1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 #include <linux/delay.h> 23 #include <linux/wait.h> 24 #include <linux/pr.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 #ifdef CONFIG_PRINTK 29 /* 30 * ratelimit state to be used in DMXXX_LIMIT(). 31 */ 32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 33 DEFAULT_RATELIMIT_INTERVAL, 34 DEFAULT_RATELIMIT_BURST); 35 EXPORT_SYMBOL(dm_ratelimit_state); 36 #endif 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 static const char *_name = DM_NAME; 46 47 static unsigned int major = 0; 48 static unsigned int _major = 0; 49 50 static DEFINE_IDR(_minor_idr); 51 52 static DEFINE_SPINLOCK(_minor_lock); 53 54 static void do_deferred_remove(struct work_struct *w); 55 56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 57 58 static struct workqueue_struct *deferred_remove_workqueue; 59 60 /* 61 * One of these is allocated per bio. 62 */ 63 struct dm_io { 64 struct mapped_device *md; 65 int error; 66 atomic_t io_count; 67 struct bio *bio; 68 unsigned long start_time; 69 spinlock_t endio_lock; 70 struct dm_stats_aux stats_aux; 71 }; 72 73 #define MINOR_ALLOCED ((void *)-1) 74 75 /* 76 * Bits for the md->flags field. 77 */ 78 #define DMF_BLOCK_IO_FOR_SUSPEND 0 79 #define DMF_SUSPENDED 1 80 #define DMF_FROZEN 2 81 #define DMF_FREEING 3 82 #define DMF_DELETING 4 83 #define DMF_NOFLUSH_SUSPENDING 5 84 #define DMF_DEFERRED_REMOVE 6 85 #define DMF_SUSPENDED_INTERNALLY 7 86 87 #define DM_NUMA_NODE NUMA_NO_NODE 88 static int dm_numa_node = DM_NUMA_NODE; 89 90 /* 91 * For mempools pre-allocation at the table loading time. 92 */ 93 struct dm_md_mempools { 94 mempool_t *io_pool; 95 struct bio_set *bs; 96 }; 97 98 struct table_device { 99 struct list_head list; 100 atomic_t count; 101 struct dm_dev dm_dev; 102 }; 103 104 static struct kmem_cache *_io_cache; 105 static struct kmem_cache *_rq_tio_cache; 106 static struct kmem_cache *_rq_cache; 107 108 /* 109 * Bio-based DM's mempools' reserved IOs set by the user. 110 */ 111 #define RESERVED_BIO_BASED_IOS 16 112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 113 114 static int __dm_get_module_param_int(int *module_param, int min, int max) 115 { 116 int param = ACCESS_ONCE(*module_param); 117 int modified_param = 0; 118 bool modified = true; 119 120 if (param < min) 121 modified_param = min; 122 else if (param > max) 123 modified_param = max; 124 else 125 modified = false; 126 127 if (modified) { 128 (void)cmpxchg(module_param, param, modified_param); 129 param = modified_param; 130 } 131 132 return param; 133 } 134 135 unsigned __dm_get_module_param(unsigned *module_param, 136 unsigned def, unsigned max) 137 { 138 unsigned param = ACCESS_ONCE(*module_param); 139 unsigned modified_param = 0; 140 141 if (!param) 142 modified_param = def; 143 else if (param > max) 144 modified_param = max; 145 146 if (modified_param) { 147 (void)cmpxchg(module_param, param, modified_param); 148 param = modified_param; 149 } 150 151 return param; 152 } 153 154 unsigned dm_get_reserved_bio_based_ios(void) 155 { 156 return __dm_get_module_param(&reserved_bio_based_ios, 157 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 158 } 159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 160 161 static unsigned dm_get_numa_node(void) 162 { 163 return __dm_get_module_param_int(&dm_numa_node, 164 DM_NUMA_NODE, num_online_nodes() - 1); 165 } 166 167 static int __init local_init(void) 168 { 169 int r = -ENOMEM; 170 171 /* allocate a slab for the dm_ios */ 172 _io_cache = KMEM_CACHE(dm_io, 0); 173 if (!_io_cache) 174 return r; 175 176 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 177 if (!_rq_tio_cache) 178 goto out_free_io_cache; 179 180 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 181 __alignof__(struct request), 0, NULL); 182 if (!_rq_cache) 183 goto out_free_rq_tio_cache; 184 185 r = dm_uevent_init(); 186 if (r) 187 goto out_free_rq_cache; 188 189 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 190 if (!deferred_remove_workqueue) { 191 r = -ENOMEM; 192 goto out_uevent_exit; 193 } 194 195 _major = major; 196 r = register_blkdev(_major, _name); 197 if (r < 0) 198 goto out_free_workqueue; 199 200 if (!_major) 201 _major = r; 202 203 return 0; 204 205 out_free_workqueue: 206 destroy_workqueue(deferred_remove_workqueue); 207 out_uevent_exit: 208 dm_uevent_exit(); 209 out_free_rq_cache: 210 kmem_cache_destroy(_rq_cache); 211 out_free_rq_tio_cache: 212 kmem_cache_destroy(_rq_tio_cache); 213 out_free_io_cache: 214 kmem_cache_destroy(_io_cache); 215 216 return r; 217 } 218 219 static void local_exit(void) 220 { 221 flush_scheduled_work(); 222 destroy_workqueue(deferred_remove_workqueue); 223 224 kmem_cache_destroy(_rq_cache); 225 kmem_cache_destroy(_rq_tio_cache); 226 kmem_cache_destroy(_io_cache); 227 unregister_blkdev(_major, _name); 228 dm_uevent_exit(); 229 230 _major = 0; 231 232 DMINFO("cleaned up"); 233 } 234 235 static int (*_inits[])(void) __initdata = { 236 local_init, 237 dm_target_init, 238 dm_linear_init, 239 dm_stripe_init, 240 dm_io_init, 241 dm_kcopyd_init, 242 dm_interface_init, 243 dm_statistics_init, 244 }; 245 246 static void (*_exits[])(void) = { 247 local_exit, 248 dm_target_exit, 249 dm_linear_exit, 250 dm_stripe_exit, 251 dm_io_exit, 252 dm_kcopyd_exit, 253 dm_interface_exit, 254 dm_statistics_exit, 255 }; 256 257 static int __init dm_init(void) 258 { 259 const int count = ARRAY_SIZE(_inits); 260 261 int r, i; 262 263 for (i = 0; i < count; i++) { 264 r = _inits[i](); 265 if (r) 266 goto bad; 267 } 268 269 return 0; 270 271 bad: 272 while (i--) 273 _exits[i](); 274 275 return r; 276 } 277 278 static void __exit dm_exit(void) 279 { 280 int i = ARRAY_SIZE(_exits); 281 282 while (i--) 283 _exits[i](); 284 285 /* 286 * Should be empty by this point. 287 */ 288 idr_destroy(&_minor_idr); 289 } 290 291 /* 292 * Block device functions 293 */ 294 int dm_deleting_md(struct mapped_device *md) 295 { 296 return test_bit(DMF_DELETING, &md->flags); 297 } 298 299 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 300 { 301 struct mapped_device *md; 302 303 spin_lock(&_minor_lock); 304 305 md = bdev->bd_disk->private_data; 306 if (!md) 307 goto out; 308 309 if (test_bit(DMF_FREEING, &md->flags) || 310 dm_deleting_md(md)) { 311 md = NULL; 312 goto out; 313 } 314 315 dm_get(md); 316 atomic_inc(&md->open_count); 317 out: 318 spin_unlock(&_minor_lock); 319 320 return md ? 0 : -ENXIO; 321 } 322 323 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 324 { 325 struct mapped_device *md; 326 327 spin_lock(&_minor_lock); 328 329 md = disk->private_data; 330 if (WARN_ON(!md)) 331 goto out; 332 333 if (atomic_dec_and_test(&md->open_count) && 334 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 335 queue_work(deferred_remove_workqueue, &deferred_remove_work); 336 337 dm_put(md); 338 out: 339 spin_unlock(&_minor_lock); 340 } 341 342 int dm_open_count(struct mapped_device *md) 343 { 344 return atomic_read(&md->open_count); 345 } 346 347 /* 348 * Guarantees nothing is using the device before it's deleted. 349 */ 350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 351 { 352 int r = 0; 353 354 spin_lock(&_minor_lock); 355 356 if (dm_open_count(md)) { 357 r = -EBUSY; 358 if (mark_deferred) 359 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 360 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 361 r = -EEXIST; 362 else 363 set_bit(DMF_DELETING, &md->flags); 364 365 spin_unlock(&_minor_lock); 366 367 return r; 368 } 369 370 int dm_cancel_deferred_remove(struct mapped_device *md) 371 { 372 int r = 0; 373 374 spin_lock(&_minor_lock); 375 376 if (test_bit(DMF_DELETING, &md->flags)) 377 r = -EBUSY; 378 else 379 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 380 381 spin_unlock(&_minor_lock); 382 383 return r; 384 } 385 386 static void do_deferred_remove(struct work_struct *w) 387 { 388 dm_deferred_remove(); 389 } 390 391 sector_t dm_get_size(struct mapped_device *md) 392 { 393 return get_capacity(md->disk); 394 } 395 396 struct request_queue *dm_get_md_queue(struct mapped_device *md) 397 { 398 return md->queue; 399 } 400 401 struct dm_stats *dm_get_stats(struct mapped_device *md) 402 { 403 return &md->stats; 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 414 struct block_device **bdev, 415 fmode_t *mode) 416 { 417 struct dm_target *tgt; 418 struct dm_table *map; 419 int srcu_idx, r; 420 421 retry: 422 r = -ENOTTY; 423 map = dm_get_live_table(md, &srcu_idx); 424 if (!map || !dm_table_get_size(map)) 425 goto out; 426 427 /* We only support devices that have a single target */ 428 if (dm_table_get_num_targets(map) != 1) 429 goto out; 430 431 tgt = dm_table_get_target(map, 0); 432 if (!tgt->type->prepare_ioctl) 433 goto out; 434 435 if (dm_suspended_md(md)) { 436 r = -EAGAIN; 437 goto out; 438 } 439 440 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 441 if (r < 0) 442 goto out; 443 444 bdgrab(*bdev); 445 dm_put_live_table(md, srcu_idx); 446 return r; 447 448 out: 449 dm_put_live_table(md, srcu_idx); 450 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 451 msleep(10); 452 goto retry; 453 } 454 return r; 455 } 456 457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 458 unsigned int cmd, unsigned long arg) 459 { 460 struct mapped_device *md = bdev->bd_disk->private_data; 461 int r; 462 463 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 464 if (r < 0) 465 return r; 466 467 if (r > 0) { 468 /* 469 * Target determined this ioctl is being issued against a 470 * subset of the parent bdev; require extra privileges. 471 */ 472 if (!capable(CAP_SYS_RAWIO)) { 473 DMWARN_LIMIT( 474 "%s: sending ioctl %x to DM device without required privilege.", 475 current->comm, cmd); 476 r = -ENOIOCTLCMD; 477 goto out; 478 } 479 } 480 481 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 482 out: 483 bdput(bdev); 484 return r; 485 } 486 487 static struct dm_io *alloc_io(struct mapped_device *md) 488 { 489 return mempool_alloc(md->io_pool, GFP_NOIO); 490 } 491 492 static void free_io(struct mapped_device *md, struct dm_io *io) 493 { 494 mempool_free(io, md->io_pool); 495 } 496 497 static void free_tio(struct dm_target_io *tio) 498 { 499 bio_put(&tio->clone); 500 } 501 502 int md_in_flight(struct mapped_device *md) 503 { 504 return atomic_read(&md->pending[READ]) + 505 atomic_read(&md->pending[WRITE]); 506 } 507 508 static void start_io_acct(struct dm_io *io) 509 { 510 struct mapped_device *md = io->md; 511 struct bio *bio = io->bio; 512 int cpu; 513 int rw = bio_data_dir(bio); 514 515 io->start_time = jiffies; 516 517 cpu = part_stat_lock(); 518 part_round_stats(cpu, &dm_disk(md)->part0); 519 part_stat_unlock(); 520 atomic_set(&dm_disk(md)->part0.in_flight[rw], 521 atomic_inc_return(&md->pending[rw])); 522 523 if (unlikely(dm_stats_used(&md->stats))) 524 dm_stats_account_io(&md->stats, bio_data_dir(bio), 525 bio->bi_iter.bi_sector, bio_sectors(bio), 526 false, 0, &io->stats_aux); 527 } 528 529 static void end_io_acct(struct dm_io *io) 530 { 531 struct mapped_device *md = io->md; 532 struct bio *bio = io->bio; 533 unsigned long duration = jiffies - io->start_time; 534 int pending; 535 int rw = bio_data_dir(bio); 536 537 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 538 539 if (unlikely(dm_stats_used(&md->stats))) 540 dm_stats_account_io(&md->stats, bio_data_dir(bio), 541 bio->bi_iter.bi_sector, bio_sectors(bio), 542 true, duration, &io->stats_aux); 543 544 /* 545 * After this is decremented the bio must not be touched if it is 546 * a flush. 547 */ 548 pending = atomic_dec_return(&md->pending[rw]); 549 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 550 pending += atomic_read(&md->pending[rw^0x1]); 551 552 /* nudge anyone waiting on suspend queue */ 553 if (!pending) 554 wake_up(&md->wait); 555 } 556 557 /* 558 * Add the bio to the list of deferred io. 559 */ 560 static void queue_io(struct mapped_device *md, struct bio *bio) 561 { 562 unsigned long flags; 563 564 spin_lock_irqsave(&md->deferred_lock, flags); 565 bio_list_add(&md->deferred, bio); 566 spin_unlock_irqrestore(&md->deferred_lock, flags); 567 queue_work(md->wq, &md->work); 568 } 569 570 /* 571 * Everyone (including functions in this file), should use this 572 * function to access the md->map field, and make sure they call 573 * dm_put_live_table() when finished. 574 */ 575 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 576 { 577 *srcu_idx = srcu_read_lock(&md->io_barrier); 578 579 return srcu_dereference(md->map, &md->io_barrier); 580 } 581 582 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 583 { 584 srcu_read_unlock(&md->io_barrier, srcu_idx); 585 } 586 587 void dm_sync_table(struct mapped_device *md) 588 { 589 synchronize_srcu(&md->io_barrier); 590 synchronize_rcu_expedited(); 591 } 592 593 /* 594 * A fast alternative to dm_get_live_table/dm_put_live_table. 595 * The caller must not block between these two functions. 596 */ 597 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 598 { 599 rcu_read_lock(); 600 return rcu_dereference(md->map); 601 } 602 603 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 604 { 605 rcu_read_unlock(); 606 } 607 608 /* 609 * Open a table device so we can use it as a map destination. 610 */ 611 static int open_table_device(struct table_device *td, dev_t dev, 612 struct mapped_device *md) 613 { 614 static char *_claim_ptr = "I belong to device-mapper"; 615 struct block_device *bdev; 616 617 int r; 618 619 BUG_ON(td->dm_dev.bdev); 620 621 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 622 if (IS_ERR(bdev)) 623 return PTR_ERR(bdev); 624 625 r = bd_link_disk_holder(bdev, dm_disk(md)); 626 if (r) { 627 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 628 return r; 629 } 630 631 td->dm_dev.bdev = bdev; 632 return 0; 633 } 634 635 /* 636 * Close a table device that we've been using. 637 */ 638 static void close_table_device(struct table_device *td, struct mapped_device *md) 639 { 640 if (!td->dm_dev.bdev) 641 return; 642 643 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 644 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 645 td->dm_dev.bdev = NULL; 646 } 647 648 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 649 fmode_t mode) { 650 struct table_device *td; 651 652 list_for_each_entry(td, l, list) 653 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 654 return td; 655 656 return NULL; 657 } 658 659 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 660 struct dm_dev **result) { 661 int r; 662 struct table_device *td; 663 664 mutex_lock(&md->table_devices_lock); 665 td = find_table_device(&md->table_devices, dev, mode); 666 if (!td) { 667 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 668 if (!td) { 669 mutex_unlock(&md->table_devices_lock); 670 return -ENOMEM; 671 } 672 673 td->dm_dev.mode = mode; 674 td->dm_dev.bdev = NULL; 675 676 if ((r = open_table_device(td, dev, md))) { 677 mutex_unlock(&md->table_devices_lock); 678 kfree(td); 679 return r; 680 } 681 682 format_dev_t(td->dm_dev.name, dev); 683 684 atomic_set(&td->count, 0); 685 list_add(&td->list, &md->table_devices); 686 } 687 atomic_inc(&td->count); 688 mutex_unlock(&md->table_devices_lock); 689 690 *result = &td->dm_dev; 691 return 0; 692 } 693 EXPORT_SYMBOL_GPL(dm_get_table_device); 694 695 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 696 { 697 struct table_device *td = container_of(d, struct table_device, dm_dev); 698 699 mutex_lock(&md->table_devices_lock); 700 if (atomic_dec_and_test(&td->count)) { 701 close_table_device(td, md); 702 list_del(&td->list); 703 kfree(td); 704 } 705 mutex_unlock(&md->table_devices_lock); 706 } 707 EXPORT_SYMBOL(dm_put_table_device); 708 709 static void free_table_devices(struct list_head *devices) 710 { 711 struct list_head *tmp, *next; 712 713 list_for_each_safe(tmp, next, devices) { 714 struct table_device *td = list_entry(tmp, struct table_device, list); 715 716 DMWARN("dm_destroy: %s still exists with %d references", 717 td->dm_dev.name, atomic_read(&td->count)); 718 kfree(td); 719 } 720 } 721 722 /* 723 * Get the geometry associated with a dm device 724 */ 725 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 726 { 727 *geo = md->geometry; 728 729 return 0; 730 } 731 732 /* 733 * Set the geometry of a device. 734 */ 735 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 736 { 737 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 738 739 if (geo->start > sz) { 740 DMWARN("Start sector is beyond the geometry limits."); 741 return -EINVAL; 742 } 743 744 md->geometry = *geo; 745 746 return 0; 747 } 748 749 /*----------------------------------------------------------------- 750 * CRUD START: 751 * A more elegant soln is in the works that uses the queue 752 * merge fn, unfortunately there are a couple of changes to 753 * the block layer that I want to make for this. So in the 754 * interests of getting something for people to use I give 755 * you this clearly demarcated crap. 756 *---------------------------------------------------------------*/ 757 758 static int __noflush_suspending(struct mapped_device *md) 759 { 760 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 761 } 762 763 /* 764 * Decrements the number of outstanding ios that a bio has been 765 * cloned into, completing the original io if necc. 766 */ 767 static void dec_pending(struct dm_io *io, int error) 768 { 769 unsigned long flags; 770 int io_error; 771 struct bio *bio; 772 struct mapped_device *md = io->md; 773 774 /* Push-back supersedes any I/O errors */ 775 if (unlikely(error)) { 776 spin_lock_irqsave(&io->endio_lock, flags); 777 if (!(io->error > 0 && __noflush_suspending(md))) 778 io->error = error; 779 spin_unlock_irqrestore(&io->endio_lock, flags); 780 } 781 782 if (atomic_dec_and_test(&io->io_count)) { 783 if (io->error == DM_ENDIO_REQUEUE) { 784 /* 785 * Target requested pushing back the I/O. 786 */ 787 spin_lock_irqsave(&md->deferred_lock, flags); 788 if (__noflush_suspending(md)) 789 bio_list_add_head(&md->deferred, io->bio); 790 else 791 /* noflush suspend was interrupted. */ 792 io->error = -EIO; 793 spin_unlock_irqrestore(&md->deferred_lock, flags); 794 } 795 796 io_error = io->error; 797 bio = io->bio; 798 end_io_acct(io); 799 free_io(md, io); 800 801 if (io_error == DM_ENDIO_REQUEUE) 802 return; 803 804 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 805 /* 806 * Preflush done for flush with data, reissue 807 * without REQ_PREFLUSH. 808 */ 809 bio->bi_opf &= ~REQ_PREFLUSH; 810 queue_io(md, bio); 811 } else { 812 /* done with normal IO or empty flush */ 813 trace_block_bio_complete(md->queue, bio, io_error); 814 bio->bi_error = io_error; 815 bio_endio(bio); 816 } 817 } 818 } 819 820 void disable_write_same(struct mapped_device *md) 821 { 822 struct queue_limits *limits = dm_get_queue_limits(md); 823 824 /* device doesn't really support WRITE SAME, disable it */ 825 limits->max_write_same_sectors = 0; 826 } 827 828 static void clone_endio(struct bio *bio) 829 { 830 int error = bio->bi_error; 831 int r = error; 832 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 833 struct dm_io *io = tio->io; 834 struct mapped_device *md = tio->io->md; 835 dm_endio_fn endio = tio->ti->type->end_io; 836 837 if (endio) { 838 r = endio(tio->ti, bio, error); 839 if (r < 0 || r == DM_ENDIO_REQUEUE) 840 /* 841 * error and requeue request are handled 842 * in dec_pending(). 843 */ 844 error = r; 845 else if (r == DM_ENDIO_INCOMPLETE) 846 /* The target will handle the io */ 847 return; 848 else if (r) { 849 DMWARN("unimplemented target endio return value: %d", r); 850 BUG(); 851 } 852 } 853 854 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) && 855 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 856 disable_write_same(md); 857 858 free_tio(tio); 859 dec_pending(io, error); 860 } 861 862 /* 863 * Return maximum size of I/O possible at the supplied sector up to the current 864 * target boundary. 865 */ 866 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 867 { 868 sector_t target_offset = dm_target_offset(ti, sector); 869 870 return ti->len - target_offset; 871 } 872 873 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 874 { 875 sector_t len = max_io_len_target_boundary(sector, ti); 876 sector_t offset, max_len; 877 878 /* 879 * Does the target need to split even further? 880 */ 881 if (ti->max_io_len) { 882 offset = dm_target_offset(ti, sector); 883 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 884 max_len = sector_div(offset, ti->max_io_len); 885 else 886 max_len = offset & (ti->max_io_len - 1); 887 max_len = ti->max_io_len - max_len; 888 889 if (len > max_len) 890 len = max_len; 891 } 892 893 return len; 894 } 895 896 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 897 { 898 if (len > UINT_MAX) { 899 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 900 (unsigned long long)len, UINT_MAX); 901 ti->error = "Maximum size of target IO is too large"; 902 return -EINVAL; 903 } 904 905 ti->max_io_len = (uint32_t) len; 906 907 return 0; 908 } 909 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 910 911 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector, 912 void **kaddr, pfn_t *pfn, long size) 913 { 914 struct mapped_device *md = bdev->bd_disk->private_data; 915 struct dm_table *map; 916 struct dm_target *ti; 917 int srcu_idx; 918 long len, ret = -EIO; 919 920 map = dm_get_live_table(md, &srcu_idx); 921 if (!map) 922 goto out; 923 924 ti = dm_table_find_target(map, sector); 925 if (!dm_target_is_valid(ti)) 926 goto out; 927 928 len = max_io_len(sector, ti) << SECTOR_SHIFT; 929 size = min(len, size); 930 931 if (ti->type->direct_access) 932 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size); 933 out: 934 dm_put_live_table(md, srcu_idx); 935 return min(ret, size); 936 } 937 938 /* 939 * A target may call dm_accept_partial_bio only from the map routine. It is 940 * allowed for all bio types except REQ_PREFLUSH. 941 * 942 * dm_accept_partial_bio informs the dm that the target only wants to process 943 * additional n_sectors sectors of the bio and the rest of the data should be 944 * sent in a next bio. 945 * 946 * A diagram that explains the arithmetics: 947 * +--------------------+---------------+-------+ 948 * | 1 | 2 | 3 | 949 * +--------------------+---------------+-------+ 950 * 951 * <-------------- *tio->len_ptr ---------------> 952 * <------- bi_size -------> 953 * <-- n_sectors --> 954 * 955 * Region 1 was already iterated over with bio_advance or similar function. 956 * (it may be empty if the target doesn't use bio_advance) 957 * Region 2 is the remaining bio size that the target wants to process. 958 * (it may be empty if region 1 is non-empty, although there is no reason 959 * to make it empty) 960 * The target requires that region 3 is to be sent in the next bio. 961 * 962 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 963 * the partially processed part (the sum of regions 1+2) must be the same for all 964 * copies of the bio. 965 */ 966 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 967 { 968 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 969 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 970 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 971 BUG_ON(bi_size > *tio->len_ptr); 972 BUG_ON(n_sectors > bi_size); 973 *tio->len_ptr -= bi_size - n_sectors; 974 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 975 } 976 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 977 978 /* 979 * Flush current->bio_list when the target map method blocks. 980 * This fixes deadlocks in snapshot and possibly in other targets. 981 */ 982 struct dm_offload { 983 struct blk_plug plug; 984 struct blk_plug_cb cb; 985 }; 986 987 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule) 988 { 989 struct dm_offload *o = container_of(cb, struct dm_offload, cb); 990 struct bio_list list; 991 struct bio *bio; 992 int i; 993 994 INIT_LIST_HEAD(&o->cb.list); 995 996 if (unlikely(!current->bio_list)) 997 return; 998 999 for (i = 0; i < 2; i++) { 1000 list = current->bio_list[i]; 1001 bio_list_init(¤t->bio_list[i]); 1002 1003 while ((bio = bio_list_pop(&list))) { 1004 struct bio_set *bs = bio->bi_pool; 1005 if (unlikely(!bs) || bs == fs_bio_set) { 1006 bio_list_add(¤t->bio_list[i], bio); 1007 continue; 1008 } 1009 1010 spin_lock(&bs->rescue_lock); 1011 bio_list_add(&bs->rescue_list, bio); 1012 queue_work(bs->rescue_workqueue, &bs->rescue_work); 1013 spin_unlock(&bs->rescue_lock); 1014 } 1015 } 1016 } 1017 1018 static void dm_offload_start(struct dm_offload *o) 1019 { 1020 blk_start_plug(&o->plug); 1021 o->cb.callback = flush_current_bio_list; 1022 list_add(&o->cb.list, ¤t->plug->cb_list); 1023 } 1024 1025 static void dm_offload_end(struct dm_offload *o) 1026 { 1027 list_del(&o->cb.list); 1028 blk_finish_plug(&o->plug); 1029 } 1030 1031 static void __map_bio(struct dm_target_io *tio) 1032 { 1033 int r; 1034 sector_t sector; 1035 struct dm_offload o; 1036 struct bio *clone = &tio->clone; 1037 struct dm_target *ti = tio->ti; 1038 1039 clone->bi_end_io = clone_endio; 1040 1041 /* 1042 * Map the clone. If r == 0 we don't need to do 1043 * anything, the target has assumed ownership of 1044 * this io. 1045 */ 1046 atomic_inc(&tio->io->io_count); 1047 sector = clone->bi_iter.bi_sector; 1048 1049 dm_offload_start(&o); 1050 r = ti->type->map(ti, clone); 1051 dm_offload_end(&o); 1052 1053 if (r == DM_MAPIO_REMAPPED) { 1054 /* the bio has been remapped so dispatch it */ 1055 1056 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1057 tio->io->bio->bi_bdev->bd_dev, sector); 1058 1059 generic_make_request(clone); 1060 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1061 /* error the io and bail out, or requeue it if needed */ 1062 dec_pending(tio->io, r); 1063 free_tio(tio); 1064 } else if (r != DM_MAPIO_SUBMITTED) { 1065 DMWARN("unimplemented target map return value: %d", r); 1066 BUG(); 1067 } 1068 } 1069 1070 struct clone_info { 1071 struct mapped_device *md; 1072 struct dm_table *map; 1073 struct bio *bio; 1074 struct dm_io *io; 1075 sector_t sector; 1076 unsigned sector_count; 1077 }; 1078 1079 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1080 { 1081 bio->bi_iter.bi_sector = sector; 1082 bio->bi_iter.bi_size = to_bytes(len); 1083 } 1084 1085 /* 1086 * Creates a bio that consists of range of complete bvecs. 1087 */ 1088 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1089 sector_t sector, unsigned len) 1090 { 1091 struct bio *clone = &tio->clone; 1092 1093 __bio_clone_fast(clone, bio); 1094 1095 if (bio_integrity(bio)) { 1096 int r = bio_integrity_clone(clone, bio, GFP_NOIO); 1097 if (r < 0) 1098 return r; 1099 } 1100 1101 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1102 clone->bi_iter.bi_size = to_bytes(len); 1103 1104 if (bio_integrity(bio)) 1105 bio_integrity_trim(clone, 0, len); 1106 1107 return 0; 1108 } 1109 1110 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1111 struct dm_target *ti, 1112 unsigned target_bio_nr) 1113 { 1114 struct dm_target_io *tio; 1115 struct bio *clone; 1116 1117 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1118 tio = container_of(clone, struct dm_target_io, clone); 1119 1120 tio->io = ci->io; 1121 tio->ti = ti; 1122 tio->target_bio_nr = target_bio_nr; 1123 1124 return tio; 1125 } 1126 1127 static void __clone_and_map_simple_bio(struct clone_info *ci, 1128 struct dm_target *ti, 1129 unsigned target_bio_nr, unsigned *len) 1130 { 1131 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1132 struct bio *clone = &tio->clone; 1133 1134 tio->len_ptr = len; 1135 1136 __bio_clone_fast(clone, ci->bio); 1137 if (len) 1138 bio_setup_sector(clone, ci->sector, *len); 1139 1140 __map_bio(tio); 1141 } 1142 1143 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1144 unsigned num_bios, unsigned *len) 1145 { 1146 unsigned target_bio_nr; 1147 1148 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1149 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1150 } 1151 1152 static int __send_empty_flush(struct clone_info *ci) 1153 { 1154 unsigned target_nr = 0; 1155 struct dm_target *ti; 1156 1157 BUG_ON(bio_has_data(ci->bio)); 1158 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1159 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1160 1161 return 0; 1162 } 1163 1164 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1165 sector_t sector, unsigned *len) 1166 { 1167 struct bio *bio = ci->bio; 1168 struct dm_target_io *tio; 1169 unsigned target_bio_nr; 1170 unsigned num_target_bios = 1; 1171 int r = 0; 1172 1173 /* 1174 * Does the target want to receive duplicate copies of the bio? 1175 */ 1176 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1177 num_target_bios = ti->num_write_bios(ti, bio); 1178 1179 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1180 tio = alloc_tio(ci, ti, target_bio_nr); 1181 tio->len_ptr = len; 1182 r = clone_bio(tio, bio, sector, *len); 1183 if (r < 0) { 1184 free_tio(tio); 1185 break; 1186 } 1187 __map_bio(tio); 1188 } 1189 1190 return r; 1191 } 1192 1193 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1194 1195 static unsigned get_num_discard_bios(struct dm_target *ti) 1196 { 1197 return ti->num_discard_bios; 1198 } 1199 1200 static unsigned get_num_write_same_bios(struct dm_target *ti) 1201 { 1202 return ti->num_write_same_bios; 1203 } 1204 1205 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1206 1207 static bool is_split_required_for_discard(struct dm_target *ti) 1208 { 1209 return ti->split_discard_bios; 1210 } 1211 1212 static int __send_changing_extent_only(struct clone_info *ci, 1213 get_num_bios_fn get_num_bios, 1214 is_split_required_fn is_split_required) 1215 { 1216 struct dm_target *ti; 1217 unsigned len; 1218 unsigned num_bios; 1219 1220 do { 1221 ti = dm_table_find_target(ci->map, ci->sector); 1222 if (!dm_target_is_valid(ti)) 1223 return -EIO; 1224 1225 /* 1226 * Even though the device advertised support for this type of 1227 * request, that does not mean every target supports it, and 1228 * reconfiguration might also have changed that since the 1229 * check was performed. 1230 */ 1231 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1232 if (!num_bios) 1233 return -EOPNOTSUPP; 1234 1235 if (is_split_required && !is_split_required(ti)) 1236 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1237 else 1238 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1239 1240 __send_duplicate_bios(ci, ti, num_bios, &len); 1241 1242 ci->sector += len; 1243 } while (ci->sector_count -= len); 1244 1245 return 0; 1246 } 1247 1248 static int __send_discard(struct clone_info *ci) 1249 { 1250 return __send_changing_extent_only(ci, get_num_discard_bios, 1251 is_split_required_for_discard); 1252 } 1253 1254 static int __send_write_same(struct clone_info *ci) 1255 { 1256 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1257 } 1258 1259 /* 1260 * Select the correct strategy for processing a non-flush bio. 1261 */ 1262 static int __split_and_process_non_flush(struct clone_info *ci) 1263 { 1264 struct bio *bio = ci->bio; 1265 struct dm_target *ti; 1266 unsigned len; 1267 int r; 1268 1269 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1270 return __send_discard(ci); 1271 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1272 return __send_write_same(ci); 1273 1274 ti = dm_table_find_target(ci->map, ci->sector); 1275 if (!dm_target_is_valid(ti)) 1276 return -EIO; 1277 1278 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1279 1280 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1281 if (r < 0) 1282 return r; 1283 1284 ci->sector += len; 1285 ci->sector_count -= len; 1286 1287 return 0; 1288 } 1289 1290 /* 1291 * Entry point to split a bio into clones and submit them to the targets. 1292 */ 1293 static void __split_and_process_bio(struct mapped_device *md, 1294 struct dm_table *map, struct bio *bio) 1295 { 1296 struct clone_info ci; 1297 int error = 0; 1298 1299 if (unlikely(!map)) { 1300 bio_io_error(bio); 1301 return; 1302 } 1303 1304 ci.map = map; 1305 ci.md = md; 1306 ci.io = alloc_io(md); 1307 ci.io->error = 0; 1308 atomic_set(&ci.io->io_count, 1); 1309 ci.io->bio = bio; 1310 ci.io->md = md; 1311 spin_lock_init(&ci.io->endio_lock); 1312 ci.sector = bio->bi_iter.bi_sector; 1313 1314 start_io_acct(ci.io); 1315 1316 if (bio->bi_opf & REQ_PREFLUSH) { 1317 ci.bio = &ci.md->flush_bio; 1318 ci.sector_count = 0; 1319 error = __send_empty_flush(&ci); 1320 /* dec_pending submits any data associated with flush */ 1321 } else { 1322 ci.bio = bio; 1323 ci.sector_count = bio_sectors(bio); 1324 while (ci.sector_count && !error) 1325 error = __split_and_process_non_flush(&ci); 1326 } 1327 1328 /* drop the extra reference count */ 1329 dec_pending(ci.io, error); 1330 } 1331 /*----------------------------------------------------------------- 1332 * CRUD END 1333 *---------------------------------------------------------------*/ 1334 1335 /* 1336 * The request function that just remaps the bio built up by 1337 * dm_merge_bvec. 1338 */ 1339 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1340 { 1341 int rw = bio_data_dir(bio); 1342 struct mapped_device *md = q->queuedata; 1343 int srcu_idx; 1344 struct dm_table *map; 1345 1346 map = dm_get_live_table(md, &srcu_idx); 1347 1348 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1349 1350 /* if we're suspended, we have to queue this io for later */ 1351 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1352 dm_put_live_table(md, srcu_idx); 1353 1354 if (!(bio->bi_opf & REQ_RAHEAD)) 1355 queue_io(md, bio); 1356 else 1357 bio_io_error(bio); 1358 return BLK_QC_T_NONE; 1359 } 1360 1361 __split_and_process_bio(md, map, bio); 1362 dm_put_live_table(md, srcu_idx); 1363 return BLK_QC_T_NONE; 1364 } 1365 1366 static int dm_any_congested(void *congested_data, int bdi_bits) 1367 { 1368 int r = bdi_bits; 1369 struct mapped_device *md = congested_data; 1370 struct dm_table *map; 1371 1372 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1373 if (dm_request_based(md)) { 1374 /* 1375 * With request-based DM we only need to check the 1376 * top-level queue for congestion. 1377 */ 1378 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1379 } else { 1380 map = dm_get_live_table_fast(md); 1381 if (map) 1382 r = dm_table_any_congested(map, bdi_bits); 1383 dm_put_live_table_fast(md); 1384 } 1385 } 1386 1387 return r; 1388 } 1389 1390 /*----------------------------------------------------------------- 1391 * An IDR is used to keep track of allocated minor numbers. 1392 *---------------------------------------------------------------*/ 1393 static void free_minor(int minor) 1394 { 1395 spin_lock(&_minor_lock); 1396 idr_remove(&_minor_idr, minor); 1397 spin_unlock(&_minor_lock); 1398 } 1399 1400 /* 1401 * See if the device with a specific minor # is free. 1402 */ 1403 static int specific_minor(int minor) 1404 { 1405 int r; 1406 1407 if (minor >= (1 << MINORBITS)) 1408 return -EINVAL; 1409 1410 idr_preload(GFP_KERNEL); 1411 spin_lock(&_minor_lock); 1412 1413 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1414 1415 spin_unlock(&_minor_lock); 1416 idr_preload_end(); 1417 if (r < 0) 1418 return r == -ENOSPC ? -EBUSY : r; 1419 return 0; 1420 } 1421 1422 static int next_free_minor(int *minor) 1423 { 1424 int r; 1425 1426 idr_preload(GFP_KERNEL); 1427 spin_lock(&_minor_lock); 1428 1429 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1430 1431 spin_unlock(&_minor_lock); 1432 idr_preload_end(); 1433 if (r < 0) 1434 return r; 1435 *minor = r; 1436 return 0; 1437 } 1438 1439 static const struct block_device_operations dm_blk_dops; 1440 1441 static void dm_wq_work(struct work_struct *work); 1442 1443 void dm_init_md_queue(struct mapped_device *md) 1444 { 1445 /* 1446 * Request-based dm devices cannot be stacked on top of bio-based dm 1447 * devices. The type of this dm device may not have been decided yet. 1448 * The type is decided at the first table loading time. 1449 * To prevent problematic device stacking, clear the queue flag 1450 * for request stacking support until then. 1451 * 1452 * This queue is new, so no concurrency on the queue_flags. 1453 */ 1454 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1455 1456 /* 1457 * Initialize data that will only be used by a non-blk-mq DM queue 1458 * - must do so here (in alloc_dev callchain) before queue is used 1459 */ 1460 md->queue->queuedata = md; 1461 md->queue->backing_dev_info->congested_data = md; 1462 } 1463 1464 void dm_init_normal_md_queue(struct mapped_device *md) 1465 { 1466 md->use_blk_mq = false; 1467 dm_init_md_queue(md); 1468 1469 /* 1470 * Initialize aspects of queue that aren't relevant for blk-mq 1471 */ 1472 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1473 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1474 } 1475 1476 static void cleanup_mapped_device(struct mapped_device *md) 1477 { 1478 if (md->wq) 1479 destroy_workqueue(md->wq); 1480 if (md->kworker_task) 1481 kthread_stop(md->kworker_task); 1482 mempool_destroy(md->io_pool); 1483 if (md->bs) 1484 bioset_free(md->bs); 1485 1486 if (md->disk) { 1487 spin_lock(&_minor_lock); 1488 md->disk->private_data = NULL; 1489 spin_unlock(&_minor_lock); 1490 del_gendisk(md->disk); 1491 put_disk(md->disk); 1492 } 1493 1494 if (md->queue) 1495 blk_cleanup_queue(md->queue); 1496 1497 cleanup_srcu_struct(&md->io_barrier); 1498 1499 if (md->bdev) { 1500 bdput(md->bdev); 1501 md->bdev = NULL; 1502 } 1503 1504 dm_mq_cleanup_mapped_device(md); 1505 } 1506 1507 /* 1508 * Allocate and initialise a blank device with a given minor. 1509 */ 1510 static struct mapped_device *alloc_dev(int minor) 1511 { 1512 int r, numa_node_id = dm_get_numa_node(); 1513 struct mapped_device *md; 1514 void *old_md; 1515 1516 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1517 if (!md) { 1518 DMWARN("unable to allocate device, out of memory."); 1519 return NULL; 1520 } 1521 1522 if (!try_module_get(THIS_MODULE)) 1523 goto bad_module_get; 1524 1525 /* get a minor number for the dev */ 1526 if (minor == DM_ANY_MINOR) 1527 r = next_free_minor(&minor); 1528 else 1529 r = specific_minor(minor); 1530 if (r < 0) 1531 goto bad_minor; 1532 1533 r = init_srcu_struct(&md->io_barrier); 1534 if (r < 0) 1535 goto bad_io_barrier; 1536 1537 md->numa_node_id = numa_node_id; 1538 md->use_blk_mq = dm_use_blk_mq_default(); 1539 md->init_tio_pdu = false; 1540 md->type = DM_TYPE_NONE; 1541 mutex_init(&md->suspend_lock); 1542 mutex_init(&md->type_lock); 1543 mutex_init(&md->table_devices_lock); 1544 spin_lock_init(&md->deferred_lock); 1545 atomic_set(&md->holders, 1); 1546 atomic_set(&md->open_count, 0); 1547 atomic_set(&md->event_nr, 0); 1548 atomic_set(&md->uevent_seq, 0); 1549 INIT_LIST_HEAD(&md->uevent_list); 1550 INIT_LIST_HEAD(&md->table_devices); 1551 spin_lock_init(&md->uevent_lock); 1552 1553 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1554 if (!md->queue) 1555 goto bad; 1556 1557 dm_init_md_queue(md); 1558 1559 md->disk = alloc_disk_node(1, numa_node_id); 1560 if (!md->disk) 1561 goto bad; 1562 1563 atomic_set(&md->pending[0], 0); 1564 atomic_set(&md->pending[1], 0); 1565 init_waitqueue_head(&md->wait); 1566 INIT_WORK(&md->work, dm_wq_work); 1567 init_waitqueue_head(&md->eventq); 1568 init_completion(&md->kobj_holder.completion); 1569 md->kworker_task = NULL; 1570 1571 md->disk->major = _major; 1572 md->disk->first_minor = minor; 1573 md->disk->fops = &dm_blk_dops; 1574 md->disk->queue = md->queue; 1575 md->disk->private_data = md; 1576 sprintf(md->disk->disk_name, "dm-%d", minor); 1577 add_disk(md->disk); 1578 format_dev_t(md->name, MKDEV(_major, minor)); 1579 1580 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1581 if (!md->wq) 1582 goto bad; 1583 1584 md->bdev = bdget_disk(md->disk, 0); 1585 if (!md->bdev) 1586 goto bad; 1587 1588 bio_init(&md->flush_bio, NULL, 0); 1589 md->flush_bio.bi_bdev = md->bdev; 1590 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1591 1592 dm_stats_init(&md->stats); 1593 1594 /* Populate the mapping, nobody knows we exist yet */ 1595 spin_lock(&_minor_lock); 1596 old_md = idr_replace(&_minor_idr, md, minor); 1597 spin_unlock(&_minor_lock); 1598 1599 BUG_ON(old_md != MINOR_ALLOCED); 1600 1601 return md; 1602 1603 bad: 1604 cleanup_mapped_device(md); 1605 bad_io_barrier: 1606 free_minor(minor); 1607 bad_minor: 1608 module_put(THIS_MODULE); 1609 bad_module_get: 1610 kfree(md); 1611 return NULL; 1612 } 1613 1614 static void unlock_fs(struct mapped_device *md); 1615 1616 static void free_dev(struct mapped_device *md) 1617 { 1618 int minor = MINOR(disk_devt(md->disk)); 1619 1620 unlock_fs(md); 1621 1622 cleanup_mapped_device(md); 1623 1624 free_table_devices(&md->table_devices); 1625 dm_stats_cleanup(&md->stats); 1626 free_minor(minor); 1627 1628 module_put(THIS_MODULE); 1629 kfree(md); 1630 } 1631 1632 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1633 { 1634 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1635 1636 if (md->bs) { 1637 /* The md already has necessary mempools. */ 1638 if (dm_table_bio_based(t)) { 1639 /* 1640 * Reload bioset because front_pad may have changed 1641 * because a different table was loaded. 1642 */ 1643 bioset_free(md->bs); 1644 md->bs = p->bs; 1645 p->bs = NULL; 1646 } 1647 /* 1648 * There's no need to reload with request-based dm 1649 * because the size of front_pad doesn't change. 1650 * Note for future: If you are to reload bioset, 1651 * prep-ed requests in the queue may refer 1652 * to bio from the old bioset, so you must walk 1653 * through the queue to unprep. 1654 */ 1655 goto out; 1656 } 1657 1658 BUG_ON(!p || md->io_pool || md->bs); 1659 1660 md->io_pool = p->io_pool; 1661 p->io_pool = NULL; 1662 md->bs = p->bs; 1663 p->bs = NULL; 1664 1665 out: 1666 /* mempool bind completed, no longer need any mempools in the table */ 1667 dm_table_free_md_mempools(t); 1668 } 1669 1670 /* 1671 * Bind a table to the device. 1672 */ 1673 static void event_callback(void *context) 1674 { 1675 unsigned long flags; 1676 LIST_HEAD(uevents); 1677 struct mapped_device *md = (struct mapped_device *) context; 1678 1679 spin_lock_irqsave(&md->uevent_lock, flags); 1680 list_splice_init(&md->uevent_list, &uevents); 1681 spin_unlock_irqrestore(&md->uevent_lock, flags); 1682 1683 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1684 1685 atomic_inc(&md->event_nr); 1686 wake_up(&md->eventq); 1687 } 1688 1689 /* 1690 * Protected by md->suspend_lock obtained by dm_swap_table(). 1691 */ 1692 static void __set_size(struct mapped_device *md, sector_t size) 1693 { 1694 set_capacity(md->disk, size); 1695 1696 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1697 } 1698 1699 /* 1700 * Returns old map, which caller must destroy. 1701 */ 1702 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1703 struct queue_limits *limits) 1704 { 1705 struct dm_table *old_map; 1706 struct request_queue *q = md->queue; 1707 sector_t size; 1708 1709 lockdep_assert_held(&md->suspend_lock); 1710 1711 size = dm_table_get_size(t); 1712 1713 /* 1714 * Wipe any geometry if the size of the table changed. 1715 */ 1716 if (size != dm_get_size(md)) 1717 memset(&md->geometry, 0, sizeof(md->geometry)); 1718 1719 __set_size(md, size); 1720 1721 dm_table_event_callback(t, event_callback, md); 1722 1723 /* 1724 * The queue hasn't been stopped yet, if the old table type wasn't 1725 * for request-based during suspension. So stop it to prevent 1726 * I/O mapping before resume. 1727 * This must be done before setting the queue restrictions, 1728 * because request-based dm may be run just after the setting. 1729 */ 1730 if (dm_table_request_based(t)) { 1731 dm_stop_queue(q); 1732 /* 1733 * Leverage the fact that request-based DM targets are 1734 * immutable singletons and establish md->immutable_target 1735 * - used to optimize both dm_request_fn and dm_mq_queue_rq 1736 */ 1737 md->immutable_target = dm_table_get_immutable_target(t); 1738 } 1739 1740 __bind_mempools(md, t); 1741 1742 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1743 rcu_assign_pointer(md->map, (void *)t); 1744 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1745 1746 dm_table_set_restrictions(t, q, limits); 1747 if (old_map) 1748 dm_sync_table(md); 1749 1750 return old_map; 1751 } 1752 1753 /* 1754 * Returns unbound table for the caller to free. 1755 */ 1756 static struct dm_table *__unbind(struct mapped_device *md) 1757 { 1758 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1759 1760 if (!map) 1761 return NULL; 1762 1763 dm_table_event_callback(map, NULL, NULL); 1764 RCU_INIT_POINTER(md->map, NULL); 1765 dm_sync_table(md); 1766 1767 return map; 1768 } 1769 1770 /* 1771 * Constructor for a new device. 1772 */ 1773 int dm_create(int minor, struct mapped_device **result) 1774 { 1775 struct mapped_device *md; 1776 1777 md = alloc_dev(minor); 1778 if (!md) 1779 return -ENXIO; 1780 1781 dm_sysfs_init(md); 1782 1783 *result = md; 1784 return 0; 1785 } 1786 1787 /* 1788 * Functions to manage md->type. 1789 * All are required to hold md->type_lock. 1790 */ 1791 void dm_lock_md_type(struct mapped_device *md) 1792 { 1793 mutex_lock(&md->type_lock); 1794 } 1795 1796 void dm_unlock_md_type(struct mapped_device *md) 1797 { 1798 mutex_unlock(&md->type_lock); 1799 } 1800 1801 void dm_set_md_type(struct mapped_device *md, unsigned type) 1802 { 1803 BUG_ON(!mutex_is_locked(&md->type_lock)); 1804 md->type = type; 1805 } 1806 1807 unsigned dm_get_md_type(struct mapped_device *md) 1808 { 1809 return md->type; 1810 } 1811 1812 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1813 { 1814 return md->immutable_target_type; 1815 } 1816 1817 /* 1818 * The queue_limits are only valid as long as you have a reference 1819 * count on 'md'. 1820 */ 1821 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1822 { 1823 BUG_ON(!atomic_read(&md->holders)); 1824 return &md->queue->limits; 1825 } 1826 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1827 1828 /* 1829 * Setup the DM device's queue based on md's type 1830 */ 1831 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1832 { 1833 int r; 1834 unsigned type = dm_get_md_type(md); 1835 1836 switch (type) { 1837 case DM_TYPE_REQUEST_BASED: 1838 r = dm_old_init_request_queue(md, t); 1839 if (r) { 1840 DMERR("Cannot initialize queue for request-based mapped device"); 1841 return r; 1842 } 1843 break; 1844 case DM_TYPE_MQ_REQUEST_BASED: 1845 r = dm_mq_init_request_queue(md, t); 1846 if (r) { 1847 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 1848 return r; 1849 } 1850 break; 1851 case DM_TYPE_BIO_BASED: 1852 case DM_TYPE_DAX_BIO_BASED: 1853 dm_init_normal_md_queue(md); 1854 blk_queue_make_request(md->queue, dm_make_request); 1855 /* 1856 * DM handles splitting bios as needed. Free the bio_split bioset 1857 * since it won't be used (saves 1 process per bio-based DM device). 1858 */ 1859 bioset_free(md->queue->bio_split); 1860 md->queue->bio_split = NULL; 1861 1862 if (type == DM_TYPE_DAX_BIO_BASED) 1863 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue); 1864 break; 1865 } 1866 1867 return 0; 1868 } 1869 1870 struct mapped_device *dm_get_md(dev_t dev) 1871 { 1872 struct mapped_device *md; 1873 unsigned minor = MINOR(dev); 1874 1875 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1876 return NULL; 1877 1878 spin_lock(&_minor_lock); 1879 1880 md = idr_find(&_minor_idr, minor); 1881 if (md) { 1882 if ((md == MINOR_ALLOCED || 1883 (MINOR(disk_devt(dm_disk(md))) != minor) || 1884 dm_deleting_md(md) || 1885 test_bit(DMF_FREEING, &md->flags))) { 1886 md = NULL; 1887 goto out; 1888 } 1889 dm_get(md); 1890 } 1891 1892 out: 1893 spin_unlock(&_minor_lock); 1894 1895 return md; 1896 } 1897 EXPORT_SYMBOL_GPL(dm_get_md); 1898 1899 void *dm_get_mdptr(struct mapped_device *md) 1900 { 1901 return md->interface_ptr; 1902 } 1903 1904 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1905 { 1906 md->interface_ptr = ptr; 1907 } 1908 1909 void dm_get(struct mapped_device *md) 1910 { 1911 atomic_inc(&md->holders); 1912 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1913 } 1914 1915 int dm_hold(struct mapped_device *md) 1916 { 1917 spin_lock(&_minor_lock); 1918 if (test_bit(DMF_FREEING, &md->flags)) { 1919 spin_unlock(&_minor_lock); 1920 return -EBUSY; 1921 } 1922 dm_get(md); 1923 spin_unlock(&_minor_lock); 1924 return 0; 1925 } 1926 EXPORT_SYMBOL_GPL(dm_hold); 1927 1928 const char *dm_device_name(struct mapped_device *md) 1929 { 1930 return md->name; 1931 } 1932 EXPORT_SYMBOL_GPL(dm_device_name); 1933 1934 static void __dm_destroy(struct mapped_device *md, bool wait) 1935 { 1936 struct request_queue *q = dm_get_md_queue(md); 1937 struct dm_table *map; 1938 int srcu_idx; 1939 1940 might_sleep(); 1941 1942 spin_lock(&_minor_lock); 1943 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 1944 set_bit(DMF_FREEING, &md->flags); 1945 spin_unlock(&_minor_lock); 1946 1947 blk_set_queue_dying(q); 1948 1949 if (dm_request_based(md) && md->kworker_task) 1950 kthread_flush_worker(&md->kworker); 1951 1952 /* 1953 * Take suspend_lock so that presuspend and postsuspend methods 1954 * do not race with internal suspend. 1955 */ 1956 mutex_lock(&md->suspend_lock); 1957 map = dm_get_live_table(md, &srcu_idx); 1958 if (!dm_suspended_md(md)) { 1959 dm_table_presuspend_targets(map); 1960 dm_table_postsuspend_targets(map); 1961 } 1962 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 1963 dm_put_live_table(md, srcu_idx); 1964 mutex_unlock(&md->suspend_lock); 1965 1966 /* 1967 * Rare, but there may be I/O requests still going to complete, 1968 * for example. Wait for all references to disappear. 1969 * No one should increment the reference count of the mapped_device, 1970 * after the mapped_device state becomes DMF_FREEING. 1971 */ 1972 if (wait) 1973 while (atomic_read(&md->holders)) 1974 msleep(1); 1975 else if (atomic_read(&md->holders)) 1976 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 1977 dm_device_name(md), atomic_read(&md->holders)); 1978 1979 dm_sysfs_exit(md); 1980 dm_table_destroy(__unbind(md)); 1981 free_dev(md); 1982 } 1983 1984 void dm_destroy(struct mapped_device *md) 1985 { 1986 __dm_destroy(md, true); 1987 } 1988 1989 void dm_destroy_immediate(struct mapped_device *md) 1990 { 1991 __dm_destroy(md, false); 1992 } 1993 1994 void dm_put(struct mapped_device *md) 1995 { 1996 atomic_dec(&md->holders); 1997 } 1998 EXPORT_SYMBOL_GPL(dm_put); 1999 2000 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2001 { 2002 int r = 0; 2003 DEFINE_WAIT(wait); 2004 2005 while (1) { 2006 prepare_to_wait(&md->wait, &wait, task_state); 2007 2008 if (!md_in_flight(md)) 2009 break; 2010 2011 if (signal_pending_state(task_state, current)) { 2012 r = -EINTR; 2013 break; 2014 } 2015 2016 io_schedule(); 2017 } 2018 finish_wait(&md->wait, &wait); 2019 2020 return r; 2021 } 2022 2023 /* 2024 * Process the deferred bios 2025 */ 2026 static void dm_wq_work(struct work_struct *work) 2027 { 2028 struct mapped_device *md = container_of(work, struct mapped_device, 2029 work); 2030 struct bio *c; 2031 int srcu_idx; 2032 struct dm_table *map; 2033 2034 map = dm_get_live_table(md, &srcu_idx); 2035 2036 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2037 spin_lock_irq(&md->deferred_lock); 2038 c = bio_list_pop(&md->deferred); 2039 spin_unlock_irq(&md->deferred_lock); 2040 2041 if (!c) 2042 break; 2043 2044 if (dm_request_based(md)) 2045 generic_make_request(c); 2046 else 2047 __split_and_process_bio(md, map, c); 2048 } 2049 2050 dm_put_live_table(md, srcu_idx); 2051 } 2052 2053 static void dm_queue_flush(struct mapped_device *md) 2054 { 2055 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2056 smp_mb__after_atomic(); 2057 queue_work(md->wq, &md->work); 2058 } 2059 2060 /* 2061 * Swap in a new table, returning the old one for the caller to destroy. 2062 */ 2063 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2064 { 2065 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2066 struct queue_limits limits; 2067 int r; 2068 2069 mutex_lock(&md->suspend_lock); 2070 2071 /* device must be suspended */ 2072 if (!dm_suspended_md(md)) 2073 goto out; 2074 2075 /* 2076 * If the new table has no data devices, retain the existing limits. 2077 * This helps multipath with queue_if_no_path if all paths disappear, 2078 * then new I/O is queued based on these limits, and then some paths 2079 * reappear. 2080 */ 2081 if (dm_table_has_no_data_devices(table)) { 2082 live_map = dm_get_live_table_fast(md); 2083 if (live_map) 2084 limits = md->queue->limits; 2085 dm_put_live_table_fast(md); 2086 } 2087 2088 if (!live_map) { 2089 r = dm_calculate_queue_limits(table, &limits); 2090 if (r) { 2091 map = ERR_PTR(r); 2092 goto out; 2093 } 2094 } 2095 2096 map = __bind(md, table, &limits); 2097 2098 out: 2099 mutex_unlock(&md->suspend_lock); 2100 return map; 2101 } 2102 2103 /* 2104 * Functions to lock and unlock any filesystem running on the 2105 * device. 2106 */ 2107 static int lock_fs(struct mapped_device *md) 2108 { 2109 int r; 2110 2111 WARN_ON(md->frozen_sb); 2112 2113 md->frozen_sb = freeze_bdev(md->bdev); 2114 if (IS_ERR(md->frozen_sb)) { 2115 r = PTR_ERR(md->frozen_sb); 2116 md->frozen_sb = NULL; 2117 return r; 2118 } 2119 2120 set_bit(DMF_FROZEN, &md->flags); 2121 2122 return 0; 2123 } 2124 2125 static void unlock_fs(struct mapped_device *md) 2126 { 2127 if (!test_bit(DMF_FROZEN, &md->flags)) 2128 return; 2129 2130 thaw_bdev(md->bdev, md->frozen_sb); 2131 md->frozen_sb = NULL; 2132 clear_bit(DMF_FROZEN, &md->flags); 2133 } 2134 2135 /* 2136 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2137 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2138 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2139 * 2140 * If __dm_suspend returns 0, the device is completely quiescent 2141 * now. There is no request-processing activity. All new requests 2142 * are being added to md->deferred list. 2143 * 2144 * Caller must hold md->suspend_lock 2145 */ 2146 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2147 unsigned suspend_flags, long task_state, 2148 int dmf_suspended_flag) 2149 { 2150 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2151 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2152 int r; 2153 2154 lockdep_assert_held(&md->suspend_lock); 2155 2156 /* 2157 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2158 * This flag is cleared before dm_suspend returns. 2159 */ 2160 if (noflush) 2161 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2162 2163 /* 2164 * This gets reverted if there's an error later and the targets 2165 * provide the .presuspend_undo hook. 2166 */ 2167 dm_table_presuspend_targets(map); 2168 2169 /* 2170 * Flush I/O to the device. 2171 * Any I/O submitted after lock_fs() may not be flushed. 2172 * noflush takes precedence over do_lockfs. 2173 * (lock_fs() flushes I/Os and waits for them to complete.) 2174 */ 2175 if (!noflush && do_lockfs) { 2176 r = lock_fs(md); 2177 if (r) { 2178 dm_table_presuspend_undo_targets(map); 2179 return r; 2180 } 2181 } 2182 2183 /* 2184 * Here we must make sure that no processes are submitting requests 2185 * to target drivers i.e. no one may be executing 2186 * __split_and_process_bio. This is called from dm_request and 2187 * dm_wq_work. 2188 * 2189 * To get all processes out of __split_and_process_bio in dm_request, 2190 * we take the write lock. To prevent any process from reentering 2191 * __split_and_process_bio from dm_request and quiesce the thread 2192 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2193 * flush_workqueue(md->wq). 2194 */ 2195 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2196 if (map) 2197 synchronize_srcu(&md->io_barrier); 2198 2199 /* 2200 * Stop md->queue before flushing md->wq in case request-based 2201 * dm defers requests to md->wq from md->queue. 2202 */ 2203 if (dm_request_based(md)) { 2204 dm_stop_queue(md->queue); 2205 if (md->kworker_task) 2206 kthread_flush_worker(&md->kworker); 2207 } 2208 2209 flush_workqueue(md->wq); 2210 2211 /* 2212 * At this point no more requests are entering target request routines. 2213 * We call dm_wait_for_completion to wait for all existing requests 2214 * to finish. 2215 */ 2216 r = dm_wait_for_completion(md, task_state); 2217 if (!r) 2218 set_bit(dmf_suspended_flag, &md->flags); 2219 2220 if (noflush) 2221 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2222 if (map) 2223 synchronize_srcu(&md->io_barrier); 2224 2225 /* were we interrupted ? */ 2226 if (r < 0) { 2227 dm_queue_flush(md); 2228 2229 if (dm_request_based(md)) 2230 dm_start_queue(md->queue); 2231 2232 unlock_fs(md); 2233 dm_table_presuspend_undo_targets(map); 2234 /* pushback list is already flushed, so skip flush */ 2235 } 2236 2237 return r; 2238 } 2239 2240 /* 2241 * We need to be able to change a mapping table under a mounted 2242 * filesystem. For example we might want to move some data in 2243 * the background. Before the table can be swapped with 2244 * dm_bind_table, dm_suspend must be called to flush any in 2245 * flight bios and ensure that any further io gets deferred. 2246 */ 2247 /* 2248 * Suspend mechanism in request-based dm. 2249 * 2250 * 1. Flush all I/Os by lock_fs() if needed. 2251 * 2. Stop dispatching any I/O by stopping the request_queue. 2252 * 3. Wait for all in-flight I/Os to be completed or requeued. 2253 * 2254 * To abort suspend, start the request_queue. 2255 */ 2256 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2257 { 2258 struct dm_table *map = NULL; 2259 int r = 0; 2260 2261 retry: 2262 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2263 2264 if (dm_suspended_md(md)) { 2265 r = -EINVAL; 2266 goto out_unlock; 2267 } 2268 2269 if (dm_suspended_internally_md(md)) { 2270 /* already internally suspended, wait for internal resume */ 2271 mutex_unlock(&md->suspend_lock); 2272 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2273 if (r) 2274 return r; 2275 goto retry; 2276 } 2277 2278 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2279 2280 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2281 if (r) 2282 goto out_unlock; 2283 2284 dm_table_postsuspend_targets(map); 2285 2286 out_unlock: 2287 mutex_unlock(&md->suspend_lock); 2288 return r; 2289 } 2290 2291 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2292 { 2293 if (map) { 2294 int r = dm_table_resume_targets(map); 2295 if (r) 2296 return r; 2297 } 2298 2299 dm_queue_flush(md); 2300 2301 /* 2302 * Flushing deferred I/Os must be done after targets are resumed 2303 * so that mapping of targets can work correctly. 2304 * Request-based dm is queueing the deferred I/Os in its request_queue. 2305 */ 2306 if (dm_request_based(md)) 2307 dm_start_queue(md->queue); 2308 2309 unlock_fs(md); 2310 2311 return 0; 2312 } 2313 2314 int dm_resume(struct mapped_device *md) 2315 { 2316 int r; 2317 struct dm_table *map = NULL; 2318 2319 retry: 2320 r = -EINVAL; 2321 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2322 2323 if (!dm_suspended_md(md)) 2324 goto out; 2325 2326 if (dm_suspended_internally_md(md)) { 2327 /* already internally suspended, wait for internal resume */ 2328 mutex_unlock(&md->suspend_lock); 2329 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2330 if (r) 2331 return r; 2332 goto retry; 2333 } 2334 2335 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2336 if (!map || !dm_table_get_size(map)) 2337 goto out; 2338 2339 r = __dm_resume(md, map); 2340 if (r) 2341 goto out; 2342 2343 clear_bit(DMF_SUSPENDED, &md->flags); 2344 out: 2345 mutex_unlock(&md->suspend_lock); 2346 2347 return r; 2348 } 2349 2350 /* 2351 * Internal suspend/resume works like userspace-driven suspend. It waits 2352 * until all bios finish and prevents issuing new bios to the target drivers. 2353 * It may be used only from the kernel. 2354 */ 2355 2356 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2357 { 2358 struct dm_table *map = NULL; 2359 2360 if (md->internal_suspend_count++) 2361 return; /* nested internal suspend */ 2362 2363 if (dm_suspended_md(md)) { 2364 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2365 return; /* nest suspend */ 2366 } 2367 2368 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2369 2370 /* 2371 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2372 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2373 * would require changing .presuspend to return an error -- avoid this 2374 * until there is a need for more elaborate variants of internal suspend. 2375 */ 2376 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2377 DMF_SUSPENDED_INTERNALLY); 2378 2379 dm_table_postsuspend_targets(map); 2380 } 2381 2382 static void __dm_internal_resume(struct mapped_device *md) 2383 { 2384 BUG_ON(!md->internal_suspend_count); 2385 2386 if (--md->internal_suspend_count) 2387 return; /* resume from nested internal suspend */ 2388 2389 if (dm_suspended_md(md)) 2390 goto done; /* resume from nested suspend */ 2391 2392 /* 2393 * NOTE: existing callers don't need to call dm_table_resume_targets 2394 * (which may fail -- so best to avoid it for now by passing NULL map) 2395 */ 2396 (void) __dm_resume(md, NULL); 2397 2398 done: 2399 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2400 smp_mb__after_atomic(); 2401 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2402 } 2403 2404 void dm_internal_suspend_noflush(struct mapped_device *md) 2405 { 2406 mutex_lock(&md->suspend_lock); 2407 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2408 mutex_unlock(&md->suspend_lock); 2409 } 2410 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2411 2412 void dm_internal_resume(struct mapped_device *md) 2413 { 2414 mutex_lock(&md->suspend_lock); 2415 __dm_internal_resume(md); 2416 mutex_unlock(&md->suspend_lock); 2417 } 2418 EXPORT_SYMBOL_GPL(dm_internal_resume); 2419 2420 /* 2421 * Fast variants of internal suspend/resume hold md->suspend_lock, 2422 * which prevents interaction with userspace-driven suspend. 2423 */ 2424 2425 void dm_internal_suspend_fast(struct mapped_device *md) 2426 { 2427 mutex_lock(&md->suspend_lock); 2428 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2429 return; 2430 2431 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2432 synchronize_srcu(&md->io_barrier); 2433 flush_workqueue(md->wq); 2434 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2435 } 2436 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2437 2438 void dm_internal_resume_fast(struct mapped_device *md) 2439 { 2440 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2441 goto done; 2442 2443 dm_queue_flush(md); 2444 2445 done: 2446 mutex_unlock(&md->suspend_lock); 2447 } 2448 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2449 2450 /*----------------------------------------------------------------- 2451 * Event notification. 2452 *---------------------------------------------------------------*/ 2453 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2454 unsigned cookie) 2455 { 2456 char udev_cookie[DM_COOKIE_LENGTH]; 2457 char *envp[] = { udev_cookie, NULL }; 2458 2459 if (!cookie) 2460 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2461 else { 2462 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2463 DM_COOKIE_ENV_VAR_NAME, cookie); 2464 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2465 action, envp); 2466 } 2467 } 2468 2469 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2470 { 2471 return atomic_add_return(1, &md->uevent_seq); 2472 } 2473 2474 uint32_t dm_get_event_nr(struct mapped_device *md) 2475 { 2476 return atomic_read(&md->event_nr); 2477 } 2478 2479 int dm_wait_event(struct mapped_device *md, int event_nr) 2480 { 2481 return wait_event_interruptible(md->eventq, 2482 (event_nr != atomic_read(&md->event_nr))); 2483 } 2484 2485 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2486 { 2487 unsigned long flags; 2488 2489 spin_lock_irqsave(&md->uevent_lock, flags); 2490 list_add(elist, &md->uevent_list); 2491 spin_unlock_irqrestore(&md->uevent_lock, flags); 2492 } 2493 2494 /* 2495 * The gendisk is only valid as long as you have a reference 2496 * count on 'md'. 2497 */ 2498 struct gendisk *dm_disk(struct mapped_device *md) 2499 { 2500 return md->disk; 2501 } 2502 EXPORT_SYMBOL_GPL(dm_disk); 2503 2504 struct kobject *dm_kobject(struct mapped_device *md) 2505 { 2506 return &md->kobj_holder.kobj; 2507 } 2508 2509 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2510 { 2511 struct mapped_device *md; 2512 2513 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2514 2515 if (test_bit(DMF_FREEING, &md->flags) || 2516 dm_deleting_md(md)) 2517 return NULL; 2518 2519 dm_get(md); 2520 return md; 2521 } 2522 2523 int dm_suspended_md(struct mapped_device *md) 2524 { 2525 return test_bit(DMF_SUSPENDED, &md->flags); 2526 } 2527 2528 int dm_suspended_internally_md(struct mapped_device *md) 2529 { 2530 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2531 } 2532 2533 int dm_test_deferred_remove_flag(struct mapped_device *md) 2534 { 2535 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2536 } 2537 2538 int dm_suspended(struct dm_target *ti) 2539 { 2540 return dm_suspended_md(dm_table_get_md(ti->table)); 2541 } 2542 EXPORT_SYMBOL_GPL(dm_suspended); 2543 2544 int dm_noflush_suspending(struct dm_target *ti) 2545 { 2546 return __noflush_suspending(dm_table_get_md(ti->table)); 2547 } 2548 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2549 2550 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 2551 unsigned integrity, unsigned per_io_data_size) 2552 { 2553 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2554 unsigned int pool_size = 0; 2555 unsigned int front_pad; 2556 2557 if (!pools) 2558 return NULL; 2559 2560 switch (type) { 2561 case DM_TYPE_BIO_BASED: 2562 case DM_TYPE_DAX_BIO_BASED: 2563 pool_size = dm_get_reserved_bio_based_ios(); 2564 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2565 2566 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache); 2567 if (!pools->io_pool) 2568 goto out; 2569 break; 2570 case DM_TYPE_REQUEST_BASED: 2571 case DM_TYPE_MQ_REQUEST_BASED: 2572 pool_size = dm_get_reserved_rq_based_ios(); 2573 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2574 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2575 break; 2576 default: 2577 BUG(); 2578 } 2579 2580 pools->bs = bioset_create_nobvec(pool_size, front_pad); 2581 if (!pools->bs) 2582 goto out; 2583 2584 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2585 goto out; 2586 2587 return pools; 2588 2589 out: 2590 dm_free_md_mempools(pools); 2591 2592 return NULL; 2593 } 2594 2595 void dm_free_md_mempools(struct dm_md_mempools *pools) 2596 { 2597 if (!pools) 2598 return; 2599 2600 mempool_destroy(pools->io_pool); 2601 2602 if (pools->bs) 2603 bioset_free(pools->bs); 2604 2605 kfree(pools); 2606 } 2607 2608 struct dm_pr { 2609 u64 old_key; 2610 u64 new_key; 2611 u32 flags; 2612 bool fail_early; 2613 }; 2614 2615 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2616 void *data) 2617 { 2618 struct mapped_device *md = bdev->bd_disk->private_data; 2619 struct dm_table *table; 2620 struct dm_target *ti; 2621 int ret = -ENOTTY, srcu_idx; 2622 2623 table = dm_get_live_table(md, &srcu_idx); 2624 if (!table || !dm_table_get_size(table)) 2625 goto out; 2626 2627 /* We only support devices that have a single target */ 2628 if (dm_table_get_num_targets(table) != 1) 2629 goto out; 2630 ti = dm_table_get_target(table, 0); 2631 2632 ret = -EINVAL; 2633 if (!ti->type->iterate_devices) 2634 goto out; 2635 2636 ret = ti->type->iterate_devices(ti, fn, data); 2637 out: 2638 dm_put_live_table(md, srcu_idx); 2639 return ret; 2640 } 2641 2642 /* 2643 * For register / unregister we need to manually call out to every path. 2644 */ 2645 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2646 sector_t start, sector_t len, void *data) 2647 { 2648 struct dm_pr *pr = data; 2649 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2650 2651 if (!ops || !ops->pr_register) 2652 return -EOPNOTSUPP; 2653 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2654 } 2655 2656 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2657 u32 flags) 2658 { 2659 struct dm_pr pr = { 2660 .old_key = old_key, 2661 .new_key = new_key, 2662 .flags = flags, 2663 .fail_early = true, 2664 }; 2665 int ret; 2666 2667 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2668 if (ret && new_key) { 2669 /* unregister all paths if we failed to register any path */ 2670 pr.old_key = new_key; 2671 pr.new_key = 0; 2672 pr.flags = 0; 2673 pr.fail_early = false; 2674 dm_call_pr(bdev, __dm_pr_register, &pr); 2675 } 2676 2677 return ret; 2678 } 2679 2680 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2681 u32 flags) 2682 { 2683 struct mapped_device *md = bdev->bd_disk->private_data; 2684 const struct pr_ops *ops; 2685 fmode_t mode; 2686 int r; 2687 2688 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2689 if (r < 0) 2690 return r; 2691 2692 ops = bdev->bd_disk->fops->pr_ops; 2693 if (ops && ops->pr_reserve) 2694 r = ops->pr_reserve(bdev, key, type, flags); 2695 else 2696 r = -EOPNOTSUPP; 2697 2698 bdput(bdev); 2699 return r; 2700 } 2701 2702 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2703 { 2704 struct mapped_device *md = bdev->bd_disk->private_data; 2705 const struct pr_ops *ops; 2706 fmode_t mode; 2707 int r; 2708 2709 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2710 if (r < 0) 2711 return r; 2712 2713 ops = bdev->bd_disk->fops->pr_ops; 2714 if (ops && ops->pr_release) 2715 r = ops->pr_release(bdev, key, type); 2716 else 2717 r = -EOPNOTSUPP; 2718 2719 bdput(bdev); 2720 return r; 2721 } 2722 2723 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2724 enum pr_type type, bool abort) 2725 { 2726 struct mapped_device *md = bdev->bd_disk->private_data; 2727 const struct pr_ops *ops; 2728 fmode_t mode; 2729 int r; 2730 2731 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2732 if (r < 0) 2733 return r; 2734 2735 ops = bdev->bd_disk->fops->pr_ops; 2736 if (ops && ops->pr_preempt) 2737 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2738 else 2739 r = -EOPNOTSUPP; 2740 2741 bdput(bdev); 2742 return r; 2743 } 2744 2745 static int dm_pr_clear(struct block_device *bdev, u64 key) 2746 { 2747 struct mapped_device *md = bdev->bd_disk->private_data; 2748 const struct pr_ops *ops; 2749 fmode_t mode; 2750 int r; 2751 2752 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2753 if (r < 0) 2754 return r; 2755 2756 ops = bdev->bd_disk->fops->pr_ops; 2757 if (ops && ops->pr_clear) 2758 r = ops->pr_clear(bdev, key); 2759 else 2760 r = -EOPNOTSUPP; 2761 2762 bdput(bdev); 2763 return r; 2764 } 2765 2766 static const struct pr_ops dm_pr_ops = { 2767 .pr_register = dm_pr_register, 2768 .pr_reserve = dm_pr_reserve, 2769 .pr_release = dm_pr_release, 2770 .pr_preempt = dm_pr_preempt, 2771 .pr_clear = dm_pr_clear, 2772 }; 2773 2774 static const struct block_device_operations dm_blk_dops = { 2775 .open = dm_blk_open, 2776 .release = dm_blk_close, 2777 .ioctl = dm_blk_ioctl, 2778 .direct_access = dm_blk_direct_access, 2779 .getgeo = dm_blk_getgeo, 2780 .pr_ops = &dm_pr_ops, 2781 .owner = THIS_MODULE 2782 }; 2783 2784 /* 2785 * module hooks 2786 */ 2787 module_init(dm_init); 2788 module_exit(dm_exit); 2789 2790 module_param(major, uint, 0); 2791 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2792 2793 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2794 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2795 2796 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2797 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2798 2799 MODULE_DESCRIPTION(DM_NAME " driver"); 2800 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2801 MODULE_LICENSE("GPL"); 2802