1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/signal.h> 19 #include <linux/blkpg.h> 20 #include <linux/bio.h> 21 #include <linux/mempool.h> 22 #include <linux/dax.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/uio.h> 26 #include <linux/hdreg.h> 27 #include <linux/delay.h> 28 #include <linux/wait.h> 29 #include <linux/pr.h> 30 #include <linux/refcount.h> 31 #include <linux/part_stat.h> 32 #include <linux/blk-crypto.h> 33 #include <linux/blk-crypto-profile.h> 34 35 #define DM_MSG_PREFIX "core" 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 /* 45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 46 * dm_io into one list, and reuse bio->bi_private as the list head. Before 47 * ending this fs bio, we will recover its ->bi_private. 48 */ 49 #define REQ_DM_POLL_LIST REQ_DRV 50 51 static const char *_name = DM_NAME; 52 53 static unsigned int major; 54 static unsigned int _major; 55 56 static DEFINE_IDR(_minor_idr); 57 58 static DEFINE_SPINLOCK(_minor_lock); 59 60 static void do_deferred_remove(struct work_struct *w); 61 62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 63 64 static struct workqueue_struct *deferred_remove_workqueue; 65 66 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 68 69 void dm_issue_global_event(void) 70 { 71 atomic_inc(&dm_global_event_nr); 72 wake_up(&dm_global_eventq); 73 } 74 75 DEFINE_STATIC_KEY_FALSE(stats_enabled); 76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 77 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 78 79 /* 80 * One of these is allocated (on-stack) per original bio. 81 */ 82 struct clone_info { 83 struct dm_table *map; 84 struct bio *bio; 85 struct dm_io *io; 86 sector_t sector; 87 unsigned int sector_count; 88 bool is_abnormal_io:1; 89 bool submit_as_polled:1; 90 }; 91 92 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 93 { 94 return container_of(clone, struct dm_target_io, clone); 95 } 96 97 void *dm_per_bio_data(struct bio *bio, size_t data_size) 98 { 99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 101 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 102 } 103 EXPORT_SYMBOL_GPL(dm_per_bio_data); 104 105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 106 { 107 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 108 109 if (io->magic == DM_IO_MAGIC) 110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 111 BUG_ON(io->magic != DM_TIO_MAGIC); 112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 113 } 114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 115 116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 117 { 118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 119 } 120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 121 122 #define MINOR_ALLOCED ((void *)-1) 123 124 #define DM_NUMA_NODE NUMA_NO_NODE 125 static int dm_numa_node = DM_NUMA_NODE; 126 127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 128 static int swap_bios = DEFAULT_SWAP_BIOS; 129 static int get_swap_bios(void) 130 { 131 int latch = READ_ONCE(swap_bios); 132 133 if (unlikely(latch <= 0)) 134 latch = DEFAULT_SWAP_BIOS; 135 return latch; 136 } 137 138 struct table_device { 139 struct list_head list; 140 refcount_t count; 141 struct dm_dev dm_dev; 142 }; 143 144 /* 145 * Bio-based DM's mempools' reserved IOs set by the user. 146 */ 147 #define RESERVED_BIO_BASED_IOS 16 148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 149 150 static int __dm_get_module_param_int(int *module_param, int min, int max) 151 { 152 int param = READ_ONCE(*module_param); 153 int modified_param = 0; 154 bool modified = true; 155 156 if (param < min) 157 modified_param = min; 158 else if (param > max) 159 modified_param = max; 160 else 161 modified = false; 162 163 if (modified) { 164 (void)cmpxchg(module_param, param, modified_param); 165 param = modified_param; 166 } 167 168 return param; 169 } 170 171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 172 { 173 unsigned int param = READ_ONCE(*module_param); 174 unsigned int modified_param = 0; 175 176 if (!param) 177 modified_param = def; 178 else if (param > max) 179 modified_param = max; 180 181 if (modified_param) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned int dm_get_reserved_bio_based_ios(void) 190 { 191 return __dm_get_module_param(&reserved_bio_based_ios, 192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 193 } 194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 195 196 static unsigned int dm_get_numa_node(void) 197 { 198 return __dm_get_module_param_int(&dm_numa_node, 199 DM_NUMA_NODE, num_online_nodes() - 1); 200 } 201 202 static int __init local_init(void) 203 { 204 int r; 205 206 r = dm_uevent_init(); 207 if (r) 208 return r; 209 210 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); 211 if (!deferred_remove_workqueue) { 212 r = -ENOMEM; 213 goto out_uevent_exit; 214 } 215 216 _major = major; 217 r = register_blkdev(_major, _name); 218 if (r < 0) 219 goto out_free_workqueue; 220 221 if (!_major) 222 _major = r; 223 224 return 0; 225 226 out_free_workqueue: 227 destroy_workqueue(deferred_remove_workqueue); 228 out_uevent_exit: 229 dm_uevent_exit(); 230 231 return r; 232 } 233 234 static void local_exit(void) 235 { 236 destroy_workqueue(deferred_remove_workqueue); 237 238 unregister_blkdev(_major, _name); 239 dm_uevent_exit(); 240 241 _major = 0; 242 243 DMINFO("cleaned up"); 244 } 245 246 static int (*_inits[])(void) __initdata = { 247 local_init, 248 dm_target_init, 249 dm_linear_init, 250 dm_stripe_init, 251 dm_io_init, 252 dm_kcopyd_init, 253 dm_interface_init, 254 dm_statistics_init, 255 }; 256 257 static void (*_exits[])(void) = { 258 local_exit, 259 dm_target_exit, 260 dm_linear_exit, 261 dm_stripe_exit, 262 dm_io_exit, 263 dm_kcopyd_exit, 264 dm_interface_exit, 265 dm_statistics_exit, 266 }; 267 268 static int __init dm_init(void) 269 { 270 const int count = ARRAY_SIZE(_inits); 271 int r, i; 272 273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 275 " Duplicate IMA measurements will not be recorded in the IMA log."); 276 #endif 277 278 for (i = 0; i < count; i++) { 279 r = _inits[i](); 280 if (r) 281 goto bad; 282 } 283 284 return 0; 285 bad: 286 while (i--) 287 _exits[i](); 288 289 return r; 290 } 291 292 static void __exit dm_exit(void) 293 { 294 int i = ARRAY_SIZE(_exits); 295 296 while (i--) 297 _exits[i](); 298 299 /* 300 * Should be empty by this point. 301 */ 302 idr_destroy(&_minor_idr); 303 } 304 305 /* 306 * Block device functions 307 */ 308 int dm_deleting_md(struct mapped_device *md) 309 { 310 return test_bit(DMF_DELETING, &md->flags); 311 } 312 313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 314 { 315 struct mapped_device *md; 316 317 spin_lock(&_minor_lock); 318 319 md = disk->private_data; 320 if (!md) 321 goto out; 322 323 if (test_bit(DMF_FREEING, &md->flags) || 324 dm_deleting_md(md)) { 325 md = NULL; 326 goto out; 327 } 328 329 dm_get(md); 330 atomic_inc(&md->open_count); 331 out: 332 spin_unlock(&_minor_lock); 333 334 return md ? 0 : -ENXIO; 335 } 336 337 static void dm_blk_close(struct gendisk *disk) 338 { 339 struct mapped_device *md; 340 341 spin_lock(&_minor_lock); 342 343 md = disk->private_data; 344 if (WARN_ON(!md)) 345 goto out; 346 347 if (atomic_dec_and_test(&md->open_count) && 348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 349 queue_work(deferred_remove_workqueue, &deferred_remove_work); 350 351 dm_put(md); 352 out: 353 spin_unlock(&_minor_lock); 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) { 371 r = -EBUSY; 372 if (mark_deferred) 373 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 375 r = -EEXIST; 376 else 377 set_bit(DMF_DELETING, &md->flags); 378 379 spin_unlock(&_minor_lock); 380 381 return r; 382 } 383 384 int dm_cancel_deferred_remove(struct mapped_device *md) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (test_bit(DMF_DELETING, &md->flags)) 391 r = -EBUSY; 392 else 393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 static void do_deferred_remove(struct work_struct *w) 401 { 402 dm_deferred_remove(); 403 } 404 405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 406 { 407 struct mapped_device *md = bdev->bd_disk->private_data; 408 409 return dm_get_geometry(md, geo); 410 } 411 412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 413 struct block_device **bdev) 414 { 415 struct dm_target *ti; 416 struct dm_table *map; 417 int r; 418 419 retry: 420 r = -ENOTTY; 421 map = dm_get_live_table(md, srcu_idx); 422 if (!map || !dm_table_get_size(map)) 423 return r; 424 425 /* We only support devices that have a single target */ 426 if (map->num_targets != 1) 427 return r; 428 429 ti = dm_table_get_target(map, 0); 430 if (!ti->type->prepare_ioctl) 431 return r; 432 433 if (dm_suspended_md(md)) 434 return -EAGAIN; 435 436 r = ti->type->prepare_ioctl(ti, bdev); 437 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 438 dm_put_live_table(md, *srcu_idx); 439 fsleep(10000); 440 goto retry; 441 } 442 443 return r; 444 } 445 446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 447 { 448 dm_put_live_table(md, srcu_idx); 449 } 450 451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 452 unsigned int cmd, unsigned long arg) 453 { 454 struct mapped_device *md = bdev->bd_disk->private_data; 455 int r, srcu_idx; 456 457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 458 if (r < 0) 459 goto out; 460 461 if (r > 0) { 462 /* 463 * Target determined this ioctl is being issued against a 464 * subset of the parent bdev; require extra privileges. 465 */ 466 if (!capable(CAP_SYS_RAWIO)) { 467 DMDEBUG_LIMIT( 468 "%s: sending ioctl %x to DM device without required privilege.", 469 current->comm, cmd); 470 r = -ENOIOCTLCMD; 471 goto out; 472 } 473 } 474 475 if (!bdev->bd_disk->fops->ioctl) 476 r = -ENOTTY; 477 else 478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 479 out: 480 dm_unprepare_ioctl(md, srcu_idx); 481 return r; 482 } 483 484 u64 dm_start_time_ns_from_clone(struct bio *bio) 485 { 486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 487 } 488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 489 490 static inline bool bio_is_flush_with_data(struct bio *bio) 491 { 492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 493 } 494 495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) 496 { 497 /* 498 * If REQ_PREFLUSH set, don't account payload, it will be 499 * submitted (and accounted) after this flush completes. 500 */ 501 if (bio_is_flush_with_data(bio)) 502 return 0; 503 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 504 return io->sectors; 505 return bio_sectors(bio); 506 } 507 508 static void dm_io_acct(struct dm_io *io, bool end) 509 { 510 struct bio *bio = io->orig_bio; 511 512 if (dm_io_flagged(io, DM_IO_BLK_STAT)) { 513 if (!end) 514 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), 515 io->start_time); 516 else 517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), 518 dm_io_sectors(io, bio), 519 io->start_time); 520 } 521 522 if (static_branch_unlikely(&stats_enabled) && 523 unlikely(dm_stats_used(&io->md->stats))) { 524 sector_t sector; 525 526 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 527 sector = bio_end_sector(bio) - io->sector_offset; 528 else 529 sector = bio->bi_iter.bi_sector; 530 531 dm_stats_account_io(&io->md->stats, bio_data_dir(bio), 532 sector, dm_io_sectors(io, bio), 533 end, io->start_time, &io->stats_aux); 534 } 535 } 536 537 static void __dm_start_io_acct(struct dm_io *io) 538 { 539 dm_io_acct(io, false); 540 } 541 542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 543 { 544 /* 545 * Ensure IO accounting is only ever started once. 546 */ 547 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 548 return; 549 550 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 551 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 552 dm_io_set_flag(io, DM_IO_ACCOUNTED); 553 } else { 554 unsigned long flags; 555 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 556 spin_lock_irqsave(&io->lock, flags); 557 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 558 spin_unlock_irqrestore(&io->lock, flags); 559 return; 560 } 561 dm_io_set_flag(io, DM_IO_ACCOUNTED); 562 spin_unlock_irqrestore(&io->lock, flags); 563 } 564 565 __dm_start_io_acct(io); 566 } 567 568 static void dm_end_io_acct(struct dm_io *io) 569 { 570 dm_io_acct(io, true); 571 } 572 573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask) 574 { 575 struct dm_io *io; 576 struct dm_target_io *tio; 577 struct bio *clone; 578 579 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs); 580 if (unlikely(!clone)) 581 return NULL; 582 tio = clone_to_tio(clone); 583 tio->flags = 0; 584 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 585 tio->io = NULL; 586 587 io = container_of(tio, struct dm_io, tio); 588 io->magic = DM_IO_MAGIC; 589 io->status = BLK_STS_OK; 590 591 /* one ref is for submission, the other is for completion */ 592 atomic_set(&io->io_count, 2); 593 this_cpu_inc(*md->pending_io); 594 io->orig_bio = bio; 595 io->md = md; 596 spin_lock_init(&io->lock); 597 io->start_time = jiffies; 598 io->flags = 0; 599 if (blk_queue_io_stat(md->queue)) 600 dm_io_set_flag(io, DM_IO_BLK_STAT); 601 602 if (static_branch_unlikely(&stats_enabled) && 603 unlikely(dm_stats_used(&md->stats))) 604 dm_stats_record_start(&md->stats, &io->stats_aux); 605 606 return io; 607 } 608 609 static void free_io(struct dm_io *io) 610 { 611 bio_put(&io->tio.clone); 612 } 613 614 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 615 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 616 { 617 struct mapped_device *md = ci->io->md; 618 struct dm_target_io *tio; 619 struct bio *clone; 620 621 if (!ci->io->tio.io) { 622 /* the dm_target_io embedded in ci->io is available */ 623 tio = &ci->io->tio; 624 /* alloc_io() already initialized embedded clone */ 625 clone = &tio->clone; 626 } else { 627 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 628 &md->mempools->bs); 629 if (!clone) 630 return NULL; 631 632 /* REQ_DM_POLL_LIST shouldn't be inherited */ 633 clone->bi_opf &= ~REQ_DM_POLL_LIST; 634 635 tio = clone_to_tio(clone); 636 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 637 } 638 639 tio->magic = DM_TIO_MAGIC; 640 tio->io = ci->io; 641 tio->ti = ti; 642 tio->target_bio_nr = target_bio_nr; 643 tio->len_ptr = len; 644 tio->old_sector = 0; 645 646 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 647 clone->bi_bdev = md->disk->part0; 648 if (unlikely(ti->needs_bio_set_dev)) 649 bio_set_dev(clone, md->disk->part0); 650 651 if (len) { 652 clone->bi_iter.bi_size = to_bytes(*len); 653 if (bio_integrity(clone)) 654 bio_integrity_trim(clone); 655 } 656 657 return clone; 658 } 659 660 static void free_tio(struct bio *clone) 661 { 662 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 663 return; 664 bio_put(clone); 665 } 666 667 /* 668 * Add the bio to the list of deferred io. 669 */ 670 static void queue_io(struct mapped_device *md, struct bio *bio) 671 { 672 unsigned long flags; 673 674 spin_lock_irqsave(&md->deferred_lock, flags); 675 bio_list_add(&md->deferred, bio); 676 spin_unlock_irqrestore(&md->deferred_lock, flags); 677 queue_work(md->wq, &md->work); 678 } 679 680 /* 681 * Everyone (including functions in this file), should use this 682 * function to access the md->map field, and make sure they call 683 * dm_put_live_table() when finished. 684 */ 685 struct dm_table *dm_get_live_table(struct mapped_device *md, 686 int *srcu_idx) __acquires(md->io_barrier) 687 { 688 *srcu_idx = srcu_read_lock(&md->io_barrier); 689 690 return srcu_dereference(md->map, &md->io_barrier); 691 } 692 693 void dm_put_live_table(struct mapped_device *md, 694 int srcu_idx) __releases(md->io_barrier) 695 { 696 srcu_read_unlock(&md->io_barrier, srcu_idx); 697 } 698 699 void dm_sync_table(struct mapped_device *md) 700 { 701 synchronize_srcu(&md->io_barrier); 702 synchronize_rcu_expedited(); 703 } 704 705 /* 706 * A fast alternative to dm_get_live_table/dm_put_live_table. 707 * The caller must not block between these two functions. 708 */ 709 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 710 { 711 rcu_read_lock(); 712 return rcu_dereference(md->map); 713 } 714 715 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 716 { 717 rcu_read_unlock(); 718 } 719 720 static char *_dm_claim_ptr = "I belong to device-mapper"; 721 722 /* 723 * Open a table device so we can use it as a map destination. 724 */ 725 static struct table_device *open_table_device(struct mapped_device *md, 726 dev_t dev, blk_mode_t mode) 727 { 728 struct table_device *td; 729 struct file *bdev_file; 730 struct block_device *bdev; 731 u64 part_off; 732 int r; 733 734 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 735 if (!td) 736 return ERR_PTR(-ENOMEM); 737 refcount_set(&td->count, 1); 738 739 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL); 740 if (IS_ERR(bdev_file)) { 741 r = PTR_ERR(bdev_file); 742 goto out_free_td; 743 } 744 745 bdev = file_bdev(bdev_file); 746 747 /* 748 * We can be called before the dm disk is added. In that case we can't 749 * register the holder relation here. It will be done once add_disk was 750 * called. 751 */ 752 if (md->disk->slave_dir) { 753 r = bd_link_disk_holder(bdev, md->disk); 754 if (r) 755 goto out_blkdev_put; 756 } 757 758 td->dm_dev.mode = mode; 759 td->dm_dev.bdev = bdev; 760 td->dm_dev.bdev_file = bdev_file; 761 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, 762 NULL, NULL); 763 format_dev_t(td->dm_dev.name, dev); 764 list_add(&td->list, &md->table_devices); 765 return td; 766 767 out_blkdev_put: 768 fput(bdev_file); 769 out_free_td: 770 kfree(td); 771 return ERR_PTR(r); 772 } 773 774 /* 775 * Close a table device that we've been using. 776 */ 777 static void close_table_device(struct table_device *td, struct mapped_device *md) 778 { 779 if (md->disk->slave_dir) 780 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 781 fput(td->dm_dev.bdev_file); 782 put_dax(td->dm_dev.dax_dev); 783 list_del(&td->list); 784 kfree(td); 785 } 786 787 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 788 blk_mode_t mode) 789 { 790 struct table_device *td; 791 792 list_for_each_entry(td, l, list) 793 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 794 return td; 795 796 return NULL; 797 } 798 799 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 800 struct dm_dev **result) 801 { 802 struct table_device *td; 803 804 mutex_lock(&md->table_devices_lock); 805 td = find_table_device(&md->table_devices, dev, mode); 806 if (!td) { 807 td = open_table_device(md, dev, mode); 808 if (IS_ERR(td)) { 809 mutex_unlock(&md->table_devices_lock); 810 return PTR_ERR(td); 811 } 812 } else { 813 refcount_inc(&td->count); 814 } 815 mutex_unlock(&md->table_devices_lock); 816 817 *result = &td->dm_dev; 818 return 0; 819 } 820 821 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 822 { 823 struct table_device *td = container_of(d, struct table_device, dm_dev); 824 825 mutex_lock(&md->table_devices_lock); 826 if (refcount_dec_and_test(&td->count)) 827 close_table_device(td, md); 828 mutex_unlock(&md->table_devices_lock); 829 } 830 831 /* 832 * Get the geometry associated with a dm device 833 */ 834 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 835 { 836 *geo = md->geometry; 837 838 return 0; 839 } 840 841 /* 842 * Set the geometry of a device. 843 */ 844 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 845 { 846 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 847 848 if (geo->start > sz) { 849 DMERR("Start sector is beyond the geometry limits."); 850 return -EINVAL; 851 } 852 853 md->geometry = *geo; 854 855 return 0; 856 } 857 858 static int __noflush_suspending(struct mapped_device *md) 859 { 860 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 861 } 862 863 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 864 { 865 struct mapped_device *md = io->md; 866 867 if (first_stage) { 868 struct dm_io *next = md->requeue_list; 869 870 md->requeue_list = io; 871 io->next = next; 872 } else { 873 bio_list_add_head(&md->deferred, io->orig_bio); 874 } 875 } 876 877 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 878 { 879 if (first_stage) 880 queue_work(md->wq, &md->requeue_work); 881 else 882 queue_work(md->wq, &md->work); 883 } 884 885 /* 886 * Return true if the dm_io's original bio is requeued. 887 * io->status is updated with error if requeue disallowed. 888 */ 889 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 890 { 891 struct bio *bio = io->orig_bio; 892 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 893 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 894 (bio->bi_opf & REQ_POLLED)); 895 struct mapped_device *md = io->md; 896 bool requeued = false; 897 898 if (handle_requeue || handle_polled_eagain) { 899 unsigned long flags; 900 901 if (bio->bi_opf & REQ_POLLED) { 902 /* 903 * Upper layer won't help us poll split bio 904 * (io->orig_bio may only reflect a subset of the 905 * pre-split original) so clear REQ_POLLED. 906 */ 907 bio_clear_polled(bio); 908 } 909 910 /* 911 * Target requested pushing back the I/O or 912 * polled IO hit BLK_STS_AGAIN. 913 */ 914 spin_lock_irqsave(&md->deferred_lock, flags); 915 if ((__noflush_suspending(md) && 916 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 917 handle_polled_eagain || first_stage) { 918 dm_requeue_add_io(io, first_stage); 919 requeued = true; 920 } else { 921 /* 922 * noflush suspend was interrupted or this is 923 * a write to a zoned target. 924 */ 925 io->status = BLK_STS_IOERR; 926 } 927 spin_unlock_irqrestore(&md->deferred_lock, flags); 928 } 929 930 if (requeued) 931 dm_kick_requeue(md, first_stage); 932 933 return requeued; 934 } 935 936 static void __dm_io_complete(struct dm_io *io, bool first_stage) 937 { 938 struct bio *bio = io->orig_bio; 939 struct mapped_device *md = io->md; 940 blk_status_t io_error; 941 bool requeued; 942 943 requeued = dm_handle_requeue(io, first_stage); 944 if (requeued && first_stage) 945 return; 946 947 io_error = io->status; 948 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 949 dm_end_io_acct(io); 950 else if (!io_error) { 951 /* 952 * Must handle target that DM_MAPIO_SUBMITTED only to 953 * then bio_endio() rather than dm_submit_bio_remap() 954 */ 955 __dm_start_io_acct(io); 956 dm_end_io_acct(io); 957 } 958 free_io(io); 959 smp_wmb(); 960 this_cpu_dec(*md->pending_io); 961 962 /* nudge anyone waiting on suspend queue */ 963 if (unlikely(wq_has_sleeper(&md->wait))) 964 wake_up(&md->wait); 965 966 /* Return early if the original bio was requeued */ 967 if (requeued) 968 return; 969 970 if (bio_is_flush_with_data(bio)) { 971 /* 972 * Preflush done for flush with data, reissue 973 * without REQ_PREFLUSH. 974 */ 975 bio->bi_opf &= ~REQ_PREFLUSH; 976 queue_io(md, bio); 977 } else { 978 /* done with normal IO or empty flush */ 979 if (io_error) 980 bio->bi_status = io_error; 981 bio_endio(bio); 982 } 983 } 984 985 static void dm_wq_requeue_work(struct work_struct *work) 986 { 987 struct mapped_device *md = container_of(work, struct mapped_device, 988 requeue_work); 989 unsigned long flags; 990 struct dm_io *io; 991 992 /* reuse deferred lock to simplify dm_handle_requeue */ 993 spin_lock_irqsave(&md->deferred_lock, flags); 994 io = md->requeue_list; 995 md->requeue_list = NULL; 996 spin_unlock_irqrestore(&md->deferred_lock, flags); 997 998 while (io) { 999 struct dm_io *next = io->next; 1000 1001 dm_io_rewind(io, &md->disk->bio_split); 1002 1003 io->next = NULL; 1004 __dm_io_complete(io, false); 1005 io = next; 1006 cond_resched(); 1007 } 1008 } 1009 1010 /* 1011 * Two staged requeue: 1012 * 1013 * 1) io->orig_bio points to the real original bio, and the part mapped to 1014 * this io must be requeued, instead of other parts of the original bio. 1015 * 1016 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1017 */ 1018 static void dm_io_complete(struct dm_io *io) 1019 { 1020 bool first_requeue; 1021 1022 /* 1023 * Only dm_io that has been split needs two stage requeue, otherwise 1024 * we may run into long bio clone chain during suspend and OOM could 1025 * be triggered. 1026 * 1027 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1028 * also aren't handled via the first stage requeue. 1029 */ 1030 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1031 first_requeue = true; 1032 else 1033 first_requeue = false; 1034 1035 __dm_io_complete(io, first_requeue); 1036 } 1037 1038 /* 1039 * Decrements the number of outstanding ios that a bio has been 1040 * cloned into, completing the original io if necc. 1041 */ 1042 static inline void __dm_io_dec_pending(struct dm_io *io) 1043 { 1044 if (atomic_dec_and_test(&io->io_count)) 1045 dm_io_complete(io); 1046 } 1047 1048 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1049 { 1050 unsigned long flags; 1051 1052 /* Push-back supersedes any I/O errors */ 1053 spin_lock_irqsave(&io->lock, flags); 1054 if (!(io->status == BLK_STS_DM_REQUEUE && 1055 __noflush_suspending(io->md))) { 1056 io->status = error; 1057 } 1058 spin_unlock_irqrestore(&io->lock, flags); 1059 } 1060 1061 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1062 { 1063 if (unlikely(error)) 1064 dm_io_set_error(io, error); 1065 1066 __dm_io_dec_pending(io); 1067 } 1068 1069 /* 1070 * The queue_limits are only valid as long as you have a reference 1071 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1072 */ 1073 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1074 { 1075 return &md->queue->limits; 1076 } 1077 1078 void disable_discard(struct mapped_device *md) 1079 { 1080 struct queue_limits *limits = dm_get_queue_limits(md); 1081 1082 /* device doesn't really support DISCARD, disable it */ 1083 limits->max_discard_sectors = 0; 1084 } 1085 1086 void disable_write_zeroes(struct mapped_device *md) 1087 { 1088 struct queue_limits *limits = dm_get_queue_limits(md); 1089 1090 /* device doesn't really support WRITE ZEROES, disable it */ 1091 limits->max_write_zeroes_sectors = 0; 1092 } 1093 1094 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1095 { 1096 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1097 } 1098 1099 static void clone_endio(struct bio *bio) 1100 { 1101 blk_status_t error = bio->bi_status; 1102 struct dm_target_io *tio = clone_to_tio(bio); 1103 struct dm_target *ti = tio->ti; 1104 dm_endio_fn endio = ti->type->end_io; 1105 struct dm_io *io = tio->io; 1106 struct mapped_device *md = io->md; 1107 1108 if (unlikely(error == BLK_STS_TARGET)) { 1109 if (bio_op(bio) == REQ_OP_DISCARD && 1110 !bdev_max_discard_sectors(bio->bi_bdev)) 1111 disable_discard(md); 1112 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1113 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1114 disable_write_zeroes(md); 1115 } 1116 1117 if (static_branch_unlikely(&zoned_enabled) && 1118 unlikely(bdev_is_zoned(bio->bi_bdev))) 1119 dm_zone_endio(io, bio); 1120 1121 if (endio) { 1122 int r = endio(ti, bio, &error); 1123 1124 switch (r) { 1125 case DM_ENDIO_REQUEUE: 1126 if (static_branch_unlikely(&zoned_enabled)) { 1127 /* 1128 * Requeuing writes to a sequential zone of a zoned 1129 * target will break the sequential write pattern: 1130 * fail such IO. 1131 */ 1132 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1133 error = BLK_STS_IOERR; 1134 else 1135 error = BLK_STS_DM_REQUEUE; 1136 } else 1137 error = BLK_STS_DM_REQUEUE; 1138 fallthrough; 1139 case DM_ENDIO_DONE: 1140 break; 1141 case DM_ENDIO_INCOMPLETE: 1142 /* The target will handle the io */ 1143 return; 1144 default: 1145 DMCRIT("unimplemented target endio return value: %d", r); 1146 BUG(); 1147 } 1148 } 1149 1150 if (static_branch_unlikely(&swap_bios_enabled) && 1151 unlikely(swap_bios_limit(ti, bio))) 1152 up(&md->swap_bios_semaphore); 1153 1154 free_tio(bio); 1155 dm_io_dec_pending(io, error); 1156 } 1157 1158 /* 1159 * Return maximum size of I/O possible at the supplied sector up to the current 1160 * target boundary. 1161 */ 1162 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1163 sector_t target_offset) 1164 { 1165 return ti->len - target_offset; 1166 } 1167 1168 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1169 unsigned int max_granularity, 1170 unsigned int max_sectors) 1171 { 1172 sector_t target_offset = dm_target_offset(ti, sector); 1173 sector_t len = max_io_len_target_boundary(ti, target_offset); 1174 1175 /* 1176 * Does the target need to split IO even further? 1177 * - varied (per target) IO splitting is a tenet of DM; this 1178 * explains why stacked chunk_sectors based splitting via 1179 * bio_split_to_limits() isn't possible here. 1180 */ 1181 if (!max_granularity) 1182 return len; 1183 return min_t(sector_t, len, 1184 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1185 blk_chunk_sectors_left(target_offset, max_granularity))); 1186 } 1187 1188 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1189 { 1190 return __max_io_len(ti, sector, ti->max_io_len, 0); 1191 } 1192 1193 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1194 { 1195 if (len > UINT_MAX) { 1196 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1197 (unsigned long long)len, UINT_MAX); 1198 ti->error = "Maximum size of target IO is too large"; 1199 return -EINVAL; 1200 } 1201 1202 ti->max_io_len = (uint32_t) len; 1203 1204 return 0; 1205 } 1206 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1207 1208 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1209 sector_t sector, int *srcu_idx) 1210 __acquires(md->io_barrier) 1211 { 1212 struct dm_table *map; 1213 struct dm_target *ti; 1214 1215 map = dm_get_live_table(md, srcu_idx); 1216 if (!map) 1217 return NULL; 1218 1219 ti = dm_table_find_target(map, sector); 1220 if (!ti) 1221 return NULL; 1222 1223 return ti; 1224 } 1225 1226 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1227 long nr_pages, enum dax_access_mode mode, void **kaddr, 1228 pfn_t *pfn) 1229 { 1230 struct mapped_device *md = dax_get_private(dax_dev); 1231 sector_t sector = pgoff * PAGE_SECTORS; 1232 struct dm_target *ti; 1233 long len, ret = -EIO; 1234 int srcu_idx; 1235 1236 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1237 1238 if (!ti) 1239 goto out; 1240 if (!ti->type->direct_access) 1241 goto out; 1242 len = max_io_len(ti, sector) / PAGE_SECTORS; 1243 if (len < 1) 1244 goto out; 1245 nr_pages = min(len, nr_pages); 1246 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1247 1248 out: 1249 dm_put_live_table(md, srcu_idx); 1250 1251 return ret; 1252 } 1253 1254 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1255 size_t nr_pages) 1256 { 1257 struct mapped_device *md = dax_get_private(dax_dev); 1258 sector_t sector = pgoff * PAGE_SECTORS; 1259 struct dm_target *ti; 1260 int ret = -EIO; 1261 int srcu_idx; 1262 1263 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1264 1265 if (!ti) 1266 goto out; 1267 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1268 /* 1269 * ->zero_page_range() is mandatory dax operation. If we are 1270 * here, something is wrong. 1271 */ 1272 goto out; 1273 } 1274 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1275 out: 1276 dm_put_live_table(md, srcu_idx); 1277 1278 return ret; 1279 } 1280 1281 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1282 void *addr, size_t bytes, struct iov_iter *i) 1283 { 1284 struct mapped_device *md = dax_get_private(dax_dev); 1285 sector_t sector = pgoff * PAGE_SECTORS; 1286 struct dm_target *ti; 1287 int srcu_idx; 1288 long ret = 0; 1289 1290 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1291 if (!ti || !ti->type->dax_recovery_write) 1292 goto out; 1293 1294 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1295 out: 1296 dm_put_live_table(md, srcu_idx); 1297 return ret; 1298 } 1299 1300 /* 1301 * A target may call dm_accept_partial_bio only from the map routine. It is 1302 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1303 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1304 * __send_duplicate_bios(). 1305 * 1306 * dm_accept_partial_bio informs the dm that the target only wants to process 1307 * additional n_sectors sectors of the bio and the rest of the data should be 1308 * sent in a next bio. 1309 * 1310 * A diagram that explains the arithmetics: 1311 * +--------------------+---------------+-------+ 1312 * | 1 | 2 | 3 | 1313 * +--------------------+---------------+-------+ 1314 * 1315 * <-------------- *tio->len_ptr ---------------> 1316 * <----- bio_sectors -----> 1317 * <-- n_sectors --> 1318 * 1319 * Region 1 was already iterated over with bio_advance or similar function. 1320 * (it may be empty if the target doesn't use bio_advance) 1321 * Region 2 is the remaining bio size that the target wants to process. 1322 * (it may be empty if region 1 is non-empty, although there is no reason 1323 * to make it empty) 1324 * The target requires that region 3 is to be sent in the next bio. 1325 * 1326 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1327 * the partially processed part (the sum of regions 1+2) must be the same for all 1328 * copies of the bio. 1329 */ 1330 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1331 { 1332 struct dm_target_io *tio = clone_to_tio(bio); 1333 struct dm_io *io = tio->io; 1334 unsigned int bio_sectors = bio_sectors(bio); 1335 1336 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1337 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1338 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1339 BUG_ON(bio_sectors > *tio->len_ptr); 1340 BUG_ON(n_sectors > bio_sectors); 1341 1342 *tio->len_ptr -= bio_sectors - n_sectors; 1343 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1344 1345 /* 1346 * __split_and_process_bio() may have already saved mapped part 1347 * for accounting but it is being reduced so update accordingly. 1348 */ 1349 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1350 io->sectors = n_sectors; 1351 io->sector_offset = bio_sectors(io->orig_bio); 1352 } 1353 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1354 1355 /* 1356 * @clone: clone bio that DM core passed to target's .map function 1357 * @tgt_clone: clone of @clone bio that target needs submitted 1358 * 1359 * Targets should use this interface to submit bios they take 1360 * ownership of when returning DM_MAPIO_SUBMITTED. 1361 * 1362 * Target should also enable ti->accounts_remapped_io 1363 */ 1364 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1365 { 1366 struct dm_target_io *tio = clone_to_tio(clone); 1367 struct dm_io *io = tio->io; 1368 1369 /* establish bio that will get submitted */ 1370 if (!tgt_clone) 1371 tgt_clone = clone; 1372 1373 /* 1374 * Account io->origin_bio to DM dev on behalf of target 1375 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1376 */ 1377 dm_start_io_acct(io, clone); 1378 1379 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1380 tio->old_sector); 1381 submit_bio_noacct(tgt_clone); 1382 } 1383 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1384 1385 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1386 { 1387 mutex_lock(&md->swap_bios_lock); 1388 while (latch < md->swap_bios) { 1389 cond_resched(); 1390 down(&md->swap_bios_semaphore); 1391 md->swap_bios--; 1392 } 1393 while (latch > md->swap_bios) { 1394 cond_resched(); 1395 up(&md->swap_bios_semaphore); 1396 md->swap_bios++; 1397 } 1398 mutex_unlock(&md->swap_bios_lock); 1399 } 1400 1401 static void __map_bio(struct bio *clone) 1402 { 1403 struct dm_target_io *tio = clone_to_tio(clone); 1404 struct dm_target *ti = tio->ti; 1405 struct dm_io *io = tio->io; 1406 struct mapped_device *md = io->md; 1407 int r; 1408 1409 clone->bi_end_io = clone_endio; 1410 1411 /* 1412 * Map the clone. 1413 */ 1414 tio->old_sector = clone->bi_iter.bi_sector; 1415 1416 if (static_branch_unlikely(&swap_bios_enabled) && 1417 unlikely(swap_bios_limit(ti, clone))) { 1418 int latch = get_swap_bios(); 1419 1420 if (unlikely(latch != md->swap_bios)) 1421 __set_swap_bios_limit(md, latch); 1422 down(&md->swap_bios_semaphore); 1423 } 1424 1425 if (static_branch_unlikely(&zoned_enabled)) { 1426 /* 1427 * Check if the IO needs a special mapping due to zone append 1428 * emulation on zoned target. In this case, dm_zone_map_bio() 1429 * calls the target map operation. 1430 */ 1431 if (unlikely(dm_emulate_zone_append(md))) 1432 r = dm_zone_map_bio(tio); 1433 else 1434 goto do_map; 1435 } else { 1436 do_map: 1437 if (likely(ti->type->map == linear_map)) 1438 r = linear_map(ti, clone); 1439 else if (ti->type->map == stripe_map) 1440 r = stripe_map(ti, clone); 1441 else 1442 r = ti->type->map(ti, clone); 1443 } 1444 1445 switch (r) { 1446 case DM_MAPIO_SUBMITTED: 1447 /* target has assumed ownership of this io */ 1448 if (!ti->accounts_remapped_io) 1449 dm_start_io_acct(io, clone); 1450 break; 1451 case DM_MAPIO_REMAPPED: 1452 dm_submit_bio_remap(clone, NULL); 1453 break; 1454 case DM_MAPIO_KILL: 1455 case DM_MAPIO_REQUEUE: 1456 if (static_branch_unlikely(&swap_bios_enabled) && 1457 unlikely(swap_bios_limit(ti, clone))) 1458 up(&md->swap_bios_semaphore); 1459 free_tio(clone); 1460 if (r == DM_MAPIO_KILL) 1461 dm_io_dec_pending(io, BLK_STS_IOERR); 1462 else 1463 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1464 break; 1465 default: 1466 DMCRIT("unimplemented target map return value: %d", r); 1467 BUG(); 1468 } 1469 } 1470 1471 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1472 { 1473 struct dm_io *io = ci->io; 1474 1475 if (ci->sector_count > len) { 1476 /* 1477 * Split needed, save the mapped part for accounting. 1478 * NOTE: dm_accept_partial_bio() will update accordingly. 1479 */ 1480 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1481 io->sectors = len; 1482 io->sector_offset = bio_sectors(ci->bio); 1483 } 1484 } 1485 1486 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1487 struct dm_target *ti, unsigned int num_bios, 1488 unsigned *len, gfp_t gfp_flag) 1489 { 1490 struct bio *bio; 1491 int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1; 1492 1493 for (; try < 2; try++) { 1494 int bio_nr; 1495 1496 if (try && num_bios > 1) 1497 mutex_lock(&ci->io->md->table_devices_lock); 1498 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1499 bio = alloc_tio(ci, ti, bio_nr, len, 1500 try ? GFP_NOIO : GFP_NOWAIT); 1501 if (!bio) 1502 break; 1503 1504 bio_list_add(blist, bio); 1505 } 1506 if (try && num_bios > 1) 1507 mutex_unlock(&ci->io->md->table_devices_lock); 1508 if (bio_nr == num_bios) 1509 return; 1510 1511 while ((bio = bio_list_pop(blist))) 1512 free_tio(bio); 1513 } 1514 } 1515 1516 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1517 unsigned int num_bios, unsigned int *len, 1518 gfp_t gfp_flag) 1519 { 1520 struct bio_list blist = BIO_EMPTY_LIST; 1521 struct bio *clone; 1522 unsigned int ret = 0; 1523 1524 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */ 1525 return 0; 1526 1527 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1528 if (len) 1529 setup_split_accounting(ci, *len); 1530 1531 /* 1532 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently 1533 * support allocating using GFP_NOWAIT with GFP_NOIO fallback. 1534 */ 1535 alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag); 1536 while ((clone = bio_list_pop(&blist))) { 1537 if (num_bios > 1) 1538 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1539 __map_bio(clone); 1540 ret += 1; 1541 } 1542 1543 return ret; 1544 } 1545 1546 static void __send_empty_flush(struct clone_info *ci) 1547 { 1548 struct dm_table *t = ci->map; 1549 struct bio flush_bio; 1550 1551 /* 1552 * Use an on-stack bio for this, it's safe since we don't 1553 * need to reference it after submit. It's just used as 1554 * the basis for the clone(s). 1555 */ 1556 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1557 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1558 1559 ci->bio = &flush_bio; 1560 ci->sector_count = 0; 1561 ci->io->tio.clone.bi_iter.bi_size = 0; 1562 1563 for (unsigned int i = 0; i < t->num_targets; i++) { 1564 unsigned int bios; 1565 struct dm_target *ti = dm_table_get_target(t, i); 1566 1567 if (unlikely(ti->num_flush_bios == 0)) 1568 continue; 1569 1570 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1571 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, 1572 NULL, GFP_NOWAIT); 1573 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1574 } 1575 1576 /* 1577 * alloc_io() takes one extra reference for submission, so the 1578 * reference won't reach 0 without the following subtraction 1579 */ 1580 atomic_sub(1, &ci->io->io_count); 1581 1582 bio_uninit(ci->bio); 1583 } 1584 1585 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1586 unsigned int num_bios, unsigned int max_granularity, 1587 unsigned int max_sectors) 1588 { 1589 unsigned int len, bios; 1590 1591 len = min_t(sector_t, ci->sector_count, 1592 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1593 1594 atomic_add(num_bios, &ci->io->io_count); 1595 bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO); 1596 /* 1597 * alloc_io() takes one extra reference for submission, so the 1598 * reference won't reach 0 without the following (+1) subtraction 1599 */ 1600 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1601 1602 ci->sector += len; 1603 ci->sector_count -= len; 1604 } 1605 1606 static bool is_abnormal_io(struct bio *bio) 1607 { 1608 enum req_op op = bio_op(bio); 1609 1610 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1611 switch (op) { 1612 case REQ_OP_DISCARD: 1613 case REQ_OP_SECURE_ERASE: 1614 case REQ_OP_WRITE_ZEROES: 1615 return true; 1616 default: 1617 break; 1618 } 1619 } 1620 1621 return false; 1622 } 1623 1624 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1625 struct dm_target *ti) 1626 { 1627 unsigned int num_bios = 0; 1628 unsigned int max_granularity = 0; 1629 unsigned int max_sectors = 0; 1630 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1631 1632 switch (bio_op(ci->bio)) { 1633 case REQ_OP_DISCARD: 1634 num_bios = ti->num_discard_bios; 1635 max_sectors = limits->max_discard_sectors; 1636 if (ti->max_discard_granularity) 1637 max_granularity = max_sectors; 1638 break; 1639 case REQ_OP_SECURE_ERASE: 1640 num_bios = ti->num_secure_erase_bios; 1641 max_sectors = limits->max_secure_erase_sectors; 1642 if (ti->max_secure_erase_granularity) 1643 max_granularity = max_sectors; 1644 break; 1645 case REQ_OP_WRITE_ZEROES: 1646 num_bios = ti->num_write_zeroes_bios; 1647 max_sectors = limits->max_write_zeroes_sectors; 1648 if (ti->max_write_zeroes_granularity) 1649 max_granularity = max_sectors; 1650 break; 1651 default: 1652 break; 1653 } 1654 1655 /* 1656 * Even though the device advertised support for this type of 1657 * request, that does not mean every target supports it, and 1658 * reconfiguration might also have changed that since the 1659 * check was performed. 1660 */ 1661 if (unlikely(!num_bios)) 1662 return BLK_STS_NOTSUPP; 1663 1664 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors); 1665 1666 return BLK_STS_OK; 1667 } 1668 1669 /* 1670 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1671 * associated with this bio, and this bio's bi_private needs to be 1672 * stored in dm_io->data before the reuse. 1673 * 1674 * bio->bi_private is owned by fs or upper layer, so block layer won't 1675 * touch it after splitting. Meantime it won't be changed by anyone after 1676 * bio is submitted. So this reuse is safe. 1677 */ 1678 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1679 { 1680 return (struct dm_io **)&bio->bi_private; 1681 } 1682 1683 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1684 { 1685 struct dm_io **head = dm_poll_list_head(bio); 1686 1687 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1688 bio->bi_opf |= REQ_DM_POLL_LIST; 1689 /* 1690 * Save .bi_private into dm_io, so that we can reuse 1691 * .bi_private as dm_io list head for storing dm_io list 1692 */ 1693 io->data = bio->bi_private; 1694 1695 /* tell block layer to poll for completion */ 1696 bio->bi_cookie = ~BLK_QC_T_NONE; 1697 1698 io->next = NULL; 1699 } else { 1700 /* 1701 * bio recursed due to split, reuse original poll list, 1702 * and save bio->bi_private too. 1703 */ 1704 io->data = (*head)->data; 1705 io->next = *head; 1706 } 1707 1708 *head = io; 1709 } 1710 1711 /* 1712 * Select the correct strategy for processing a non-flush bio. 1713 */ 1714 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1715 { 1716 struct bio *clone; 1717 struct dm_target *ti; 1718 unsigned int len; 1719 1720 ti = dm_table_find_target(ci->map, ci->sector); 1721 if (unlikely(!ti)) 1722 return BLK_STS_IOERR; 1723 1724 if (unlikely(ci->is_abnormal_io)) 1725 return __process_abnormal_io(ci, ti); 1726 1727 /* 1728 * Only support bio polling for normal IO, and the target io is 1729 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1730 */ 1731 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1732 1733 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1734 setup_split_accounting(ci, len); 1735 1736 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) { 1737 if (unlikely(!dm_target_supports_nowait(ti->type))) 1738 return BLK_STS_NOTSUPP; 1739 1740 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT); 1741 if (unlikely(!clone)) 1742 return BLK_STS_AGAIN; 1743 } else { 1744 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1745 } 1746 __map_bio(clone); 1747 1748 ci->sector += len; 1749 ci->sector_count -= len; 1750 1751 return BLK_STS_OK; 1752 } 1753 1754 static void init_clone_info(struct clone_info *ci, struct dm_io *io, 1755 struct dm_table *map, struct bio *bio, bool is_abnormal) 1756 { 1757 ci->map = map; 1758 ci->io = io; 1759 ci->bio = bio; 1760 ci->is_abnormal_io = is_abnormal; 1761 ci->submit_as_polled = false; 1762 ci->sector = bio->bi_iter.bi_sector; 1763 ci->sector_count = bio_sectors(bio); 1764 1765 /* Shouldn't happen but sector_count was being set to 0 so... */ 1766 if (static_branch_unlikely(&zoned_enabled) && 1767 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1768 ci->sector_count = 0; 1769 } 1770 1771 /* 1772 * Entry point to split a bio into clones and submit them to the targets. 1773 */ 1774 static void dm_split_and_process_bio(struct mapped_device *md, 1775 struct dm_table *map, struct bio *bio) 1776 { 1777 struct clone_info ci; 1778 struct dm_io *io; 1779 blk_status_t error = BLK_STS_OK; 1780 bool is_abnormal; 1781 1782 is_abnormal = is_abnormal_io(bio); 1783 if (unlikely(is_abnormal)) { 1784 /* 1785 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1786 * otherwise associated queue_limits won't be imposed. 1787 */ 1788 bio = bio_split_to_limits(bio); 1789 if (!bio) 1790 return; 1791 } 1792 1793 /* Only support nowait for normal IO */ 1794 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) { 1795 io = alloc_io(md, bio, GFP_NOWAIT); 1796 if (unlikely(!io)) { 1797 /* Unable to do anything without dm_io. */ 1798 bio_wouldblock_error(bio); 1799 return; 1800 } 1801 } else { 1802 io = alloc_io(md, bio, GFP_NOIO); 1803 } 1804 init_clone_info(&ci, io, map, bio, is_abnormal); 1805 1806 if (bio->bi_opf & REQ_PREFLUSH) { 1807 __send_empty_flush(&ci); 1808 /* dm_io_complete submits any data associated with flush */ 1809 goto out; 1810 } 1811 1812 error = __split_and_process_bio(&ci); 1813 if (error || !ci.sector_count) 1814 goto out; 1815 /* 1816 * Remainder must be passed to submit_bio_noacct() so it gets handled 1817 * *after* bios already submitted have been completely processed. 1818 */ 1819 bio_trim(bio, io->sectors, ci.sector_count); 1820 trace_block_split(bio, bio->bi_iter.bi_sector); 1821 bio_inc_remaining(bio); 1822 submit_bio_noacct(bio); 1823 out: 1824 /* 1825 * Drop the extra reference count for non-POLLED bio, and hold one 1826 * reference for POLLED bio, which will be released in dm_poll_bio 1827 * 1828 * Add every dm_io instance into the dm_io list head which is stored 1829 * in bio->bi_private, so that dm_poll_bio can poll them all. 1830 */ 1831 if (error || !ci.submit_as_polled) { 1832 /* 1833 * In case of submission failure, the extra reference for 1834 * submitting io isn't consumed yet 1835 */ 1836 if (error) 1837 atomic_dec(&io->io_count); 1838 dm_io_dec_pending(io, error); 1839 } else 1840 dm_queue_poll_io(bio, io); 1841 } 1842 1843 static void dm_submit_bio(struct bio *bio) 1844 { 1845 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1846 int srcu_idx; 1847 struct dm_table *map; 1848 1849 map = dm_get_live_table(md, &srcu_idx); 1850 1851 /* If suspended, or map not yet available, queue this IO for later */ 1852 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1853 unlikely(!map)) { 1854 if (bio->bi_opf & REQ_NOWAIT) 1855 bio_wouldblock_error(bio); 1856 else if (bio->bi_opf & REQ_RAHEAD) 1857 bio_io_error(bio); 1858 else 1859 queue_io(md, bio); 1860 goto out; 1861 } 1862 1863 dm_split_and_process_bio(md, map, bio); 1864 out: 1865 dm_put_live_table(md, srcu_idx); 1866 } 1867 1868 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1869 unsigned int flags) 1870 { 1871 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1872 1873 /* don't poll if the mapped io is done */ 1874 if (atomic_read(&io->io_count) > 1) 1875 bio_poll(&io->tio.clone, iob, flags); 1876 1877 /* bio_poll holds the last reference */ 1878 return atomic_read(&io->io_count) == 1; 1879 } 1880 1881 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1882 unsigned int flags) 1883 { 1884 struct dm_io **head = dm_poll_list_head(bio); 1885 struct dm_io *list = *head; 1886 struct dm_io *tmp = NULL; 1887 struct dm_io *curr, *next; 1888 1889 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1890 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1891 return 0; 1892 1893 WARN_ON_ONCE(!list); 1894 1895 /* 1896 * Restore .bi_private before possibly completing dm_io. 1897 * 1898 * bio_poll() is only possible once @bio has been completely 1899 * submitted via submit_bio_noacct()'s depth-first submission. 1900 * So there is no dm_queue_poll_io() race associated with 1901 * clearing REQ_DM_POLL_LIST here. 1902 */ 1903 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1904 bio->bi_private = list->data; 1905 1906 for (curr = list, next = curr->next; curr; curr = next, next = 1907 curr ? curr->next : NULL) { 1908 if (dm_poll_dm_io(curr, iob, flags)) { 1909 /* 1910 * clone_endio() has already occurred, so no 1911 * error handling is needed here. 1912 */ 1913 __dm_io_dec_pending(curr); 1914 } else { 1915 curr->next = tmp; 1916 tmp = curr; 1917 } 1918 } 1919 1920 /* Not done? */ 1921 if (tmp) { 1922 bio->bi_opf |= REQ_DM_POLL_LIST; 1923 /* Reset bio->bi_private to dm_io list head */ 1924 *head = tmp; 1925 return 0; 1926 } 1927 return 1; 1928 } 1929 1930 /* 1931 *--------------------------------------------------------------- 1932 * An IDR is used to keep track of allocated minor numbers. 1933 *--------------------------------------------------------------- 1934 */ 1935 static void free_minor(int minor) 1936 { 1937 spin_lock(&_minor_lock); 1938 idr_remove(&_minor_idr, minor); 1939 spin_unlock(&_minor_lock); 1940 } 1941 1942 /* 1943 * See if the device with a specific minor # is free. 1944 */ 1945 static int specific_minor(int minor) 1946 { 1947 int r; 1948 1949 if (minor >= (1 << MINORBITS)) 1950 return -EINVAL; 1951 1952 idr_preload(GFP_KERNEL); 1953 spin_lock(&_minor_lock); 1954 1955 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1956 1957 spin_unlock(&_minor_lock); 1958 idr_preload_end(); 1959 if (r < 0) 1960 return r == -ENOSPC ? -EBUSY : r; 1961 return 0; 1962 } 1963 1964 static int next_free_minor(int *minor) 1965 { 1966 int r; 1967 1968 idr_preload(GFP_KERNEL); 1969 spin_lock(&_minor_lock); 1970 1971 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1972 1973 spin_unlock(&_minor_lock); 1974 idr_preload_end(); 1975 if (r < 0) 1976 return r; 1977 *minor = r; 1978 return 0; 1979 } 1980 1981 static const struct block_device_operations dm_blk_dops; 1982 static const struct block_device_operations dm_rq_blk_dops; 1983 static const struct dax_operations dm_dax_ops; 1984 1985 static void dm_wq_work(struct work_struct *work); 1986 1987 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1988 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1989 { 1990 dm_destroy_crypto_profile(q->crypto_profile); 1991 } 1992 1993 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1994 1995 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1996 { 1997 } 1998 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1999 2000 static void cleanup_mapped_device(struct mapped_device *md) 2001 { 2002 if (md->wq) 2003 destroy_workqueue(md->wq); 2004 dm_free_md_mempools(md->mempools); 2005 2006 if (md->dax_dev) { 2007 dax_remove_host(md->disk); 2008 kill_dax(md->dax_dev); 2009 put_dax(md->dax_dev); 2010 md->dax_dev = NULL; 2011 } 2012 2013 dm_cleanup_zoned_dev(md); 2014 if (md->disk) { 2015 spin_lock(&_minor_lock); 2016 md->disk->private_data = NULL; 2017 spin_unlock(&_minor_lock); 2018 if (dm_get_md_type(md) != DM_TYPE_NONE) { 2019 struct table_device *td; 2020 2021 dm_sysfs_exit(md); 2022 list_for_each_entry(td, &md->table_devices, list) { 2023 bd_unlink_disk_holder(td->dm_dev.bdev, 2024 md->disk); 2025 } 2026 2027 /* 2028 * Hold lock to make sure del_gendisk() won't concurrent 2029 * with open/close_table_device(). 2030 */ 2031 mutex_lock(&md->table_devices_lock); 2032 del_gendisk(md->disk); 2033 mutex_unlock(&md->table_devices_lock); 2034 } 2035 dm_queue_destroy_crypto_profile(md->queue); 2036 put_disk(md->disk); 2037 } 2038 2039 if (md->pending_io) { 2040 free_percpu(md->pending_io); 2041 md->pending_io = NULL; 2042 } 2043 2044 cleanup_srcu_struct(&md->io_barrier); 2045 2046 mutex_destroy(&md->suspend_lock); 2047 mutex_destroy(&md->type_lock); 2048 mutex_destroy(&md->table_devices_lock); 2049 mutex_destroy(&md->swap_bios_lock); 2050 2051 dm_mq_cleanup_mapped_device(md); 2052 } 2053 2054 /* 2055 * Allocate and initialise a blank device with a given minor. 2056 */ 2057 static struct mapped_device *alloc_dev(int minor) 2058 { 2059 int r, numa_node_id = dm_get_numa_node(); 2060 struct mapped_device *md; 2061 void *old_md; 2062 2063 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2064 if (!md) { 2065 DMERR("unable to allocate device, out of memory."); 2066 return NULL; 2067 } 2068 2069 if (!try_module_get(THIS_MODULE)) 2070 goto bad_module_get; 2071 2072 /* get a minor number for the dev */ 2073 if (minor == DM_ANY_MINOR) 2074 r = next_free_minor(&minor); 2075 else 2076 r = specific_minor(minor); 2077 if (r < 0) 2078 goto bad_minor; 2079 2080 r = init_srcu_struct(&md->io_barrier); 2081 if (r < 0) 2082 goto bad_io_barrier; 2083 2084 md->numa_node_id = numa_node_id; 2085 md->init_tio_pdu = false; 2086 md->type = DM_TYPE_NONE; 2087 mutex_init(&md->suspend_lock); 2088 mutex_init(&md->type_lock); 2089 mutex_init(&md->table_devices_lock); 2090 spin_lock_init(&md->deferred_lock); 2091 atomic_set(&md->holders, 1); 2092 atomic_set(&md->open_count, 0); 2093 atomic_set(&md->event_nr, 0); 2094 atomic_set(&md->uevent_seq, 0); 2095 INIT_LIST_HEAD(&md->uevent_list); 2096 INIT_LIST_HEAD(&md->table_devices); 2097 spin_lock_init(&md->uevent_lock); 2098 2099 /* 2100 * default to bio-based until DM table is loaded and md->type 2101 * established. If request-based table is loaded: blk-mq will 2102 * override accordingly. 2103 */ 2104 md->disk = blk_alloc_disk(NULL, md->numa_node_id); 2105 if (IS_ERR(md->disk)) 2106 goto bad; 2107 md->queue = md->disk->queue; 2108 2109 init_waitqueue_head(&md->wait); 2110 INIT_WORK(&md->work, dm_wq_work); 2111 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2112 init_waitqueue_head(&md->eventq); 2113 init_completion(&md->kobj_holder.completion); 2114 2115 md->requeue_list = NULL; 2116 md->swap_bios = get_swap_bios(); 2117 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2118 mutex_init(&md->swap_bios_lock); 2119 2120 md->disk->major = _major; 2121 md->disk->first_minor = minor; 2122 md->disk->minors = 1; 2123 md->disk->flags |= GENHD_FL_NO_PART; 2124 md->disk->fops = &dm_blk_dops; 2125 md->disk->private_data = md; 2126 sprintf(md->disk->disk_name, "dm-%d", minor); 2127 2128 if (IS_ENABLED(CONFIG_FS_DAX)) { 2129 md->dax_dev = alloc_dax(md, &dm_dax_ops); 2130 if (IS_ERR(md->dax_dev)) { 2131 md->dax_dev = NULL; 2132 goto bad; 2133 } 2134 set_dax_nocache(md->dax_dev); 2135 set_dax_nomc(md->dax_dev); 2136 if (dax_add_host(md->dax_dev, md->disk)) 2137 goto bad; 2138 } 2139 2140 format_dev_t(md->name, MKDEV(_major, minor)); 2141 2142 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2143 if (!md->wq) 2144 goto bad; 2145 2146 md->pending_io = alloc_percpu(unsigned long); 2147 if (!md->pending_io) 2148 goto bad; 2149 2150 r = dm_stats_init(&md->stats); 2151 if (r < 0) 2152 goto bad; 2153 2154 /* Populate the mapping, nobody knows we exist yet */ 2155 spin_lock(&_minor_lock); 2156 old_md = idr_replace(&_minor_idr, md, minor); 2157 spin_unlock(&_minor_lock); 2158 2159 BUG_ON(old_md != MINOR_ALLOCED); 2160 2161 return md; 2162 2163 bad: 2164 cleanup_mapped_device(md); 2165 bad_io_barrier: 2166 free_minor(minor); 2167 bad_minor: 2168 module_put(THIS_MODULE); 2169 bad_module_get: 2170 kvfree(md); 2171 return NULL; 2172 } 2173 2174 static void unlock_fs(struct mapped_device *md); 2175 2176 static void free_dev(struct mapped_device *md) 2177 { 2178 int minor = MINOR(disk_devt(md->disk)); 2179 2180 unlock_fs(md); 2181 2182 cleanup_mapped_device(md); 2183 2184 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2185 dm_stats_cleanup(&md->stats); 2186 free_minor(minor); 2187 2188 module_put(THIS_MODULE); 2189 kvfree(md); 2190 } 2191 2192 /* 2193 * Bind a table to the device. 2194 */ 2195 static void event_callback(void *context) 2196 { 2197 unsigned long flags; 2198 LIST_HEAD(uevents); 2199 struct mapped_device *md = context; 2200 2201 spin_lock_irqsave(&md->uevent_lock, flags); 2202 list_splice_init(&md->uevent_list, &uevents); 2203 spin_unlock_irqrestore(&md->uevent_lock, flags); 2204 2205 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2206 2207 atomic_inc(&md->event_nr); 2208 wake_up(&md->eventq); 2209 dm_issue_global_event(); 2210 } 2211 2212 /* 2213 * Returns old map, which caller must destroy. 2214 */ 2215 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2216 struct queue_limits *limits) 2217 { 2218 struct dm_table *old_map; 2219 sector_t size; 2220 int ret; 2221 2222 lockdep_assert_held(&md->suspend_lock); 2223 2224 size = dm_table_get_size(t); 2225 2226 /* 2227 * Wipe any geometry if the size of the table changed. 2228 */ 2229 if (size != dm_get_size(md)) 2230 memset(&md->geometry, 0, sizeof(md->geometry)); 2231 2232 set_capacity(md->disk, size); 2233 2234 dm_table_event_callback(t, event_callback, md); 2235 2236 if (dm_table_request_based(t)) { 2237 /* 2238 * Leverage the fact that request-based DM targets are 2239 * immutable singletons - used to optimize dm_mq_queue_rq. 2240 */ 2241 md->immutable_target = dm_table_get_immutable_target(t); 2242 2243 /* 2244 * There is no need to reload with request-based dm because the 2245 * size of front_pad doesn't change. 2246 * 2247 * Note for future: If you are to reload bioset, prep-ed 2248 * requests in the queue may refer to bio from the old bioset, 2249 * so you must walk through the queue to unprep. 2250 */ 2251 if (!md->mempools) { 2252 md->mempools = t->mempools; 2253 t->mempools = NULL; 2254 } 2255 } else { 2256 /* 2257 * The md may already have mempools that need changing. 2258 * If so, reload bioset because front_pad may have changed 2259 * because a different table was loaded. 2260 */ 2261 dm_free_md_mempools(md->mempools); 2262 md->mempools = t->mempools; 2263 t->mempools = NULL; 2264 } 2265 2266 ret = dm_table_set_restrictions(t, md->queue, limits); 2267 if (ret) { 2268 old_map = ERR_PTR(ret); 2269 goto out; 2270 } 2271 2272 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2273 rcu_assign_pointer(md->map, (void *)t); 2274 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2275 2276 if (old_map) 2277 dm_sync_table(md); 2278 out: 2279 return old_map; 2280 } 2281 2282 /* 2283 * Returns unbound table for the caller to free. 2284 */ 2285 static struct dm_table *__unbind(struct mapped_device *md) 2286 { 2287 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2288 2289 if (!map) 2290 return NULL; 2291 2292 dm_table_event_callback(map, NULL, NULL); 2293 RCU_INIT_POINTER(md->map, NULL); 2294 dm_sync_table(md); 2295 2296 return map; 2297 } 2298 2299 /* 2300 * Constructor for a new device. 2301 */ 2302 int dm_create(int minor, struct mapped_device **result) 2303 { 2304 struct mapped_device *md; 2305 2306 md = alloc_dev(minor); 2307 if (!md) 2308 return -ENXIO; 2309 2310 dm_ima_reset_data(md); 2311 2312 *result = md; 2313 return 0; 2314 } 2315 2316 /* 2317 * Functions to manage md->type. 2318 * All are required to hold md->type_lock. 2319 */ 2320 void dm_lock_md_type(struct mapped_device *md) 2321 { 2322 mutex_lock(&md->type_lock); 2323 } 2324 2325 void dm_unlock_md_type(struct mapped_device *md) 2326 { 2327 mutex_unlock(&md->type_lock); 2328 } 2329 2330 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2331 { 2332 BUG_ON(!mutex_is_locked(&md->type_lock)); 2333 md->type = type; 2334 } 2335 2336 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2337 { 2338 return md->type; 2339 } 2340 2341 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2342 { 2343 return md->immutable_target_type; 2344 } 2345 2346 /* 2347 * Setup the DM device's queue based on md's type 2348 */ 2349 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2350 { 2351 enum dm_queue_mode type = dm_table_get_type(t); 2352 struct queue_limits limits; 2353 struct table_device *td; 2354 int r; 2355 2356 switch (type) { 2357 case DM_TYPE_REQUEST_BASED: 2358 md->disk->fops = &dm_rq_blk_dops; 2359 r = dm_mq_init_request_queue(md, t); 2360 if (r) { 2361 DMERR("Cannot initialize queue for request-based dm mapped device"); 2362 return r; 2363 } 2364 break; 2365 case DM_TYPE_BIO_BASED: 2366 case DM_TYPE_DAX_BIO_BASED: 2367 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue); 2368 break; 2369 case DM_TYPE_NONE: 2370 WARN_ON_ONCE(true); 2371 break; 2372 } 2373 2374 r = dm_calculate_queue_limits(t, &limits); 2375 if (r) { 2376 DMERR("Cannot calculate initial queue limits"); 2377 return r; 2378 } 2379 r = dm_table_set_restrictions(t, md->queue, &limits); 2380 if (r) 2381 return r; 2382 2383 /* 2384 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2385 * with open_table_device() and close_table_device(). 2386 */ 2387 mutex_lock(&md->table_devices_lock); 2388 r = add_disk(md->disk); 2389 mutex_unlock(&md->table_devices_lock); 2390 if (r) 2391 return r; 2392 2393 /* 2394 * Register the holder relationship for devices added before the disk 2395 * was live. 2396 */ 2397 list_for_each_entry(td, &md->table_devices, list) { 2398 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2399 if (r) 2400 goto out_undo_holders; 2401 } 2402 2403 r = dm_sysfs_init(md); 2404 if (r) 2405 goto out_undo_holders; 2406 2407 md->type = type; 2408 return 0; 2409 2410 out_undo_holders: 2411 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2412 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2413 mutex_lock(&md->table_devices_lock); 2414 del_gendisk(md->disk); 2415 mutex_unlock(&md->table_devices_lock); 2416 return r; 2417 } 2418 2419 struct mapped_device *dm_get_md(dev_t dev) 2420 { 2421 struct mapped_device *md; 2422 unsigned int minor = MINOR(dev); 2423 2424 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2425 return NULL; 2426 2427 spin_lock(&_minor_lock); 2428 2429 md = idr_find(&_minor_idr, minor); 2430 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2431 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2432 md = NULL; 2433 goto out; 2434 } 2435 dm_get(md); 2436 out: 2437 spin_unlock(&_minor_lock); 2438 2439 return md; 2440 } 2441 EXPORT_SYMBOL_GPL(dm_get_md); 2442 2443 void *dm_get_mdptr(struct mapped_device *md) 2444 { 2445 return md->interface_ptr; 2446 } 2447 2448 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2449 { 2450 md->interface_ptr = ptr; 2451 } 2452 2453 void dm_get(struct mapped_device *md) 2454 { 2455 atomic_inc(&md->holders); 2456 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2457 } 2458 2459 int dm_hold(struct mapped_device *md) 2460 { 2461 spin_lock(&_minor_lock); 2462 if (test_bit(DMF_FREEING, &md->flags)) { 2463 spin_unlock(&_minor_lock); 2464 return -EBUSY; 2465 } 2466 dm_get(md); 2467 spin_unlock(&_minor_lock); 2468 return 0; 2469 } 2470 EXPORT_SYMBOL_GPL(dm_hold); 2471 2472 const char *dm_device_name(struct mapped_device *md) 2473 { 2474 return md->name; 2475 } 2476 EXPORT_SYMBOL_GPL(dm_device_name); 2477 2478 static void __dm_destroy(struct mapped_device *md, bool wait) 2479 { 2480 struct dm_table *map; 2481 int srcu_idx; 2482 2483 might_sleep(); 2484 2485 spin_lock(&_minor_lock); 2486 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2487 set_bit(DMF_FREEING, &md->flags); 2488 spin_unlock(&_minor_lock); 2489 2490 blk_mark_disk_dead(md->disk); 2491 2492 /* 2493 * Take suspend_lock so that presuspend and postsuspend methods 2494 * do not race with internal suspend. 2495 */ 2496 mutex_lock(&md->suspend_lock); 2497 map = dm_get_live_table(md, &srcu_idx); 2498 if (!dm_suspended_md(md)) { 2499 dm_table_presuspend_targets(map); 2500 set_bit(DMF_SUSPENDED, &md->flags); 2501 set_bit(DMF_POST_SUSPENDING, &md->flags); 2502 dm_table_postsuspend_targets(map); 2503 } 2504 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2505 dm_put_live_table(md, srcu_idx); 2506 mutex_unlock(&md->suspend_lock); 2507 2508 /* 2509 * Rare, but there may be I/O requests still going to complete, 2510 * for example. Wait for all references to disappear. 2511 * No one should increment the reference count of the mapped_device, 2512 * after the mapped_device state becomes DMF_FREEING. 2513 */ 2514 if (wait) 2515 while (atomic_read(&md->holders)) 2516 fsleep(1000); 2517 else if (atomic_read(&md->holders)) 2518 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2519 dm_device_name(md), atomic_read(&md->holders)); 2520 2521 dm_table_destroy(__unbind(md)); 2522 free_dev(md); 2523 } 2524 2525 void dm_destroy(struct mapped_device *md) 2526 { 2527 __dm_destroy(md, true); 2528 } 2529 2530 void dm_destroy_immediate(struct mapped_device *md) 2531 { 2532 __dm_destroy(md, false); 2533 } 2534 2535 void dm_put(struct mapped_device *md) 2536 { 2537 atomic_dec(&md->holders); 2538 } 2539 EXPORT_SYMBOL_GPL(dm_put); 2540 2541 static bool dm_in_flight_bios(struct mapped_device *md) 2542 { 2543 int cpu; 2544 unsigned long sum = 0; 2545 2546 for_each_possible_cpu(cpu) 2547 sum += *per_cpu_ptr(md->pending_io, cpu); 2548 2549 return sum != 0; 2550 } 2551 2552 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2553 { 2554 int r = 0; 2555 DEFINE_WAIT(wait); 2556 2557 while (true) { 2558 prepare_to_wait(&md->wait, &wait, task_state); 2559 2560 if (!dm_in_flight_bios(md)) 2561 break; 2562 2563 if (signal_pending_state(task_state, current)) { 2564 r = -EINTR; 2565 break; 2566 } 2567 2568 io_schedule(); 2569 } 2570 finish_wait(&md->wait, &wait); 2571 2572 smp_rmb(); 2573 2574 return r; 2575 } 2576 2577 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2578 { 2579 int r = 0; 2580 2581 if (!queue_is_mq(md->queue)) 2582 return dm_wait_for_bios_completion(md, task_state); 2583 2584 while (true) { 2585 if (!blk_mq_queue_inflight(md->queue)) 2586 break; 2587 2588 if (signal_pending_state(task_state, current)) { 2589 r = -EINTR; 2590 break; 2591 } 2592 2593 fsleep(5000); 2594 } 2595 2596 return r; 2597 } 2598 2599 /* 2600 * Process the deferred bios 2601 */ 2602 static void dm_wq_work(struct work_struct *work) 2603 { 2604 struct mapped_device *md = container_of(work, struct mapped_device, work); 2605 struct bio *bio; 2606 2607 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2608 spin_lock_irq(&md->deferred_lock); 2609 bio = bio_list_pop(&md->deferred); 2610 spin_unlock_irq(&md->deferred_lock); 2611 2612 if (!bio) 2613 break; 2614 2615 submit_bio_noacct(bio); 2616 cond_resched(); 2617 } 2618 } 2619 2620 static void dm_queue_flush(struct mapped_device *md) 2621 { 2622 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2623 smp_mb__after_atomic(); 2624 queue_work(md->wq, &md->work); 2625 } 2626 2627 /* 2628 * Swap in a new table, returning the old one for the caller to destroy. 2629 */ 2630 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2631 { 2632 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2633 struct queue_limits limits; 2634 int r; 2635 2636 mutex_lock(&md->suspend_lock); 2637 2638 /* device must be suspended */ 2639 if (!dm_suspended_md(md)) 2640 goto out; 2641 2642 /* 2643 * If the new table has no data devices, retain the existing limits. 2644 * This helps multipath with queue_if_no_path if all paths disappear, 2645 * then new I/O is queued based on these limits, and then some paths 2646 * reappear. 2647 */ 2648 if (dm_table_has_no_data_devices(table)) { 2649 live_map = dm_get_live_table_fast(md); 2650 if (live_map) 2651 limits = md->queue->limits; 2652 dm_put_live_table_fast(md); 2653 } 2654 2655 if (!live_map) { 2656 r = dm_calculate_queue_limits(table, &limits); 2657 if (r) { 2658 map = ERR_PTR(r); 2659 goto out; 2660 } 2661 } 2662 2663 map = __bind(md, table, &limits); 2664 dm_issue_global_event(); 2665 2666 out: 2667 mutex_unlock(&md->suspend_lock); 2668 return map; 2669 } 2670 2671 /* 2672 * Functions to lock and unlock any filesystem running on the 2673 * device. 2674 */ 2675 static int lock_fs(struct mapped_device *md) 2676 { 2677 int r; 2678 2679 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2680 2681 r = bdev_freeze(md->disk->part0); 2682 if (!r) 2683 set_bit(DMF_FROZEN, &md->flags); 2684 return r; 2685 } 2686 2687 static void unlock_fs(struct mapped_device *md) 2688 { 2689 if (!test_bit(DMF_FROZEN, &md->flags)) 2690 return; 2691 bdev_thaw(md->disk->part0); 2692 clear_bit(DMF_FROZEN, &md->flags); 2693 } 2694 2695 /* 2696 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2697 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2698 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2699 * 2700 * If __dm_suspend returns 0, the device is completely quiescent 2701 * now. There is no request-processing activity. All new requests 2702 * are being added to md->deferred list. 2703 */ 2704 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2705 unsigned int suspend_flags, unsigned int task_state, 2706 int dmf_suspended_flag) 2707 { 2708 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2709 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2710 int r; 2711 2712 lockdep_assert_held(&md->suspend_lock); 2713 2714 /* 2715 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2716 * This flag is cleared before dm_suspend returns. 2717 */ 2718 if (noflush) 2719 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2720 else 2721 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2722 2723 /* 2724 * This gets reverted if there's an error later and the targets 2725 * provide the .presuspend_undo hook. 2726 */ 2727 dm_table_presuspend_targets(map); 2728 2729 /* 2730 * Flush I/O to the device. 2731 * Any I/O submitted after lock_fs() may not be flushed. 2732 * noflush takes precedence over do_lockfs. 2733 * (lock_fs() flushes I/Os and waits for them to complete.) 2734 */ 2735 if (!noflush && do_lockfs) { 2736 r = lock_fs(md); 2737 if (r) { 2738 dm_table_presuspend_undo_targets(map); 2739 return r; 2740 } 2741 } 2742 2743 /* 2744 * Here we must make sure that no processes are submitting requests 2745 * to target drivers i.e. no one may be executing 2746 * dm_split_and_process_bio from dm_submit_bio. 2747 * 2748 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2749 * we take the write lock. To prevent any process from reentering 2750 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2751 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2752 * flush_workqueue(md->wq). 2753 */ 2754 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2755 if (map) 2756 synchronize_srcu(&md->io_barrier); 2757 2758 /* 2759 * Stop md->queue before flushing md->wq in case request-based 2760 * dm defers requests to md->wq from md->queue. 2761 */ 2762 if (dm_request_based(md)) 2763 dm_stop_queue(md->queue); 2764 2765 flush_workqueue(md->wq); 2766 2767 /* 2768 * At this point no more requests are entering target request routines. 2769 * We call dm_wait_for_completion to wait for all existing requests 2770 * to finish. 2771 */ 2772 r = dm_wait_for_completion(md, task_state); 2773 if (!r) 2774 set_bit(dmf_suspended_flag, &md->flags); 2775 2776 if (noflush) 2777 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2778 if (map) 2779 synchronize_srcu(&md->io_barrier); 2780 2781 /* were we interrupted ? */ 2782 if (r < 0) { 2783 dm_queue_flush(md); 2784 2785 if (dm_request_based(md)) 2786 dm_start_queue(md->queue); 2787 2788 unlock_fs(md); 2789 dm_table_presuspend_undo_targets(map); 2790 /* pushback list is already flushed, so skip flush */ 2791 } 2792 2793 return r; 2794 } 2795 2796 /* 2797 * We need to be able to change a mapping table under a mounted 2798 * filesystem. For example we might want to move some data in 2799 * the background. Before the table can be swapped with 2800 * dm_bind_table, dm_suspend must be called to flush any in 2801 * flight bios and ensure that any further io gets deferred. 2802 */ 2803 /* 2804 * Suspend mechanism in request-based dm. 2805 * 2806 * 1. Flush all I/Os by lock_fs() if needed. 2807 * 2. Stop dispatching any I/O by stopping the request_queue. 2808 * 3. Wait for all in-flight I/Os to be completed or requeued. 2809 * 2810 * To abort suspend, start the request_queue. 2811 */ 2812 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2813 { 2814 struct dm_table *map = NULL; 2815 int r = 0; 2816 2817 retry: 2818 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2819 2820 if (dm_suspended_md(md)) { 2821 r = -EINVAL; 2822 goto out_unlock; 2823 } 2824 2825 if (dm_suspended_internally_md(md)) { 2826 /* already internally suspended, wait for internal resume */ 2827 mutex_unlock(&md->suspend_lock); 2828 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2829 if (r) 2830 return r; 2831 goto retry; 2832 } 2833 2834 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2835 if (!map) { 2836 /* avoid deadlock with fs/namespace.c:do_mount() */ 2837 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 2838 } 2839 2840 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2841 if (r) 2842 goto out_unlock; 2843 2844 set_bit(DMF_POST_SUSPENDING, &md->flags); 2845 dm_table_postsuspend_targets(map); 2846 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2847 2848 out_unlock: 2849 mutex_unlock(&md->suspend_lock); 2850 return r; 2851 } 2852 2853 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2854 { 2855 if (map) { 2856 int r = dm_table_resume_targets(map); 2857 2858 if (r) 2859 return r; 2860 } 2861 2862 dm_queue_flush(md); 2863 2864 /* 2865 * Flushing deferred I/Os must be done after targets are resumed 2866 * so that mapping of targets can work correctly. 2867 * Request-based dm is queueing the deferred I/Os in its request_queue. 2868 */ 2869 if (dm_request_based(md)) 2870 dm_start_queue(md->queue); 2871 2872 unlock_fs(md); 2873 2874 return 0; 2875 } 2876 2877 int dm_resume(struct mapped_device *md) 2878 { 2879 int r; 2880 struct dm_table *map = NULL; 2881 2882 retry: 2883 r = -EINVAL; 2884 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2885 2886 if (!dm_suspended_md(md)) 2887 goto out; 2888 2889 if (dm_suspended_internally_md(md)) { 2890 /* already internally suspended, wait for internal resume */ 2891 mutex_unlock(&md->suspend_lock); 2892 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2893 if (r) 2894 return r; 2895 goto retry; 2896 } 2897 2898 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2899 if (!map || !dm_table_get_size(map)) 2900 goto out; 2901 2902 r = __dm_resume(md, map); 2903 if (r) 2904 goto out; 2905 2906 clear_bit(DMF_SUSPENDED, &md->flags); 2907 out: 2908 mutex_unlock(&md->suspend_lock); 2909 2910 return r; 2911 } 2912 2913 /* 2914 * Internal suspend/resume works like userspace-driven suspend. It waits 2915 * until all bios finish and prevents issuing new bios to the target drivers. 2916 * It may be used only from the kernel. 2917 */ 2918 2919 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 2920 { 2921 struct dm_table *map = NULL; 2922 2923 lockdep_assert_held(&md->suspend_lock); 2924 2925 if (md->internal_suspend_count++) 2926 return; /* nested internal suspend */ 2927 2928 if (dm_suspended_md(md)) { 2929 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2930 return; /* nest suspend */ 2931 } 2932 2933 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2934 2935 /* 2936 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2937 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2938 * would require changing .presuspend to return an error -- avoid this 2939 * until there is a need for more elaborate variants of internal suspend. 2940 */ 2941 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2942 DMF_SUSPENDED_INTERNALLY); 2943 2944 set_bit(DMF_POST_SUSPENDING, &md->flags); 2945 dm_table_postsuspend_targets(map); 2946 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2947 } 2948 2949 static void __dm_internal_resume(struct mapped_device *md) 2950 { 2951 BUG_ON(!md->internal_suspend_count); 2952 2953 if (--md->internal_suspend_count) 2954 return; /* resume from nested internal suspend */ 2955 2956 if (dm_suspended_md(md)) 2957 goto done; /* resume from nested suspend */ 2958 2959 /* 2960 * NOTE: existing callers don't need to call dm_table_resume_targets 2961 * (which may fail -- so best to avoid it for now by passing NULL map) 2962 */ 2963 (void) __dm_resume(md, NULL); 2964 2965 done: 2966 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2967 smp_mb__after_atomic(); 2968 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2969 } 2970 2971 void dm_internal_suspend_noflush(struct mapped_device *md) 2972 { 2973 mutex_lock(&md->suspend_lock); 2974 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2975 mutex_unlock(&md->suspend_lock); 2976 } 2977 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2978 2979 void dm_internal_resume(struct mapped_device *md) 2980 { 2981 mutex_lock(&md->suspend_lock); 2982 __dm_internal_resume(md); 2983 mutex_unlock(&md->suspend_lock); 2984 } 2985 EXPORT_SYMBOL_GPL(dm_internal_resume); 2986 2987 /* 2988 * Fast variants of internal suspend/resume hold md->suspend_lock, 2989 * which prevents interaction with userspace-driven suspend. 2990 */ 2991 2992 void dm_internal_suspend_fast(struct mapped_device *md) 2993 { 2994 mutex_lock(&md->suspend_lock); 2995 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2996 return; 2997 2998 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2999 synchronize_srcu(&md->io_barrier); 3000 flush_workqueue(md->wq); 3001 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3002 } 3003 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3004 3005 void dm_internal_resume_fast(struct mapped_device *md) 3006 { 3007 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3008 goto done; 3009 3010 dm_queue_flush(md); 3011 3012 done: 3013 mutex_unlock(&md->suspend_lock); 3014 } 3015 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3016 3017 /* 3018 *--------------------------------------------------------------- 3019 * Event notification. 3020 *--------------------------------------------------------------- 3021 */ 3022 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3023 unsigned int cookie, bool need_resize_uevent) 3024 { 3025 int r; 3026 unsigned int noio_flag; 3027 char udev_cookie[DM_COOKIE_LENGTH]; 3028 char *envp[3] = { NULL, NULL, NULL }; 3029 char **envpp = envp; 3030 if (cookie) { 3031 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3032 DM_COOKIE_ENV_VAR_NAME, cookie); 3033 *envpp++ = udev_cookie; 3034 } 3035 if (need_resize_uevent) { 3036 *envpp++ = "RESIZE=1"; 3037 } 3038 3039 noio_flag = memalloc_noio_save(); 3040 3041 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3042 3043 memalloc_noio_restore(noio_flag); 3044 3045 return r; 3046 } 3047 3048 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3049 { 3050 return atomic_add_return(1, &md->uevent_seq); 3051 } 3052 3053 uint32_t dm_get_event_nr(struct mapped_device *md) 3054 { 3055 return atomic_read(&md->event_nr); 3056 } 3057 3058 int dm_wait_event(struct mapped_device *md, int event_nr) 3059 { 3060 return wait_event_interruptible(md->eventq, 3061 (event_nr != atomic_read(&md->event_nr))); 3062 } 3063 3064 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3065 { 3066 unsigned long flags; 3067 3068 spin_lock_irqsave(&md->uevent_lock, flags); 3069 list_add(elist, &md->uevent_list); 3070 spin_unlock_irqrestore(&md->uevent_lock, flags); 3071 } 3072 3073 /* 3074 * The gendisk is only valid as long as you have a reference 3075 * count on 'md'. 3076 */ 3077 struct gendisk *dm_disk(struct mapped_device *md) 3078 { 3079 return md->disk; 3080 } 3081 EXPORT_SYMBOL_GPL(dm_disk); 3082 3083 struct kobject *dm_kobject(struct mapped_device *md) 3084 { 3085 return &md->kobj_holder.kobj; 3086 } 3087 3088 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3089 { 3090 struct mapped_device *md; 3091 3092 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3093 3094 spin_lock(&_minor_lock); 3095 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3096 md = NULL; 3097 goto out; 3098 } 3099 dm_get(md); 3100 out: 3101 spin_unlock(&_minor_lock); 3102 3103 return md; 3104 } 3105 3106 int dm_suspended_md(struct mapped_device *md) 3107 { 3108 return test_bit(DMF_SUSPENDED, &md->flags); 3109 } 3110 3111 static int dm_post_suspending_md(struct mapped_device *md) 3112 { 3113 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3114 } 3115 3116 int dm_suspended_internally_md(struct mapped_device *md) 3117 { 3118 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3119 } 3120 3121 int dm_test_deferred_remove_flag(struct mapped_device *md) 3122 { 3123 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3124 } 3125 3126 int dm_suspended(struct dm_target *ti) 3127 { 3128 return dm_suspended_md(ti->table->md); 3129 } 3130 EXPORT_SYMBOL_GPL(dm_suspended); 3131 3132 int dm_post_suspending(struct dm_target *ti) 3133 { 3134 return dm_post_suspending_md(ti->table->md); 3135 } 3136 EXPORT_SYMBOL_GPL(dm_post_suspending); 3137 3138 int dm_noflush_suspending(struct dm_target *ti) 3139 { 3140 return __noflush_suspending(ti->table->md); 3141 } 3142 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3143 3144 void dm_free_md_mempools(struct dm_md_mempools *pools) 3145 { 3146 if (!pools) 3147 return; 3148 3149 bioset_exit(&pools->bs); 3150 bioset_exit(&pools->io_bs); 3151 3152 kfree(pools); 3153 } 3154 3155 struct dm_pr { 3156 u64 old_key; 3157 u64 new_key; 3158 u32 flags; 3159 bool abort; 3160 bool fail_early; 3161 int ret; 3162 enum pr_type type; 3163 struct pr_keys *read_keys; 3164 struct pr_held_reservation *rsv; 3165 }; 3166 3167 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3168 struct dm_pr *pr) 3169 { 3170 struct mapped_device *md = bdev->bd_disk->private_data; 3171 struct dm_table *table; 3172 struct dm_target *ti; 3173 int ret = -ENOTTY, srcu_idx; 3174 3175 table = dm_get_live_table(md, &srcu_idx); 3176 if (!table || !dm_table_get_size(table)) 3177 goto out; 3178 3179 /* We only support devices that have a single target */ 3180 if (table->num_targets != 1) 3181 goto out; 3182 ti = dm_table_get_target(table, 0); 3183 3184 if (dm_suspended_md(md)) { 3185 ret = -EAGAIN; 3186 goto out; 3187 } 3188 3189 ret = -EINVAL; 3190 if (!ti->type->iterate_devices) 3191 goto out; 3192 3193 ti->type->iterate_devices(ti, fn, pr); 3194 ret = 0; 3195 out: 3196 dm_put_live_table(md, srcu_idx); 3197 return ret; 3198 } 3199 3200 /* 3201 * For register / unregister we need to manually call out to every path. 3202 */ 3203 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3204 sector_t start, sector_t len, void *data) 3205 { 3206 struct dm_pr *pr = data; 3207 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3208 int ret; 3209 3210 if (!ops || !ops->pr_register) { 3211 pr->ret = -EOPNOTSUPP; 3212 return -1; 3213 } 3214 3215 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3216 if (!ret) 3217 return 0; 3218 3219 if (!pr->ret) 3220 pr->ret = ret; 3221 3222 if (pr->fail_early) 3223 return -1; 3224 3225 return 0; 3226 } 3227 3228 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3229 u32 flags) 3230 { 3231 struct dm_pr pr = { 3232 .old_key = old_key, 3233 .new_key = new_key, 3234 .flags = flags, 3235 .fail_early = true, 3236 .ret = 0, 3237 }; 3238 int ret; 3239 3240 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3241 if (ret) { 3242 /* Didn't even get to register a path */ 3243 return ret; 3244 } 3245 3246 if (!pr.ret) 3247 return 0; 3248 ret = pr.ret; 3249 3250 if (!new_key) 3251 return ret; 3252 3253 /* unregister all paths if we failed to register any path */ 3254 pr.old_key = new_key; 3255 pr.new_key = 0; 3256 pr.flags = 0; 3257 pr.fail_early = false; 3258 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3259 return ret; 3260 } 3261 3262 3263 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3264 sector_t start, sector_t len, void *data) 3265 { 3266 struct dm_pr *pr = data; 3267 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3268 3269 if (!ops || !ops->pr_reserve) { 3270 pr->ret = -EOPNOTSUPP; 3271 return -1; 3272 } 3273 3274 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3275 if (!pr->ret) 3276 return -1; 3277 3278 return 0; 3279 } 3280 3281 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3282 u32 flags) 3283 { 3284 struct dm_pr pr = { 3285 .old_key = key, 3286 .flags = flags, 3287 .type = type, 3288 .fail_early = false, 3289 .ret = 0, 3290 }; 3291 int ret; 3292 3293 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3294 if (ret) 3295 return ret; 3296 3297 return pr.ret; 3298 } 3299 3300 /* 3301 * If there is a non-All Registrants type of reservation, the release must be 3302 * sent down the holding path. For the cases where there is no reservation or 3303 * the path is not the holder the device will also return success, so we must 3304 * try each path to make sure we got the correct path. 3305 */ 3306 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3307 sector_t start, sector_t len, void *data) 3308 { 3309 struct dm_pr *pr = data; 3310 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3311 3312 if (!ops || !ops->pr_release) { 3313 pr->ret = -EOPNOTSUPP; 3314 return -1; 3315 } 3316 3317 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3318 if (pr->ret) 3319 return -1; 3320 3321 return 0; 3322 } 3323 3324 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3325 { 3326 struct dm_pr pr = { 3327 .old_key = key, 3328 .type = type, 3329 .fail_early = false, 3330 }; 3331 int ret; 3332 3333 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3334 if (ret) 3335 return ret; 3336 3337 return pr.ret; 3338 } 3339 3340 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3341 sector_t start, sector_t len, void *data) 3342 { 3343 struct dm_pr *pr = data; 3344 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3345 3346 if (!ops || !ops->pr_preempt) { 3347 pr->ret = -EOPNOTSUPP; 3348 return -1; 3349 } 3350 3351 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3352 pr->abort); 3353 if (!pr->ret) 3354 return -1; 3355 3356 return 0; 3357 } 3358 3359 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3360 enum pr_type type, bool abort) 3361 { 3362 struct dm_pr pr = { 3363 .new_key = new_key, 3364 .old_key = old_key, 3365 .type = type, 3366 .fail_early = false, 3367 }; 3368 int ret; 3369 3370 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3371 if (ret) 3372 return ret; 3373 3374 return pr.ret; 3375 } 3376 3377 static int dm_pr_clear(struct block_device *bdev, u64 key) 3378 { 3379 struct mapped_device *md = bdev->bd_disk->private_data; 3380 const struct pr_ops *ops; 3381 int r, srcu_idx; 3382 3383 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3384 if (r < 0) 3385 goto out; 3386 3387 ops = bdev->bd_disk->fops->pr_ops; 3388 if (ops && ops->pr_clear) 3389 r = ops->pr_clear(bdev, key); 3390 else 3391 r = -EOPNOTSUPP; 3392 out: 3393 dm_unprepare_ioctl(md, srcu_idx); 3394 return r; 3395 } 3396 3397 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, 3398 sector_t start, sector_t len, void *data) 3399 { 3400 struct dm_pr *pr = data; 3401 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3402 3403 if (!ops || !ops->pr_read_keys) { 3404 pr->ret = -EOPNOTSUPP; 3405 return -1; 3406 } 3407 3408 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); 3409 if (!pr->ret) 3410 return -1; 3411 3412 return 0; 3413 } 3414 3415 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) 3416 { 3417 struct dm_pr pr = { 3418 .read_keys = keys, 3419 }; 3420 int ret; 3421 3422 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); 3423 if (ret) 3424 return ret; 3425 3426 return pr.ret; 3427 } 3428 3429 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, 3430 sector_t start, sector_t len, void *data) 3431 { 3432 struct dm_pr *pr = data; 3433 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3434 3435 if (!ops || !ops->pr_read_reservation) { 3436 pr->ret = -EOPNOTSUPP; 3437 return -1; 3438 } 3439 3440 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); 3441 if (!pr->ret) 3442 return -1; 3443 3444 return 0; 3445 } 3446 3447 static int dm_pr_read_reservation(struct block_device *bdev, 3448 struct pr_held_reservation *rsv) 3449 { 3450 struct dm_pr pr = { 3451 .rsv = rsv, 3452 }; 3453 int ret; 3454 3455 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); 3456 if (ret) 3457 return ret; 3458 3459 return pr.ret; 3460 } 3461 3462 static const struct pr_ops dm_pr_ops = { 3463 .pr_register = dm_pr_register, 3464 .pr_reserve = dm_pr_reserve, 3465 .pr_release = dm_pr_release, 3466 .pr_preempt = dm_pr_preempt, 3467 .pr_clear = dm_pr_clear, 3468 .pr_read_keys = dm_pr_read_keys, 3469 .pr_read_reservation = dm_pr_read_reservation, 3470 }; 3471 3472 static const struct block_device_operations dm_blk_dops = { 3473 .submit_bio = dm_submit_bio, 3474 .poll_bio = dm_poll_bio, 3475 .open = dm_blk_open, 3476 .release = dm_blk_close, 3477 .ioctl = dm_blk_ioctl, 3478 .getgeo = dm_blk_getgeo, 3479 .report_zones = dm_blk_report_zones, 3480 .pr_ops = &dm_pr_ops, 3481 .owner = THIS_MODULE 3482 }; 3483 3484 static const struct block_device_operations dm_rq_blk_dops = { 3485 .open = dm_blk_open, 3486 .release = dm_blk_close, 3487 .ioctl = dm_blk_ioctl, 3488 .getgeo = dm_blk_getgeo, 3489 .pr_ops = &dm_pr_ops, 3490 .owner = THIS_MODULE 3491 }; 3492 3493 static const struct dax_operations dm_dax_ops = { 3494 .direct_access = dm_dax_direct_access, 3495 .zero_page_range = dm_dax_zero_page_range, 3496 .recovery_write = dm_dax_recovery_write, 3497 }; 3498 3499 /* 3500 * module hooks 3501 */ 3502 module_init(dm_init); 3503 module_exit(dm_exit); 3504 3505 module_param(major, uint, 0); 3506 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3507 3508 module_param(reserved_bio_based_ios, uint, 0644); 3509 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3510 3511 module_param(dm_numa_node, int, 0644); 3512 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3513 3514 module_param(swap_bios, int, 0644); 3515 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3516 3517 MODULE_DESCRIPTION(DM_NAME " driver"); 3518 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3519 MODULE_LICENSE("GPL"); 3520