xref: /linux/drivers/md/dm.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23 #include <linux/wait.h>
24 #include <linux/pr.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 #ifdef CONFIG_PRINTK
29 /*
30  * ratelimit state to be used in DMXXX_LIMIT().
31  */
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 		       DEFAULT_RATELIMIT_INTERVAL,
34 		       DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
37 
38 /*
39  * Cookies are numeric values sent with CHANGE and REMOVE
40  * uevents while resuming, removing or renaming the device.
41  */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44 
45 static const char *_name = DM_NAME;
46 
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
49 
50 static DEFINE_IDR(_minor_idr);
51 
52 static DEFINE_SPINLOCK(_minor_lock);
53 
54 static void do_deferred_remove(struct work_struct *w);
55 
56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
57 
58 static struct workqueue_struct *deferred_remove_workqueue;
59 
60 /*
61  * One of these is allocated per bio.
62  */
63 struct dm_io {
64 	struct mapped_device *md;
65 	int error;
66 	atomic_t io_count;
67 	struct bio *bio;
68 	unsigned long start_time;
69 	spinlock_t endio_lock;
70 	struct dm_stats_aux stats_aux;
71 };
72 
73 #define MINOR_ALLOCED ((void *)-1)
74 
75 /*
76  * Bits for the md->flags field.
77  */
78 #define DMF_BLOCK_IO_FOR_SUSPEND 0
79 #define DMF_SUSPENDED 1
80 #define DMF_FROZEN 2
81 #define DMF_FREEING 3
82 #define DMF_DELETING 4
83 #define DMF_NOFLUSH_SUSPENDING 5
84 #define DMF_DEFERRED_REMOVE 6
85 #define DMF_SUSPENDED_INTERNALLY 7
86 
87 #define DM_NUMA_NODE NUMA_NO_NODE
88 static int dm_numa_node = DM_NUMA_NODE;
89 
90 /*
91  * For mempools pre-allocation at the table loading time.
92  */
93 struct dm_md_mempools {
94 	mempool_t *io_pool;
95 	struct bio_set *bs;
96 };
97 
98 struct table_device {
99 	struct list_head list;
100 	atomic_t count;
101 	struct dm_dev dm_dev;
102 };
103 
104 static struct kmem_cache *_io_cache;
105 static struct kmem_cache *_rq_tio_cache;
106 static struct kmem_cache *_rq_cache;
107 
108 /*
109  * Bio-based DM's mempools' reserved IOs set by the user.
110  */
111 #define RESERVED_BIO_BASED_IOS		16
112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
113 
114 static int __dm_get_module_param_int(int *module_param, int min, int max)
115 {
116 	int param = ACCESS_ONCE(*module_param);
117 	int modified_param = 0;
118 	bool modified = true;
119 
120 	if (param < min)
121 		modified_param = min;
122 	else if (param > max)
123 		modified_param = max;
124 	else
125 		modified = false;
126 
127 	if (modified) {
128 		(void)cmpxchg(module_param, param, modified_param);
129 		param = modified_param;
130 	}
131 
132 	return param;
133 }
134 
135 unsigned __dm_get_module_param(unsigned *module_param,
136 			       unsigned def, unsigned max)
137 {
138 	unsigned param = ACCESS_ONCE(*module_param);
139 	unsigned modified_param = 0;
140 
141 	if (!param)
142 		modified_param = def;
143 	else if (param > max)
144 		modified_param = max;
145 
146 	if (modified_param) {
147 		(void)cmpxchg(module_param, param, modified_param);
148 		param = modified_param;
149 	}
150 
151 	return param;
152 }
153 
154 unsigned dm_get_reserved_bio_based_ios(void)
155 {
156 	return __dm_get_module_param(&reserved_bio_based_ios,
157 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
158 }
159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
160 
161 static unsigned dm_get_numa_node(void)
162 {
163 	return __dm_get_module_param_int(&dm_numa_node,
164 					 DM_NUMA_NODE, num_online_nodes() - 1);
165 }
166 
167 static int __init local_init(void)
168 {
169 	int r = -ENOMEM;
170 
171 	/* allocate a slab for the dm_ios */
172 	_io_cache = KMEM_CACHE(dm_io, 0);
173 	if (!_io_cache)
174 		return r;
175 
176 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
177 	if (!_rq_tio_cache)
178 		goto out_free_io_cache;
179 
180 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
181 				      __alignof__(struct request), 0, NULL);
182 	if (!_rq_cache)
183 		goto out_free_rq_tio_cache;
184 
185 	r = dm_uevent_init();
186 	if (r)
187 		goto out_free_rq_cache;
188 
189 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
190 	if (!deferred_remove_workqueue) {
191 		r = -ENOMEM;
192 		goto out_uevent_exit;
193 	}
194 
195 	_major = major;
196 	r = register_blkdev(_major, _name);
197 	if (r < 0)
198 		goto out_free_workqueue;
199 
200 	if (!_major)
201 		_major = r;
202 
203 	return 0;
204 
205 out_free_workqueue:
206 	destroy_workqueue(deferred_remove_workqueue);
207 out_uevent_exit:
208 	dm_uevent_exit();
209 out_free_rq_cache:
210 	kmem_cache_destroy(_rq_cache);
211 out_free_rq_tio_cache:
212 	kmem_cache_destroy(_rq_tio_cache);
213 out_free_io_cache:
214 	kmem_cache_destroy(_io_cache);
215 
216 	return r;
217 }
218 
219 static void local_exit(void)
220 {
221 	flush_scheduled_work();
222 	destroy_workqueue(deferred_remove_workqueue);
223 
224 	kmem_cache_destroy(_rq_cache);
225 	kmem_cache_destroy(_rq_tio_cache);
226 	kmem_cache_destroy(_io_cache);
227 	unregister_blkdev(_major, _name);
228 	dm_uevent_exit();
229 
230 	_major = 0;
231 
232 	DMINFO("cleaned up");
233 }
234 
235 static int (*_inits[])(void) __initdata = {
236 	local_init,
237 	dm_target_init,
238 	dm_linear_init,
239 	dm_stripe_init,
240 	dm_io_init,
241 	dm_kcopyd_init,
242 	dm_interface_init,
243 	dm_statistics_init,
244 };
245 
246 static void (*_exits[])(void) = {
247 	local_exit,
248 	dm_target_exit,
249 	dm_linear_exit,
250 	dm_stripe_exit,
251 	dm_io_exit,
252 	dm_kcopyd_exit,
253 	dm_interface_exit,
254 	dm_statistics_exit,
255 };
256 
257 static int __init dm_init(void)
258 {
259 	const int count = ARRAY_SIZE(_inits);
260 
261 	int r, i;
262 
263 	for (i = 0; i < count; i++) {
264 		r = _inits[i]();
265 		if (r)
266 			goto bad;
267 	}
268 
269 	return 0;
270 
271       bad:
272 	while (i--)
273 		_exits[i]();
274 
275 	return r;
276 }
277 
278 static void __exit dm_exit(void)
279 {
280 	int i = ARRAY_SIZE(_exits);
281 
282 	while (i--)
283 		_exits[i]();
284 
285 	/*
286 	 * Should be empty by this point.
287 	 */
288 	idr_destroy(&_minor_idr);
289 }
290 
291 /*
292  * Block device functions
293  */
294 int dm_deleting_md(struct mapped_device *md)
295 {
296 	return test_bit(DMF_DELETING, &md->flags);
297 }
298 
299 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
300 {
301 	struct mapped_device *md;
302 
303 	spin_lock(&_minor_lock);
304 
305 	md = bdev->bd_disk->private_data;
306 	if (!md)
307 		goto out;
308 
309 	if (test_bit(DMF_FREEING, &md->flags) ||
310 	    dm_deleting_md(md)) {
311 		md = NULL;
312 		goto out;
313 	}
314 
315 	dm_get(md);
316 	atomic_inc(&md->open_count);
317 out:
318 	spin_unlock(&_minor_lock);
319 
320 	return md ? 0 : -ENXIO;
321 }
322 
323 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
324 {
325 	struct mapped_device *md;
326 
327 	spin_lock(&_minor_lock);
328 
329 	md = disk->private_data;
330 	if (WARN_ON(!md))
331 		goto out;
332 
333 	if (atomic_dec_and_test(&md->open_count) &&
334 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
335 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
336 
337 	dm_put(md);
338 out:
339 	spin_unlock(&_minor_lock);
340 }
341 
342 int dm_open_count(struct mapped_device *md)
343 {
344 	return atomic_read(&md->open_count);
345 }
346 
347 /*
348  * Guarantees nothing is using the device before it's deleted.
349  */
350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
351 {
352 	int r = 0;
353 
354 	spin_lock(&_minor_lock);
355 
356 	if (dm_open_count(md)) {
357 		r = -EBUSY;
358 		if (mark_deferred)
359 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
360 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
361 		r = -EEXIST;
362 	else
363 		set_bit(DMF_DELETING, &md->flags);
364 
365 	spin_unlock(&_minor_lock);
366 
367 	return r;
368 }
369 
370 int dm_cancel_deferred_remove(struct mapped_device *md)
371 {
372 	int r = 0;
373 
374 	spin_lock(&_minor_lock);
375 
376 	if (test_bit(DMF_DELETING, &md->flags))
377 		r = -EBUSY;
378 	else
379 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 
381 	spin_unlock(&_minor_lock);
382 
383 	return r;
384 }
385 
386 static void do_deferred_remove(struct work_struct *w)
387 {
388 	dm_deferred_remove();
389 }
390 
391 sector_t dm_get_size(struct mapped_device *md)
392 {
393 	return get_capacity(md->disk);
394 }
395 
396 struct request_queue *dm_get_md_queue(struct mapped_device *md)
397 {
398 	return md->queue;
399 }
400 
401 struct dm_stats *dm_get_stats(struct mapped_device *md)
402 {
403 	return &md->stats;
404 }
405 
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
414 				  struct block_device **bdev,
415 				  fmode_t *mode)
416 {
417 	struct dm_target *tgt;
418 	struct dm_table *map;
419 	int srcu_idx, r;
420 
421 retry:
422 	r = -ENOTTY;
423 	map = dm_get_live_table(md, &srcu_idx);
424 	if (!map || !dm_table_get_size(map))
425 		goto out;
426 
427 	/* We only support devices that have a single target */
428 	if (dm_table_get_num_targets(map) != 1)
429 		goto out;
430 
431 	tgt = dm_table_get_target(map, 0);
432 	if (!tgt->type->prepare_ioctl)
433 		goto out;
434 
435 	if (dm_suspended_md(md)) {
436 		r = -EAGAIN;
437 		goto out;
438 	}
439 
440 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
441 	if (r < 0)
442 		goto out;
443 
444 	bdgrab(*bdev);
445 	dm_put_live_table(md, srcu_idx);
446 	return r;
447 
448 out:
449 	dm_put_live_table(md, srcu_idx);
450 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
451 		msleep(10);
452 		goto retry;
453 	}
454 	return r;
455 }
456 
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 			unsigned int cmd, unsigned long arg)
459 {
460 	struct mapped_device *md = bdev->bd_disk->private_data;
461 	int r;
462 
463 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
464 	if (r < 0)
465 		return r;
466 
467 	if (r > 0) {
468 		/*
469 		 * Target determined this ioctl is being issued against a
470 		 * subset of the parent bdev; require extra privileges.
471 		 */
472 		if (!capable(CAP_SYS_RAWIO)) {
473 			DMWARN_LIMIT(
474 	"%s: sending ioctl %x to DM device without required privilege.",
475 				current->comm, cmd);
476 			r = -ENOIOCTLCMD;
477 			goto out;
478 		}
479 	}
480 
481 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
482 out:
483 	bdput(bdev);
484 	return r;
485 }
486 
487 static struct dm_io *alloc_io(struct mapped_device *md)
488 {
489 	return mempool_alloc(md->io_pool, GFP_NOIO);
490 }
491 
492 static void free_io(struct mapped_device *md, struct dm_io *io)
493 {
494 	mempool_free(io, md->io_pool);
495 }
496 
497 static void free_tio(struct dm_target_io *tio)
498 {
499 	bio_put(&tio->clone);
500 }
501 
502 int md_in_flight(struct mapped_device *md)
503 {
504 	return atomic_read(&md->pending[READ]) +
505 	       atomic_read(&md->pending[WRITE]);
506 }
507 
508 static void start_io_acct(struct dm_io *io)
509 {
510 	struct mapped_device *md = io->md;
511 	struct bio *bio = io->bio;
512 	int cpu;
513 	int rw = bio_data_dir(bio);
514 
515 	io->start_time = jiffies;
516 
517 	cpu = part_stat_lock();
518 	part_round_stats(cpu, &dm_disk(md)->part0);
519 	part_stat_unlock();
520 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
521 		atomic_inc_return(&md->pending[rw]));
522 
523 	if (unlikely(dm_stats_used(&md->stats)))
524 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
525 				    bio->bi_iter.bi_sector, bio_sectors(bio),
526 				    false, 0, &io->stats_aux);
527 }
528 
529 static void end_io_acct(struct dm_io *io)
530 {
531 	struct mapped_device *md = io->md;
532 	struct bio *bio = io->bio;
533 	unsigned long duration = jiffies - io->start_time;
534 	int pending;
535 	int rw = bio_data_dir(bio);
536 
537 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
538 
539 	if (unlikely(dm_stats_used(&md->stats)))
540 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
541 				    bio->bi_iter.bi_sector, bio_sectors(bio),
542 				    true, duration, &io->stats_aux);
543 
544 	/*
545 	 * After this is decremented the bio must not be touched if it is
546 	 * a flush.
547 	 */
548 	pending = atomic_dec_return(&md->pending[rw]);
549 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
550 	pending += atomic_read(&md->pending[rw^0x1]);
551 
552 	/* nudge anyone waiting on suspend queue */
553 	if (!pending)
554 		wake_up(&md->wait);
555 }
556 
557 /*
558  * Add the bio to the list of deferred io.
559  */
560 static void queue_io(struct mapped_device *md, struct bio *bio)
561 {
562 	unsigned long flags;
563 
564 	spin_lock_irqsave(&md->deferred_lock, flags);
565 	bio_list_add(&md->deferred, bio);
566 	spin_unlock_irqrestore(&md->deferred_lock, flags);
567 	queue_work(md->wq, &md->work);
568 }
569 
570 /*
571  * Everyone (including functions in this file), should use this
572  * function to access the md->map field, and make sure they call
573  * dm_put_live_table() when finished.
574  */
575 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
576 {
577 	*srcu_idx = srcu_read_lock(&md->io_barrier);
578 
579 	return srcu_dereference(md->map, &md->io_barrier);
580 }
581 
582 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
583 {
584 	srcu_read_unlock(&md->io_barrier, srcu_idx);
585 }
586 
587 void dm_sync_table(struct mapped_device *md)
588 {
589 	synchronize_srcu(&md->io_barrier);
590 	synchronize_rcu_expedited();
591 }
592 
593 /*
594  * A fast alternative to dm_get_live_table/dm_put_live_table.
595  * The caller must not block between these two functions.
596  */
597 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
598 {
599 	rcu_read_lock();
600 	return rcu_dereference(md->map);
601 }
602 
603 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
604 {
605 	rcu_read_unlock();
606 }
607 
608 /*
609  * Open a table device so we can use it as a map destination.
610  */
611 static int open_table_device(struct table_device *td, dev_t dev,
612 			     struct mapped_device *md)
613 {
614 	static char *_claim_ptr = "I belong to device-mapper";
615 	struct block_device *bdev;
616 
617 	int r;
618 
619 	BUG_ON(td->dm_dev.bdev);
620 
621 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
622 	if (IS_ERR(bdev))
623 		return PTR_ERR(bdev);
624 
625 	r = bd_link_disk_holder(bdev, dm_disk(md));
626 	if (r) {
627 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
628 		return r;
629 	}
630 
631 	td->dm_dev.bdev = bdev;
632 	return 0;
633 }
634 
635 /*
636  * Close a table device that we've been using.
637  */
638 static void close_table_device(struct table_device *td, struct mapped_device *md)
639 {
640 	if (!td->dm_dev.bdev)
641 		return;
642 
643 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
644 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
645 	td->dm_dev.bdev = NULL;
646 }
647 
648 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
649 					      fmode_t mode) {
650 	struct table_device *td;
651 
652 	list_for_each_entry(td, l, list)
653 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
654 			return td;
655 
656 	return NULL;
657 }
658 
659 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
660 			struct dm_dev **result) {
661 	int r;
662 	struct table_device *td;
663 
664 	mutex_lock(&md->table_devices_lock);
665 	td = find_table_device(&md->table_devices, dev, mode);
666 	if (!td) {
667 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
668 		if (!td) {
669 			mutex_unlock(&md->table_devices_lock);
670 			return -ENOMEM;
671 		}
672 
673 		td->dm_dev.mode = mode;
674 		td->dm_dev.bdev = NULL;
675 
676 		if ((r = open_table_device(td, dev, md))) {
677 			mutex_unlock(&md->table_devices_lock);
678 			kfree(td);
679 			return r;
680 		}
681 
682 		format_dev_t(td->dm_dev.name, dev);
683 
684 		atomic_set(&td->count, 0);
685 		list_add(&td->list, &md->table_devices);
686 	}
687 	atomic_inc(&td->count);
688 	mutex_unlock(&md->table_devices_lock);
689 
690 	*result = &td->dm_dev;
691 	return 0;
692 }
693 EXPORT_SYMBOL_GPL(dm_get_table_device);
694 
695 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
696 {
697 	struct table_device *td = container_of(d, struct table_device, dm_dev);
698 
699 	mutex_lock(&md->table_devices_lock);
700 	if (atomic_dec_and_test(&td->count)) {
701 		close_table_device(td, md);
702 		list_del(&td->list);
703 		kfree(td);
704 	}
705 	mutex_unlock(&md->table_devices_lock);
706 }
707 EXPORT_SYMBOL(dm_put_table_device);
708 
709 static void free_table_devices(struct list_head *devices)
710 {
711 	struct list_head *tmp, *next;
712 
713 	list_for_each_safe(tmp, next, devices) {
714 		struct table_device *td = list_entry(tmp, struct table_device, list);
715 
716 		DMWARN("dm_destroy: %s still exists with %d references",
717 		       td->dm_dev.name, atomic_read(&td->count));
718 		kfree(td);
719 	}
720 }
721 
722 /*
723  * Get the geometry associated with a dm device
724  */
725 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
726 {
727 	*geo = md->geometry;
728 
729 	return 0;
730 }
731 
732 /*
733  * Set the geometry of a device.
734  */
735 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
736 {
737 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
738 
739 	if (geo->start > sz) {
740 		DMWARN("Start sector is beyond the geometry limits.");
741 		return -EINVAL;
742 	}
743 
744 	md->geometry = *geo;
745 
746 	return 0;
747 }
748 
749 /*-----------------------------------------------------------------
750  * CRUD START:
751  *   A more elegant soln is in the works that uses the queue
752  *   merge fn, unfortunately there are a couple of changes to
753  *   the block layer that I want to make for this.  So in the
754  *   interests of getting something for people to use I give
755  *   you this clearly demarcated crap.
756  *---------------------------------------------------------------*/
757 
758 static int __noflush_suspending(struct mapped_device *md)
759 {
760 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
761 }
762 
763 /*
764  * Decrements the number of outstanding ios that a bio has been
765  * cloned into, completing the original io if necc.
766  */
767 static void dec_pending(struct dm_io *io, int error)
768 {
769 	unsigned long flags;
770 	int io_error;
771 	struct bio *bio;
772 	struct mapped_device *md = io->md;
773 
774 	/* Push-back supersedes any I/O errors */
775 	if (unlikely(error)) {
776 		spin_lock_irqsave(&io->endio_lock, flags);
777 		if (!(io->error > 0 && __noflush_suspending(md)))
778 			io->error = error;
779 		spin_unlock_irqrestore(&io->endio_lock, flags);
780 	}
781 
782 	if (atomic_dec_and_test(&io->io_count)) {
783 		if (io->error == DM_ENDIO_REQUEUE) {
784 			/*
785 			 * Target requested pushing back the I/O.
786 			 */
787 			spin_lock_irqsave(&md->deferred_lock, flags);
788 			if (__noflush_suspending(md))
789 				bio_list_add_head(&md->deferred, io->bio);
790 			else
791 				/* noflush suspend was interrupted. */
792 				io->error = -EIO;
793 			spin_unlock_irqrestore(&md->deferred_lock, flags);
794 		}
795 
796 		io_error = io->error;
797 		bio = io->bio;
798 		end_io_acct(io);
799 		free_io(md, io);
800 
801 		if (io_error == DM_ENDIO_REQUEUE)
802 			return;
803 
804 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
805 			/*
806 			 * Preflush done for flush with data, reissue
807 			 * without REQ_PREFLUSH.
808 			 */
809 			bio->bi_opf &= ~REQ_PREFLUSH;
810 			queue_io(md, bio);
811 		} else {
812 			/* done with normal IO or empty flush */
813 			trace_block_bio_complete(md->queue, bio, io_error);
814 			bio->bi_error = io_error;
815 			bio_endio(bio);
816 		}
817 	}
818 }
819 
820 void disable_write_same(struct mapped_device *md)
821 {
822 	struct queue_limits *limits = dm_get_queue_limits(md);
823 
824 	/* device doesn't really support WRITE SAME, disable it */
825 	limits->max_write_same_sectors = 0;
826 }
827 
828 static void clone_endio(struct bio *bio)
829 {
830 	int error = bio->bi_error;
831 	int r = error;
832 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
833 	struct dm_io *io = tio->io;
834 	struct mapped_device *md = tio->io->md;
835 	dm_endio_fn endio = tio->ti->type->end_io;
836 
837 	if (endio) {
838 		r = endio(tio->ti, bio, error);
839 		if (r < 0 || r == DM_ENDIO_REQUEUE)
840 			/*
841 			 * error and requeue request are handled
842 			 * in dec_pending().
843 			 */
844 			error = r;
845 		else if (r == DM_ENDIO_INCOMPLETE)
846 			/* The target will handle the io */
847 			return;
848 		else if (r) {
849 			DMWARN("unimplemented target endio return value: %d", r);
850 			BUG();
851 		}
852 	}
853 
854 	if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
855 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
856 		disable_write_same(md);
857 
858 	free_tio(tio);
859 	dec_pending(io, error);
860 }
861 
862 /*
863  * Return maximum size of I/O possible at the supplied sector up to the current
864  * target boundary.
865  */
866 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
867 {
868 	sector_t target_offset = dm_target_offset(ti, sector);
869 
870 	return ti->len - target_offset;
871 }
872 
873 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
874 {
875 	sector_t len = max_io_len_target_boundary(sector, ti);
876 	sector_t offset, max_len;
877 
878 	/*
879 	 * Does the target need to split even further?
880 	 */
881 	if (ti->max_io_len) {
882 		offset = dm_target_offset(ti, sector);
883 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
884 			max_len = sector_div(offset, ti->max_io_len);
885 		else
886 			max_len = offset & (ti->max_io_len - 1);
887 		max_len = ti->max_io_len - max_len;
888 
889 		if (len > max_len)
890 			len = max_len;
891 	}
892 
893 	return len;
894 }
895 
896 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
897 {
898 	if (len > UINT_MAX) {
899 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
900 		      (unsigned long long)len, UINT_MAX);
901 		ti->error = "Maximum size of target IO is too large";
902 		return -EINVAL;
903 	}
904 
905 	ti->max_io_len = (uint32_t) len;
906 
907 	return 0;
908 }
909 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
910 
911 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
912 				 void **kaddr, pfn_t *pfn, long size)
913 {
914 	struct mapped_device *md = bdev->bd_disk->private_data;
915 	struct dm_table *map;
916 	struct dm_target *ti;
917 	int srcu_idx;
918 	long len, ret = -EIO;
919 
920 	map = dm_get_live_table(md, &srcu_idx);
921 	if (!map)
922 		goto out;
923 
924 	ti = dm_table_find_target(map, sector);
925 	if (!dm_target_is_valid(ti))
926 		goto out;
927 
928 	len = max_io_len(sector, ti) << SECTOR_SHIFT;
929 	size = min(len, size);
930 
931 	if (ti->type->direct_access)
932 		ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
933 out:
934 	dm_put_live_table(md, srcu_idx);
935 	return min(ret, size);
936 }
937 
938 /*
939  * A target may call dm_accept_partial_bio only from the map routine.  It is
940  * allowed for all bio types except REQ_PREFLUSH.
941  *
942  * dm_accept_partial_bio informs the dm that the target only wants to process
943  * additional n_sectors sectors of the bio and the rest of the data should be
944  * sent in a next bio.
945  *
946  * A diagram that explains the arithmetics:
947  * +--------------------+---------------+-------+
948  * |         1          |       2       |   3   |
949  * +--------------------+---------------+-------+
950  *
951  * <-------------- *tio->len_ptr --------------->
952  *                      <------- bi_size ------->
953  *                      <-- n_sectors -->
954  *
955  * Region 1 was already iterated over with bio_advance or similar function.
956  *	(it may be empty if the target doesn't use bio_advance)
957  * Region 2 is the remaining bio size that the target wants to process.
958  *	(it may be empty if region 1 is non-empty, although there is no reason
959  *	 to make it empty)
960  * The target requires that region 3 is to be sent in the next bio.
961  *
962  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
963  * the partially processed part (the sum of regions 1+2) must be the same for all
964  * copies of the bio.
965  */
966 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
967 {
968 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
969 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
970 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
971 	BUG_ON(bi_size > *tio->len_ptr);
972 	BUG_ON(n_sectors > bi_size);
973 	*tio->len_ptr -= bi_size - n_sectors;
974 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
975 }
976 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
977 
978 /*
979  * Flush current->bio_list when the target map method blocks.
980  * This fixes deadlocks in snapshot and possibly in other targets.
981  */
982 struct dm_offload {
983 	struct blk_plug plug;
984 	struct blk_plug_cb cb;
985 };
986 
987 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
988 {
989 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
990 	struct bio_list list;
991 	struct bio *bio;
992 	int i;
993 
994 	INIT_LIST_HEAD(&o->cb.list);
995 
996 	if (unlikely(!current->bio_list))
997 		return;
998 
999 	for (i = 0; i < 2; i++) {
1000 		list = current->bio_list[i];
1001 		bio_list_init(&current->bio_list[i]);
1002 
1003 		while ((bio = bio_list_pop(&list))) {
1004 			struct bio_set *bs = bio->bi_pool;
1005 			if (unlikely(!bs) || bs == fs_bio_set) {
1006 				bio_list_add(&current->bio_list[i], bio);
1007 				continue;
1008 			}
1009 
1010 			spin_lock(&bs->rescue_lock);
1011 			bio_list_add(&bs->rescue_list, bio);
1012 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1013 			spin_unlock(&bs->rescue_lock);
1014 		}
1015 	}
1016 }
1017 
1018 static void dm_offload_start(struct dm_offload *o)
1019 {
1020 	blk_start_plug(&o->plug);
1021 	o->cb.callback = flush_current_bio_list;
1022 	list_add(&o->cb.list, &current->plug->cb_list);
1023 }
1024 
1025 static void dm_offload_end(struct dm_offload *o)
1026 {
1027 	list_del(&o->cb.list);
1028 	blk_finish_plug(&o->plug);
1029 }
1030 
1031 static void __map_bio(struct dm_target_io *tio)
1032 {
1033 	int r;
1034 	sector_t sector;
1035 	struct dm_offload o;
1036 	struct bio *clone = &tio->clone;
1037 	struct dm_target *ti = tio->ti;
1038 
1039 	clone->bi_end_io = clone_endio;
1040 
1041 	/*
1042 	 * Map the clone.  If r == 0 we don't need to do
1043 	 * anything, the target has assumed ownership of
1044 	 * this io.
1045 	 */
1046 	atomic_inc(&tio->io->io_count);
1047 	sector = clone->bi_iter.bi_sector;
1048 
1049 	dm_offload_start(&o);
1050 	r = ti->type->map(ti, clone);
1051 	dm_offload_end(&o);
1052 
1053 	if (r == DM_MAPIO_REMAPPED) {
1054 		/* the bio has been remapped so dispatch it */
1055 
1056 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1057 				      tio->io->bio->bi_bdev->bd_dev, sector);
1058 
1059 		generic_make_request(clone);
1060 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1061 		/* error the io and bail out, or requeue it if needed */
1062 		dec_pending(tio->io, r);
1063 		free_tio(tio);
1064 	} else if (r != DM_MAPIO_SUBMITTED) {
1065 		DMWARN("unimplemented target map return value: %d", r);
1066 		BUG();
1067 	}
1068 }
1069 
1070 struct clone_info {
1071 	struct mapped_device *md;
1072 	struct dm_table *map;
1073 	struct bio *bio;
1074 	struct dm_io *io;
1075 	sector_t sector;
1076 	unsigned sector_count;
1077 };
1078 
1079 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1080 {
1081 	bio->bi_iter.bi_sector = sector;
1082 	bio->bi_iter.bi_size = to_bytes(len);
1083 }
1084 
1085 /*
1086  * Creates a bio that consists of range of complete bvecs.
1087  */
1088 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1089 		     sector_t sector, unsigned len)
1090 {
1091 	struct bio *clone = &tio->clone;
1092 
1093 	__bio_clone_fast(clone, bio);
1094 
1095 	if (bio_integrity(bio)) {
1096 		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1097 		if (r < 0)
1098 			return r;
1099 	}
1100 
1101 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1102 	clone->bi_iter.bi_size = to_bytes(len);
1103 
1104 	if (bio_integrity(bio))
1105 		bio_integrity_trim(clone, 0, len);
1106 
1107 	return 0;
1108 }
1109 
1110 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1111 				      struct dm_target *ti,
1112 				      unsigned target_bio_nr)
1113 {
1114 	struct dm_target_io *tio;
1115 	struct bio *clone;
1116 
1117 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1118 	tio = container_of(clone, struct dm_target_io, clone);
1119 
1120 	tio->io = ci->io;
1121 	tio->ti = ti;
1122 	tio->target_bio_nr = target_bio_nr;
1123 
1124 	return tio;
1125 }
1126 
1127 static void __clone_and_map_simple_bio(struct clone_info *ci,
1128 				       struct dm_target *ti,
1129 				       unsigned target_bio_nr, unsigned *len)
1130 {
1131 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1132 	struct bio *clone = &tio->clone;
1133 
1134 	tio->len_ptr = len;
1135 
1136 	__bio_clone_fast(clone, ci->bio);
1137 	if (len)
1138 		bio_setup_sector(clone, ci->sector, *len);
1139 
1140 	__map_bio(tio);
1141 }
1142 
1143 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1144 				  unsigned num_bios, unsigned *len)
1145 {
1146 	unsigned target_bio_nr;
1147 
1148 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1149 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1150 }
1151 
1152 static int __send_empty_flush(struct clone_info *ci)
1153 {
1154 	unsigned target_nr = 0;
1155 	struct dm_target *ti;
1156 
1157 	BUG_ON(bio_has_data(ci->bio));
1158 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1159 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1160 
1161 	return 0;
1162 }
1163 
1164 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1165 				     sector_t sector, unsigned *len)
1166 {
1167 	struct bio *bio = ci->bio;
1168 	struct dm_target_io *tio;
1169 	unsigned target_bio_nr;
1170 	unsigned num_target_bios = 1;
1171 	int r = 0;
1172 
1173 	/*
1174 	 * Does the target want to receive duplicate copies of the bio?
1175 	 */
1176 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1177 		num_target_bios = ti->num_write_bios(ti, bio);
1178 
1179 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1180 		tio = alloc_tio(ci, ti, target_bio_nr);
1181 		tio->len_ptr = len;
1182 		r = clone_bio(tio, bio, sector, *len);
1183 		if (r < 0) {
1184 			free_tio(tio);
1185 			break;
1186 		}
1187 		__map_bio(tio);
1188 	}
1189 
1190 	return r;
1191 }
1192 
1193 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1194 
1195 static unsigned get_num_discard_bios(struct dm_target *ti)
1196 {
1197 	return ti->num_discard_bios;
1198 }
1199 
1200 static unsigned get_num_write_same_bios(struct dm_target *ti)
1201 {
1202 	return ti->num_write_same_bios;
1203 }
1204 
1205 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1206 
1207 static bool is_split_required_for_discard(struct dm_target *ti)
1208 {
1209 	return ti->split_discard_bios;
1210 }
1211 
1212 static int __send_changing_extent_only(struct clone_info *ci,
1213 				       get_num_bios_fn get_num_bios,
1214 				       is_split_required_fn is_split_required)
1215 {
1216 	struct dm_target *ti;
1217 	unsigned len;
1218 	unsigned num_bios;
1219 
1220 	do {
1221 		ti = dm_table_find_target(ci->map, ci->sector);
1222 		if (!dm_target_is_valid(ti))
1223 			return -EIO;
1224 
1225 		/*
1226 		 * Even though the device advertised support for this type of
1227 		 * request, that does not mean every target supports it, and
1228 		 * reconfiguration might also have changed that since the
1229 		 * check was performed.
1230 		 */
1231 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1232 		if (!num_bios)
1233 			return -EOPNOTSUPP;
1234 
1235 		if (is_split_required && !is_split_required(ti))
1236 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1237 		else
1238 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1239 
1240 		__send_duplicate_bios(ci, ti, num_bios, &len);
1241 
1242 		ci->sector += len;
1243 	} while (ci->sector_count -= len);
1244 
1245 	return 0;
1246 }
1247 
1248 static int __send_discard(struct clone_info *ci)
1249 {
1250 	return __send_changing_extent_only(ci, get_num_discard_bios,
1251 					   is_split_required_for_discard);
1252 }
1253 
1254 static int __send_write_same(struct clone_info *ci)
1255 {
1256 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1257 }
1258 
1259 /*
1260  * Select the correct strategy for processing a non-flush bio.
1261  */
1262 static int __split_and_process_non_flush(struct clone_info *ci)
1263 {
1264 	struct bio *bio = ci->bio;
1265 	struct dm_target *ti;
1266 	unsigned len;
1267 	int r;
1268 
1269 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1270 		return __send_discard(ci);
1271 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1272 		return __send_write_same(ci);
1273 
1274 	ti = dm_table_find_target(ci->map, ci->sector);
1275 	if (!dm_target_is_valid(ti))
1276 		return -EIO;
1277 
1278 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1279 
1280 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1281 	if (r < 0)
1282 		return r;
1283 
1284 	ci->sector += len;
1285 	ci->sector_count -= len;
1286 
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Entry point to split a bio into clones and submit them to the targets.
1292  */
1293 static void __split_and_process_bio(struct mapped_device *md,
1294 				    struct dm_table *map, struct bio *bio)
1295 {
1296 	struct clone_info ci;
1297 	int error = 0;
1298 
1299 	if (unlikely(!map)) {
1300 		bio_io_error(bio);
1301 		return;
1302 	}
1303 
1304 	ci.map = map;
1305 	ci.md = md;
1306 	ci.io = alloc_io(md);
1307 	ci.io->error = 0;
1308 	atomic_set(&ci.io->io_count, 1);
1309 	ci.io->bio = bio;
1310 	ci.io->md = md;
1311 	spin_lock_init(&ci.io->endio_lock);
1312 	ci.sector = bio->bi_iter.bi_sector;
1313 
1314 	start_io_acct(ci.io);
1315 
1316 	if (bio->bi_opf & REQ_PREFLUSH) {
1317 		ci.bio = &ci.md->flush_bio;
1318 		ci.sector_count = 0;
1319 		error = __send_empty_flush(&ci);
1320 		/* dec_pending submits any data associated with flush */
1321 	} else {
1322 		ci.bio = bio;
1323 		ci.sector_count = bio_sectors(bio);
1324 		while (ci.sector_count && !error)
1325 			error = __split_and_process_non_flush(&ci);
1326 	}
1327 
1328 	/* drop the extra reference count */
1329 	dec_pending(ci.io, error);
1330 }
1331 /*-----------------------------------------------------------------
1332  * CRUD END
1333  *---------------------------------------------------------------*/
1334 
1335 /*
1336  * The request function that just remaps the bio built up by
1337  * dm_merge_bvec.
1338  */
1339 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1340 {
1341 	int rw = bio_data_dir(bio);
1342 	struct mapped_device *md = q->queuedata;
1343 	int srcu_idx;
1344 	struct dm_table *map;
1345 
1346 	map = dm_get_live_table(md, &srcu_idx);
1347 
1348 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1349 
1350 	/* if we're suspended, we have to queue this io for later */
1351 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1352 		dm_put_live_table(md, srcu_idx);
1353 
1354 		if (!(bio->bi_opf & REQ_RAHEAD))
1355 			queue_io(md, bio);
1356 		else
1357 			bio_io_error(bio);
1358 		return BLK_QC_T_NONE;
1359 	}
1360 
1361 	__split_and_process_bio(md, map, bio);
1362 	dm_put_live_table(md, srcu_idx);
1363 	return BLK_QC_T_NONE;
1364 }
1365 
1366 static int dm_any_congested(void *congested_data, int bdi_bits)
1367 {
1368 	int r = bdi_bits;
1369 	struct mapped_device *md = congested_data;
1370 	struct dm_table *map;
1371 
1372 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1373 		if (dm_request_based(md)) {
1374 			/*
1375 			 * With request-based DM we only need to check the
1376 			 * top-level queue for congestion.
1377 			 */
1378 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1379 		} else {
1380 			map = dm_get_live_table_fast(md);
1381 			if (map)
1382 				r = dm_table_any_congested(map, bdi_bits);
1383 			dm_put_live_table_fast(md);
1384 		}
1385 	}
1386 
1387 	return r;
1388 }
1389 
1390 /*-----------------------------------------------------------------
1391  * An IDR is used to keep track of allocated minor numbers.
1392  *---------------------------------------------------------------*/
1393 static void free_minor(int minor)
1394 {
1395 	spin_lock(&_minor_lock);
1396 	idr_remove(&_minor_idr, minor);
1397 	spin_unlock(&_minor_lock);
1398 }
1399 
1400 /*
1401  * See if the device with a specific minor # is free.
1402  */
1403 static int specific_minor(int minor)
1404 {
1405 	int r;
1406 
1407 	if (minor >= (1 << MINORBITS))
1408 		return -EINVAL;
1409 
1410 	idr_preload(GFP_KERNEL);
1411 	spin_lock(&_minor_lock);
1412 
1413 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1414 
1415 	spin_unlock(&_minor_lock);
1416 	idr_preload_end();
1417 	if (r < 0)
1418 		return r == -ENOSPC ? -EBUSY : r;
1419 	return 0;
1420 }
1421 
1422 static int next_free_minor(int *minor)
1423 {
1424 	int r;
1425 
1426 	idr_preload(GFP_KERNEL);
1427 	spin_lock(&_minor_lock);
1428 
1429 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1430 
1431 	spin_unlock(&_minor_lock);
1432 	idr_preload_end();
1433 	if (r < 0)
1434 		return r;
1435 	*minor = r;
1436 	return 0;
1437 }
1438 
1439 static const struct block_device_operations dm_blk_dops;
1440 
1441 static void dm_wq_work(struct work_struct *work);
1442 
1443 void dm_init_md_queue(struct mapped_device *md)
1444 {
1445 	/*
1446 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1447 	 * devices.  The type of this dm device may not have been decided yet.
1448 	 * The type is decided at the first table loading time.
1449 	 * To prevent problematic device stacking, clear the queue flag
1450 	 * for request stacking support until then.
1451 	 *
1452 	 * This queue is new, so no concurrency on the queue_flags.
1453 	 */
1454 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1455 
1456 	/*
1457 	 * Initialize data that will only be used by a non-blk-mq DM queue
1458 	 * - must do so here (in alloc_dev callchain) before queue is used
1459 	 */
1460 	md->queue->queuedata = md;
1461 	md->queue->backing_dev_info->congested_data = md;
1462 }
1463 
1464 void dm_init_normal_md_queue(struct mapped_device *md)
1465 {
1466 	md->use_blk_mq = false;
1467 	dm_init_md_queue(md);
1468 
1469 	/*
1470 	 * Initialize aspects of queue that aren't relevant for blk-mq
1471 	 */
1472 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1473 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1474 }
1475 
1476 static void cleanup_mapped_device(struct mapped_device *md)
1477 {
1478 	if (md->wq)
1479 		destroy_workqueue(md->wq);
1480 	if (md->kworker_task)
1481 		kthread_stop(md->kworker_task);
1482 	mempool_destroy(md->io_pool);
1483 	if (md->bs)
1484 		bioset_free(md->bs);
1485 
1486 	if (md->disk) {
1487 		spin_lock(&_minor_lock);
1488 		md->disk->private_data = NULL;
1489 		spin_unlock(&_minor_lock);
1490 		del_gendisk(md->disk);
1491 		put_disk(md->disk);
1492 	}
1493 
1494 	if (md->queue)
1495 		blk_cleanup_queue(md->queue);
1496 
1497 	cleanup_srcu_struct(&md->io_barrier);
1498 
1499 	if (md->bdev) {
1500 		bdput(md->bdev);
1501 		md->bdev = NULL;
1502 	}
1503 
1504 	dm_mq_cleanup_mapped_device(md);
1505 }
1506 
1507 /*
1508  * Allocate and initialise a blank device with a given minor.
1509  */
1510 static struct mapped_device *alloc_dev(int minor)
1511 {
1512 	int r, numa_node_id = dm_get_numa_node();
1513 	struct mapped_device *md;
1514 	void *old_md;
1515 
1516 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1517 	if (!md) {
1518 		DMWARN("unable to allocate device, out of memory.");
1519 		return NULL;
1520 	}
1521 
1522 	if (!try_module_get(THIS_MODULE))
1523 		goto bad_module_get;
1524 
1525 	/* get a minor number for the dev */
1526 	if (minor == DM_ANY_MINOR)
1527 		r = next_free_minor(&minor);
1528 	else
1529 		r = specific_minor(minor);
1530 	if (r < 0)
1531 		goto bad_minor;
1532 
1533 	r = init_srcu_struct(&md->io_barrier);
1534 	if (r < 0)
1535 		goto bad_io_barrier;
1536 
1537 	md->numa_node_id = numa_node_id;
1538 	md->use_blk_mq = dm_use_blk_mq_default();
1539 	md->init_tio_pdu = false;
1540 	md->type = DM_TYPE_NONE;
1541 	mutex_init(&md->suspend_lock);
1542 	mutex_init(&md->type_lock);
1543 	mutex_init(&md->table_devices_lock);
1544 	spin_lock_init(&md->deferred_lock);
1545 	atomic_set(&md->holders, 1);
1546 	atomic_set(&md->open_count, 0);
1547 	atomic_set(&md->event_nr, 0);
1548 	atomic_set(&md->uevent_seq, 0);
1549 	INIT_LIST_HEAD(&md->uevent_list);
1550 	INIT_LIST_HEAD(&md->table_devices);
1551 	spin_lock_init(&md->uevent_lock);
1552 
1553 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1554 	if (!md->queue)
1555 		goto bad;
1556 
1557 	dm_init_md_queue(md);
1558 
1559 	md->disk = alloc_disk_node(1, numa_node_id);
1560 	if (!md->disk)
1561 		goto bad;
1562 
1563 	atomic_set(&md->pending[0], 0);
1564 	atomic_set(&md->pending[1], 0);
1565 	init_waitqueue_head(&md->wait);
1566 	INIT_WORK(&md->work, dm_wq_work);
1567 	init_waitqueue_head(&md->eventq);
1568 	init_completion(&md->kobj_holder.completion);
1569 	md->kworker_task = NULL;
1570 
1571 	md->disk->major = _major;
1572 	md->disk->first_minor = minor;
1573 	md->disk->fops = &dm_blk_dops;
1574 	md->disk->queue = md->queue;
1575 	md->disk->private_data = md;
1576 	sprintf(md->disk->disk_name, "dm-%d", minor);
1577 	add_disk(md->disk);
1578 	format_dev_t(md->name, MKDEV(_major, minor));
1579 
1580 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1581 	if (!md->wq)
1582 		goto bad;
1583 
1584 	md->bdev = bdget_disk(md->disk, 0);
1585 	if (!md->bdev)
1586 		goto bad;
1587 
1588 	bio_init(&md->flush_bio, NULL, 0);
1589 	md->flush_bio.bi_bdev = md->bdev;
1590 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1591 
1592 	dm_stats_init(&md->stats);
1593 
1594 	/* Populate the mapping, nobody knows we exist yet */
1595 	spin_lock(&_minor_lock);
1596 	old_md = idr_replace(&_minor_idr, md, minor);
1597 	spin_unlock(&_minor_lock);
1598 
1599 	BUG_ON(old_md != MINOR_ALLOCED);
1600 
1601 	return md;
1602 
1603 bad:
1604 	cleanup_mapped_device(md);
1605 bad_io_barrier:
1606 	free_minor(minor);
1607 bad_minor:
1608 	module_put(THIS_MODULE);
1609 bad_module_get:
1610 	kfree(md);
1611 	return NULL;
1612 }
1613 
1614 static void unlock_fs(struct mapped_device *md);
1615 
1616 static void free_dev(struct mapped_device *md)
1617 {
1618 	int minor = MINOR(disk_devt(md->disk));
1619 
1620 	unlock_fs(md);
1621 
1622 	cleanup_mapped_device(md);
1623 
1624 	free_table_devices(&md->table_devices);
1625 	dm_stats_cleanup(&md->stats);
1626 	free_minor(minor);
1627 
1628 	module_put(THIS_MODULE);
1629 	kfree(md);
1630 }
1631 
1632 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1633 {
1634 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1635 
1636 	if (md->bs) {
1637 		/* The md already has necessary mempools. */
1638 		if (dm_table_bio_based(t)) {
1639 			/*
1640 			 * Reload bioset because front_pad may have changed
1641 			 * because a different table was loaded.
1642 			 */
1643 			bioset_free(md->bs);
1644 			md->bs = p->bs;
1645 			p->bs = NULL;
1646 		}
1647 		/*
1648 		 * There's no need to reload with request-based dm
1649 		 * because the size of front_pad doesn't change.
1650 		 * Note for future: If you are to reload bioset,
1651 		 * prep-ed requests in the queue may refer
1652 		 * to bio from the old bioset, so you must walk
1653 		 * through the queue to unprep.
1654 		 */
1655 		goto out;
1656 	}
1657 
1658 	BUG_ON(!p || md->io_pool || md->bs);
1659 
1660 	md->io_pool = p->io_pool;
1661 	p->io_pool = NULL;
1662 	md->bs = p->bs;
1663 	p->bs = NULL;
1664 
1665 out:
1666 	/* mempool bind completed, no longer need any mempools in the table */
1667 	dm_table_free_md_mempools(t);
1668 }
1669 
1670 /*
1671  * Bind a table to the device.
1672  */
1673 static void event_callback(void *context)
1674 {
1675 	unsigned long flags;
1676 	LIST_HEAD(uevents);
1677 	struct mapped_device *md = (struct mapped_device *) context;
1678 
1679 	spin_lock_irqsave(&md->uevent_lock, flags);
1680 	list_splice_init(&md->uevent_list, &uevents);
1681 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1682 
1683 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1684 
1685 	atomic_inc(&md->event_nr);
1686 	wake_up(&md->eventq);
1687 }
1688 
1689 /*
1690  * Protected by md->suspend_lock obtained by dm_swap_table().
1691  */
1692 static void __set_size(struct mapped_device *md, sector_t size)
1693 {
1694 	set_capacity(md->disk, size);
1695 
1696 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1697 }
1698 
1699 /*
1700  * Returns old map, which caller must destroy.
1701  */
1702 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1703 			       struct queue_limits *limits)
1704 {
1705 	struct dm_table *old_map;
1706 	struct request_queue *q = md->queue;
1707 	sector_t size;
1708 
1709 	lockdep_assert_held(&md->suspend_lock);
1710 
1711 	size = dm_table_get_size(t);
1712 
1713 	/*
1714 	 * Wipe any geometry if the size of the table changed.
1715 	 */
1716 	if (size != dm_get_size(md))
1717 		memset(&md->geometry, 0, sizeof(md->geometry));
1718 
1719 	__set_size(md, size);
1720 
1721 	dm_table_event_callback(t, event_callback, md);
1722 
1723 	/*
1724 	 * The queue hasn't been stopped yet, if the old table type wasn't
1725 	 * for request-based during suspension.  So stop it to prevent
1726 	 * I/O mapping before resume.
1727 	 * This must be done before setting the queue restrictions,
1728 	 * because request-based dm may be run just after the setting.
1729 	 */
1730 	if (dm_table_request_based(t)) {
1731 		dm_stop_queue(q);
1732 		/*
1733 		 * Leverage the fact that request-based DM targets are
1734 		 * immutable singletons and establish md->immutable_target
1735 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1736 		 */
1737 		md->immutable_target = dm_table_get_immutable_target(t);
1738 	}
1739 
1740 	__bind_mempools(md, t);
1741 
1742 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1743 	rcu_assign_pointer(md->map, (void *)t);
1744 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1745 
1746 	dm_table_set_restrictions(t, q, limits);
1747 	if (old_map)
1748 		dm_sync_table(md);
1749 
1750 	return old_map;
1751 }
1752 
1753 /*
1754  * Returns unbound table for the caller to free.
1755  */
1756 static struct dm_table *__unbind(struct mapped_device *md)
1757 {
1758 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1759 
1760 	if (!map)
1761 		return NULL;
1762 
1763 	dm_table_event_callback(map, NULL, NULL);
1764 	RCU_INIT_POINTER(md->map, NULL);
1765 	dm_sync_table(md);
1766 
1767 	return map;
1768 }
1769 
1770 /*
1771  * Constructor for a new device.
1772  */
1773 int dm_create(int minor, struct mapped_device **result)
1774 {
1775 	struct mapped_device *md;
1776 
1777 	md = alloc_dev(minor);
1778 	if (!md)
1779 		return -ENXIO;
1780 
1781 	dm_sysfs_init(md);
1782 
1783 	*result = md;
1784 	return 0;
1785 }
1786 
1787 /*
1788  * Functions to manage md->type.
1789  * All are required to hold md->type_lock.
1790  */
1791 void dm_lock_md_type(struct mapped_device *md)
1792 {
1793 	mutex_lock(&md->type_lock);
1794 }
1795 
1796 void dm_unlock_md_type(struct mapped_device *md)
1797 {
1798 	mutex_unlock(&md->type_lock);
1799 }
1800 
1801 void dm_set_md_type(struct mapped_device *md, unsigned type)
1802 {
1803 	BUG_ON(!mutex_is_locked(&md->type_lock));
1804 	md->type = type;
1805 }
1806 
1807 unsigned dm_get_md_type(struct mapped_device *md)
1808 {
1809 	return md->type;
1810 }
1811 
1812 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1813 {
1814 	return md->immutable_target_type;
1815 }
1816 
1817 /*
1818  * The queue_limits are only valid as long as you have a reference
1819  * count on 'md'.
1820  */
1821 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1822 {
1823 	BUG_ON(!atomic_read(&md->holders));
1824 	return &md->queue->limits;
1825 }
1826 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1827 
1828 /*
1829  * Setup the DM device's queue based on md's type
1830  */
1831 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1832 {
1833 	int r;
1834 	unsigned type = dm_get_md_type(md);
1835 
1836 	switch (type) {
1837 	case DM_TYPE_REQUEST_BASED:
1838 		r = dm_old_init_request_queue(md, t);
1839 		if (r) {
1840 			DMERR("Cannot initialize queue for request-based mapped device");
1841 			return r;
1842 		}
1843 		break;
1844 	case DM_TYPE_MQ_REQUEST_BASED:
1845 		r = dm_mq_init_request_queue(md, t);
1846 		if (r) {
1847 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1848 			return r;
1849 		}
1850 		break;
1851 	case DM_TYPE_BIO_BASED:
1852 	case DM_TYPE_DAX_BIO_BASED:
1853 		dm_init_normal_md_queue(md);
1854 		blk_queue_make_request(md->queue, dm_make_request);
1855 		/*
1856 		 * DM handles splitting bios as needed.  Free the bio_split bioset
1857 		 * since it won't be used (saves 1 process per bio-based DM device).
1858 		 */
1859 		bioset_free(md->queue->bio_split);
1860 		md->queue->bio_split = NULL;
1861 
1862 		if (type == DM_TYPE_DAX_BIO_BASED)
1863 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1864 		break;
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 struct mapped_device *dm_get_md(dev_t dev)
1871 {
1872 	struct mapped_device *md;
1873 	unsigned minor = MINOR(dev);
1874 
1875 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1876 		return NULL;
1877 
1878 	spin_lock(&_minor_lock);
1879 
1880 	md = idr_find(&_minor_idr, minor);
1881 	if (md) {
1882 		if ((md == MINOR_ALLOCED ||
1883 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
1884 		     dm_deleting_md(md) ||
1885 		     test_bit(DMF_FREEING, &md->flags))) {
1886 			md = NULL;
1887 			goto out;
1888 		}
1889 		dm_get(md);
1890 	}
1891 
1892 out:
1893 	spin_unlock(&_minor_lock);
1894 
1895 	return md;
1896 }
1897 EXPORT_SYMBOL_GPL(dm_get_md);
1898 
1899 void *dm_get_mdptr(struct mapped_device *md)
1900 {
1901 	return md->interface_ptr;
1902 }
1903 
1904 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1905 {
1906 	md->interface_ptr = ptr;
1907 }
1908 
1909 void dm_get(struct mapped_device *md)
1910 {
1911 	atomic_inc(&md->holders);
1912 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1913 }
1914 
1915 int dm_hold(struct mapped_device *md)
1916 {
1917 	spin_lock(&_minor_lock);
1918 	if (test_bit(DMF_FREEING, &md->flags)) {
1919 		spin_unlock(&_minor_lock);
1920 		return -EBUSY;
1921 	}
1922 	dm_get(md);
1923 	spin_unlock(&_minor_lock);
1924 	return 0;
1925 }
1926 EXPORT_SYMBOL_GPL(dm_hold);
1927 
1928 const char *dm_device_name(struct mapped_device *md)
1929 {
1930 	return md->name;
1931 }
1932 EXPORT_SYMBOL_GPL(dm_device_name);
1933 
1934 static void __dm_destroy(struct mapped_device *md, bool wait)
1935 {
1936 	struct request_queue *q = dm_get_md_queue(md);
1937 	struct dm_table *map;
1938 	int srcu_idx;
1939 
1940 	might_sleep();
1941 
1942 	spin_lock(&_minor_lock);
1943 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1944 	set_bit(DMF_FREEING, &md->flags);
1945 	spin_unlock(&_minor_lock);
1946 
1947 	blk_set_queue_dying(q);
1948 
1949 	if (dm_request_based(md) && md->kworker_task)
1950 		kthread_flush_worker(&md->kworker);
1951 
1952 	/*
1953 	 * Take suspend_lock so that presuspend and postsuspend methods
1954 	 * do not race with internal suspend.
1955 	 */
1956 	mutex_lock(&md->suspend_lock);
1957 	map = dm_get_live_table(md, &srcu_idx);
1958 	if (!dm_suspended_md(md)) {
1959 		dm_table_presuspend_targets(map);
1960 		dm_table_postsuspend_targets(map);
1961 	}
1962 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1963 	dm_put_live_table(md, srcu_idx);
1964 	mutex_unlock(&md->suspend_lock);
1965 
1966 	/*
1967 	 * Rare, but there may be I/O requests still going to complete,
1968 	 * for example.  Wait for all references to disappear.
1969 	 * No one should increment the reference count of the mapped_device,
1970 	 * after the mapped_device state becomes DMF_FREEING.
1971 	 */
1972 	if (wait)
1973 		while (atomic_read(&md->holders))
1974 			msleep(1);
1975 	else if (atomic_read(&md->holders))
1976 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1977 		       dm_device_name(md), atomic_read(&md->holders));
1978 
1979 	dm_sysfs_exit(md);
1980 	dm_table_destroy(__unbind(md));
1981 	free_dev(md);
1982 }
1983 
1984 void dm_destroy(struct mapped_device *md)
1985 {
1986 	__dm_destroy(md, true);
1987 }
1988 
1989 void dm_destroy_immediate(struct mapped_device *md)
1990 {
1991 	__dm_destroy(md, false);
1992 }
1993 
1994 void dm_put(struct mapped_device *md)
1995 {
1996 	atomic_dec(&md->holders);
1997 }
1998 EXPORT_SYMBOL_GPL(dm_put);
1999 
2000 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2001 {
2002 	int r = 0;
2003 	DEFINE_WAIT(wait);
2004 
2005 	while (1) {
2006 		prepare_to_wait(&md->wait, &wait, task_state);
2007 
2008 		if (!md_in_flight(md))
2009 			break;
2010 
2011 		if (signal_pending_state(task_state, current)) {
2012 			r = -EINTR;
2013 			break;
2014 		}
2015 
2016 		io_schedule();
2017 	}
2018 	finish_wait(&md->wait, &wait);
2019 
2020 	return r;
2021 }
2022 
2023 /*
2024  * Process the deferred bios
2025  */
2026 static void dm_wq_work(struct work_struct *work)
2027 {
2028 	struct mapped_device *md = container_of(work, struct mapped_device,
2029 						work);
2030 	struct bio *c;
2031 	int srcu_idx;
2032 	struct dm_table *map;
2033 
2034 	map = dm_get_live_table(md, &srcu_idx);
2035 
2036 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2037 		spin_lock_irq(&md->deferred_lock);
2038 		c = bio_list_pop(&md->deferred);
2039 		spin_unlock_irq(&md->deferred_lock);
2040 
2041 		if (!c)
2042 			break;
2043 
2044 		if (dm_request_based(md))
2045 			generic_make_request(c);
2046 		else
2047 			__split_and_process_bio(md, map, c);
2048 	}
2049 
2050 	dm_put_live_table(md, srcu_idx);
2051 }
2052 
2053 static void dm_queue_flush(struct mapped_device *md)
2054 {
2055 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2056 	smp_mb__after_atomic();
2057 	queue_work(md->wq, &md->work);
2058 }
2059 
2060 /*
2061  * Swap in a new table, returning the old one for the caller to destroy.
2062  */
2063 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2064 {
2065 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2066 	struct queue_limits limits;
2067 	int r;
2068 
2069 	mutex_lock(&md->suspend_lock);
2070 
2071 	/* device must be suspended */
2072 	if (!dm_suspended_md(md))
2073 		goto out;
2074 
2075 	/*
2076 	 * If the new table has no data devices, retain the existing limits.
2077 	 * This helps multipath with queue_if_no_path if all paths disappear,
2078 	 * then new I/O is queued based on these limits, and then some paths
2079 	 * reappear.
2080 	 */
2081 	if (dm_table_has_no_data_devices(table)) {
2082 		live_map = dm_get_live_table_fast(md);
2083 		if (live_map)
2084 			limits = md->queue->limits;
2085 		dm_put_live_table_fast(md);
2086 	}
2087 
2088 	if (!live_map) {
2089 		r = dm_calculate_queue_limits(table, &limits);
2090 		if (r) {
2091 			map = ERR_PTR(r);
2092 			goto out;
2093 		}
2094 	}
2095 
2096 	map = __bind(md, table, &limits);
2097 
2098 out:
2099 	mutex_unlock(&md->suspend_lock);
2100 	return map;
2101 }
2102 
2103 /*
2104  * Functions to lock and unlock any filesystem running on the
2105  * device.
2106  */
2107 static int lock_fs(struct mapped_device *md)
2108 {
2109 	int r;
2110 
2111 	WARN_ON(md->frozen_sb);
2112 
2113 	md->frozen_sb = freeze_bdev(md->bdev);
2114 	if (IS_ERR(md->frozen_sb)) {
2115 		r = PTR_ERR(md->frozen_sb);
2116 		md->frozen_sb = NULL;
2117 		return r;
2118 	}
2119 
2120 	set_bit(DMF_FROZEN, &md->flags);
2121 
2122 	return 0;
2123 }
2124 
2125 static void unlock_fs(struct mapped_device *md)
2126 {
2127 	if (!test_bit(DMF_FROZEN, &md->flags))
2128 		return;
2129 
2130 	thaw_bdev(md->bdev, md->frozen_sb);
2131 	md->frozen_sb = NULL;
2132 	clear_bit(DMF_FROZEN, &md->flags);
2133 }
2134 
2135 /*
2136  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2137  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2138  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2139  *
2140  * If __dm_suspend returns 0, the device is completely quiescent
2141  * now. There is no request-processing activity. All new requests
2142  * are being added to md->deferred list.
2143  *
2144  * Caller must hold md->suspend_lock
2145  */
2146 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2147 			unsigned suspend_flags, long task_state,
2148 			int dmf_suspended_flag)
2149 {
2150 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2151 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2152 	int r;
2153 
2154 	lockdep_assert_held(&md->suspend_lock);
2155 
2156 	/*
2157 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2158 	 * This flag is cleared before dm_suspend returns.
2159 	 */
2160 	if (noflush)
2161 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2162 
2163 	/*
2164 	 * This gets reverted if there's an error later and the targets
2165 	 * provide the .presuspend_undo hook.
2166 	 */
2167 	dm_table_presuspend_targets(map);
2168 
2169 	/*
2170 	 * Flush I/O to the device.
2171 	 * Any I/O submitted after lock_fs() may not be flushed.
2172 	 * noflush takes precedence over do_lockfs.
2173 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2174 	 */
2175 	if (!noflush && do_lockfs) {
2176 		r = lock_fs(md);
2177 		if (r) {
2178 			dm_table_presuspend_undo_targets(map);
2179 			return r;
2180 		}
2181 	}
2182 
2183 	/*
2184 	 * Here we must make sure that no processes are submitting requests
2185 	 * to target drivers i.e. no one may be executing
2186 	 * __split_and_process_bio. This is called from dm_request and
2187 	 * dm_wq_work.
2188 	 *
2189 	 * To get all processes out of __split_and_process_bio in dm_request,
2190 	 * we take the write lock. To prevent any process from reentering
2191 	 * __split_and_process_bio from dm_request and quiesce the thread
2192 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2193 	 * flush_workqueue(md->wq).
2194 	 */
2195 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2196 	if (map)
2197 		synchronize_srcu(&md->io_barrier);
2198 
2199 	/*
2200 	 * Stop md->queue before flushing md->wq in case request-based
2201 	 * dm defers requests to md->wq from md->queue.
2202 	 */
2203 	if (dm_request_based(md)) {
2204 		dm_stop_queue(md->queue);
2205 		if (md->kworker_task)
2206 			kthread_flush_worker(&md->kworker);
2207 	}
2208 
2209 	flush_workqueue(md->wq);
2210 
2211 	/*
2212 	 * At this point no more requests are entering target request routines.
2213 	 * We call dm_wait_for_completion to wait for all existing requests
2214 	 * to finish.
2215 	 */
2216 	r = dm_wait_for_completion(md, task_state);
2217 	if (!r)
2218 		set_bit(dmf_suspended_flag, &md->flags);
2219 
2220 	if (noflush)
2221 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2222 	if (map)
2223 		synchronize_srcu(&md->io_barrier);
2224 
2225 	/* were we interrupted ? */
2226 	if (r < 0) {
2227 		dm_queue_flush(md);
2228 
2229 		if (dm_request_based(md))
2230 			dm_start_queue(md->queue);
2231 
2232 		unlock_fs(md);
2233 		dm_table_presuspend_undo_targets(map);
2234 		/* pushback list is already flushed, so skip flush */
2235 	}
2236 
2237 	return r;
2238 }
2239 
2240 /*
2241  * We need to be able to change a mapping table under a mounted
2242  * filesystem.  For example we might want to move some data in
2243  * the background.  Before the table can be swapped with
2244  * dm_bind_table, dm_suspend must be called to flush any in
2245  * flight bios and ensure that any further io gets deferred.
2246  */
2247 /*
2248  * Suspend mechanism in request-based dm.
2249  *
2250  * 1. Flush all I/Os by lock_fs() if needed.
2251  * 2. Stop dispatching any I/O by stopping the request_queue.
2252  * 3. Wait for all in-flight I/Os to be completed or requeued.
2253  *
2254  * To abort suspend, start the request_queue.
2255  */
2256 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2257 {
2258 	struct dm_table *map = NULL;
2259 	int r = 0;
2260 
2261 retry:
2262 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2263 
2264 	if (dm_suspended_md(md)) {
2265 		r = -EINVAL;
2266 		goto out_unlock;
2267 	}
2268 
2269 	if (dm_suspended_internally_md(md)) {
2270 		/* already internally suspended, wait for internal resume */
2271 		mutex_unlock(&md->suspend_lock);
2272 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2273 		if (r)
2274 			return r;
2275 		goto retry;
2276 	}
2277 
2278 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2279 
2280 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2281 	if (r)
2282 		goto out_unlock;
2283 
2284 	dm_table_postsuspend_targets(map);
2285 
2286 out_unlock:
2287 	mutex_unlock(&md->suspend_lock);
2288 	return r;
2289 }
2290 
2291 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2292 {
2293 	if (map) {
2294 		int r = dm_table_resume_targets(map);
2295 		if (r)
2296 			return r;
2297 	}
2298 
2299 	dm_queue_flush(md);
2300 
2301 	/*
2302 	 * Flushing deferred I/Os must be done after targets are resumed
2303 	 * so that mapping of targets can work correctly.
2304 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2305 	 */
2306 	if (dm_request_based(md))
2307 		dm_start_queue(md->queue);
2308 
2309 	unlock_fs(md);
2310 
2311 	return 0;
2312 }
2313 
2314 int dm_resume(struct mapped_device *md)
2315 {
2316 	int r;
2317 	struct dm_table *map = NULL;
2318 
2319 retry:
2320 	r = -EINVAL;
2321 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2322 
2323 	if (!dm_suspended_md(md))
2324 		goto out;
2325 
2326 	if (dm_suspended_internally_md(md)) {
2327 		/* already internally suspended, wait for internal resume */
2328 		mutex_unlock(&md->suspend_lock);
2329 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2330 		if (r)
2331 			return r;
2332 		goto retry;
2333 	}
2334 
2335 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2336 	if (!map || !dm_table_get_size(map))
2337 		goto out;
2338 
2339 	r = __dm_resume(md, map);
2340 	if (r)
2341 		goto out;
2342 
2343 	clear_bit(DMF_SUSPENDED, &md->flags);
2344 out:
2345 	mutex_unlock(&md->suspend_lock);
2346 
2347 	return r;
2348 }
2349 
2350 /*
2351  * Internal suspend/resume works like userspace-driven suspend. It waits
2352  * until all bios finish and prevents issuing new bios to the target drivers.
2353  * It may be used only from the kernel.
2354  */
2355 
2356 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2357 {
2358 	struct dm_table *map = NULL;
2359 
2360 	if (md->internal_suspend_count++)
2361 		return; /* nested internal suspend */
2362 
2363 	if (dm_suspended_md(md)) {
2364 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2365 		return; /* nest suspend */
2366 	}
2367 
2368 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2369 
2370 	/*
2371 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2372 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2373 	 * would require changing .presuspend to return an error -- avoid this
2374 	 * until there is a need for more elaborate variants of internal suspend.
2375 	 */
2376 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2377 			    DMF_SUSPENDED_INTERNALLY);
2378 
2379 	dm_table_postsuspend_targets(map);
2380 }
2381 
2382 static void __dm_internal_resume(struct mapped_device *md)
2383 {
2384 	BUG_ON(!md->internal_suspend_count);
2385 
2386 	if (--md->internal_suspend_count)
2387 		return; /* resume from nested internal suspend */
2388 
2389 	if (dm_suspended_md(md))
2390 		goto done; /* resume from nested suspend */
2391 
2392 	/*
2393 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2394 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2395 	 */
2396 	(void) __dm_resume(md, NULL);
2397 
2398 done:
2399 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2400 	smp_mb__after_atomic();
2401 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2402 }
2403 
2404 void dm_internal_suspend_noflush(struct mapped_device *md)
2405 {
2406 	mutex_lock(&md->suspend_lock);
2407 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2408 	mutex_unlock(&md->suspend_lock);
2409 }
2410 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2411 
2412 void dm_internal_resume(struct mapped_device *md)
2413 {
2414 	mutex_lock(&md->suspend_lock);
2415 	__dm_internal_resume(md);
2416 	mutex_unlock(&md->suspend_lock);
2417 }
2418 EXPORT_SYMBOL_GPL(dm_internal_resume);
2419 
2420 /*
2421  * Fast variants of internal suspend/resume hold md->suspend_lock,
2422  * which prevents interaction with userspace-driven suspend.
2423  */
2424 
2425 void dm_internal_suspend_fast(struct mapped_device *md)
2426 {
2427 	mutex_lock(&md->suspend_lock);
2428 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2429 		return;
2430 
2431 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2432 	synchronize_srcu(&md->io_barrier);
2433 	flush_workqueue(md->wq);
2434 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2435 }
2436 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2437 
2438 void dm_internal_resume_fast(struct mapped_device *md)
2439 {
2440 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2441 		goto done;
2442 
2443 	dm_queue_flush(md);
2444 
2445 done:
2446 	mutex_unlock(&md->suspend_lock);
2447 }
2448 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2449 
2450 /*-----------------------------------------------------------------
2451  * Event notification.
2452  *---------------------------------------------------------------*/
2453 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2454 		       unsigned cookie)
2455 {
2456 	char udev_cookie[DM_COOKIE_LENGTH];
2457 	char *envp[] = { udev_cookie, NULL };
2458 
2459 	if (!cookie)
2460 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2461 	else {
2462 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2463 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2464 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2465 					  action, envp);
2466 	}
2467 }
2468 
2469 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2470 {
2471 	return atomic_add_return(1, &md->uevent_seq);
2472 }
2473 
2474 uint32_t dm_get_event_nr(struct mapped_device *md)
2475 {
2476 	return atomic_read(&md->event_nr);
2477 }
2478 
2479 int dm_wait_event(struct mapped_device *md, int event_nr)
2480 {
2481 	return wait_event_interruptible(md->eventq,
2482 			(event_nr != atomic_read(&md->event_nr)));
2483 }
2484 
2485 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2486 {
2487 	unsigned long flags;
2488 
2489 	spin_lock_irqsave(&md->uevent_lock, flags);
2490 	list_add(elist, &md->uevent_list);
2491 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2492 }
2493 
2494 /*
2495  * The gendisk is only valid as long as you have a reference
2496  * count on 'md'.
2497  */
2498 struct gendisk *dm_disk(struct mapped_device *md)
2499 {
2500 	return md->disk;
2501 }
2502 EXPORT_SYMBOL_GPL(dm_disk);
2503 
2504 struct kobject *dm_kobject(struct mapped_device *md)
2505 {
2506 	return &md->kobj_holder.kobj;
2507 }
2508 
2509 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2510 {
2511 	struct mapped_device *md;
2512 
2513 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2514 
2515 	if (test_bit(DMF_FREEING, &md->flags) ||
2516 	    dm_deleting_md(md))
2517 		return NULL;
2518 
2519 	dm_get(md);
2520 	return md;
2521 }
2522 
2523 int dm_suspended_md(struct mapped_device *md)
2524 {
2525 	return test_bit(DMF_SUSPENDED, &md->flags);
2526 }
2527 
2528 int dm_suspended_internally_md(struct mapped_device *md)
2529 {
2530 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2531 }
2532 
2533 int dm_test_deferred_remove_flag(struct mapped_device *md)
2534 {
2535 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2536 }
2537 
2538 int dm_suspended(struct dm_target *ti)
2539 {
2540 	return dm_suspended_md(dm_table_get_md(ti->table));
2541 }
2542 EXPORT_SYMBOL_GPL(dm_suspended);
2543 
2544 int dm_noflush_suspending(struct dm_target *ti)
2545 {
2546 	return __noflush_suspending(dm_table_get_md(ti->table));
2547 }
2548 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2549 
2550 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2551 					    unsigned integrity, unsigned per_io_data_size)
2552 {
2553 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2554 	unsigned int pool_size = 0;
2555 	unsigned int front_pad;
2556 
2557 	if (!pools)
2558 		return NULL;
2559 
2560 	switch (type) {
2561 	case DM_TYPE_BIO_BASED:
2562 	case DM_TYPE_DAX_BIO_BASED:
2563 		pool_size = dm_get_reserved_bio_based_ios();
2564 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2565 
2566 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2567 		if (!pools->io_pool)
2568 			goto out;
2569 		break;
2570 	case DM_TYPE_REQUEST_BASED:
2571 	case DM_TYPE_MQ_REQUEST_BASED:
2572 		pool_size = dm_get_reserved_rq_based_ios();
2573 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2574 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2575 		break;
2576 	default:
2577 		BUG();
2578 	}
2579 
2580 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
2581 	if (!pools->bs)
2582 		goto out;
2583 
2584 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2585 		goto out;
2586 
2587 	return pools;
2588 
2589 out:
2590 	dm_free_md_mempools(pools);
2591 
2592 	return NULL;
2593 }
2594 
2595 void dm_free_md_mempools(struct dm_md_mempools *pools)
2596 {
2597 	if (!pools)
2598 		return;
2599 
2600 	mempool_destroy(pools->io_pool);
2601 
2602 	if (pools->bs)
2603 		bioset_free(pools->bs);
2604 
2605 	kfree(pools);
2606 }
2607 
2608 struct dm_pr {
2609 	u64	old_key;
2610 	u64	new_key;
2611 	u32	flags;
2612 	bool	fail_early;
2613 };
2614 
2615 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2616 		      void *data)
2617 {
2618 	struct mapped_device *md = bdev->bd_disk->private_data;
2619 	struct dm_table *table;
2620 	struct dm_target *ti;
2621 	int ret = -ENOTTY, srcu_idx;
2622 
2623 	table = dm_get_live_table(md, &srcu_idx);
2624 	if (!table || !dm_table_get_size(table))
2625 		goto out;
2626 
2627 	/* We only support devices that have a single target */
2628 	if (dm_table_get_num_targets(table) != 1)
2629 		goto out;
2630 	ti = dm_table_get_target(table, 0);
2631 
2632 	ret = -EINVAL;
2633 	if (!ti->type->iterate_devices)
2634 		goto out;
2635 
2636 	ret = ti->type->iterate_devices(ti, fn, data);
2637 out:
2638 	dm_put_live_table(md, srcu_idx);
2639 	return ret;
2640 }
2641 
2642 /*
2643  * For register / unregister we need to manually call out to every path.
2644  */
2645 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2646 			    sector_t start, sector_t len, void *data)
2647 {
2648 	struct dm_pr *pr = data;
2649 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2650 
2651 	if (!ops || !ops->pr_register)
2652 		return -EOPNOTSUPP;
2653 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2654 }
2655 
2656 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2657 			  u32 flags)
2658 {
2659 	struct dm_pr pr = {
2660 		.old_key	= old_key,
2661 		.new_key	= new_key,
2662 		.flags		= flags,
2663 		.fail_early	= true,
2664 	};
2665 	int ret;
2666 
2667 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2668 	if (ret && new_key) {
2669 		/* unregister all paths if we failed to register any path */
2670 		pr.old_key = new_key;
2671 		pr.new_key = 0;
2672 		pr.flags = 0;
2673 		pr.fail_early = false;
2674 		dm_call_pr(bdev, __dm_pr_register, &pr);
2675 	}
2676 
2677 	return ret;
2678 }
2679 
2680 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2681 			 u32 flags)
2682 {
2683 	struct mapped_device *md = bdev->bd_disk->private_data;
2684 	const struct pr_ops *ops;
2685 	fmode_t mode;
2686 	int r;
2687 
2688 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2689 	if (r < 0)
2690 		return r;
2691 
2692 	ops = bdev->bd_disk->fops->pr_ops;
2693 	if (ops && ops->pr_reserve)
2694 		r = ops->pr_reserve(bdev, key, type, flags);
2695 	else
2696 		r = -EOPNOTSUPP;
2697 
2698 	bdput(bdev);
2699 	return r;
2700 }
2701 
2702 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2703 {
2704 	struct mapped_device *md = bdev->bd_disk->private_data;
2705 	const struct pr_ops *ops;
2706 	fmode_t mode;
2707 	int r;
2708 
2709 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2710 	if (r < 0)
2711 		return r;
2712 
2713 	ops = bdev->bd_disk->fops->pr_ops;
2714 	if (ops && ops->pr_release)
2715 		r = ops->pr_release(bdev, key, type);
2716 	else
2717 		r = -EOPNOTSUPP;
2718 
2719 	bdput(bdev);
2720 	return r;
2721 }
2722 
2723 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2724 			 enum pr_type type, bool abort)
2725 {
2726 	struct mapped_device *md = bdev->bd_disk->private_data;
2727 	const struct pr_ops *ops;
2728 	fmode_t mode;
2729 	int r;
2730 
2731 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2732 	if (r < 0)
2733 		return r;
2734 
2735 	ops = bdev->bd_disk->fops->pr_ops;
2736 	if (ops && ops->pr_preempt)
2737 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2738 	else
2739 		r = -EOPNOTSUPP;
2740 
2741 	bdput(bdev);
2742 	return r;
2743 }
2744 
2745 static int dm_pr_clear(struct block_device *bdev, u64 key)
2746 {
2747 	struct mapped_device *md = bdev->bd_disk->private_data;
2748 	const struct pr_ops *ops;
2749 	fmode_t mode;
2750 	int r;
2751 
2752 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2753 	if (r < 0)
2754 		return r;
2755 
2756 	ops = bdev->bd_disk->fops->pr_ops;
2757 	if (ops && ops->pr_clear)
2758 		r = ops->pr_clear(bdev, key);
2759 	else
2760 		r = -EOPNOTSUPP;
2761 
2762 	bdput(bdev);
2763 	return r;
2764 }
2765 
2766 static const struct pr_ops dm_pr_ops = {
2767 	.pr_register	= dm_pr_register,
2768 	.pr_reserve	= dm_pr_reserve,
2769 	.pr_release	= dm_pr_release,
2770 	.pr_preempt	= dm_pr_preempt,
2771 	.pr_clear	= dm_pr_clear,
2772 };
2773 
2774 static const struct block_device_operations dm_blk_dops = {
2775 	.open = dm_blk_open,
2776 	.release = dm_blk_close,
2777 	.ioctl = dm_blk_ioctl,
2778 	.direct_access = dm_blk_direct_access,
2779 	.getgeo = dm_blk_getgeo,
2780 	.pr_ops = &dm_pr_ops,
2781 	.owner = THIS_MODULE
2782 };
2783 
2784 /*
2785  * module hooks
2786  */
2787 module_init(dm_init);
2788 module_exit(dm_exit);
2789 
2790 module_param(major, uint, 0);
2791 MODULE_PARM_DESC(major, "The major number of the device mapper");
2792 
2793 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2794 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2795 
2796 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2797 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2798 
2799 MODULE_DESCRIPTION(DM_NAME " driver");
2800 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2801 MODULE_LICENSE("GPL");
2802