1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * bitmap.c two-level bitmap (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003 4 * 5 * bitmap_create - sets up the bitmap structure 6 * bitmap_destroy - destroys the bitmap structure 7 * 8 * additions, Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.: 9 * - added disk storage for bitmap 10 * - changes to allow various bitmap chunk sizes 11 */ 12 13 /* 14 * Still to do: 15 * 16 * flush after percent set rather than just time based. (maybe both). 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/timer.h> 25 #include <linux/sched.h> 26 #include <linux/list.h> 27 #include <linux/file.h> 28 #include <linux/mount.h> 29 #include <linux/buffer_head.h> 30 #include <linux/seq_file.h> 31 #include <trace/events/block.h> 32 33 #include "md.h" 34 #include "md-bitmap.h" 35 #include "md-cluster.h" 36 37 /* 38 * in-memory bitmap: 39 * 40 * Use 16 bit block counters to track pending writes to each "chunk". 41 * The 2 high order bits are special-purpose, the first is a flag indicating 42 * whether a resync is needed. The second is a flag indicating whether a 43 * resync is active. 44 * This means that the counter is actually 14 bits: 45 * 46 * +--------+--------+------------------------------------------------+ 47 * | resync | resync | counter | 48 * | needed | active | | 49 * | (0-1) | (0-1) | (0-16383) | 50 * +--------+--------+------------------------------------------------+ 51 * 52 * The "resync needed" bit is set when: 53 * a '1' bit is read from storage at startup. 54 * a write request fails on some drives 55 * a resync is aborted on a chunk with 'resync active' set 56 * It is cleared (and resync-active set) when a resync starts across all drives 57 * of the chunk. 58 * 59 * 60 * The "resync active" bit is set when: 61 * a resync is started on all drives, and resync_needed is set. 62 * resync_needed will be cleared (as long as resync_active wasn't already set). 63 * It is cleared when a resync completes. 64 * 65 * The counter counts pending write requests, plus the on-disk bit. 66 * When the counter is '1' and the resync bits are clear, the on-disk 67 * bit can be cleared as well, thus setting the counter to 0. 68 * When we set a bit, or in the counter (to start a write), if the fields is 69 * 0, we first set the disk bit and set the counter to 1. 70 * 71 * If the counter is 0, the on-disk bit is clear and the stripe is clean 72 * Anything that dirties the stripe pushes the counter to 2 (at least) 73 * and sets the on-disk bit (lazily). 74 * If a periodic sweep find the counter at 2, it is decremented to 1. 75 * If the sweep find the counter at 1, the on-disk bit is cleared and the 76 * counter goes to zero. 77 * 78 * Also, we'll hijack the "map" pointer itself and use it as two 16 bit block 79 * counters as a fallback when "page" memory cannot be allocated: 80 * 81 * Normal case (page memory allocated): 82 * 83 * page pointer (32-bit) 84 * 85 * [ ] ------+ 86 * | 87 * +-------> [ ][ ]..[ ] (4096 byte page == 2048 counters) 88 * c1 c2 c2048 89 * 90 * Hijacked case (page memory allocation failed): 91 * 92 * hijacked page pointer (32-bit) 93 * 94 * [ ][ ] (no page memory allocated) 95 * counter #1 (16-bit) counter #2 (16-bit) 96 * 97 */ 98 99 typedef __u16 bitmap_counter_t; 100 101 #define PAGE_BITS (PAGE_SIZE << 3) 102 #define PAGE_BIT_SHIFT (PAGE_SHIFT + 3) 103 104 #define COUNTER_BITS 16 105 #define COUNTER_BIT_SHIFT 4 106 #define COUNTER_BYTE_SHIFT (COUNTER_BIT_SHIFT - 3) 107 108 #define NEEDED_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 1))) 109 #define RESYNC_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 2))) 110 #define COUNTER_MAX ((bitmap_counter_t) RESYNC_MASK - 1) 111 112 #define NEEDED(x) (((bitmap_counter_t) x) & NEEDED_MASK) 113 #define RESYNC(x) (((bitmap_counter_t) x) & RESYNC_MASK) 114 #define COUNTER(x) (((bitmap_counter_t) x) & COUNTER_MAX) 115 116 /* how many counters per page? */ 117 #define PAGE_COUNTER_RATIO (PAGE_BITS / COUNTER_BITS) 118 /* same, except a shift value for more efficient bitops */ 119 #define PAGE_COUNTER_SHIFT (PAGE_BIT_SHIFT - COUNTER_BIT_SHIFT) 120 /* same, except a mask value for more efficient bitops */ 121 #define PAGE_COUNTER_MASK (PAGE_COUNTER_RATIO - 1) 122 123 #define BITMAP_BLOCK_SHIFT 9 124 125 /* 126 * bitmap structures: 127 */ 128 129 /* the in-memory bitmap is represented by bitmap_pages */ 130 struct bitmap_page { 131 /* 132 * map points to the actual memory page 133 */ 134 char *map; 135 /* 136 * in emergencies (when map cannot be alloced), hijack the map 137 * pointer and use it as two counters itself 138 */ 139 unsigned int hijacked:1; 140 /* 141 * If any counter in this page is '1' or '2' - and so could be 142 * cleared then that page is marked as 'pending' 143 */ 144 unsigned int pending:1; 145 /* 146 * count of dirty bits on the page 147 */ 148 unsigned int count:30; 149 }; 150 151 /* the main bitmap structure - one per mddev */ 152 struct bitmap { 153 154 struct bitmap_counts { 155 spinlock_t lock; 156 struct bitmap_page *bp; 157 /* total number of pages in the bitmap */ 158 unsigned long pages; 159 /* number of pages not yet allocated */ 160 unsigned long missing_pages; 161 /* chunksize = 2^chunkshift (for bitops) */ 162 unsigned long chunkshift; 163 /* total number of data chunks for the array */ 164 unsigned long chunks; 165 } counts; 166 167 struct mddev *mddev; /* the md device that the bitmap is for */ 168 169 __u64 events_cleared; 170 int need_sync; 171 172 struct bitmap_storage { 173 /* backing disk file */ 174 struct file *file; 175 /* cached copy of the bitmap file superblock */ 176 struct page *sb_page; 177 unsigned long sb_index; 178 /* list of cache pages for the file */ 179 struct page **filemap; 180 /* attributes associated filemap pages */ 181 unsigned long *filemap_attr; 182 /* number of pages in the file */ 183 unsigned long file_pages; 184 /* total bytes in the bitmap */ 185 unsigned long bytes; 186 } storage; 187 188 unsigned long flags; 189 190 int allclean; 191 192 atomic_t behind_writes; 193 /* highest actual value at runtime */ 194 unsigned long behind_writes_used; 195 196 /* 197 * the bitmap daemon - periodically wakes up and sweeps the bitmap 198 * file, cleaning up bits and flushing out pages to disk as necessary 199 */ 200 unsigned long daemon_lastrun; /* jiffies of last run */ 201 /* 202 * when we lasted called end_sync to update bitmap with resync 203 * progress. 204 */ 205 unsigned long last_end_sync; 206 207 /* pending writes to the bitmap file */ 208 atomic_t pending_writes; 209 wait_queue_head_t write_wait; 210 wait_queue_head_t overflow_wait; 211 wait_queue_head_t behind_wait; 212 213 struct kernfs_node *sysfs_can_clear; 214 /* slot offset for clustered env */ 215 int cluster_slot; 216 }; 217 218 static struct workqueue_struct *md_bitmap_wq; 219 220 static int __bitmap_resize(struct bitmap *bitmap, sector_t blocks, 221 int chunksize, bool init); 222 223 static inline char *bmname(struct bitmap *bitmap) 224 { 225 return bitmap->mddev ? mdname(bitmap->mddev) : "mdX"; 226 } 227 228 static bool bitmap_enabled(void *data, bool flush) 229 { 230 struct bitmap *bitmap = data; 231 232 if (!flush) 233 return true; 234 235 /* 236 * If caller want to flush bitmap pages to underlying disks, check if 237 * there are cached pages in filemap. 238 */ 239 return !test_bit(BITMAP_STALE, &bitmap->flags) && 240 bitmap->storage.filemap != NULL; 241 } 242 243 /* 244 * check a page and, if necessary, allocate it (or hijack it if the alloc fails) 245 * 246 * 1) check to see if this page is allocated, if it's not then try to alloc 247 * 2) if the alloc fails, set the page's hijacked flag so we'll use the 248 * page pointer directly as a counter 249 * 250 * if we find our page, we increment the page's refcount so that it stays 251 * allocated while we're using it 252 */ 253 static int md_bitmap_checkpage(struct bitmap_counts *bitmap, 254 unsigned long page, int create, int no_hijack) 255 __releases(bitmap->lock) 256 __acquires(bitmap->lock) 257 { 258 unsigned char *mappage; 259 260 WARN_ON_ONCE(page >= bitmap->pages); 261 if (bitmap->bp[page].hijacked) /* it's hijacked, don't try to alloc */ 262 return 0; 263 264 if (bitmap->bp[page].map) /* page is already allocated, just return */ 265 return 0; 266 267 if (!create) 268 return -ENOENT; 269 270 /* this page has not been allocated yet */ 271 272 spin_unlock_irq(&bitmap->lock); 273 /* It is possible that this is being called inside a 274 * prepare_to_wait/finish_wait loop from raid5c:make_request(). 275 * In general it is not permitted to sleep in that context as it 276 * can cause the loop to spin freely. 277 * That doesn't apply here as we can only reach this point 278 * once with any loop. 279 * When this function completes, either bp[page].map or 280 * bp[page].hijacked. In either case, this function will 281 * abort before getting to this point again. So there is 282 * no risk of a free-spin, and so it is safe to assert 283 * that sleeping here is allowed. 284 */ 285 sched_annotate_sleep(); 286 mappage = kzalloc(PAGE_SIZE, GFP_NOIO); 287 spin_lock_irq(&bitmap->lock); 288 289 if (mappage == NULL) { 290 pr_debug("md/bitmap: map page allocation failed, hijacking\n"); 291 /* We don't support hijack for cluster raid */ 292 if (no_hijack) 293 return -ENOMEM; 294 /* failed - set the hijacked flag so that we can use the 295 * pointer as a counter */ 296 if (!bitmap->bp[page].map) 297 bitmap->bp[page].hijacked = 1; 298 } else if (bitmap->bp[page].map || 299 bitmap->bp[page].hijacked) { 300 /* somebody beat us to getting the page */ 301 kfree(mappage); 302 } else { 303 304 /* no page was in place and we have one, so install it */ 305 306 bitmap->bp[page].map = mappage; 307 bitmap->missing_pages--; 308 } 309 return 0; 310 } 311 312 /* if page is completely empty, put it back on the free list, or dealloc it */ 313 /* if page was hijacked, unmark the flag so it might get alloced next time */ 314 /* Note: lock should be held when calling this */ 315 static void md_bitmap_checkfree(struct bitmap_counts *bitmap, unsigned long page) 316 { 317 char *ptr; 318 319 if (bitmap->bp[page].count) /* page is still busy */ 320 return; 321 322 /* page is no longer in use, it can be released */ 323 324 if (bitmap->bp[page].hijacked) { /* page was hijacked, undo this now */ 325 bitmap->bp[page].hijacked = 0; 326 bitmap->bp[page].map = NULL; 327 } else { 328 /* normal case, free the page */ 329 ptr = bitmap->bp[page].map; 330 bitmap->bp[page].map = NULL; 331 bitmap->missing_pages++; 332 kfree(ptr); 333 } 334 } 335 336 /* 337 * bitmap file handling - read and write the bitmap file and its superblock 338 */ 339 340 /* 341 * basic page I/O operations 342 */ 343 344 /* IO operations when bitmap is stored near all superblocks */ 345 346 /* choose a good rdev and read the page from there */ 347 static int read_sb_page(struct mddev *mddev, loff_t offset, 348 struct page *page, unsigned long index, int size) 349 { 350 351 sector_t sector = mddev->bitmap_info.offset + offset + 352 index * (PAGE_SIZE / SECTOR_SIZE); 353 struct md_rdev *rdev; 354 355 rdev_for_each(rdev, mddev) { 356 u32 iosize = roundup(size, bdev_logical_block_size(rdev->bdev)); 357 358 if (!test_bit(In_sync, &rdev->flags) || 359 test_bit(Faulty, &rdev->flags) || 360 test_bit(Bitmap_sync, &rdev->flags)) 361 continue; 362 363 if (sync_page_io(rdev, sector, iosize, page, REQ_OP_READ, true)) 364 return 0; 365 } 366 return -EIO; 367 } 368 369 static struct md_rdev *next_active_rdev(struct md_rdev *rdev, struct mddev *mddev) 370 { 371 /* Iterate the disks of an mddev, using rcu to protect access to the 372 * linked list, and raising the refcount of devices we return to ensure 373 * they don't disappear while in use. 374 * As devices are only added or removed when raid_disk is < 0 and 375 * nr_pending is 0 and In_sync is clear, the entries we return will 376 * still be in the same position on the list when we re-enter 377 * list_for_each_entry_continue_rcu. 378 * 379 * Note that if entered with 'rdev == NULL' to start at the 380 * beginning, we temporarily assign 'rdev' to an address which 381 * isn't really an rdev, but which can be used by 382 * list_for_each_entry_continue_rcu() to find the first entry. 383 */ 384 rcu_read_lock(); 385 if (rdev == NULL) 386 /* start at the beginning */ 387 rdev = list_entry(&mddev->disks, struct md_rdev, same_set); 388 else { 389 /* release the previous rdev and start from there. */ 390 rdev_dec_pending(rdev, mddev); 391 } 392 list_for_each_entry_continue_rcu(rdev, &mddev->disks, same_set) { 393 if (rdev->raid_disk >= 0 && 394 !test_bit(Faulty, &rdev->flags)) { 395 /* this is a usable devices */ 396 atomic_inc(&rdev->nr_pending); 397 rcu_read_unlock(); 398 return rdev; 399 } 400 } 401 rcu_read_unlock(); 402 return NULL; 403 } 404 405 static unsigned int optimal_io_size(struct block_device *bdev, 406 unsigned int last_page_size, 407 unsigned int io_size) 408 { 409 if (bdev_io_opt(bdev) > bdev_logical_block_size(bdev)) 410 return roundup(last_page_size, bdev_io_opt(bdev)); 411 return io_size; 412 } 413 414 static unsigned int bitmap_io_size(unsigned int io_size, unsigned int opt_size, 415 loff_t start, loff_t boundary) 416 { 417 if (io_size != opt_size && 418 start + opt_size / SECTOR_SIZE <= boundary) 419 return opt_size; 420 if (start + io_size / SECTOR_SIZE <= boundary) 421 return io_size; 422 423 /* Overflows boundary */ 424 return 0; 425 } 426 427 static int __write_sb_page(struct md_rdev *rdev, struct bitmap *bitmap, 428 unsigned long pg_index, struct page *page) 429 { 430 struct block_device *bdev; 431 struct mddev *mddev = bitmap->mddev; 432 struct bitmap_storage *store = &bitmap->storage; 433 unsigned long num_pages = bitmap->storage.file_pages; 434 unsigned int bitmap_limit = (num_pages - pg_index % num_pages) << PAGE_SHIFT; 435 loff_t sboff, offset = mddev->bitmap_info.offset; 436 sector_t ps = pg_index * PAGE_SIZE / SECTOR_SIZE; 437 unsigned int size = PAGE_SIZE; 438 unsigned int opt_size = PAGE_SIZE; 439 sector_t doff; 440 441 bdev = (rdev->meta_bdev) ? rdev->meta_bdev : rdev->bdev; 442 /* we compare length (page numbers), not page offset. */ 443 if ((pg_index - store->sb_index) == num_pages - 1) { 444 unsigned int last_page_size = store->bytes & (PAGE_SIZE - 1); 445 446 if (last_page_size == 0) 447 last_page_size = PAGE_SIZE; 448 size = roundup(last_page_size, bdev_logical_block_size(bdev)); 449 opt_size = optimal_io_size(bdev, last_page_size, size); 450 } 451 452 sboff = rdev->sb_start + offset; 453 doff = rdev->data_offset; 454 455 /* Just make sure we aren't corrupting data or metadata */ 456 if (mddev->external) { 457 /* Bitmap could be anywhere. */ 458 if (sboff + ps > doff && 459 sboff < (doff + mddev->dev_sectors + PAGE_SIZE / SECTOR_SIZE)) 460 return -EINVAL; 461 } else if (offset < 0) { 462 /* DATA BITMAP METADATA */ 463 size = bitmap_io_size(size, opt_size, offset + ps, 0); 464 if (size == 0) 465 /* bitmap runs in to metadata */ 466 return -EINVAL; 467 468 if (doff + mddev->dev_sectors > sboff) 469 /* data runs in to bitmap */ 470 return -EINVAL; 471 } else if (rdev->sb_start < rdev->data_offset) { 472 /* METADATA BITMAP DATA */ 473 size = bitmap_io_size(size, opt_size, sboff + ps, doff); 474 if (size == 0) 475 /* bitmap runs in to data */ 476 return -EINVAL; 477 } 478 479 md_write_metadata(mddev, rdev, sboff + ps, (int)min(size, bitmap_limit), 480 page, 0); 481 return 0; 482 } 483 484 static void write_sb_page(struct bitmap *bitmap, unsigned long pg_index, 485 struct page *page, bool wait) 486 { 487 struct mddev *mddev = bitmap->mddev; 488 489 do { 490 struct md_rdev *rdev = NULL; 491 492 while ((rdev = next_active_rdev(rdev, mddev)) != NULL) { 493 if (__write_sb_page(rdev, bitmap, pg_index, page) < 0) { 494 set_bit(BITMAP_WRITE_ERROR, &bitmap->flags); 495 return; 496 } 497 } 498 } while (wait && md_super_wait(mddev) < 0); 499 } 500 501 static void md_bitmap_file_kick(struct bitmap *bitmap); 502 503 #ifdef CONFIG_MD_BITMAP_FILE 504 static void write_file_page(struct bitmap *bitmap, struct page *page, int wait) 505 { 506 struct buffer_head *bh = page_buffers(page); 507 508 while (bh && bh->b_blocknr) { 509 atomic_inc(&bitmap->pending_writes); 510 set_buffer_locked(bh); 511 set_buffer_mapped(bh); 512 submit_bh(REQ_OP_WRITE | REQ_SYNC, bh); 513 bh = bh->b_this_page; 514 } 515 516 if (wait) 517 wait_event(bitmap->write_wait, 518 atomic_read(&bitmap->pending_writes) == 0); 519 } 520 521 static void end_bitmap_write(struct buffer_head *bh, int uptodate) 522 { 523 struct bitmap *bitmap = bh->b_private; 524 525 if (!uptodate) 526 set_bit(BITMAP_WRITE_ERROR, &bitmap->flags); 527 if (atomic_dec_and_test(&bitmap->pending_writes)) 528 wake_up(&bitmap->write_wait); 529 } 530 531 static void free_buffers(struct page *page) 532 { 533 struct buffer_head *bh; 534 535 if (!PagePrivate(page)) 536 return; 537 538 bh = page_buffers(page); 539 while (bh) { 540 struct buffer_head *next = bh->b_this_page; 541 free_buffer_head(bh); 542 bh = next; 543 } 544 detach_page_private(page); 545 put_page(page); 546 } 547 548 /* read a page from a file. 549 * We both read the page, and attach buffers to the page to record the 550 * address of each block (using bmap). These addresses will be used 551 * to write the block later, completely bypassing the filesystem. 552 * This usage is similar to how swap files are handled, and allows us 553 * to write to a file with no concerns of memory allocation failing. 554 */ 555 static int read_file_page(struct file *file, unsigned long index, 556 struct bitmap *bitmap, unsigned long count, struct page *page) 557 { 558 int ret = 0; 559 struct inode *inode = file_inode(file); 560 struct buffer_head *bh; 561 sector_t block, blk_cur; 562 unsigned long blocksize = i_blocksize(inode); 563 564 pr_debug("read bitmap file (%dB @ %llu)\n", (int)PAGE_SIZE, 565 (unsigned long long)index << PAGE_SHIFT); 566 567 bh = alloc_page_buffers(page, blocksize); 568 if (!bh) { 569 ret = -ENOMEM; 570 goto out; 571 } 572 attach_page_private(page, bh); 573 blk_cur = index << (PAGE_SHIFT - inode->i_blkbits); 574 while (bh) { 575 block = blk_cur; 576 577 if (count == 0) 578 bh->b_blocknr = 0; 579 else { 580 ret = bmap(inode, &block); 581 if (ret || !block) { 582 ret = -EINVAL; 583 bh->b_blocknr = 0; 584 goto out; 585 } 586 587 bh->b_blocknr = block; 588 bh->b_bdev = inode->i_sb->s_bdev; 589 if (count < blocksize) 590 count = 0; 591 else 592 count -= blocksize; 593 594 bh->b_end_io = end_bitmap_write; 595 bh->b_private = bitmap; 596 atomic_inc(&bitmap->pending_writes); 597 set_buffer_locked(bh); 598 set_buffer_mapped(bh); 599 submit_bh(REQ_OP_READ, bh); 600 } 601 blk_cur++; 602 bh = bh->b_this_page; 603 } 604 605 wait_event(bitmap->write_wait, 606 atomic_read(&bitmap->pending_writes)==0); 607 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) 608 ret = -EIO; 609 out: 610 if (ret) 611 pr_err("md: bitmap read error: (%dB @ %llu): %d\n", 612 (int)PAGE_SIZE, 613 (unsigned long long)index << PAGE_SHIFT, 614 ret); 615 return ret; 616 } 617 #else /* CONFIG_MD_BITMAP_FILE */ 618 static void write_file_page(struct bitmap *bitmap, struct page *page, int wait) 619 { 620 } 621 static int read_file_page(struct file *file, unsigned long index, 622 struct bitmap *bitmap, unsigned long count, struct page *page) 623 { 624 return -EIO; 625 } 626 static void free_buffers(struct page *page) 627 { 628 put_page(page); 629 } 630 #endif /* CONFIG_MD_BITMAP_FILE */ 631 632 /* 633 * bitmap file superblock operations 634 */ 635 636 /* 637 * write out a page to a file 638 */ 639 static void filemap_write_page(struct bitmap *bitmap, unsigned long pg_index, 640 bool wait) 641 { 642 struct bitmap_storage *store = &bitmap->storage; 643 struct page *page = store->filemap[pg_index]; 644 645 if (mddev_is_clustered(bitmap->mddev)) { 646 /* go to node bitmap area starting point */ 647 pg_index += store->sb_index; 648 } 649 650 if (store->file) 651 write_file_page(bitmap, page, wait); 652 else 653 write_sb_page(bitmap, pg_index, page, wait); 654 } 655 656 /* 657 * md_bitmap_wait_writes() should be called before writing any bitmap 658 * blocks, to ensure previous writes, particularly from 659 * md_bitmap_daemon_work(), have completed. 660 */ 661 static void md_bitmap_wait_writes(struct bitmap *bitmap) 662 { 663 if (bitmap->storage.file) 664 wait_event(bitmap->write_wait, 665 atomic_read(&bitmap->pending_writes)==0); 666 else 667 /* Note that we ignore the return value. The writes 668 * might have failed, but that would just mean that 669 * some bits which should be cleared haven't been, 670 * which is safe. The relevant bitmap blocks will 671 * probably get written again, but there is no great 672 * loss if they aren't. 673 */ 674 md_super_wait(bitmap->mddev); 675 } 676 677 678 /* update the event counter and sync the superblock to disk */ 679 static void bitmap_update_sb(void *data) 680 { 681 bitmap_super_t *sb; 682 struct bitmap *bitmap = data; 683 684 if (!bitmap || !bitmap->mddev) /* no bitmap for this array */ 685 return; 686 if (bitmap->mddev->bitmap_info.external) 687 return; 688 if (!bitmap->storage.sb_page) /* no superblock */ 689 return; 690 sb = kmap_local_page(bitmap->storage.sb_page); 691 sb->events = cpu_to_le64(bitmap->mddev->events); 692 if (bitmap->mddev->events < bitmap->events_cleared) 693 /* rocking back to read-only */ 694 bitmap->events_cleared = bitmap->mddev->events; 695 sb->events_cleared = cpu_to_le64(bitmap->events_cleared); 696 /* 697 * clear BITMAP_WRITE_ERROR bit to protect against the case that 698 * a bitmap write error occurred but the later writes succeeded. 699 */ 700 sb->state = cpu_to_le32(bitmap->flags & ~BIT(BITMAP_WRITE_ERROR)); 701 /* Just in case these have been changed via sysfs: */ 702 sb->daemon_sleep = cpu_to_le32(bitmap->mddev->bitmap_info.daemon_sleep/HZ); 703 sb->write_behind = cpu_to_le32(bitmap->mddev->bitmap_info.max_write_behind); 704 /* This might have been changed by a reshape */ 705 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors); 706 sb->chunksize = cpu_to_le32(bitmap->mddev->bitmap_info.chunksize); 707 sb->nodes = cpu_to_le32(bitmap->mddev->bitmap_info.nodes); 708 sb->sectors_reserved = cpu_to_le32(bitmap->mddev-> 709 bitmap_info.space); 710 kunmap_local(sb); 711 712 if (bitmap->storage.file) 713 write_file_page(bitmap, bitmap->storage.sb_page, 1); 714 else 715 write_sb_page(bitmap, bitmap->storage.sb_index, 716 bitmap->storage.sb_page, 1); 717 } 718 719 static void bitmap_print_sb(struct bitmap *bitmap) 720 { 721 bitmap_super_t *sb; 722 723 if (!bitmap || !bitmap->storage.sb_page) 724 return; 725 sb = kmap_local_page(bitmap->storage.sb_page); 726 pr_debug("%s: bitmap file superblock:\n", bmname(bitmap)); 727 pr_debug(" magic: %08x\n", le32_to_cpu(sb->magic)); 728 pr_debug(" version: %u\n", le32_to_cpu(sb->version)); 729 pr_debug(" uuid: %08x.%08x.%08x.%08x\n", 730 le32_to_cpu(*(__le32 *)(sb->uuid+0)), 731 le32_to_cpu(*(__le32 *)(sb->uuid+4)), 732 le32_to_cpu(*(__le32 *)(sb->uuid+8)), 733 le32_to_cpu(*(__le32 *)(sb->uuid+12))); 734 pr_debug(" events: %llu\n", 735 (unsigned long long) le64_to_cpu(sb->events)); 736 pr_debug("events cleared: %llu\n", 737 (unsigned long long) le64_to_cpu(sb->events_cleared)); 738 pr_debug(" state: %08x\n", le32_to_cpu(sb->state)); 739 pr_debug(" chunksize: %u B\n", le32_to_cpu(sb->chunksize)); 740 pr_debug(" daemon sleep: %us\n", le32_to_cpu(sb->daemon_sleep)); 741 pr_debug(" sync size: %llu KB\n", 742 (unsigned long long)le64_to_cpu(sb->sync_size)/2); 743 pr_debug("max write behind: %u\n", le32_to_cpu(sb->write_behind)); 744 kunmap_local(sb); 745 } 746 747 /* 748 * bitmap_new_disk_sb 749 * @bitmap 750 * 751 * This function is somewhat the reverse of bitmap_read_sb. bitmap_read_sb 752 * reads and verifies the on-disk bitmap superblock and populates bitmap_info. 753 * This function verifies 'bitmap_info' and populates the on-disk bitmap 754 * structure, which is to be written to disk. 755 * 756 * Returns: 0 on success, -Exxx on error 757 */ 758 static int md_bitmap_new_disk_sb(struct bitmap *bitmap) 759 { 760 bitmap_super_t *sb; 761 unsigned long chunksize, daemon_sleep, write_behind; 762 763 bitmap->storage.sb_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 764 if (bitmap->storage.sb_page == NULL) 765 return -ENOMEM; 766 bitmap->storage.sb_index = 0; 767 768 sb = kmap_local_page(bitmap->storage.sb_page); 769 770 sb->magic = cpu_to_le32(BITMAP_MAGIC); 771 sb->version = cpu_to_le32(BITMAP_MAJOR_HI); 772 773 chunksize = bitmap->mddev->bitmap_info.chunksize; 774 BUG_ON(!chunksize); 775 if (!is_power_of_2(chunksize)) { 776 kunmap_local(sb); 777 pr_warn("bitmap chunksize not a power of 2\n"); 778 return -EINVAL; 779 } 780 sb->chunksize = cpu_to_le32(chunksize); 781 782 daemon_sleep = bitmap->mddev->bitmap_info.daemon_sleep; 783 if (!daemon_sleep || (daemon_sleep > MAX_SCHEDULE_TIMEOUT)) { 784 pr_debug("Choosing daemon_sleep default (5 sec)\n"); 785 daemon_sleep = 5 * HZ; 786 } 787 sb->daemon_sleep = cpu_to_le32(daemon_sleep); 788 bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep; 789 790 /* 791 * FIXME: write_behind for RAID1. If not specified, what 792 * is a good choice? We choose COUNTER_MAX / 2 arbitrarily. 793 */ 794 write_behind = bitmap->mddev->bitmap_info.max_write_behind; 795 if (write_behind > COUNTER_MAX / 2) 796 write_behind = COUNTER_MAX / 2; 797 sb->write_behind = cpu_to_le32(write_behind); 798 bitmap->mddev->bitmap_info.max_write_behind = write_behind; 799 800 /* keep the array size field of the bitmap superblock up to date */ 801 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors); 802 803 memcpy(sb->uuid, bitmap->mddev->uuid, 16); 804 805 set_bit(BITMAP_STALE, &bitmap->flags); 806 sb->state = cpu_to_le32(bitmap->flags); 807 bitmap->events_cleared = bitmap->mddev->events; 808 sb->events_cleared = cpu_to_le64(bitmap->mddev->events); 809 bitmap->mddev->bitmap_info.nodes = 0; 810 811 kunmap_local(sb); 812 813 return 0; 814 } 815 816 /* read the superblock from the bitmap file and initialize some bitmap fields */ 817 static int md_bitmap_read_sb(struct bitmap *bitmap) 818 { 819 char *reason = NULL; 820 bitmap_super_t *sb; 821 unsigned long chunksize, daemon_sleep, write_behind; 822 unsigned long long events; 823 int nodes = 0; 824 unsigned long sectors_reserved = 0; 825 int err = -EINVAL; 826 struct page *sb_page; 827 loff_t offset = 0; 828 829 if (!bitmap->storage.file && !bitmap->mddev->bitmap_info.offset) { 830 chunksize = 128 * 1024 * 1024; 831 daemon_sleep = 5 * HZ; 832 write_behind = 0; 833 set_bit(BITMAP_STALE, &bitmap->flags); 834 err = 0; 835 goto out_no_sb; 836 } 837 /* page 0 is the superblock, read it... */ 838 sb_page = alloc_page(GFP_KERNEL); 839 if (!sb_page) 840 return -ENOMEM; 841 bitmap->storage.sb_page = sb_page; 842 843 re_read: 844 /* If cluster_slot is set, the cluster is setup */ 845 if (bitmap->cluster_slot >= 0) { 846 sector_t bm_blocks = bitmap->mddev->resync_max_sectors; 847 848 bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks, 849 (bitmap->mddev->bitmap_info.chunksize >> 9)); 850 /* bits to bytes */ 851 bm_blocks = ((bm_blocks+7) >> 3) + sizeof(bitmap_super_t); 852 /* to 4k blocks */ 853 bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks, 4096); 854 offset = bitmap->cluster_slot * (bm_blocks << 3); 855 pr_debug("%s:%d bm slot: %d offset: %llu\n", __func__, __LINE__, 856 bitmap->cluster_slot, offset); 857 } 858 859 if (bitmap->storage.file) { 860 loff_t isize = i_size_read(bitmap->storage.file->f_mapping->host); 861 int bytes = isize > PAGE_SIZE ? PAGE_SIZE : isize; 862 863 err = read_file_page(bitmap->storage.file, 0, 864 bitmap, bytes, sb_page); 865 } else { 866 err = read_sb_page(bitmap->mddev, offset, sb_page, 0, 867 sizeof(bitmap_super_t)); 868 } 869 if (err) 870 return err; 871 872 err = -EINVAL; 873 sb = kmap_local_page(sb_page); 874 875 chunksize = le32_to_cpu(sb->chunksize); 876 daemon_sleep = le32_to_cpu(sb->daemon_sleep) * HZ; 877 write_behind = le32_to_cpu(sb->write_behind); 878 sectors_reserved = le32_to_cpu(sb->sectors_reserved); 879 880 /* verify that the bitmap-specific fields are valid */ 881 if (sb->magic != cpu_to_le32(BITMAP_MAGIC)) 882 reason = "bad magic"; 883 else if (le32_to_cpu(sb->version) < BITMAP_MAJOR_LO || 884 le32_to_cpu(sb->version) > BITMAP_MAJOR_CLUSTERED) 885 reason = "unrecognized superblock version"; 886 else if (chunksize < 512) 887 reason = "bitmap chunksize too small"; 888 else if (!is_power_of_2(chunksize)) 889 reason = "bitmap chunksize not a power of 2"; 890 else if (daemon_sleep < 1 || daemon_sleep > MAX_SCHEDULE_TIMEOUT) 891 reason = "daemon sleep period out of range"; 892 else if (write_behind > COUNTER_MAX) 893 reason = "write-behind limit out of range (0 - 16383)"; 894 if (reason) { 895 pr_warn("%s: invalid bitmap file superblock: %s\n", 896 bmname(bitmap), reason); 897 goto out; 898 } 899 900 /* 901 * Setup nodes/clustername only if bitmap version is 902 * cluster-compatible 903 */ 904 if (sb->version == cpu_to_le32(BITMAP_MAJOR_CLUSTERED)) { 905 nodes = le32_to_cpu(sb->nodes); 906 strscpy(bitmap->mddev->bitmap_info.cluster_name, 907 sb->cluster_name, 64); 908 } 909 910 /* keep the array size field of the bitmap superblock up to date */ 911 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors); 912 913 if (bitmap->mddev->persistent) { 914 /* 915 * We have a persistent array superblock, so compare the 916 * bitmap's UUID and event counter to the mddev's 917 */ 918 if (memcmp(sb->uuid, bitmap->mddev->uuid, 16)) { 919 pr_warn("%s: bitmap superblock UUID mismatch\n", 920 bmname(bitmap)); 921 goto out; 922 } 923 events = le64_to_cpu(sb->events); 924 if (!nodes && (events < bitmap->mddev->events)) { 925 pr_warn("%s: bitmap file is out of date (%llu < %llu) -- forcing full recovery\n", 926 bmname(bitmap), events, 927 (unsigned long long) bitmap->mddev->events); 928 set_bit(BITMAP_STALE, &bitmap->flags); 929 } 930 } 931 932 /* assign fields using values from superblock */ 933 bitmap->flags |= le32_to_cpu(sb->state); 934 if (le32_to_cpu(sb->version) == BITMAP_MAJOR_HOSTENDIAN) 935 set_bit(BITMAP_HOSTENDIAN, &bitmap->flags); 936 bitmap->events_cleared = le64_to_cpu(sb->events_cleared); 937 err = 0; 938 939 out: 940 kunmap_local(sb); 941 if (err == 0 && nodes && (bitmap->cluster_slot < 0)) { 942 /* Assigning chunksize is required for "re_read" */ 943 bitmap->mddev->bitmap_info.chunksize = chunksize; 944 err = md_setup_cluster(bitmap->mddev, nodes); 945 if (err) { 946 pr_warn("%s: Could not setup cluster service (%d)\n", 947 bmname(bitmap), err); 948 goto out_no_sb; 949 } 950 bitmap->cluster_slot = bitmap->mddev->cluster_ops->slot_number(bitmap->mddev); 951 goto re_read; 952 } 953 954 out_no_sb: 955 if (err == 0) { 956 if (test_bit(BITMAP_STALE, &bitmap->flags)) 957 bitmap->events_cleared = bitmap->mddev->events; 958 bitmap->mddev->bitmap_info.chunksize = chunksize; 959 bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep; 960 bitmap->mddev->bitmap_info.max_write_behind = write_behind; 961 bitmap->mddev->bitmap_info.nodes = nodes; 962 if (bitmap->mddev->bitmap_info.space == 0 || 963 bitmap->mddev->bitmap_info.space > sectors_reserved) 964 bitmap->mddev->bitmap_info.space = sectors_reserved; 965 } else { 966 bitmap_print_sb(bitmap); 967 if (bitmap->cluster_slot < 0) 968 md_cluster_stop(bitmap->mddev); 969 } 970 return err; 971 } 972 973 /* 974 * general bitmap file operations 975 */ 976 977 /* 978 * on-disk bitmap: 979 * 980 * Use one bit per "chunk" (block set). We do the disk I/O on the bitmap 981 * file a page at a time. There's a superblock at the start of the file. 982 */ 983 /* calculate the index of the page that contains this bit */ 984 static inline unsigned long file_page_index(struct bitmap_storage *store, 985 unsigned long chunk) 986 { 987 if (store->sb_page) 988 chunk += sizeof(bitmap_super_t) << 3; 989 return chunk >> PAGE_BIT_SHIFT; 990 } 991 992 /* calculate the (bit) offset of this bit within a page */ 993 static inline unsigned long file_page_offset(struct bitmap_storage *store, 994 unsigned long chunk) 995 { 996 if (store->sb_page) 997 chunk += sizeof(bitmap_super_t) << 3; 998 return chunk & (PAGE_BITS - 1); 999 } 1000 1001 /* 1002 * return a pointer to the page in the filemap that contains the given bit 1003 * 1004 */ 1005 static inline struct page *filemap_get_page(struct bitmap_storage *store, 1006 unsigned long chunk) 1007 { 1008 if (file_page_index(store, chunk) >= store->file_pages) 1009 return NULL; 1010 return store->filemap[file_page_index(store, chunk)]; 1011 } 1012 1013 static int md_bitmap_storage_alloc(struct bitmap_storage *store, 1014 unsigned long chunks, int with_super, 1015 int slot_number) 1016 { 1017 int pnum, offset = 0; 1018 unsigned long num_pages; 1019 unsigned long bytes; 1020 1021 bytes = DIV_ROUND_UP(chunks, 8); 1022 if (with_super) 1023 bytes += sizeof(bitmap_super_t); 1024 1025 num_pages = DIV_ROUND_UP(bytes, PAGE_SIZE); 1026 offset = slot_number * num_pages; 1027 1028 store->filemap = kmalloc_array(num_pages, sizeof(struct page *), 1029 GFP_KERNEL); 1030 if (!store->filemap) 1031 return -ENOMEM; 1032 1033 if (with_super && !store->sb_page) { 1034 store->sb_page = alloc_page(GFP_KERNEL|__GFP_ZERO); 1035 if (store->sb_page == NULL) 1036 return -ENOMEM; 1037 } 1038 1039 pnum = 0; 1040 if (store->sb_page) { 1041 store->filemap[0] = store->sb_page; 1042 pnum = 1; 1043 store->sb_index = offset; 1044 } 1045 1046 for ( ; pnum < num_pages; pnum++) { 1047 store->filemap[pnum] = alloc_page(GFP_KERNEL|__GFP_ZERO); 1048 if (!store->filemap[pnum]) { 1049 store->file_pages = pnum; 1050 return -ENOMEM; 1051 } 1052 } 1053 store->file_pages = pnum; 1054 1055 /* We need 4 bits per page, rounded up to a multiple 1056 * of sizeof(unsigned long) */ 1057 store->filemap_attr = kzalloc( 1058 roundup(DIV_ROUND_UP(num_pages*4, 8), sizeof(unsigned long)), 1059 GFP_KERNEL); 1060 if (!store->filemap_attr) 1061 return -ENOMEM; 1062 1063 store->bytes = bytes; 1064 1065 return 0; 1066 } 1067 1068 static void md_bitmap_file_unmap(struct bitmap_storage *store) 1069 { 1070 struct file *file = store->file; 1071 struct page *sb_page = store->sb_page; 1072 struct page **map = store->filemap; 1073 int pages = store->file_pages; 1074 1075 while (pages--) 1076 if (map[pages] != sb_page) /* 0 is sb_page, release it below */ 1077 free_buffers(map[pages]); 1078 kfree(map); 1079 kfree(store->filemap_attr); 1080 1081 if (sb_page) 1082 free_buffers(sb_page); 1083 1084 if (file) { 1085 struct inode *inode = file_inode(file); 1086 invalidate_mapping_pages(inode->i_mapping, 0, -1); 1087 fput(file); 1088 } 1089 } 1090 1091 /* 1092 * bitmap_file_kick - if an error occurs while manipulating the bitmap file 1093 * then it is no longer reliable, so we stop using it and we mark the file 1094 * as failed in the superblock 1095 */ 1096 static void md_bitmap_file_kick(struct bitmap *bitmap) 1097 { 1098 if (!test_and_set_bit(BITMAP_STALE, &bitmap->flags)) { 1099 bitmap_update_sb(bitmap); 1100 1101 if (bitmap->storage.file) { 1102 pr_warn("%s: kicking failed bitmap file %pD4 from array!\n", 1103 bmname(bitmap), bitmap->storage.file); 1104 1105 } else 1106 pr_warn("%s: disabling internal bitmap due to errors\n", 1107 bmname(bitmap)); 1108 } 1109 } 1110 1111 enum bitmap_page_attr { 1112 BITMAP_PAGE_DIRTY = 0, /* there are set bits that need to be synced */ 1113 BITMAP_PAGE_PENDING = 1, /* there are bits that are being cleaned. 1114 * i.e. counter is 1 or 2. */ 1115 BITMAP_PAGE_NEEDWRITE = 2, /* there are cleared bits that need to be synced */ 1116 }; 1117 1118 static inline void set_page_attr(struct bitmap *bitmap, int pnum, 1119 enum bitmap_page_attr attr) 1120 { 1121 set_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); 1122 } 1123 1124 static inline void clear_page_attr(struct bitmap *bitmap, int pnum, 1125 enum bitmap_page_attr attr) 1126 { 1127 clear_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); 1128 } 1129 1130 static inline int test_page_attr(struct bitmap *bitmap, int pnum, 1131 enum bitmap_page_attr attr) 1132 { 1133 return test_bit((pnum<<2) + attr, bitmap->storage.filemap_attr); 1134 } 1135 1136 static inline int test_and_clear_page_attr(struct bitmap *bitmap, int pnum, 1137 enum bitmap_page_attr attr) 1138 { 1139 return test_and_clear_bit((pnum<<2) + attr, 1140 bitmap->storage.filemap_attr); 1141 } 1142 /* 1143 * bitmap_file_set_bit -- called before performing a write to the md device 1144 * to set (and eventually sync) a particular bit in the bitmap file 1145 * 1146 * we set the bit immediately, then we record the page number so that 1147 * when an unplug occurs, we can flush the dirty pages out to disk 1148 */ 1149 static void md_bitmap_file_set_bit(struct bitmap *bitmap, sector_t block) 1150 { 1151 unsigned long bit; 1152 struct page *page; 1153 void *kaddr; 1154 unsigned long chunk = block >> bitmap->counts.chunkshift; 1155 struct bitmap_storage *store = &bitmap->storage; 1156 unsigned long index = file_page_index(store, chunk); 1157 unsigned long node_offset = 0; 1158 1159 index += store->sb_index; 1160 if (mddev_is_clustered(bitmap->mddev)) 1161 node_offset = bitmap->cluster_slot * store->file_pages; 1162 1163 page = filemap_get_page(&bitmap->storage, chunk); 1164 if (!page) 1165 return; 1166 bit = file_page_offset(&bitmap->storage, chunk); 1167 1168 /* set the bit */ 1169 kaddr = kmap_local_page(page); 1170 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) 1171 set_bit(bit, kaddr); 1172 else 1173 set_bit_le(bit, kaddr); 1174 kunmap_local(kaddr); 1175 pr_debug("set file bit %lu page %lu\n", bit, index); 1176 /* record page number so it gets flushed to disk when unplug occurs */ 1177 set_page_attr(bitmap, index - node_offset, BITMAP_PAGE_DIRTY); 1178 } 1179 1180 static void md_bitmap_file_clear_bit(struct bitmap *bitmap, sector_t block) 1181 { 1182 unsigned long bit; 1183 struct page *page; 1184 void *paddr; 1185 unsigned long chunk = block >> bitmap->counts.chunkshift; 1186 struct bitmap_storage *store = &bitmap->storage; 1187 unsigned long index = file_page_index(store, chunk); 1188 unsigned long node_offset = 0; 1189 1190 index += store->sb_index; 1191 if (mddev_is_clustered(bitmap->mddev)) 1192 node_offset = bitmap->cluster_slot * store->file_pages; 1193 1194 page = filemap_get_page(&bitmap->storage, chunk); 1195 if (!page) 1196 return; 1197 bit = file_page_offset(&bitmap->storage, chunk); 1198 paddr = kmap_local_page(page); 1199 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) 1200 clear_bit(bit, paddr); 1201 else 1202 clear_bit_le(bit, paddr); 1203 kunmap_local(paddr); 1204 if (!test_page_attr(bitmap, index - node_offset, BITMAP_PAGE_NEEDWRITE)) { 1205 set_page_attr(bitmap, index - node_offset, BITMAP_PAGE_PENDING); 1206 bitmap->allclean = 0; 1207 } 1208 } 1209 1210 static int md_bitmap_file_test_bit(struct bitmap *bitmap, sector_t block) 1211 { 1212 unsigned long bit; 1213 struct page *page; 1214 void *paddr; 1215 unsigned long chunk = block >> bitmap->counts.chunkshift; 1216 int set = 0; 1217 1218 page = filemap_get_page(&bitmap->storage, chunk); 1219 if (!page) 1220 return -EINVAL; 1221 bit = file_page_offset(&bitmap->storage, chunk); 1222 paddr = kmap_local_page(page); 1223 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) 1224 set = test_bit(bit, paddr); 1225 else 1226 set = test_bit_le(bit, paddr); 1227 kunmap_local(paddr); 1228 return set; 1229 } 1230 1231 /* this gets called when the md device is ready to unplug its underlying 1232 * (slave) device queues -- before we let any writes go down, we need to 1233 * sync the dirty pages of the bitmap file to disk */ 1234 static void __bitmap_unplug(struct bitmap *bitmap) 1235 { 1236 unsigned long i; 1237 int dirty, need_write; 1238 int writing = 0; 1239 1240 if (!bitmap_enabled(bitmap, true)) 1241 return; 1242 1243 /* look at each page to see if there are any set bits that need to be 1244 * flushed out to disk */ 1245 for (i = 0; i < bitmap->storage.file_pages; i++) { 1246 dirty = test_and_clear_page_attr(bitmap, i, BITMAP_PAGE_DIRTY); 1247 need_write = test_and_clear_page_attr(bitmap, i, 1248 BITMAP_PAGE_NEEDWRITE); 1249 if (dirty || need_write) { 1250 if (!writing) { 1251 md_bitmap_wait_writes(bitmap); 1252 mddev_add_trace_msg(bitmap->mddev, 1253 "md bitmap_unplug"); 1254 } 1255 clear_page_attr(bitmap, i, BITMAP_PAGE_PENDING); 1256 filemap_write_page(bitmap, i, false); 1257 writing = 1; 1258 } 1259 } 1260 if (writing) 1261 md_bitmap_wait_writes(bitmap); 1262 1263 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) 1264 md_bitmap_file_kick(bitmap); 1265 } 1266 1267 struct bitmap_unplug_work { 1268 struct work_struct work; 1269 struct bitmap *bitmap; 1270 struct completion *done; 1271 }; 1272 1273 static void md_bitmap_unplug_fn(struct work_struct *work) 1274 { 1275 struct bitmap_unplug_work *unplug_work = 1276 container_of(work, struct bitmap_unplug_work, work); 1277 1278 __bitmap_unplug(unplug_work->bitmap); 1279 complete(unplug_work->done); 1280 } 1281 1282 static void bitmap_unplug_async(struct bitmap *bitmap) 1283 { 1284 DECLARE_COMPLETION_ONSTACK(done); 1285 struct bitmap_unplug_work unplug_work; 1286 1287 INIT_WORK_ONSTACK(&unplug_work.work, md_bitmap_unplug_fn); 1288 unplug_work.bitmap = bitmap; 1289 unplug_work.done = &done; 1290 1291 queue_work(md_bitmap_wq, &unplug_work.work); 1292 wait_for_completion(&done); 1293 destroy_work_on_stack(&unplug_work.work); 1294 } 1295 1296 static void bitmap_unplug(struct mddev *mddev, bool sync) 1297 { 1298 struct bitmap *bitmap = mddev->bitmap; 1299 1300 if (!bitmap) 1301 return; 1302 1303 if (sync) 1304 __bitmap_unplug(bitmap); 1305 else 1306 bitmap_unplug_async(bitmap); 1307 } 1308 1309 static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed); 1310 1311 /* 1312 * Initialize the in-memory bitmap from the on-disk bitmap and set up the memory 1313 * mapping of the bitmap file. 1314 * 1315 * Special case: If there's no bitmap file, or if the bitmap file had been 1316 * previously kicked from the array, we mark all the bits as 1's in order to 1317 * cause a full resync. 1318 * 1319 * We ignore all bits for sectors that end earlier than 'start'. 1320 * This is used when reading an out-of-date bitmap. 1321 */ 1322 static int md_bitmap_init_from_disk(struct bitmap *bitmap, sector_t start) 1323 { 1324 bool outofdate = test_bit(BITMAP_STALE, &bitmap->flags); 1325 struct mddev *mddev = bitmap->mddev; 1326 unsigned long chunks = bitmap->counts.chunks; 1327 struct bitmap_storage *store = &bitmap->storage; 1328 struct file *file = store->file; 1329 unsigned long node_offset = 0; 1330 unsigned long bit_cnt = 0; 1331 unsigned long i; 1332 int ret; 1333 1334 if (!file && !mddev->bitmap_info.offset) { 1335 /* No permanent bitmap - fill with '1s'. */ 1336 store->filemap = NULL; 1337 store->file_pages = 0; 1338 for (i = 0; i < chunks ; i++) { 1339 /* if the disk bit is set, set the memory bit */ 1340 int needed = ((sector_t)(i+1) << (bitmap->counts.chunkshift) 1341 >= start); 1342 md_bitmap_set_memory_bits(bitmap, 1343 (sector_t)i << bitmap->counts.chunkshift, 1344 needed); 1345 } 1346 return 0; 1347 } 1348 1349 if (file && i_size_read(file->f_mapping->host) < store->bytes) { 1350 pr_warn("%s: bitmap file too short %lu < %lu\n", 1351 bmname(bitmap), 1352 (unsigned long) i_size_read(file->f_mapping->host), 1353 store->bytes); 1354 ret = -ENOSPC; 1355 goto err; 1356 } 1357 1358 if (mddev_is_clustered(mddev)) 1359 node_offset = bitmap->cluster_slot * (DIV_ROUND_UP(store->bytes, PAGE_SIZE)); 1360 1361 for (i = 0; i < store->file_pages; i++) { 1362 struct page *page = store->filemap[i]; 1363 int count; 1364 1365 /* unmap the old page, we're done with it */ 1366 if (i == store->file_pages - 1) 1367 count = store->bytes - i * PAGE_SIZE; 1368 else 1369 count = PAGE_SIZE; 1370 1371 if (file) 1372 ret = read_file_page(file, i, bitmap, count, page); 1373 else 1374 ret = read_sb_page(mddev, 0, page, i + node_offset, 1375 count); 1376 if (ret) 1377 goto err; 1378 } 1379 1380 if (outofdate) { 1381 pr_warn("%s: bitmap file is out of date, doing full recovery\n", 1382 bmname(bitmap)); 1383 1384 for (i = 0; i < store->file_pages; i++) { 1385 struct page *page = store->filemap[i]; 1386 unsigned long offset = 0; 1387 void *paddr; 1388 1389 if (i == 0 && !mddev->bitmap_info.external) 1390 offset = sizeof(bitmap_super_t); 1391 1392 /* 1393 * If the bitmap is out of date, dirty the whole page 1394 * and write it out 1395 */ 1396 paddr = kmap_local_page(page); 1397 memset(paddr + offset, 0xff, PAGE_SIZE - offset); 1398 kunmap_local(paddr); 1399 1400 filemap_write_page(bitmap, i, true); 1401 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) { 1402 ret = -EIO; 1403 goto err; 1404 } 1405 } 1406 } 1407 1408 for (i = 0; i < chunks; i++) { 1409 struct page *page = filemap_get_page(&bitmap->storage, i); 1410 unsigned long bit = file_page_offset(&bitmap->storage, i); 1411 void *paddr; 1412 bool was_set; 1413 1414 paddr = kmap_local_page(page); 1415 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) 1416 was_set = test_bit(bit, paddr); 1417 else 1418 was_set = test_bit_le(bit, paddr); 1419 kunmap_local(paddr); 1420 1421 if (was_set) { 1422 /* if the disk bit is set, set the memory bit */ 1423 int needed = ((sector_t)(i+1) << bitmap->counts.chunkshift 1424 >= start); 1425 md_bitmap_set_memory_bits(bitmap, 1426 (sector_t)i << bitmap->counts.chunkshift, 1427 needed); 1428 bit_cnt++; 1429 } 1430 } 1431 1432 pr_debug("%s: bitmap initialized from disk: read %lu pages, set %lu of %lu bits\n", 1433 bmname(bitmap), store->file_pages, 1434 bit_cnt, chunks); 1435 1436 return 0; 1437 1438 err: 1439 pr_warn("%s: bitmap initialisation failed: %d\n", 1440 bmname(bitmap), ret); 1441 return ret; 1442 } 1443 1444 /* just flag bitmap pages as needing to be written. */ 1445 static void bitmap_write_all(struct mddev *mddev) 1446 { 1447 int i; 1448 struct bitmap *bitmap = mddev->bitmap; 1449 1450 if (!bitmap || !bitmap->storage.filemap) 1451 return; 1452 1453 /* Only one copy, so nothing needed */ 1454 if (bitmap->storage.file) 1455 return; 1456 1457 for (i = 0; i < bitmap->storage.file_pages; i++) 1458 set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE); 1459 bitmap->allclean = 0; 1460 } 1461 1462 static void md_bitmap_count_page(struct bitmap_counts *bitmap, 1463 sector_t offset, int inc) 1464 { 1465 sector_t chunk = offset >> bitmap->chunkshift; 1466 unsigned long page = chunk >> PAGE_COUNTER_SHIFT; 1467 bitmap->bp[page].count += inc; 1468 md_bitmap_checkfree(bitmap, page); 1469 } 1470 1471 static void md_bitmap_set_pending(struct bitmap_counts *bitmap, sector_t offset) 1472 { 1473 sector_t chunk = offset >> bitmap->chunkshift; 1474 unsigned long page = chunk >> PAGE_COUNTER_SHIFT; 1475 struct bitmap_page *bp = &bitmap->bp[page]; 1476 1477 if (!bp->pending) 1478 bp->pending = 1; 1479 } 1480 1481 static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap, 1482 sector_t offset, sector_t *blocks, 1483 int create); 1484 1485 static void mddev_set_timeout(struct mddev *mddev, unsigned long timeout, 1486 bool force) 1487 { 1488 struct md_thread *thread; 1489 1490 rcu_read_lock(); 1491 thread = rcu_dereference(mddev->thread); 1492 1493 if (!thread) 1494 goto out; 1495 1496 if (force || thread->timeout < MAX_SCHEDULE_TIMEOUT) 1497 thread->timeout = timeout; 1498 1499 out: 1500 rcu_read_unlock(); 1501 } 1502 1503 /* 1504 * bitmap daemon -- periodically wakes up to clean bits and flush pages 1505 * out to disk 1506 */ 1507 static void bitmap_daemon_work(struct mddev *mddev) 1508 { 1509 struct bitmap *bitmap; 1510 unsigned long j; 1511 unsigned long nextpage; 1512 sector_t blocks; 1513 struct bitmap_counts *counts; 1514 1515 /* Use a mutex to guard daemon_work against 1516 * bitmap_destroy. 1517 */ 1518 mutex_lock(&mddev->bitmap_info.mutex); 1519 bitmap = mddev->bitmap; 1520 if (bitmap == NULL) { 1521 mutex_unlock(&mddev->bitmap_info.mutex); 1522 return; 1523 } 1524 if (time_before(jiffies, bitmap->daemon_lastrun 1525 + mddev->bitmap_info.daemon_sleep)) 1526 goto done; 1527 1528 bitmap->daemon_lastrun = jiffies; 1529 if (bitmap->allclean) { 1530 mddev_set_timeout(mddev, MAX_SCHEDULE_TIMEOUT, true); 1531 goto done; 1532 } 1533 bitmap->allclean = 1; 1534 1535 mddev_add_trace_msg(bitmap->mddev, "md bitmap_daemon_work"); 1536 1537 /* Any file-page which is PENDING now needs to be written. 1538 * So set NEEDWRITE now, then after we make any last-minute changes 1539 * we will write it. 1540 */ 1541 for (j = 0; j < bitmap->storage.file_pages; j++) 1542 if (test_and_clear_page_attr(bitmap, j, 1543 BITMAP_PAGE_PENDING)) 1544 set_page_attr(bitmap, j, 1545 BITMAP_PAGE_NEEDWRITE); 1546 1547 if (bitmap->need_sync && 1548 mddev->bitmap_info.external == 0) { 1549 /* Arrange for superblock update as well as 1550 * other changes */ 1551 bitmap_super_t *sb; 1552 bitmap->need_sync = 0; 1553 if (bitmap->storage.filemap) { 1554 sb = kmap_local_page(bitmap->storage.sb_page); 1555 sb->events_cleared = 1556 cpu_to_le64(bitmap->events_cleared); 1557 kunmap_local(sb); 1558 set_page_attr(bitmap, 0, 1559 BITMAP_PAGE_NEEDWRITE); 1560 } 1561 } 1562 /* Now look at the bitmap counters and if any are '2' or '1', 1563 * decrement and handle accordingly. 1564 */ 1565 counts = &bitmap->counts; 1566 spin_lock_irq(&counts->lock); 1567 nextpage = 0; 1568 for (j = 0; j < counts->chunks; j++) { 1569 bitmap_counter_t *bmc; 1570 sector_t block = (sector_t)j << counts->chunkshift; 1571 1572 if (j == nextpage) { 1573 nextpage += PAGE_COUNTER_RATIO; 1574 if (!counts->bp[j >> PAGE_COUNTER_SHIFT].pending) { 1575 j |= PAGE_COUNTER_MASK; 1576 continue; 1577 } 1578 counts->bp[j >> PAGE_COUNTER_SHIFT].pending = 0; 1579 } 1580 1581 bmc = md_bitmap_get_counter(counts, block, &blocks, 0); 1582 if (!bmc) { 1583 j |= PAGE_COUNTER_MASK; 1584 continue; 1585 } 1586 if (*bmc == 1 && !bitmap->need_sync) { 1587 /* We can clear the bit */ 1588 *bmc = 0; 1589 md_bitmap_count_page(counts, block, -1); 1590 md_bitmap_file_clear_bit(bitmap, block); 1591 } else if (*bmc && *bmc <= 2) { 1592 *bmc = 1; 1593 md_bitmap_set_pending(counts, block); 1594 bitmap->allclean = 0; 1595 } 1596 } 1597 spin_unlock_irq(&counts->lock); 1598 1599 md_bitmap_wait_writes(bitmap); 1600 /* Now start writeout on any page in NEEDWRITE that isn't DIRTY. 1601 * DIRTY pages need to be written by bitmap_unplug so it can wait 1602 * for them. 1603 * If we find any DIRTY page we stop there and let bitmap_unplug 1604 * handle all the rest. This is important in the case where 1605 * the first blocking holds the superblock and it has been updated. 1606 * We mustn't write any other blocks before the superblock. 1607 */ 1608 for (j = 0; 1609 j < bitmap->storage.file_pages 1610 && !test_bit(BITMAP_STALE, &bitmap->flags); 1611 j++) { 1612 if (test_page_attr(bitmap, j, 1613 BITMAP_PAGE_DIRTY)) 1614 /* bitmap_unplug will handle the rest */ 1615 break; 1616 if (bitmap->storage.filemap && 1617 test_and_clear_page_attr(bitmap, j, 1618 BITMAP_PAGE_NEEDWRITE)) 1619 filemap_write_page(bitmap, j, false); 1620 } 1621 1622 done: 1623 if (bitmap->allclean == 0) 1624 mddev_set_timeout(mddev, mddev->bitmap_info.daemon_sleep, true); 1625 mutex_unlock(&mddev->bitmap_info.mutex); 1626 } 1627 1628 static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap, 1629 sector_t offset, sector_t *blocks, 1630 int create) 1631 __releases(bitmap->lock) 1632 __acquires(bitmap->lock) 1633 { 1634 /* If 'create', we might release the lock and reclaim it. 1635 * The lock must have been taken with interrupts enabled. 1636 * If !create, we don't release the lock. 1637 */ 1638 sector_t chunk = offset >> bitmap->chunkshift; 1639 unsigned long page = chunk >> PAGE_COUNTER_SHIFT; 1640 unsigned long pageoff = (chunk & PAGE_COUNTER_MASK) << COUNTER_BYTE_SHIFT; 1641 sector_t csize = ((sector_t)1) << bitmap->chunkshift; 1642 int err; 1643 1644 if (page >= bitmap->pages) { 1645 /* 1646 * This can happen if bitmap_start_sync goes beyond 1647 * End-of-device while looking for a whole page or 1648 * user set a huge number to sysfs bitmap_set_bits. 1649 */ 1650 *blocks = csize - (offset & (csize - 1)); 1651 return NULL; 1652 } 1653 err = md_bitmap_checkpage(bitmap, page, create, 0); 1654 1655 if (bitmap->bp[page].hijacked || 1656 bitmap->bp[page].map == NULL) 1657 csize = ((sector_t)1) << (bitmap->chunkshift + 1658 PAGE_COUNTER_SHIFT); 1659 1660 *blocks = csize - (offset & (csize - 1)); 1661 1662 if (err < 0) 1663 return NULL; 1664 1665 /* now locked ... */ 1666 1667 if (bitmap->bp[page].hijacked) { /* hijacked pointer */ 1668 /* should we use the first or second counter field 1669 * of the hijacked pointer? */ 1670 int hi = (pageoff > PAGE_COUNTER_MASK); 1671 return &((bitmap_counter_t *) 1672 &bitmap->bp[page].map)[hi]; 1673 } else /* page is allocated */ 1674 return (bitmap_counter_t *) 1675 &(bitmap->bp[page].map[pageoff]); 1676 } 1677 1678 static void bitmap_start_write(struct mddev *mddev, sector_t offset, 1679 unsigned long sectors) 1680 { 1681 struct bitmap *bitmap = mddev->bitmap; 1682 1683 if (!bitmap) 1684 return; 1685 1686 while (sectors) { 1687 sector_t blocks; 1688 bitmap_counter_t *bmc; 1689 1690 spin_lock_irq(&bitmap->counts.lock); 1691 bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 1); 1692 if (!bmc) { 1693 spin_unlock_irq(&bitmap->counts.lock); 1694 return; 1695 } 1696 1697 if (unlikely(COUNTER(*bmc) == COUNTER_MAX)) { 1698 DEFINE_WAIT(__wait); 1699 /* note that it is safe to do the prepare_to_wait 1700 * after the test as long as we do it before dropping 1701 * the spinlock. 1702 */ 1703 prepare_to_wait(&bitmap->overflow_wait, &__wait, 1704 TASK_UNINTERRUPTIBLE); 1705 spin_unlock_irq(&bitmap->counts.lock); 1706 schedule(); 1707 finish_wait(&bitmap->overflow_wait, &__wait); 1708 continue; 1709 } 1710 1711 switch (*bmc) { 1712 case 0: 1713 md_bitmap_file_set_bit(bitmap, offset); 1714 md_bitmap_count_page(&bitmap->counts, offset, 1); 1715 fallthrough; 1716 case 1: 1717 *bmc = 2; 1718 } 1719 1720 (*bmc)++; 1721 1722 spin_unlock_irq(&bitmap->counts.lock); 1723 1724 offset += blocks; 1725 if (sectors > blocks) 1726 sectors -= blocks; 1727 else 1728 sectors = 0; 1729 } 1730 } 1731 1732 static void bitmap_end_write(struct mddev *mddev, sector_t offset, 1733 unsigned long sectors) 1734 { 1735 struct bitmap *bitmap = mddev->bitmap; 1736 1737 if (!bitmap) 1738 return; 1739 1740 while (sectors) { 1741 sector_t blocks; 1742 unsigned long flags; 1743 bitmap_counter_t *bmc; 1744 1745 spin_lock_irqsave(&bitmap->counts.lock, flags); 1746 bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 0); 1747 if (!bmc) { 1748 spin_unlock_irqrestore(&bitmap->counts.lock, flags); 1749 return; 1750 } 1751 1752 if (!bitmap->mddev->degraded) { 1753 if (bitmap->events_cleared < bitmap->mddev->events) { 1754 bitmap->events_cleared = bitmap->mddev->events; 1755 bitmap->need_sync = 1; 1756 sysfs_notify_dirent_safe( 1757 bitmap->sysfs_can_clear); 1758 } 1759 } else if (!NEEDED(*bmc)) { 1760 *bmc |= NEEDED_MASK; 1761 } 1762 1763 if (COUNTER(*bmc) == COUNTER_MAX) 1764 wake_up(&bitmap->overflow_wait); 1765 1766 (*bmc)--; 1767 if (*bmc <= 2) { 1768 md_bitmap_set_pending(&bitmap->counts, offset); 1769 bitmap->allclean = 0; 1770 } 1771 spin_unlock_irqrestore(&bitmap->counts.lock, flags); 1772 offset += blocks; 1773 if (sectors > blocks) 1774 sectors -= blocks; 1775 else 1776 sectors = 0; 1777 } 1778 } 1779 1780 static bool __bitmap_start_sync(struct bitmap *bitmap, sector_t offset, 1781 sector_t *blocks, bool degraded) 1782 { 1783 bitmap_counter_t *bmc; 1784 bool rv = false; 1785 1786 spin_lock_irq(&bitmap->counts.lock); 1787 bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0); 1788 if (bmc) { 1789 /* locked */ 1790 if (RESYNC(*bmc)) { 1791 rv = true; 1792 } else if (NEEDED(*bmc)) { 1793 rv = true; 1794 if (!degraded) { /* don't set/clear bits if degraded */ 1795 *bmc |= RESYNC_MASK; 1796 *bmc &= ~NEEDED_MASK; 1797 } 1798 } 1799 } 1800 spin_unlock_irq(&bitmap->counts.lock); 1801 1802 return rv; 1803 } 1804 1805 static bool bitmap_start_sync(struct mddev *mddev, sector_t offset, 1806 sector_t *blocks, bool degraded) 1807 { 1808 /* bitmap_start_sync must always report on multiples of whole 1809 * pages, otherwise resync (which is very PAGE_SIZE based) will 1810 * get confused. 1811 * So call __bitmap_start_sync repeatedly (if needed) until 1812 * At least PAGE_SIZE>>9 blocks are covered. 1813 * Return the 'or' of the result. 1814 */ 1815 bool rv = false; 1816 sector_t blocks1; 1817 1818 *blocks = 0; 1819 while (*blocks < (PAGE_SIZE>>9)) { 1820 rv |= __bitmap_start_sync(mddev->bitmap, offset, 1821 &blocks1, degraded); 1822 offset += blocks1; 1823 *blocks += blocks1; 1824 } 1825 1826 return rv; 1827 } 1828 1829 static void __bitmap_end_sync(struct bitmap *bitmap, sector_t offset, 1830 sector_t *blocks, bool aborted) 1831 { 1832 bitmap_counter_t *bmc; 1833 unsigned long flags; 1834 1835 spin_lock_irqsave(&bitmap->counts.lock, flags); 1836 bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0); 1837 if (bmc == NULL) 1838 goto unlock; 1839 /* locked */ 1840 if (RESYNC(*bmc)) { 1841 *bmc &= ~RESYNC_MASK; 1842 1843 if (!NEEDED(*bmc) && aborted) 1844 *bmc |= NEEDED_MASK; 1845 else { 1846 if (*bmc <= 2) { 1847 md_bitmap_set_pending(&bitmap->counts, offset); 1848 bitmap->allclean = 0; 1849 } 1850 } 1851 } 1852 unlock: 1853 spin_unlock_irqrestore(&bitmap->counts.lock, flags); 1854 } 1855 1856 static void bitmap_end_sync(struct mddev *mddev, sector_t offset, 1857 sector_t *blocks) 1858 { 1859 __bitmap_end_sync(mddev->bitmap, offset, blocks, true); 1860 } 1861 1862 static void bitmap_close_sync(struct mddev *mddev) 1863 { 1864 /* Sync has finished, and any bitmap chunks that weren't synced 1865 * properly have been aborted. It remains to us to clear the 1866 * RESYNC bit wherever it is still on 1867 */ 1868 sector_t sector = 0; 1869 sector_t blocks; 1870 struct bitmap *bitmap = mddev->bitmap; 1871 1872 if (!bitmap) 1873 return; 1874 1875 while (sector < bitmap->mddev->resync_max_sectors) { 1876 __bitmap_end_sync(bitmap, sector, &blocks, false); 1877 sector += blocks; 1878 } 1879 } 1880 1881 static void bitmap_cond_end_sync(struct mddev *mddev, sector_t sector, 1882 bool force) 1883 { 1884 sector_t s = 0; 1885 sector_t blocks; 1886 struct bitmap *bitmap = mddev->bitmap; 1887 1888 if (!bitmap) 1889 return; 1890 if (sector == 0) { 1891 bitmap->last_end_sync = jiffies; 1892 return; 1893 } 1894 if (!force && time_before(jiffies, (bitmap->last_end_sync 1895 + bitmap->mddev->bitmap_info.daemon_sleep))) 1896 return; 1897 wait_event(bitmap->mddev->recovery_wait, 1898 atomic_read(&bitmap->mddev->recovery_active) == 0); 1899 1900 bitmap->mddev->curr_resync_completed = sector; 1901 set_bit(MD_SB_CHANGE_CLEAN, &bitmap->mddev->sb_flags); 1902 sector &= ~((1ULL << bitmap->counts.chunkshift) - 1); 1903 s = 0; 1904 while (s < sector && s < bitmap->mddev->resync_max_sectors) { 1905 __bitmap_end_sync(bitmap, s, &blocks, false); 1906 s += blocks; 1907 } 1908 bitmap->last_end_sync = jiffies; 1909 sysfs_notify_dirent_safe(bitmap->mddev->sysfs_completed); 1910 } 1911 1912 static void bitmap_sync_with_cluster(struct mddev *mddev, 1913 sector_t old_lo, sector_t old_hi, 1914 sector_t new_lo, sector_t new_hi) 1915 { 1916 struct bitmap *bitmap = mddev->bitmap; 1917 sector_t sector, blocks = 0; 1918 1919 for (sector = old_lo; sector < new_lo; ) { 1920 __bitmap_end_sync(bitmap, sector, &blocks, false); 1921 sector += blocks; 1922 } 1923 WARN((blocks > new_lo) && old_lo, "alignment is not correct for lo\n"); 1924 1925 for (sector = old_hi; sector < new_hi; ) { 1926 bitmap_start_sync(mddev, sector, &blocks, false); 1927 sector += blocks; 1928 } 1929 WARN((blocks > new_hi) && old_hi, "alignment is not correct for hi\n"); 1930 } 1931 1932 static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed) 1933 { 1934 /* For each chunk covered by any of these sectors, set the 1935 * counter to 2 and possibly set resync_needed. They should all 1936 * be 0 at this point 1937 */ 1938 1939 sector_t secs; 1940 bitmap_counter_t *bmc; 1941 spin_lock_irq(&bitmap->counts.lock); 1942 bmc = md_bitmap_get_counter(&bitmap->counts, offset, &secs, 1); 1943 if (!bmc) { 1944 spin_unlock_irq(&bitmap->counts.lock); 1945 return; 1946 } 1947 if (!*bmc) { 1948 *bmc = 2; 1949 md_bitmap_count_page(&bitmap->counts, offset, 1); 1950 md_bitmap_set_pending(&bitmap->counts, offset); 1951 bitmap->allclean = 0; 1952 } 1953 if (needed) 1954 *bmc |= NEEDED_MASK; 1955 spin_unlock_irq(&bitmap->counts.lock); 1956 } 1957 1958 /* dirty the memory and file bits for bitmap chunks "s" to "e" */ 1959 static void bitmap_dirty_bits(struct mddev *mddev, unsigned long s, 1960 unsigned long e) 1961 { 1962 unsigned long chunk; 1963 struct bitmap *bitmap = mddev->bitmap; 1964 1965 if (!bitmap) 1966 return; 1967 1968 for (chunk = s; chunk <= e; chunk++) { 1969 sector_t sec = (sector_t)chunk << bitmap->counts.chunkshift; 1970 1971 md_bitmap_set_memory_bits(bitmap, sec, 1); 1972 md_bitmap_file_set_bit(bitmap, sec); 1973 if (sec < bitmap->mddev->resync_offset) 1974 /* We are asserting that the array is dirty, 1975 * so move the resync_offset address back so 1976 * that it is obvious that it is dirty 1977 */ 1978 bitmap->mddev->resync_offset = sec; 1979 } 1980 } 1981 1982 static void bitmap_flush(struct mddev *mddev) 1983 { 1984 struct bitmap *bitmap = mddev->bitmap; 1985 long sleep; 1986 1987 if (!bitmap) /* there was no bitmap */ 1988 return; 1989 1990 /* run the daemon_work three time to ensure everything is flushed 1991 * that can be 1992 */ 1993 sleep = mddev->bitmap_info.daemon_sleep * 2; 1994 bitmap->daemon_lastrun -= sleep; 1995 bitmap_daemon_work(mddev); 1996 bitmap->daemon_lastrun -= sleep; 1997 bitmap_daemon_work(mddev); 1998 bitmap->daemon_lastrun -= sleep; 1999 bitmap_daemon_work(mddev); 2000 if (mddev->bitmap_info.external) 2001 md_super_wait(mddev); 2002 bitmap_update_sb(bitmap); 2003 } 2004 2005 static void md_bitmap_free(void *data) 2006 { 2007 unsigned long k, pages; 2008 struct bitmap_page *bp; 2009 struct bitmap *bitmap = data; 2010 2011 if (!bitmap) /* there was no bitmap */ 2012 return; 2013 2014 if (bitmap->sysfs_can_clear) 2015 sysfs_put(bitmap->sysfs_can_clear); 2016 2017 if (mddev_is_clustered(bitmap->mddev) && bitmap->mddev->cluster_info && 2018 bitmap->cluster_slot == bitmap->mddev->cluster_ops->slot_number(bitmap->mddev)) 2019 md_cluster_stop(bitmap->mddev); 2020 2021 /* Shouldn't be needed - but just in case.... */ 2022 wait_event(bitmap->write_wait, 2023 atomic_read(&bitmap->pending_writes) == 0); 2024 2025 /* release the bitmap file */ 2026 md_bitmap_file_unmap(&bitmap->storage); 2027 2028 bp = bitmap->counts.bp; 2029 pages = bitmap->counts.pages; 2030 2031 /* free all allocated memory */ 2032 2033 if (bp) /* deallocate the page memory */ 2034 for (k = 0; k < pages; k++) 2035 if (bp[k].map && !bp[k].hijacked) 2036 kfree(bp[k].map); 2037 kfree(bp); 2038 kfree(bitmap); 2039 } 2040 2041 static void bitmap_start_behind_write(struct mddev *mddev) 2042 { 2043 struct bitmap *bitmap = mddev->bitmap; 2044 int bw; 2045 2046 atomic_inc(&bitmap->behind_writes); 2047 bw = atomic_read(&bitmap->behind_writes); 2048 if (bw > bitmap->behind_writes_used) 2049 bitmap->behind_writes_used = bw; 2050 2051 pr_debug("inc write-behind count %d/%lu\n", 2052 bw, bitmap->mddev->bitmap_info.max_write_behind); 2053 } 2054 2055 static void bitmap_end_behind_write(struct mddev *mddev) 2056 { 2057 struct bitmap *bitmap = mddev->bitmap; 2058 2059 if (atomic_dec_and_test(&bitmap->behind_writes)) 2060 wake_up(&bitmap->behind_wait); 2061 pr_debug("dec write-behind count %d/%lu\n", 2062 atomic_read(&bitmap->behind_writes), 2063 bitmap->mddev->bitmap_info.max_write_behind); 2064 } 2065 2066 static void bitmap_wait_behind_writes(struct mddev *mddev) 2067 { 2068 struct bitmap *bitmap = mddev->bitmap; 2069 2070 /* wait for behind writes to complete */ 2071 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2072 pr_debug("md:%s: behind writes in progress - waiting to stop.\n", 2073 mdname(mddev)); 2074 /* need to kick something here to make sure I/O goes? */ 2075 wait_event(bitmap->behind_wait, 2076 atomic_read(&bitmap->behind_writes) == 0); 2077 } 2078 } 2079 2080 static void bitmap_destroy(struct mddev *mddev) 2081 { 2082 struct bitmap *bitmap = mddev->bitmap; 2083 2084 if (!bitmap) /* there was no bitmap */ 2085 return; 2086 2087 bitmap_wait_behind_writes(mddev); 2088 if (!mddev->serialize_policy) 2089 mddev_destroy_serial_pool(mddev, NULL); 2090 2091 mutex_lock(&mddev->bitmap_info.mutex); 2092 spin_lock(&mddev->lock); 2093 mddev->bitmap = NULL; /* disconnect from the md device */ 2094 spin_unlock(&mddev->lock); 2095 mutex_unlock(&mddev->bitmap_info.mutex); 2096 mddev_set_timeout(mddev, MAX_SCHEDULE_TIMEOUT, true); 2097 2098 md_bitmap_free(bitmap); 2099 } 2100 2101 /* 2102 * initialize the bitmap structure 2103 * if this returns an error, bitmap_destroy must be called to do clean up 2104 * once mddev->bitmap is set 2105 */ 2106 static struct bitmap *__bitmap_create(struct mddev *mddev, int slot) 2107 { 2108 struct bitmap *bitmap; 2109 sector_t blocks = mddev->resync_max_sectors; 2110 struct file *file = mddev->bitmap_info.file; 2111 int err; 2112 struct kernfs_node *bm = NULL; 2113 2114 BUILD_BUG_ON(sizeof(bitmap_super_t) != 256); 2115 2116 BUG_ON(file && mddev->bitmap_info.offset); 2117 2118 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 2119 pr_notice("md/raid:%s: array with journal cannot have bitmap\n", 2120 mdname(mddev)); 2121 return ERR_PTR(-EBUSY); 2122 } 2123 2124 bitmap = kzalloc(sizeof(*bitmap), GFP_KERNEL); 2125 if (!bitmap) 2126 return ERR_PTR(-ENOMEM); 2127 2128 spin_lock_init(&bitmap->counts.lock); 2129 atomic_set(&bitmap->pending_writes, 0); 2130 init_waitqueue_head(&bitmap->write_wait); 2131 init_waitqueue_head(&bitmap->overflow_wait); 2132 init_waitqueue_head(&bitmap->behind_wait); 2133 2134 bitmap->mddev = mddev; 2135 bitmap->cluster_slot = slot; 2136 2137 if (mddev->kobj.sd) 2138 bm = sysfs_get_dirent(mddev->kobj.sd, "bitmap"); 2139 if (bm) { 2140 bitmap->sysfs_can_clear = sysfs_get_dirent(bm, "can_clear"); 2141 sysfs_put(bm); 2142 } else 2143 bitmap->sysfs_can_clear = NULL; 2144 2145 bitmap->storage.file = file; 2146 if (file) { 2147 get_file(file); 2148 /* As future accesses to this file will use bmap, 2149 * and bypass the page cache, we must sync the file 2150 * first. 2151 */ 2152 vfs_fsync(file, 1); 2153 } 2154 /* read superblock from bitmap file (this sets mddev->bitmap_info.chunksize) */ 2155 if (!mddev->bitmap_info.external) { 2156 /* 2157 * If 'MD_ARRAY_FIRST_USE' is set, then device-mapper is 2158 * instructing us to create a new on-disk bitmap instance. 2159 */ 2160 if (test_and_clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags)) 2161 err = md_bitmap_new_disk_sb(bitmap); 2162 else 2163 err = md_bitmap_read_sb(bitmap); 2164 } else { 2165 err = 0; 2166 if (mddev->bitmap_info.chunksize == 0 || 2167 mddev->bitmap_info.daemon_sleep == 0) 2168 /* chunksize and time_base need to be 2169 * set first. */ 2170 err = -EINVAL; 2171 } 2172 if (err) 2173 goto error; 2174 2175 bitmap->daemon_lastrun = jiffies; 2176 err = __bitmap_resize(bitmap, blocks, mddev->bitmap_info.chunksize, 2177 true); 2178 if (err) 2179 goto error; 2180 2181 pr_debug("created bitmap (%lu pages) for device %s\n", 2182 bitmap->counts.pages, bmname(bitmap)); 2183 2184 err = test_bit(BITMAP_WRITE_ERROR, &bitmap->flags) ? -EIO : 0; 2185 if (err) 2186 goto error; 2187 2188 return bitmap; 2189 error: 2190 md_bitmap_free(bitmap); 2191 return ERR_PTR(err); 2192 } 2193 2194 static int bitmap_create(struct mddev *mddev) 2195 { 2196 struct bitmap *bitmap = __bitmap_create(mddev, -1); 2197 2198 if (IS_ERR(bitmap)) 2199 return PTR_ERR(bitmap); 2200 2201 mddev->bitmap = bitmap; 2202 return 0; 2203 } 2204 2205 static int bitmap_load(struct mddev *mddev) 2206 { 2207 int err = 0; 2208 sector_t start = 0; 2209 sector_t sector = 0; 2210 struct bitmap *bitmap = mddev->bitmap; 2211 struct md_rdev *rdev; 2212 2213 if (!bitmap) 2214 goto out; 2215 2216 rdev_for_each(rdev, mddev) 2217 mddev_create_serial_pool(mddev, rdev); 2218 2219 if (mddev_is_clustered(mddev)) 2220 mddev->cluster_ops->load_bitmaps(mddev, mddev->bitmap_info.nodes); 2221 2222 /* Clear out old bitmap info first: Either there is none, or we 2223 * are resuming after someone else has possibly changed things, 2224 * so we should forget old cached info. 2225 * All chunks should be clean, but some might need_sync. 2226 */ 2227 while (sector < mddev->resync_max_sectors) { 2228 sector_t blocks; 2229 bitmap_start_sync(mddev, sector, &blocks, false); 2230 sector += blocks; 2231 } 2232 bitmap_close_sync(mddev); 2233 2234 if (mddev->degraded == 0 2235 || bitmap->events_cleared == mddev->events) 2236 /* no need to keep dirty bits to optimise a 2237 * re-add of a missing device */ 2238 start = mddev->resync_offset; 2239 2240 mutex_lock(&mddev->bitmap_info.mutex); 2241 err = md_bitmap_init_from_disk(bitmap, start); 2242 mutex_unlock(&mddev->bitmap_info.mutex); 2243 2244 if (err) 2245 goto out; 2246 clear_bit(BITMAP_STALE, &bitmap->flags); 2247 2248 /* Kick recovery in case any bits were set */ 2249 set_bit(MD_RECOVERY_NEEDED, &bitmap->mddev->recovery); 2250 2251 mddev_set_timeout(mddev, mddev->bitmap_info.daemon_sleep, true); 2252 md_wakeup_thread(mddev->thread); 2253 2254 bitmap_update_sb(bitmap); 2255 2256 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) 2257 err = -EIO; 2258 out: 2259 return err; 2260 } 2261 2262 /* caller need to free returned bitmap with md_bitmap_free() */ 2263 static void *bitmap_get_from_slot(struct mddev *mddev, int slot) 2264 { 2265 int rv = 0; 2266 struct bitmap *bitmap; 2267 2268 bitmap = __bitmap_create(mddev, slot); 2269 if (IS_ERR(bitmap)) { 2270 rv = PTR_ERR(bitmap); 2271 return ERR_PTR(rv); 2272 } 2273 2274 rv = md_bitmap_init_from_disk(bitmap, 0); 2275 if (rv) { 2276 md_bitmap_free(bitmap); 2277 return ERR_PTR(rv); 2278 } 2279 2280 return bitmap; 2281 } 2282 2283 /* Loads the bitmap associated with slot and copies the resync information 2284 * to our bitmap 2285 */ 2286 static int bitmap_copy_from_slot(struct mddev *mddev, int slot, sector_t *low, 2287 sector_t *high, bool clear_bits) 2288 { 2289 int rv = 0, i, j; 2290 sector_t block, lo = 0, hi = 0; 2291 struct bitmap_counts *counts; 2292 struct bitmap *bitmap; 2293 2294 bitmap = bitmap_get_from_slot(mddev, slot); 2295 if (IS_ERR(bitmap)) { 2296 pr_err("%s can't get bitmap from slot %d\n", __func__, slot); 2297 return -1; 2298 } 2299 2300 counts = &bitmap->counts; 2301 for (j = 0; j < counts->chunks; j++) { 2302 block = (sector_t)j << counts->chunkshift; 2303 if (md_bitmap_file_test_bit(bitmap, block)) { 2304 if (!lo) 2305 lo = block; 2306 hi = block; 2307 md_bitmap_file_clear_bit(bitmap, block); 2308 md_bitmap_set_memory_bits(mddev->bitmap, block, 1); 2309 md_bitmap_file_set_bit(mddev->bitmap, block); 2310 } 2311 } 2312 2313 if (clear_bits) { 2314 bitmap_update_sb(bitmap); 2315 /* BITMAP_PAGE_PENDING is set, but bitmap_unplug needs 2316 * BITMAP_PAGE_DIRTY or _NEEDWRITE to write ... */ 2317 for (i = 0; i < bitmap->storage.file_pages; i++) 2318 if (test_page_attr(bitmap, i, BITMAP_PAGE_PENDING)) 2319 set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE); 2320 __bitmap_unplug(bitmap); 2321 } 2322 __bitmap_unplug(mddev->bitmap); 2323 *low = lo; 2324 *high = hi; 2325 md_bitmap_free(bitmap); 2326 2327 return rv; 2328 } 2329 2330 static void bitmap_set_pages(void *data, unsigned long pages) 2331 { 2332 struct bitmap *bitmap = data; 2333 2334 bitmap->counts.pages = pages; 2335 } 2336 2337 static int bitmap_get_stats(void *data, struct md_bitmap_stats *stats) 2338 { 2339 struct bitmap_storage *storage; 2340 struct bitmap_counts *counts; 2341 struct bitmap *bitmap = data; 2342 bitmap_super_t *sb; 2343 2344 if (!bitmap) 2345 return -ENOENT; 2346 if (!bitmap->storage.sb_page) 2347 return -EINVAL; 2348 sb = kmap_local_page(bitmap->storage.sb_page); 2349 stats->sync_size = le64_to_cpu(sb->sync_size); 2350 kunmap_local(sb); 2351 2352 counts = &bitmap->counts; 2353 stats->missing_pages = counts->missing_pages; 2354 stats->pages = counts->pages; 2355 2356 storage = &bitmap->storage; 2357 stats->file_pages = storage->file_pages; 2358 stats->file = storage->file; 2359 2360 stats->behind_writes = atomic_read(&bitmap->behind_writes); 2361 stats->behind_wait = wq_has_sleeper(&bitmap->behind_wait); 2362 stats->events_cleared = bitmap->events_cleared; 2363 return 0; 2364 } 2365 2366 static int __bitmap_resize(struct bitmap *bitmap, sector_t blocks, 2367 int chunksize, bool init) 2368 { 2369 /* If chunk_size is 0, choose an appropriate chunk size. 2370 * Then possibly allocate new storage space. 2371 * Then quiesce, copy bits, replace bitmap, and re-start 2372 * 2373 * This function is called both to set up the initial bitmap 2374 * and to resize the bitmap while the array is active. 2375 * If this happens as a result of the array being resized, 2376 * chunksize will be zero, and we need to choose a suitable 2377 * chunksize, otherwise we use what we are given. 2378 */ 2379 struct bitmap_storage store; 2380 struct bitmap_counts old_counts; 2381 unsigned long chunks; 2382 sector_t block; 2383 sector_t old_blocks, new_blocks; 2384 int chunkshift; 2385 int ret = 0; 2386 long pages; 2387 struct bitmap_page *new_bp; 2388 2389 if (bitmap->storage.file && !init) { 2390 pr_info("md: cannot resize file-based bitmap\n"); 2391 return -EINVAL; 2392 } 2393 2394 if (chunksize == 0) { 2395 /* If there is enough space, leave the chunk size unchanged, 2396 * else increase by factor of two until there is enough space. 2397 */ 2398 long bytes; 2399 long space = bitmap->mddev->bitmap_info.space; 2400 2401 if (space == 0) { 2402 /* We don't know how much space there is, so limit 2403 * to current size - in sectors. 2404 */ 2405 bytes = DIV_ROUND_UP(bitmap->counts.chunks, 8); 2406 if (!bitmap->mddev->bitmap_info.external) 2407 bytes += sizeof(bitmap_super_t); 2408 space = DIV_ROUND_UP(bytes, 512); 2409 bitmap->mddev->bitmap_info.space = space; 2410 } 2411 chunkshift = bitmap->counts.chunkshift; 2412 chunkshift--; 2413 do { 2414 /* 'chunkshift' is shift from block size to chunk size */ 2415 chunkshift++; 2416 chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift); 2417 bytes = DIV_ROUND_UP(chunks, 8); 2418 if (!bitmap->mddev->bitmap_info.external) 2419 bytes += sizeof(bitmap_super_t); 2420 } while (bytes > (space << 9) && (chunkshift + BITMAP_BLOCK_SHIFT) < 2421 (BITS_PER_BYTE * sizeof(((bitmap_super_t *)0)->chunksize) - 1)); 2422 } else 2423 chunkshift = ffz(~chunksize) - BITMAP_BLOCK_SHIFT; 2424 2425 chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift); 2426 memset(&store, 0, sizeof(store)); 2427 if (bitmap->mddev->bitmap_info.offset || bitmap->mddev->bitmap_info.file) 2428 ret = md_bitmap_storage_alloc(&store, chunks, 2429 !bitmap->mddev->bitmap_info.external, 2430 mddev_is_clustered(bitmap->mddev) 2431 ? bitmap->cluster_slot : 0); 2432 if (ret) { 2433 md_bitmap_file_unmap(&store); 2434 goto err; 2435 } 2436 2437 pages = DIV_ROUND_UP(chunks, PAGE_COUNTER_RATIO); 2438 2439 new_bp = kcalloc(pages, sizeof(*new_bp), GFP_KERNEL); 2440 ret = -ENOMEM; 2441 if (!new_bp) { 2442 md_bitmap_file_unmap(&store); 2443 goto err; 2444 } 2445 2446 if (!init) 2447 bitmap->mddev->pers->quiesce(bitmap->mddev, 1); 2448 2449 store.file = bitmap->storage.file; 2450 bitmap->storage.file = NULL; 2451 2452 if (store.sb_page && bitmap->storage.sb_page) 2453 memcpy(page_address(store.sb_page), 2454 page_address(bitmap->storage.sb_page), 2455 sizeof(bitmap_super_t)); 2456 spin_lock_irq(&bitmap->counts.lock); 2457 md_bitmap_file_unmap(&bitmap->storage); 2458 bitmap->storage = store; 2459 2460 old_counts = bitmap->counts; 2461 bitmap->counts.bp = new_bp; 2462 bitmap->counts.pages = pages; 2463 bitmap->counts.missing_pages = pages; 2464 bitmap->counts.chunkshift = chunkshift; 2465 bitmap->counts.chunks = chunks; 2466 bitmap->mddev->bitmap_info.chunksize = 1UL << (chunkshift + 2467 BITMAP_BLOCK_SHIFT); 2468 2469 blocks = min(old_counts.chunks << old_counts.chunkshift, 2470 chunks << chunkshift); 2471 2472 /* For cluster raid, need to pre-allocate bitmap */ 2473 if (mddev_is_clustered(bitmap->mddev)) { 2474 unsigned long page; 2475 for (page = 0; page < pages; page++) { 2476 ret = md_bitmap_checkpage(&bitmap->counts, page, 1, 1); 2477 if (ret) { 2478 unsigned long k; 2479 2480 /* deallocate the page memory */ 2481 for (k = 0; k < page; k++) { 2482 kfree(new_bp[k].map); 2483 } 2484 kfree(new_bp); 2485 2486 /* restore some fields from old_counts */ 2487 bitmap->counts.bp = old_counts.bp; 2488 bitmap->counts.pages = old_counts.pages; 2489 bitmap->counts.missing_pages = old_counts.pages; 2490 bitmap->counts.chunkshift = old_counts.chunkshift; 2491 bitmap->counts.chunks = old_counts.chunks; 2492 bitmap->mddev->bitmap_info.chunksize = 2493 1UL << (old_counts.chunkshift + BITMAP_BLOCK_SHIFT); 2494 blocks = old_counts.chunks << old_counts.chunkshift; 2495 pr_warn("Could not pre-allocate in-memory bitmap for cluster raid\n"); 2496 break; 2497 } else 2498 bitmap->counts.bp[page].count += 1; 2499 } 2500 } 2501 2502 for (block = 0; block < blocks; ) { 2503 bitmap_counter_t *bmc_old, *bmc_new; 2504 int set; 2505 2506 bmc_old = md_bitmap_get_counter(&old_counts, block, &old_blocks, 0); 2507 set = bmc_old && NEEDED(*bmc_old); 2508 2509 if (set) { 2510 bmc_new = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1); 2511 if (bmc_new) { 2512 if (*bmc_new == 0) { 2513 /* need to set on-disk bits too. */ 2514 sector_t end = block + new_blocks; 2515 sector_t start = block >> chunkshift; 2516 2517 start <<= chunkshift; 2518 while (start < end) { 2519 md_bitmap_file_set_bit(bitmap, block); 2520 start += 1 << chunkshift; 2521 } 2522 *bmc_new = 2; 2523 md_bitmap_count_page(&bitmap->counts, block, 1); 2524 md_bitmap_set_pending(&bitmap->counts, block); 2525 } 2526 *bmc_new |= NEEDED_MASK; 2527 } 2528 if (new_blocks < old_blocks) 2529 old_blocks = new_blocks; 2530 } 2531 block += old_blocks; 2532 } 2533 2534 if (bitmap->counts.bp != old_counts.bp) { 2535 unsigned long k; 2536 for (k = 0; k < old_counts.pages; k++) 2537 if (!old_counts.bp[k].hijacked) 2538 kfree(old_counts.bp[k].map); 2539 kfree(old_counts.bp); 2540 } 2541 2542 if (!init) { 2543 int i; 2544 while (block < (chunks << chunkshift)) { 2545 bitmap_counter_t *bmc; 2546 bmc = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1); 2547 if (bmc) { 2548 /* new space. It needs to be resynced, so 2549 * we set NEEDED_MASK. 2550 */ 2551 if (*bmc == 0) { 2552 *bmc = NEEDED_MASK | 2; 2553 md_bitmap_count_page(&bitmap->counts, block, 1); 2554 md_bitmap_set_pending(&bitmap->counts, block); 2555 } 2556 } 2557 block += new_blocks; 2558 } 2559 for (i = 0; i < bitmap->storage.file_pages; i++) 2560 set_page_attr(bitmap, i, BITMAP_PAGE_DIRTY); 2561 } 2562 spin_unlock_irq(&bitmap->counts.lock); 2563 2564 if (!init) { 2565 __bitmap_unplug(bitmap); 2566 bitmap->mddev->pers->quiesce(bitmap->mddev, 0); 2567 } 2568 ret = 0; 2569 err: 2570 return ret; 2571 } 2572 2573 static int bitmap_resize(struct mddev *mddev, sector_t blocks, int chunksize) 2574 { 2575 struct bitmap *bitmap = mddev->bitmap; 2576 2577 if (!bitmap) 2578 return 0; 2579 2580 return __bitmap_resize(bitmap, blocks, chunksize, false); 2581 } 2582 2583 static ssize_t 2584 location_show(struct mddev *mddev, char *page) 2585 { 2586 ssize_t len; 2587 if (mddev->bitmap_info.file) 2588 len = sprintf(page, "file"); 2589 else if (mddev->bitmap_info.offset) 2590 len = sprintf(page, "%+lld", (long long)mddev->bitmap_info.offset); 2591 else 2592 len = sprintf(page, "none"); 2593 len += sprintf(page+len, "\n"); 2594 return len; 2595 } 2596 2597 static ssize_t 2598 location_store(struct mddev *mddev, const char *buf, size_t len) 2599 { 2600 int rv; 2601 2602 rv = mddev_suspend_and_lock(mddev); 2603 if (rv) 2604 return rv; 2605 2606 if (mddev->pers) { 2607 if (mddev->recovery || mddev->sync_thread) { 2608 rv = -EBUSY; 2609 goto out; 2610 } 2611 } 2612 2613 if (mddev->bitmap || mddev->bitmap_info.file || 2614 mddev->bitmap_info.offset) { 2615 /* bitmap already configured. Only option is to clear it */ 2616 if (strncmp(buf, "none", 4) != 0) { 2617 rv = -EBUSY; 2618 goto out; 2619 } 2620 2621 bitmap_destroy(mddev); 2622 mddev->bitmap_info.offset = 0; 2623 if (mddev->bitmap_info.file) { 2624 struct file *f = mddev->bitmap_info.file; 2625 mddev->bitmap_info.file = NULL; 2626 fput(f); 2627 } 2628 } else { 2629 /* No bitmap, OK to set a location */ 2630 long long offset; 2631 2632 if (strncmp(buf, "none", 4) == 0) 2633 /* nothing to be done */; 2634 else if (strncmp(buf, "file:", 5) == 0) { 2635 /* Not supported yet */ 2636 rv = -EINVAL; 2637 goto out; 2638 } else { 2639 if (buf[0] == '+') 2640 rv = kstrtoll(buf+1, 10, &offset); 2641 else 2642 rv = kstrtoll(buf, 10, &offset); 2643 if (rv) 2644 goto out; 2645 if (offset == 0) { 2646 rv = -EINVAL; 2647 goto out; 2648 } 2649 if (mddev->bitmap_info.external == 0 && 2650 mddev->major_version == 0 && 2651 offset != mddev->bitmap_info.default_offset) { 2652 rv = -EINVAL; 2653 goto out; 2654 } 2655 2656 mddev->bitmap_info.offset = offset; 2657 rv = bitmap_create(mddev); 2658 if (rv) 2659 goto out; 2660 2661 rv = bitmap_load(mddev); 2662 if (rv) { 2663 mddev->bitmap_info.offset = 0; 2664 bitmap_destroy(mddev); 2665 goto out; 2666 } 2667 } 2668 } 2669 if (!mddev->external) { 2670 /* Ensure new bitmap info is stored in 2671 * metadata promptly. 2672 */ 2673 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2674 md_wakeup_thread(mddev->thread); 2675 } 2676 rv = 0; 2677 out: 2678 mddev_unlock_and_resume(mddev); 2679 if (rv) 2680 return rv; 2681 return len; 2682 } 2683 2684 static struct md_sysfs_entry bitmap_location = 2685 __ATTR(location, S_IRUGO|S_IWUSR, location_show, location_store); 2686 2687 /* 'bitmap/space' is the space available at 'location' for the 2688 * bitmap. This allows the kernel to know when it is safe to 2689 * resize the bitmap to match a resized array. 2690 */ 2691 static ssize_t 2692 space_show(struct mddev *mddev, char *page) 2693 { 2694 return sprintf(page, "%lu\n", mddev->bitmap_info.space); 2695 } 2696 2697 static ssize_t 2698 space_store(struct mddev *mddev, const char *buf, size_t len) 2699 { 2700 struct bitmap *bitmap; 2701 unsigned long sectors; 2702 int rv; 2703 2704 rv = kstrtoul(buf, 10, §ors); 2705 if (rv) 2706 return rv; 2707 2708 if (sectors == 0) 2709 return -EINVAL; 2710 2711 bitmap = mddev->bitmap; 2712 if (bitmap && sectors < (bitmap->storage.bytes + 511) >> 9) 2713 return -EFBIG; /* Bitmap is too big for this small space */ 2714 2715 /* could make sure it isn't too big, but that isn't really 2716 * needed - user-space should be careful. 2717 */ 2718 mddev->bitmap_info.space = sectors; 2719 return len; 2720 } 2721 2722 static struct md_sysfs_entry bitmap_space = 2723 __ATTR(space, S_IRUGO|S_IWUSR, space_show, space_store); 2724 2725 static ssize_t 2726 timeout_show(struct mddev *mddev, char *page) 2727 { 2728 ssize_t len; 2729 unsigned long secs = mddev->bitmap_info.daemon_sleep / HZ; 2730 unsigned long jifs = mddev->bitmap_info.daemon_sleep % HZ; 2731 2732 len = sprintf(page, "%lu", secs); 2733 if (jifs) 2734 len += sprintf(page+len, ".%03u", jiffies_to_msecs(jifs)); 2735 len += sprintf(page+len, "\n"); 2736 return len; 2737 } 2738 2739 static ssize_t 2740 timeout_store(struct mddev *mddev, const char *buf, size_t len) 2741 { 2742 /* timeout can be set at any time */ 2743 unsigned long timeout; 2744 int rv = strict_strtoul_scaled(buf, &timeout, 4); 2745 if (rv) 2746 return rv; 2747 2748 /* just to make sure we don't overflow... */ 2749 if (timeout >= LONG_MAX / HZ) 2750 return -EINVAL; 2751 2752 timeout = timeout * HZ / 10000; 2753 2754 if (timeout >= MAX_SCHEDULE_TIMEOUT) 2755 timeout = MAX_SCHEDULE_TIMEOUT-1; 2756 if (timeout < 1) 2757 timeout = 1; 2758 2759 mddev->bitmap_info.daemon_sleep = timeout; 2760 mddev_set_timeout(mddev, timeout, false); 2761 md_wakeup_thread(mddev->thread); 2762 2763 return len; 2764 } 2765 2766 static struct md_sysfs_entry bitmap_timeout = 2767 __ATTR(time_base, S_IRUGO|S_IWUSR, timeout_show, timeout_store); 2768 2769 static ssize_t 2770 backlog_show(struct mddev *mddev, char *page) 2771 { 2772 return sprintf(page, "%lu\n", mddev->bitmap_info.max_write_behind); 2773 } 2774 2775 static ssize_t 2776 backlog_store(struct mddev *mddev, const char *buf, size_t len) 2777 { 2778 unsigned long backlog; 2779 unsigned long old_mwb = mddev->bitmap_info.max_write_behind; 2780 struct md_rdev *rdev; 2781 bool has_write_mostly = false; 2782 int rv = kstrtoul(buf, 10, &backlog); 2783 if (rv) 2784 return rv; 2785 if (backlog > COUNTER_MAX) 2786 return -EINVAL; 2787 2788 rv = mddev_suspend_and_lock(mddev); 2789 if (rv) 2790 return rv; 2791 2792 /* 2793 * Without write mostly device, it doesn't make sense to set 2794 * backlog for max_write_behind. 2795 */ 2796 rdev_for_each(rdev, mddev) { 2797 if (test_bit(WriteMostly, &rdev->flags)) { 2798 has_write_mostly = true; 2799 break; 2800 } 2801 } 2802 if (!has_write_mostly) { 2803 pr_warn_ratelimited("%s: can't set backlog, no write mostly device available\n", 2804 mdname(mddev)); 2805 mddev_unlock(mddev); 2806 return -EINVAL; 2807 } 2808 2809 mddev->bitmap_info.max_write_behind = backlog; 2810 if (!backlog && mddev->serial_info_pool) { 2811 /* serial_info_pool is not needed if backlog is zero */ 2812 if (!mddev->serialize_policy) 2813 mddev_destroy_serial_pool(mddev, NULL); 2814 } else if (backlog && !mddev->serial_info_pool) { 2815 /* serial_info_pool is needed since backlog is not zero */ 2816 rdev_for_each(rdev, mddev) 2817 mddev_create_serial_pool(mddev, rdev); 2818 } 2819 if (old_mwb != backlog) 2820 bitmap_update_sb(mddev->bitmap); 2821 2822 mddev_unlock_and_resume(mddev); 2823 return len; 2824 } 2825 2826 static struct md_sysfs_entry bitmap_backlog = 2827 __ATTR(backlog, S_IRUGO|S_IWUSR, backlog_show, backlog_store); 2828 2829 static ssize_t 2830 chunksize_show(struct mddev *mddev, char *page) 2831 { 2832 return sprintf(page, "%lu\n", mddev->bitmap_info.chunksize); 2833 } 2834 2835 static ssize_t 2836 chunksize_store(struct mddev *mddev, const char *buf, size_t len) 2837 { 2838 /* Can only be changed when no bitmap is active */ 2839 int rv; 2840 unsigned long csize; 2841 if (mddev->bitmap) 2842 return -EBUSY; 2843 rv = kstrtoul(buf, 10, &csize); 2844 if (rv) 2845 return rv; 2846 if (csize < 512 || 2847 !is_power_of_2(csize)) 2848 return -EINVAL; 2849 if (BITS_PER_LONG > 32 && csize >= (1ULL << (BITS_PER_BYTE * 2850 sizeof(((bitmap_super_t *)0)->chunksize)))) 2851 return -EOVERFLOW; 2852 mddev->bitmap_info.chunksize = csize; 2853 return len; 2854 } 2855 2856 static struct md_sysfs_entry bitmap_chunksize = 2857 __ATTR(chunksize, S_IRUGO|S_IWUSR, chunksize_show, chunksize_store); 2858 2859 static ssize_t metadata_show(struct mddev *mddev, char *page) 2860 { 2861 if (mddev_is_clustered(mddev)) 2862 return sprintf(page, "clustered\n"); 2863 return sprintf(page, "%s\n", (mddev->bitmap_info.external 2864 ? "external" : "internal")); 2865 } 2866 2867 static ssize_t metadata_store(struct mddev *mddev, const char *buf, size_t len) 2868 { 2869 if (mddev->bitmap || 2870 mddev->bitmap_info.file || 2871 mddev->bitmap_info.offset) 2872 return -EBUSY; 2873 if (strncmp(buf, "external", 8) == 0) 2874 mddev->bitmap_info.external = 1; 2875 else if ((strncmp(buf, "internal", 8) == 0) || 2876 (strncmp(buf, "clustered", 9) == 0)) 2877 mddev->bitmap_info.external = 0; 2878 else 2879 return -EINVAL; 2880 return len; 2881 } 2882 2883 static struct md_sysfs_entry bitmap_metadata = 2884 __ATTR(metadata, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 2885 2886 static ssize_t can_clear_show(struct mddev *mddev, char *page) 2887 { 2888 int len; 2889 struct bitmap *bitmap; 2890 2891 spin_lock(&mddev->lock); 2892 bitmap = mddev->bitmap; 2893 if (bitmap) 2894 len = sprintf(page, "%s\n", (bitmap->need_sync ? "false" : 2895 "true")); 2896 else 2897 len = sprintf(page, "\n"); 2898 spin_unlock(&mddev->lock); 2899 return len; 2900 } 2901 2902 static ssize_t can_clear_store(struct mddev *mddev, const char *buf, size_t len) 2903 { 2904 struct bitmap *bitmap = mddev->bitmap; 2905 2906 if (!bitmap) 2907 return -ENOENT; 2908 2909 if (strncmp(buf, "false", 5) == 0) { 2910 bitmap->need_sync = 1; 2911 return len; 2912 } 2913 2914 if (strncmp(buf, "true", 4) == 0) { 2915 if (mddev->degraded) 2916 return -EBUSY; 2917 bitmap->need_sync = 0; 2918 return len; 2919 } 2920 2921 return -EINVAL; 2922 } 2923 2924 static struct md_sysfs_entry bitmap_can_clear = 2925 __ATTR(can_clear, S_IRUGO|S_IWUSR, can_clear_show, can_clear_store); 2926 2927 static ssize_t 2928 behind_writes_used_show(struct mddev *mddev, char *page) 2929 { 2930 ssize_t ret; 2931 struct bitmap *bitmap; 2932 2933 spin_lock(&mddev->lock); 2934 bitmap = mddev->bitmap; 2935 if (!bitmap) 2936 ret = sprintf(page, "0\n"); 2937 else 2938 ret = sprintf(page, "%lu\n", bitmap->behind_writes_used); 2939 spin_unlock(&mddev->lock); 2940 2941 return ret; 2942 } 2943 2944 static ssize_t 2945 behind_writes_used_reset(struct mddev *mddev, const char *buf, size_t len) 2946 { 2947 struct bitmap *bitmap = mddev->bitmap; 2948 2949 if (bitmap) 2950 bitmap->behind_writes_used = 0; 2951 return len; 2952 } 2953 2954 static struct md_sysfs_entry max_backlog_used = 2955 __ATTR(max_backlog_used, S_IRUGO | S_IWUSR, 2956 behind_writes_used_show, behind_writes_used_reset); 2957 2958 static struct attribute *md_bitmap_attrs[] = { 2959 &bitmap_location.attr, 2960 &bitmap_space.attr, 2961 &bitmap_timeout.attr, 2962 &bitmap_backlog.attr, 2963 &bitmap_chunksize.attr, 2964 &bitmap_metadata.attr, 2965 &bitmap_can_clear.attr, 2966 &max_backlog_used.attr, 2967 NULL 2968 }; 2969 2970 static struct attribute_group md_bitmap_group = { 2971 .name = "bitmap", 2972 .attrs = md_bitmap_attrs, 2973 }; 2974 2975 static struct bitmap_operations bitmap_ops = { 2976 .head = { 2977 .type = MD_BITMAP, 2978 .id = ID_BITMAP, 2979 .name = "bitmap", 2980 }, 2981 2982 .enabled = bitmap_enabled, 2983 .create = bitmap_create, 2984 .resize = bitmap_resize, 2985 .load = bitmap_load, 2986 .destroy = bitmap_destroy, 2987 .flush = bitmap_flush, 2988 .write_all = bitmap_write_all, 2989 .dirty_bits = bitmap_dirty_bits, 2990 .unplug = bitmap_unplug, 2991 .daemon_work = bitmap_daemon_work, 2992 2993 .start_behind_write = bitmap_start_behind_write, 2994 .end_behind_write = bitmap_end_behind_write, 2995 .wait_behind_writes = bitmap_wait_behind_writes, 2996 2997 .start_write = bitmap_start_write, 2998 .end_write = bitmap_end_write, 2999 .start_discard = bitmap_start_write, 3000 .end_discard = bitmap_end_write, 3001 3002 .start_sync = bitmap_start_sync, 3003 .end_sync = bitmap_end_sync, 3004 .cond_end_sync = bitmap_cond_end_sync, 3005 .close_sync = bitmap_close_sync, 3006 3007 .update_sb = bitmap_update_sb, 3008 .get_stats = bitmap_get_stats, 3009 3010 .sync_with_cluster = bitmap_sync_with_cluster, 3011 .get_from_slot = bitmap_get_from_slot, 3012 .copy_from_slot = bitmap_copy_from_slot, 3013 .set_pages = bitmap_set_pages, 3014 .free = md_bitmap_free, 3015 3016 .group = &md_bitmap_group, 3017 }; 3018 3019 int md_bitmap_init(void) 3020 { 3021 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND, 3022 0); 3023 if (!md_bitmap_wq) 3024 return -ENOMEM; 3025 3026 return register_md_submodule(&bitmap_ops.head); 3027 } 3028 3029 void md_bitmap_exit(void) 3030 { 3031 destroy_workqueue(md_bitmap_wq); 3032 unregister_md_submodule(&bitmap_ops.head); 3033 } 3034