1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 #include <linux/part_stat.h> 29 #include <linux/blk-crypto.h> 30 31 #define DM_MSG_PREFIX "core" 32 33 /* 34 * Cookies are numeric values sent with CHANGE and REMOVE 35 * uevents while resuming, removing or renaming the device. 36 */ 37 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 38 #define DM_COOKIE_LENGTH 24 39 40 static const char *_name = DM_NAME; 41 42 static unsigned int major = 0; 43 static unsigned int _major = 0; 44 45 static DEFINE_IDR(_minor_idr); 46 47 static DEFINE_SPINLOCK(_minor_lock); 48 49 static void do_deferred_remove(struct work_struct *w); 50 51 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 52 53 static struct workqueue_struct *deferred_remove_workqueue; 54 55 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 56 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 57 58 void dm_issue_global_event(void) 59 { 60 atomic_inc(&dm_global_event_nr); 61 wake_up(&dm_global_eventq); 62 } 63 64 /* 65 * One of these is allocated (on-stack) per original bio. 66 */ 67 struct clone_info { 68 struct dm_table *map; 69 struct bio *bio; 70 struct dm_io *io; 71 sector_t sector; 72 unsigned sector_count; 73 }; 74 75 /* 76 * One of these is allocated per clone bio. 77 */ 78 #define DM_TIO_MAGIC 7282014 79 struct dm_target_io { 80 unsigned magic; 81 struct dm_io *io; 82 struct dm_target *ti; 83 unsigned target_bio_nr; 84 unsigned *len_ptr; 85 bool inside_dm_io; 86 struct bio clone; 87 }; 88 89 /* 90 * One of these is allocated per original bio. 91 * It contains the first clone used for that original. 92 */ 93 #define DM_IO_MAGIC 5191977 94 struct dm_io { 95 unsigned magic; 96 struct mapped_device *md; 97 blk_status_t status; 98 atomic_t io_count; 99 struct bio *orig_bio; 100 unsigned long start_time; 101 spinlock_t endio_lock; 102 struct dm_stats_aux stats_aux; 103 /* last member of dm_target_io is 'struct bio' */ 104 struct dm_target_io tio; 105 }; 106 107 void *dm_per_bio_data(struct bio *bio, size_t data_size) 108 { 109 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 110 if (!tio->inside_dm_io) 111 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 112 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 113 } 114 EXPORT_SYMBOL_GPL(dm_per_bio_data); 115 116 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 117 { 118 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 119 if (io->magic == DM_IO_MAGIC) 120 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 121 BUG_ON(io->magic != DM_TIO_MAGIC); 122 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 123 } 124 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 125 126 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 127 { 128 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 129 } 130 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 131 132 #define MINOR_ALLOCED ((void *)-1) 133 134 /* 135 * Bits for the md->flags field. 136 */ 137 #define DMF_BLOCK_IO_FOR_SUSPEND 0 138 #define DMF_SUSPENDED 1 139 #define DMF_FROZEN 2 140 #define DMF_FREEING 3 141 #define DMF_DELETING 4 142 #define DMF_NOFLUSH_SUSPENDING 5 143 #define DMF_DEFERRED_REMOVE 6 144 #define DMF_SUSPENDED_INTERNALLY 7 145 146 #define DM_NUMA_NODE NUMA_NO_NODE 147 static int dm_numa_node = DM_NUMA_NODE; 148 149 /* 150 * For mempools pre-allocation at the table loading time. 151 */ 152 struct dm_md_mempools { 153 struct bio_set bs; 154 struct bio_set io_bs; 155 }; 156 157 struct table_device { 158 struct list_head list; 159 refcount_t count; 160 struct dm_dev dm_dev; 161 }; 162 163 /* 164 * Bio-based DM's mempools' reserved IOs set by the user. 165 */ 166 #define RESERVED_BIO_BASED_IOS 16 167 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 168 169 static int __dm_get_module_param_int(int *module_param, int min, int max) 170 { 171 int param = READ_ONCE(*module_param); 172 int modified_param = 0; 173 bool modified = true; 174 175 if (param < min) 176 modified_param = min; 177 else if (param > max) 178 modified_param = max; 179 else 180 modified = false; 181 182 if (modified) { 183 (void)cmpxchg(module_param, param, modified_param); 184 param = modified_param; 185 } 186 187 return param; 188 } 189 190 unsigned __dm_get_module_param(unsigned *module_param, 191 unsigned def, unsigned max) 192 { 193 unsigned param = READ_ONCE(*module_param); 194 unsigned modified_param = 0; 195 196 if (!param) 197 modified_param = def; 198 else if (param > max) 199 modified_param = max; 200 201 if (modified_param) { 202 (void)cmpxchg(module_param, param, modified_param); 203 param = modified_param; 204 } 205 206 return param; 207 } 208 209 unsigned dm_get_reserved_bio_based_ios(void) 210 { 211 return __dm_get_module_param(&reserved_bio_based_ios, 212 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 213 } 214 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 215 216 static unsigned dm_get_numa_node(void) 217 { 218 return __dm_get_module_param_int(&dm_numa_node, 219 DM_NUMA_NODE, num_online_nodes() - 1); 220 } 221 222 static int __init local_init(void) 223 { 224 int r; 225 226 r = dm_uevent_init(); 227 if (r) 228 return r; 229 230 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 231 if (!deferred_remove_workqueue) { 232 r = -ENOMEM; 233 goto out_uevent_exit; 234 } 235 236 _major = major; 237 r = register_blkdev(_major, _name); 238 if (r < 0) 239 goto out_free_workqueue; 240 241 if (!_major) 242 _major = r; 243 244 return 0; 245 246 out_free_workqueue: 247 destroy_workqueue(deferred_remove_workqueue); 248 out_uevent_exit: 249 dm_uevent_exit(); 250 251 return r; 252 } 253 254 static void local_exit(void) 255 { 256 flush_scheduled_work(); 257 destroy_workqueue(deferred_remove_workqueue); 258 259 unregister_blkdev(_major, _name); 260 dm_uevent_exit(); 261 262 _major = 0; 263 264 DMINFO("cleaned up"); 265 } 266 267 static int (*_inits[])(void) __initdata = { 268 local_init, 269 dm_target_init, 270 dm_linear_init, 271 dm_stripe_init, 272 dm_io_init, 273 dm_kcopyd_init, 274 dm_interface_init, 275 dm_statistics_init, 276 }; 277 278 static void (*_exits[])(void) = { 279 local_exit, 280 dm_target_exit, 281 dm_linear_exit, 282 dm_stripe_exit, 283 dm_io_exit, 284 dm_kcopyd_exit, 285 dm_interface_exit, 286 dm_statistics_exit, 287 }; 288 289 static int __init dm_init(void) 290 { 291 const int count = ARRAY_SIZE(_inits); 292 293 int r, i; 294 295 for (i = 0; i < count; i++) { 296 r = _inits[i](); 297 if (r) 298 goto bad; 299 } 300 301 return 0; 302 303 bad: 304 while (i--) 305 _exits[i](); 306 307 return r; 308 } 309 310 static void __exit dm_exit(void) 311 { 312 int i = ARRAY_SIZE(_exits); 313 314 while (i--) 315 _exits[i](); 316 317 /* 318 * Should be empty by this point. 319 */ 320 idr_destroy(&_minor_idr); 321 } 322 323 /* 324 * Block device functions 325 */ 326 int dm_deleting_md(struct mapped_device *md) 327 { 328 return test_bit(DMF_DELETING, &md->flags); 329 } 330 331 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 332 { 333 struct mapped_device *md; 334 335 spin_lock(&_minor_lock); 336 337 md = bdev->bd_disk->private_data; 338 if (!md) 339 goto out; 340 341 if (test_bit(DMF_FREEING, &md->flags) || 342 dm_deleting_md(md)) { 343 md = NULL; 344 goto out; 345 } 346 347 dm_get(md); 348 atomic_inc(&md->open_count); 349 out: 350 spin_unlock(&_minor_lock); 351 352 return md ? 0 : -ENXIO; 353 } 354 355 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 356 { 357 struct mapped_device *md; 358 359 spin_lock(&_minor_lock); 360 361 md = disk->private_data; 362 if (WARN_ON(!md)) 363 goto out; 364 365 if (atomic_dec_and_test(&md->open_count) && 366 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 367 queue_work(deferred_remove_workqueue, &deferred_remove_work); 368 369 dm_put(md); 370 out: 371 spin_unlock(&_minor_lock); 372 } 373 374 int dm_open_count(struct mapped_device *md) 375 { 376 return atomic_read(&md->open_count); 377 } 378 379 /* 380 * Guarantees nothing is using the device before it's deleted. 381 */ 382 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 383 { 384 int r = 0; 385 386 spin_lock(&_minor_lock); 387 388 if (dm_open_count(md)) { 389 r = -EBUSY; 390 if (mark_deferred) 391 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 392 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 393 r = -EEXIST; 394 else 395 set_bit(DMF_DELETING, &md->flags); 396 397 spin_unlock(&_minor_lock); 398 399 return r; 400 } 401 402 int dm_cancel_deferred_remove(struct mapped_device *md) 403 { 404 int r = 0; 405 406 spin_lock(&_minor_lock); 407 408 if (test_bit(DMF_DELETING, &md->flags)) 409 r = -EBUSY; 410 else 411 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 static void do_deferred_remove(struct work_struct *w) 419 { 420 dm_deferred_remove(); 421 } 422 423 sector_t dm_get_size(struct mapped_device *md) 424 { 425 return get_capacity(md->disk); 426 } 427 428 struct request_queue *dm_get_md_queue(struct mapped_device *md) 429 { 430 return md->queue; 431 } 432 433 struct dm_stats *dm_get_stats(struct mapped_device *md) 434 { 435 return &md->stats; 436 } 437 438 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 439 { 440 struct mapped_device *md = bdev->bd_disk->private_data; 441 442 return dm_get_geometry(md, geo); 443 } 444 445 #ifdef CONFIG_BLK_DEV_ZONED 446 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data) 447 { 448 struct dm_report_zones_args *args = data; 449 sector_t sector_diff = args->tgt->begin - args->start; 450 451 /* 452 * Ignore zones beyond the target range. 453 */ 454 if (zone->start >= args->start + args->tgt->len) 455 return 0; 456 457 /* 458 * Remap the start sector and write pointer position of the zone 459 * to match its position in the target range. 460 */ 461 zone->start += sector_diff; 462 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 463 if (zone->cond == BLK_ZONE_COND_FULL) 464 zone->wp = zone->start + zone->len; 465 else if (zone->cond == BLK_ZONE_COND_EMPTY) 466 zone->wp = zone->start; 467 else 468 zone->wp += sector_diff; 469 } 470 471 args->next_sector = zone->start + zone->len; 472 return args->orig_cb(zone, args->zone_idx++, args->orig_data); 473 } 474 EXPORT_SYMBOL_GPL(dm_report_zones_cb); 475 476 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 477 unsigned int nr_zones, report_zones_cb cb, void *data) 478 { 479 struct mapped_device *md = disk->private_data; 480 struct dm_table *map; 481 int srcu_idx, ret; 482 struct dm_report_zones_args args = { 483 .next_sector = sector, 484 .orig_data = data, 485 .orig_cb = cb, 486 }; 487 488 if (dm_suspended_md(md)) 489 return -EAGAIN; 490 491 map = dm_get_live_table(md, &srcu_idx); 492 if (!map) 493 return -EIO; 494 495 do { 496 struct dm_target *tgt; 497 498 tgt = dm_table_find_target(map, args.next_sector); 499 if (WARN_ON_ONCE(!tgt->type->report_zones)) { 500 ret = -EIO; 501 goto out; 502 } 503 504 args.tgt = tgt; 505 ret = tgt->type->report_zones(tgt, &args, nr_zones); 506 if (ret < 0) 507 goto out; 508 } while (args.zone_idx < nr_zones && 509 args.next_sector < get_capacity(disk)); 510 511 ret = args.zone_idx; 512 out: 513 dm_put_live_table(md, srcu_idx); 514 return ret; 515 } 516 #else 517 #define dm_blk_report_zones NULL 518 #endif /* CONFIG_BLK_DEV_ZONED */ 519 520 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 521 struct block_device **bdev) 522 __acquires(md->io_barrier) 523 { 524 struct dm_target *tgt; 525 struct dm_table *map; 526 int r; 527 528 retry: 529 r = -ENOTTY; 530 map = dm_get_live_table(md, srcu_idx); 531 if (!map || !dm_table_get_size(map)) 532 return r; 533 534 /* We only support devices that have a single target */ 535 if (dm_table_get_num_targets(map) != 1) 536 return r; 537 538 tgt = dm_table_get_target(map, 0); 539 if (!tgt->type->prepare_ioctl) 540 return r; 541 542 if (dm_suspended_md(md)) 543 return -EAGAIN; 544 545 r = tgt->type->prepare_ioctl(tgt, bdev); 546 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 547 dm_put_live_table(md, *srcu_idx); 548 msleep(10); 549 goto retry; 550 } 551 552 return r; 553 } 554 555 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 556 __releases(md->io_barrier) 557 { 558 dm_put_live_table(md, srcu_idx); 559 } 560 561 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 562 unsigned int cmd, unsigned long arg) 563 { 564 struct mapped_device *md = bdev->bd_disk->private_data; 565 int r, srcu_idx; 566 567 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 568 if (r < 0) 569 goto out; 570 571 if (r > 0) { 572 /* 573 * Target determined this ioctl is being issued against a 574 * subset of the parent bdev; require extra privileges. 575 */ 576 if (!capable(CAP_SYS_RAWIO)) { 577 DMWARN_LIMIT( 578 "%s: sending ioctl %x to DM device without required privilege.", 579 current->comm, cmd); 580 r = -ENOIOCTLCMD; 581 goto out; 582 } 583 } 584 585 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 586 out: 587 dm_unprepare_ioctl(md, srcu_idx); 588 return r; 589 } 590 591 static void start_io_acct(struct dm_io *io); 592 593 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 594 { 595 struct dm_io *io; 596 struct dm_target_io *tio; 597 struct bio *clone; 598 599 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 600 if (!clone) 601 return NULL; 602 603 tio = container_of(clone, struct dm_target_io, clone); 604 tio->inside_dm_io = true; 605 tio->io = NULL; 606 607 io = container_of(tio, struct dm_io, tio); 608 io->magic = DM_IO_MAGIC; 609 io->status = 0; 610 atomic_set(&io->io_count, 1); 611 io->orig_bio = bio; 612 io->md = md; 613 spin_lock_init(&io->endio_lock); 614 615 start_io_acct(io); 616 617 return io; 618 } 619 620 static void free_io(struct mapped_device *md, struct dm_io *io) 621 { 622 bio_put(&io->tio.clone); 623 } 624 625 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 626 unsigned target_bio_nr, gfp_t gfp_mask) 627 { 628 struct dm_target_io *tio; 629 630 if (!ci->io->tio.io) { 631 /* the dm_target_io embedded in ci->io is available */ 632 tio = &ci->io->tio; 633 } else { 634 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 635 if (!clone) 636 return NULL; 637 638 tio = container_of(clone, struct dm_target_io, clone); 639 tio->inside_dm_io = false; 640 } 641 642 tio->magic = DM_TIO_MAGIC; 643 tio->io = ci->io; 644 tio->ti = ti; 645 tio->target_bio_nr = target_bio_nr; 646 647 return tio; 648 } 649 650 static void free_tio(struct dm_target_io *tio) 651 { 652 if (tio->inside_dm_io) 653 return; 654 bio_put(&tio->clone); 655 } 656 657 static bool md_in_flight_bios(struct mapped_device *md) 658 { 659 int cpu; 660 struct hd_struct *part = &dm_disk(md)->part0; 661 long sum = 0; 662 663 for_each_possible_cpu(cpu) { 664 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 665 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 666 } 667 668 return sum != 0; 669 } 670 671 static bool md_in_flight(struct mapped_device *md) 672 { 673 if (queue_is_mq(md->queue)) 674 return blk_mq_queue_inflight(md->queue); 675 else 676 return md_in_flight_bios(md); 677 } 678 679 u64 dm_start_time_ns_from_clone(struct bio *bio) 680 { 681 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 682 struct dm_io *io = tio->io; 683 684 return jiffies_to_nsecs(io->start_time); 685 } 686 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 687 688 static void start_io_acct(struct dm_io *io) 689 { 690 struct mapped_device *md = io->md; 691 struct bio *bio = io->orig_bio; 692 693 io->start_time = bio_start_io_acct(bio); 694 if (unlikely(dm_stats_used(&md->stats))) 695 dm_stats_account_io(&md->stats, bio_data_dir(bio), 696 bio->bi_iter.bi_sector, bio_sectors(bio), 697 false, 0, &io->stats_aux); 698 } 699 700 static void end_io_acct(struct dm_io *io) 701 { 702 struct mapped_device *md = io->md; 703 struct bio *bio = io->orig_bio; 704 unsigned long duration = jiffies - io->start_time; 705 706 bio_end_io_acct(bio, io->start_time); 707 708 if (unlikely(dm_stats_used(&md->stats))) 709 dm_stats_account_io(&md->stats, bio_data_dir(bio), 710 bio->bi_iter.bi_sector, bio_sectors(bio), 711 true, duration, &io->stats_aux); 712 713 /* nudge anyone waiting on suspend queue */ 714 if (unlikely(wq_has_sleeper(&md->wait))) 715 wake_up(&md->wait); 716 } 717 718 /* 719 * Add the bio to the list of deferred io. 720 */ 721 static void queue_io(struct mapped_device *md, struct bio *bio) 722 { 723 unsigned long flags; 724 725 spin_lock_irqsave(&md->deferred_lock, flags); 726 bio_list_add(&md->deferred, bio); 727 spin_unlock_irqrestore(&md->deferred_lock, flags); 728 queue_work(md->wq, &md->work); 729 } 730 731 /* 732 * Everyone (including functions in this file), should use this 733 * function to access the md->map field, and make sure they call 734 * dm_put_live_table() when finished. 735 */ 736 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 737 { 738 *srcu_idx = srcu_read_lock(&md->io_barrier); 739 740 return srcu_dereference(md->map, &md->io_barrier); 741 } 742 743 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 744 { 745 srcu_read_unlock(&md->io_barrier, srcu_idx); 746 } 747 748 void dm_sync_table(struct mapped_device *md) 749 { 750 synchronize_srcu(&md->io_barrier); 751 synchronize_rcu_expedited(); 752 } 753 754 /* 755 * A fast alternative to dm_get_live_table/dm_put_live_table. 756 * The caller must not block between these two functions. 757 */ 758 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 759 { 760 rcu_read_lock(); 761 return rcu_dereference(md->map); 762 } 763 764 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 765 { 766 rcu_read_unlock(); 767 } 768 769 static char *_dm_claim_ptr = "I belong to device-mapper"; 770 771 /* 772 * Open a table device so we can use it as a map destination. 773 */ 774 static int open_table_device(struct table_device *td, dev_t dev, 775 struct mapped_device *md) 776 { 777 struct block_device *bdev; 778 779 int r; 780 781 BUG_ON(td->dm_dev.bdev); 782 783 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 784 if (IS_ERR(bdev)) 785 return PTR_ERR(bdev); 786 787 r = bd_link_disk_holder(bdev, dm_disk(md)); 788 if (r) { 789 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 790 return r; 791 } 792 793 td->dm_dev.bdev = bdev; 794 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 795 return 0; 796 } 797 798 /* 799 * Close a table device that we've been using. 800 */ 801 static void close_table_device(struct table_device *td, struct mapped_device *md) 802 { 803 if (!td->dm_dev.bdev) 804 return; 805 806 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 807 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 808 put_dax(td->dm_dev.dax_dev); 809 td->dm_dev.bdev = NULL; 810 td->dm_dev.dax_dev = NULL; 811 } 812 813 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 814 fmode_t mode) 815 { 816 struct table_device *td; 817 818 list_for_each_entry(td, l, list) 819 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 820 return td; 821 822 return NULL; 823 } 824 825 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 826 struct dm_dev **result) 827 { 828 int r; 829 struct table_device *td; 830 831 mutex_lock(&md->table_devices_lock); 832 td = find_table_device(&md->table_devices, dev, mode); 833 if (!td) { 834 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 835 if (!td) { 836 mutex_unlock(&md->table_devices_lock); 837 return -ENOMEM; 838 } 839 840 td->dm_dev.mode = mode; 841 td->dm_dev.bdev = NULL; 842 843 if ((r = open_table_device(td, dev, md))) { 844 mutex_unlock(&md->table_devices_lock); 845 kfree(td); 846 return r; 847 } 848 849 format_dev_t(td->dm_dev.name, dev); 850 851 refcount_set(&td->count, 1); 852 list_add(&td->list, &md->table_devices); 853 } else { 854 refcount_inc(&td->count); 855 } 856 mutex_unlock(&md->table_devices_lock); 857 858 *result = &td->dm_dev; 859 return 0; 860 } 861 EXPORT_SYMBOL_GPL(dm_get_table_device); 862 863 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 864 { 865 struct table_device *td = container_of(d, struct table_device, dm_dev); 866 867 mutex_lock(&md->table_devices_lock); 868 if (refcount_dec_and_test(&td->count)) { 869 close_table_device(td, md); 870 list_del(&td->list); 871 kfree(td); 872 } 873 mutex_unlock(&md->table_devices_lock); 874 } 875 EXPORT_SYMBOL(dm_put_table_device); 876 877 static void free_table_devices(struct list_head *devices) 878 { 879 struct list_head *tmp, *next; 880 881 list_for_each_safe(tmp, next, devices) { 882 struct table_device *td = list_entry(tmp, struct table_device, list); 883 884 DMWARN("dm_destroy: %s still exists with %d references", 885 td->dm_dev.name, refcount_read(&td->count)); 886 kfree(td); 887 } 888 } 889 890 /* 891 * Get the geometry associated with a dm device 892 */ 893 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 894 { 895 *geo = md->geometry; 896 897 return 0; 898 } 899 900 /* 901 * Set the geometry of a device. 902 */ 903 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 904 { 905 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 906 907 if (geo->start > sz) { 908 DMWARN("Start sector is beyond the geometry limits."); 909 return -EINVAL; 910 } 911 912 md->geometry = *geo; 913 914 return 0; 915 } 916 917 static int __noflush_suspending(struct mapped_device *md) 918 { 919 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 920 } 921 922 /* 923 * Decrements the number of outstanding ios that a bio has been 924 * cloned into, completing the original io if necc. 925 */ 926 static void dec_pending(struct dm_io *io, blk_status_t error) 927 { 928 unsigned long flags; 929 blk_status_t io_error; 930 struct bio *bio; 931 struct mapped_device *md = io->md; 932 933 /* Push-back supersedes any I/O errors */ 934 if (unlikely(error)) { 935 spin_lock_irqsave(&io->endio_lock, flags); 936 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 937 io->status = error; 938 spin_unlock_irqrestore(&io->endio_lock, flags); 939 } 940 941 if (atomic_dec_and_test(&io->io_count)) { 942 if (io->status == BLK_STS_DM_REQUEUE) { 943 /* 944 * Target requested pushing back the I/O. 945 */ 946 spin_lock_irqsave(&md->deferred_lock, flags); 947 if (__noflush_suspending(md)) 948 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 949 bio_list_add_head(&md->deferred, io->orig_bio); 950 else 951 /* noflush suspend was interrupted. */ 952 io->status = BLK_STS_IOERR; 953 spin_unlock_irqrestore(&md->deferred_lock, flags); 954 } 955 956 io_error = io->status; 957 bio = io->orig_bio; 958 end_io_acct(io); 959 free_io(md, io); 960 961 if (io_error == BLK_STS_DM_REQUEUE) 962 return; 963 964 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 965 /* 966 * Preflush done for flush with data, reissue 967 * without REQ_PREFLUSH. 968 */ 969 bio->bi_opf &= ~REQ_PREFLUSH; 970 queue_io(md, bio); 971 } else { 972 /* done with normal IO or empty flush */ 973 if (io_error) 974 bio->bi_status = io_error; 975 bio_endio(bio); 976 } 977 } 978 } 979 980 void disable_discard(struct mapped_device *md) 981 { 982 struct queue_limits *limits = dm_get_queue_limits(md); 983 984 /* device doesn't really support DISCARD, disable it */ 985 limits->max_discard_sectors = 0; 986 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 987 } 988 989 void disable_write_same(struct mapped_device *md) 990 { 991 struct queue_limits *limits = dm_get_queue_limits(md); 992 993 /* device doesn't really support WRITE SAME, disable it */ 994 limits->max_write_same_sectors = 0; 995 } 996 997 void disable_write_zeroes(struct mapped_device *md) 998 { 999 struct queue_limits *limits = dm_get_queue_limits(md); 1000 1001 /* device doesn't really support WRITE ZEROES, disable it */ 1002 limits->max_write_zeroes_sectors = 0; 1003 } 1004 1005 static void clone_endio(struct bio *bio) 1006 { 1007 blk_status_t error = bio->bi_status; 1008 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1009 struct dm_io *io = tio->io; 1010 struct mapped_device *md = tio->io->md; 1011 dm_endio_fn endio = tio->ti->type->end_io; 1012 1013 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 1014 if (bio_op(bio) == REQ_OP_DISCARD && 1015 !bio->bi_disk->queue->limits.max_discard_sectors) 1016 disable_discard(md); 1017 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 1018 !bio->bi_disk->queue->limits.max_write_same_sectors) 1019 disable_write_same(md); 1020 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1021 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 1022 disable_write_zeroes(md); 1023 } 1024 1025 if (endio) { 1026 int r = endio(tio->ti, bio, &error); 1027 switch (r) { 1028 case DM_ENDIO_REQUEUE: 1029 error = BLK_STS_DM_REQUEUE; 1030 /*FALLTHRU*/ 1031 case DM_ENDIO_DONE: 1032 break; 1033 case DM_ENDIO_INCOMPLETE: 1034 /* The target will handle the io */ 1035 return; 1036 default: 1037 DMWARN("unimplemented target endio return value: %d", r); 1038 BUG(); 1039 } 1040 } 1041 1042 free_tio(tio); 1043 dec_pending(io, error); 1044 } 1045 1046 /* 1047 * Return maximum size of I/O possible at the supplied sector up to the current 1048 * target boundary. 1049 */ 1050 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1051 { 1052 sector_t target_offset = dm_target_offset(ti, sector); 1053 1054 return ti->len - target_offset; 1055 } 1056 1057 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1058 { 1059 sector_t len = max_io_len_target_boundary(sector, ti); 1060 sector_t offset, max_len; 1061 1062 /* 1063 * Does the target need to split even further? 1064 */ 1065 if (ti->max_io_len) { 1066 offset = dm_target_offset(ti, sector); 1067 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1068 max_len = sector_div(offset, ti->max_io_len); 1069 else 1070 max_len = offset & (ti->max_io_len - 1); 1071 max_len = ti->max_io_len - max_len; 1072 1073 if (len > max_len) 1074 len = max_len; 1075 } 1076 1077 return len; 1078 } 1079 1080 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1081 { 1082 if (len > UINT_MAX) { 1083 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1084 (unsigned long long)len, UINT_MAX); 1085 ti->error = "Maximum size of target IO is too large"; 1086 return -EINVAL; 1087 } 1088 1089 ti->max_io_len = (uint32_t) len; 1090 1091 return 0; 1092 } 1093 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1094 1095 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1096 sector_t sector, int *srcu_idx) 1097 __acquires(md->io_barrier) 1098 { 1099 struct dm_table *map; 1100 struct dm_target *ti; 1101 1102 map = dm_get_live_table(md, srcu_idx); 1103 if (!map) 1104 return NULL; 1105 1106 ti = dm_table_find_target(map, sector); 1107 if (!ti) 1108 return NULL; 1109 1110 return ti; 1111 } 1112 1113 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1114 long nr_pages, void **kaddr, pfn_t *pfn) 1115 { 1116 struct mapped_device *md = dax_get_private(dax_dev); 1117 sector_t sector = pgoff * PAGE_SECTORS; 1118 struct dm_target *ti; 1119 long len, ret = -EIO; 1120 int srcu_idx; 1121 1122 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1123 1124 if (!ti) 1125 goto out; 1126 if (!ti->type->direct_access) 1127 goto out; 1128 len = max_io_len(sector, ti) / PAGE_SECTORS; 1129 if (len < 1) 1130 goto out; 1131 nr_pages = min(len, nr_pages); 1132 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1133 1134 out: 1135 dm_put_live_table(md, srcu_idx); 1136 1137 return ret; 1138 } 1139 1140 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1141 int blocksize, sector_t start, sector_t len) 1142 { 1143 struct mapped_device *md = dax_get_private(dax_dev); 1144 struct dm_table *map; 1145 int srcu_idx; 1146 bool ret; 1147 1148 map = dm_get_live_table(md, &srcu_idx); 1149 if (!map) 1150 return false; 1151 1152 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1153 1154 dm_put_live_table(md, srcu_idx); 1155 1156 return ret; 1157 } 1158 1159 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1160 void *addr, size_t bytes, struct iov_iter *i) 1161 { 1162 struct mapped_device *md = dax_get_private(dax_dev); 1163 sector_t sector = pgoff * PAGE_SECTORS; 1164 struct dm_target *ti; 1165 long ret = 0; 1166 int srcu_idx; 1167 1168 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1169 1170 if (!ti) 1171 goto out; 1172 if (!ti->type->dax_copy_from_iter) { 1173 ret = copy_from_iter(addr, bytes, i); 1174 goto out; 1175 } 1176 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1177 out: 1178 dm_put_live_table(md, srcu_idx); 1179 1180 return ret; 1181 } 1182 1183 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1184 void *addr, size_t bytes, struct iov_iter *i) 1185 { 1186 struct mapped_device *md = dax_get_private(dax_dev); 1187 sector_t sector = pgoff * PAGE_SECTORS; 1188 struct dm_target *ti; 1189 long ret = 0; 1190 int srcu_idx; 1191 1192 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1193 1194 if (!ti) 1195 goto out; 1196 if (!ti->type->dax_copy_to_iter) { 1197 ret = copy_to_iter(addr, bytes, i); 1198 goto out; 1199 } 1200 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1201 out: 1202 dm_put_live_table(md, srcu_idx); 1203 1204 return ret; 1205 } 1206 1207 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1208 size_t nr_pages) 1209 { 1210 struct mapped_device *md = dax_get_private(dax_dev); 1211 sector_t sector = pgoff * PAGE_SECTORS; 1212 struct dm_target *ti; 1213 int ret = -EIO; 1214 int srcu_idx; 1215 1216 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1217 1218 if (!ti) 1219 goto out; 1220 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1221 /* 1222 * ->zero_page_range() is mandatory dax operation. If we are 1223 * here, something is wrong. 1224 */ 1225 dm_put_live_table(md, srcu_idx); 1226 goto out; 1227 } 1228 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1229 1230 out: 1231 dm_put_live_table(md, srcu_idx); 1232 1233 return ret; 1234 } 1235 1236 /* 1237 * A target may call dm_accept_partial_bio only from the map routine. It is 1238 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1239 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1240 * 1241 * dm_accept_partial_bio informs the dm that the target only wants to process 1242 * additional n_sectors sectors of the bio and the rest of the data should be 1243 * sent in a next bio. 1244 * 1245 * A diagram that explains the arithmetics: 1246 * +--------------------+---------------+-------+ 1247 * | 1 | 2 | 3 | 1248 * +--------------------+---------------+-------+ 1249 * 1250 * <-------------- *tio->len_ptr ---------------> 1251 * <------- bi_size -------> 1252 * <-- n_sectors --> 1253 * 1254 * Region 1 was already iterated over with bio_advance or similar function. 1255 * (it may be empty if the target doesn't use bio_advance) 1256 * Region 2 is the remaining bio size that the target wants to process. 1257 * (it may be empty if region 1 is non-empty, although there is no reason 1258 * to make it empty) 1259 * The target requires that region 3 is to be sent in the next bio. 1260 * 1261 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1262 * the partially processed part (the sum of regions 1+2) must be the same for all 1263 * copies of the bio. 1264 */ 1265 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1266 { 1267 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1268 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1269 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1270 BUG_ON(bi_size > *tio->len_ptr); 1271 BUG_ON(n_sectors > bi_size); 1272 *tio->len_ptr -= bi_size - n_sectors; 1273 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1274 } 1275 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1276 1277 static blk_qc_t __map_bio(struct dm_target_io *tio) 1278 { 1279 int r; 1280 sector_t sector; 1281 struct bio *clone = &tio->clone; 1282 struct dm_io *io = tio->io; 1283 struct mapped_device *md = io->md; 1284 struct dm_target *ti = tio->ti; 1285 blk_qc_t ret = BLK_QC_T_NONE; 1286 1287 clone->bi_end_io = clone_endio; 1288 1289 /* 1290 * Map the clone. If r == 0 we don't need to do 1291 * anything, the target has assumed ownership of 1292 * this io. 1293 */ 1294 atomic_inc(&io->io_count); 1295 sector = clone->bi_iter.bi_sector; 1296 1297 r = ti->type->map(ti, clone); 1298 switch (r) { 1299 case DM_MAPIO_SUBMITTED: 1300 break; 1301 case DM_MAPIO_REMAPPED: 1302 /* the bio has been remapped so dispatch it */ 1303 trace_block_bio_remap(clone->bi_disk->queue, clone, 1304 bio_dev(io->orig_bio), sector); 1305 if (md->type == DM_TYPE_NVME_BIO_BASED) 1306 ret = direct_make_request(clone); 1307 else 1308 ret = submit_bio_noacct(clone); 1309 break; 1310 case DM_MAPIO_KILL: 1311 free_tio(tio); 1312 dec_pending(io, BLK_STS_IOERR); 1313 break; 1314 case DM_MAPIO_REQUEUE: 1315 free_tio(tio); 1316 dec_pending(io, BLK_STS_DM_REQUEUE); 1317 break; 1318 default: 1319 DMWARN("unimplemented target map return value: %d", r); 1320 BUG(); 1321 } 1322 1323 return ret; 1324 } 1325 1326 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1327 { 1328 bio->bi_iter.bi_sector = sector; 1329 bio->bi_iter.bi_size = to_bytes(len); 1330 } 1331 1332 /* 1333 * Creates a bio that consists of range of complete bvecs. 1334 */ 1335 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1336 sector_t sector, unsigned len) 1337 { 1338 struct bio *clone = &tio->clone; 1339 1340 __bio_clone_fast(clone, bio); 1341 1342 bio_crypt_clone(clone, bio, GFP_NOIO); 1343 1344 if (bio_integrity(bio)) { 1345 int r; 1346 1347 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1348 !dm_target_passes_integrity(tio->ti->type))) { 1349 DMWARN("%s: the target %s doesn't support integrity data.", 1350 dm_device_name(tio->io->md), 1351 tio->ti->type->name); 1352 return -EIO; 1353 } 1354 1355 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1356 if (r < 0) 1357 return r; 1358 } 1359 1360 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1361 clone->bi_iter.bi_size = to_bytes(len); 1362 1363 if (bio_integrity(bio)) 1364 bio_integrity_trim(clone); 1365 1366 return 0; 1367 } 1368 1369 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1370 struct dm_target *ti, unsigned num_bios) 1371 { 1372 struct dm_target_io *tio; 1373 int try; 1374 1375 if (!num_bios) 1376 return; 1377 1378 if (num_bios == 1) { 1379 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1380 bio_list_add(blist, &tio->clone); 1381 return; 1382 } 1383 1384 for (try = 0; try < 2; try++) { 1385 int bio_nr; 1386 struct bio *bio; 1387 1388 if (try) 1389 mutex_lock(&ci->io->md->table_devices_lock); 1390 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1391 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1392 if (!tio) 1393 break; 1394 1395 bio_list_add(blist, &tio->clone); 1396 } 1397 if (try) 1398 mutex_unlock(&ci->io->md->table_devices_lock); 1399 if (bio_nr == num_bios) 1400 return; 1401 1402 while ((bio = bio_list_pop(blist))) { 1403 tio = container_of(bio, struct dm_target_io, clone); 1404 free_tio(tio); 1405 } 1406 } 1407 } 1408 1409 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1410 struct dm_target_io *tio, unsigned *len) 1411 { 1412 struct bio *clone = &tio->clone; 1413 1414 tio->len_ptr = len; 1415 1416 __bio_clone_fast(clone, ci->bio); 1417 if (len) 1418 bio_setup_sector(clone, ci->sector, *len); 1419 1420 return __map_bio(tio); 1421 } 1422 1423 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1424 unsigned num_bios, unsigned *len) 1425 { 1426 struct bio_list blist = BIO_EMPTY_LIST; 1427 struct bio *bio; 1428 struct dm_target_io *tio; 1429 1430 alloc_multiple_bios(&blist, ci, ti, num_bios); 1431 1432 while ((bio = bio_list_pop(&blist))) { 1433 tio = container_of(bio, struct dm_target_io, clone); 1434 (void) __clone_and_map_simple_bio(ci, tio, len); 1435 } 1436 } 1437 1438 static int __send_empty_flush(struct clone_info *ci) 1439 { 1440 unsigned target_nr = 0; 1441 struct dm_target *ti; 1442 1443 /* 1444 * Empty flush uses a statically initialized bio, as the base for 1445 * cloning. However, blkg association requires that a bdev is 1446 * associated with a gendisk, which doesn't happen until the bdev is 1447 * opened. So, blkg association is done at issue time of the flush 1448 * rather than when the device is created in alloc_dev(). 1449 */ 1450 bio_set_dev(ci->bio, ci->io->md->bdev); 1451 1452 BUG_ON(bio_has_data(ci->bio)); 1453 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1454 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1455 return 0; 1456 } 1457 1458 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1459 sector_t sector, unsigned *len) 1460 { 1461 struct bio *bio = ci->bio; 1462 struct dm_target_io *tio; 1463 int r; 1464 1465 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1466 tio->len_ptr = len; 1467 r = clone_bio(tio, bio, sector, *len); 1468 if (r < 0) { 1469 free_tio(tio); 1470 return r; 1471 } 1472 (void) __map_bio(tio); 1473 1474 return 0; 1475 } 1476 1477 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1478 1479 static unsigned get_num_discard_bios(struct dm_target *ti) 1480 { 1481 return ti->num_discard_bios; 1482 } 1483 1484 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1485 { 1486 return ti->num_secure_erase_bios; 1487 } 1488 1489 static unsigned get_num_write_same_bios(struct dm_target *ti) 1490 { 1491 return ti->num_write_same_bios; 1492 } 1493 1494 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1495 { 1496 return ti->num_write_zeroes_bios; 1497 } 1498 1499 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1500 unsigned num_bios) 1501 { 1502 unsigned len; 1503 1504 /* 1505 * Even though the device advertised support for this type of 1506 * request, that does not mean every target supports it, and 1507 * reconfiguration might also have changed that since the 1508 * check was performed. 1509 */ 1510 if (!num_bios) 1511 return -EOPNOTSUPP; 1512 1513 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1514 1515 __send_duplicate_bios(ci, ti, num_bios, &len); 1516 1517 ci->sector += len; 1518 ci->sector_count -= len; 1519 1520 return 0; 1521 } 1522 1523 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1524 { 1525 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1526 } 1527 1528 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1529 { 1530 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1531 } 1532 1533 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1534 { 1535 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1536 } 1537 1538 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1539 { 1540 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1541 } 1542 1543 static bool is_abnormal_io(struct bio *bio) 1544 { 1545 bool r = false; 1546 1547 switch (bio_op(bio)) { 1548 case REQ_OP_DISCARD: 1549 case REQ_OP_SECURE_ERASE: 1550 case REQ_OP_WRITE_SAME: 1551 case REQ_OP_WRITE_ZEROES: 1552 r = true; 1553 break; 1554 } 1555 1556 return r; 1557 } 1558 1559 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1560 int *result) 1561 { 1562 struct bio *bio = ci->bio; 1563 1564 if (bio_op(bio) == REQ_OP_DISCARD) 1565 *result = __send_discard(ci, ti); 1566 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1567 *result = __send_secure_erase(ci, ti); 1568 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1569 *result = __send_write_same(ci, ti); 1570 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1571 *result = __send_write_zeroes(ci, ti); 1572 else 1573 return false; 1574 1575 return true; 1576 } 1577 1578 /* 1579 * Select the correct strategy for processing a non-flush bio. 1580 */ 1581 static int __split_and_process_non_flush(struct clone_info *ci) 1582 { 1583 struct dm_target *ti; 1584 unsigned len; 1585 int r; 1586 1587 ti = dm_table_find_target(ci->map, ci->sector); 1588 if (!ti) 1589 return -EIO; 1590 1591 if (__process_abnormal_io(ci, ti, &r)) 1592 return r; 1593 1594 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1595 1596 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1597 if (r < 0) 1598 return r; 1599 1600 ci->sector += len; 1601 ci->sector_count -= len; 1602 1603 return 0; 1604 } 1605 1606 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1607 struct dm_table *map, struct bio *bio) 1608 { 1609 ci->map = map; 1610 ci->io = alloc_io(md, bio); 1611 ci->sector = bio->bi_iter.bi_sector; 1612 } 1613 1614 #define __dm_part_stat_sub(part, field, subnd) \ 1615 (part_stat_get(part, field) -= (subnd)) 1616 1617 /* 1618 * Entry point to split a bio into clones and submit them to the targets. 1619 */ 1620 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1621 struct dm_table *map, struct bio *bio) 1622 { 1623 struct clone_info ci; 1624 blk_qc_t ret = BLK_QC_T_NONE; 1625 int error = 0; 1626 1627 init_clone_info(&ci, md, map, bio); 1628 1629 if (bio->bi_opf & REQ_PREFLUSH) { 1630 struct bio flush_bio; 1631 1632 /* 1633 * Use an on-stack bio for this, it's safe since we don't 1634 * need to reference it after submit. It's just used as 1635 * the basis for the clone(s). 1636 */ 1637 bio_init(&flush_bio, NULL, 0); 1638 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1639 ci.bio = &flush_bio; 1640 ci.sector_count = 0; 1641 error = __send_empty_flush(&ci); 1642 bio_uninit(ci.bio); 1643 /* dec_pending submits any data associated with flush */ 1644 } else if (op_is_zone_mgmt(bio_op(bio))) { 1645 ci.bio = bio; 1646 ci.sector_count = 0; 1647 error = __split_and_process_non_flush(&ci); 1648 } else { 1649 ci.bio = bio; 1650 ci.sector_count = bio_sectors(bio); 1651 while (ci.sector_count && !error) { 1652 error = __split_and_process_non_flush(&ci); 1653 if (current->bio_list && ci.sector_count && !error) { 1654 /* 1655 * Remainder must be passed to submit_bio_noacct() 1656 * so that it gets handled *after* bios already submitted 1657 * have been completely processed. 1658 * We take a clone of the original to store in 1659 * ci.io->orig_bio to be used by end_io_acct() and 1660 * for dec_pending to use for completion handling. 1661 */ 1662 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1663 GFP_NOIO, &md->queue->bio_split); 1664 ci.io->orig_bio = b; 1665 1666 /* 1667 * Adjust IO stats for each split, otherwise upon queue 1668 * reentry there will be redundant IO accounting. 1669 * NOTE: this is a stop-gap fix, a proper fix involves 1670 * significant refactoring of DM core's bio splitting 1671 * (by eliminating DM's splitting and just using bio_split) 1672 */ 1673 part_stat_lock(); 1674 __dm_part_stat_sub(&dm_disk(md)->part0, 1675 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1676 part_stat_unlock(); 1677 1678 bio_chain(b, bio); 1679 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1680 ret = submit_bio_noacct(bio); 1681 break; 1682 } 1683 } 1684 } 1685 1686 /* drop the extra reference count */ 1687 dec_pending(ci.io, errno_to_blk_status(error)); 1688 return ret; 1689 } 1690 1691 /* 1692 * Optimized variant of __split_and_process_bio that leverages the 1693 * fact that targets that use it do _not_ have a need to split bios. 1694 */ 1695 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1696 struct bio *bio, struct dm_target *ti) 1697 { 1698 struct clone_info ci; 1699 blk_qc_t ret = BLK_QC_T_NONE; 1700 int error = 0; 1701 1702 init_clone_info(&ci, md, map, bio); 1703 1704 if (bio->bi_opf & REQ_PREFLUSH) { 1705 struct bio flush_bio; 1706 1707 /* 1708 * Use an on-stack bio for this, it's safe since we don't 1709 * need to reference it after submit. It's just used as 1710 * the basis for the clone(s). 1711 */ 1712 bio_init(&flush_bio, NULL, 0); 1713 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1714 ci.bio = &flush_bio; 1715 ci.sector_count = 0; 1716 error = __send_empty_flush(&ci); 1717 bio_uninit(ci.bio); 1718 /* dec_pending submits any data associated with flush */ 1719 } else { 1720 struct dm_target_io *tio; 1721 1722 ci.bio = bio; 1723 ci.sector_count = bio_sectors(bio); 1724 if (__process_abnormal_io(&ci, ti, &error)) 1725 goto out; 1726 1727 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1728 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1729 } 1730 out: 1731 /* drop the extra reference count */ 1732 dec_pending(ci.io, errno_to_blk_status(error)); 1733 return ret; 1734 } 1735 1736 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1737 { 1738 unsigned len, sector_count; 1739 1740 sector_count = bio_sectors(*bio); 1741 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1742 1743 if (sector_count > len) { 1744 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1745 1746 bio_chain(split, *bio); 1747 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1748 submit_bio_noacct(*bio); 1749 *bio = split; 1750 } 1751 } 1752 1753 static blk_qc_t dm_process_bio(struct mapped_device *md, 1754 struct dm_table *map, struct bio *bio) 1755 { 1756 blk_qc_t ret = BLK_QC_T_NONE; 1757 struct dm_target *ti = md->immutable_target; 1758 1759 if (unlikely(!map)) { 1760 bio_io_error(bio); 1761 return ret; 1762 } 1763 1764 if (!ti) { 1765 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1766 if (unlikely(!ti)) { 1767 bio_io_error(bio); 1768 return ret; 1769 } 1770 } 1771 1772 /* 1773 * If in ->queue_bio we need to use blk_queue_split(), otherwise 1774 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1775 * won't be imposed. 1776 */ 1777 if (current->bio_list) { 1778 if (is_abnormal_io(bio)) 1779 blk_queue_split(&bio); 1780 else 1781 dm_queue_split(md, ti, &bio); 1782 } 1783 1784 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1785 return __process_bio(md, map, bio, ti); 1786 else 1787 return __split_and_process_bio(md, map, bio); 1788 } 1789 1790 static blk_qc_t dm_submit_bio(struct bio *bio) 1791 { 1792 struct mapped_device *md = bio->bi_disk->private_data; 1793 blk_qc_t ret = BLK_QC_T_NONE; 1794 int srcu_idx; 1795 struct dm_table *map; 1796 1797 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) { 1798 /* 1799 * We are called with a live reference on q_usage_counter, but 1800 * that one will be released as soon as we return. Grab an 1801 * extra one as blk_mq_submit_bio expects to be able to consume 1802 * a reference (which lives until the request is freed in case a 1803 * request is allocated). 1804 */ 1805 percpu_ref_get(&bio->bi_disk->queue->q_usage_counter); 1806 return blk_mq_submit_bio(bio); 1807 } 1808 1809 map = dm_get_live_table(md, &srcu_idx); 1810 1811 /* if we're suspended, we have to queue this io for later */ 1812 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1813 dm_put_live_table(md, srcu_idx); 1814 1815 if (!(bio->bi_opf & REQ_RAHEAD)) 1816 queue_io(md, bio); 1817 else 1818 bio_io_error(bio); 1819 return ret; 1820 } 1821 1822 ret = dm_process_bio(md, map, bio); 1823 1824 dm_put_live_table(md, srcu_idx); 1825 return ret; 1826 } 1827 1828 static int dm_any_congested(void *congested_data, int bdi_bits) 1829 { 1830 int r = bdi_bits; 1831 struct mapped_device *md = congested_data; 1832 struct dm_table *map; 1833 1834 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1835 if (dm_request_based(md)) { 1836 /* 1837 * With request-based DM we only need to check the 1838 * top-level queue for congestion. 1839 */ 1840 struct backing_dev_info *bdi = md->queue->backing_dev_info; 1841 r = bdi->wb.congested->state & bdi_bits; 1842 } else { 1843 map = dm_get_live_table_fast(md); 1844 if (map) 1845 r = dm_table_any_congested(map, bdi_bits); 1846 dm_put_live_table_fast(md); 1847 } 1848 } 1849 1850 return r; 1851 } 1852 1853 /*----------------------------------------------------------------- 1854 * An IDR is used to keep track of allocated minor numbers. 1855 *---------------------------------------------------------------*/ 1856 static void free_minor(int minor) 1857 { 1858 spin_lock(&_minor_lock); 1859 idr_remove(&_minor_idr, minor); 1860 spin_unlock(&_minor_lock); 1861 } 1862 1863 /* 1864 * See if the device with a specific minor # is free. 1865 */ 1866 static int specific_minor(int minor) 1867 { 1868 int r; 1869 1870 if (minor >= (1 << MINORBITS)) 1871 return -EINVAL; 1872 1873 idr_preload(GFP_KERNEL); 1874 spin_lock(&_minor_lock); 1875 1876 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1877 1878 spin_unlock(&_minor_lock); 1879 idr_preload_end(); 1880 if (r < 0) 1881 return r == -ENOSPC ? -EBUSY : r; 1882 return 0; 1883 } 1884 1885 static int next_free_minor(int *minor) 1886 { 1887 int r; 1888 1889 idr_preload(GFP_KERNEL); 1890 spin_lock(&_minor_lock); 1891 1892 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1893 1894 spin_unlock(&_minor_lock); 1895 idr_preload_end(); 1896 if (r < 0) 1897 return r; 1898 *minor = r; 1899 return 0; 1900 } 1901 1902 static const struct block_device_operations dm_blk_dops; 1903 static const struct dax_operations dm_dax_ops; 1904 1905 static void dm_wq_work(struct work_struct *work); 1906 1907 static void cleanup_mapped_device(struct mapped_device *md) 1908 { 1909 if (md->wq) 1910 destroy_workqueue(md->wq); 1911 bioset_exit(&md->bs); 1912 bioset_exit(&md->io_bs); 1913 1914 if (md->dax_dev) { 1915 kill_dax(md->dax_dev); 1916 put_dax(md->dax_dev); 1917 md->dax_dev = NULL; 1918 } 1919 1920 if (md->disk) { 1921 spin_lock(&_minor_lock); 1922 md->disk->private_data = NULL; 1923 spin_unlock(&_minor_lock); 1924 del_gendisk(md->disk); 1925 put_disk(md->disk); 1926 } 1927 1928 if (md->queue) 1929 blk_cleanup_queue(md->queue); 1930 1931 cleanup_srcu_struct(&md->io_barrier); 1932 1933 if (md->bdev) { 1934 bdput(md->bdev); 1935 md->bdev = NULL; 1936 } 1937 1938 mutex_destroy(&md->suspend_lock); 1939 mutex_destroy(&md->type_lock); 1940 mutex_destroy(&md->table_devices_lock); 1941 1942 dm_mq_cleanup_mapped_device(md); 1943 } 1944 1945 /* 1946 * Allocate and initialise a blank device with a given minor. 1947 */ 1948 static struct mapped_device *alloc_dev(int minor) 1949 { 1950 int r, numa_node_id = dm_get_numa_node(); 1951 struct mapped_device *md; 1952 void *old_md; 1953 1954 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1955 if (!md) { 1956 DMWARN("unable to allocate device, out of memory."); 1957 return NULL; 1958 } 1959 1960 if (!try_module_get(THIS_MODULE)) 1961 goto bad_module_get; 1962 1963 /* get a minor number for the dev */ 1964 if (minor == DM_ANY_MINOR) 1965 r = next_free_minor(&minor); 1966 else 1967 r = specific_minor(minor); 1968 if (r < 0) 1969 goto bad_minor; 1970 1971 r = init_srcu_struct(&md->io_barrier); 1972 if (r < 0) 1973 goto bad_io_barrier; 1974 1975 md->numa_node_id = numa_node_id; 1976 md->init_tio_pdu = false; 1977 md->type = DM_TYPE_NONE; 1978 mutex_init(&md->suspend_lock); 1979 mutex_init(&md->type_lock); 1980 mutex_init(&md->table_devices_lock); 1981 spin_lock_init(&md->deferred_lock); 1982 atomic_set(&md->holders, 1); 1983 atomic_set(&md->open_count, 0); 1984 atomic_set(&md->event_nr, 0); 1985 atomic_set(&md->uevent_seq, 0); 1986 INIT_LIST_HEAD(&md->uevent_list); 1987 INIT_LIST_HEAD(&md->table_devices); 1988 spin_lock_init(&md->uevent_lock); 1989 1990 /* 1991 * default to bio-based until DM table is loaded and md->type 1992 * established. If request-based table is loaded: blk-mq will 1993 * override accordingly. 1994 */ 1995 md->queue = blk_alloc_queue(numa_node_id); 1996 if (!md->queue) 1997 goto bad; 1998 1999 md->disk = alloc_disk_node(1, md->numa_node_id); 2000 if (!md->disk) 2001 goto bad; 2002 2003 init_waitqueue_head(&md->wait); 2004 INIT_WORK(&md->work, dm_wq_work); 2005 init_waitqueue_head(&md->eventq); 2006 init_completion(&md->kobj_holder.completion); 2007 2008 md->disk->major = _major; 2009 md->disk->first_minor = minor; 2010 md->disk->fops = &dm_blk_dops; 2011 md->disk->queue = md->queue; 2012 md->disk->private_data = md; 2013 sprintf(md->disk->disk_name, "dm-%d", minor); 2014 2015 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 2016 md->dax_dev = alloc_dax(md, md->disk->disk_name, 2017 &dm_dax_ops, 0); 2018 if (IS_ERR(md->dax_dev)) 2019 goto bad; 2020 } 2021 2022 add_disk_no_queue_reg(md->disk); 2023 format_dev_t(md->name, MKDEV(_major, minor)); 2024 2025 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2026 if (!md->wq) 2027 goto bad; 2028 2029 md->bdev = bdget_disk(md->disk, 0); 2030 if (!md->bdev) 2031 goto bad; 2032 2033 dm_stats_init(&md->stats); 2034 2035 /* Populate the mapping, nobody knows we exist yet */ 2036 spin_lock(&_minor_lock); 2037 old_md = idr_replace(&_minor_idr, md, minor); 2038 spin_unlock(&_minor_lock); 2039 2040 BUG_ON(old_md != MINOR_ALLOCED); 2041 2042 return md; 2043 2044 bad: 2045 cleanup_mapped_device(md); 2046 bad_io_barrier: 2047 free_minor(minor); 2048 bad_minor: 2049 module_put(THIS_MODULE); 2050 bad_module_get: 2051 kvfree(md); 2052 return NULL; 2053 } 2054 2055 static void unlock_fs(struct mapped_device *md); 2056 2057 static void free_dev(struct mapped_device *md) 2058 { 2059 int minor = MINOR(disk_devt(md->disk)); 2060 2061 unlock_fs(md); 2062 2063 cleanup_mapped_device(md); 2064 2065 free_table_devices(&md->table_devices); 2066 dm_stats_cleanup(&md->stats); 2067 free_minor(minor); 2068 2069 module_put(THIS_MODULE); 2070 kvfree(md); 2071 } 2072 2073 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2074 { 2075 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2076 int ret = 0; 2077 2078 if (dm_table_bio_based(t)) { 2079 /* 2080 * The md may already have mempools that need changing. 2081 * If so, reload bioset because front_pad may have changed 2082 * because a different table was loaded. 2083 */ 2084 bioset_exit(&md->bs); 2085 bioset_exit(&md->io_bs); 2086 2087 } else if (bioset_initialized(&md->bs)) { 2088 /* 2089 * There's no need to reload with request-based dm 2090 * because the size of front_pad doesn't change. 2091 * Note for future: If you are to reload bioset, 2092 * prep-ed requests in the queue may refer 2093 * to bio from the old bioset, so you must walk 2094 * through the queue to unprep. 2095 */ 2096 goto out; 2097 } 2098 2099 BUG_ON(!p || 2100 bioset_initialized(&md->bs) || 2101 bioset_initialized(&md->io_bs)); 2102 2103 ret = bioset_init_from_src(&md->bs, &p->bs); 2104 if (ret) 2105 goto out; 2106 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2107 if (ret) 2108 bioset_exit(&md->bs); 2109 out: 2110 /* mempool bind completed, no longer need any mempools in the table */ 2111 dm_table_free_md_mempools(t); 2112 return ret; 2113 } 2114 2115 /* 2116 * Bind a table to the device. 2117 */ 2118 static void event_callback(void *context) 2119 { 2120 unsigned long flags; 2121 LIST_HEAD(uevents); 2122 struct mapped_device *md = (struct mapped_device *) context; 2123 2124 spin_lock_irqsave(&md->uevent_lock, flags); 2125 list_splice_init(&md->uevent_list, &uevents); 2126 spin_unlock_irqrestore(&md->uevent_lock, flags); 2127 2128 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2129 2130 atomic_inc(&md->event_nr); 2131 wake_up(&md->eventq); 2132 dm_issue_global_event(); 2133 } 2134 2135 /* 2136 * Protected by md->suspend_lock obtained by dm_swap_table(). 2137 */ 2138 static void __set_size(struct mapped_device *md, sector_t size) 2139 { 2140 lockdep_assert_held(&md->suspend_lock); 2141 2142 set_capacity(md->disk, size); 2143 2144 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2145 } 2146 2147 /* 2148 * Returns old map, which caller must destroy. 2149 */ 2150 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2151 struct queue_limits *limits) 2152 { 2153 struct dm_table *old_map; 2154 struct request_queue *q = md->queue; 2155 bool request_based = dm_table_request_based(t); 2156 sector_t size; 2157 int ret; 2158 2159 lockdep_assert_held(&md->suspend_lock); 2160 2161 size = dm_table_get_size(t); 2162 2163 /* 2164 * Wipe any geometry if the size of the table changed. 2165 */ 2166 if (size != dm_get_size(md)) 2167 memset(&md->geometry, 0, sizeof(md->geometry)); 2168 2169 __set_size(md, size); 2170 2171 dm_table_event_callback(t, event_callback, md); 2172 2173 /* 2174 * The queue hasn't been stopped yet, if the old table type wasn't 2175 * for request-based during suspension. So stop it to prevent 2176 * I/O mapping before resume. 2177 * This must be done before setting the queue restrictions, 2178 * because request-based dm may be run just after the setting. 2179 */ 2180 if (request_based) 2181 dm_stop_queue(q); 2182 2183 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2184 /* 2185 * Leverage the fact that request-based DM targets and 2186 * NVMe bio based targets are immutable singletons 2187 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2188 * and __process_bio. 2189 */ 2190 md->immutable_target = dm_table_get_immutable_target(t); 2191 } 2192 2193 ret = __bind_mempools(md, t); 2194 if (ret) { 2195 old_map = ERR_PTR(ret); 2196 goto out; 2197 } 2198 2199 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2200 rcu_assign_pointer(md->map, (void *)t); 2201 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2202 2203 dm_table_set_restrictions(t, q, limits); 2204 if (old_map) 2205 dm_sync_table(md); 2206 2207 out: 2208 return old_map; 2209 } 2210 2211 /* 2212 * Returns unbound table for the caller to free. 2213 */ 2214 static struct dm_table *__unbind(struct mapped_device *md) 2215 { 2216 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2217 2218 if (!map) 2219 return NULL; 2220 2221 dm_table_event_callback(map, NULL, NULL); 2222 RCU_INIT_POINTER(md->map, NULL); 2223 dm_sync_table(md); 2224 2225 return map; 2226 } 2227 2228 /* 2229 * Constructor for a new device. 2230 */ 2231 int dm_create(int minor, struct mapped_device **result) 2232 { 2233 int r; 2234 struct mapped_device *md; 2235 2236 md = alloc_dev(minor); 2237 if (!md) 2238 return -ENXIO; 2239 2240 r = dm_sysfs_init(md); 2241 if (r) { 2242 free_dev(md); 2243 return r; 2244 } 2245 2246 *result = md; 2247 return 0; 2248 } 2249 2250 /* 2251 * Functions to manage md->type. 2252 * All are required to hold md->type_lock. 2253 */ 2254 void dm_lock_md_type(struct mapped_device *md) 2255 { 2256 mutex_lock(&md->type_lock); 2257 } 2258 2259 void dm_unlock_md_type(struct mapped_device *md) 2260 { 2261 mutex_unlock(&md->type_lock); 2262 } 2263 2264 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2265 { 2266 BUG_ON(!mutex_is_locked(&md->type_lock)); 2267 md->type = type; 2268 } 2269 2270 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2271 { 2272 return md->type; 2273 } 2274 2275 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2276 { 2277 return md->immutable_target_type; 2278 } 2279 2280 /* 2281 * The queue_limits are only valid as long as you have a reference 2282 * count on 'md'. 2283 */ 2284 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2285 { 2286 BUG_ON(!atomic_read(&md->holders)); 2287 return &md->queue->limits; 2288 } 2289 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2290 2291 static void dm_init_congested_fn(struct mapped_device *md) 2292 { 2293 md->queue->backing_dev_info->congested_data = md; 2294 md->queue->backing_dev_info->congested_fn = dm_any_congested; 2295 } 2296 2297 /* 2298 * Setup the DM device's queue based on md's type 2299 */ 2300 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2301 { 2302 int r; 2303 struct queue_limits limits; 2304 enum dm_queue_mode type = dm_get_md_type(md); 2305 2306 switch (type) { 2307 case DM_TYPE_REQUEST_BASED: 2308 r = dm_mq_init_request_queue(md, t); 2309 if (r) { 2310 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2311 return r; 2312 } 2313 dm_init_congested_fn(md); 2314 break; 2315 case DM_TYPE_BIO_BASED: 2316 case DM_TYPE_DAX_BIO_BASED: 2317 case DM_TYPE_NVME_BIO_BASED: 2318 dm_init_congested_fn(md); 2319 break; 2320 case DM_TYPE_NONE: 2321 WARN_ON_ONCE(true); 2322 break; 2323 } 2324 2325 r = dm_calculate_queue_limits(t, &limits); 2326 if (r) { 2327 DMERR("Cannot calculate initial queue limits"); 2328 return r; 2329 } 2330 dm_table_set_restrictions(t, md->queue, &limits); 2331 blk_register_queue(md->disk); 2332 2333 return 0; 2334 } 2335 2336 struct mapped_device *dm_get_md(dev_t dev) 2337 { 2338 struct mapped_device *md; 2339 unsigned minor = MINOR(dev); 2340 2341 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2342 return NULL; 2343 2344 spin_lock(&_minor_lock); 2345 2346 md = idr_find(&_minor_idr, minor); 2347 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2348 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2349 md = NULL; 2350 goto out; 2351 } 2352 dm_get(md); 2353 out: 2354 spin_unlock(&_minor_lock); 2355 2356 return md; 2357 } 2358 EXPORT_SYMBOL_GPL(dm_get_md); 2359 2360 void *dm_get_mdptr(struct mapped_device *md) 2361 { 2362 return md->interface_ptr; 2363 } 2364 2365 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2366 { 2367 md->interface_ptr = ptr; 2368 } 2369 2370 void dm_get(struct mapped_device *md) 2371 { 2372 atomic_inc(&md->holders); 2373 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2374 } 2375 2376 int dm_hold(struct mapped_device *md) 2377 { 2378 spin_lock(&_minor_lock); 2379 if (test_bit(DMF_FREEING, &md->flags)) { 2380 spin_unlock(&_minor_lock); 2381 return -EBUSY; 2382 } 2383 dm_get(md); 2384 spin_unlock(&_minor_lock); 2385 return 0; 2386 } 2387 EXPORT_SYMBOL_GPL(dm_hold); 2388 2389 const char *dm_device_name(struct mapped_device *md) 2390 { 2391 return md->name; 2392 } 2393 EXPORT_SYMBOL_GPL(dm_device_name); 2394 2395 static void __dm_destroy(struct mapped_device *md, bool wait) 2396 { 2397 struct dm_table *map; 2398 int srcu_idx; 2399 2400 might_sleep(); 2401 2402 spin_lock(&_minor_lock); 2403 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2404 set_bit(DMF_FREEING, &md->flags); 2405 spin_unlock(&_minor_lock); 2406 2407 blk_set_queue_dying(md->queue); 2408 2409 /* 2410 * Take suspend_lock so that presuspend and postsuspend methods 2411 * do not race with internal suspend. 2412 */ 2413 mutex_lock(&md->suspend_lock); 2414 map = dm_get_live_table(md, &srcu_idx); 2415 if (!dm_suspended_md(md)) { 2416 dm_table_presuspend_targets(map); 2417 set_bit(DMF_SUSPENDED, &md->flags); 2418 dm_table_postsuspend_targets(map); 2419 } 2420 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2421 dm_put_live_table(md, srcu_idx); 2422 mutex_unlock(&md->suspend_lock); 2423 2424 /* 2425 * Rare, but there may be I/O requests still going to complete, 2426 * for example. Wait for all references to disappear. 2427 * No one should increment the reference count of the mapped_device, 2428 * after the mapped_device state becomes DMF_FREEING. 2429 */ 2430 if (wait) 2431 while (atomic_read(&md->holders)) 2432 msleep(1); 2433 else if (atomic_read(&md->holders)) 2434 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2435 dm_device_name(md), atomic_read(&md->holders)); 2436 2437 dm_sysfs_exit(md); 2438 dm_table_destroy(__unbind(md)); 2439 free_dev(md); 2440 } 2441 2442 void dm_destroy(struct mapped_device *md) 2443 { 2444 __dm_destroy(md, true); 2445 } 2446 2447 void dm_destroy_immediate(struct mapped_device *md) 2448 { 2449 __dm_destroy(md, false); 2450 } 2451 2452 void dm_put(struct mapped_device *md) 2453 { 2454 atomic_dec(&md->holders); 2455 } 2456 EXPORT_SYMBOL_GPL(dm_put); 2457 2458 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2459 { 2460 int r = 0; 2461 DEFINE_WAIT(wait); 2462 2463 while (1) { 2464 prepare_to_wait(&md->wait, &wait, task_state); 2465 2466 if (!md_in_flight(md)) 2467 break; 2468 2469 if (signal_pending_state(task_state, current)) { 2470 r = -EINTR; 2471 break; 2472 } 2473 2474 io_schedule(); 2475 } 2476 finish_wait(&md->wait, &wait); 2477 2478 return r; 2479 } 2480 2481 /* 2482 * Process the deferred bios 2483 */ 2484 static void dm_wq_work(struct work_struct *work) 2485 { 2486 struct mapped_device *md = container_of(work, struct mapped_device, 2487 work); 2488 struct bio *c; 2489 int srcu_idx; 2490 struct dm_table *map; 2491 2492 map = dm_get_live_table(md, &srcu_idx); 2493 2494 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2495 spin_lock_irq(&md->deferred_lock); 2496 c = bio_list_pop(&md->deferred); 2497 spin_unlock_irq(&md->deferred_lock); 2498 2499 if (!c) 2500 break; 2501 2502 if (dm_request_based(md)) 2503 (void) submit_bio_noacct(c); 2504 else 2505 (void) dm_process_bio(md, map, c); 2506 } 2507 2508 dm_put_live_table(md, srcu_idx); 2509 } 2510 2511 static void dm_queue_flush(struct mapped_device *md) 2512 { 2513 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2514 smp_mb__after_atomic(); 2515 queue_work(md->wq, &md->work); 2516 } 2517 2518 /* 2519 * Swap in a new table, returning the old one for the caller to destroy. 2520 */ 2521 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2522 { 2523 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2524 struct queue_limits limits; 2525 int r; 2526 2527 mutex_lock(&md->suspend_lock); 2528 2529 /* device must be suspended */ 2530 if (!dm_suspended_md(md)) 2531 goto out; 2532 2533 /* 2534 * If the new table has no data devices, retain the existing limits. 2535 * This helps multipath with queue_if_no_path if all paths disappear, 2536 * then new I/O is queued based on these limits, and then some paths 2537 * reappear. 2538 */ 2539 if (dm_table_has_no_data_devices(table)) { 2540 live_map = dm_get_live_table_fast(md); 2541 if (live_map) 2542 limits = md->queue->limits; 2543 dm_put_live_table_fast(md); 2544 } 2545 2546 if (!live_map) { 2547 r = dm_calculate_queue_limits(table, &limits); 2548 if (r) { 2549 map = ERR_PTR(r); 2550 goto out; 2551 } 2552 } 2553 2554 map = __bind(md, table, &limits); 2555 dm_issue_global_event(); 2556 2557 out: 2558 mutex_unlock(&md->suspend_lock); 2559 return map; 2560 } 2561 2562 /* 2563 * Functions to lock and unlock any filesystem running on the 2564 * device. 2565 */ 2566 static int lock_fs(struct mapped_device *md) 2567 { 2568 int r; 2569 2570 WARN_ON(md->frozen_sb); 2571 2572 md->frozen_sb = freeze_bdev(md->bdev); 2573 if (IS_ERR(md->frozen_sb)) { 2574 r = PTR_ERR(md->frozen_sb); 2575 md->frozen_sb = NULL; 2576 return r; 2577 } 2578 2579 set_bit(DMF_FROZEN, &md->flags); 2580 2581 return 0; 2582 } 2583 2584 static void unlock_fs(struct mapped_device *md) 2585 { 2586 if (!test_bit(DMF_FROZEN, &md->flags)) 2587 return; 2588 2589 thaw_bdev(md->bdev, md->frozen_sb); 2590 md->frozen_sb = NULL; 2591 clear_bit(DMF_FROZEN, &md->flags); 2592 } 2593 2594 /* 2595 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2596 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2597 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2598 * 2599 * If __dm_suspend returns 0, the device is completely quiescent 2600 * now. There is no request-processing activity. All new requests 2601 * are being added to md->deferred list. 2602 */ 2603 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2604 unsigned suspend_flags, long task_state, 2605 int dmf_suspended_flag) 2606 { 2607 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2608 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2609 int r; 2610 2611 lockdep_assert_held(&md->suspend_lock); 2612 2613 /* 2614 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2615 * This flag is cleared before dm_suspend returns. 2616 */ 2617 if (noflush) 2618 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2619 else 2620 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2621 2622 /* 2623 * This gets reverted if there's an error later and the targets 2624 * provide the .presuspend_undo hook. 2625 */ 2626 dm_table_presuspend_targets(map); 2627 2628 /* 2629 * Flush I/O to the device. 2630 * Any I/O submitted after lock_fs() may not be flushed. 2631 * noflush takes precedence over do_lockfs. 2632 * (lock_fs() flushes I/Os and waits for them to complete.) 2633 */ 2634 if (!noflush && do_lockfs) { 2635 r = lock_fs(md); 2636 if (r) { 2637 dm_table_presuspend_undo_targets(map); 2638 return r; 2639 } 2640 } 2641 2642 /* 2643 * Here we must make sure that no processes are submitting requests 2644 * to target drivers i.e. no one may be executing 2645 * __split_and_process_bio. This is called from dm_request and 2646 * dm_wq_work. 2647 * 2648 * To get all processes out of __split_and_process_bio in dm_request, 2649 * we take the write lock. To prevent any process from reentering 2650 * __split_and_process_bio from dm_request and quiesce the thread 2651 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2652 * flush_workqueue(md->wq). 2653 */ 2654 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2655 if (map) 2656 synchronize_srcu(&md->io_barrier); 2657 2658 /* 2659 * Stop md->queue before flushing md->wq in case request-based 2660 * dm defers requests to md->wq from md->queue. 2661 */ 2662 if (dm_request_based(md)) 2663 dm_stop_queue(md->queue); 2664 2665 flush_workqueue(md->wq); 2666 2667 /* 2668 * At this point no more requests are entering target request routines. 2669 * We call dm_wait_for_completion to wait for all existing requests 2670 * to finish. 2671 */ 2672 r = dm_wait_for_completion(md, task_state); 2673 if (!r) 2674 set_bit(dmf_suspended_flag, &md->flags); 2675 2676 if (noflush) 2677 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2678 if (map) 2679 synchronize_srcu(&md->io_barrier); 2680 2681 /* were we interrupted ? */ 2682 if (r < 0) { 2683 dm_queue_flush(md); 2684 2685 if (dm_request_based(md)) 2686 dm_start_queue(md->queue); 2687 2688 unlock_fs(md); 2689 dm_table_presuspend_undo_targets(map); 2690 /* pushback list is already flushed, so skip flush */ 2691 } 2692 2693 return r; 2694 } 2695 2696 /* 2697 * We need to be able to change a mapping table under a mounted 2698 * filesystem. For example we might want to move some data in 2699 * the background. Before the table can be swapped with 2700 * dm_bind_table, dm_suspend must be called to flush any in 2701 * flight bios and ensure that any further io gets deferred. 2702 */ 2703 /* 2704 * Suspend mechanism in request-based dm. 2705 * 2706 * 1. Flush all I/Os by lock_fs() if needed. 2707 * 2. Stop dispatching any I/O by stopping the request_queue. 2708 * 3. Wait for all in-flight I/Os to be completed or requeued. 2709 * 2710 * To abort suspend, start the request_queue. 2711 */ 2712 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2713 { 2714 struct dm_table *map = NULL; 2715 int r = 0; 2716 2717 retry: 2718 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2719 2720 if (dm_suspended_md(md)) { 2721 r = -EINVAL; 2722 goto out_unlock; 2723 } 2724 2725 if (dm_suspended_internally_md(md)) { 2726 /* already internally suspended, wait for internal resume */ 2727 mutex_unlock(&md->suspend_lock); 2728 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2729 if (r) 2730 return r; 2731 goto retry; 2732 } 2733 2734 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2735 2736 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2737 if (r) 2738 goto out_unlock; 2739 2740 dm_table_postsuspend_targets(map); 2741 2742 out_unlock: 2743 mutex_unlock(&md->suspend_lock); 2744 return r; 2745 } 2746 2747 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2748 { 2749 if (map) { 2750 int r = dm_table_resume_targets(map); 2751 if (r) 2752 return r; 2753 } 2754 2755 dm_queue_flush(md); 2756 2757 /* 2758 * Flushing deferred I/Os must be done after targets are resumed 2759 * so that mapping of targets can work correctly. 2760 * Request-based dm is queueing the deferred I/Os in its request_queue. 2761 */ 2762 if (dm_request_based(md)) 2763 dm_start_queue(md->queue); 2764 2765 unlock_fs(md); 2766 2767 return 0; 2768 } 2769 2770 int dm_resume(struct mapped_device *md) 2771 { 2772 int r; 2773 struct dm_table *map = NULL; 2774 2775 retry: 2776 r = -EINVAL; 2777 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2778 2779 if (!dm_suspended_md(md)) 2780 goto out; 2781 2782 if (dm_suspended_internally_md(md)) { 2783 /* already internally suspended, wait for internal resume */ 2784 mutex_unlock(&md->suspend_lock); 2785 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2786 if (r) 2787 return r; 2788 goto retry; 2789 } 2790 2791 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2792 if (!map || !dm_table_get_size(map)) 2793 goto out; 2794 2795 r = __dm_resume(md, map); 2796 if (r) 2797 goto out; 2798 2799 clear_bit(DMF_SUSPENDED, &md->flags); 2800 out: 2801 mutex_unlock(&md->suspend_lock); 2802 2803 return r; 2804 } 2805 2806 /* 2807 * Internal suspend/resume works like userspace-driven suspend. It waits 2808 * until all bios finish and prevents issuing new bios to the target drivers. 2809 * It may be used only from the kernel. 2810 */ 2811 2812 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2813 { 2814 struct dm_table *map = NULL; 2815 2816 lockdep_assert_held(&md->suspend_lock); 2817 2818 if (md->internal_suspend_count++) 2819 return; /* nested internal suspend */ 2820 2821 if (dm_suspended_md(md)) { 2822 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2823 return; /* nest suspend */ 2824 } 2825 2826 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2827 2828 /* 2829 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2830 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2831 * would require changing .presuspend to return an error -- avoid this 2832 * until there is a need for more elaborate variants of internal suspend. 2833 */ 2834 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2835 DMF_SUSPENDED_INTERNALLY); 2836 2837 dm_table_postsuspend_targets(map); 2838 } 2839 2840 static void __dm_internal_resume(struct mapped_device *md) 2841 { 2842 BUG_ON(!md->internal_suspend_count); 2843 2844 if (--md->internal_suspend_count) 2845 return; /* resume from nested internal suspend */ 2846 2847 if (dm_suspended_md(md)) 2848 goto done; /* resume from nested suspend */ 2849 2850 /* 2851 * NOTE: existing callers don't need to call dm_table_resume_targets 2852 * (which may fail -- so best to avoid it for now by passing NULL map) 2853 */ 2854 (void) __dm_resume(md, NULL); 2855 2856 done: 2857 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2858 smp_mb__after_atomic(); 2859 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2860 } 2861 2862 void dm_internal_suspend_noflush(struct mapped_device *md) 2863 { 2864 mutex_lock(&md->suspend_lock); 2865 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2866 mutex_unlock(&md->suspend_lock); 2867 } 2868 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2869 2870 void dm_internal_resume(struct mapped_device *md) 2871 { 2872 mutex_lock(&md->suspend_lock); 2873 __dm_internal_resume(md); 2874 mutex_unlock(&md->suspend_lock); 2875 } 2876 EXPORT_SYMBOL_GPL(dm_internal_resume); 2877 2878 /* 2879 * Fast variants of internal suspend/resume hold md->suspend_lock, 2880 * which prevents interaction with userspace-driven suspend. 2881 */ 2882 2883 void dm_internal_suspend_fast(struct mapped_device *md) 2884 { 2885 mutex_lock(&md->suspend_lock); 2886 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2887 return; 2888 2889 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2890 synchronize_srcu(&md->io_barrier); 2891 flush_workqueue(md->wq); 2892 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2893 } 2894 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2895 2896 void dm_internal_resume_fast(struct mapped_device *md) 2897 { 2898 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2899 goto done; 2900 2901 dm_queue_flush(md); 2902 2903 done: 2904 mutex_unlock(&md->suspend_lock); 2905 } 2906 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2907 2908 /*----------------------------------------------------------------- 2909 * Event notification. 2910 *---------------------------------------------------------------*/ 2911 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2912 unsigned cookie) 2913 { 2914 char udev_cookie[DM_COOKIE_LENGTH]; 2915 char *envp[] = { udev_cookie, NULL }; 2916 2917 if (!cookie) 2918 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2919 else { 2920 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2921 DM_COOKIE_ENV_VAR_NAME, cookie); 2922 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2923 action, envp); 2924 } 2925 } 2926 2927 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2928 { 2929 return atomic_add_return(1, &md->uevent_seq); 2930 } 2931 2932 uint32_t dm_get_event_nr(struct mapped_device *md) 2933 { 2934 return atomic_read(&md->event_nr); 2935 } 2936 2937 int dm_wait_event(struct mapped_device *md, int event_nr) 2938 { 2939 return wait_event_interruptible(md->eventq, 2940 (event_nr != atomic_read(&md->event_nr))); 2941 } 2942 2943 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2944 { 2945 unsigned long flags; 2946 2947 spin_lock_irqsave(&md->uevent_lock, flags); 2948 list_add(elist, &md->uevent_list); 2949 spin_unlock_irqrestore(&md->uevent_lock, flags); 2950 } 2951 2952 /* 2953 * The gendisk is only valid as long as you have a reference 2954 * count on 'md'. 2955 */ 2956 struct gendisk *dm_disk(struct mapped_device *md) 2957 { 2958 return md->disk; 2959 } 2960 EXPORT_SYMBOL_GPL(dm_disk); 2961 2962 struct kobject *dm_kobject(struct mapped_device *md) 2963 { 2964 return &md->kobj_holder.kobj; 2965 } 2966 2967 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2968 { 2969 struct mapped_device *md; 2970 2971 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2972 2973 spin_lock(&_minor_lock); 2974 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2975 md = NULL; 2976 goto out; 2977 } 2978 dm_get(md); 2979 out: 2980 spin_unlock(&_minor_lock); 2981 2982 return md; 2983 } 2984 2985 int dm_suspended_md(struct mapped_device *md) 2986 { 2987 return test_bit(DMF_SUSPENDED, &md->flags); 2988 } 2989 2990 int dm_suspended_internally_md(struct mapped_device *md) 2991 { 2992 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2993 } 2994 2995 int dm_test_deferred_remove_flag(struct mapped_device *md) 2996 { 2997 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2998 } 2999 3000 int dm_suspended(struct dm_target *ti) 3001 { 3002 return dm_suspended_md(dm_table_get_md(ti->table)); 3003 } 3004 EXPORT_SYMBOL_GPL(dm_suspended); 3005 3006 int dm_noflush_suspending(struct dm_target *ti) 3007 { 3008 return __noflush_suspending(dm_table_get_md(ti->table)); 3009 } 3010 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3011 3012 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 3013 unsigned integrity, unsigned per_io_data_size, 3014 unsigned min_pool_size) 3015 { 3016 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 3017 unsigned int pool_size = 0; 3018 unsigned int front_pad, io_front_pad; 3019 int ret; 3020 3021 if (!pools) 3022 return NULL; 3023 3024 switch (type) { 3025 case DM_TYPE_BIO_BASED: 3026 case DM_TYPE_DAX_BIO_BASED: 3027 case DM_TYPE_NVME_BIO_BASED: 3028 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 3029 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3030 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 3031 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 3032 if (ret) 3033 goto out; 3034 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3035 goto out; 3036 break; 3037 case DM_TYPE_REQUEST_BASED: 3038 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3039 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3040 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3041 break; 3042 default: 3043 BUG(); 3044 } 3045 3046 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3047 if (ret) 3048 goto out; 3049 3050 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3051 goto out; 3052 3053 return pools; 3054 3055 out: 3056 dm_free_md_mempools(pools); 3057 3058 return NULL; 3059 } 3060 3061 void dm_free_md_mempools(struct dm_md_mempools *pools) 3062 { 3063 if (!pools) 3064 return; 3065 3066 bioset_exit(&pools->bs); 3067 bioset_exit(&pools->io_bs); 3068 3069 kfree(pools); 3070 } 3071 3072 struct dm_pr { 3073 u64 old_key; 3074 u64 new_key; 3075 u32 flags; 3076 bool fail_early; 3077 }; 3078 3079 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3080 void *data) 3081 { 3082 struct mapped_device *md = bdev->bd_disk->private_data; 3083 struct dm_table *table; 3084 struct dm_target *ti; 3085 int ret = -ENOTTY, srcu_idx; 3086 3087 table = dm_get_live_table(md, &srcu_idx); 3088 if (!table || !dm_table_get_size(table)) 3089 goto out; 3090 3091 /* We only support devices that have a single target */ 3092 if (dm_table_get_num_targets(table) != 1) 3093 goto out; 3094 ti = dm_table_get_target(table, 0); 3095 3096 ret = -EINVAL; 3097 if (!ti->type->iterate_devices) 3098 goto out; 3099 3100 ret = ti->type->iterate_devices(ti, fn, data); 3101 out: 3102 dm_put_live_table(md, srcu_idx); 3103 return ret; 3104 } 3105 3106 /* 3107 * For register / unregister we need to manually call out to every path. 3108 */ 3109 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3110 sector_t start, sector_t len, void *data) 3111 { 3112 struct dm_pr *pr = data; 3113 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3114 3115 if (!ops || !ops->pr_register) 3116 return -EOPNOTSUPP; 3117 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3118 } 3119 3120 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3121 u32 flags) 3122 { 3123 struct dm_pr pr = { 3124 .old_key = old_key, 3125 .new_key = new_key, 3126 .flags = flags, 3127 .fail_early = true, 3128 }; 3129 int ret; 3130 3131 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3132 if (ret && new_key) { 3133 /* unregister all paths if we failed to register any path */ 3134 pr.old_key = new_key; 3135 pr.new_key = 0; 3136 pr.flags = 0; 3137 pr.fail_early = false; 3138 dm_call_pr(bdev, __dm_pr_register, &pr); 3139 } 3140 3141 return ret; 3142 } 3143 3144 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3145 u32 flags) 3146 { 3147 struct mapped_device *md = bdev->bd_disk->private_data; 3148 const struct pr_ops *ops; 3149 int r, srcu_idx; 3150 3151 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3152 if (r < 0) 3153 goto out; 3154 3155 ops = bdev->bd_disk->fops->pr_ops; 3156 if (ops && ops->pr_reserve) 3157 r = ops->pr_reserve(bdev, key, type, flags); 3158 else 3159 r = -EOPNOTSUPP; 3160 out: 3161 dm_unprepare_ioctl(md, srcu_idx); 3162 return r; 3163 } 3164 3165 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3166 { 3167 struct mapped_device *md = bdev->bd_disk->private_data; 3168 const struct pr_ops *ops; 3169 int r, srcu_idx; 3170 3171 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3172 if (r < 0) 3173 goto out; 3174 3175 ops = bdev->bd_disk->fops->pr_ops; 3176 if (ops && ops->pr_release) 3177 r = ops->pr_release(bdev, key, type); 3178 else 3179 r = -EOPNOTSUPP; 3180 out: 3181 dm_unprepare_ioctl(md, srcu_idx); 3182 return r; 3183 } 3184 3185 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3186 enum pr_type type, bool abort) 3187 { 3188 struct mapped_device *md = bdev->bd_disk->private_data; 3189 const struct pr_ops *ops; 3190 int r, srcu_idx; 3191 3192 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3193 if (r < 0) 3194 goto out; 3195 3196 ops = bdev->bd_disk->fops->pr_ops; 3197 if (ops && ops->pr_preempt) 3198 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3199 else 3200 r = -EOPNOTSUPP; 3201 out: 3202 dm_unprepare_ioctl(md, srcu_idx); 3203 return r; 3204 } 3205 3206 static int dm_pr_clear(struct block_device *bdev, u64 key) 3207 { 3208 struct mapped_device *md = bdev->bd_disk->private_data; 3209 const struct pr_ops *ops; 3210 int r, srcu_idx; 3211 3212 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3213 if (r < 0) 3214 goto out; 3215 3216 ops = bdev->bd_disk->fops->pr_ops; 3217 if (ops && ops->pr_clear) 3218 r = ops->pr_clear(bdev, key); 3219 else 3220 r = -EOPNOTSUPP; 3221 out: 3222 dm_unprepare_ioctl(md, srcu_idx); 3223 return r; 3224 } 3225 3226 static const struct pr_ops dm_pr_ops = { 3227 .pr_register = dm_pr_register, 3228 .pr_reserve = dm_pr_reserve, 3229 .pr_release = dm_pr_release, 3230 .pr_preempt = dm_pr_preempt, 3231 .pr_clear = dm_pr_clear, 3232 }; 3233 3234 static const struct block_device_operations dm_blk_dops = { 3235 .submit_bio = dm_submit_bio, 3236 .open = dm_blk_open, 3237 .release = dm_blk_close, 3238 .ioctl = dm_blk_ioctl, 3239 .getgeo = dm_blk_getgeo, 3240 .report_zones = dm_blk_report_zones, 3241 .pr_ops = &dm_pr_ops, 3242 .owner = THIS_MODULE 3243 }; 3244 3245 static const struct dax_operations dm_dax_ops = { 3246 .direct_access = dm_dax_direct_access, 3247 .dax_supported = dm_dax_supported, 3248 .copy_from_iter = dm_dax_copy_from_iter, 3249 .copy_to_iter = dm_dax_copy_to_iter, 3250 .zero_page_range = dm_dax_zero_page_range, 3251 }; 3252 3253 /* 3254 * module hooks 3255 */ 3256 module_init(dm_init); 3257 module_exit(dm_exit); 3258 3259 module_param(major, uint, 0); 3260 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3261 3262 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3263 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3264 3265 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3266 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3267 3268 MODULE_DESCRIPTION(DM_NAME " driver"); 3269 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3270 MODULE_LICENSE("GPL"); 3271