 1277 static void bitmap_unplug_async(struct bitmap *bitmap) 1278 { 1279 DECLARE_COMPLETION_ONSTACK(done); 1280 struct bitmap_unplug_work unplug_work; 1281 1282 INIT_WORK_ONSTACK(&unplug_work.work, md_bitmap_unplug_fn); 1283 unplug_work.bitmap = bitmap; 1284 unplug_work.done = &done; 1285 1286 queue_work(md_bitmap_wq, &unplug_work.work); 1287 wait_for_completion(&done); 1288 } 1289 1290 static void bitmap_unplug(struct mddev *mddev, bool sync) 1291 { 1292 struct bitmap *bitmap = mddev->bitmap; 1293 1294 if (!bitmap) 1295 return; 1296 1297 if (sync) 1298 __bitmap_unplug(bitmap); 1299 else 1300 bitmap_unplug_async(bitmap); 1301 } 1302 1303 static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed); 1304 1305 /* 1306 * Initialize the in-memory bitmap from the on-disk bitmap and set up the memory 1307 * mapping of the bitmap file. 1308 * 1309 * Special case: If there's no bitmap file, or if the bitmap file had been 1310 * previously kicked from the array, we mark all the bits as 1's in order to 1311 * cause a full resync. 1312 * 1313 * We ignore all bits for sectors that end earlier than 'start'. 1314 * This is used when reading an out-of-date bitmap. 1315 */ 1316 static int md_bitmap_init_from_disk(struct bitmap *bitmap, sector_t start) 1317 { 1318 bool outofdate = test_bit(BITMAP_STALE, &bitmap->flags); 1319 struct mddev *mddev = bitmap->mddev; 1320 unsigned long chunks = bitmap->counts.chunks; 1321 struct bitmap_storage *store = &bitmap->storage; 1322 struct file *file = store->file; 1323 unsigned long node_offset = 0; 1324 unsigned long bit_cnt = 0; 1325 unsigned long i; 1326 int ret; 1327 1328 if (!file && !mddev->bitmap_info.offset) { 1329 /* No permanent bitmap - fill with '1s'. */ 1330 store->filemap = NULL; 1331 store->file_pages = 0; 1332 for (i = 0; i < chunks ; i++) { 1333 /* if the disk bit is set, set the memory bit */ 1334 int needed = ((sector_t)(i+1) << (bitmap->counts.chunkshift) 1335 >= start); 1336 md_bitmap_set_memory_bits(bitmap, 1337 (sector_t)i << bitmap->counts.chunkshift, 1338 needed); 1339 } 1340 return 0; 1341 } 1342 1343 if (file && i_size_read(file->f_mapping->host) < store->bytes) { 1344 pr_warn("%s: bitmap file too short %lu < %lu\n", 1345 bmname(bitmap), 1346 (unsigned long) i_size_read(file->f_mapping->host), 1347 store->bytes); 1348 ret = -ENOSPC; 1349 goto err; 1350 } 1351 1352 if (mddev_is_clustered(mddev)) 1353 node_offset = bitmap->cluster_slot * (DIV_ROUND_UP(store->bytes, PAGE_SIZE)); 1354 1355 for (i = 0; i < store->file_pages; i++) { 1356 struct page *page = store->filemap[i]; 1357 int count; 1358 1359 /* unmap the old page, we're done with it */ 1360 if (i == store->file_pages - 1) 1361 count = store->bytes - i * PAGE_SIZE; 1362 else 1363 count = PAGE_SIZE; 1364 1365 if (file) 1366 ret = read_file_page(file, i, bitmap, count, page); 1367 else 1368 ret = read_sb_page(mddev, 0, page, i + node_offset, 1369 count); 1370 if (ret) 1371 goto err; 1372 } 1373 1374 if (outofdate) { 1375 pr_warn("%s: bitmap file is out of date, doing full recovery\n", 1376 bmname(bitmap)); 1377 1378 for (i = 0; i < store->file_pages; i++) { 1379 struct page *page = store->filemap[i]; 1380 unsigned long offset = 0; 1381 void *paddr; 1382 1383 if (i == 0 && !mddev->bitmap_info.external) 1384 offset = sizeof(bitmap_super_t); 1385 1386 /* 1387 * If the bitmap is out of date, dirty the whole page 1388 * and write it out 1389 */ 1390 paddr = kmap_atomic(page); 1391 memset(paddr + offset, 0xff, PAGE_SIZE - offset); 1392 kunmap_atomic(paddr); 1393 1394 filemap_write_page(bitmap, i, true); 1395 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) { 1396 ret = -EIO; 1397 goto err; 1398 } 1399 } 1400 } 1401 1402 for (i = 0; i < chunks; i++) { 1403 struct page *page = filemap_get_page(&bitmap->storage, i); 1404 unsigned long bit = file_page_offset(&bitmap->storage, i); 1405 void *paddr; 1406 bool was_set; 1407 1408 paddr = kmap_atomic(page); 1409 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) 1410 was_set = test_bit(bit, paddr); 1411 else 1412 was_set = test_bit_le(bit, paddr); 1413 kunmap_atomic(paddr); 1414 1415 if (was_set) { 1416 /* if the disk bit is set, set the memory bit */ 1417 int needed = ((sector_t)(i+1) << bitmap->counts.chunkshift 1418 >= start); 1419 md_bitmap_set_memory_bits(bitmap, 1420 (sector_t)i << bitmap->counts.chunkshift, 1421 needed); 1422 bit_cnt++; 1423 } 1424 } 1425 1426 pr_debug("%s: bitmap initialized from disk: read %lu pages, set %lu of %lu bits\n", 1427 bmname(bitmap), store->file_pages, 1428 bit_cnt, chunks); 1429 1430 return 0; 1431 1432 err: 1433 pr_warn("%s: bitmap initialisation failed: %d\n", 1434 bmname(bitmap), ret); 1435 return ret; 1436 } 1437 1438 /* just flag bitmap pages as needing to be written. */ 1439 static void bitmap_write_all(struct mddev *mddev) 1440 { 1441 int i; 1442 struct bitmap *bitmap = mddev->bitmap; 1443 1444 if (!bitmap || !bitmap->storage.filemap) 1445 return; 1446 1447 /* Only one copy, so nothing needed */ 1448 if (bitmap->storage.file) 1449 return; 1450 1451 for (i = 0; i < bitmap->storage.file_pages; i++) 1452 set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE); 1453 bitmap->allclean = 0; 1454 } 1455 1456 static void md_bitmap_count_page(struct bitmap_counts *bitmap, 1457 sector_t offset, int inc) 1458 { 1459 sector_t chunk = offset >> bitmap->chunkshift; 1460 unsigned long page = chunk >> PAGE_COUNTER_SHIFT; 1461 bitmap->bp[page].count += inc; 1462 md_bitmap_checkfree(bitmap, page); 1463 } 1464 1465 static void md_bitmap_set_pending(struct bitmap_counts *bitmap, sector_t offset) 1466 { 1467 sector_t chunk = offset >> bitmap->chunkshift; 1468 unsigned long page = chunk >> PAGE_COUNTER_SHIFT; 1469 struct bitmap_page *bp = &bitmap->bp[page]; 1470 1471 if (!bp->pending) 1472 bp->pending = 1; 1473 } 1474 1475 static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap, 1476 sector_t offset, sector_t *blocks, 1477 int create); 1478 1479 static void mddev_set_timeout(struct mddev *mddev, unsigned long timeout, 1480 bool force) 1481 { 1482 struct md_thread *thread; 1483 1484 rcu_read_lock(); 1485 thread = rcu_dereference(mddev->thread); 1486 1487 if (!thread) 1488 goto out; 1489 1490 if (force || thread->timeout < MAX_SCHEDULE_TIMEOUT) 1491 thread->timeout = timeout; 1492 1493 out: 1494 rcu_read_unlock(); 1495 } 1496 1497 /* 1498 * bitmap daemon -- periodically wakes up to clean bits and flush pages 1499 * out to disk 1500 */ 1501 static void bitmap_daemon_work(struct mddev *mddev) 1502 { 1503 struct bitmap *bitmap; 1504 unsigned long j; 1505 unsigned long nextpage; 1506 sector_t blocks; 1507 struct bitmap_counts *counts; 1508 1509 /* Use a mutex to guard daemon_work against 1510 * bitmap_destroy. 1511 */ 1512 mutex_lock(&mddev->bitmap_info.mutex); 1513 bitmap = mddev->bitmap; 1514 if (bitmap == NULL) { 1515 mutex_unlock(&mddev->bitmap_info.mutex); 1516 return; 1517 } 1518 if (time_before(jiffies, bitmap->daemon_lastrun 1519 + mddev->bitmap_info.daemon_sleep)) 1520 goto done; 1521 1522 bitmap->daemon_lastrun = jiffies; 1523 if (bitmap->allclean) { 1524 mddev_set_timeout(mddev, MAX_SCHEDULE_TIMEOUT, true); 1525 goto done; 1526 } 1527 bitmap->allclean = 1; 1528 1529 mddev_add_trace_msg(bitmap->mddev, "md bitmap_daemon_work"); 1530 1531 /* Any file-page which is PENDING now needs to be written. 1532 * So set NEEDWRITE now, then after we make any last-minute changes 1533 * we will write it. 1534 */ 1535 for (j = 0; j < bitmap->storage.file_pages; j++) 1536 if (test_and_clear_page_attr(bitmap, j, 1537 BITMAP_PAGE_PENDING)) 1538 set_page_attr(bitmap, j, 1539 BITMAP_PAGE_NEEDWRITE); 1540 1541 if (bitmap->need_sync && 1542 mddev->bitmap_info.external == 0) { 1543 /* Arrange for superblock update as well as 1544 * other changes */ 1545 bitmap_super_t *sb; 1546 bitmap->need_sync = 0; 1547 if (bitmap->storage.filemap) { 1548 sb = kmap_atomic(bitmap->storage.sb_page); 1549 sb->events_cleared = 1550 cpu_to_le64(bitmap->events_cleared); 1551 kunmap_atomic(sb); 1552 set_page_attr(bitmap, 0, 1553 BITMAP_PAGE_NEEDWRITE); 1554 } 1555 } 1556 /* Now look at the bitmap counters and if any are '2' or '1', 1557 * decrement and handle accordingly. 1558 */ 1559 counts = &bitmap->counts; 1560 spin_lock_irq(&counts->lock); 1561 nextpage = 0; 1562 for (j = 0; j < counts->chunks; j++) { 1563 bitmap_counter_t *bmc; 1564 sector_t block = (sector_t)j << counts->chunkshift; 1565 1566 if (j == nextpage) { 1567 nextpage += PAGE_COUNTER_RATIO; 1568 if (!counts->bp[j >> PAGE_COUNTER_SHIFT].pending) { 1569 j |= PAGE_COUNTER_MASK; 1570 continue; 1571 } 1572 counts->bp[j >> PAGE_COUNTER_SHIFT].pending = 0; 1573 } 1574 1575 bmc = md_bitmap_get_counter(counts, block, &blocks, 0); 1576 if (!bmc) { 1577 j |= PAGE_COUNTER_MASK; 1578 continue; 1579 } 1580 if (*bmc == 1 && !bitmap->need_sync) { 1581 /* We can clear the bit */ 1582 *bmc = 0; 1583 md_bitmap_count_page(counts, block, -1); 1584 md_bitmap_file_clear_bit(bitmap, block); 1585 } else if (*bmc && *bmc <= 2) { 1586 *bmc = 1; 1587 md_bitmap_set_pending(counts, block); 1588 bitmap->allclean = 0; 1589 } 1590 } 1591 spin_unlock_irq(&counts->lock); 1592 1593 md_bitmap_wait_writes(bitmap); 1594 /* Now start writeout on any page in NEEDWRITE that isn't DIRTY. 1595 * DIRTY pages need to be written by bitmap_unplug so it can wait 1596 * for them. 1597 * If we find any DIRTY page we stop there and let bitmap_unplug 1598 * handle all the rest. This is important in the case where 1599 * the first blocking holds the superblock and it has been updated. 1600 * We mustn't write any other blocks before the superblock. 1601 */ 1602 for (j = 0; 1603 j < bitmap->storage.file_pages 1604 && !test_bit(BITMAP_STALE, &bitmap->flags); 1605 j++) { 1606 if (test_page_attr(bitmap, j, 1607 BITMAP_PAGE_DIRTY)) 1608 /* bitmap_unplug will handle the rest */ 1609 break; 1610 if (bitmap->storage.filemap && 1611 test_and_clear_page_attr(bitmap, j, 1612 BITMAP_PAGE_NEEDWRITE)) 1613 filemap_write_page(bitmap, j, false); 1614 } 1615 1616 done: 1617 if (bitmap->allclean == 0) 1618 mddev_set_timeout(mddev, mddev->bitmap_info.daemon_sleep, true); 1619 mutex_unlock(&mddev->bitmap_info.mutex); 1620 } 1621 1622 static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap, 1623 sector_t offset, sector_t *blocks, 1624 int create) 1625 __releases(bitmap->lock) 1626 __acquires(bitmap->lock) 1627 { 1628 /* If 'create', we might release the lock and reclaim it. 1629 * The lock must have been taken with interrupts enabled. 1630 * If !create, we don't release the lock. 1631 */ 1632 sector_t chunk = offset >> bitmap->chunkshift; 1633 unsigned long page = chunk >> PAGE_COUNTER_SHIFT; 1634 unsigned long pageoff = (chunk & PAGE_COUNTER_MASK) << COUNTER_BYTE_SHIFT; 1635 sector_t csize = ((sector_t)1) << bitmap->chunkshift; 1636 int err; 1637 1638 if (page >= bitmap->pages) { 1639 /* 1640 * This can happen if bitmap_start_sync goes beyond 1641 * End-of-device while looking for a whole page or 1642 * user set a huge number to sysfs bitmap_set_bits. 1643 */ 1644 *blocks = csize - (offset & (csize - 1)); 1645 return NULL; 1646 } 1647 err = md_bitmap_checkpage(bitmap, page, create, 0); 1648 1649 if (bitmap->bp[page].hijacked || 1650 bitmap->bp[page].map == NULL) 1651 csize = ((sector_t)1) << (bitmap->chunkshift + 1652 PAGE_COUNTER_SHIFT); 1653 1654 *blocks = csize - (offset & (csize - 1)); 1655 1656 if (err < 0) 1657 return NULL; 1658 1659 /* now locked ... */ 1660 1661 if (bitmap->bp[page].hijacked) { /* hijacked pointer */ 1662 /* should we use the first or second counter field 1663 * of the hijacked pointer? */ 1664 int hi = (pageoff > PAGE_COUNTER_MASK); 1665 return &((bitmap_counter_t *) 1666 &bitmap->bp[page].map)[hi]; 1667 } else /* page is allocated */ 1668 return (bitmap_counter_t *) 1669 &(bitmap->bp[page].map[pageoff]); 1670 } 1671 1672 static int bitmap_startwrite(struct mddev *mddev, sector_t offset, 1673 unsigned long sectors, bool behind) 1674 { 1675 struct bitmap *bitmap = mddev->bitmap; 1676 1677 if (!bitmap) 1678 return 0; 1679 1680 if (behind) { 1681 int bw; 1682 atomic_inc(&bitmap->behind_writes); 1683 bw = atomic_read(&bitmap->behind_writes); 1684 if (bw > bitmap->behind_writes_used) 1685 bitmap->behind_writes_used = bw; 1686 1687 pr_debug("inc write-behind count %d/%lu\n", 1688 bw, bitmap->mddev->bitmap_info.max_write_behind); 1689 } 1690 1691 while (sectors) { 1692 sector_t blocks; 1693 bitmap_counter_t *bmc; 1694 1695 spin_lock_irq(&bitmap->counts.lock); 1696 bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 1); 1697 if (!bmc) { 1698 spin_unlock_irq(&bitmap->counts.lock); 1699 return 0; 1700 } 1701 1702 if (unlikely(COUNTER(*bmc) == COUNTER_MAX)) { 1703 DEFINE_WAIT(__wait); 1704 /* note that it is safe to do the prepare_to_wait 1705 * after the test as long as we do it before dropping 1706 * the spinlock. 1707 */ 1708 prepare_to_wait(&bitmap->overflow_wait, &__wait, 1709 TASK_UNINTERRUPTIBLE); 1710 spin_unlock_irq(&bitmap->counts.lock); 1711 schedule(); 1712 finish_wait(&bitmap->overflow_wait, &__wait); 1713 continue; 1714 } 1715 1716 switch (*bmc) { 1717 case 0: 1718 md_bitmap_file_set_bit(bitmap, offset); 1719 md_bitmap_count_page(&bitmap->counts, offset, 1); 1720 fallthrough; 1721 case 1: 1722 *bmc = 2; 1723 } 1724 1725 (*bmc)++; 1726 1727 spin_unlock_irq(&bitmap->counts.lock); 1728 1729 offset += blocks; 1730 if (sectors > blocks) 1731 sectors -= blocks; 1732 else 1733 sectors = 0; 1734 } 1735 return 0; 1736 } 1737 1738 static void bitmap_endwrite(struct mddev *mddev, sector_t offset, 1739 unsigned long sectors, bool success, bool behind) 1740 { 1741 struct bitmap *bitmap = mddev->bitmap; 1742 1743 if (!bitmap) 1744 return; 1745 1746 if (behind) { 1747 if (atomic_dec_and_test(&bitmap->behind_writes)) 1748 wake_up(&bitmap->behind_wait); 1749 pr_debug("dec write-behind count %d/%lu\n", 1750 atomic_read(&bitmap->behind_writes), 1751 bitmap->mddev->bitmap_info.max_write_behind); 1752 } 1753 1754 while (sectors) { 1755 sector_t blocks; 1756 unsigned long flags; 1757 bitmap_counter_t *bmc; 1758 1759 spin_lock_irqsave(&bitmap->counts.lock, flags); 1760 bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 0); 1761 if (!bmc) { 1762 spin_unlock_irqrestore(&bitmap->counts.lock, flags); 1763 return; 1764 } 1765 1766 if (success && !bitmap->mddev->degraded && 1767 bitmap->events_cleared < bitmap->mddev->events) { 1768 bitmap->events_cleared = bitmap->mddev->events; 1769 bitmap->need_sync = 1; 1770 sysfs_notify_dirent_safe(bitmap->sysfs_can_clear); 1771 } 1772 1773 if (!success && !NEEDED(*bmc)) 1774 *bmc |= NEEDED_MASK; 1775 1776 if (COUNTER(*bmc) == COUNTER_MAX) 1777 wake_up(&bitmap->overflow_wait); 1778 1779 (*bmc)--; 1780 if (*bmc <= 2) { 1781 md_bitmap_set_pending(&bitmap->counts, offset); 1782 bitmap->allclean = 0; 1783 } 1784 spin_unlock_irqrestore(&bitmap->counts.lock, flags); 1785 offset += blocks; 1786 if (sectors > blocks) 1787 sectors -= blocks; 1788 else 1789 sectors = 0; 1790 } 1791 } 1792 1793 static bool __bitmap_start_sync(struct bitmap *bitmap, sector_t offset, 1794 sector_t *blocks, bool degraded) 1795 { 1796 bitmap_counter_t *bmc; 1797 bool rv; 1798 1799 if (bitmap == NULL) {/* FIXME or bitmap set as 'failed' */ 1800 *blocks = 1024; 1801 return true; /* always resync if no bitmap */ 1802 } 1803 spin_lock_irq(&bitmap->counts.lock); 1804 1805 rv = false; 1806 bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0); 1807 if (bmc) { 1808 /* locked */ 1809 if (RESYNC(*bmc)) { 1810 rv = true; 1811 } else if (NEEDED(*bmc)) { 1812 rv = true; 1813 if (!degraded) { /* don't set/clear bits if degraded */ 1814 *bmc |= RESYNC_MASK; 1815 *bmc &= ~NEEDED_MASK; 1816 } 1817 } 1818 } 1819 spin_unlock_irq(&bitmap->counts.lock); 1820 1821 return rv; 1822 } 1823 1824 static bool bitmap_start_sync(struct mddev *mddev, sector_t offset, 1825 sector_t *blocks, bool degraded) 1826 { 1827 /* bitmap_start_sync must always report on multiples of whole 1828 * pages, otherwise resync (which is very PAGE_SIZE based) will 1829 * get confused. 1830 * So call __bitmap_start_sync repeatedly (if needed) until 1831 * At least PAGE_SIZE>>9 blocks are covered. 1832 * Return the 'or' of the result. 1833 */ 1834 bool rv = false; 1835 sector_t blocks1; 1836 1837 *blocks = 0; 1838 while (*blocks < (PAGE_SIZE>>9)) { 1839 rv |= __bitmap_start_sync(mddev->bitmap, offset, 1840 &blocks1, degraded); 1841 offset += blocks1; 1842 *blocks += blocks1; 1843 } 1844 1845 return rv; 1846 } 1847 1848 static void __bitmap_end_sync(struct bitmap *bitmap, sector_t offset, 1849 sector_t *blocks, bool aborted) 1850 { 1851 bitmap_counter_t *bmc; 1852 unsigned long flags; 1853 1854 if (bitmap == NULL) { 1855 *blocks = 1024; 1856 return; 1857 } 1858 spin_lock_irqsave(&bitmap->counts.lock, flags); 1859 bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0); 1860 if (bmc == NULL) 1861 goto unlock; 1862 /* locked */ 1863 if (RESYNC(*bmc)) { 1864 *bmc &= ~RESYNC_MASK; 1865 1866 if (!NEEDED(*bmc) && aborted) 1867 *bmc |= NEEDED_MASK; 1868 else { 1869 if (*bmc <= 2) { 1870 md_bitmap_set_pending(&bitmap->counts, offset); 1871 bitmap->allclean = 0; 1872 } 1873 } 1874 } 1875 unlock: 1876 spin_unlock_irqrestore(&bitmap->counts.lock, flags); 1877 } 1878 1879 static void bitmap_end_sync(struct mddev *mddev, sector_t offset, 1880 sector_t *blocks) 1881 { 1882 __bitmap_end_sync(mddev->bitmap, offset, blocks, true); 1883 } 1884 1885 static void bitmap_close_sync(struct mddev *mddev) 1886 { 1887 /* Sync has finished, and any bitmap chunks that weren't synced 1888 * properly have been aborted. It remains to us to clear the 1889 * RESYNC bit wherever it is still on 1890 */ 1891 sector_t sector = 0; 1892 sector_t blocks; 1893 struct bitmap *bitmap = mddev->bitmap; 1894 1895 if (!bitmap) 1896 return; 1897 1898 while (sector < bitmap->mddev->resync_max_sectors) { 1899 __bitmap_end_sync(bitmap, sector, &blocks, false); 1900 sector += blocks; 1901 } 1902 } 1903 1904 static void bitmap_cond_end_sync(struct mddev *mddev, sector_t sector, 1905 bool force) 1906 { 1907 sector_t s = 0; 1908 sector_t blocks; 1909 struct bitmap *bitmap = mddev->bitmap; 1910 1911 if (!bitmap) 1912 return; 1913 if (sector == 0) { 1914 bitmap->last_end_sync = jiffies; 1915 return; 1916 } 1917 if (!force && time_before(jiffies, (bitmap->last_end_sync 1918 + bitmap->mddev->bitmap_info.daemon_sleep))) 1919 return; 1920 wait_event(bitmap->mddev->recovery_wait, 1921 atomic_read(&bitmap->mddev->recovery_active) == 0); 1922 1923 bitmap->mddev->curr_resync_completed = sector; 1924 set_bit(MD_SB_CHANGE_CLEAN, &bitmap->mddev->sb_flags); 1925 sector &= ~((1ULL << bitmap->counts.chunkshift) - 1); 1926 s = 0; 1927 while (s < sector && s < bitmap->mddev->resync_max_sectors) { 1928 __bitmap_end_sync(bitmap, s, &blocks, false); 1929 s += blocks; 1930 } 1931 bitmap->last_end_sync = jiffies; 1932 sysfs_notify_dirent_safe(bitmap->mddev->sysfs_completed); 1933 } 1934 1935 static void bitmap_sync_with_cluster(struct mddev *mddev, 1936 sector_t old_lo, sector_t old_hi, 1937 sector_t new_lo, sector_t new_hi) 1938 { 1939 struct bitmap *bitmap = mddev->bitmap; 1940 sector_t sector, blocks = 0; 1941 1942 for (sector = old_lo; sector < new_lo; ) { 1943 __bitmap_end_sync(bitmap, sector, &blocks, false); 1944 sector += blocks; 1945 } 1946 WARN((blocks > new_lo) && old_lo, "alignment is not correct for lo\n"); 1947 1948 for (sector = old_hi; sector < new_hi; ) { 1949 bitmap_start_sync(mddev, sector, &blocks, false); 1950 sector += blocks; 1951 } 1952 WARN((blocks > new_hi) && old_hi, "alignment is not correct for hi\n"); 1953 } 1954 1955 static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed) 1956 { 1957 /* For each chunk covered by any of these sectors, set the 1958 * counter to 2 and possibly set resync_needed. They should all 1959 * be 0 at this point 1960 */ 1961 1962 sector_t secs; 1963 bitmap_counter_t *bmc; 1964 spin_lock_irq(&bitmap->counts.lock); 1965 bmc = md_bitmap_get_counter(&bitmap->counts, offset, &secs, 1); 1966 if (!bmc) { 1967 spin_unlock_irq(&bitmap->counts.lock); 1968 return; 1969 } 1970 if (!*bmc) { 1971 *bmc = 2; 1972 md_bitmap_count_page(&bitmap->counts, offset, 1); 1973 md_bitmap_set_pending(&bitmap->counts, offset); 1974 bitmap->allclean = 0; 1975 } 1976 if (needed) 1977 *bmc |= NEEDED_MASK; 1978 spin_unlock_irq(&bitmap->counts.lock); 1979 } 1980 1981 /* dirty the memory and file bits for bitmap chunks "s" to "e" */ 1982 static void bitmap_dirty_bits(struct mddev *mddev, unsigned long s, 1983 unsigned long e) 1984 { 1985 unsigned long chunk; 1986 struct bitmap *bitmap = mddev->bitmap; 1987 1988 if (!bitmap) 1989 return; 1990 1991 for (chunk = s; chunk <= e; chunk++) { 1992 sector_t sec = (sector_t)chunk << bitmap->counts.chunkshift; 1993 1994 md_bitmap_set_memory_bits(bitmap, sec, 1); 1995 md_bitmap_file_set_bit(bitmap, sec); 1996 if (sec < bitmap->mddev->recovery_cp) 1997 /* We are asserting that the array is dirty, 1998 * so move the recovery_cp address back so 1999 * that it is obvious that it is dirty 2000 */ 2001 bitmap->mddev->recovery_cp = sec; 2002 } 2003 } 2004 2005 static void bitmap_flush(struct mddev *mddev) 2006 { 2007 struct bitmap *bitmap = mddev->bitmap; 2008 long sleep; 2009 2010 if (!bitmap) /* there was no bitmap */ 2011 return; 2012 2013 /* run the daemon_work three time to ensure everything is flushed 2014 * that can be 2015 */ 2016 sleep = mddev->bitmap_info.daemon_sleep * 2; 2017 bitmap->daemon_lastrun -= sleep; 2018 bitmap_daemon_work(mddev); 2019 bitmap->daemon_lastrun -= sleep; 2020 bitmap_daemon_work(mddev); 2021 bitmap->daemon_lastrun -= sleep; 2022 bitmap_daemon_work(mddev); 2023 if (mddev->bitmap_info.external) 2024 md_super_wait(mddev); 2025 bitmap_update_sb(bitmap); 2026 } 2027 2028 static void md_bitmap_free(void *data) 2029 { 2030 unsigned long k, pages; 2031 struct bitmap_page *bp; 2032 struct bitmap *bitmap = data; 2033 2034 if (!bitmap) /* there was no bitmap */ 2035 return; 2036 2037 if (bitmap->sysfs_can_clear) 2038 sysfs_put(bitmap->sysfs_can_clear); 2039 2040 if (mddev_is_clustered(bitmap->mddev) && bitmap->mddev->cluster_info && 2041 bitmap->cluster_slot == md_cluster_ops->slot_number(bitmap->mddev)) 2042 md_cluster_stop(bitmap->mddev); 2043 2044 /* Shouldn't be needed - but just in case.... */ 2045 wait_event(bitmap->write_wait, 2046 atomic_read(&bitmap->pending_writes) == 0); 2047 2048 /* release the bitmap file */ 2049 md_bitmap_file_unmap(&bitmap->storage); 2050 2051 bp = bitmap->counts.bp; 2052 pages = bitmap->counts.pages; 2053 2054 /* free all allocated memory */ 2055 2056 if (bp) /* deallocate the page memory */ 2057 for (k = 0; k < pages; k++) 2058 if (bp[k].map && !bp[k].hijacked) 2059 kfree(bp[k].map); 2060 kfree(bp); 2061 kfree(bitmap); 2062 } 2063 2064 static void bitmap_wait_behind_writes(struct mddev *mddev) 2065 { 2066 struct bitmap *bitmap = mddev->bitmap; 2067 2068 /* wait for behind writes to complete */ 2069 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2070 pr_debug("md:%s: behind writes in progress - waiting to stop.\n", 2071 mdname(mddev)); 2072 /* need to kick something here to make sure I/O goes? */ 2073 wait_event(bitmap->behind_wait, 2074 atomic_read(&bitmap->behind_writes) == 0); 2075 } 2076 } 2077 2078 static void bitmap_destroy(struct mddev *mddev) 2079 { 2080 struct bitmap *bitmap = mddev->bitmap; 2081 2082 if (!bitmap) /* there was no bitmap */ 2083 return; 2084 2085 bitmap_wait_behind_writes(mddev); 2086 if (!mddev->serialize_policy) 2087 mddev_destroy_serial_pool(mddev, NULL); 2088 2089 mutex_lock(&mddev->bitmap_info.mutex); 2090 spin_lock(&mddev->lock); 2091 mddev->bitmap = NULL; /* disconnect from the md device */ 2092 spin_unlock(&mddev->lock); 2093 mutex_unlock(&mddev->bitmap_info.mutex); 2094 mddev_set_timeout(mddev, MAX_SCHEDULE_TIMEOUT, true); 2095 2096 md_bitmap_free(bitmap); 2097 } 2098 2099 /* 2100 * initialize the bitmap structure 2101 * if this returns an error, bitmap_destroy must be called to do clean up 2102 * once mddev->bitmap is set 2103 */ 2104 static struct bitmap *__bitmap_create(struct mddev *mddev, int slot) 2105 { 2106 struct bitmap *bitmap; 2107 sector_t blocks = mddev->resync_max_sectors; 2108 struct file *file = mddev->bitmap_info.file; 2109 int err; 2110 struct kernfs_node *bm = NULL; 2111 2112 BUILD_BUG_ON(sizeof(bitmap_super_t) != 256); 2113 2114 BUG_ON(file && mddev->bitmap_info.offset); 2115 2116 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 2117 pr_notice("md/raid:%s: array with journal cannot have bitmap\n", 2118 mdname(mddev)); 2119 return ERR_PTR(-EBUSY); 2120 } 2121 2122 bitmap = kzalloc(sizeof(*bitmap), GFP_KERNEL); 2123 if (!bitmap) 2124 return ERR_PTR(-ENOMEM); 2125 2126 spin_lock_init(&bitmap->counts.lock); 2127 atomic_set(&bitmap->pending_writes, 0); 2128 init_waitqueue_head(&bitmap->write_wait); 2129 init_waitqueue_head(&bitmap->overflow_wait); 2130 init_waitqueue_head(&bitmap->behind_wait); 2131 2132 bitmap->mddev = mddev; 2133 bitmap->cluster_slot = slot; 2134 2135 if (mddev->kobj.sd) 2136 bm = sysfs_get_dirent(mddev->kobj.sd, "bitmap"); 2137 if (bm) { 2138 bitmap->sysfs_can_clear = sysfs_get_dirent(bm, "can_clear"); 2139 sysfs_put(bm); 2140 } else 2141 bitmap->sysfs_can_clear = NULL; 2142 2143 bitmap->storage.file = file; 2144 if (file) { 2145 get_file(file); 2146 /* As future accesses to this file will use bmap, 2147 * and bypass the page cache, we must sync the file 2148 * first. 2149 */ 2150 vfs_fsync(file, 1); 2151 } 2152 /* read superblock from bitmap file (this sets mddev->bitmap_info.chunksize) */ 2153 if (!mddev->bitmap_info.external) { 2154 /* 2155 * If 'MD_ARRAY_FIRST_USE' is set, then device-mapper is 2156 * instructing us to create a new on-disk bitmap instance. 2157 */ 2158 if (test_and_clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags)) 2159 err = md_bitmap_new_disk_sb(bitmap); 2160 else 2161 err = md_bitmap_read_sb(bitmap); 2162 } else { 2163 err = 0; 2164 if (mddev->bitmap_info.chunksize == 0 || 2165 mddev->bitmap_info.daemon_sleep == 0) 2166 /* chunksize and time_base need to be 2167 * set first. */ 2168 err = -EINVAL; 2169 } 2170 if (err) 2171 goto error; 2172 2173 bitmap->daemon_lastrun = jiffies; 2174 err = __bitmap_resize(bitmap, blocks, mddev->bitmap_info.chunksize, 2175 true); 2176 if (err) 2177 goto error; 2178 2179 pr_debug("created bitmap (%lu pages) for device %s\n", 2180 bitmap->counts.pages, bmname(bitmap)); 2181 2182 err = test_bit(BITMAP_WRITE_ERROR, &bitmap->flags) ? -EIO : 0; 2183 if (err) 2184 goto error; 2185 2186 return bitmap; 2187 error: 2188 md_bitmap_free(bitmap); 2189 return ERR_PTR(err); 2190 } 2191 2192 static int bitmap_create(struct mddev *mddev, int slot) 2193 { 2194 struct bitmap *bitmap = __bitmap_create(mddev, slot); 2195 2196 if (IS_ERR(bitmap)) 2197 return PTR_ERR(bitmap); 2198 2199 mddev->bitmap = bitmap; 2200 return 0; 2201 } 2202 2203 static int bitmap_load(struct mddev *mddev) 2204 { 2205 int err = 0; 2206 sector_t start = 0; 2207 sector_t sector = 0; 2208 struct bitmap *bitmap = mddev->bitmap; 2209 struct md_rdev *rdev; 2210 2211 if (!bitmap) 2212 goto out; 2213 2214 rdev_for_each(rdev, mddev) 2215 mddev_create_serial_pool(mddev, rdev); 2216 2217 if (mddev_is_clustered(mddev)) 2218 md_cluster_ops->load_bitmaps(mddev, mddev->bitmap_info.nodes); 2219 2220 /* Clear out old bitmap info first: Either there is none, or we 2221 * are resuming after someone else has possibly changed things, 2222 * so we should forget old cached info. 2223 * All chunks should be clean, but some might need_sync. 2224 */ 2225 while (sector < mddev->resync_max_sectors) { 2226 sector_t blocks; 2227 bitmap_start_sync(mddev, sector, &blocks, false); 2228 sector += blocks; 2229 } 2230 bitmap_close_sync(mddev); 2231 2232 if (mddev->degraded == 0 2233 || bitmap->events_cleared == mddev->events) 2234 /* no need to keep dirty bits to optimise a 2235 * re-add of a missing device */ 2236 start = mddev->recovery_cp; 2237 2238 mutex_lock(&mddev->bitmap_info.mutex); 2239 err = md_bitmap_init_from_disk(bitmap, start); 2240 mutex_unlock(&mddev->bitmap_info.mutex); 2241 2242 if (err) 2243 goto out; 2244 clear_bit(BITMAP_STALE, &bitmap->flags); 2245 2246 /* Kick recovery in case any bits were set */ 2247 set_bit(MD_RECOVERY_NEEDED, &bitmap->mddev->recovery); 2248 2249 mddev_set_timeout(mddev, mddev->bitmap_info.daemon_sleep, true); 2250 md_wakeup_thread(mddev->thread); 2251 2252 bitmap_update_sb(bitmap); 2253 2254 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) 2255 err = -EIO; 2256 out: 2257 return err; 2258 } 2259 2260 /* caller need to free returned bitmap with md_bitmap_free() */ 2261 static void *bitmap_get_from_slot(struct mddev *mddev, int slot) 2262 { 2263 int rv = 0; 2264 struct bitmap *bitmap; 2265 2266 bitmap = __bitmap_create(mddev, slot); 2267 if (IS_ERR(bitmap)) { 2268 rv = PTR_ERR(bitmap); 2269 return ERR_PTR(rv); 2270 } 2271 2272 rv = md_bitmap_init_from_disk(bitmap, 0); 2273 if (rv) { 2274 md_bitmap_free(bitmap); 2275 return ERR_PTR(rv); 2276 } 2277 2278 return bitmap; 2279 } 2280 2281 /* Loads the bitmap associated with slot and copies the resync information 2282 * to our bitmap 2283 */ 2284 static int bitmap_copy_from_slot(struct mddev *mddev, int slot, sector_t *low, 2285 sector_t *high, bool clear_bits) 2286 { 2287 int rv = 0, i, j; 2288 sector_t block, lo = 0, hi = 0; 2289 struct bitmap_counts *counts; 2290 struct bitmap *bitmap; 2291 2292 bitmap = bitmap_get_from_slot(mddev, slot); 2293 if (IS_ERR(bitmap)) { 2294 pr_err("%s can't get bitmap from slot %d\n", __func__, slot); 2295 return -1; 2296 } 2297 2298 counts = &bitmap->counts; 2299 for (j = 0; j < counts->chunks; j++) { 2300 block = (sector_t)j << counts->chunkshift; 2301 if (md_bitmap_file_test_bit(bitmap, block)) { 2302 if (!lo) 2303 lo = block; 2304 hi = block; 2305 md_bitmap_file_clear_bit(bitmap, block); 2306 md_bitmap_set_memory_bits(mddev->bitmap, block, 1); 2307 md_bitmap_file_set_bit(mddev->bitmap, block); 2308 } 2309 } 2310 2311 if (clear_bits) { 2312 bitmap_update_sb(bitmap); 2313 /* BITMAP_PAGE_PENDING is set, but bitmap_unplug needs 2314 * BITMAP_PAGE_DIRTY or _NEEDWRITE to write ... */ 2315 for (i = 0; i < bitmap->storage.file_pages; i++) 2316 if (test_page_attr(bitmap, i, BITMAP_PAGE_PENDING)) 2317 set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE); 2318 __bitmap_unplug(bitmap); 2319 } 2320 __bitmap_unplug(mddev->bitmap); 2321 *low = lo; 2322 *high = hi; 2323 md_bitmap_free(bitmap); 2324 2325 return rv; 2326 } 2327 2328 static void bitmap_set_pages(void *data, unsigned long pages) 2329 { 2330 struct bitmap *bitmap = data; 2331 2332 bitmap->counts.pages = pages; 2333 } 2334 2335 static int bitmap_get_stats(void *data, struct md_bitmap_stats *stats) 2336 { 2337 struct bitmap_storage *storage; 2338 struct bitmap_counts *counts; 2339 struct bitmap *bitmap = data; 2340 bitmap_super_t *sb; 2341 2342 if (!bitmap) 2343 return -ENOENT; 2344 2345 sb = kmap_local_page(bitmap->storage.sb_page); 2346 stats->sync_size = le64_to_cpu(sb->sync_size); 2347 kunmap_local(sb); 2348 2349 counts = &bitmap->counts; 2350 stats->missing_pages = counts->missing_pages; 2351 stats->pages = counts->pages; 2352 2353 storage = &bitmap->storage; 2354 stats->file_pages = storage->file_pages; 2355 stats->file = storage->file; 2356 2357 stats->behind_writes = atomic_read(&bitmap->behind_writes); 2358 stats->behind_wait = wq_has_sleeper(&bitmap->behind_wait); 2359 stats->events_cleared = bitmap->events_cleared; 2360 return 0; 2361 } 2362 2363 static int __bitmap_resize(struct bitmap *bitmap, sector_t blocks, 2364 int chunksize, bool init) 2365 { 2366 /* If chunk_size is 0, choose an appropriate chunk size. 2367 * Then possibly allocate new storage space. 2368 * Then quiesce, copy bits, replace bitmap, and re-start 2369 * 2370 * This function is called both to set up the initial bitmap 2371 * and to resize the bitmap while the array is active. 2372 * If this happens as a result of the array being resized, 2373 * chunksize will be zero, and we need to choose a suitable 2374 * chunksize, otherwise we use what we are given. 2375 */ 2376 struct bitmap_storage store; 2377 struct bitmap_counts old_counts; 2378 unsigned long chunks; 2379 sector_t block; 2380 sector_t old_blocks, new_blocks; 2381 int chunkshift; 2382 int ret = 0; 2383 long pages; 2384 struct bitmap_page *new_bp; 2385 2386 if (bitmap->storage.file && !init) { 2387 pr_info("md: cannot resize file-based bitmap\n"); 2388 return -EINVAL; 2389 } 2390 2391 if (chunksize == 0) { 2392 /* If there is enough space, leave the chunk size unchanged, 2393 * else increase by factor of two until there is enough space. 2394 */ 2395 long bytes; 2396 long space = bitmap->mddev->bitmap_info.space; 2397 2398 if (space == 0) { 2399 /* We don't know how much space there is, so limit 2400 * to current size - in sectors. 2401 */ 2402 bytes = DIV_ROUND_UP(bitmap->counts.chunks, 8); 2403 if (!bitmap->mddev->bitmap_info.external) 2404 bytes += sizeof(bitmap_super_t); 2405 space = DIV_ROUND_UP(bytes, 512); 2406 bitmap->mddev->bitmap_info.space = space; 2407 } 2408 chunkshift = bitmap->counts.chunkshift; 2409 chunkshift--; 2410 do { 2411 /* 'chunkshift' is shift from block size to chunk size */ 2412 chunkshift++; 2413 chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift); 2414 bytes = DIV_ROUND_UP(chunks, 8); 2415 if (!bitmap->mddev->bitmap_info.external) 2416 bytes += sizeof(bitmap_super_t); 2417 } while (bytes > (space << 9) && (chunkshift + BITMAP_BLOCK_SHIFT) < 2418 (BITS_PER_BYTE * sizeof(((bitmap_super_t *)0)->chunksize) - 1)); 2419 } else 2420 chunkshift = ffz(~chunksize) - BITMAP_BLOCK_SHIFT; 2421 2422 chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift); 2423 memset(&store, 0, sizeof(store)); 2424 if (bitmap->mddev->bitmap_info.offset || bitmap->mddev->bitmap_info.file) 2425 ret = md_bitmap_storage_alloc(&store, chunks, 2426 !bitmap->mddev->bitmap_info.external, 2427 mddev_is_clustered(bitmap->mddev) 2428 ? bitmap->cluster_slot : 0); 2429 if (ret) { 2430 md_bitmap_file_unmap(&store); 2431 goto err; 2432 } 2433 2434 pages = DIV_ROUND_UP(chunks, PAGE_COUNTER_RATIO); 2435 2436 new_bp = kcalloc(pages, sizeof(*new_bp), GFP_KERNEL); 2437 ret = -ENOMEM; 2438 if (!new_bp) { 2439 md_bitmap_file_unmap(&store); 2440 goto err; 2441 } 2442 2443 if (!init) 2444 bitmap->mddev->pers->quiesce(bitmap->mddev, 1); 2445 2446 store.file = bitmap->storage.file; 2447 bitmap->storage.file = NULL; 2448 2449 if (store.sb_page && bitmap->storage.sb_page) 2450 memcpy(page_address(store.sb_page), 2451 page_address(bitmap->storage.sb_page), 2452 sizeof(bitmap_super_t)); 2453 spin_lock_irq(&bitmap->counts.lock); 2454 md_bitmap_file_unmap(&bitmap->storage); 2455 bitmap->storage = store; 2456 2457 old_counts = bitmap->counts; 2458 bitmap->counts.bp = new_bp; 2459 bitmap->counts.pages = pages; 2460 bitmap->counts.missing_pages = pages; 2461 bitmap->counts.chunkshift = chunkshift; 2462 bitmap->counts.chunks = chunks; 2463 bitmap->mddev->bitmap_info.chunksize = 1UL << (chunkshift + 2464 BITMAP_BLOCK_SHIFT); 2465 2466 blocks = min(old_counts.chunks << old_counts.chunkshift, 2467 chunks << chunkshift); 2468 2469 /* For cluster raid, need to pre-allocate bitmap */ 2470 if (mddev_is_clustered(bitmap->mddev)) { 2471 unsigned long page; 2472 for (page = 0; page < pages; page++) { 2473 ret = md_bitmap_checkpage(&bitmap->counts, page, 1, 1); 2474 if (ret) { 2475 unsigned long k; 2476 2477 /* deallocate the page memory */ 2478 for (k = 0; k < page; k++) { 2479 kfree(new_bp[k].map); 2480 } 2481 kfree(new_bp); 2482 2483 /* restore some fields from old_counts */ 2484 bitmap->counts.bp = old_counts.bp; 2485 bitmap->counts.pages = old_counts.pages; 2486 bitmap->counts.missing_pages = old_counts.pages; 2487 bitmap->counts.chunkshift = old_counts.chunkshift; 2488 bitmap->counts.chunks = old_counts.chunks; 2489 bitmap->mddev->bitmap_info.chunksize = 2490 1UL << (old_counts.chunkshift + BITMAP_BLOCK_SHIFT); 2491 blocks = old_counts.chunks << old_counts.chunkshift; 2492 pr_warn("Could not pre-allocate in-memory bitmap for cluster raid\n"); 2493 break; 2494 } else 2495 bitmap->counts.bp[page].count += 1; 2496 } 2497 } 2498 2499 for (block = 0; block < blocks; ) { 2500 bitmap_counter_t *bmc_old, *bmc_new; 2501 int set; 2502 2503 bmc_old = md_bitmap_get_counter(&old_counts, block, &old_blocks, 0); 2504 set = bmc_old && NEEDED(*bmc_old); 2505 2506 if (set) { 2507 bmc_new = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1); 2508 if (bmc_new) { 2509 if (*bmc_new == 0) { 2510 /* need to set on-disk bits too. */ 2511 sector_t end = block + new_blocks; 2512 sector_t start = block >> chunkshift; 2513 2514 start <<= chunkshift; 2515 while (start < end) { 2516 md_bitmap_file_set_bit(bitmap, block); 2517 start += 1 << chunkshift; 2518 } 2519 *bmc_new = 2; 2520 md_bitmap_count_page(&bitmap->counts, block, 1); 2521 md_bitmap_set_pending(&bitmap->counts, block); 2522 } 2523 *bmc_new |= NEEDED_MASK; 2524 } 2525 if (new_blocks < old_blocks) 2526 old_blocks = new_blocks; 2527 } 2528 block += old_blocks; 2529 } 2530 2531 if (bitmap->counts.bp != old_counts.bp) { 2532 unsigned long k; 2533 for (k = 0; k < old_counts.pages; k++) 2534 if (!old_counts.bp[k].hijacked) 2535 kfree(old_counts.bp[k].map); 2536 kfree(old_counts.bp); 2537 } 2538 2539 if (!init) { 2540 int i; 2541 while (block < (chunks << chunkshift)) { 2542 bitmap_counter_t *bmc; 2543 bmc = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1); 2544 if (bmc) { 2545 /* new space. It needs to be resynced, so 2546 * we set NEEDED_MASK. 2547 */ 2548 if (*bmc == 0) { 2549 *bmc = NEEDED_MASK | 2; 2550 md_bitmap_count_page(&bitmap->counts, block, 1); 2551 md_bitmap_set_pending(&bitmap->counts, block); 2552 } 2553 } 2554 block += new_blocks; 2555 } 2556 for (i = 0; i < bitmap->storage.file_pages; i++) 2557 set_page_attr(bitmap, i, BITMAP_PAGE_DIRTY); 2558 } 2559 spin_unlock_irq(&bitmap->counts.lock); 2560 2561 if (!init) { 2562 __bitmap_unplug(bitmap); 2563 bitmap->mddev->pers->quiesce(bitmap->mddev, 0); 2564 } 2565 ret = 0; 2566 err: 2567 return ret; 2568 } 2569 2570 static int bitmap_resize(struct mddev *mddev, sector_t blocks, int chunksize, 2571 bool init) 2572 { 2573 struct bitmap *bitmap = mddev->bitmap; 2574 2575 if (!bitmap) 2576 return 0; 2577 2578 return __bitmap_resize(bitmap, blocks, chunksize, init); 2579 } 2580 2581 static ssize_t 2582 location_show(struct mddev *mddev, char *page) 2583 { 2584 ssize_t len; 2585 if (mddev->bitmap_info.file) 2586 len = sprintf(page, "file"); 2587 else if (mddev->bitmap_info.offset) 2588 len = sprintf(page, "%+lld", (long long)mddev->bitmap_info.offset); 2589 else 2590 len = sprintf(page, "none"); 2591 len += sprintf(page+len, "\n"); 2592 return len; 2593 } 2594 2595 static ssize_t 2596 location_store(struct mddev *mddev, const char *buf, size_t len) 2597 { 2598 int rv; 2599 2600 rv = mddev_suspend_and_lock(mddev); 2601 if (rv) 2602 return rv; 2603 2604 if (mddev->pers) { 2605 if (mddev->recovery || mddev->sync_thread) { 2606 rv = -EBUSY; 2607 goto out; 2608 } 2609 } 2610 2611 if (mddev->bitmap || mddev->bitmap_info.file || 2612 mddev->bitmap_info.offset) { 2613 /* bitmap already configured. Only option is to clear it */ 2614 if (strncmp(buf, "none", 4) != 0) { 2615 rv = -EBUSY; 2616 goto out; 2617 } 2618 2619 bitmap_destroy(mddev); 2620 mddev->bitmap_info.offset = 0; 2621 if (mddev->bitmap_info.file) { 2622 struct file *f = mddev->bitmap_info.file; 2623 mddev->bitmap_info.file = NULL; 2624 fput(f); 2625 } 2626 } else { 2627 /* No bitmap, OK to set a location */ 2628 long long offset; 2629 2630 if (strncmp(buf, "none", 4) == 0) 2631 /* nothing to be done */; 2632 else if (strncmp(buf, "file:", 5) == 0) { 2633 /* Not supported yet */ 2634 rv = -EINVAL; 2635 goto out; 2636 } else { 2637 if (buf[0] == '+') 2638 rv = kstrtoll(buf+1, 10, &offset); 2639 else 2640 rv = kstrtoll(buf, 10, &offset); 2641 if (rv) 2642 goto out; 2643 if (offset == 0) { 2644 rv = -EINVAL; 2645 goto out; 2646 } 2647 if (mddev->bitmap_info.external == 0 && 2648 mddev->major_version == 0 && 2649 offset != mddev->bitmap_info.default_offset) { 2650 rv = -EINVAL; 2651 goto out; 2652 } 2653 2654 mddev->bitmap_info.offset = offset; 2655 rv = bitmap_create(mddev, -1); 2656 if (rv) 2657 goto out; 2658 2659 rv = bitmap_load(mddev); 2660 if (rv) { 2661 mddev->bitmap_info.offset = 0; 2662 bitmap_destroy(mddev); 2663 goto out; 2664 } 2665 } 2666 } 2667 if (!mddev->external) { 2668 /* Ensure new bitmap info is stored in 2669 * metadata promptly. 2670 */ 2671 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2672 md_wakeup_thread(mddev->thread); 2673 } 2674 rv = 0; 2675 out: 2676 mddev_unlock_and_resume(mddev); 2677 if (rv) 2678 return rv; 2679 return len; 2680 } 2681 2682 static struct md_sysfs_entry bitmap_location = 2683 __ATTR(location, S_IRUGO|S_IWUSR, location_show, location_store); 2684 2685 /* 'bitmap/space' is the space available at 'location' for the 2686 * bitmap. This allows the kernel to know when it is safe to 2687 * resize the bitmap to match a resized array. 2688 */ 2689 static ssize_t 2690 space_show(struct mddev *mddev, char *page) 2691 { 2692 return sprintf(page, "%lu\n", mddev->bitmap_info.space); 2693 } 2694 2695 static ssize_t 2696 space_store(struct mddev *mddev, const char *buf, size_t len) 2697 { 2698 struct bitmap *bitmap; 2699 unsigned long sectors; 2700 int rv; 2701 2702 rv = kstrtoul(buf, 10, §ors); 2703 if (rv) 2704 return rv; 2705 2706 if (sectors == 0) 2707 return -EINVAL; 2708 2709 bitmap = mddev->bitmap; 2710 if (bitmap && sectors < (bitmap->storage.bytes + 511) >> 9) 2711 return -EFBIG; /* Bitmap is too big for this small space */ 2712 2713 /* could make sure it isn't too big, but that isn't really 2714 * needed - user-space should be careful. 2715 */ 2716 mddev->bitmap_info.space = sectors; 2717 return len; 2718 } 2719 2720 static struct md_sysfs_entry bitmap_space = 2721 __ATTR(space, S_IRUGO|S_IWUSR, space_show, space_store); 2722 2723 static ssize_t 2724 timeout_show(struct mddev *mddev, char *page) 2725 { 2726 ssize_t len; 2727 unsigned long secs = mddev->bitmap_info.daemon_sleep / HZ; 2728 unsigned long jifs = mddev->bitmap_info.daemon_sleep % HZ; 2729 2730 len = sprintf(page, "%lu", secs); 2731 if (jifs) 2732 len += sprintf(page+len, ".%03u", jiffies_to_msecs(jifs)); 2733 len += sprintf(page+len, "\n"); 2734 return len; 2735 } 2736 2737 static ssize_t 2738 timeout_store(struct mddev *mddev, const char *buf, size_t len) 2739 { 2740 /* timeout can be set at any time */ 2741 unsigned long timeout; 2742 int rv = strict_strtoul_scaled(buf, &timeout, 4); 2743 if (rv) 2744 return rv; 2745 2746 /* just to make sure we don't overflow... */ 2747 if (timeout >= LONG_MAX / HZ) 2748 return -EINVAL; 2749 2750 timeout = timeout * HZ / 10000; 2751 2752 if (timeout >= MAX_SCHEDULE_TIMEOUT) 2753 timeout = MAX_SCHEDULE_TIMEOUT-1; 2754 if (timeout < 1) 2755 timeout = 1; 2756 2757 mddev->bitmap_info.daemon_sleep = timeout; 2758 mddev_set_timeout(mddev, timeout, false); 2759 md_wakeup_thread(mddev->thread); 2760 2761 return len; 2762 } 2763 2764 static struct md_sysfs_entry bitmap_timeout = 2765 __ATTR(time_base, S_IRUGO|S_IWUSR, timeout_show, timeout_store); 2766 2767 static ssize_t 2768 backlog_show(struct mddev *mddev, char *page) 2769 { 2770 return sprintf(page, "%lu\n", mddev->bitmap_info.max_write_behind); 2771 } 2772 2773 static ssize_t 2774 backlog_store(struct mddev *mddev, const char *buf, size_t len) 2775 { 2776 unsigned long backlog; 2777 unsigned long old_mwb = mddev->bitmap_info.max_write_behind; 2778 struct md_rdev *rdev; 2779 bool has_write_mostly = false; 2780 int rv = kstrtoul(buf, 10, &backlog); 2781 if (rv) 2782 return rv; 2783 if (backlog > COUNTER_MAX) 2784 return -EINVAL; 2785 2786 rv = mddev_suspend_and_lock(mddev); 2787 if (rv) 2788 return rv; 2789 2790 /* 2791 * Without write mostly device, it doesn't make sense to set 2792 * backlog for max_write_behind. 2793 */ 2794 rdev_for_each(rdev, mddev) { 2795 if (test_bit(WriteMostly, &rdev->flags)) { 2796 has_write_mostly = true; 2797 break; 2798 } 2799 } 2800 if (!has_write_mostly) { 2801 pr_warn_ratelimited("%s: can't set backlog, no write mostly device available\n", 2802 mdname(mddev)); 2803 mddev_unlock(mddev); 2804 return -EINVAL; 2805 } 2806 2807 mddev->bitmap_info.max_write_behind = backlog; 2808 if (!backlog && mddev->serial_info_pool) { 2809 /* serial_info_pool is not needed if backlog is zero */ 2810 if (!mddev->serialize_policy) 2811 mddev_destroy_serial_pool(mddev, NULL); 2812 } else if (backlog && !mddev->serial_info_pool) { 2813 /* serial_info_pool is needed since backlog is not zero */ 2814 rdev_for_each(rdev, mddev) 2815 mddev_create_serial_pool(mddev, rdev); 2816 } 2817 if (old_mwb != backlog) 2818 bitmap_update_sb(mddev->bitmap); 2819 2820 mddev_unlock_and_resume(mddev); 2821 return len; 2822 } 2823 2824 static struct md_sysfs_entry bitmap_backlog = 2825 __ATTR(backlog, S_IRUGO|S_IWUSR, backlog_show, backlog_store); 2826 2827 static ssize_t 2828 chunksize_show(struct mddev *mddev, char *page) 2829 { 2830 return sprintf(page, "%lu\n", mddev->bitmap_info.chunksize); 2831 } 2832 2833 static ssize_t 2834 chunksize_store(struct mddev *mddev, const char *buf, size_t len) 2835 { 2836 /* Can only be changed when no bitmap is active */ 2837 int rv; 2838 unsigned long csize; 2839 if (mddev->bitmap) 2840 return -EBUSY; 2841 rv = kstrtoul(buf, 10, &csize); 2842 if (rv) 2843 return rv; 2844 if (csize < 512 || 2845 !is_power_of_2(csize)) 2846 return -EINVAL; 2847 if (BITS_PER_LONG > 32 && csize >= (1ULL << (BITS_PER_BYTE * 2848 sizeof(((bitmap_super_t *)0)->chunksize)))) 2849 return -EOVERFLOW; 2850 mddev->bitmap_info.chunksize = csize; 2851 return len; 2852 } 2853 2854 static struct md_sysfs_entry bitmap_chunksize = 2855 __ATTR(chunksize, S_IRUGO|S_IWUSR, chunksize_show, chunksize_store); 2856 2857 static ssize_t metadata_show(struct mddev *mddev, char *page) 2858 { 2859 if (mddev_is_clustered(mddev)) 2860 return sprintf(page, "clustered\n"); 2861 return sprintf(page, "%s\n", (mddev->bitmap_info.external 2862 ? "external" : "internal")); 2863 } 2864 2865 static ssize_t metadata_store(struct mddev *mddev, const char *buf, size_t len) 2866 { 2867 if (mddev->bitmap || 2868 mddev->bitmap_info.file || 2869 mddev->bitmap_info.offset) 2870 return -EBUSY; 2871 if (strncmp(buf, "external", 8) == 0) 2872 mddev->bitmap_info.external = 1; 2873 else if ((strncmp(buf, "internal", 8) == 0) || 2874 (strncmp(buf, "clustered", 9) == 0)) 2875 mddev->bitmap_info.external = 0; 2876 else 2877 return -EINVAL; 2878 return len; 2879 } 2880 2881 static struct md_sysfs_entry bitmap_metadata = 2882 __ATTR(metadata, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 2883 2884 static ssize_t can_clear_show(struct mddev *mddev, char *page) 2885 { 2886 int len; 2887 struct bitmap *bitmap; 2888 2889 spin_lock(&mddev->lock); 2890 bitmap = mddev->bitmap; 2891 if (bitmap) 2892 len = sprintf(page, "%s\n", (bitmap->need_sync ? "false" : 2893 "true")); 2894 else 2895 len = sprintf(page, "\n"); 2896 spin_unlock(&mddev->lock); 2897 return len; 2898 } 2899 2900 static ssize_t can_clear_store(struct mddev *mddev, const char *buf, size_t len) 2901 { 2902 struct bitmap *bitmap = mddev->bitmap; 2903 2904 if (!bitmap) 2905 return -ENOENT; 2906 2907 if (strncmp(buf, "false", 5) == 0) { 2908 bitmap->need_sync = 1; 2909 return len; 2910 } 2911 2912 if (strncmp(buf, "true", 4) == 0) { 2913 if (mddev->degraded) 2914 return -EBUSY; 2915 bitmap->need_sync = 0; 2916 return len; 2917 } 2918 2919 return -EINVAL; 2920 } 2921 2922 static struct md_sysfs_entry bitmap_can_clear = 2923 __ATTR(can_clear, S_IRUGO|S_IWUSR, can_clear_show, can_clear_store); 2924 2925 static ssize_t 2926 behind_writes_used_show(struct mddev *mddev, char *page) 2927 { 2928 ssize_t ret; 2929 struct bitmap *bitmap; 2930 2931 spin_lock(&mddev->lock); 2932 bitmap = mddev->bitmap; 2933 if (!bitmap) 2934 ret = sprintf(page, "0\n"); 2935 else 2936 ret = sprintf(page, "%lu\n", bitmap->behind_writes_used); 2937 spin_unlock(&mddev->lock); 2938 2939 return ret; 2940 } 2941 2942 static ssize_t 2943 behind_writes_used_reset(struct mddev *mddev, const char *buf, size_t len) 2944 { 2945 struct bitmap *bitmap = mddev->bitmap; 2946 2947 if (bitmap) 2948 bitmap->behind_writes_used = 0; 2949 return len; 2950 } 2951 2952 static struct md_sysfs_entry max_backlog_used = 2953 __ATTR(max_backlog_used, S_IRUGO | S_IWUSR, 2954 behind_writes_used_show, behind_writes_used_reset); 2955 2956 static struct attribute *md_bitmap_attrs[] = { 2957 &bitmap_location.attr, 2958 &bitmap_space.attr, 2959 &bitmap_timeout.attr, 2960 &bitmap_backlog.attr, 2961 &bitmap_chunksize.attr, 2962 &bitmap_metadata.attr, 2963 &bitmap_can_clear.attr, 2964 &max_backlog_used.attr, 2965 NULL 2966 }; 2967 const struct attribute_group md_bitmap_group = { 2968 .name = "bitmap", 2969 .attrs = md_bitmap_attrs, 2970 }; 2971 2972 static struct bitmap_operations bitmap_ops = { 2973 .enabled = bitmap_enabled, 2974 .create = bitmap_create, 2975 .resize = bitmap_resize, 2976 .load = bitmap_load, 2977 .destroy = bitmap_destroy, 2978 .flush = bitmap_flush, 2979 .write_all = bitmap_write_all, 2980 .dirty_bits = bitmap_dirty_bits, 2981 .unplug = bitmap_unplug, 2982 .daemon_work = bitmap_daemon_work, 2983 .wait_behind_writes = bitmap_wait_behind_writes, 2984 2985 .startwrite = bitmap_startwrite, 2986 .endwrite = bitmap_endwrite, 2987 .start_sync = bitmap_start_sync, 2988 .end_sync = bitmap_end_sync, 2989 .cond_end_sync = bitmap_cond_end_sync, 2990 .close_sync = bitmap_close_sync, 2991 2992 .update_sb = bitmap_update_sb, 2993 .get_stats = bitmap_get_stats, 2994 2995 .sync_with_cluster = bitmap_sync_with_cluster, 2996 .get_from_slot = bitmap_get_from_slot, 2997 .copy_from_slot = bitmap_copy_from_slot, 2998 .set_pages = bitmap_set_pages, 2999 .free = md_bitmap_free, 3000 }; 3001 3002 void mddev_set_bitmap_ops(struct mddev *mddev) 3003 { 3004 mddev->bitmap_ops = &bitmap_ops; 3005 } 3006