1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 /* 53 * For bio-based dm. 54 * One of these is allocated per bio. 55 */ 56 struct dm_io { 57 struct mapped_device *md; 58 int error; 59 atomic_t io_count; 60 struct bio *bio; 61 unsigned long start_time; 62 spinlock_t endio_lock; 63 }; 64 65 /* 66 * For bio-based dm. 67 * One of these is allocated per target within a bio. Hopefully 68 * this will be simplified out one day. 69 */ 70 struct dm_target_io { 71 struct dm_io *io; 72 struct dm_target *ti; 73 union map_info info; 74 struct bio clone; 75 }; 76 77 /* 78 * For request-based dm. 79 * One of these is allocated per request. 80 */ 81 struct dm_rq_target_io { 82 struct mapped_device *md; 83 struct dm_target *ti; 84 struct request *orig, clone; 85 int error; 86 union map_info info; 87 }; 88 89 /* 90 * For request-based dm - the bio clones we allocate are embedded in these 91 * structs. 92 * 93 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 94 * the bioset is created - this means the bio has to come at the end of the 95 * struct. 96 */ 97 struct dm_rq_clone_bio_info { 98 struct bio *orig; 99 struct dm_rq_target_io *tio; 100 struct bio clone; 101 }; 102 103 union map_info *dm_get_mapinfo(struct bio *bio) 104 { 105 if (bio && bio->bi_private) 106 return &((struct dm_target_io *)bio->bi_private)->info; 107 return NULL; 108 } 109 110 union map_info *dm_get_rq_mapinfo(struct request *rq) 111 { 112 if (rq && rq->end_io_data) 113 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 114 return NULL; 115 } 116 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 117 118 #define MINOR_ALLOCED ((void *)-1) 119 120 /* 121 * Bits for the md->flags field. 122 */ 123 #define DMF_BLOCK_IO_FOR_SUSPEND 0 124 #define DMF_SUSPENDED 1 125 #define DMF_FROZEN 2 126 #define DMF_FREEING 3 127 #define DMF_DELETING 4 128 #define DMF_NOFLUSH_SUSPENDING 5 129 #define DMF_MERGE_IS_OPTIONAL 6 130 131 /* 132 * Work processed by per-device workqueue. 133 */ 134 struct mapped_device { 135 struct rw_semaphore io_lock; 136 struct mutex suspend_lock; 137 rwlock_t map_lock; 138 atomic_t holders; 139 atomic_t open_count; 140 141 unsigned long flags; 142 143 struct request_queue *queue; 144 unsigned type; 145 /* Protect queue and type against concurrent access. */ 146 struct mutex type_lock; 147 148 struct target_type *immutable_target_type; 149 150 struct gendisk *disk; 151 char name[16]; 152 153 void *interface_ptr; 154 155 /* 156 * A list of ios that arrived while we were suspended. 157 */ 158 atomic_t pending[2]; 159 wait_queue_head_t wait; 160 struct work_struct work; 161 struct bio_list deferred; 162 spinlock_t deferred_lock; 163 164 /* 165 * Processing queue (flush) 166 */ 167 struct workqueue_struct *wq; 168 169 /* 170 * The current mapping. 171 */ 172 struct dm_table *map; 173 174 /* 175 * io objects are allocated from here. 176 */ 177 mempool_t *io_pool; 178 mempool_t *tio_pool; 179 180 struct bio_set *bs; 181 182 /* 183 * Event handling. 184 */ 185 atomic_t event_nr; 186 wait_queue_head_t eventq; 187 atomic_t uevent_seq; 188 struct list_head uevent_list; 189 spinlock_t uevent_lock; /* Protect access to uevent_list */ 190 191 /* 192 * freeze/thaw support require holding onto a super block 193 */ 194 struct super_block *frozen_sb; 195 struct block_device *bdev; 196 197 /* forced geometry settings */ 198 struct hd_geometry geometry; 199 200 /* sysfs handle */ 201 struct kobject kobj; 202 203 /* zero-length flush that will be cloned and submitted to targets */ 204 struct bio flush_bio; 205 }; 206 207 /* 208 * For mempools pre-allocation at the table loading time. 209 */ 210 struct dm_md_mempools { 211 mempool_t *io_pool; 212 mempool_t *tio_pool; 213 struct bio_set *bs; 214 }; 215 216 #define MIN_IOS 256 217 static struct kmem_cache *_io_cache; 218 static struct kmem_cache *_rq_tio_cache; 219 220 /* 221 * Unused now, and needs to be deleted. But since io_pool is overloaded and it's 222 * still used for _io_cache, I'm leaving this for a later cleanup 223 */ 224 static struct kmem_cache *_rq_bio_info_cache; 225 226 static int __init local_init(void) 227 { 228 int r = -ENOMEM; 229 230 /* allocate a slab for the dm_ios */ 231 _io_cache = KMEM_CACHE(dm_io, 0); 232 if (!_io_cache) 233 return r; 234 235 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 236 if (!_rq_tio_cache) 237 goto out_free_io_cache; 238 239 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 240 if (!_rq_bio_info_cache) 241 goto out_free_rq_tio_cache; 242 243 r = dm_uevent_init(); 244 if (r) 245 goto out_free_rq_bio_info_cache; 246 247 _major = major; 248 r = register_blkdev(_major, _name); 249 if (r < 0) 250 goto out_uevent_exit; 251 252 if (!_major) 253 _major = r; 254 255 return 0; 256 257 out_uevent_exit: 258 dm_uevent_exit(); 259 out_free_rq_bio_info_cache: 260 kmem_cache_destroy(_rq_bio_info_cache); 261 out_free_rq_tio_cache: 262 kmem_cache_destroy(_rq_tio_cache); 263 out_free_io_cache: 264 kmem_cache_destroy(_io_cache); 265 266 return r; 267 } 268 269 static void local_exit(void) 270 { 271 kmem_cache_destroy(_rq_bio_info_cache); 272 kmem_cache_destroy(_rq_tio_cache); 273 kmem_cache_destroy(_io_cache); 274 unregister_blkdev(_major, _name); 275 dm_uevent_exit(); 276 277 _major = 0; 278 279 DMINFO("cleaned up"); 280 } 281 282 static int (*_inits[])(void) __initdata = { 283 local_init, 284 dm_target_init, 285 dm_linear_init, 286 dm_stripe_init, 287 dm_io_init, 288 dm_kcopyd_init, 289 dm_interface_init, 290 }; 291 292 static void (*_exits[])(void) = { 293 local_exit, 294 dm_target_exit, 295 dm_linear_exit, 296 dm_stripe_exit, 297 dm_io_exit, 298 dm_kcopyd_exit, 299 dm_interface_exit, 300 }; 301 302 static int __init dm_init(void) 303 { 304 const int count = ARRAY_SIZE(_inits); 305 306 int r, i; 307 308 for (i = 0; i < count; i++) { 309 r = _inits[i](); 310 if (r) 311 goto bad; 312 } 313 314 return 0; 315 316 bad: 317 while (i--) 318 _exits[i](); 319 320 return r; 321 } 322 323 static void __exit dm_exit(void) 324 { 325 int i = ARRAY_SIZE(_exits); 326 327 while (i--) 328 _exits[i](); 329 330 /* 331 * Should be empty by this point. 332 */ 333 idr_remove_all(&_minor_idr); 334 idr_destroy(&_minor_idr); 335 } 336 337 /* 338 * Block device functions 339 */ 340 int dm_deleting_md(struct mapped_device *md) 341 { 342 return test_bit(DMF_DELETING, &md->flags); 343 } 344 345 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 346 { 347 struct mapped_device *md; 348 349 spin_lock(&_minor_lock); 350 351 md = bdev->bd_disk->private_data; 352 if (!md) 353 goto out; 354 355 if (test_bit(DMF_FREEING, &md->flags) || 356 dm_deleting_md(md)) { 357 md = NULL; 358 goto out; 359 } 360 361 dm_get(md); 362 atomic_inc(&md->open_count); 363 364 out: 365 spin_unlock(&_minor_lock); 366 367 return md ? 0 : -ENXIO; 368 } 369 370 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 371 { 372 struct mapped_device *md = disk->private_data; 373 374 spin_lock(&_minor_lock); 375 376 atomic_dec(&md->open_count); 377 dm_put(md); 378 379 spin_unlock(&_minor_lock); 380 381 return 0; 382 } 383 384 int dm_open_count(struct mapped_device *md) 385 { 386 return atomic_read(&md->open_count); 387 } 388 389 /* 390 * Guarantees nothing is using the device before it's deleted. 391 */ 392 int dm_lock_for_deletion(struct mapped_device *md) 393 { 394 int r = 0; 395 396 spin_lock(&_minor_lock); 397 398 if (dm_open_count(md)) 399 r = -EBUSY; 400 else 401 set_bit(DMF_DELETING, &md->flags); 402 403 spin_unlock(&_minor_lock); 404 405 return r; 406 } 407 408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 409 { 410 struct mapped_device *md = bdev->bd_disk->private_data; 411 412 return dm_get_geometry(md, geo); 413 } 414 415 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 416 unsigned int cmd, unsigned long arg) 417 { 418 struct mapped_device *md = bdev->bd_disk->private_data; 419 struct dm_table *map = dm_get_live_table(md); 420 struct dm_target *tgt; 421 int r = -ENOTTY; 422 423 if (!map || !dm_table_get_size(map)) 424 goto out; 425 426 /* We only support devices that have a single target */ 427 if (dm_table_get_num_targets(map) != 1) 428 goto out; 429 430 tgt = dm_table_get_target(map, 0); 431 432 if (dm_suspended_md(md)) { 433 r = -EAGAIN; 434 goto out; 435 } 436 437 if (tgt->type->ioctl) 438 r = tgt->type->ioctl(tgt, cmd, arg); 439 440 out: 441 dm_table_put(map); 442 443 return r; 444 } 445 446 static struct dm_io *alloc_io(struct mapped_device *md) 447 { 448 return mempool_alloc(md->io_pool, GFP_NOIO); 449 } 450 451 static void free_io(struct mapped_device *md, struct dm_io *io) 452 { 453 mempool_free(io, md->io_pool); 454 } 455 456 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 457 { 458 bio_put(&tio->clone); 459 } 460 461 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 462 gfp_t gfp_mask) 463 { 464 return mempool_alloc(md->tio_pool, gfp_mask); 465 } 466 467 static void free_rq_tio(struct dm_rq_target_io *tio) 468 { 469 mempool_free(tio, tio->md->tio_pool); 470 } 471 472 static int md_in_flight(struct mapped_device *md) 473 { 474 return atomic_read(&md->pending[READ]) + 475 atomic_read(&md->pending[WRITE]); 476 } 477 478 static void start_io_acct(struct dm_io *io) 479 { 480 struct mapped_device *md = io->md; 481 int cpu; 482 int rw = bio_data_dir(io->bio); 483 484 io->start_time = jiffies; 485 486 cpu = part_stat_lock(); 487 part_round_stats(cpu, &dm_disk(md)->part0); 488 part_stat_unlock(); 489 atomic_set(&dm_disk(md)->part0.in_flight[rw], 490 atomic_inc_return(&md->pending[rw])); 491 } 492 493 static void end_io_acct(struct dm_io *io) 494 { 495 struct mapped_device *md = io->md; 496 struct bio *bio = io->bio; 497 unsigned long duration = jiffies - io->start_time; 498 int pending, cpu; 499 int rw = bio_data_dir(bio); 500 501 cpu = part_stat_lock(); 502 part_round_stats(cpu, &dm_disk(md)->part0); 503 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 504 part_stat_unlock(); 505 506 /* 507 * After this is decremented the bio must not be touched if it is 508 * a flush. 509 */ 510 pending = atomic_dec_return(&md->pending[rw]); 511 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 512 pending += atomic_read(&md->pending[rw^0x1]); 513 514 /* nudge anyone waiting on suspend queue */ 515 if (!pending) 516 wake_up(&md->wait); 517 } 518 519 /* 520 * Add the bio to the list of deferred io. 521 */ 522 static void queue_io(struct mapped_device *md, struct bio *bio) 523 { 524 unsigned long flags; 525 526 spin_lock_irqsave(&md->deferred_lock, flags); 527 bio_list_add(&md->deferred, bio); 528 spin_unlock_irqrestore(&md->deferred_lock, flags); 529 queue_work(md->wq, &md->work); 530 } 531 532 /* 533 * Everyone (including functions in this file), should use this 534 * function to access the md->map field, and make sure they call 535 * dm_table_put() when finished. 536 */ 537 struct dm_table *dm_get_live_table(struct mapped_device *md) 538 { 539 struct dm_table *t; 540 unsigned long flags; 541 542 read_lock_irqsave(&md->map_lock, flags); 543 t = md->map; 544 if (t) 545 dm_table_get(t); 546 read_unlock_irqrestore(&md->map_lock, flags); 547 548 return t; 549 } 550 551 /* 552 * Get the geometry associated with a dm device 553 */ 554 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 555 { 556 *geo = md->geometry; 557 558 return 0; 559 } 560 561 /* 562 * Set the geometry of a device. 563 */ 564 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 565 { 566 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 567 568 if (geo->start > sz) { 569 DMWARN("Start sector is beyond the geometry limits."); 570 return -EINVAL; 571 } 572 573 md->geometry = *geo; 574 575 return 0; 576 } 577 578 /*----------------------------------------------------------------- 579 * CRUD START: 580 * A more elegant soln is in the works that uses the queue 581 * merge fn, unfortunately there are a couple of changes to 582 * the block layer that I want to make for this. So in the 583 * interests of getting something for people to use I give 584 * you this clearly demarcated crap. 585 *---------------------------------------------------------------*/ 586 587 static int __noflush_suspending(struct mapped_device *md) 588 { 589 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 590 } 591 592 /* 593 * Decrements the number of outstanding ios that a bio has been 594 * cloned into, completing the original io if necc. 595 */ 596 static void dec_pending(struct dm_io *io, int error) 597 { 598 unsigned long flags; 599 int io_error; 600 struct bio *bio; 601 struct mapped_device *md = io->md; 602 603 /* Push-back supersedes any I/O errors */ 604 if (unlikely(error)) { 605 spin_lock_irqsave(&io->endio_lock, flags); 606 if (!(io->error > 0 && __noflush_suspending(md))) 607 io->error = error; 608 spin_unlock_irqrestore(&io->endio_lock, flags); 609 } 610 611 if (atomic_dec_and_test(&io->io_count)) { 612 if (io->error == DM_ENDIO_REQUEUE) { 613 /* 614 * Target requested pushing back the I/O. 615 */ 616 spin_lock_irqsave(&md->deferred_lock, flags); 617 if (__noflush_suspending(md)) 618 bio_list_add_head(&md->deferred, io->bio); 619 else 620 /* noflush suspend was interrupted. */ 621 io->error = -EIO; 622 spin_unlock_irqrestore(&md->deferred_lock, flags); 623 } 624 625 io_error = io->error; 626 bio = io->bio; 627 end_io_acct(io); 628 free_io(md, io); 629 630 if (io_error == DM_ENDIO_REQUEUE) 631 return; 632 633 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 634 /* 635 * Preflush done for flush with data, reissue 636 * without REQ_FLUSH. 637 */ 638 bio->bi_rw &= ~REQ_FLUSH; 639 queue_io(md, bio); 640 } else { 641 /* done with normal IO or empty flush */ 642 trace_block_bio_complete(md->queue, bio, io_error); 643 bio_endio(bio, io_error); 644 } 645 } 646 } 647 648 static void clone_endio(struct bio *bio, int error) 649 { 650 int r = 0; 651 struct dm_target_io *tio = bio->bi_private; 652 struct dm_io *io = tio->io; 653 struct mapped_device *md = tio->io->md; 654 dm_endio_fn endio = tio->ti->type->end_io; 655 656 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 657 error = -EIO; 658 659 if (endio) { 660 r = endio(tio->ti, bio, error, &tio->info); 661 if (r < 0 || r == DM_ENDIO_REQUEUE) 662 /* 663 * error and requeue request are handled 664 * in dec_pending(). 665 */ 666 error = r; 667 else if (r == DM_ENDIO_INCOMPLETE) 668 /* The target will handle the io */ 669 return; 670 else if (r) { 671 DMWARN("unimplemented target endio return value: %d", r); 672 BUG(); 673 } 674 } 675 676 free_tio(md, tio); 677 dec_pending(io, error); 678 } 679 680 /* 681 * Partial completion handling for request-based dm 682 */ 683 static void end_clone_bio(struct bio *clone, int error) 684 { 685 struct dm_rq_clone_bio_info *info = clone->bi_private; 686 struct dm_rq_target_io *tio = info->tio; 687 struct bio *bio = info->orig; 688 unsigned int nr_bytes = info->orig->bi_size; 689 690 bio_put(clone); 691 692 if (tio->error) 693 /* 694 * An error has already been detected on the request. 695 * Once error occurred, just let clone->end_io() handle 696 * the remainder. 697 */ 698 return; 699 else if (error) { 700 /* 701 * Don't notice the error to the upper layer yet. 702 * The error handling decision is made by the target driver, 703 * when the request is completed. 704 */ 705 tio->error = error; 706 return; 707 } 708 709 /* 710 * I/O for the bio successfully completed. 711 * Notice the data completion to the upper layer. 712 */ 713 714 /* 715 * bios are processed from the head of the list. 716 * So the completing bio should always be rq->bio. 717 * If it's not, something wrong is happening. 718 */ 719 if (tio->orig->bio != bio) 720 DMERR("bio completion is going in the middle of the request"); 721 722 /* 723 * Update the original request. 724 * Do not use blk_end_request() here, because it may complete 725 * the original request before the clone, and break the ordering. 726 */ 727 blk_update_request(tio->orig, 0, nr_bytes); 728 } 729 730 /* 731 * Don't touch any member of the md after calling this function because 732 * the md may be freed in dm_put() at the end of this function. 733 * Or do dm_get() before calling this function and dm_put() later. 734 */ 735 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 736 { 737 atomic_dec(&md->pending[rw]); 738 739 /* nudge anyone waiting on suspend queue */ 740 if (!md_in_flight(md)) 741 wake_up(&md->wait); 742 743 if (run_queue) 744 blk_run_queue(md->queue); 745 746 /* 747 * dm_put() must be at the end of this function. See the comment above 748 */ 749 dm_put(md); 750 } 751 752 static void free_rq_clone(struct request *clone) 753 { 754 struct dm_rq_target_io *tio = clone->end_io_data; 755 756 blk_rq_unprep_clone(clone); 757 free_rq_tio(tio); 758 } 759 760 /* 761 * Complete the clone and the original request. 762 * Must be called without queue lock. 763 */ 764 static void dm_end_request(struct request *clone, int error) 765 { 766 int rw = rq_data_dir(clone); 767 struct dm_rq_target_io *tio = clone->end_io_data; 768 struct mapped_device *md = tio->md; 769 struct request *rq = tio->orig; 770 771 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 772 rq->errors = clone->errors; 773 rq->resid_len = clone->resid_len; 774 775 if (rq->sense) 776 /* 777 * We are using the sense buffer of the original 778 * request. 779 * So setting the length of the sense data is enough. 780 */ 781 rq->sense_len = clone->sense_len; 782 } 783 784 free_rq_clone(clone); 785 blk_end_request_all(rq, error); 786 rq_completed(md, rw, true); 787 } 788 789 static void dm_unprep_request(struct request *rq) 790 { 791 struct request *clone = rq->special; 792 793 rq->special = NULL; 794 rq->cmd_flags &= ~REQ_DONTPREP; 795 796 free_rq_clone(clone); 797 } 798 799 /* 800 * Requeue the original request of a clone. 801 */ 802 void dm_requeue_unmapped_request(struct request *clone) 803 { 804 int rw = rq_data_dir(clone); 805 struct dm_rq_target_io *tio = clone->end_io_data; 806 struct mapped_device *md = tio->md; 807 struct request *rq = tio->orig; 808 struct request_queue *q = rq->q; 809 unsigned long flags; 810 811 dm_unprep_request(rq); 812 813 spin_lock_irqsave(q->queue_lock, flags); 814 blk_requeue_request(q, rq); 815 spin_unlock_irqrestore(q->queue_lock, flags); 816 817 rq_completed(md, rw, 0); 818 } 819 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 820 821 static void __stop_queue(struct request_queue *q) 822 { 823 blk_stop_queue(q); 824 } 825 826 static void stop_queue(struct request_queue *q) 827 { 828 unsigned long flags; 829 830 spin_lock_irqsave(q->queue_lock, flags); 831 __stop_queue(q); 832 spin_unlock_irqrestore(q->queue_lock, flags); 833 } 834 835 static void __start_queue(struct request_queue *q) 836 { 837 if (blk_queue_stopped(q)) 838 blk_start_queue(q); 839 } 840 841 static void start_queue(struct request_queue *q) 842 { 843 unsigned long flags; 844 845 spin_lock_irqsave(q->queue_lock, flags); 846 __start_queue(q); 847 spin_unlock_irqrestore(q->queue_lock, flags); 848 } 849 850 static void dm_done(struct request *clone, int error, bool mapped) 851 { 852 int r = error; 853 struct dm_rq_target_io *tio = clone->end_io_data; 854 dm_request_endio_fn rq_end_io = NULL; 855 856 if (tio->ti) { 857 rq_end_io = tio->ti->type->rq_end_io; 858 859 if (mapped && rq_end_io) 860 r = rq_end_io(tio->ti, clone, error, &tio->info); 861 } 862 863 if (r <= 0) 864 /* The target wants to complete the I/O */ 865 dm_end_request(clone, r); 866 else if (r == DM_ENDIO_INCOMPLETE) 867 /* The target will handle the I/O */ 868 return; 869 else if (r == DM_ENDIO_REQUEUE) 870 /* The target wants to requeue the I/O */ 871 dm_requeue_unmapped_request(clone); 872 else { 873 DMWARN("unimplemented target endio return value: %d", r); 874 BUG(); 875 } 876 } 877 878 /* 879 * Request completion handler for request-based dm 880 */ 881 static void dm_softirq_done(struct request *rq) 882 { 883 bool mapped = true; 884 struct request *clone = rq->completion_data; 885 struct dm_rq_target_io *tio = clone->end_io_data; 886 887 if (rq->cmd_flags & REQ_FAILED) 888 mapped = false; 889 890 dm_done(clone, tio->error, mapped); 891 } 892 893 /* 894 * Complete the clone and the original request with the error status 895 * through softirq context. 896 */ 897 static void dm_complete_request(struct request *clone, int error) 898 { 899 struct dm_rq_target_io *tio = clone->end_io_data; 900 struct request *rq = tio->orig; 901 902 tio->error = error; 903 rq->completion_data = clone; 904 blk_complete_request(rq); 905 } 906 907 /* 908 * Complete the not-mapped clone and the original request with the error status 909 * through softirq context. 910 * Target's rq_end_io() function isn't called. 911 * This may be used when the target's map_rq() function fails. 912 */ 913 void dm_kill_unmapped_request(struct request *clone, int error) 914 { 915 struct dm_rq_target_io *tio = clone->end_io_data; 916 struct request *rq = tio->orig; 917 918 rq->cmd_flags |= REQ_FAILED; 919 dm_complete_request(clone, error); 920 } 921 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 922 923 /* 924 * Called with the queue lock held 925 */ 926 static void end_clone_request(struct request *clone, int error) 927 { 928 /* 929 * For just cleaning up the information of the queue in which 930 * the clone was dispatched. 931 * The clone is *NOT* freed actually here because it is alloced from 932 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 933 */ 934 __blk_put_request(clone->q, clone); 935 936 /* 937 * Actual request completion is done in a softirq context which doesn't 938 * hold the queue lock. Otherwise, deadlock could occur because: 939 * - another request may be submitted by the upper level driver 940 * of the stacking during the completion 941 * - the submission which requires queue lock may be done 942 * against this queue 943 */ 944 dm_complete_request(clone, error); 945 } 946 947 /* 948 * Return maximum size of I/O possible at the supplied sector up to the current 949 * target boundary. 950 */ 951 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 952 { 953 sector_t target_offset = dm_target_offset(ti, sector); 954 955 return ti->len - target_offset; 956 } 957 958 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 959 { 960 sector_t len = max_io_len_target_boundary(sector, ti); 961 sector_t offset, max_len; 962 963 /* 964 * Does the target need to split even further? 965 */ 966 if (ti->max_io_len) { 967 offset = dm_target_offset(ti, sector); 968 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 969 max_len = sector_div(offset, ti->max_io_len); 970 else 971 max_len = offset & (ti->max_io_len - 1); 972 max_len = ti->max_io_len - max_len; 973 974 if (len > max_len) 975 len = max_len; 976 } 977 978 return len; 979 } 980 981 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 982 { 983 if (len > UINT_MAX) { 984 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 985 (unsigned long long)len, UINT_MAX); 986 ti->error = "Maximum size of target IO is too large"; 987 return -EINVAL; 988 } 989 990 ti->max_io_len = (uint32_t) len; 991 992 return 0; 993 } 994 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 995 996 static void __map_bio(struct dm_target *ti, struct dm_target_io *tio) 997 { 998 int r; 999 sector_t sector; 1000 struct mapped_device *md; 1001 struct bio *clone = &tio->clone; 1002 1003 clone->bi_end_io = clone_endio; 1004 clone->bi_private = tio; 1005 1006 /* 1007 * Map the clone. If r == 0 we don't need to do 1008 * anything, the target has assumed ownership of 1009 * this io. 1010 */ 1011 atomic_inc(&tio->io->io_count); 1012 sector = clone->bi_sector; 1013 r = ti->type->map(ti, clone, &tio->info); 1014 if (r == DM_MAPIO_REMAPPED) { 1015 /* the bio has been remapped so dispatch it */ 1016 1017 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1018 tio->io->bio->bi_bdev->bd_dev, sector); 1019 1020 generic_make_request(clone); 1021 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1022 /* error the io and bail out, or requeue it if needed */ 1023 md = tio->io->md; 1024 dec_pending(tio->io, r); 1025 free_tio(md, tio); 1026 } else if (r) { 1027 DMWARN("unimplemented target map return value: %d", r); 1028 BUG(); 1029 } 1030 } 1031 1032 struct clone_info { 1033 struct mapped_device *md; 1034 struct dm_table *map; 1035 struct bio *bio; 1036 struct dm_io *io; 1037 sector_t sector; 1038 sector_t sector_count; 1039 unsigned short idx; 1040 }; 1041 1042 /* 1043 * Creates a little bio that just does part of a bvec. 1044 */ 1045 static void split_bvec(struct dm_target_io *tio, struct bio *bio, 1046 sector_t sector, unsigned short idx, unsigned int offset, 1047 unsigned int len, struct bio_set *bs) 1048 { 1049 struct bio *clone = &tio->clone; 1050 struct bio_vec *bv = bio->bi_io_vec + idx; 1051 1052 *clone->bi_io_vec = *bv; 1053 1054 clone->bi_sector = sector; 1055 clone->bi_bdev = bio->bi_bdev; 1056 clone->bi_rw = bio->bi_rw; 1057 clone->bi_vcnt = 1; 1058 clone->bi_size = to_bytes(len); 1059 clone->bi_io_vec->bv_offset = offset; 1060 clone->bi_io_vec->bv_len = clone->bi_size; 1061 clone->bi_flags |= 1 << BIO_CLONED; 1062 1063 if (bio_integrity(bio)) { 1064 bio_integrity_clone(clone, bio, GFP_NOIO); 1065 bio_integrity_trim(clone, 1066 bio_sector_offset(bio, idx, offset), len); 1067 } 1068 } 1069 1070 /* 1071 * Creates a bio that consists of range of complete bvecs. 1072 */ 1073 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1074 sector_t sector, unsigned short idx, 1075 unsigned short bv_count, unsigned int len, 1076 struct bio_set *bs) 1077 { 1078 struct bio *clone = &tio->clone; 1079 1080 __bio_clone(clone, bio); 1081 clone->bi_sector = sector; 1082 clone->bi_idx = idx; 1083 clone->bi_vcnt = idx + bv_count; 1084 clone->bi_size = to_bytes(len); 1085 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 1086 1087 if (bio_integrity(bio)) { 1088 bio_integrity_clone(clone, bio, GFP_NOIO); 1089 1090 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1091 bio_integrity_trim(clone, 1092 bio_sector_offset(bio, idx, 0), len); 1093 } 1094 } 1095 1096 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1097 struct dm_target *ti, int nr_iovecs) 1098 { 1099 struct dm_target_io *tio; 1100 struct bio *clone; 1101 1102 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs); 1103 tio = container_of(clone, struct dm_target_io, clone); 1104 1105 tio->io = ci->io; 1106 tio->ti = ti; 1107 memset(&tio->info, 0, sizeof(tio->info)); 1108 1109 return tio; 1110 } 1111 1112 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti, 1113 unsigned request_nr, sector_t len) 1114 { 1115 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs); 1116 struct bio *clone = &tio->clone; 1117 1118 tio->info.target_request_nr = request_nr; 1119 1120 /* 1121 * Discard requests require the bio's inline iovecs be initialized. 1122 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1123 * and discard, so no need for concern about wasted bvec allocations. 1124 */ 1125 1126 __bio_clone(clone, ci->bio); 1127 if (len) { 1128 clone->bi_sector = ci->sector; 1129 clone->bi_size = to_bytes(len); 1130 } 1131 1132 __map_bio(ti, tio); 1133 } 1134 1135 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti, 1136 unsigned num_requests, sector_t len) 1137 { 1138 unsigned request_nr; 1139 1140 for (request_nr = 0; request_nr < num_requests; request_nr++) 1141 __issue_target_request(ci, ti, request_nr, len); 1142 } 1143 1144 static int __clone_and_map_empty_flush(struct clone_info *ci) 1145 { 1146 unsigned target_nr = 0; 1147 struct dm_target *ti; 1148 1149 BUG_ON(bio_has_data(ci->bio)); 1150 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1151 __issue_target_requests(ci, ti, ti->num_flush_requests, 0); 1152 1153 return 0; 1154 } 1155 1156 /* 1157 * Perform all io with a single clone. 1158 */ 1159 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti) 1160 { 1161 struct bio *bio = ci->bio; 1162 struct dm_target_io *tio; 1163 1164 tio = alloc_tio(ci, ti, bio->bi_max_vecs); 1165 clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx, 1166 ci->sector_count, ci->md->bs); 1167 __map_bio(ti, tio); 1168 ci->sector_count = 0; 1169 } 1170 1171 static int __clone_and_map_discard(struct clone_info *ci) 1172 { 1173 struct dm_target *ti; 1174 sector_t len; 1175 1176 do { 1177 ti = dm_table_find_target(ci->map, ci->sector); 1178 if (!dm_target_is_valid(ti)) 1179 return -EIO; 1180 1181 /* 1182 * Even though the device advertised discard support, 1183 * that does not mean every target supports it, and 1184 * reconfiguration might also have changed that since the 1185 * check was performed. 1186 */ 1187 if (!ti->num_discard_requests) 1188 return -EOPNOTSUPP; 1189 1190 if (!ti->split_discard_requests) 1191 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1192 else 1193 len = min(ci->sector_count, max_io_len(ci->sector, ti)); 1194 1195 __issue_target_requests(ci, ti, ti->num_discard_requests, len); 1196 1197 ci->sector += len; 1198 } while (ci->sector_count -= len); 1199 1200 return 0; 1201 } 1202 1203 static int __clone_and_map(struct clone_info *ci) 1204 { 1205 struct bio *bio = ci->bio; 1206 struct dm_target *ti; 1207 sector_t len = 0, max; 1208 struct dm_target_io *tio; 1209 1210 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1211 return __clone_and_map_discard(ci); 1212 1213 ti = dm_table_find_target(ci->map, ci->sector); 1214 if (!dm_target_is_valid(ti)) 1215 return -EIO; 1216 1217 max = max_io_len(ci->sector, ti); 1218 1219 if (ci->sector_count <= max) { 1220 /* 1221 * Optimise for the simple case where we can do all of 1222 * the remaining io with a single clone. 1223 */ 1224 __clone_and_map_simple(ci, ti); 1225 1226 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1227 /* 1228 * There are some bvecs that don't span targets. 1229 * Do as many of these as possible. 1230 */ 1231 int i; 1232 sector_t remaining = max; 1233 sector_t bv_len; 1234 1235 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1236 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1237 1238 if (bv_len > remaining) 1239 break; 1240 1241 remaining -= bv_len; 1242 len += bv_len; 1243 } 1244 1245 tio = alloc_tio(ci, ti, bio->bi_max_vecs); 1246 clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len, 1247 ci->md->bs); 1248 __map_bio(ti, tio); 1249 1250 ci->sector += len; 1251 ci->sector_count -= len; 1252 ci->idx = i; 1253 1254 } else { 1255 /* 1256 * Handle a bvec that must be split between two or more targets. 1257 */ 1258 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1259 sector_t remaining = to_sector(bv->bv_len); 1260 unsigned int offset = 0; 1261 1262 do { 1263 if (offset) { 1264 ti = dm_table_find_target(ci->map, ci->sector); 1265 if (!dm_target_is_valid(ti)) 1266 return -EIO; 1267 1268 max = max_io_len(ci->sector, ti); 1269 } 1270 1271 len = min(remaining, max); 1272 1273 tio = alloc_tio(ci, ti, 1); 1274 split_bvec(tio, bio, ci->sector, ci->idx, 1275 bv->bv_offset + offset, len, ci->md->bs); 1276 1277 __map_bio(ti, tio); 1278 1279 ci->sector += len; 1280 ci->sector_count -= len; 1281 offset += to_bytes(len); 1282 } while (remaining -= len); 1283 1284 ci->idx++; 1285 } 1286 1287 return 0; 1288 } 1289 1290 /* 1291 * Split the bio into several clones and submit it to targets. 1292 */ 1293 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1294 { 1295 struct clone_info ci; 1296 int error = 0; 1297 1298 ci.map = dm_get_live_table(md); 1299 if (unlikely(!ci.map)) { 1300 bio_io_error(bio); 1301 return; 1302 } 1303 1304 ci.md = md; 1305 ci.io = alloc_io(md); 1306 ci.io->error = 0; 1307 atomic_set(&ci.io->io_count, 1); 1308 ci.io->bio = bio; 1309 ci.io->md = md; 1310 spin_lock_init(&ci.io->endio_lock); 1311 ci.sector = bio->bi_sector; 1312 ci.idx = bio->bi_idx; 1313 1314 start_io_acct(ci.io); 1315 if (bio->bi_rw & REQ_FLUSH) { 1316 ci.bio = &ci.md->flush_bio; 1317 ci.sector_count = 0; 1318 error = __clone_and_map_empty_flush(&ci); 1319 /* dec_pending submits any data associated with flush */ 1320 } else { 1321 ci.bio = bio; 1322 ci.sector_count = bio_sectors(bio); 1323 while (ci.sector_count && !error) 1324 error = __clone_and_map(&ci); 1325 } 1326 1327 /* drop the extra reference count */ 1328 dec_pending(ci.io, error); 1329 dm_table_put(ci.map); 1330 } 1331 /*----------------------------------------------------------------- 1332 * CRUD END 1333 *---------------------------------------------------------------*/ 1334 1335 static int dm_merge_bvec(struct request_queue *q, 1336 struct bvec_merge_data *bvm, 1337 struct bio_vec *biovec) 1338 { 1339 struct mapped_device *md = q->queuedata; 1340 struct dm_table *map = dm_get_live_table(md); 1341 struct dm_target *ti; 1342 sector_t max_sectors; 1343 int max_size = 0; 1344 1345 if (unlikely(!map)) 1346 goto out; 1347 1348 ti = dm_table_find_target(map, bvm->bi_sector); 1349 if (!dm_target_is_valid(ti)) 1350 goto out_table; 1351 1352 /* 1353 * Find maximum amount of I/O that won't need splitting 1354 */ 1355 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1356 (sector_t) BIO_MAX_SECTORS); 1357 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1358 if (max_size < 0) 1359 max_size = 0; 1360 1361 /* 1362 * merge_bvec_fn() returns number of bytes 1363 * it can accept at this offset 1364 * max is precomputed maximal io size 1365 */ 1366 if (max_size && ti->type->merge) 1367 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1368 /* 1369 * If the target doesn't support merge method and some of the devices 1370 * provided their merge_bvec method (we know this by looking at 1371 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1372 * entries. So always set max_size to 0, and the code below allows 1373 * just one page. 1374 */ 1375 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1376 1377 max_size = 0; 1378 1379 out_table: 1380 dm_table_put(map); 1381 1382 out: 1383 /* 1384 * Always allow an entire first page 1385 */ 1386 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1387 max_size = biovec->bv_len; 1388 1389 return max_size; 1390 } 1391 1392 /* 1393 * The request function that just remaps the bio built up by 1394 * dm_merge_bvec. 1395 */ 1396 static void _dm_request(struct request_queue *q, struct bio *bio) 1397 { 1398 int rw = bio_data_dir(bio); 1399 struct mapped_device *md = q->queuedata; 1400 int cpu; 1401 1402 down_read(&md->io_lock); 1403 1404 cpu = part_stat_lock(); 1405 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1406 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1407 part_stat_unlock(); 1408 1409 /* if we're suspended, we have to queue this io for later */ 1410 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1411 up_read(&md->io_lock); 1412 1413 if (bio_rw(bio) != READA) 1414 queue_io(md, bio); 1415 else 1416 bio_io_error(bio); 1417 return; 1418 } 1419 1420 __split_and_process_bio(md, bio); 1421 up_read(&md->io_lock); 1422 return; 1423 } 1424 1425 static int dm_request_based(struct mapped_device *md) 1426 { 1427 return blk_queue_stackable(md->queue); 1428 } 1429 1430 static void dm_request(struct request_queue *q, struct bio *bio) 1431 { 1432 struct mapped_device *md = q->queuedata; 1433 1434 if (dm_request_based(md)) 1435 blk_queue_bio(q, bio); 1436 else 1437 _dm_request(q, bio); 1438 } 1439 1440 void dm_dispatch_request(struct request *rq) 1441 { 1442 int r; 1443 1444 if (blk_queue_io_stat(rq->q)) 1445 rq->cmd_flags |= REQ_IO_STAT; 1446 1447 rq->start_time = jiffies; 1448 r = blk_insert_cloned_request(rq->q, rq); 1449 if (r) 1450 dm_complete_request(rq, r); 1451 } 1452 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1453 1454 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1455 void *data) 1456 { 1457 struct dm_rq_target_io *tio = data; 1458 struct dm_rq_clone_bio_info *info = 1459 container_of(bio, struct dm_rq_clone_bio_info, clone); 1460 1461 info->orig = bio_orig; 1462 info->tio = tio; 1463 bio->bi_end_io = end_clone_bio; 1464 bio->bi_private = info; 1465 1466 return 0; 1467 } 1468 1469 static int setup_clone(struct request *clone, struct request *rq, 1470 struct dm_rq_target_io *tio) 1471 { 1472 int r; 1473 1474 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1475 dm_rq_bio_constructor, tio); 1476 if (r) 1477 return r; 1478 1479 clone->cmd = rq->cmd; 1480 clone->cmd_len = rq->cmd_len; 1481 clone->sense = rq->sense; 1482 clone->buffer = rq->buffer; 1483 clone->end_io = end_clone_request; 1484 clone->end_io_data = tio; 1485 1486 return 0; 1487 } 1488 1489 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1490 gfp_t gfp_mask) 1491 { 1492 struct request *clone; 1493 struct dm_rq_target_io *tio; 1494 1495 tio = alloc_rq_tio(md, gfp_mask); 1496 if (!tio) 1497 return NULL; 1498 1499 tio->md = md; 1500 tio->ti = NULL; 1501 tio->orig = rq; 1502 tio->error = 0; 1503 memset(&tio->info, 0, sizeof(tio->info)); 1504 1505 clone = &tio->clone; 1506 if (setup_clone(clone, rq, tio)) { 1507 /* -ENOMEM */ 1508 free_rq_tio(tio); 1509 return NULL; 1510 } 1511 1512 return clone; 1513 } 1514 1515 /* 1516 * Called with the queue lock held. 1517 */ 1518 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1519 { 1520 struct mapped_device *md = q->queuedata; 1521 struct request *clone; 1522 1523 if (unlikely(rq->special)) { 1524 DMWARN("Already has something in rq->special."); 1525 return BLKPREP_KILL; 1526 } 1527 1528 clone = clone_rq(rq, md, GFP_ATOMIC); 1529 if (!clone) 1530 return BLKPREP_DEFER; 1531 1532 rq->special = clone; 1533 rq->cmd_flags |= REQ_DONTPREP; 1534 1535 return BLKPREP_OK; 1536 } 1537 1538 /* 1539 * Returns: 1540 * 0 : the request has been processed (not requeued) 1541 * !0 : the request has been requeued 1542 */ 1543 static int map_request(struct dm_target *ti, struct request *clone, 1544 struct mapped_device *md) 1545 { 1546 int r, requeued = 0; 1547 struct dm_rq_target_io *tio = clone->end_io_data; 1548 1549 tio->ti = ti; 1550 r = ti->type->map_rq(ti, clone, &tio->info); 1551 switch (r) { 1552 case DM_MAPIO_SUBMITTED: 1553 /* The target has taken the I/O to submit by itself later */ 1554 break; 1555 case DM_MAPIO_REMAPPED: 1556 /* The target has remapped the I/O so dispatch it */ 1557 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1558 blk_rq_pos(tio->orig)); 1559 dm_dispatch_request(clone); 1560 break; 1561 case DM_MAPIO_REQUEUE: 1562 /* The target wants to requeue the I/O */ 1563 dm_requeue_unmapped_request(clone); 1564 requeued = 1; 1565 break; 1566 default: 1567 if (r > 0) { 1568 DMWARN("unimplemented target map return value: %d", r); 1569 BUG(); 1570 } 1571 1572 /* The target wants to complete the I/O */ 1573 dm_kill_unmapped_request(clone, r); 1574 break; 1575 } 1576 1577 return requeued; 1578 } 1579 1580 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1581 { 1582 struct request *clone; 1583 1584 blk_start_request(orig); 1585 clone = orig->special; 1586 atomic_inc(&md->pending[rq_data_dir(clone)]); 1587 1588 /* 1589 * Hold the md reference here for the in-flight I/O. 1590 * We can't rely on the reference count by device opener, 1591 * because the device may be closed during the request completion 1592 * when all bios are completed. 1593 * See the comment in rq_completed() too. 1594 */ 1595 dm_get(md); 1596 1597 return clone; 1598 } 1599 1600 /* 1601 * q->request_fn for request-based dm. 1602 * Called with the queue lock held. 1603 */ 1604 static void dm_request_fn(struct request_queue *q) 1605 { 1606 struct mapped_device *md = q->queuedata; 1607 struct dm_table *map = dm_get_live_table(md); 1608 struct dm_target *ti; 1609 struct request *rq, *clone; 1610 sector_t pos; 1611 1612 /* 1613 * For suspend, check blk_queue_stopped() and increment 1614 * ->pending within a single queue_lock not to increment the 1615 * number of in-flight I/Os after the queue is stopped in 1616 * dm_suspend(). 1617 */ 1618 while (!blk_queue_stopped(q)) { 1619 rq = blk_peek_request(q); 1620 if (!rq) 1621 goto delay_and_out; 1622 1623 /* always use block 0 to find the target for flushes for now */ 1624 pos = 0; 1625 if (!(rq->cmd_flags & REQ_FLUSH)) 1626 pos = blk_rq_pos(rq); 1627 1628 ti = dm_table_find_target(map, pos); 1629 if (!dm_target_is_valid(ti)) { 1630 /* 1631 * Must perform setup, that dm_done() requires, 1632 * before calling dm_kill_unmapped_request 1633 */ 1634 DMERR_LIMIT("request attempted access beyond the end of device"); 1635 clone = dm_start_request(md, rq); 1636 dm_kill_unmapped_request(clone, -EIO); 1637 continue; 1638 } 1639 1640 if (ti->type->busy && ti->type->busy(ti)) 1641 goto delay_and_out; 1642 1643 clone = dm_start_request(md, rq); 1644 1645 spin_unlock(q->queue_lock); 1646 if (map_request(ti, clone, md)) 1647 goto requeued; 1648 1649 BUG_ON(!irqs_disabled()); 1650 spin_lock(q->queue_lock); 1651 } 1652 1653 goto out; 1654 1655 requeued: 1656 BUG_ON(!irqs_disabled()); 1657 spin_lock(q->queue_lock); 1658 1659 delay_and_out: 1660 blk_delay_queue(q, HZ / 10); 1661 out: 1662 dm_table_put(map); 1663 } 1664 1665 int dm_underlying_device_busy(struct request_queue *q) 1666 { 1667 return blk_lld_busy(q); 1668 } 1669 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1670 1671 static int dm_lld_busy(struct request_queue *q) 1672 { 1673 int r; 1674 struct mapped_device *md = q->queuedata; 1675 struct dm_table *map = dm_get_live_table(md); 1676 1677 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1678 r = 1; 1679 else 1680 r = dm_table_any_busy_target(map); 1681 1682 dm_table_put(map); 1683 1684 return r; 1685 } 1686 1687 static int dm_any_congested(void *congested_data, int bdi_bits) 1688 { 1689 int r = bdi_bits; 1690 struct mapped_device *md = congested_data; 1691 struct dm_table *map; 1692 1693 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1694 map = dm_get_live_table(md); 1695 if (map) { 1696 /* 1697 * Request-based dm cares about only own queue for 1698 * the query about congestion status of request_queue 1699 */ 1700 if (dm_request_based(md)) 1701 r = md->queue->backing_dev_info.state & 1702 bdi_bits; 1703 else 1704 r = dm_table_any_congested(map, bdi_bits); 1705 1706 dm_table_put(map); 1707 } 1708 } 1709 1710 return r; 1711 } 1712 1713 /*----------------------------------------------------------------- 1714 * An IDR is used to keep track of allocated minor numbers. 1715 *---------------------------------------------------------------*/ 1716 static void free_minor(int minor) 1717 { 1718 spin_lock(&_minor_lock); 1719 idr_remove(&_minor_idr, minor); 1720 spin_unlock(&_minor_lock); 1721 } 1722 1723 /* 1724 * See if the device with a specific minor # is free. 1725 */ 1726 static int specific_minor(int minor) 1727 { 1728 int r, m; 1729 1730 if (minor >= (1 << MINORBITS)) 1731 return -EINVAL; 1732 1733 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1734 if (!r) 1735 return -ENOMEM; 1736 1737 spin_lock(&_minor_lock); 1738 1739 if (idr_find(&_minor_idr, minor)) { 1740 r = -EBUSY; 1741 goto out; 1742 } 1743 1744 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1745 if (r) 1746 goto out; 1747 1748 if (m != minor) { 1749 idr_remove(&_minor_idr, m); 1750 r = -EBUSY; 1751 goto out; 1752 } 1753 1754 out: 1755 spin_unlock(&_minor_lock); 1756 return r; 1757 } 1758 1759 static int next_free_minor(int *minor) 1760 { 1761 int r, m; 1762 1763 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1764 if (!r) 1765 return -ENOMEM; 1766 1767 spin_lock(&_minor_lock); 1768 1769 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1770 if (r) 1771 goto out; 1772 1773 if (m >= (1 << MINORBITS)) { 1774 idr_remove(&_minor_idr, m); 1775 r = -ENOSPC; 1776 goto out; 1777 } 1778 1779 *minor = m; 1780 1781 out: 1782 spin_unlock(&_minor_lock); 1783 return r; 1784 } 1785 1786 static const struct block_device_operations dm_blk_dops; 1787 1788 static void dm_wq_work(struct work_struct *work); 1789 1790 static void dm_init_md_queue(struct mapped_device *md) 1791 { 1792 /* 1793 * Request-based dm devices cannot be stacked on top of bio-based dm 1794 * devices. The type of this dm device has not been decided yet. 1795 * The type is decided at the first table loading time. 1796 * To prevent problematic device stacking, clear the queue flag 1797 * for request stacking support until then. 1798 * 1799 * This queue is new, so no concurrency on the queue_flags. 1800 */ 1801 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1802 1803 md->queue->queuedata = md; 1804 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1805 md->queue->backing_dev_info.congested_data = md; 1806 blk_queue_make_request(md->queue, dm_request); 1807 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1808 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1809 } 1810 1811 /* 1812 * Allocate and initialise a blank device with a given minor. 1813 */ 1814 static struct mapped_device *alloc_dev(int minor) 1815 { 1816 int r; 1817 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1818 void *old_md; 1819 1820 if (!md) { 1821 DMWARN("unable to allocate device, out of memory."); 1822 return NULL; 1823 } 1824 1825 if (!try_module_get(THIS_MODULE)) 1826 goto bad_module_get; 1827 1828 /* get a minor number for the dev */ 1829 if (minor == DM_ANY_MINOR) 1830 r = next_free_minor(&minor); 1831 else 1832 r = specific_minor(minor); 1833 if (r < 0) 1834 goto bad_minor; 1835 1836 md->type = DM_TYPE_NONE; 1837 init_rwsem(&md->io_lock); 1838 mutex_init(&md->suspend_lock); 1839 mutex_init(&md->type_lock); 1840 spin_lock_init(&md->deferred_lock); 1841 rwlock_init(&md->map_lock); 1842 atomic_set(&md->holders, 1); 1843 atomic_set(&md->open_count, 0); 1844 atomic_set(&md->event_nr, 0); 1845 atomic_set(&md->uevent_seq, 0); 1846 INIT_LIST_HEAD(&md->uevent_list); 1847 spin_lock_init(&md->uevent_lock); 1848 1849 md->queue = blk_alloc_queue(GFP_KERNEL); 1850 if (!md->queue) 1851 goto bad_queue; 1852 1853 dm_init_md_queue(md); 1854 1855 md->disk = alloc_disk(1); 1856 if (!md->disk) 1857 goto bad_disk; 1858 1859 atomic_set(&md->pending[0], 0); 1860 atomic_set(&md->pending[1], 0); 1861 init_waitqueue_head(&md->wait); 1862 INIT_WORK(&md->work, dm_wq_work); 1863 init_waitqueue_head(&md->eventq); 1864 1865 md->disk->major = _major; 1866 md->disk->first_minor = minor; 1867 md->disk->fops = &dm_blk_dops; 1868 md->disk->queue = md->queue; 1869 md->disk->private_data = md; 1870 sprintf(md->disk->disk_name, "dm-%d", minor); 1871 add_disk(md->disk); 1872 format_dev_t(md->name, MKDEV(_major, minor)); 1873 1874 md->wq = alloc_workqueue("kdmflush", 1875 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1876 if (!md->wq) 1877 goto bad_thread; 1878 1879 md->bdev = bdget_disk(md->disk, 0); 1880 if (!md->bdev) 1881 goto bad_bdev; 1882 1883 bio_init(&md->flush_bio); 1884 md->flush_bio.bi_bdev = md->bdev; 1885 md->flush_bio.bi_rw = WRITE_FLUSH; 1886 1887 /* Populate the mapping, nobody knows we exist yet */ 1888 spin_lock(&_minor_lock); 1889 old_md = idr_replace(&_minor_idr, md, minor); 1890 spin_unlock(&_minor_lock); 1891 1892 BUG_ON(old_md != MINOR_ALLOCED); 1893 1894 return md; 1895 1896 bad_bdev: 1897 destroy_workqueue(md->wq); 1898 bad_thread: 1899 del_gendisk(md->disk); 1900 put_disk(md->disk); 1901 bad_disk: 1902 blk_cleanup_queue(md->queue); 1903 bad_queue: 1904 free_minor(minor); 1905 bad_minor: 1906 module_put(THIS_MODULE); 1907 bad_module_get: 1908 kfree(md); 1909 return NULL; 1910 } 1911 1912 static void unlock_fs(struct mapped_device *md); 1913 1914 static void free_dev(struct mapped_device *md) 1915 { 1916 int minor = MINOR(disk_devt(md->disk)); 1917 1918 unlock_fs(md); 1919 bdput(md->bdev); 1920 destroy_workqueue(md->wq); 1921 if (md->tio_pool) 1922 mempool_destroy(md->tio_pool); 1923 if (md->io_pool) 1924 mempool_destroy(md->io_pool); 1925 if (md->bs) 1926 bioset_free(md->bs); 1927 blk_integrity_unregister(md->disk); 1928 del_gendisk(md->disk); 1929 free_minor(minor); 1930 1931 spin_lock(&_minor_lock); 1932 md->disk->private_data = NULL; 1933 spin_unlock(&_minor_lock); 1934 1935 put_disk(md->disk); 1936 blk_cleanup_queue(md->queue); 1937 module_put(THIS_MODULE); 1938 kfree(md); 1939 } 1940 1941 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1942 { 1943 struct dm_md_mempools *p; 1944 1945 if (md->io_pool && (md->tio_pool || dm_table_get_type(t) == DM_TYPE_BIO_BASED) && md->bs) 1946 /* the md already has necessary mempools */ 1947 goto out; 1948 1949 p = dm_table_get_md_mempools(t); 1950 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1951 1952 md->io_pool = p->io_pool; 1953 p->io_pool = NULL; 1954 md->tio_pool = p->tio_pool; 1955 p->tio_pool = NULL; 1956 md->bs = p->bs; 1957 p->bs = NULL; 1958 1959 out: 1960 /* mempool bind completed, now no need any mempools in the table */ 1961 dm_table_free_md_mempools(t); 1962 } 1963 1964 /* 1965 * Bind a table to the device. 1966 */ 1967 static void event_callback(void *context) 1968 { 1969 unsigned long flags; 1970 LIST_HEAD(uevents); 1971 struct mapped_device *md = (struct mapped_device *) context; 1972 1973 spin_lock_irqsave(&md->uevent_lock, flags); 1974 list_splice_init(&md->uevent_list, &uevents); 1975 spin_unlock_irqrestore(&md->uevent_lock, flags); 1976 1977 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1978 1979 atomic_inc(&md->event_nr); 1980 wake_up(&md->eventq); 1981 } 1982 1983 /* 1984 * Protected by md->suspend_lock obtained by dm_swap_table(). 1985 */ 1986 static void __set_size(struct mapped_device *md, sector_t size) 1987 { 1988 set_capacity(md->disk, size); 1989 1990 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1991 } 1992 1993 /* 1994 * Return 1 if the queue has a compulsory merge_bvec_fn function. 1995 * 1996 * If this function returns 0, then the device is either a non-dm 1997 * device without a merge_bvec_fn, or it is a dm device that is 1998 * able to split any bios it receives that are too big. 1999 */ 2000 int dm_queue_merge_is_compulsory(struct request_queue *q) 2001 { 2002 struct mapped_device *dev_md; 2003 2004 if (!q->merge_bvec_fn) 2005 return 0; 2006 2007 if (q->make_request_fn == dm_request) { 2008 dev_md = q->queuedata; 2009 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2010 return 0; 2011 } 2012 2013 return 1; 2014 } 2015 2016 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2017 struct dm_dev *dev, sector_t start, 2018 sector_t len, void *data) 2019 { 2020 struct block_device *bdev = dev->bdev; 2021 struct request_queue *q = bdev_get_queue(bdev); 2022 2023 return dm_queue_merge_is_compulsory(q); 2024 } 2025 2026 /* 2027 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2028 * on the properties of the underlying devices. 2029 */ 2030 static int dm_table_merge_is_optional(struct dm_table *table) 2031 { 2032 unsigned i = 0; 2033 struct dm_target *ti; 2034 2035 while (i < dm_table_get_num_targets(table)) { 2036 ti = dm_table_get_target(table, i++); 2037 2038 if (ti->type->iterate_devices && 2039 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2040 return 0; 2041 } 2042 2043 return 1; 2044 } 2045 2046 /* 2047 * Returns old map, which caller must destroy. 2048 */ 2049 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2050 struct queue_limits *limits) 2051 { 2052 struct dm_table *old_map; 2053 struct request_queue *q = md->queue; 2054 sector_t size; 2055 unsigned long flags; 2056 int merge_is_optional; 2057 2058 size = dm_table_get_size(t); 2059 2060 /* 2061 * Wipe any geometry if the size of the table changed. 2062 */ 2063 if (size != get_capacity(md->disk)) 2064 memset(&md->geometry, 0, sizeof(md->geometry)); 2065 2066 __set_size(md, size); 2067 2068 dm_table_event_callback(t, event_callback, md); 2069 2070 /* 2071 * The queue hasn't been stopped yet, if the old table type wasn't 2072 * for request-based during suspension. So stop it to prevent 2073 * I/O mapping before resume. 2074 * This must be done before setting the queue restrictions, 2075 * because request-based dm may be run just after the setting. 2076 */ 2077 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2078 stop_queue(q); 2079 2080 __bind_mempools(md, t); 2081 2082 merge_is_optional = dm_table_merge_is_optional(t); 2083 2084 write_lock_irqsave(&md->map_lock, flags); 2085 old_map = md->map; 2086 md->map = t; 2087 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2088 2089 dm_table_set_restrictions(t, q, limits); 2090 if (merge_is_optional) 2091 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2092 else 2093 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2094 write_unlock_irqrestore(&md->map_lock, flags); 2095 2096 return old_map; 2097 } 2098 2099 /* 2100 * Returns unbound table for the caller to free. 2101 */ 2102 static struct dm_table *__unbind(struct mapped_device *md) 2103 { 2104 struct dm_table *map = md->map; 2105 unsigned long flags; 2106 2107 if (!map) 2108 return NULL; 2109 2110 dm_table_event_callback(map, NULL, NULL); 2111 write_lock_irqsave(&md->map_lock, flags); 2112 md->map = NULL; 2113 write_unlock_irqrestore(&md->map_lock, flags); 2114 2115 return map; 2116 } 2117 2118 /* 2119 * Constructor for a new device. 2120 */ 2121 int dm_create(int minor, struct mapped_device **result) 2122 { 2123 struct mapped_device *md; 2124 2125 md = alloc_dev(minor); 2126 if (!md) 2127 return -ENXIO; 2128 2129 dm_sysfs_init(md); 2130 2131 *result = md; 2132 return 0; 2133 } 2134 2135 /* 2136 * Functions to manage md->type. 2137 * All are required to hold md->type_lock. 2138 */ 2139 void dm_lock_md_type(struct mapped_device *md) 2140 { 2141 mutex_lock(&md->type_lock); 2142 } 2143 2144 void dm_unlock_md_type(struct mapped_device *md) 2145 { 2146 mutex_unlock(&md->type_lock); 2147 } 2148 2149 void dm_set_md_type(struct mapped_device *md, unsigned type) 2150 { 2151 md->type = type; 2152 } 2153 2154 unsigned dm_get_md_type(struct mapped_device *md) 2155 { 2156 return md->type; 2157 } 2158 2159 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2160 { 2161 return md->immutable_target_type; 2162 } 2163 2164 /* 2165 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2166 */ 2167 static int dm_init_request_based_queue(struct mapped_device *md) 2168 { 2169 struct request_queue *q = NULL; 2170 2171 if (md->queue->elevator) 2172 return 1; 2173 2174 /* Fully initialize the queue */ 2175 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2176 if (!q) 2177 return 0; 2178 2179 md->queue = q; 2180 dm_init_md_queue(md); 2181 blk_queue_softirq_done(md->queue, dm_softirq_done); 2182 blk_queue_prep_rq(md->queue, dm_prep_fn); 2183 blk_queue_lld_busy(md->queue, dm_lld_busy); 2184 2185 elv_register_queue(md->queue); 2186 2187 return 1; 2188 } 2189 2190 /* 2191 * Setup the DM device's queue based on md's type 2192 */ 2193 int dm_setup_md_queue(struct mapped_device *md) 2194 { 2195 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2196 !dm_init_request_based_queue(md)) { 2197 DMWARN("Cannot initialize queue for request-based mapped device"); 2198 return -EINVAL; 2199 } 2200 2201 return 0; 2202 } 2203 2204 static struct mapped_device *dm_find_md(dev_t dev) 2205 { 2206 struct mapped_device *md; 2207 unsigned minor = MINOR(dev); 2208 2209 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2210 return NULL; 2211 2212 spin_lock(&_minor_lock); 2213 2214 md = idr_find(&_minor_idr, minor); 2215 if (md && (md == MINOR_ALLOCED || 2216 (MINOR(disk_devt(dm_disk(md))) != minor) || 2217 dm_deleting_md(md) || 2218 test_bit(DMF_FREEING, &md->flags))) { 2219 md = NULL; 2220 goto out; 2221 } 2222 2223 out: 2224 spin_unlock(&_minor_lock); 2225 2226 return md; 2227 } 2228 2229 struct mapped_device *dm_get_md(dev_t dev) 2230 { 2231 struct mapped_device *md = dm_find_md(dev); 2232 2233 if (md) 2234 dm_get(md); 2235 2236 return md; 2237 } 2238 EXPORT_SYMBOL_GPL(dm_get_md); 2239 2240 void *dm_get_mdptr(struct mapped_device *md) 2241 { 2242 return md->interface_ptr; 2243 } 2244 2245 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2246 { 2247 md->interface_ptr = ptr; 2248 } 2249 2250 void dm_get(struct mapped_device *md) 2251 { 2252 atomic_inc(&md->holders); 2253 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2254 } 2255 2256 const char *dm_device_name(struct mapped_device *md) 2257 { 2258 return md->name; 2259 } 2260 EXPORT_SYMBOL_GPL(dm_device_name); 2261 2262 static void __dm_destroy(struct mapped_device *md, bool wait) 2263 { 2264 struct dm_table *map; 2265 2266 might_sleep(); 2267 2268 spin_lock(&_minor_lock); 2269 map = dm_get_live_table(md); 2270 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2271 set_bit(DMF_FREEING, &md->flags); 2272 spin_unlock(&_minor_lock); 2273 2274 if (!dm_suspended_md(md)) { 2275 dm_table_presuspend_targets(map); 2276 dm_table_postsuspend_targets(map); 2277 } 2278 2279 /* 2280 * Rare, but there may be I/O requests still going to complete, 2281 * for example. Wait for all references to disappear. 2282 * No one should increment the reference count of the mapped_device, 2283 * after the mapped_device state becomes DMF_FREEING. 2284 */ 2285 if (wait) 2286 while (atomic_read(&md->holders)) 2287 msleep(1); 2288 else if (atomic_read(&md->holders)) 2289 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2290 dm_device_name(md), atomic_read(&md->holders)); 2291 2292 dm_sysfs_exit(md); 2293 dm_table_put(map); 2294 dm_table_destroy(__unbind(md)); 2295 free_dev(md); 2296 } 2297 2298 void dm_destroy(struct mapped_device *md) 2299 { 2300 __dm_destroy(md, true); 2301 } 2302 2303 void dm_destroy_immediate(struct mapped_device *md) 2304 { 2305 __dm_destroy(md, false); 2306 } 2307 2308 void dm_put(struct mapped_device *md) 2309 { 2310 atomic_dec(&md->holders); 2311 } 2312 EXPORT_SYMBOL_GPL(dm_put); 2313 2314 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2315 { 2316 int r = 0; 2317 DECLARE_WAITQUEUE(wait, current); 2318 2319 add_wait_queue(&md->wait, &wait); 2320 2321 while (1) { 2322 set_current_state(interruptible); 2323 2324 if (!md_in_flight(md)) 2325 break; 2326 2327 if (interruptible == TASK_INTERRUPTIBLE && 2328 signal_pending(current)) { 2329 r = -EINTR; 2330 break; 2331 } 2332 2333 io_schedule(); 2334 } 2335 set_current_state(TASK_RUNNING); 2336 2337 remove_wait_queue(&md->wait, &wait); 2338 2339 return r; 2340 } 2341 2342 /* 2343 * Process the deferred bios 2344 */ 2345 static void dm_wq_work(struct work_struct *work) 2346 { 2347 struct mapped_device *md = container_of(work, struct mapped_device, 2348 work); 2349 struct bio *c; 2350 2351 down_read(&md->io_lock); 2352 2353 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2354 spin_lock_irq(&md->deferred_lock); 2355 c = bio_list_pop(&md->deferred); 2356 spin_unlock_irq(&md->deferred_lock); 2357 2358 if (!c) 2359 break; 2360 2361 up_read(&md->io_lock); 2362 2363 if (dm_request_based(md)) 2364 generic_make_request(c); 2365 else 2366 __split_and_process_bio(md, c); 2367 2368 down_read(&md->io_lock); 2369 } 2370 2371 up_read(&md->io_lock); 2372 } 2373 2374 static void dm_queue_flush(struct mapped_device *md) 2375 { 2376 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2377 smp_mb__after_clear_bit(); 2378 queue_work(md->wq, &md->work); 2379 } 2380 2381 /* 2382 * Swap in a new table, returning the old one for the caller to destroy. 2383 */ 2384 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2385 { 2386 struct dm_table *live_map, *map = ERR_PTR(-EINVAL); 2387 struct queue_limits limits; 2388 int r; 2389 2390 mutex_lock(&md->suspend_lock); 2391 2392 /* device must be suspended */ 2393 if (!dm_suspended_md(md)) 2394 goto out; 2395 2396 /* 2397 * If the new table has no data devices, retain the existing limits. 2398 * This helps multipath with queue_if_no_path if all paths disappear, 2399 * then new I/O is queued based on these limits, and then some paths 2400 * reappear. 2401 */ 2402 if (dm_table_has_no_data_devices(table)) { 2403 live_map = dm_get_live_table(md); 2404 if (live_map) 2405 limits = md->queue->limits; 2406 dm_table_put(live_map); 2407 } 2408 2409 r = dm_calculate_queue_limits(table, &limits); 2410 if (r) { 2411 map = ERR_PTR(r); 2412 goto out; 2413 } 2414 2415 map = __bind(md, table, &limits); 2416 2417 out: 2418 mutex_unlock(&md->suspend_lock); 2419 return map; 2420 } 2421 2422 /* 2423 * Functions to lock and unlock any filesystem running on the 2424 * device. 2425 */ 2426 static int lock_fs(struct mapped_device *md) 2427 { 2428 int r; 2429 2430 WARN_ON(md->frozen_sb); 2431 2432 md->frozen_sb = freeze_bdev(md->bdev); 2433 if (IS_ERR(md->frozen_sb)) { 2434 r = PTR_ERR(md->frozen_sb); 2435 md->frozen_sb = NULL; 2436 return r; 2437 } 2438 2439 set_bit(DMF_FROZEN, &md->flags); 2440 2441 return 0; 2442 } 2443 2444 static void unlock_fs(struct mapped_device *md) 2445 { 2446 if (!test_bit(DMF_FROZEN, &md->flags)) 2447 return; 2448 2449 thaw_bdev(md->bdev, md->frozen_sb); 2450 md->frozen_sb = NULL; 2451 clear_bit(DMF_FROZEN, &md->flags); 2452 } 2453 2454 /* 2455 * We need to be able to change a mapping table under a mounted 2456 * filesystem. For example we might want to move some data in 2457 * the background. Before the table can be swapped with 2458 * dm_bind_table, dm_suspend must be called to flush any in 2459 * flight bios and ensure that any further io gets deferred. 2460 */ 2461 /* 2462 * Suspend mechanism in request-based dm. 2463 * 2464 * 1. Flush all I/Os by lock_fs() if needed. 2465 * 2. Stop dispatching any I/O by stopping the request_queue. 2466 * 3. Wait for all in-flight I/Os to be completed or requeued. 2467 * 2468 * To abort suspend, start the request_queue. 2469 */ 2470 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2471 { 2472 struct dm_table *map = NULL; 2473 int r = 0; 2474 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2475 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2476 2477 mutex_lock(&md->suspend_lock); 2478 2479 if (dm_suspended_md(md)) { 2480 r = -EINVAL; 2481 goto out_unlock; 2482 } 2483 2484 map = dm_get_live_table(md); 2485 2486 /* 2487 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2488 * This flag is cleared before dm_suspend returns. 2489 */ 2490 if (noflush) 2491 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2492 2493 /* This does not get reverted if there's an error later. */ 2494 dm_table_presuspend_targets(map); 2495 2496 /* 2497 * Flush I/O to the device. 2498 * Any I/O submitted after lock_fs() may not be flushed. 2499 * noflush takes precedence over do_lockfs. 2500 * (lock_fs() flushes I/Os and waits for them to complete.) 2501 */ 2502 if (!noflush && do_lockfs) { 2503 r = lock_fs(md); 2504 if (r) 2505 goto out; 2506 } 2507 2508 /* 2509 * Here we must make sure that no processes are submitting requests 2510 * to target drivers i.e. no one may be executing 2511 * __split_and_process_bio. This is called from dm_request and 2512 * dm_wq_work. 2513 * 2514 * To get all processes out of __split_and_process_bio in dm_request, 2515 * we take the write lock. To prevent any process from reentering 2516 * __split_and_process_bio from dm_request and quiesce the thread 2517 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2518 * flush_workqueue(md->wq). 2519 */ 2520 down_write(&md->io_lock); 2521 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2522 up_write(&md->io_lock); 2523 2524 /* 2525 * Stop md->queue before flushing md->wq in case request-based 2526 * dm defers requests to md->wq from md->queue. 2527 */ 2528 if (dm_request_based(md)) 2529 stop_queue(md->queue); 2530 2531 flush_workqueue(md->wq); 2532 2533 /* 2534 * At this point no more requests are entering target request routines. 2535 * We call dm_wait_for_completion to wait for all existing requests 2536 * to finish. 2537 */ 2538 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2539 2540 down_write(&md->io_lock); 2541 if (noflush) 2542 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2543 up_write(&md->io_lock); 2544 2545 /* were we interrupted ? */ 2546 if (r < 0) { 2547 dm_queue_flush(md); 2548 2549 if (dm_request_based(md)) 2550 start_queue(md->queue); 2551 2552 unlock_fs(md); 2553 goto out; /* pushback list is already flushed, so skip flush */ 2554 } 2555 2556 /* 2557 * If dm_wait_for_completion returned 0, the device is completely 2558 * quiescent now. There is no request-processing activity. All new 2559 * requests are being added to md->deferred list. 2560 */ 2561 2562 set_bit(DMF_SUSPENDED, &md->flags); 2563 2564 dm_table_postsuspend_targets(map); 2565 2566 out: 2567 dm_table_put(map); 2568 2569 out_unlock: 2570 mutex_unlock(&md->suspend_lock); 2571 return r; 2572 } 2573 2574 int dm_resume(struct mapped_device *md) 2575 { 2576 int r = -EINVAL; 2577 struct dm_table *map = NULL; 2578 2579 mutex_lock(&md->suspend_lock); 2580 if (!dm_suspended_md(md)) 2581 goto out; 2582 2583 map = dm_get_live_table(md); 2584 if (!map || !dm_table_get_size(map)) 2585 goto out; 2586 2587 r = dm_table_resume_targets(map); 2588 if (r) 2589 goto out; 2590 2591 dm_queue_flush(md); 2592 2593 /* 2594 * Flushing deferred I/Os must be done after targets are resumed 2595 * so that mapping of targets can work correctly. 2596 * Request-based dm is queueing the deferred I/Os in its request_queue. 2597 */ 2598 if (dm_request_based(md)) 2599 start_queue(md->queue); 2600 2601 unlock_fs(md); 2602 2603 clear_bit(DMF_SUSPENDED, &md->flags); 2604 2605 r = 0; 2606 out: 2607 dm_table_put(map); 2608 mutex_unlock(&md->suspend_lock); 2609 2610 return r; 2611 } 2612 2613 /*----------------------------------------------------------------- 2614 * Event notification. 2615 *---------------------------------------------------------------*/ 2616 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2617 unsigned cookie) 2618 { 2619 char udev_cookie[DM_COOKIE_LENGTH]; 2620 char *envp[] = { udev_cookie, NULL }; 2621 2622 if (!cookie) 2623 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2624 else { 2625 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2626 DM_COOKIE_ENV_VAR_NAME, cookie); 2627 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2628 action, envp); 2629 } 2630 } 2631 2632 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2633 { 2634 return atomic_add_return(1, &md->uevent_seq); 2635 } 2636 2637 uint32_t dm_get_event_nr(struct mapped_device *md) 2638 { 2639 return atomic_read(&md->event_nr); 2640 } 2641 2642 int dm_wait_event(struct mapped_device *md, int event_nr) 2643 { 2644 return wait_event_interruptible(md->eventq, 2645 (event_nr != atomic_read(&md->event_nr))); 2646 } 2647 2648 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2649 { 2650 unsigned long flags; 2651 2652 spin_lock_irqsave(&md->uevent_lock, flags); 2653 list_add(elist, &md->uevent_list); 2654 spin_unlock_irqrestore(&md->uevent_lock, flags); 2655 } 2656 2657 /* 2658 * The gendisk is only valid as long as you have a reference 2659 * count on 'md'. 2660 */ 2661 struct gendisk *dm_disk(struct mapped_device *md) 2662 { 2663 return md->disk; 2664 } 2665 2666 struct kobject *dm_kobject(struct mapped_device *md) 2667 { 2668 return &md->kobj; 2669 } 2670 2671 /* 2672 * struct mapped_device should not be exported outside of dm.c 2673 * so use this check to verify that kobj is part of md structure 2674 */ 2675 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2676 { 2677 struct mapped_device *md; 2678 2679 md = container_of(kobj, struct mapped_device, kobj); 2680 if (&md->kobj != kobj) 2681 return NULL; 2682 2683 if (test_bit(DMF_FREEING, &md->flags) || 2684 dm_deleting_md(md)) 2685 return NULL; 2686 2687 dm_get(md); 2688 return md; 2689 } 2690 2691 int dm_suspended_md(struct mapped_device *md) 2692 { 2693 return test_bit(DMF_SUSPENDED, &md->flags); 2694 } 2695 2696 int dm_suspended(struct dm_target *ti) 2697 { 2698 return dm_suspended_md(dm_table_get_md(ti->table)); 2699 } 2700 EXPORT_SYMBOL_GPL(dm_suspended); 2701 2702 int dm_noflush_suspending(struct dm_target *ti) 2703 { 2704 return __noflush_suspending(dm_table_get_md(ti->table)); 2705 } 2706 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2707 2708 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity) 2709 { 2710 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2711 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS; 2712 2713 if (!pools) 2714 return NULL; 2715 2716 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2717 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2718 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2719 if (!pools->io_pool) 2720 goto free_pools_and_out; 2721 2722 pools->tio_pool = NULL; 2723 if (type == DM_TYPE_REQUEST_BASED) { 2724 pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2725 if (!pools->tio_pool) 2726 goto free_io_pool_and_out; 2727 } 2728 2729 pools->bs = (type == DM_TYPE_BIO_BASED) ? 2730 bioset_create(pool_size, 2731 offsetof(struct dm_target_io, clone)) : 2732 bioset_create(pool_size, 2733 offsetof(struct dm_rq_clone_bio_info, clone)); 2734 if (!pools->bs) 2735 goto free_tio_pool_and_out; 2736 2737 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2738 goto free_bioset_and_out; 2739 2740 return pools; 2741 2742 free_bioset_and_out: 2743 bioset_free(pools->bs); 2744 2745 free_tio_pool_and_out: 2746 if (pools->tio_pool) 2747 mempool_destroy(pools->tio_pool); 2748 2749 free_io_pool_and_out: 2750 mempool_destroy(pools->io_pool); 2751 2752 free_pools_and_out: 2753 kfree(pools); 2754 2755 return NULL; 2756 } 2757 2758 void dm_free_md_mempools(struct dm_md_mempools *pools) 2759 { 2760 if (!pools) 2761 return; 2762 2763 if (pools->io_pool) 2764 mempool_destroy(pools->io_pool); 2765 2766 if (pools->tio_pool) 2767 mempool_destroy(pools->tio_pool); 2768 2769 if (pools->bs) 2770 bioset_free(pools->bs); 2771 2772 kfree(pools); 2773 } 2774 2775 static const struct block_device_operations dm_blk_dops = { 2776 .open = dm_blk_open, 2777 .release = dm_blk_close, 2778 .ioctl = dm_blk_ioctl, 2779 .getgeo = dm_blk_getgeo, 2780 .owner = THIS_MODULE 2781 }; 2782 2783 EXPORT_SYMBOL(dm_get_mapinfo); 2784 2785 /* 2786 * module hooks 2787 */ 2788 module_init(dm_init); 2789 module_exit(dm_exit); 2790 2791 module_param(major, uint, 0); 2792 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2793 MODULE_DESCRIPTION(DM_NAME " driver"); 2794 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2795 MODULE_LICENSE("GPL"); 2796