xref: /linux/drivers/md/dm.c (revision ed00aabd5eb9fb44d6aff1173234a2e911b9fead)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 #include <linux/part_stat.h>
29 #include <linux/blk-crypto.h>
30 
31 #define DM_MSG_PREFIX "core"
32 
33 /*
34  * Cookies are numeric values sent with CHANGE and REMOVE
35  * uevents while resuming, removing or renaming the device.
36  */
37 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
38 #define DM_COOKIE_LENGTH 24
39 
40 static const char *_name = DM_NAME;
41 
42 static unsigned int major = 0;
43 static unsigned int _major = 0;
44 
45 static DEFINE_IDR(_minor_idr);
46 
47 static DEFINE_SPINLOCK(_minor_lock);
48 
49 static void do_deferred_remove(struct work_struct *w);
50 
51 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
52 
53 static struct workqueue_struct *deferred_remove_workqueue;
54 
55 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
56 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
57 
58 void dm_issue_global_event(void)
59 {
60 	atomic_inc(&dm_global_event_nr);
61 	wake_up(&dm_global_eventq);
62 }
63 
64 /*
65  * One of these is allocated (on-stack) per original bio.
66  */
67 struct clone_info {
68 	struct dm_table *map;
69 	struct bio *bio;
70 	struct dm_io *io;
71 	sector_t sector;
72 	unsigned sector_count;
73 };
74 
75 /*
76  * One of these is allocated per clone bio.
77  */
78 #define DM_TIO_MAGIC 7282014
79 struct dm_target_io {
80 	unsigned magic;
81 	struct dm_io *io;
82 	struct dm_target *ti;
83 	unsigned target_bio_nr;
84 	unsigned *len_ptr;
85 	bool inside_dm_io;
86 	struct bio clone;
87 };
88 
89 /*
90  * One of these is allocated per original bio.
91  * It contains the first clone used for that original.
92  */
93 #define DM_IO_MAGIC 5191977
94 struct dm_io {
95 	unsigned magic;
96 	struct mapped_device *md;
97 	blk_status_t status;
98 	atomic_t io_count;
99 	struct bio *orig_bio;
100 	unsigned long start_time;
101 	spinlock_t endio_lock;
102 	struct dm_stats_aux stats_aux;
103 	/* last member of dm_target_io is 'struct bio' */
104 	struct dm_target_io tio;
105 };
106 
107 void *dm_per_bio_data(struct bio *bio, size_t data_size)
108 {
109 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
110 	if (!tio->inside_dm_io)
111 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
112 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
113 }
114 EXPORT_SYMBOL_GPL(dm_per_bio_data);
115 
116 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
117 {
118 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
119 	if (io->magic == DM_IO_MAGIC)
120 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
121 	BUG_ON(io->magic != DM_TIO_MAGIC);
122 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
123 }
124 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
125 
126 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
127 {
128 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
129 }
130 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
131 
132 #define MINOR_ALLOCED ((void *)-1)
133 
134 /*
135  * Bits for the md->flags field.
136  */
137 #define DMF_BLOCK_IO_FOR_SUSPEND 0
138 #define DMF_SUSPENDED 1
139 #define DMF_FROZEN 2
140 #define DMF_FREEING 3
141 #define DMF_DELETING 4
142 #define DMF_NOFLUSH_SUSPENDING 5
143 #define DMF_DEFERRED_REMOVE 6
144 #define DMF_SUSPENDED_INTERNALLY 7
145 
146 #define DM_NUMA_NODE NUMA_NO_NODE
147 static int dm_numa_node = DM_NUMA_NODE;
148 
149 /*
150  * For mempools pre-allocation at the table loading time.
151  */
152 struct dm_md_mempools {
153 	struct bio_set bs;
154 	struct bio_set io_bs;
155 };
156 
157 struct table_device {
158 	struct list_head list;
159 	refcount_t count;
160 	struct dm_dev dm_dev;
161 };
162 
163 /*
164  * Bio-based DM's mempools' reserved IOs set by the user.
165  */
166 #define RESERVED_BIO_BASED_IOS		16
167 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
168 
169 static int __dm_get_module_param_int(int *module_param, int min, int max)
170 {
171 	int param = READ_ONCE(*module_param);
172 	int modified_param = 0;
173 	bool modified = true;
174 
175 	if (param < min)
176 		modified_param = min;
177 	else if (param > max)
178 		modified_param = max;
179 	else
180 		modified = false;
181 
182 	if (modified) {
183 		(void)cmpxchg(module_param, param, modified_param);
184 		param = modified_param;
185 	}
186 
187 	return param;
188 }
189 
190 unsigned __dm_get_module_param(unsigned *module_param,
191 			       unsigned def, unsigned max)
192 {
193 	unsigned param = READ_ONCE(*module_param);
194 	unsigned modified_param = 0;
195 
196 	if (!param)
197 		modified_param = def;
198 	else if (param > max)
199 		modified_param = max;
200 
201 	if (modified_param) {
202 		(void)cmpxchg(module_param, param, modified_param);
203 		param = modified_param;
204 	}
205 
206 	return param;
207 }
208 
209 unsigned dm_get_reserved_bio_based_ios(void)
210 {
211 	return __dm_get_module_param(&reserved_bio_based_ios,
212 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
213 }
214 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
215 
216 static unsigned dm_get_numa_node(void)
217 {
218 	return __dm_get_module_param_int(&dm_numa_node,
219 					 DM_NUMA_NODE, num_online_nodes() - 1);
220 }
221 
222 static int __init local_init(void)
223 {
224 	int r;
225 
226 	r = dm_uevent_init();
227 	if (r)
228 		return r;
229 
230 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
231 	if (!deferred_remove_workqueue) {
232 		r = -ENOMEM;
233 		goto out_uevent_exit;
234 	}
235 
236 	_major = major;
237 	r = register_blkdev(_major, _name);
238 	if (r < 0)
239 		goto out_free_workqueue;
240 
241 	if (!_major)
242 		_major = r;
243 
244 	return 0;
245 
246 out_free_workqueue:
247 	destroy_workqueue(deferred_remove_workqueue);
248 out_uevent_exit:
249 	dm_uevent_exit();
250 
251 	return r;
252 }
253 
254 static void local_exit(void)
255 {
256 	flush_scheduled_work();
257 	destroy_workqueue(deferred_remove_workqueue);
258 
259 	unregister_blkdev(_major, _name);
260 	dm_uevent_exit();
261 
262 	_major = 0;
263 
264 	DMINFO("cleaned up");
265 }
266 
267 static int (*_inits[])(void) __initdata = {
268 	local_init,
269 	dm_target_init,
270 	dm_linear_init,
271 	dm_stripe_init,
272 	dm_io_init,
273 	dm_kcopyd_init,
274 	dm_interface_init,
275 	dm_statistics_init,
276 };
277 
278 static void (*_exits[])(void) = {
279 	local_exit,
280 	dm_target_exit,
281 	dm_linear_exit,
282 	dm_stripe_exit,
283 	dm_io_exit,
284 	dm_kcopyd_exit,
285 	dm_interface_exit,
286 	dm_statistics_exit,
287 };
288 
289 static int __init dm_init(void)
290 {
291 	const int count = ARRAY_SIZE(_inits);
292 
293 	int r, i;
294 
295 	for (i = 0; i < count; i++) {
296 		r = _inits[i]();
297 		if (r)
298 			goto bad;
299 	}
300 
301 	return 0;
302 
303       bad:
304 	while (i--)
305 		_exits[i]();
306 
307 	return r;
308 }
309 
310 static void __exit dm_exit(void)
311 {
312 	int i = ARRAY_SIZE(_exits);
313 
314 	while (i--)
315 		_exits[i]();
316 
317 	/*
318 	 * Should be empty by this point.
319 	 */
320 	idr_destroy(&_minor_idr);
321 }
322 
323 /*
324  * Block device functions
325  */
326 int dm_deleting_md(struct mapped_device *md)
327 {
328 	return test_bit(DMF_DELETING, &md->flags);
329 }
330 
331 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
332 {
333 	struct mapped_device *md;
334 
335 	spin_lock(&_minor_lock);
336 
337 	md = bdev->bd_disk->private_data;
338 	if (!md)
339 		goto out;
340 
341 	if (test_bit(DMF_FREEING, &md->flags) ||
342 	    dm_deleting_md(md)) {
343 		md = NULL;
344 		goto out;
345 	}
346 
347 	dm_get(md);
348 	atomic_inc(&md->open_count);
349 out:
350 	spin_unlock(&_minor_lock);
351 
352 	return md ? 0 : -ENXIO;
353 }
354 
355 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
356 {
357 	struct mapped_device *md;
358 
359 	spin_lock(&_minor_lock);
360 
361 	md = disk->private_data;
362 	if (WARN_ON(!md))
363 		goto out;
364 
365 	if (atomic_dec_and_test(&md->open_count) &&
366 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
367 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
368 
369 	dm_put(md);
370 out:
371 	spin_unlock(&_minor_lock);
372 }
373 
374 int dm_open_count(struct mapped_device *md)
375 {
376 	return atomic_read(&md->open_count);
377 }
378 
379 /*
380  * Guarantees nothing is using the device before it's deleted.
381  */
382 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
383 {
384 	int r = 0;
385 
386 	spin_lock(&_minor_lock);
387 
388 	if (dm_open_count(md)) {
389 		r = -EBUSY;
390 		if (mark_deferred)
391 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
392 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
393 		r = -EEXIST;
394 	else
395 		set_bit(DMF_DELETING, &md->flags);
396 
397 	spin_unlock(&_minor_lock);
398 
399 	return r;
400 }
401 
402 int dm_cancel_deferred_remove(struct mapped_device *md)
403 {
404 	int r = 0;
405 
406 	spin_lock(&_minor_lock);
407 
408 	if (test_bit(DMF_DELETING, &md->flags))
409 		r = -EBUSY;
410 	else
411 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
412 
413 	spin_unlock(&_minor_lock);
414 
415 	return r;
416 }
417 
418 static void do_deferred_remove(struct work_struct *w)
419 {
420 	dm_deferred_remove();
421 }
422 
423 sector_t dm_get_size(struct mapped_device *md)
424 {
425 	return get_capacity(md->disk);
426 }
427 
428 struct request_queue *dm_get_md_queue(struct mapped_device *md)
429 {
430 	return md->queue;
431 }
432 
433 struct dm_stats *dm_get_stats(struct mapped_device *md)
434 {
435 	return &md->stats;
436 }
437 
438 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
439 {
440 	struct mapped_device *md = bdev->bd_disk->private_data;
441 
442 	return dm_get_geometry(md, geo);
443 }
444 
445 #ifdef CONFIG_BLK_DEV_ZONED
446 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
447 {
448 	struct dm_report_zones_args *args = data;
449 	sector_t sector_diff = args->tgt->begin - args->start;
450 
451 	/*
452 	 * Ignore zones beyond the target range.
453 	 */
454 	if (zone->start >= args->start + args->tgt->len)
455 		return 0;
456 
457 	/*
458 	 * Remap the start sector and write pointer position of the zone
459 	 * to match its position in the target range.
460 	 */
461 	zone->start += sector_diff;
462 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
463 		if (zone->cond == BLK_ZONE_COND_FULL)
464 			zone->wp = zone->start + zone->len;
465 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
466 			zone->wp = zone->start;
467 		else
468 			zone->wp += sector_diff;
469 	}
470 
471 	args->next_sector = zone->start + zone->len;
472 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
473 }
474 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
475 
476 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
477 		unsigned int nr_zones, report_zones_cb cb, void *data)
478 {
479 	struct mapped_device *md = disk->private_data;
480 	struct dm_table *map;
481 	int srcu_idx, ret;
482 	struct dm_report_zones_args args = {
483 		.next_sector = sector,
484 		.orig_data = data,
485 		.orig_cb = cb,
486 	};
487 
488 	if (dm_suspended_md(md))
489 		return -EAGAIN;
490 
491 	map = dm_get_live_table(md, &srcu_idx);
492 	if (!map)
493 		return -EIO;
494 
495 	do {
496 		struct dm_target *tgt;
497 
498 		tgt = dm_table_find_target(map, args.next_sector);
499 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
500 			ret = -EIO;
501 			goto out;
502 		}
503 
504 		args.tgt = tgt;
505 		ret = tgt->type->report_zones(tgt, &args, nr_zones);
506 		if (ret < 0)
507 			goto out;
508 	} while (args.zone_idx < nr_zones &&
509 		 args.next_sector < get_capacity(disk));
510 
511 	ret = args.zone_idx;
512 out:
513 	dm_put_live_table(md, srcu_idx);
514 	return ret;
515 }
516 #else
517 #define dm_blk_report_zones		NULL
518 #endif /* CONFIG_BLK_DEV_ZONED */
519 
520 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
521 			    struct block_device **bdev)
522 	__acquires(md->io_barrier)
523 {
524 	struct dm_target *tgt;
525 	struct dm_table *map;
526 	int r;
527 
528 retry:
529 	r = -ENOTTY;
530 	map = dm_get_live_table(md, srcu_idx);
531 	if (!map || !dm_table_get_size(map))
532 		return r;
533 
534 	/* We only support devices that have a single target */
535 	if (dm_table_get_num_targets(map) != 1)
536 		return r;
537 
538 	tgt = dm_table_get_target(map, 0);
539 	if (!tgt->type->prepare_ioctl)
540 		return r;
541 
542 	if (dm_suspended_md(md))
543 		return -EAGAIN;
544 
545 	r = tgt->type->prepare_ioctl(tgt, bdev);
546 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
547 		dm_put_live_table(md, *srcu_idx);
548 		msleep(10);
549 		goto retry;
550 	}
551 
552 	return r;
553 }
554 
555 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
556 	__releases(md->io_barrier)
557 {
558 	dm_put_live_table(md, srcu_idx);
559 }
560 
561 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
562 			unsigned int cmd, unsigned long arg)
563 {
564 	struct mapped_device *md = bdev->bd_disk->private_data;
565 	int r, srcu_idx;
566 
567 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
568 	if (r < 0)
569 		goto out;
570 
571 	if (r > 0) {
572 		/*
573 		 * Target determined this ioctl is being issued against a
574 		 * subset of the parent bdev; require extra privileges.
575 		 */
576 		if (!capable(CAP_SYS_RAWIO)) {
577 			DMWARN_LIMIT(
578 	"%s: sending ioctl %x to DM device without required privilege.",
579 				current->comm, cmd);
580 			r = -ENOIOCTLCMD;
581 			goto out;
582 		}
583 	}
584 
585 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
586 out:
587 	dm_unprepare_ioctl(md, srcu_idx);
588 	return r;
589 }
590 
591 static void start_io_acct(struct dm_io *io);
592 
593 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
594 {
595 	struct dm_io *io;
596 	struct dm_target_io *tio;
597 	struct bio *clone;
598 
599 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
600 	if (!clone)
601 		return NULL;
602 
603 	tio = container_of(clone, struct dm_target_io, clone);
604 	tio->inside_dm_io = true;
605 	tio->io = NULL;
606 
607 	io = container_of(tio, struct dm_io, tio);
608 	io->magic = DM_IO_MAGIC;
609 	io->status = 0;
610 	atomic_set(&io->io_count, 1);
611 	io->orig_bio = bio;
612 	io->md = md;
613 	spin_lock_init(&io->endio_lock);
614 
615 	start_io_acct(io);
616 
617 	return io;
618 }
619 
620 static void free_io(struct mapped_device *md, struct dm_io *io)
621 {
622 	bio_put(&io->tio.clone);
623 }
624 
625 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
626 				      unsigned target_bio_nr, gfp_t gfp_mask)
627 {
628 	struct dm_target_io *tio;
629 
630 	if (!ci->io->tio.io) {
631 		/* the dm_target_io embedded in ci->io is available */
632 		tio = &ci->io->tio;
633 	} else {
634 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
635 		if (!clone)
636 			return NULL;
637 
638 		tio = container_of(clone, struct dm_target_io, clone);
639 		tio->inside_dm_io = false;
640 	}
641 
642 	tio->magic = DM_TIO_MAGIC;
643 	tio->io = ci->io;
644 	tio->ti = ti;
645 	tio->target_bio_nr = target_bio_nr;
646 
647 	return tio;
648 }
649 
650 static void free_tio(struct dm_target_io *tio)
651 {
652 	if (tio->inside_dm_io)
653 		return;
654 	bio_put(&tio->clone);
655 }
656 
657 static bool md_in_flight_bios(struct mapped_device *md)
658 {
659 	int cpu;
660 	struct hd_struct *part = &dm_disk(md)->part0;
661 	long sum = 0;
662 
663 	for_each_possible_cpu(cpu) {
664 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
665 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
666 	}
667 
668 	return sum != 0;
669 }
670 
671 static bool md_in_flight(struct mapped_device *md)
672 {
673 	if (queue_is_mq(md->queue))
674 		return blk_mq_queue_inflight(md->queue);
675 	else
676 		return md_in_flight_bios(md);
677 }
678 
679 u64 dm_start_time_ns_from_clone(struct bio *bio)
680 {
681 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
682 	struct dm_io *io = tio->io;
683 
684 	return jiffies_to_nsecs(io->start_time);
685 }
686 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
687 
688 static void start_io_acct(struct dm_io *io)
689 {
690 	struct mapped_device *md = io->md;
691 	struct bio *bio = io->orig_bio;
692 
693 	io->start_time = bio_start_io_acct(bio);
694 	if (unlikely(dm_stats_used(&md->stats)))
695 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
696 				    bio->bi_iter.bi_sector, bio_sectors(bio),
697 				    false, 0, &io->stats_aux);
698 }
699 
700 static void end_io_acct(struct dm_io *io)
701 {
702 	struct mapped_device *md = io->md;
703 	struct bio *bio = io->orig_bio;
704 	unsigned long duration = jiffies - io->start_time;
705 
706 	bio_end_io_acct(bio, io->start_time);
707 
708 	if (unlikely(dm_stats_used(&md->stats)))
709 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
710 				    bio->bi_iter.bi_sector, bio_sectors(bio),
711 				    true, duration, &io->stats_aux);
712 
713 	/* nudge anyone waiting on suspend queue */
714 	if (unlikely(wq_has_sleeper(&md->wait)))
715 		wake_up(&md->wait);
716 }
717 
718 /*
719  * Add the bio to the list of deferred io.
720  */
721 static void queue_io(struct mapped_device *md, struct bio *bio)
722 {
723 	unsigned long flags;
724 
725 	spin_lock_irqsave(&md->deferred_lock, flags);
726 	bio_list_add(&md->deferred, bio);
727 	spin_unlock_irqrestore(&md->deferred_lock, flags);
728 	queue_work(md->wq, &md->work);
729 }
730 
731 /*
732  * Everyone (including functions in this file), should use this
733  * function to access the md->map field, and make sure they call
734  * dm_put_live_table() when finished.
735  */
736 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
737 {
738 	*srcu_idx = srcu_read_lock(&md->io_barrier);
739 
740 	return srcu_dereference(md->map, &md->io_barrier);
741 }
742 
743 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
744 {
745 	srcu_read_unlock(&md->io_barrier, srcu_idx);
746 }
747 
748 void dm_sync_table(struct mapped_device *md)
749 {
750 	synchronize_srcu(&md->io_barrier);
751 	synchronize_rcu_expedited();
752 }
753 
754 /*
755  * A fast alternative to dm_get_live_table/dm_put_live_table.
756  * The caller must not block between these two functions.
757  */
758 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
759 {
760 	rcu_read_lock();
761 	return rcu_dereference(md->map);
762 }
763 
764 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
765 {
766 	rcu_read_unlock();
767 }
768 
769 static char *_dm_claim_ptr = "I belong to device-mapper";
770 
771 /*
772  * Open a table device so we can use it as a map destination.
773  */
774 static int open_table_device(struct table_device *td, dev_t dev,
775 			     struct mapped_device *md)
776 {
777 	struct block_device *bdev;
778 
779 	int r;
780 
781 	BUG_ON(td->dm_dev.bdev);
782 
783 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
784 	if (IS_ERR(bdev))
785 		return PTR_ERR(bdev);
786 
787 	r = bd_link_disk_holder(bdev, dm_disk(md));
788 	if (r) {
789 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
790 		return r;
791 	}
792 
793 	td->dm_dev.bdev = bdev;
794 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
795 	return 0;
796 }
797 
798 /*
799  * Close a table device that we've been using.
800  */
801 static void close_table_device(struct table_device *td, struct mapped_device *md)
802 {
803 	if (!td->dm_dev.bdev)
804 		return;
805 
806 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
807 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
808 	put_dax(td->dm_dev.dax_dev);
809 	td->dm_dev.bdev = NULL;
810 	td->dm_dev.dax_dev = NULL;
811 }
812 
813 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
814 					      fmode_t mode)
815 {
816 	struct table_device *td;
817 
818 	list_for_each_entry(td, l, list)
819 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
820 			return td;
821 
822 	return NULL;
823 }
824 
825 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
826 			struct dm_dev **result)
827 {
828 	int r;
829 	struct table_device *td;
830 
831 	mutex_lock(&md->table_devices_lock);
832 	td = find_table_device(&md->table_devices, dev, mode);
833 	if (!td) {
834 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
835 		if (!td) {
836 			mutex_unlock(&md->table_devices_lock);
837 			return -ENOMEM;
838 		}
839 
840 		td->dm_dev.mode = mode;
841 		td->dm_dev.bdev = NULL;
842 
843 		if ((r = open_table_device(td, dev, md))) {
844 			mutex_unlock(&md->table_devices_lock);
845 			kfree(td);
846 			return r;
847 		}
848 
849 		format_dev_t(td->dm_dev.name, dev);
850 
851 		refcount_set(&td->count, 1);
852 		list_add(&td->list, &md->table_devices);
853 	} else {
854 		refcount_inc(&td->count);
855 	}
856 	mutex_unlock(&md->table_devices_lock);
857 
858 	*result = &td->dm_dev;
859 	return 0;
860 }
861 EXPORT_SYMBOL_GPL(dm_get_table_device);
862 
863 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
864 {
865 	struct table_device *td = container_of(d, struct table_device, dm_dev);
866 
867 	mutex_lock(&md->table_devices_lock);
868 	if (refcount_dec_and_test(&td->count)) {
869 		close_table_device(td, md);
870 		list_del(&td->list);
871 		kfree(td);
872 	}
873 	mutex_unlock(&md->table_devices_lock);
874 }
875 EXPORT_SYMBOL(dm_put_table_device);
876 
877 static void free_table_devices(struct list_head *devices)
878 {
879 	struct list_head *tmp, *next;
880 
881 	list_for_each_safe(tmp, next, devices) {
882 		struct table_device *td = list_entry(tmp, struct table_device, list);
883 
884 		DMWARN("dm_destroy: %s still exists with %d references",
885 		       td->dm_dev.name, refcount_read(&td->count));
886 		kfree(td);
887 	}
888 }
889 
890 /*
891  * Get the geometry associated with a dm device
892  */
893 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
894 {
895 	*geo = md->geometry;
896 
897 	return 0;
898 }
899 
900 /*
901  * Set the geometry of a device.
902  */
903 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
904 {
905 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
906 
907 	if (geo->start > sz) {
908 		DMWARN("Start sector is beyond the geometry limits.");
909 		return -EINVAL;
910 	}
911 
912 	md->geometry = *geo;
913 
914 	return 0;
915 }
916 
917 static int __noflush_suspending(struct mapped_device *md)
918 {
919 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
920 }
921 
922 /*
923  * Decrements the number of outstanding ios that a bio has been
924  * cloned into, completing the original io if necc.
925  */
926 static void dec_pending(struct dm_io *io, blk_status_t error)
927 {
928 	unsigned long flags;
929 	blk_status_t io_error;
930 	struct bio *bio;
931 	struct mapped_device *md = io->md;
932 
933 	/* Push-back supersedes any I/O errors */
934 	if (unlikely(error)) {
935 		spin_lock_irqsave(&io->endio_lock, flags);
936 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
937 			io->status = error;
938 		spin_unlock_irqrestore(&io->endio_lock, flags);
939 	}
940 
941 	if (atomic_dec_and_test(&io->io_count)) {
942 		if (io->status == BLK_STS_DM_REQUEUE) {
943 			/*
944 			 * Target requested pushing back the I/O.
945 			 */
946 			spin_lock_irqsave(&md->deferred_lock, flags);
947 			if (__noflush_suspending(md))
948 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
949 				bio_list_add_head(&md->deferred, io->orig_bio);
950 			else
951 				/* noflush suspend was interrupted. */
952 				io->status = BLK_STS_IOERR;
953 			spin_unlock_irqrestore(&md->deferred_lock, flags);
954 		}
955 
956 		io_error = io->status;
957 		bio = io->orig_bio;
958 		end_io_acct(io);
959 		free_io(md, io);
960 
961 		if (io_error == BLK_STS_DM_REQUEUE)
962 			return;
963 
964 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
965 			/*
966 			 * Preflush done for flush with data, reissue
967 			 * without REQ_PREFLUSH.
968 			 */
969 			bio->bi_opf &= ~REQ_PREFLUSH;
970 			queue_io(md, bio);
971 		} else {
972 			/* done with normal IO or empty flush */
973 			if (io_error)
974 				bio->bi_status = io_error;
975 			bio_endio(bio);
976 		}
977 	}
978 }
979 
980 void disable_discard(struct mapped_device *md)
981 {
982 	struct queue_limits *limits = dm_get_queue_limits(md);
983 
984 	/* device doesn't really support DISCARD, disable it */
985 	limits->max_discard_sectors = 0;
986 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
987 }
988 
989 void disable_write_same(struct mapped_device *md)
990 {
991 	struct queue_limits *limits = dm_get_queue_limits(md);
992 
993 	/* device doesn't really support WRITE SAME, disable it */
994 	limits->max_write_same_sectors = 0;
995 }
996 
997 void disable_write_zeroes(struct mapped_device *md)
998 {
999 	struct queue_limits *limits = dm_get_queue_limits(md);
1000 
1001 	/* device doesn't really support WRITE ZEROES, disable it */
1002 	limits->max_write_zeroes_sectors = 0;
1003 }
1004 
1005 static void clone_endio(struct bio *bio)
1006 {
1007 	blk_status_t error = bio->bi_status;
1008 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1009 	struct dm_io *io = tio->io;
1010 	struct mapped_device *md = tio->io->md;
1011 	dm_endio_fn endio = tio->ti->type->end_io;
1012 
1013 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
1014 		if (bio_op(bio) == REQ_OP_DISCARD &&
1015 		    !bio->bi_disk->queue->limits.max_discard_sectors)
1016 			disable_discard(md);
1017 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1018 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1019 			disable_write_same(md);
1020 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1021 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1022 			disable_write_zeroes(md);
1023 	}
1024 
1025 	if (endio) {
1026 		int r = endio(tio->ti, bio, &error);
1027 		switch (r) {
1028 		case DM_ENDIO_REQUEUE:
1029 			error = BLK_STS_DM_REQUEUE;
1030 			/*FALLTHRU*/
1031 		case DM_ENDIO_DONE:
1032 			break;
1033 		case DM_ENDIO_INCOMPLETE:
1034 			/* The target will handle the io */
1035 			return;
1036 		default:
1037 			DMWARN("unimplemented target endio return value: %d", r);
1038 			BUG();
1039 		}
1040 	}
1041 
1042 	free_tio(tio);
1043 	dec_pending(io, error);
1044 }
1045 
1046 /*
1047  * Return maximum size of I/O possible at the supplied sector up to the current
1048  * target boundary.
1049  */
1050 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1051 {
1052 	sector_t target_offset = dm_target_offset(ti, sector);
1053 
1054 	return ti->len - target_offset;
1055 }
1056 
1057 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1058 {
1059 	sector_t len = max_io_len_target_boundary(sector, ti);
1060 	sector_t offset, max_len;
1061 
1062 	/*
1063 	 * Does the target need to split even further?
1064 	 */
1065 	if (ti->max_io_len) {
1066 		offset = dm_target_offset(ti, sector);
1067 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1068 			max_len = sector_div(offset, ti->max_io_len);
1069 		else
1070 			max_len = offset & (ti->max_io_len - 1);
1071 		max_len = ti->max_io_len - max_len;
1072 
1073 		if (len > max_len)
1074 			len = max_len;
1075 	}
1076 
1077 	return len;
1078 }
1079 
1080 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1081 {
1082 	if (len > UINT_MAX) {
1083 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1084 		      (unsigned long long)len, UINT_MAX);
1085 		ti->error = "Maximum size of target IO is too large";
1086 		return -EINVAL;
1087 	}
1088 
1089 	ti->max_io_len = (uint32_t) len;
1090 
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1094 
1095 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1096 						sector_t sector, int *srcu_idx)
1097 	__acquires(md->io_barrier)
1098 {
1099 	struct dm_table *map;
1100 	struct dm_target *ti;
1101 
1102 	map = dm_get_live_table(md, srcu_idx);
1103 	if (!map)
1104 		return NULL;
1105 
1106 	ti = dm_table_find_target(map, sector);
1107 	if (!ti)
1108 		return NULL;
1109 
1110 	return ti;
1111 }
1112 
1113 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1114 				 long nr_pages, void **kaddr, pfn_t *pfn)
1115 {
1116 	struct mapped_device *md = dax_get_private(dax_dev);
1117 	sector_t sector = pgoff * PAGE_SECTORS;
1118 	struct dm_target *ti;
1119 	long len, ret = -EIO;
1120 	int srcu_idx;
1121 
1122 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1123 
1124 	if (!ti)
1125 		goto out;
1126 	if (!ti->type->direct_access)
1127 		goto out;
1128 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1129 	if (len < 1)
1130 		goto out;
1131 	nr_pages = min(len, nr_pages);
1132 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1133 
1134  out:
1135 	dm_put_live_table(md, srcu_idx);
1136 
1137 	return ret;
1138 }
1139 
1140 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1141 		int blocksize, sector_t start, sector_t len)
1142 {
1143 	struct mapped_device *md = dax_get_private(dax_dev);
1144 	struct dm_table *map;
1145 	int srcu_idx;
1146 	bool ret;
1147 
1148 	map = dm_get_live_table(md, &srcu_idx);
1149 	if (!map)
1150 		return false;
1151 
1152 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1153 
1154 	dm_put_live_table(md, srcu_idx);
1155 
1156 	return ret;
1157 }
1158 
1159 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1160 				    void *addr, size_t bytes, struct iov_iter *i)
1161 {
1162 	struct mapped_device *md = dax_get_private(dax_dev);
1163 	sector_t sector = pgoff * PAGE_SECTORS;
1164 	struct dm_target *ti;
1165 	long ret = 0;
1166 	int srcu_idx;
1167 
1168 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1169 
1170 	if (!ti)
1171 		goto out;
1172 	if (!ti->type->dax_copy_from_iter) {
1173 		ret = copy_from_iter(addr, bytes, i);
1174 		goto out;
1175 	}
1176 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1177  out:
1178 	dm_put_live_table(md, srcu_idx);
1179 
1180 	return ret;
1181 }
1182 
1183 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1184 		void *addr, size_t bytes, struct iov_iter *i)
1185 {
1186 	struct mapped_device *md = dax_get_private(dax_dev);
1187 	sector_t sector = pgoff * PAGE_SECTORS;
1188 	struct dm_target *ti;
1189 	long ret = 0;
1190 	int srcu_idx;
1191 
1192 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1193 
1194 	if (!ti)
1195 		goto out;
1196 	if (!ti->type->dax_copy_to_iter) {
1197 		ret = copy_to_iter(addr, bytes, i);
1198 		goto out;
1199 	}
1200 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1201  out:
1202 	dm_put_live_table(md, srcu_idx);
1203 
1204 	return ret;
1205 }
1206 
1207 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1208 				  size_t nr_pages)
1209 {
1210 	struct mapped_device *md = dax_get_private(dax_dev);
1211 	sector_t sector = pgoff * PAGE_SECTORS;
1212 	struct dm_target *ti;
1213 	int ret = -EIO;
1214 	int srcu_idx;
1215 
1216 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1217 
1218 	if (!ti)
1219 		goto out;
1220 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1221 		/*
1222 		 * ->zero_page_range() is mandatory dax operation. If we are
1223 		 *  here, something is wrong.
1224 		 */
1225 		dm_put_live_table(md, srcu_idx);
1226 		goto out;
1227 	}
1228 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1229 
1230  out:
1231 	dm_put_live_table(md, srcu_idx);
1232 
1233 	return ret;
1234 }
1235 
1236 /*
1237  * A target may call dm_accept_partial_bio only from the map routine.  It is
1238  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1239  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1240  *
1241  * dm_accept_partial_bio informs the dm that the target only wants to process
1242  * additional n_sectors sectors of the bio and the rest of the data should be
1243  * sent in a next bio.
1244  *
1245  * A diagram that explains the arithmetics:
1246  * +--------------------+---------------+-------+
1247  * |         1          |       2       |   3   |
1248  * +--------------------+---------------+-------+
1249  *
1250  * <-------------- *tio->len_ptr --------------->
1251  *                      <------- bi_size ------->
1252  *                      <-- n_sectors -->
1253  *
1254  * Region 1 was already iterated over with bio_advance or similar function.
1255  *	(it may be empty if the target doesn't use bio_advance)
1256  * Region 2 is the remaining bio size that the target wants to process.
1257  *	(it may be empty if region 1 is non-empty, although there is no reason
1258  *	 to make it empty)
1259  * The target requires that region 3 is to be sent in the next bio.
1260  *
1261  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1262  * the partially processed part (the sum of regions 1+2) must be the same for all
1263  * copies of the bio.
1264  */
1265 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1266 {
1267 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1268 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1269 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1270 	BUG_ON(bi_size > *tio->len_ptr);
1271 	BUG_ON(n_sectors > bi_size);
1272 	*tio->len_ptr -= bi_size - n_sectors;
1273 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1274 }
1275 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1276 
1277 static blk_qc_t __map_bio(struct dm_target_io *tio)
1278 {
1279 	int r;
1280 	sector_t sector;
1281 	struct bio *clone = &tio->clone;
1282 	struct dm_io *io = tio->io;
1283 	struct mapped_device *md = io->md;
1284 	struct dm_target *ti = tio->ti;
1285 	blk_qc_t ret = BLK_QC_T_NONE;
1286 
1287 	clone->bi_end_io = clone_endio;
1288 
1289 	/*
1290 	 * Map the clone.  If r == 0 we don't need to do
1291 	 * anything, the target has assumed ownership of
1292 	 * this io.
1293 	 */
1294 	atomic_inc(&io->io_count);
1295 	sector = clone->bi_iter.bi_sector;
1296 
1297 	r = ti->type->map(ti, clone);
1298 	switch (r) {
1299 	case DM_MAPIO_SUBMITTED:
1300 		break;
1301 	case DM_MAPIO_REMAPPED:
1302 		/* the bio has been remapped so dispatch it */
1303 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1304 				      bio_dev(io->orig_bio), sector);
1305 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1306 			ret = direct_make_request(clone);
1307 		else
1308 			ret = submit_bio_noacct(clone);
1309 		break;
1310 	case DM_MAPIO_KILL:
1311 		free_tio(tio);
1312 		dec_pending(io, BLK_STS_IOERR);
1313 		break;
1314 	case DM_MAPIO_REQUEUE:
1315 		free_tio(tio);
1316 		dec_pending(io, BLK_STS_DM_REQUEUE);
1317 		break;
1318 	default:
1319 		DMWARN("unimplemented target map return value: %d", r);
1320 		BUG();
1321 	}
1322 
1323 	return ret;
1324 }
1325 
1326 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1327 {
1328 	bio->bi_iter.bi_sector = sector;
1329 	bio->bi_iter.bi_size = to_bytes(len);
1330 }
1331 
1332 /*
1333  * Creates a bio that consists of range of complete bvecs.
1334  */
1335 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1336 		     sector_t sector, unsigned len)
1337 {
1338 	struct bio *clone = &tio->clone;
1339 
1340 	__bio_clone_fast(clone, bio);
1341 
1342 	bio_crypt_clone(clone, bio, GFP_NOIO);
1343 
1344 	if (bio_integrity(bio)) {
1345 		int r;
1346 
1347 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1348 			     !dm_target_passes_integrity(tio->ti->type))) {
1349 			DMWARN("%s: the target %s doesn't support integrity data.",
1350 				dm_device_name(tio->io->md),
1351 				tio->ti->type->name);
1352 			return -EIO;
1353 		}
1354 
1355 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1356 		if (r < 0)
1357 			return r;
1358 	}
1359 
1360 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1361 	clone->bi_iter.bi_size = to_bytes(len);
1362 
1363 	if (bio_integrity(bio))
1364 		bio_integrity_trim(clone);
1365 
1366 	return 0;
1367 }
1368 
1369 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1370 				struct dm_target *ti, unsigned num_bios)
1371 {
1372 	struct dm_target_io *tio;
1373 	int try;
1374 
1375 	if (!num_bios)
1376 		return;
1377 
1378 	if (num_bios == 1) {
1379 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1380 		bio_list_add(blist, &tio->clone);
1381 		return;
1382 	}
1383 
1384 	for (try = 0; try < 2; try++) {
1385 		int bio_nr;
1386 		struct bio *bio;
1387 
1388 		if (try)
1389 			mutex_lock(&ci->io->md->table_devices_lock);
1390 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1391 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1392 			if (!tio)
1393 				break;
1394 
1395 			bio_list_add(blist, &tio->clone);
1396 		}
1397 		if (try)
1398 			mutex_unlock(&ci->io->md->table_devices_lock);
1399 		if (bio_nr == num_bios)
1400 			return;
1401 
1402 		while ((bio = bio_list_pop(blist))) {
1403 			tio = container_of(bio, struct dm_target_io, clone);
1404 			free_tio(tio);
1405 		}
1406 	}
1407 }
1408 
1409 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1410 					   struct dm_target_io *tio, unsigned *len)
1411 {
1412 	struct bio *clone = &tio->clone;
1413 
1414 	tio->len_ptr = len;
1415 
1416 	__bio_clone_fast(clone, ci->bio);
1417 	if (len)
1418 		bio_setup_sector(clone, ci->sector, *len);
1419 
1420 	return __map_bio(tio);
1421 }
1422 
1423 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1424 				  unsigned num_bios, unsigned *len)
1425 {
1426 	struct bio_list blist = BIO_EMPTY_LIST;
1427 	struct bio *bio;
1428 	struct dm_target_io *tio;
1429 
1430 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1431 
1432 	while ((bio = bio_list_pop(&blist))) {
1433 		tio = container_of(bio, struct dm_target_io, clone);
1434 		(void) __clone_and_map_simple_bio(ci, tio, len);
1435 	}
1436 }
1437 
1438 static int __send_empty_flush(struct clone_info *ci)
1439 {
1440 	unsigned target_nr = 0;
1441 	struct dm_target *ti;
1442 
1443 	/*
1444 	 * Empty flush uses a statically initialized bio, as the base for
1445 	 * cloning.  However, blkg association requires that a bdev is
1446 	 * associated with a gendisk, which doesn't happen until the bdev is
1447 	 * opened.  So, blkg association is done at issue time of the flush
1448 	 * rather than when the device is created in alloc_dev().
1449 	 */
1450 	bio_set_dev(ci->bio, ci->io->md->bdev);
1451 
1452 	BUG_ON(bio_has_data(ci->bio));
1453 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1454 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1455 	return 0;
1456 }
1457 
1458 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1459 				    sector_t sector, unsigned *len)
1460 {
1461 	struct bio *bio = ci->bio;
1462 	struct dm_target_io *tio;
1463 	int r;
1464 
1465 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1466 	tio->len_ptr = len;
1467 	r = clone_bio(tio, bio, sector, *len);
1468 	if (r < 0) {
1469 		free_tio(tio);
1470 		return r;
1471 	}
1472 	(void) __map_bio(tio);
1473 
1474 	return 0;
1475 }
1476 
1477 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1478 
1479 static unsigned get_num_discard_bios(struct dm_target *ti)
1480 {
1481 	return ti->num_discard_bios;
1482 }
1483 
1484 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1485 {
1486 	return ti->num_secure_erase_bios;
1487 }
1488 
1489 static unsigned get_num_write_same_bios(struct dm_target *ti)
1490 {
1491 	return ti->num_write_same_bios;
1492 }
1493 
1494 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1495 {
1496 	return ti->num_write_zeroes_bios;
1497 }
1498 
1499 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1500 				       unsigned num_bios)
1501 {
1502 	unsigned len;
1503 
1504 	/*
1505 	 * Even though the device advertised support for this type of
1506 	 * request, that does not mean every target supports it, and
1507 	 * reconfiguration might also have changed that since the
1508 	 * check was performed.
1509 	 */
1510 	if (!num_bios)
1511 		return -EOPNOTSUPP;
1512 
1513 	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1514 
1515 	__send_duplicate_bios(ci, ti, num_bios, &len);
1516 
1517 	ci->sector += len;
1518 	ci->sector_count -= len;
1519 
1520 	return 0;
1521 }
1522 
1523 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1524 {
1525 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1526 }
1527 
1528 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1529 {
1530 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1531 }
1532 
1533 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1534 {
1535 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1536 }
1537 
1538 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1539 {
1540 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1541 }
1542 
1543 static bool is_abnormal_io(struct bio *bio)
1544 {
1545 	bool r = false;
1546 
1547 	switch (bio_op(bio)) {
1548 	case REQ_OP_DISCARD:
1549 	case REQ_OP_SECURE_ERASE:
1550 	case REQ_OP_WRITE_SAME:
1551 	case REQ_OP_WRITE_ZEROES:
1552 		r = true;
1553 		break;
1554 	}
1555 
1556 	return r;
1557 }
1558 
1559 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1560 				  int *result)
1561 {
1562 	struct bio *bio = ci->bio;
1563 
1564 	if (bio_op(bio) == REQ_OP_DISCARD)
1565 		*result = __send_discard(ci, ti);
1566 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1567 		*result = __send_secure_erase(ci, ti);
1568 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1569 		*result = __send_write_same(ci, ti);
1570 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1571 		*result = __send_write_zeroes(ci, ti);
1572 	else
1573 		return false;
1574 
1575 	return true;
1576 }
1577 
1578 /*
1579  * Select the correct strategy for processing a non-flush bio.
1580  */
1581 static int __split_and_process_non_flush(struct clone_info *ci)
1582 {
1583 	struct dm_target *ti;
1584 	unsigned len;
1585 	int r;
1586 
1587 	ti = dm_table_find_target(ci->map, ci->sector);
1588 	if (!ti)
1589 		return -EIO;
1590 
1591 	if (__process_abnormal_io(ci, ti, &r))
1592 		return r;
1593 
1594 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1595 
1596 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1597 	if (r < 0)
1598 		return r;
1599 
1600 	ci->sector += len;
1601 	ci->sector_count -= len;
1602 
1603 	return 0;
1604 }
1605 
1606 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1607 			    struct dm_table *map, struct bio *bio)
1608 {
1609 	ci->map = map;
1610 	ci->io = alloc_io(md, bio);
1611 	ci->sector = bio->bi_iter.bi_sector;
1612 }
1613 
1614 #define __dm_part_stat_sub(part, field, subnd)	\
1615 	(part_stat_get(part, field) -= (subnd))
1616 
1617 /*
1618  * Entry point to split a bio into clones and submit them to the targets.
1619  */
1620 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1621 					struct dm_table *map, struct bio *bio)
1622 {
1623 	struct clone_info ci;
1624 	blk_qc_t ret = BLK_QC_T_NONE;
1625 	int error = 0;
1626 
1627 	init_clone_info(&ci, md, map, bio);
1628 
1629 	if (bio->bi_opf & REQ_PREFLUSH) {
1630 		struct bio flush_bio;
1631 
1632 		/*
1633 		 * Use an on-stack bio for this, it's safe since we don't
1634 		 * need to reference it after submit. It's just used as
1635 		 * the basis for the clone(s).
1636 		 */
1637 		bio_init(&flush_bio, NULL, 0);
1638 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1639 		ci.bio = &flush_bio;
1640 		ci.sector_count = 0;
1641 		error = __send_empty_flush(&ci);
1642 		bio_uninit(ci.bio);
1643 		/* dec_pending submits any data associated with flush */
1644 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1645 		ci.bio = bio;
1646 		ci.sector_count = 0;
1647 		error = __split_and_process_non_flush(&ci);
1648 	} else {
1649 		ci.bio = bio;
1650 		ci.sector_count = bio_sectors(bio);
1651 		while (ci.sector_count && !error) {
1652 			error = __split_and_process_non_flush(&ci);
1653 			if (current->bio_list && ci.sector_count && !error) {
1654 				/*
1655 				 * Remainder must be passed to submit_bio_noacct()
1656 				 * so that it gets handled *after* bios already submitted
1657 				 * have been completely processed.
1658 				 * We take a clone of the original to store in
1659 				 * ci.io->orig_bio to be used by end_io_acct() and
1660 				 * for dec_pending to use for completion handling.
1661 				 */
1662 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1663 							  GFP_NOIO, &md->queue->bio_split);
1664 				ci.io->orig_bio = b;
1665 
1666 				/*
1667 				 * Adjust IO stats for each split, otherwise upon queue
1668 				 * reentry there will be redundant IO accounting.
1669 				 * NOTE: this is a stop-gap fix, a proper fix involves
1670 				 * significant refactoring of DM core's bio splitting
1671 				 * (by eliminating DM's splitting and just using bio_split)
1672 				 */
1673 				part_stat_lock();
1674 				__dm_part_stat_sub(&dm_disk(md)->part0,
1675 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1676 				part_stat_unlock();
1677 
1678 				bio_chain(b, bio);
1679 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1680 				ret = submit_bio_noacct(bio);
1681 				break;
1682 			}
1683 		}
1684 	}
1685 
1686 	/* drop the extra reference count */
1687 	dec_pending(ci.io, errno_to_blk_status(error));
1688 	return ret;
1689 }
1690 
1691 /*
1692  * Optimized variant of __split_and_process_bio that leverages the
1693  * fact that targets that use it do _not_ have a need to split bios.
1694  */
1695 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1696 			      struct bio *bio, struct dm_target *ti)
1697 {
1698 	struct clone_info ci;
1699 	blk_qc_t ret = BLK_QC_T_NONE;
1700 	int error = 0;
1701 
1702 	init_clone_info(&ci, md, map, bio);
1703 
1704 	if (bio->bi_opf & REQ_PREFLUSH) {
1705 		struct bio flush_bio;
1706 
1707 		/*
1708 		 * Use an on-stack bio for this, it's safe since we don't
1709 		 * need to reference it after submit. It's just used as
1710 		 * the basis for the clone(s).
1711 		 */
1712 		bio_init(&flush_bio, NULL, 0);
1713 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1714 		ci.bio = &flush_bio;
1715 		ci.sector_count = 0;
1716 		error = __send_empty_flush(&ci);
1717 		bio_uninit(ci.bio);
1718 		/* dec_pending submits any data associated with flush */
1719 	} else {
1720 		struct dm_target_io *tio;
1721 
1722 		ci.bio = bio;
1723 		ci.sector_count = bio_sectors(bio);
1724 		if (__process_abnormal_io(&ci, ti, &error))
1725 			goto out;
1726 
1727 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1728 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1729 	}
1730 out:
1731 	/* drop the extra reference count */
1732 	dec_pending(ci.io, errno_to_blk_status(error));
1733 	return ret;
1734 }
1735 
1736 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1737 {
1738 	unsigned len, sector_count;
1739 
1740 	sector_count = bio_sectors(*bio);
1741 	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1742 
1743 	if (sector_count > len) {
1744 		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1745 
1746 		bio_chain(split, *bio);
1747 		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1748 		submit_bio_noacct(*bio);
1749 		*bio = split;
1750 	}
1751 }
1752 
1753 static blk_qc_t dm_process_bio(struct mapped_device *md,
1754 			       struct dm_table *map, struct bio *bio)
1755 {
1756 	blk_qc_t ret = BLK_QC_T_NONE;
1757 	struct dm_target *ti = md->immutable_target;
1758 
1759 	if (unlikely(!map)) {
1760 		bio_io_error(bio);
1761 		return ret;
1762 	}
1763 
1764 	if (!ti) {
1765 		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1766 		if (unlikely(!ti)) {
1767 			bio_io_error(bio);
1768 			return ret;
1769 		}
1770 	}
1771 
1772 	/*
1773 	 * If in ->queue_bio we need to use blk_queue_split(), otherwise
1774 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1775 	 * won't be imposed.
1776 	 */
1777 	if (current->bio_list) {
1778 		if (is_abnormal_io(bio))
1779 			blk_queue_split(&bio);
1780 		else
1781 			dm_queue_split(md, ti, &bio);
1782 	}
1783 
1784 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1785 		return __process_bio(md, map, bio, ti);
1786 	else
1787 		return __split_and_process_bio(md, map, bio);
1788 }
1789 
1790 static blk_qc_t dm_submit_bio(struct bio *bio)
1791 {
1792 	struct mapped_device *md = bio->bi_disk->private_data;
1793 	blk_qc_t ret = BLK_QC_T_NONE;
1794 	int srcu_idx;
1795 	struct dm_table *map;
1796 
1797 	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1798 		/*
1799 		 * We are called with a live reference on q_usage_counter, but
1800 		 * that one will be released as soon as we return.  Grab an
1801 		 * extra one as blk_mq_submit_bio expects to be able to consume
1802 		 * a reference (which lives until the request is freed in case a
1803 		 * request is allocated).
1804 		 */
1805 		percpu_ref_get(&bio->bi_disk->queue->q_usage_counter);
1806 		return blk_mq_submit_bio(bio);
1807 	}
1808 
1809 	map = dm_get_live_table(md, &srcu_idx);
1810 
1811 	/* if we're suspended, we have to queue this io for later */
1812 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1813 		dm_put_live_table(md, srcu_idx);
1814 
1815 		if (!(bio->bi_opf & REQ_RAHEAD))
1816 			queue_io(md, bio);
1817 		else
1818 			bio_io_error(bio);
1819 		return ret;
1820 	}
1821 
1822 	ret = dm_process_bio(md, map, bio);
1823 
1824 	dm_put_live_table(md, srcu_idx);
1825 	return ret;
1826 }
1827 
1828 static int dm_any_congested(void *congested_data, int bdi_bits)
1829 {
1830 	int r = bdi_bits;
1831 	struct mapped_device *md = congested_data;
1832 	struct dm_table *map;
1833 
1834 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1835 		if (dm_request_based(md)) {
1836 			/*
1837 			 * With request-based DM we only need to check the
1838 			 * top-level queue for congestion.
1839 			 */
1840 			struct backing_dev_info *bdi = md->queue->backing_dev_info;
1841 			r = bdi->wb.congested->state & bdi_bits;
1842 		} else {
1843 			map = dm_get_live_table_fast(md);
1844 			if (map)
1845 				r = dm_table_any_congested(map, bdi_bits);
1846 			dm_put_live_table_fast(md);
1847 		}
1848 	}
1849 
1850 	return r;
1851 }
1852 
1853 /*-----------------------------------------------------------------
1854  * An IDR is used to keep track of allocated minor numbers.
1855  *---------------------------------------------------------------*/
1856 static void free_minor(int minor)
1857 {
1858 	spin_lock(&_minor_lock);
1859 	idr_remove(&_minor_idr, minor);
1860 	spin_unlock(&_minor_lock);
1861 }
1862 
1863 /*
1864  * See if the device with a specific minor # is free.
1865  */
1866 static int specific_minor(int minor)
1867 {
1868 	int r;
1869 
1870 	if (minor >= (1 << MINORBITS))
1871 		return -EINVAL;
1872 
1873 	idr_preload(GFP_KERNEL);
1874 	spin_lock(&_minor_lock);
1875 
1876 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1877 
1878 	spin_unlock(&_minor_lock);
1879 	idr_preload_end();
1880 	if (r < 0)
1881 		return r == -ENOSPC ? -EBUSY : r;
1882 	return 0;
1883 }
1884 
1885 static int next_free_minor(int *minor)
1886 {
1887 	int r;
1888 
1889 	idr_preload(GFP_KERNEL);
1890 	spin_lock(&_minor_lock);
1891 
1892 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1893 
1894 	spin_unlock(&_minor_lock);
1895 	idr_preload_end();
1896 	if (r < 0)
1897 		return r;
1898 	*minor = r;
1899 	return 0;
1900 }
1901 
1902 static const struct block_device_operations dm_blk_dops;
1903 static const struct dax_operations dm_dax_ops;
1904 
1905 static void dm_wq_work(struct work_struct *work);
1906 
1907 static void cleanup_mapped_device(struct mapped_device *md)
1908 {
1909 	if (md->wq)
1910 		destroy_workqueue(md->wq);
1911 	bioset_exit(&md->bs);
1912 	bioset_exit(&md->io_bs);
1913 
1914 	if (md->dax_dev) {
1915 		kill_dax(md->dax_dev);
1916 		put_dax(md->dax_dev);
1917 		md->dax_dev = NULL;
1918 	}
1919 
1920 	if (md->disk) {
1921 		spin_lock(&_minor_lock);
1922 		md->disk->private_data = NULL;
1923 		spin_unlock(&_minor_lock);
1924 		del_gendisk(md->disk);
1925 		put_disk(md->disk);
1926 	}
1927 
1928 	if (md->queue)
1929 		blk_cleanup_queue(md->queue);
1930 
1931 	cleanup_srcu_struct(&md->io_barrier);
1932 
1933 	if (md->bdev) {
1934 		bdput(md->bdev);
1935 		md->bdev = NULL;
1936 	}
1937 
1938 	mutex_destroy(&md->suspend_lock);
1939 	mutex_destroy(&md->type_lock);
1940 	mutex_destroy(&md->table_devices_lock);
1941 
1942 	dm_mq_cleanup_mapped_device(md);
1943 }
1944 
1945 /*
1946  * Allocate and initialise a blank device with a given minor.
1947  */
1948 static struct mapped_device *alloc_dev(int minor)
1949 {
1950 	int r, numa_node_id = dm_get_numa_node();
1951 	struct mapped_device *md;
1952 	void *old_md;
1953 
1954 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1955 	if (!md) {
1956 		DMWARN("unable to allocate device, out of memory.");
1957 		return NULL;
1958 	}
1959 
1960 	if (!try_module_get(THIS_MODULE))
1961 		goto bad_module_get;
1962 
1963 	/* get a minor number for the dev */
1964 	if (minor == DM_ANY_MINOR)
1965 		r = next_free_minor(&minor);
1966 	else
1967 		r = specific_minor(minor);
1968 	if (r < 0)
1969 		goto bad_minor;
1970 
1971 	r = init_srcu_struct(&md->io_barrier);
1972 	if (r < 0)
1973 		goto bad_io_barrier;
1974 
1975 	md->numa_node_id = numa_node_id;
1976 	md->init_tio_pdu = false;
1977 	md->type = DM_TYPE_NONE;
1978 	mutex_init(&md->suspend_lock);
1979 	mutex_init(&md->type_lock);
1980 	mutex_init(&md->table_devices_lock);
1981 	spin_lock_init(&md->deferred_lock);
1982 	atomic_set(&md->holders, 1);
1983 	atomic_set(&md->open_count, 0);
1984 	atomic_set(&md->event_nr, 0);
1985 	atomic_set(&md->uevent_seq, 0);
1986 	INIT_LIST_HEAD(&md->uevent_list);
1987 	INIT_LIST_HEAD(&md->table_devices);
1988 	spin_lock_init(&md->uevent_lock);
1989 
1990 	/*
1991 	 * default to bio-based until DM table is loaded and md->type
1992 	 * established. If request-based table is loaded: blk-mq will
1993 	 * override accordingly.
1994 	 */
1995 	md->queue = blk_alloc_queue(numa_node_id);
1996 	if (!md->queue)
1997 		goto bad;
1998 
1999 	md->disk = alloc_disk_node(1, md->numa_node_id);
2000 	if (!md->disk)
2001 		goto bad;
2002 
2003 	init_waitqueue_head(&md->wait);
2004 	INIT_WORK(&md->work, dm_wq_work);
2005 	init_waitqueue_head(&md->eventq);
2006 	init_completion(&md->kobj_holder.completion);
2007 
2008 	md->disk->major = _major;
2009 	md->disk->first_minor = minor;
2010 	md->disk->fops = &dm_blk_dops;
2011 	md->disk->queue = md->queue;
2012 	md->disk->private_data = md;
2013 	sprintf(md->disk->disk_name, "dm-%d", minor);
2014 
2015 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
2016 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
2017 					&dm_dax_ops, 0);
2018 		if (IS_ERR(md->dax_dev))
2019 			goto bad;
2020 	}
2021 
2022 	add_disk_no_queue_reg(md->disk);
2023 	format_dev_t(md->name, MKDEV(_major, minor));
2024 
2025 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2026 	if (!md->wq)
2027 		goto bad;
2028 
2029 	md->bdev = bdget_disk(md->disk, 0);
2030 	if (!md->bdev)
2031 		goto bad;
2032 
2033 	dm_stats_init(&md->stats);
2034 
2035 	/* Populate the mapping, nobody knows we exist yet */
2036 	spin_lock(&_minor_lock);
2037 	old_md = idr_replace(&_minor_idr, md, minor);
2038 	spin_unlock(&_minor_lock);
2039 
2040 	BUG_ON(old_md != MINOR_ALLOCED);
2041 
2042 	return md;
2043 
2044 bad:
2045 	cleanup_mapped_device(md);
2046 bad_io_barrier:
2047 	free_minor(minor);
2048 bad_minor:
2049 	module_put(THIS_MODULE);
2050 bad_module_get:
2051 	kvfree(md);
2052 	return NULL;
2053 }
2054 
2055 static void unlock_fs(struct mapped_device *md);
2056 
2057 static void free_dev(struct mapped_device *md)
2058 {
2059 	int minor = MINOR(disk_devt(md->disk));
2060 
2061 	unlock_fs(md);
2062 
2063 	cleanup_mapped_device(md);
2064 
2065 	free_table_devices(&md->table_devices);
2066 	dm_stats_cleanup(&md->stats);
2067 	free_minor(minor);
2068 
2069 	module_put(THIS_MODULE);
2070 	kvfree(md);
2071 }
2072 
2073 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2074 {
2075 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2076 	int ret = 0;
2077 
2078 	if (dm_table_bio_based(t)) {
2079 		/*
2080 		 * The md may already have mempools that need changing.
2081 		 * If so, reload bioset because front_pad may have changed
2082 		 * because a different table was loaded.
2083 		 */
2084 		bioset_exit(&md->bs);
2085 		bioset_exit(&md->io_bs);
2086 
2087 	} else if (bioset_initialized(&md->bs)) {
2088 		/*
2089 		 * There's no need to reload with request-based dm
2090 		 * because the size of front_pad doesn't change.
2091 		 * Note for future: If you are to reload bioset,
2092 		 * prep-ed requests in the queue may refer
2093 		 * to bio from the old bioset, so you must walk
2094 		 * through the queue to unprep.
2095 		 */
2096 		goto out;
2097 	}
2098 
2099 	BUG_ON(!p ||
2100 	       bioset_initialized(&md->bs) ||
2101 	       bioset_initialized(&md->io_bs));
2102 
2103 	ret = bioset_init_from_src(&md->bs, &p->bs);
2104 	if (ret)
2105 		goto out;
2106 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2107 	if (ret)
2108 		bioset_exit(&md->bs);
2109 out:
2110 	/* mempool bind completed, no longer need any mempools in the table */
2111 	dm_table_free_md_mempools(t);
2112 	return ret;
2113 }
2114 
2115 /*
2116  * Bind a table to the device.
2117  */
2118 static void event_callback(void *context)
2119 {
2120 	unsigned long flags;
2121 	LIST_HEAD(uevents);
2122 	struct mapped_device *md = (struct mapped_device *) context;
2123 
2124 	spin_lock_irqsave(&md->uevent_lock, flags);
2125 	list_splice_init(&md->uevent_list, &uevents);
2126 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2127 
2128 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2129 
2130 	atomic_inc(&md->event_nr);
2131 	wake_up(&md->eventq);
2132 	dm_issue_global_event();
2133 }
2134 
2135 /*
2136  * Protected by md->suspend_lock obtained by dm_swap_table().
2137  */
2138 static void __set_size(struct mapped_device *md, sector_t size)
2139 {
2140 	lockdep_assert_held(&md->suspend_lock);
2141 
2142 	set_capacity(md->disk, size);
2143 
2144 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2145 }
2146 
2147 /*
2148  * Returns old map, which caller must destroy.
2149  */
2150 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2151 			       struct queue_limits *limits)
2152 {
2153 	struct dm_table *old_map;
2154 	struct request_queue *q = md->queue;
2155 	bool request_based = dm_table_request_based(t);
2156 	sector_t size;
2157 	int ret;
2158 
2159 	lockdep_assert_held(&md->suspend_lock);
2160 
2161 	size = dm_table_get_size(t);
2162 
2163 	/*
2164 	 * Wipe any geometry if the size of the table changed.
2165 	 */
2166 	if (size != dm_get_size(md))
2167 		memset(&md->geometry, 0, sizeof(md->geometry));
2168 
2169 	__set_size(md, size);
2170 
2171 	dm_table_event_callback(t, event_callback, md);
2172 
2173 	/*
2174 	 * The queue hasn't been stopped yet, if the old table type wasn't
2175 	 * for request-based during suspension.  So stop it to prevent
2176 	 * I/O mapping before resume.
2177 	 * This must be done before setting the queue restrictions,
2178 	 * because request-based dm may be run just after the setting.
2179 	 */
2180 	if (request_based)
2181 		dm_stop_queue(q);
2182 
2183 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2184 		/*
2185 		 * Leverage the fact that request-based DM targets and
2186 		 * NVMe bio based targets are immutable singletons
2187 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2188 		 *   and __process_bio.
2189 		 */
2190 		md->immutable_target = dm_table_get_immutable_target(t);
2191 	}
2192 
2193 	ret = __bind_mempools(md, t);
2194 	if (ret) {
2195 		old_map = ERR_PTR(ret);
2196 		goto out;
2197 	}
2198 
2199 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2200 	rcu_assign_pointer(md->map, (void *)t);
2201 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2202 
2203 	dm_table_set_restrictions(t, q, limits);
2204 	if (old_map)
2205 		dm_sync_table(md);
2206 
2207 out:
2208 	return old_map;
2209 }
2210 
2211 /*
2212  * Returns unbound table for the caller to free.
2213  */
2214 static struct dm_table *__unbind(struct mapped_device *md)
2215 {
2216 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2217 
2218 	if (!map)
2219 		return NULL;
2220 
2221 	dm_table_event_callback(map, NULL, NULL);
2222 	RCU_INIT_POINTER(md->map, NULL);
2223 	dm_sync_table(md);
2224 
2225 	return map;
2226 }
2227 
2228 /*
2229  * Constructor for a new device.
2230  */
2231 int dm_create(int minor, struct mapped_device **result)
2232 {
2233 	int r;
2234 	struct mapped_device *md;
2235 
2236 	md = alloc_dev(minor);
2237 	if (!md)
2238 		return -ENXIO;
2239 
2240 	r = dm_sysfs_init(md);
2241 	if (r) {
2242 		free_dev(md);
2243 		return r;
2244 	}
2245 
2246 	*result = md;
2247 	return 0;
2248 }
2249 
2250 /*
2251  * Functions to manage md->type.
2252  * All are required to hold md->type_lock.
2253  */
2254 void dm_lock_md_type(struct mapped_device *md)
2255 {
2256 	mutex_lock(&md->type_lock);
2257 }
2258 
2259 void dm_unlock_md_type(struct mapped_device *md)
2260 {
2261 	mutex_unlock(&md->type_lock);
2262 }
2263 
2264 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2265 {
2266 	BUG_ON(!mutex_is_locked(&md->type_lock));
2267 	md->type = type;
2268 }
2269 
2270 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2271 {
2272 	return md->type;
2273 }
2274 
2275 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2276 {
2277 	return md->immutable_target_type;
2278 }
2279 
2280 /*
2281  * The queue_limits are only valid as long as you have a reference
2282  * count on 'md'.
2283  */
2284 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2285 {
2286 	BUG_ON(!atomic_read(&md->holders));
2287 	return &md->queue->limits;
2288 }
2289 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2290 
2291 static void dm_init_congested_fn(struct mapped_device *md)
2292 {
2293 	md->queue->backing_dev_info->congested_data = md;
2294 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
2295 }
2296 
2297 /*
2298  * Setup the DM device's queue based on md's type
2299  */
2300 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2301 {
2302 	int r;
2303 	struct queue_limits limits;
2304 	enum dm_queue_mode type = dm_get_md_type(md);
2305 
2306 	switch (type) {
2307 	case DM_TYPE_REQUEST_BASED:
2308 		r = dm_mq_init_request_queue(md, t);
2309 		if (r) {
2310 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2311 			return r;
2312 		}
2313 		dm_init_congested_fn(md);
2314 		break;
2315 	case DM_TYPE_BIO_BASED:
2316 	case DM_TYPE_DAX_BIO_BASED:
2317 	case DM_TYPE_NVME_BIO_BASED:
2318 		dm_init_congested_fn(md);
2319 		break;
2320 	case DM_TYPE_NONE:
2321 		WARN_ON_ONCE(true);
2322 		break;
2323 	}
2324 
2325 	r = dm_calculate_queue_limits(t, &limits);
2326 	if (r) {
2327 		DMERR("Cannot calculate initial queue limits");
2328 		return r;
2329 	}
2330 	dm_table_set_restrictions(t, md->queue, &limits);
2331 	blk_register_queue(md->disk);
2332 
2333 	return 0;
2334 }
2335 
2336 struct mapped_device *dm_get_md(dev_t dev)
2337 {
2338 	struct mapped_device *md;
2339 	unsigned minor = MINOR(dev);
2340 
2341 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2342 		return NULL;
2343 
2344 	spin_lock(&_minor_lock);
2345 
2346 	md = idr_find(&_minor_idr, minor);
2347 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2348 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2349 		md = NULL;
2350 		goto out;
2351 	}
2352 	dm_get(md);
2353 out:
2354 	spin_unlock(&_minor_lock);
2355 
2356 	return md;
2357 }
2358 EXPORT_SYMBOL_GPL(dm_get_md);
2359 
2360 void *dm_get_mdptr(struct mapped_device *md)
2361 {
2362 	return md->interface_ptr;
2363 }
2364 
2365 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2366 {
2367 	md->interface_ptr = ptr;
2368 }
2369 
2370 void dm_get(struct mapped_device *md)
2371 {
2372 	atomic_inc(&md->holders);
2373 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2374 }
2375 
2376 int dm_hold(struct mapped_device *md)
2377 {
2378 	spin_lock(&_minor_lock);
2379 	if (test_bit(DMF_FREEING, &md->flags)) {
2380 		spin_unlock(&_minor_lock);
2381 		return -EBUSY;
2382 	}
2383 	dm_get(md);
2384 	spin_unlock(&_minor_lock);
2385 	return 0;
2386 }
2387 EXPORT_SYMBOL_GPL(dm_hold);
2388 
2389 const char *dm_device_name(struct mapped_device *md)
2390 {
2391 	return md->name;
2392 }
2393 EXPORT_SYMBOL_GPL(dm_device_name);
2394 
2395 static void __dm_destroy(struct mapped_device *md, bool wait)
2396 {
2397 	struct dm_table *map;
2398 	int srcu_idx;
2399 
2400 	might_sleep();
2401 
2402 	spin_lock(&_minor_lock);
2403 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2404 	set_bit(DMF_FREEING, &md->flags);
2405 	spin_unlock(&_minor_lock);
2406 
2407 	blk_set_queue_dying(md->queue);
2408 
2409 	/*
2410 	 * Take suspend_lock so that presuspend and postsuspend methods
2411 	 * do not race with internal suspend.
2412 	 */
2413 	mutex_lock(&md->suspend_lock);
2414 	map = dm_get_live_table(md, &srcu_idx);
2415 	if (!dm_suspended_md(md)) {
2416 		dm_table_presuspend_targets(map);
2417 		set_bit(DMF_SUSPENDED, &md->flags);
2418 		dm_table_postsuspend_targets(map);
2419 	}
2420 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2421 	dm_put_live_table(md, srcu_idx);
2422 	mutex_unlock(&md->suspend_lock);
2423 
2424 	/*
2425 	 * Rare, but there may be I/O requests still going to complete,
2426 	 * for example.  Wait for all references to disappear.
2427 	 * No one should increment the reference count of the mapped_device,
2428 	 * after the mapped_device state becomes DMF_FREEING.
2429 	 */
2430 	if (wait)
2431 		while (atomic_read(&md->holders))
2432 			msleep(1);
2433 	else if (atomic_read(&md->holders))
2434 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2435 		       dm_device_name(md), atomic_read(&md->holders));
2436 
2437 	dm_sysfs_exit(md);
2438 	dm_table_destroy(__unbind(md));
2439 	free_dev(md);
2440 }
2441 
2442 void dm_destroy(struct mapped_device *md)
2443 {
2444 	__dm_destroy(md, true);
2445 }
2446 
2447 void dm_destroy_immediate(struct mapped_device *md)
2448 {
2449 	__dm_destroy(md, false);
2450 }
2451 
2452 void dm_put(struct mapped_device *md)
2453 {
2454 	atomic_dec(&md->holders);
2455 }
2456 EXPORT_SYMBOL_GPL(dm_put);
2457 
2458 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2459 {
2460 	int r = 0;
2461 	DEFINE_WAIT(wait);
2462 
2463 	while (1) {
2464 		prepare_to_wait(&md->wait, &wait, task_state);
2465 
2466 		if (!md_in_flight(md))
2467 			break;
2468 
2469 		if (signal_pending_state(task_state, current)) {
2470 			r = -EINTR;
2471 			break;
2472 		}
2473 
2474 		io_schedule();
2475 	}
2476 	finish_wait(&md->wait, &wait);
2477 
2478 	return r;
2479 }
2480 
2481 /*
2482  * Process the deferred bios
2483  */
2484 static void dm_wq_work(struct work_struct *work)
2485 {
2486 	struct mapped_device *md = container_of(work, struct mapped_device,
2487 						work);
2488 	struct bio *c;
2489 	int srcu_idx;
2490 	struct dm_table *map;
2491 
2492 	map = dm_get_live_table(md, &srcu_idx);
2493 
2494 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2495 		spin_lock_irq(&md->deferred_lock);
2496 		c = bio_list_pop(&md->deferred);
2497 		spin_unlock_irq(&md->deferred_lock);
2498 
2499 		if (!c)
2500 			break;
2501 
2502 		if (dm_request_based(md))
2503 			(void) submit_bio_noacct(c);
2504 		else
2505 			(void) dm_process_bio(md, map, c);
2506 	}
2507 
2508 	dm_put_live_table(md, srcu_idx);
2509 }
2510 
2511 static void dm_queue_flush(struct mapped_device *md)
2512 {
2513 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2514 	smp_mb__after_atomic();
2515 	queue_work(md->wq, &md->work);
2516 }
2517 
2518 /*
2519  * Swap in a new table, returning the old one for the caller to destroy.
2520  */
2521 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2522 {
2523 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2524 	struct queue_limits limits;
2525 	int r;
2526 
2527 	mutex_lock(&md->suspend_lock);
2528 
2529 	/* device must be suspended */
2530 	if (!dm_suspended_md(md))
2531 		goto out;
2532 
2533 	/*
2534 	 * If the new table has no data devices, retain the existing limits.
2535 	 * This helps multipath with queue_if_no_path if all paths disappear,
2536 	 * then new I/O is queued based on these limits, and then some paths
2537 	 * reappear.
2538 	 */
2539 	if (dm_table_has_no_data_devices(table)) {
2540 		live_map = dm_get_live_table_fast(md);
2541 		if (live_map)
2542 			limits = md->queue->limits;
2543 		dm_put_live_table_fast(md);
2544 	}
2545 
2546 	if (!live_map) {
2547 		r = dm_calculate_queue_limits(table, &limits);
2548 		if (r) {
2549 			map = ERR_PTR(r);
2550 			goto out;
2551 		}
2552 	}
2553 
2554 	map = __bind(md, table, &limits);
2555 	dm_issue_global_event();
2556 
2557 out:
2558 	mutex_unlock(&md->suspend_lock);
2559 	return map;
2560 }
2561 
2562 /*
2563  * Functions to lock and unlock any filesystem running on the
2564  * device.
2565  */
2566 static int lock_fs(struct mapped_device *md)
2567 {
2568 	int r;
2569 
2570 	WARN_ON(md->frozen_sb);
2571 
2572 	md->frozen_sb = freeze_bdev(md->bdev);
2573 	if (IS_ERR(md->frozen_sb)) {
2574 		r = PTR_ERR(md->frozen_sb);
2575 		md->frozen_sb = NULL;
2576 		return r;
2577 	}
2578 
2579 	set_bit(DMF_FROZEN, &md->flags);
2580 
2581 	return 0;
2582 }
2583 
2584 static void unlock_fs(struct mapped_device *md)
2585 {
2586 	if (!test_bit(DMF_FROZEN, &md->flags))
2587 		return;
2588 
2589 	thaw_bdev(md->bdev, md->frozen_sb);
2590 	md->frozen_sb = NULL;
2591 	clear_bit(DMF_FROZEN, &md->flags);
2592 }
2593 
2594 /*
2595  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2596  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2597  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2598  *
2599  * If __dm_suspend returns 0, the device is completely quiescent
2600  * now. There is no request-processing activity. All new requests
2601  * are being added to md->deferred list.
2602  */
2603 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2604 			unsigned suspend_flags, long task_state,
2605 			int dmf_suspended_flag)
2606 {
2607 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2608 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2609 	int r;
2610 
2611 	lockdep_assert_held(&md->suspend_lock);
2612 
2613 	/*
2614 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2615 	 * This flag is cleared before dm_suspend returns.
2616 	 */
2617 	if (noflush)
2618 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2619 	else
2620 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2621 
2622 	/*
2623 	 * This gets reverted if there's an error later and the targets
2624 	 * provide the .presuspend_undo hook.
2625 	 */
2626 	dm_table_presuspend_targets(map);
2627 
2628 	/*
2629 	 * Flush I/O to the device.
2630 	 * Any I/O submitted after lock_fs() may not be flushed.
2631 	 * noflush takes precedence over do_lockfs.
2632 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2633 	 */
2634 	if (!noflush && do_lockfs) {
2635 		r = lock_fs(md);
2636 		if (r) {
2637 			dm_table_presuspend_undo_targets(map);
2638 			return r;
2639 		}
2640 	}
2641 
2642 	/*
2643 	 * Here we must make sure that no processes are submitting requests
2644 	 * to target drivers i.e. no one may be executing
2645 	 * __split_and_process_bio. This is called from dm_request and
2646 	 * dm_wq_work.
2647 	 *
2648 	 * To get all processes out of __split_and_process_bio in dm_request,
2649 	 * we take the write lock. To prevent any process from reentering
2650 	 * __split_and_process_bio from dm_request and quiesce the thread
2651 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2652 	 * flush_workqueue(md->wq).
2653 	 */
2654 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2655 	if (map)
2656 		synchronize_srcu(&md->io_barrier);
2657 
2658 	/*
2659 	 * Stop md->queue before flushing md->wq in case request-based
2660 	 * dm defers requests to md->wq from md->queue.
2661 	 */
2662 	if (dm_request_based(md))
2663 		dm_stop_queue(md->queue);
2664 
2665 	flush_workqueue(md->wq);
2666 
2667 	/*
2668 	 * At this point no more requests are entering target request routines.
2669 	 * We call dm_wait_for_completion to wait for all existing requests
2670 	 * to finish.
2671 	 */
2672 	r = dm_wait_for_completion(md, task_state);
2673 	if (!r)
2674 		set_bit(dmf_suspended_flag, &md->flags);
2675 
2676 	if (noflush)
2677 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2678 	if (map)
2679 		synchronize_srcu(&md->io_barrier);
2680 
2681 	/* were we interrupted ? */
2682 	if (r < 0) {
2683 		dm_queue_flush(md);
2684 
2685 		if (dm_request_based(md))
2686 			dm_start_queue(md->queue);
2687 
2688 		unlock_fs(md);
2689 		dm_table_presuspend_undo_targets(map);
2690 		/* pushback list is already flushed, so skip flush */
2691 	}
2692 
2693 	return r;
2694 }
2695 
2696 /*
2697  * We need to be able to change a mapping table under a mounted
2698  * filesystem.  For example we might want to move some data in
2699  * the background.  Before the table can be swapped with
2700  * dm_bind_table, dm_suspend must be called to flush any in
2701  * flight bios and ensure that any further io gets deferred.
2702  */
2703 /*
2704  * Suspend mechanism in request-based dm.
2705  *
2706  * 1. Flush all I/Os by lock_fs() if needed.
2707  * 2. Stop dispatching any I/O by stopping the request_queue.
2708  * 3. Wait for all in-flight I/Os to be completed or requeued.
2709  *
2710  * To abort suspend, start the request_queue.
2711  */
2712 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2713 {
2714 	struct dm_table *map = NULL;
2715 	int r = 0;
2716 
2717 retry:
2718 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2719 
2720 	if (dm_suspended_md(md)) {
2721 		r = -EINVAL;
2722 		goto out_unlock;
2723 	}
2724 
2725 	if (dm_suspended_internally_md(md)) {
2726 		/* already internally suspended, wait for internal resume */
2727 		mutex_unlock(&md->suspend_lock);
2728 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2729 		if (r)
2730 			return r;
2731 		goto retry;
2732 	}
2733 
2734 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2735 
2736 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2737 	if (r)
2738 		goto out_unlock;
2739 
2740 	dm_table_postsuspend_targets(map);
2741 
2742 out_unlock:
2743 	mutex_unlock(&md->suspend_lock);
2744 	return r;
2745 }
2746 
2747 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2748 {
2749 	if (map) {
2750 		int r = dm_table_resume_targets(map);
2751 		if (r)
2752 			return r;
2753 	}
2754 
2755 	dm_queue_flush(md);
2756 
2757 	/*
2758 	 * Flushing deferred I/Os must be done after targets are resumed
2759 	 * so that mapping of targets can work correctly.
2760 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2761 	 */
2762 	if (dm_request_based(md))
2763 		dm_start_queue(md->queue);
2764 
2765 	unlock_fs(md);
2766 
2767 	return 0;
2768 }
2769 
2770 int dm_resume(struct mapped_device *md)
2771 {
2772 	int r;
2773 	struct dm_table *map = NULL;
2774 
2775 retry:
2776 	r = -EINVAL;
2777 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2778 
2779 	if (!dm_suspended_md(md))
2780 		goto out;
2781 
2782 	if (dm_suspended_internally_md(md)) {
2783 		/* already internally suspended, wait for internal resume */
2784 		mutex_unlock(&md->suspend_lock);
2785 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2786 		if (r)
2787 			return r;
2788 		goto retry;
2789 	}
2790 
2791 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2792 	if (!map || !dm_table_get_size(map))
2793 		goto out;
2794 
2795 	r = __dm_resume(md, map);
2796 	if (r)
2797 		goto out;
2798 
2799 	clear_bit(DMF_SUSPENDED, &md->flags);
2800 out:
2801 	mutex_unlock(&md->suspend_lock);
2802 
2803 	return r;
2804 }
2805 
2806 /*
2807  * Internal suspend/resume works like userspace-driven suspend. It waits
2808  * until all bios finish and prevents issuing new bios to the target drivers.
2809  * It may be used only from the kernel.
2810  */
2811 
2812 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2813 {
2814 	struct dm_table *map = NULL;
2815 
2816 	lockdep_assert_held(&md->suspend_lock);
2817 
2818 	if (md->internal_suspend_count++)
2819 		return; /* nested internal suspend */
2820 
2821 	if (dm_suspended_md(md)) {
2822 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2823 		return; /* nest suspend */
2824 	}
2825 
2826 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2827 
2828 	/*
2829 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2830 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2831 	 * would require changing .presuspend to return an error -- avoid this
2832 	 * until there is a need for more elaborate variants of internal suspend.
2833 	 */
2834 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2835 			    DMF_SUSPENDED_INTERNALLY);
2836 
2837 	dm_table_postsuspend_targets(map);
2838 }
2839 
2840 static void __dm_internal_resume(struct mapped_device *md)
2841 {
2842 	BUG_ON(!md->internal_suspend_count);
2843 
2844 	if (--md->internal_suspend_count)
2845 		return; /* resume from nested internal suspend */
2846 
2847 	if (dm_suspended_md(md))
2848 		goto done; /* resume from nested suspend */
2849 
2850 	/*
2851 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2852 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2853 	 */
2854 	(void) __dm_resume(md, NULL);
2855 
2856 done:
2857 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2858 	smp_mb__after_atomic();
2859 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2860 }
2861 
2862 void dm_internal_suspend_noflush(struct mapped_device *md)
2863 {
2864 	mutex_lock(&md->suspend_lock);
2865 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2866 	mutex_unlock(&md->suspend_lock);
2867 }
2868 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2869 
2870 void dm_internal_resume(struct mapped_device *md)
2871 {
2872 	mutex_lock(&md->suspend_lock);
2873 	__dm_internal_resume(md);
2874 	mutex_unlock(&md->suspend_lock);
2875 }
2876 EXPORT_SYMBOL_GPL(dm_internal_resume);
2877 
2878 /*
2879  * Fast variants of internal suspend/resume hold md->suspend_lock,
2880  * which prevents interaction with userspace-driven suspend.
2881  */
2882 
2883 void dm_internal_suspend_fast(struct mapped_device *md)
2884 {
2885 	mutex_lock(&md->suspend_lock);
2886 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2887 		return;
2888 
2889 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2890 	synchronize_srcu(&md->io_barrier);
2891 	flush_workqueue(md->wq);
2892 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2893 }
2894 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2895 
2896 void dm_internal_resume_fast(struct mapped_device *md)
2897 {
2898 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2899 		goto done;
2900 
2901 	dm_queue_flush(md);
2902 
2903 done:
2904 	mutex_unlock(&md->suspend_lock);
2905 }
2906 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2907 
2908 /*-----------------------------------------------------------------
2909  * Event notification.
2910  *---------------------------------------------------------------*/
2911 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2912 		       unsigned cookie)
2913 {
2914 	char udev_cookie[DM_COOKIE_LENGTH];
2915 	char *envp[] = { udev_cookie, NULL };
2916 
2917 	if (!cookie)
2918 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2919 	else {
2920 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2921 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2922 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2923 					  action, envp);
2924 	}
2925 }
2926 
2927 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2928 {
2929 	return atomic_add_return(1, &md->uevent_seq);
2930 }
2931 
2932 uint32_t dm_get_event_nr(struct mapped_device *md)
2933 {
2934 	return atomic_read(&md->event_nr);
2935 }
2936 
2937 int dm_wait_event(struct mapped_device *md, int event_nr)
2938 {
2939 	return wait_event_interruptible(md->eventq,
2940 			(event_nr != atomic_read(&md->event_nr)));
2941 }
2942 
2943 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2944 {
2945 	unsigned long flags;
2946 
2947 	spin_lock_irqsave(&md->uevent_lock, flags);
2948 	list_add(elist, &md->uevent_list);
2949 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2950 }
2951 
2952 /*
2953  * The gendisk is only valid as long as you have a reference
2954  * count on 'md'.
2955  */
2956 struct gendisk *dm_disk(struct mapped_device *md)
2957 {
2958 	return md->disk;
2959 }
2960 EXPORT_SYMBOL_GPL(dm_disk);
2961 
2962 struct kobject *dm_kobject(struct mapped_device *md)
2963 {
2964 	return &md->kobj_holder.kobj;
2965 }
2966 
2967 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2968 {
2969 	struct mapped_device *md;
2970 
2971 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2972 
2973 	spin_lock(&_minor_lock);
2974 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2975 		md = NULL;
2976 		goto out;
2977 	}
2978 	dm_get(md);
2979 out:
2980 	spin_unlock(&_minor_lock);
2981 
2982 	return md;
2983 }
2984 
2985 int dm_suspended_md(struct mapped_device *md)
2986 {
2987 	return test_bit(DMF_SUSPENDED, &md->flags);
2988 }
2989 
2990 int dm_suspended_internally_md(struct mapped_device *md)
2991 {
2992 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2993 }
2994 
2995 int dm_test_deferred_remove_flag(struct mapped_device *md)
2996 {
2997 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2998 }
2999 
3000 int dm_suspended(struct dm_target *ti)
3001 {
3002 	return dm_suspended_md(dm_table_get_md(ti->table));
3003 }
3004 EXPORT_SYMBOL_GPL(dm_suspended);
3005 
3006 int dm_noflush_suspending(struct dm_target *ti)
3007 {
3008 	return __noflush_suspending(dm_table_get_md(ti->table));
3009 }
3010 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3011 
3012 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
3013 					    unsigned integrity, unsigned per_io_data_size,
3014 					    unsigned min_pool_size)
3015 {
3016 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3017 	unsigned int pool_size = 0;
3018 	unsigned int front_pad, io_front_pad;
3019 	int ret;
3020 
3021 	if (!pools)
3022 		return NULL;
3023 
3024 	switch (type) {
3025 	case DM_TYPE_BIO_BASED:
3026 	case DM_TYPE_DAX_BIO_BASED:
3027 	case DM_TYPE_NVME_BIO_BASED:
3028 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3029 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3030 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3031 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3032 		if (ret)
3033 			goto out;
3034 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3035 			goto out;
3036 		break;
3037 	case DM_TYPE_REQUEST_BASED:
3038 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3039 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3040 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3041 		break;
3042 	default:
3043 		BUG();
3044 	}
3045 
3046 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3047 	if (ret)
3048 		goto out;
3049 
3050 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3051 		goto out;
3052 
3053 	return pools;
3054 
3055 out:
3056 	dm_free_md_mempools(pools);
3057 
3058 	return NULL;
3059 }
3060 
3061 void dm_free_md_mempools(struct dm_md_mempools *pools)
3062 {
3063 	if (!pools)
3064 		return;
3065 
3066 	bioset_exit(&pools->bs);
3067 	bioset_exit(&pools->io_bs);
3068 
3069 	kfree(pools);
3070 }
3071 
3072 struct dm_pr {
3073 	u64	old_key;
3074 	u64	new_key;
3075 	u32	flags;
3076 	bool	fail_early;
3077 };
3078 
3079 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3080 		      void *data)
3081 {
3082 	struct mapped_device *md = bdev->bd_disk->private_data;
3083 	struct dm_table *table;
3084 	struct dm_target *ti;
3085 	int ret = -ENOTTY, srcu_idx;
3086 
3087 	table = dm_get_live_table(md, &srcu_idx);
3088 	if (!table || !dm_table_get_size(table))
3089 		goto out;
3090 
3091 	/* We only support devices that have a single target */
3092 	if (dm_table_get_num_targets(table) != 1)
3093 		goto out;
3094 	ti = dm_table_get_target(table, 0);
3095 
3096 	ret = -EINVAL;
3097 	if (!ti->type->iterate_devices)
3098 		goto out;
3099 
3100 	ret = ti->type->iterate_devices(ti, fn, data);
3101 out:
3102 	dm_put_live_table(md, srcu_idx);
3103 	return ret;
3104 }
3105 
3106 /*
3107  * For register / unregister we need to manually call out to every path.
3108  */
3109 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3110 			    sector_t start, sector_t len, void *data)
3111 {
3112 	struct dm_pr *pr = data;
3113 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3114 
3115 	if (!ops || !ops->pr_register)
3116 		return -EOPNOTSUPP;
3117 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3118 }
3119 
3120 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3121 			  u32 flags)
3122 {
3123 	struct dm_pr pr = {
3124 		.old_key	= old_key,
3125 		.new_key	= new_key,
3126 		.flags		= flags,
3127 		.fail_early	= true,
3128 	};
3129 	int ret;
3130 
3131 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3132 	if (ret && new_key) {
3133 		/* unregister all paths if we failed to register any path */
3134 		pr.old_key = new_key;
3135 		pr.new_key = 0;
3136 		pr.flags = 0;
3137 		pr.fail_early = false;
3138 		dm_call_pr(bdev, __dm_pr_register, &pr);
3139 	}
3140 
3141 	return ret;
3142 }
3143 
3144 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3145 			 u32 flags)
3146 {
3147 	struct mapped_device *md = bdev->bd_disk->private_data;
3148 	const struct pr_ops *ops;
3149 	int r, srcu_idx;
3150 
3151 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3152 	if (r < 0)
3153 		goto out;
3154 
3155 	ops = bdev->bd_disk->fops->pr_ops;
3156 	if (ops && ops->pr_reserve)
3157 		r = ops->pr_reserve(bdev, key, type, flags);
3158 	else
3159 		r = -EOPNOTSUPP;
3160 out:
3161 	dm_unprepare_ioctl(md, srcu_idx);
3162 	return r;
3163 }
3164 
3165 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3166 {
3167 	struct mapped_device *md = bdev->bd_disk->private_data;
3168 	const struct pr_ops *ops;
3169 	int r, srcu_idx;
3170 
3171 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3172 	if (r < 0)
3173 		goto out;
3174 
3175 	ops = bdev->bd_disk->fops->pr_ops;
3176 	if (ops && ops->pr_release)
3177 		r = ops->pr_release(bdev, key, type);
3178 	else
3179 		r = -EOPNOTSUPP;
3180 out:
3181 	dm_unprepare_ioctl(md, srcu_idx);
3182 	return r;
3183 }
3184 
3185 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3186 			 enum pr_type type, bool abort)
3187 {
3188 	struct mapped_device *md = bdev->bd_disk->private_data;
3189 	const struct pr_ops *ops;
3190 	int r, srcu_idx;
3191 
3192 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3193 	if (r < 0)
3194 		goto out;
3195 
3196 	ops = bdev->bd_disk->fops->pr_ops;
3197 	if (ops && ops->pr_preempt)
3198 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3199 	else
3200 		r = -EOPNOTSUPP;
3201 out:
3202 	dm_unprepare_ioctl(md, srcu_idx);
3203 	return r;
3204 }
3205 
3206 static int dm_pr_clear(struct block_device *bdev, u64 key)
3207 {
3208 	struct mapped_device *md = bdev->bd_disk->private_data;
3209 	const struct pr_ops *ops;
3210 	int r, srcu_idx;
3211 
3212 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3213 	if (r < 0)
3214 		goto out;
3215 
3216 	ops = bdev->bd_disk->fops->pr_ops;
3217 	if (ops && ops->pr_clear)
3218 		r = ops->pr_clear(bdev, key);
3219 	else
3220 		r = -EOPNOTSUPP;
3221 out:
3222 	dm_unprepare_ioctl(md, srcu_idx);
3223 	return r;
3224 }
3225 
3226 static const struct pr_ops dm_pr_ops = {
3227 	.pr_register	= dm_pr_register,
3228 	.pr_reserve	= dm_pr_reserve,
3229 	.pr_release	= dm_pr_release,
3230 	.pr_preempt	= dm_pr_preempt,
3231 	.pr_clear	= dm_pr_clear,
3232 };
3233 
3234 static const struct block_device_operations dm_blk_dops = {
3235 	.submit_bio = dm_submit_bio,
3236 	.open = dm_blk_open,
3237 	.release = dm_blk_close,
3238 	.ioctl = dm_blk_ioctl,
3239 	.getgeo = dm_blk_getgeo,
3240 	.report_zones = dm_blk_report_zones,
3241 	.pr_ops = &dm_pr_ops,
3242 	.owner = THIS_MODULE
3243 };
3244 
3245 static const struct dax_operations dm_dax_ops = {
3246 	.direct_access = dm_dax_direct_access,
3247 	.dax_supported = dm_dax_supported,
3248 	.copy_from_iter = dm_dax_copy_from_iter,
3249 	.copy_to_iter = dm_dax_copy_to_iter,
3250 	.zero_page_range = dm_dax_zero_page_range,
3251 };
3252 
3253 /*
3254  * module hooks
3255  */
3256 module_init(dm_init);
3257 module_exit(dm_exit);
3258 
3259 module_param(major, uint, 0);
3260 MODULE_PARM_DESC(major, "The major number of the device mapper");
3261 
3262 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3263 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3264 
3265 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3266 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3267 
3268 MODULE_DESCRIPTION(DM_NAME " driver");
3269 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3270 MODULE_LICENSE("GPL");
3271