xref: /linux/drivers/md/dm.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/delay.h>
24 #include <linux/wait.h>
25 #include <linux/pr.h>
26 
27 #define DM_MSG_PREFIX "core"
28 
29 #ifdef CONFIG_PRINTK
30 /*
31  * ratelimit state to be used in DMXXX_LIMIT().
32  */
33 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
34 		       DEFAULT_RATELIMIT_INTERVAL,
35 		       DEFAULT_RATELIMIT_BURST);
36 EXPORT_SYMBOL(dm_ratelimit_state);
37 #endif
38 
39 /*
40  * Cookies are numeric values sent with CHANGE and REMOVE
41  * uevents while resuming, removing or renaming the device.
42  */
43 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
44 #define DM_COOKIE_LENGTH 24
45 
46 static const char *_name = DM_NAME;
47 
48 static unsigned int major = 0;
49 static unsigned int _major = 0;
50 
51 static DEFINE_IDR(_minor_idr);
52 
53 static DEFINE_SPINLOCK(_minor_lock);
54 
55 static void do_deferred_remove(struct work_struct *w);
56 
57 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
58 
59 static struct workqueue_struct *deferred_remove_workqueue;
60 
61 /*
62  * One of these is allocated per bio.
63  */
64 struct dm_io {
65 	struct mapped_device *md;
66 	int error;
67 	atomic_t io_count;
68 	struct bio *bio;
69 	unsigned long start_time;
70 	spinlock_t endio_lock;
71 	struct dm_stats_aux stats_aux;
72 };
73 
74 #define MINOR_ALLOCED ((void *)-1)
75 
76 /*
77  * Bits for the md->flags field.
78  */
79 #define DMF_BLOCK_IO_FOR_SUSPEND 0
80 #define DMF_SUSPENDED 1
81 #define DMF_FROZEN 2
82 #define DMF_FREEING 3
83 #define DMF_DELETING 4
84 #define DMF_NOFLUSH_SUSPENDING 5
85 #define DMF_DEFERRED_REMOVE 6
86 #define DMF_SUSPENDED_INTERNALLY 7
87 
88 #define DM_NUMA_NODE NUMA_NO_NODE
89 static int dm_numa_node = DM_NUMA_NODE;
90 
91 /*
92  * For mempools pre-allocation at the table loading time.
93  */
94 struct dm_md_mempools {
95 	mempool_t *io_pool;
96 	struct bio_set *bs;
97 };
98 
99 struct table_device {
100 	struct list_head list;
101 	atomic_t count;
102 	struct dm_dev dm_dev;
103 };
104 
105 static struct kmem_cache *_io_cache;
106 static struct kmem_cache *_rq_tio_cache;
107 static struct kmem_cache *_rq_cache;
108 
109 /*
110  * Bio-based DM's mempools' reserved IOs set by the user.
111  */
112 #define RESERVED_BIO_BASED_IOS		16
113 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
114 
115 static int __dm_get_module_param_int(int *module_param, int min, int max)
116 {
117 	int param = ACCESS_ONCE(*module_param);
118 	int modified_param = 0;
119 	bool modified = true;
120 
121 	if (param < min)
122 		modified_param = min;
123 	else if (param > max)
124 		modified_param = max;
125 	else
126 		modified = false;
127 
128 	if (modified) {
129 		(void)cmpxchg(module_param, param, modified_param);
130 		param = modified_param;
131 	}
132 
133 	return param;
134 }
135 
136 unsigned __dm_get_module_param(unsigned *module_param,
137 			       unsigned def, unsigned max)
138 {
139 	unsigned param = ACCESS_ONCE(*module_param);
140 	unsigned modified_param = 0;
141 
142 	if (!param)
143 		modified_param = def;
144 	else if (param > max)
145 		modified_param = max;
146 
147 	if (modified_param) {
148 		(void)cmpxchg(module_param, param, modified_param);
149 		param = modified_param;
150 	}
151 
152 	return param;
153 }
154 
155 unsigned dm_get_reserved_bio_based_ios(void)
156 {
157 	return __dm_get_module_param(&reserved_bio_based_ios,
158 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
159 }
160 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
161 
162 static unsigned dm_get_numa_node(void)
163 {
164 	return __dm_get_module_param_int(&dm_numa_node,
165 					 DM_NUMA_NODE, num_online_nodes() - 1);
166 }
167 
168 static int __init local_init(void)
169 {
170 	int r = -ENOMEM;
171 
172 	/* allocate a slab for the dm_ios */
173 	_io_cache = KMEM_CACHE(dm_io, 0);
174 	if (!_io_cache)
175 		return r;
176 
177 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
178 	if (!_rq_tio_cache)
179 		goto out_free_io_cache;
180 
181 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
182 				      __alignof__(struct request), 0, NULL);
183 	if (!_rq_cache)
184 		goto out_free_rq_tio_cache;
185 
186 	r = dm_uevent_init();
187 	if (r)
188 		goto out_free_rq_cache;
189 
190 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
191 	if (!deferred_remove_workqueue) {
192 		r = -ENOMEM;
193 		goto out_uevent_exit;
194 	}
195 
196 	_major = major;
197 	r = register_blkdev(_major, _name);
198 	if (r < 0)
199 		goto out_free_workqueue;
200 
201 	if (!_major)
202 		_major = r;
203 
204 	return 0;
205 
206 out_free_workqueue:
207 	destroy_workqueue(deferred_remove_workqueue);
208 out_uevent_exit:
209 	dm_uevent_exit();
210 out_free_rq_cache:
211 	kmem_cache_destroy(_rq_cache);
212 out_free_rq_tio_cache:
213 	kmem_cache_destroy(_rq_tio_cache);
214 out_free_io_cache:
215 	kmem_cache_destroy(_io_cache);
216 
217 	return r;
218 }
219 
220 static void local_exit(void)
221 {
222 	flush_scheduled_work();
223 	destroy_workqueue(deferred_remove_workqueue);
224 
225 	kmem_cache_destroy(_rq_cache);
226 	kmem_cache_destroy(_rq_tio_cache);
227 	kmem_cache_destroy(_io_cache);
228 	unregister_blkdev(_major, _name);
229 	dm_uevent_exit();
230 
231 	_major = 0;
232 
233 	DMINFO("cleaned up");
234 }
235 
236 static int (*_inits[])(void) __initdata = {
237 	local_init,
238 	dm_target_init,
239 	dm_linear_init,
240 	dm_stripe_init,
241 	dm_io_init,
242 	dm_kcopyd_init,
243 	dm_interface_init,
244 	dm_statistics_init,
245 };
246 
247 static void (*_exits[])(void) = {
248 	local_exit,
249 	dm_target_exit,
250 	dm_linear_exit,
251 	dm_stripe_exit,
252 	dm_io_exit,
253 	dm_kcopyd_exit,
254 	dm_interface_exit,
255 	dm_statistics_exit,
256 };
257 
258 static int __init dm_init(void)
259 {
260 	const int count = ARRAY_SIZE(_inits);
261 
262 	int r, i;
263 
264 	for (i = 0; i < count; i++) {
265 		r = _inits[i]();
266 		if (r)
267 			goto bad;
268 	}
269 
270 	return 0;
271 
272       bad:
273 	while (i--)
274 		_exits[i]();
275 
276 	return r;
277 }
278 
279 static void __exit dm_exit(void)
280 {
281 	int i = ARRAY_SIZE(_exits);
282 
283 	while (i--)
284 		_exits[i]();
285 
286 	/*
287 	 * Should be empty by this point.
288 	 */
289 	idr_destroy(&_minor_idr);
290 }
291 
292 /*
293  * Block device functions
294  */
295 int dm_deleting_md(struct mapped_device *md)
296 {
297 	return test_bit(DMF_DELETING, &md->flags);
298 }
299 
300 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
301 {
302 	struct mapped_device *md;
303 
304 	spin_lock(&_minor_lock);
305 
306 	md = bdev->bd_disk->private_data;
307 	if (!md)
308 		goto out;
309 
310 	if (test_bit(DMF_FREEING, &md->flags) ||
311 	    dm_deleting_md(md)) {
312 		md = NULL;
313 		goto out;
314 	}
315 
316 	dm_get(md);
317 	atomic_inc(&md->open_count);
318 out:
319 	spin_unlock(&_minor_lock);
320 
321 	return md ? 0 : -ENXIO;
322 }
323 
324 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
325 {
326 	struct mapped_device *md;
327 
328 	spin_lock(&_minor_lock);
329 
330 	md = disk->private_data;
331 	if (WARN_ON(!md))
332 		goto out;
333 
334 	if (atomic_dec_and_test(&md->open_count) &&
335 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
336 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
337 
338 	dm_put(md);
339 out:
340 	spin_unlock(&_minor_lock);
341 }
342 
343 int dm_open_count(struct mapped_device *md)
344 {
345 	return atomic_read(&md->open_count);
346 }
347 
348 /*
349  * Guarantees nothing is using the device before it's deleted.
350  */
351 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
352 {
353 	int r = 0;
354 
355 	spin_lock(&_minor_lock);
356 
357 	if (dm_open_count(md)) {
358 		r = -EBUSY;
359 		if (mark_deferred)
360 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
361 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
362 		r = -EEXIST;
363 	else
364 		set_bit(DMF_DELETING, &md->flags);
365 
366 	spin_unlock(&_minor_lock);
367 
368 	return r;
369 }
370 
371 int dm_cancel_deferred_remove(struct mapped_device *md)
372 {
373 	int r = 0;
374 
375 	spin_lock(&_minor_lock);
376 
377 	if (test_bit(DMF_DELETING, &md->flags))
378 		r = -EBUSY;
379 	else
380 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
381 
382 	spin_unlock(&_minor_lock);
383 
384 	return r;
385 }
386 
387 static void do_deferred_remove(struct work_struct *w)
388 {
389 	dm_deferred_remove();
390 }
391 
392 sector_t dm_get_size(struct mapped_device *md)
393 {
394 	return get_capacity(md->disk);
395 }
396 
397 struct request_queue *dm_get_md_queue(struct mapped_device *md)
398 {
399 	return md->queue;
400 }
401 
402 struct dm_stats *dm_get_stats(struct mapped_device *md)
403 {
404 	return &md->stats;
405 }
406 
407 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
408 {
409 	struct mapped_device *md = bdev->bd_disk->private_data;
410 
411 	return dm_get_geometry(md, geo);
412 }
413 
414 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
415 				  struct block_device **bdev,
416 				  fmode_t *mode)
417 {
418 	struct dm_target *tgt;
419 	struct dm_table *map;
420 	int srcu_idx, r;
421 
422 retry:
423 	r = -ENOTTY;
424 	map = dm_get_live_table(md, &srcu_idx);
425 	if (!map || !dm_table_get_size(map))
426 		goto out;
427 
428 	/* We only support devices that have a single target */
429 	if (dm_table_get_num_targets(map) != 1)
430 		goto out;
431 
432 	tgt = dm_table_get_target(map, 0);
433 	if (!tgt->type->prepare_ioctl)
434 		goto out;
435 
436 	if (dm_suspended_md(md)) {
437 		r = -EAGAIN;
438 		goto out;
439 	}
440 
441 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
442 	if (r < 0)
443 		goto out;
444 
445 	bdgrab(*bdev);
446 	dm_put_live_table(md, srcu_idx);
447 	return r;
448 
449 out:
450 	dm_put_live_table(md, srcu_idx);
451 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
452 		msleep(10);
453 		goto retry;
454 	}
455 	return r;
456 }
457 
458 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
459 			unsigned int cmd, unsigned long arg)
460 {
461 	struct mapped_device *md = bdev->bd_disk->private_data;
462 	int r;
463 
464 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
465 	if (r < 0)
466 		return r;
467 
468 	if (r > 0) {
469 		/*
470 		 * Target determined this ioctl is being issued against a
471 		 * subset of the parent bdev; require extra privileges.
472 		 */
473 		if (!capable(CAP_SYS_RAWIO)) {
474 			DMWARN_LIMIT(
475 	"%s: sending ioctl %x to DM device without required privilege.",
476 				current->comm, cmd);
477 			r = -ENOIOCTLCMD;
478 			goto out;
479 		}
480 	}
481 
482 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
483 out:
484 	bdput(bdev);
485 	return r;
486 }
487 
488 static struct dm_io *alloc_io(struct mapped_device *md)
489 {
490 	return mempool_alloc(md->io_pool, GFP_NOIO);
491 }
492 
493 static void free_io(struct mapped_device *md, struct dm_io *io)
494 {
495 	mempool_free(io, md->io_pool);
496 }
497 
498 static void free_tio(struct dm_target_io *tio)
499 {
500 	bio_put(&tio->clone);
501 }
502 
503 int md_in_flight(struct mapped_device *md)
504 {
505 	return atomic_read(&md->pending[READ]) +
506 	       atomic_read(&md->pending[WRITE]);
507 }
508 
509 static void start_io_acct(struct dm_io *io)
510 {
511 	struct mapped_device *md = io->md;
512 	struct bio *bio = io->bio;
513 	int cpu;
514 	int rw = bio_data_dir(bio);
515 
516 	io->start_time = jiffies;
517 
518 	cpu = part_stat_lock();
519 	part_round_stats(cpu, &dm_disk(md)->part0);
520 	part_stat_unlock();
521 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
522 		atomic_inc_return(&md->pending[rw]));
523 
524 	if (unlikely(dm_stats_used(&md->stats)))
525 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
526 				    bio->bi_iter.bi_sector, bio_sectors(bio),
527 				    false, 0, &io->stats_aux);
528 }
529 
530 static void end_io_acct(struct dm_io *io)
531 {
532 	struct mapped_device *md = io->md;
533 	struct bio *bio = io->bio;
534 	unsigned long duration = jiffies - io->start_time;
535 	int pending;
536 	int rw = bio_data_dir(bio);
537 
538 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
539 
540 	if (unlikely(dm_stats_used(&md->stats)))
541 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
542 				    bio->bi_iter.bi_sector, bio_sectors(bio),
543 				    true, duration, &io->stats_aux);
544 
545 	/*
546 	 * After this is decremented the bio must not be touched if it is
547 	 * a flush.
548 	 */
549 	pending = atomic_dec_return(&md->pending[rw]);
550 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
551 	pending += atomic_read(&md->pending[rw^0x1]);
552 
553 	/* nudge anyone waiting on suspend queue */
554 	if (!pending)
555 		wake_up(&md->wait);
556 }
557 
558 /*
559  * Add the bio to the list of deferred io.
560  */
561 static void queue_io(struct mapped_device *md, struct bio *bio)
562 {
563 	unsigned long flags;
564 
565 	spin_lock_irqsave(&md->deferred_lock, flags);
566 	bio_list_add(&md->deferred, bio);
567 	spin_unlock_irqrestore(&md->deferred_lock, flags);
568 	queue_work(md->wq, &md->work);
569 }
570 
571 /*
572  * Everyone (including functions in this file), should use this
573  * function to access the md->map field, and make sure they call
574  * dm_put_live_table() when finished.
575  */
576 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
577 {
578 	*srcu_idx = srcu_read_lock(&md->io_barrier);
579 
580 	return srcu_dereference(md->map, &md->io_barrier);
581 }
582 
583 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
584 {
585 	srcu_read_unlock(&md->io_barrier, srcu_idx);
586 }
587 
588 void dm_sync_table(struct mapped_device *md)
589 {
590 	synchronize_srcu(&md->io_barrier);
591 	synchronize_rcu_expedited();
592 }
593 
594 /*
595  * A fast alternative to dm_get_live_table/dm_put_live_table.
596  * The caller must not block between these two functions.
597  */
598 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
599 {
600 	rcu_read_lock();
601 	return rcu_dereference(md->map);
602 }
603 
604 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
605 {
606 	rcu_read_unlock();
607 }
608 
609 /*
610  * Open a table device so we can use it as a map destination.
611  */
612 static int open_table_device(struct table_device *td, dev_t dev,
613 			     struct mapped_device *md)
614 {
615 	static char *_claim_ptr = "I belong to device-mapper";
616 	struct block_device *bdev;
617 
618 	int r;
619 
620 	BUG_ON(td->dm_dev.bdev);
621 
622 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
623 	if (IS_ERR(bdev))
624 		return PTR_ERR(bdev);
625 
626 	r = bd_link_disk_holder(bdev, dm_disk(md));
627 	if (r) {
628 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
629 		return r;
630 	}
631 
632 	td->dm_dev.bdev = bdev;
633 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
634 	return 0;
635 }
636 
637 /*
638  * Close a table device that we've been using.
639  */
640 static void close_table_device(struct table_device *td, struct mapped_device *md)
641 {
642 	if (!td->dm_dev.bdev)
643 		return;
644 
645 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
646 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
647 	put_dax(td->dm_dev.dax_dev);
648 	td->dm_dev.bdev = NULL;
649 	td->dm_dev.dax_dev = NULL;
650 }
651 
652 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
653 					      fmode_t mode) {
654 	struct table_device *td;
655 
656 	list_for_each_entry(td, l, list)
657 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
658 			return td;
659 
660 	return NULL;
661 }
662 
663 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
664 			struct dm_dev **result) {
665 	int r;
666 	struct table_device *td;
667 
668 	mutex_lock(&md->table_devices_lock);
669 	td = find_table_device(&md->table_devices, dev, mode);
670 	if (!td) {
671 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
672 		if (!td) {
673 			mutex_unlock(&md->table_devices_lock);
674 			return -ENOMEM;
675 		}
676 
677 		td->dm_dev.mode = mode;
678 		td->dm_dev.bdev = NULL;
679 
680 		if ((r = open_table_device(td, dev, md))) {
681 			mutex_unlock(&md->table_devices_lock);
682 			kfree(td);
683 			return r;
684 		}
685 
686 		format_dev_t(td->dm_dev.name, dev);
687 
688 		atomic_set(&td->count, 0);
689 		list_add(&td->list, &md->table_devices);
690 	}
691 	atomic_inc(&td->count);
692 	mutex_unlock(&md->table_devices_lock);
693 
694 	*result = &td->dm_dev;
695 	return 0;
696 }
697 EXPORT_SYMBOL_GPL(dm_get_table_device);
698 
699 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
700 {
701 	struct table_device *td = container_of(d, struct table_device, dm_dev);
702 
703 	mutex_lock(&md->table_devices_lock);
704 	if (atomic_dec_and_test(&td->count)) {
705 		close_table_device(td, md);
706 		list_del(&td->list);
707 		kfree(td);
708 	}
709 	mutex_unlock(&md->table_devices_lock);
710 }
711 EXPORT_SYMBOL(dm_put_table_device);
712 
713 static void free_table_devices(struct list_head *devices)
714 {
715 	struct list_head *tmp, *next;
716 
717 	list_for_each_safe(tmp, next, devices) {
718 		struct table_device *td = list_entry(tmp, struct table_device, list);
719 
720 		DMWARN("dm_destroy: %s still exists with %d references",
721 		       td->dm_dev.name, atomic_read(&td->count));
722 		kfree(td);
723 	}
724 }
725 
726 /*
727  * Get the geometry associated with a dm device
728  */
729 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
730 {
731 	*geo = md->geometry;
732 
733 	return 0;
734 }
735 
736 /*
737  * Set the geometry of a device.
738  */
739 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
740 {
741 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
742 
743 	if (geo->start > sz) {
744 		DMWARN("Start sector is beyond the geometry limits.");
745 		return -EINVAL;
746 	}
747 
748 	md->geometry = *geo;
749 
750 	return 0;
751 }
752 
753 /*-----------------------------------------------------------------
754  * CRUD START:
755  *   A more elegant soln is in the works that uses the queue
756  *   merge fn, unfortunately there are a couple of changes to
757  *   the block layer that I want to make for this.  So in the
758  *   interests of getting something for people to use I give
759  *   you this clearly demarcated crap.
760  *---------------------------------------------------------------*/
761 
762 static int __noflush_suspending(struct mapped_device *md)
763 {
764 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
765 }
766 
767 /*
768  * Decrements the number of outstanding ios that a bio has been
769  * cloned into, completing the original io if necc.
770  */
771 static void dec_pending(struct dm_io *io, int error)
772 {
773 	unsigned long flags;
774 	int io_error;
775 	struct bio *bio;
776 	struct mapped_device *md = io->md;
777 
778 	/* Push-back supersedes any I/O errors */
779 	if (unlikely(error)) {
780 		spin_lock_irqsave(&io->endio_lock, flags);
781 		if (!(io->error > 0 && __noflush_suspending(md)))
782 			io->error = error;
783 		spin_unlock_irqrestore(&io->endio_lock, flags);
784 	}
785 
786 	if (atomic_dec_and_test(&io->io_count)) {
787 		if (io->error == DM_ENDIO_REQUEUE) {
788 			/*
789 			 * Target requested pushing back the I/O.
790 			 */
791 			spin_lock_irqsave(&md->deferred_lock, flags);
792 			if (__noflush_suspending(md))
793 				bio_list_add_head(&md->deferred, io->bio);
794 			else
795 				/* noflush suspend was interrupted. */
796 				io->error = -EIO;
797 			spin_unlock_irqrestore(&md->deferred_lock, flags);
798 		}
799 
800 		io_error = io->error;
801 		bio = io->bio;
802 		end_io_acct(io);
803 		free_io(md, io);
804 
805 		if (io_error == DM_ENDIO_REQUEUE)
806 			return;
807 
808 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
809 			/*
810 			 * Preflush done for flush with data, reissue
811 			 * without REQ_PREFLUSH.
812 			 */
813 			bio->bi_opf &= ~REQ_PREFLUSH;
814 			queue_io(md, bio);
815 		} else {
816 			/* done with normal IO or empty flush */
817 			bio->bi_error = io_error;
818 			bio_endio(bio);
819 		}
820 	}
821 }
822 
823 void disable_write_same(struct mapped_device *md)
824 {
825 	struct queue_limits *limits = dm_get_queue_limits(md);
826 
827 	/* device doesn't really support WRITE SAME, disable it */
828 	limits->max_write_same_sectors = 0;
829 }
830 
831 void disable_write_zeroes(struct mapped_device *md)
832 {
833 	struct queue_limits *limits = dm_get_queue_limits(md);
834 
835 	/* device doesn't really support WRITE ZEROES, disable it */
836 	limits->max_write_zeroes_sectors = 0;
837 }
838 
839 static void clone_endio(struct bio *bio)
840 {
841 	int error = bio->bi_error;
842 	int r = error;
843 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
844 	struct dm_io *io = tio->io;
845 	struct mapped_device *md = tio->io->md;
846 	dm_endio_fn endio = tio->ti->type->end_io;
847 
848 	if (endio) {
849 		r = endio(tio->ti, bio, error);
850 		if (r < 0 || r == DM_ENDIO_REQUEUE)
851 			/*
852 			 * error and requeue request are handled
853 			 * in dec_pending().
854 			 */
855 			error = r;
856 		else if (r == DM_ENDIO_INCOMPLETE)
857 			/* The target will handle the io */
858 			return;
859 		else if (r) {
860 			DMWARN("unimplemented target endio return value: %d", r);
861 			BUG();
862 		}
863 	}
864 
865 	if (unlikely(r == -EREMOTEIO)) {
866 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
867 		    !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)
868 			disable_write_same(md);
869 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
870 		    !bdev_get_queue(bio->bi_bdev)->limits.max_write_zeroes_sectors)
871 			disable_write_zeroes(md);
872 	}
873 
874 	free_tio(tio);
875 	dec_pending(io, error);
876 }
877 
878 /*
879  * Return maximum size of I/O possible at the supplied sector up to the current
880  * target boundary.
881  */
882 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
883 {
884 	sector_t target_offset = dm_target_offset(ti, sector);
885 
886 	return ti->len - target_offset;
887 }
888 
889 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
890 {
891 	sector_t len = max_io_len_target_boundary(sector, ti);
892 	sector_t offset, max_len;
893 
894 	/*
895 	 * Does the target need to split even further?
896 	 */
897 	if (ti->max_io_len) {
898 		offset = dm_target_offset(ti, sector);
899 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
900 			max_len = sector_div(offset, ti->max_io_len);
901 		else
902 			max_len = offset & (ti->max_io_len - 1);
903 		max_len = ti->max_io_len - max_len;
904 
905 		if (len > max_len)
906 			len = max_len;
907 	}
908 
909 	return len;
910 }
911 
912 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
913 {
914 	if (len > UINT_MAX) {
915 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
916 		      (unsigned long long)len, UINT_MAX);
917 		ti->error = "Maximum size of target IO is too large";
918 		return -EINVAL;
919 	}
920 
921 	ti->max_io_len = (uint32_t) len;
922 
923 	return 0;
924 }
925 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
926 
927 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
928 		sector_t sector, int *srcu_idx)
929 {
930 	struct dm_table *map;
931 	struct dm_target *ti;
932 
933 	map = dm_get_live_table(md, srcu_idx);
934 	if (!map)
935 		return NULL;
936 
937 	ti = dm_table_find_target(map, sector);
938 	if (!dm_target_is_valid(ti))
939 		return NULL;
940 
941 	return ti;
942 }
943 
944 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
945 		long nr_pages, void **kaddr, pfn_t *pfn)
946 {
947 	struct mapped_device *md = dax_get_private(dax_dev);
948 	sector_t sector = pgoff * PAGE_SECTORS;
949 	struct dm_target *ti;
950 	long len, ret = -EIO;
951 	int srcu_idx;
952 
953 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
954 
955 	if (!ti)
956 		goto out;
957 	if (!ti->type->direct_access)
958 		goto out;
959 	len = max_io_len(sector, ti) / PAGE_SECTORS;
960 	if (len < 1)
961 		goto out;
962 	nr_pages = min(len, nr_pages);
963 	if (ti->type->direct_access)
964 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
965 
966  out:
967 	dm_put_live_table(md, srcu_idx);
968 
969 	return ret;
970 }
971 
972 /*
973  * A target may call dm_accept_partial_bio only from the map routine.  It is
974  * allowed for all bio types except REQ_PREFLUSH.
975  *
976  * dm_accept_partial_bio informs the dm that the target only wants to process
977  * additional n_sectors sectors of the bio and the rest of the data should be
978  * sent in a next bio.
979  *
980  * A diagram that explains the arithmetics:
981  * +--------------------+---------------+-------+
982  * |         1          |       2       |   3   |
983  * +--------------------+---------------+-------+
984  *
985  * <-------------- *tio->len_ptr --------------->
986  *                      <------- bi_size ------->
987  *                      <-- n_sectors -->
988  *
989  * Region 1 was already iterated over with bio_advance or similar function.
990  *	(it may be empty if the target doesn't use bio_advance)
991  * Region 2 is the remaining bio size that the target wants to process.
992  *	(it may be empty if region 1 is non-empty, although there is no reason
993  *	 to make it empty)
994  * The target requires that region 3 is to be sent in the next bio.
995  *
996  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
997  * the partially processed part (the sum of regions 1+2) must be the same for all
998  * copies of the bio.
999  */
1000 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1001 {
1002 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1003 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1004 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1005 	BUG_ON(bi_size > *tio->len_ptr);
1006 	BUG_ON(n_sectors > bi_size);
1007 	*tio->len_ptr -= bi_size - n_sectors;
1008 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1009 }
1010 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1011 
1012 /*
1013  * Flush current->bio_list when the target map method blocks.
1014  * This fixes deadlocks in snapshot and possibly in other targets.
1015  */
1016 struct dm_offload {
1017 	struct blk_plug plug;
1018 	struct blk_plug_cb cb;
1019 };
1020 
1021 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1022 {
1023 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1024 	struct bio_list list;
1025 	struct bio *bio;
1026 	int i;
1027 
1028 	INIT_LIST_HEAD(&o->cb.list);
1029 
1030 	if (unlikely(!current->bio_list))
1031 		return;
1032 
1033 	for (i = 0; i < 2; i++) {
1034 		list = current->bio_list[i];
1035 		bio_list_init(&current->bio_list[i]);
1036 
1037 		while ((bio = bio_list_pop(&list))) {
1038 			struct bio_set *bs = bio->bi_pool;
1039 			if (unlikely(!bs) || bs == fs_bio_set) {
1040 				bio_list_add(&current->bio_list[i], bio);
1041 				continue;
1042 			}
1043 
1044 			spin_lock(&bs->rescue_lock);
1045 			bio_list_add(&bs->rescue_list, bio);
1046 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1047 			spin_unlock(&bs->rescue_lock);
1048 		}
1049 	}
1050 }
1051 
1052 static void dm_offload_start(struct dm_offload *o)
1053 {
1054 	blk_start_plug(&o->plug);
1055 	o->cb.callback = flush_current_bio_list;
1056 	list_add(&o->cb.list, &current->plug->cb_list);
1057 }
1058 
1059 static void dm_offload_end(struct dm_offload *o)
1060 {
1061 	list_del(&o->cb.list);
1062 	blk_finish_plug(&o->plug);
1063 }
1064 
1065 static void __map_bio(struct dm_target_io *tio)
1066 {
1067 	int r;
1068 	sector_t sector;
1069 	struct dm_offload o;
1070 	struct bio *clone = &tio->clone;
1071 	struct dm_target *ti = tio->ti;
1072 
1073 	clone->bi_end_io = clone_endio;
1074 
1075 	/*
1076 	 * Map the clone.  If r == 0 we don't need to do
1077 	 * anything, the target has assumed ownership of
1078 	 * this io.
1079 	 */
1080 	atomic_inc(&tio->io->io_count);
1081 	sector = clone->bi_iter.bi_sector;
1082 
1083 	dm_offload_start(&o);
1084 	r = ti->type->map(ti, clone);
1085 	dm_offload_end(&o);
1086 
1087 	if (r == DM_MAPIO_REMAPPED) {
1088 		/* the bio has been remapped so dispatch it */
1089 
1090 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1091 				      tio->io->bio->bi_bdev->bd_dev, sector);
1092 
1093 		generic_make_request(clone);
1094 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1095 		/* error the io and bail out, or requeue it if needed */
1096 		dec_pending(tio->io, r);
1097 		free_tio(tio);
1098 	} else if (r != DM_MAPIO_SUBMITTED) {
1099 		DMWARN("unimplemented target map return value: %d", r);
1100 		BUG();
1101 	}
1102 }
1103 
1104 struct clone_info {
1105 	struct mapped_device *md;
1106 	struct dm_table *map;
1107 	struct bio *bio;
1108 	struct dm_io *io;
1109 	sector_t sector;
1110 	unsigned sector_count;
1111 };
1112 
1113 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1114 {
1115 	bio->bi_iter.bi_sector = sector;
1116 	bio->bi_iter.bi_size = to_bytes(len);
1117 }
1118 
1119 /*
1120  * Creates a bio that consists of range of complete bvecs.
1121  */
1122 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1123 		     sector_t sector, unsigned len)
1124 {
1125 	struct bio *clone = &tio->clone;
1126 
1127 	__bio_clone_fast(clone, bio);
1128 
1129 	if (unlikely(bio_integrity(bio) != NULL)) {
1130 		int r;
1131 
1132 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1133 			     !dm_target_passes_integrity(tio->ti->type))) {
1134 			DMWARN("%s: the target %s doesn't support integrity data.",
1135 				dm_device_name(tio->io->md),
1136 				tio->ti->type->name);
1137 			return -EIO;
1138 		}
1139 
1140 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1141 		if (r < 0)
1142 			return r;
1143 	}
1144 
1145 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1146 	clone->bi_iter.bi_size = to_bytes(len);
1147 
1148 	if (unlikely(bio_integrity(bio) != NULL))
1149 		bio_integrity_trim(clone, 0, len);
1150 
1151 	return 0;
1152 }
1153 
1154 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1155 				      struct dm_target *ti,
1156 				      unsigned target_bio_nr)
1157 {
1158 	struct dm_target_io *tio;
1159 	struct bio *clone;
1160 
1161 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1162 	tio = container_of(clone, struct dm_target_io, clone);
1163 
1164 	tio->io = ci->io;
1165 	tio->ti = ti;
1166 	tio->target_bio_nr = target_bio_nr;
1167 
1168 	return tio;
1169 }
1170 
1171 static void __clone_and_map_simple_bio(struct clone_info *ci,
1172 				       struct dm_target *ti,
1173 				       unsigned target_bio_nr, unsigned *len)
1174 {
1175 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1176 	struct bio *clone = &tio->clone;
1177 
1178 	tio->len_ptr = len;
1179 
1180 	__bio_clone_fast(clone, ci->bio);
1181 	if (len)
1182 		bio_setup_sector(clone, ci->sector, *len);
1183 
1184 	__map_bio(tio);
1185 }
1186 
1187 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1188 				  unsigned num_bios, unsigned *len)
1189 {
1190 	unsigned target_bio_nr;
1191 
1192 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1193 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1194 }
1195 
1196 static int __send_empty_flush(struct clone_info *ci)
1197 {
1198 	unsigned target_nr = 0;
1199 	struct dm_target *ti;
1200 
1201 	BUG_ON(bio_has_data(ci->bio));
1202 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1203 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1204 
1205 	return 0;
1206 }
1207 
1208 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1209 				     sector_t sector, unsigned *len)
1210 {
1211 	struct bio *bio = ci->bio;
1212 	struct dm_target_io *tio;
1213 	unsigned target_bio_nr;
1214 	unsigned num_target_bios = 1;
1215 	int r = 0;
1216 
1217 	/*
1218 	 * Does the target want to receive duplicate copies of the bio?
1219 	 */
1220 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1221 		num_target_bios = ti->num_write_bios(ti, bio);
1222 
1223 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1224 		tio = alloc_tio(ci, ti, target_bio_nr);
1225 		tio->len_ptr = len;
1226 		r = clone_bio(tio, bio, sector, *len);
1227 		if (r < 0) {
1228 			free_tio(tio);
1229 			break;
1230 		}
1231 		__map_bio(tio);
1232 	}
1233 
1234 	return r;
1235 }
1236 
1237 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1238 
1239 static unsigned get_num_discard_bios(struct dm_target *ti)
1240 {
1241 	return ti->num_discard_bios;
1242 }
1243 
1244 static unsigned get_num_write_same_bios(struct dm_target *ti)
1245 {
1246 	return ti->num_write_same_bios;
1247 }
1248 
1249 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1250 {
1251 	return ti->num_write_zeroes_bios;
1252 }
1253 
1254 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1255 
1256 static bool is_split_required_for_discard(struct dm_target *ti)
1257 {
1258 	return ti->split_discard_bios;
1259 }
1260 
1261 static int __send_changing_extent_only(struct clone_info *ci,
1262 				       get_num_bios_fn get_num_bios,
1263 				       is_split_required_fn is_split_required)
1264 {
1265 	struct dm_target *ti;
1266 	unsigned len;
1267 	unsigned num_bios;
1268 
1269 	do {
1270 		ti = dm_table_find_target(ci->map, ci->sector);
1271 		if (!dm_target_is_valid(ti))
1272 			return -EIO;
1273 
1274 		/*
1275 		 * Even though the device advertised support for this type of
1276 		 * request, that does not mean every target supports it, and
1277 		 * reconfiguration might also have changed that since the
1278 		 * check was performed.
1279 		 */
1280 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1281 		if (!num_bios)
1282 			return -EOPNOTSUPP;
1283 
1284 		if (is_split_required && !is_split_required(ti))
1285 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1286 		else
1287 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1288 
1289 		__send_duplicate_bios(ci, ti, num_bios, &len);
1290 
1291 		ci->sector += len;
1292 	} while (ci->sector_count -= len);
1293 
1294 	return 0;
1295 }
1296 
1297 static int __send_discard(struct clone_info *ci)
1298 {
1299 	return __send_changing_extent_only(ci, get_num_discard_bios,
1300 					   is_split_required_for_discard);
1301 }
1302 
1303 static int __send_write_same(struct clone_info *ci)
1304 {
1305 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1306 }
1307 
1308 static int __send_write_zeroes(struct clone_info *ci)
1309 {
1310 	return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1311 }
1312 
1313 /*
1314  * Select the correct strategy for processing a non-flush bio.
1315  */
1316 static int __split_and_process_non_flush(struct clone_info *ci)
1317 {
1318 	struct bio *bio = ci->bio;
1319 	struct dm_target *ti;
1320 	unsigned len;
1321 	int r;
1322 
1323 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1324 		return __send_discard(ci);
1325 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1326 		return __send_write_same(ci);
1327 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1328 		return __send_write_zeroes(ci);
1329 
1330 	ti = dm_table_find_target(ci->map, ci->sector);
1331 	if (!dm_target_is_valid(ti))
1332 		return -EIO;
1333 
1334 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1335 
1336 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1337 	if (r < 0)
1338 		return r;
1339 
1340 	ci->sector += len;
1341 	ci->sector_count -= len;
1342 
1343 	return 0;
1344 }
1345 
1346 /*
1347  * Entry point to split a bio into clones and submit them to the targets.
1348  */
1349 static void __split_and_process_bio(struct mapped_device *md,
1350 				    struct dm_table *map, struct bio *bio)
1351 {
1352 	struct clone_info ci;
1353 	int error = 0;
1354 
1355 	if (unlikely(!map)) {
1356 		bio_io_error(bio);
1357 		return;
1358 	}
1359 
1360 	ci.map = map;
1361 	ci.md = md;
1362 	ci.io = alloc_io(md);
1363 	ci.io->error = 0;
1364 	atomic_set(&ci.io->io_count, 1);
1365 	ci.io->bio = bio;
1366 	ci.io->md = md;
1367 	spin_lock_init(&ci.io->endio_lock);
1368 	ci.sector = bio->bi_iter.bi_sector;
1369 
1370 	start_io_acct(ci.io);
1371 
1372 	if (bio->bi_opf & REQ_PREFLUSH) {
1373 		ci.bio = &ci.md->flush_bio;
1374 		ci.sector_count = 0;
1375 		error = __send_empty_flush(&ci);
1376 		/* dec_pending submits any data associated with flush */
1377 	} else {
1378 		ci.bio = bio;
1379 		ci.sector_count = bio_sectors(bio);
1380 		while (ci.sector_count && !error)
1381 			error = __split_and_process_non_flush(&ci);
1382 	}
1383 
1384 	/* drop the extra reference count */
1385 	dec_pending(ci.io, error);
1386 }
1387 /*-----------------------------------------------------------------
1388  * CRUD END
1389  *---------------------------------------------------------------*/
1390 
1391 /*
1392  * The request function that just remaps the bio built up by
1393  * dm_merge_bvec.
1394  */
1395 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1396 {
1397 	int rw = bio_data_dir(bio);
1398 	struct mapped_device *md = q->queuedata;
1399 	int srcu_idx;
1400 	struct dm_table *map;
1401 
1402 	map = dm_get_live_table(md, &srcu_idx);
1403 
1404 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1405 
1406 	/* if we're suspended, we have to queue this io for later */
1407 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1408 		dm_put_live_table(md, srcu_idx);
1409 
1410 		if (!(bio->bi_opf & REQ_RAHEAD))
1411 			queue_io(md, bio);
1412 		else
1413 			bio_io_error(bio);
1414 		return BLK_QC_T_NONE;
1415 	}
1416 
1417 	__split_and_process_bio(md, map, bio);
1418 	dm_put_live_table(md, srcu_idx);
1419 	return BLK_QC_T_NONE;
1420 }
1421 
1422 static int dm_any_congested(void *congested_data, int bdi_bits)
1423 {
1424 	int r = bdi_bits;
1425 	struct mapped_device *md = congested_data;
1426 	struct dm_table *map;
1427 
1428 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1429 		if (dm_request_based(md)) {
1430 			/*
1431 			 * With request-based DM we only need to check the
1432 			 * top-level queue for congestion.
1433 			 */
1434 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1435 		} else {
1436 			map = dm_get_live_table_fast(md);
1437 			if (map)
1438 				r = dm_table_any_congested(map, bdi_bits);
1439 			dm_put_live_table_fast(md);
1440 		}
1441 	}
1442 
1443 	return r;
1444 }
1445 
1446 /*-----------------------------------------------------------------
1447  * An IDR is used to keep track of allocated minor numbers.
1448  *---------------------------------------------------------------*/
1449 static void free_minor(int minor)
1450 {
1451 	spin_lock(&_minor_lock);
1452 	idr_remove(&_minor_idr, minor);
1453 	spin_unlock(&_minor_lock);
1454 }
1455 
1456 /*
1457  * See if the device with a specific minor # is free.
1458  */
1459 static int specific_minor(int minor)
1460 {
1461 	int r;
1462 
1463 	if (minor >= (1 << MINORBITS))
1464 		return -EINVAL;
1465 
1466 	idr_preload(GFP_KERNEL);
1467 	spin_lock(&_minor_lock);
1468 
1469 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1470 
1471 	spin_unlock(&_minor_lock);
1472 	idr_preload_end();
1473 	if (r < 0)
1474 		return r == -ENOSPC ? -EBUSY : r;
1475 	return 0;
1476 }
1477 
1478 static int next_free_minor(int *minor)
1479 {
1480 	int r;
1481 
1482 	idr_preload(GFP_KERNEL);
1483 	spin_lock(&_minor_lock);
1484 
1485 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1486 
1487 	spin_unlock(&_minor_lock);
1488 	idr_preload_end();
1489 	if (r < 0)
1490 		return r;
1491 	*minor = r;
1492 	return 0;
1493 }
1494 
1495 static const struct block_device_operations dm_blk_dops;
1496 static const struct dax_operations dm_dax_ops;
1497 
1498 static void dm_wq_work(struct work_struct *work);
1499 
1500 void dm_init_md_queue(struct mapped_device *md)
1501 {
1502 	/*
1503 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1504 	 * devices.  The type of this dm device may not have been decided yet.
1505 	 * The type is decided at the first table loading time.
1506 	 * To prevent problematic device stacking, clear the queue flag
1507 	 * for request stacking support until then.
1508 	 *
1509 	 * This queue is new, so no concurrency on the queue_flags.
1510 	 */
1511 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1512 
1513 	/*
1514 	 * Initialize data that will only be used by a non-blk-mq DM queue
1515 	 * - must do so here (in alloc_dev callchain) before queue is used
1516 	 */
1517 	md->queue->queuedata = md;
1518 	md->queue->backing_dev_info->congested_data = md;
1519 }
1520 
1521 void dm_init_normal_md_queue(struct mapped_device *md)
1522 {
1523 	md->use_blk_mq = false;
1524 	dm_init_md_queue(md);
1525 
1526 	/*
1527 	 * Initialize aspects of queue that aren't relevant for blk-mq
1528 	 */
1529 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1530 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1531 }
1532 
1533 static void cleanup_mapped_device(struct mapped_device *md)
1534 {
1535 	if (md->wq)
1536 		destroy_workqueue(md->wq);
1537 	if (md->kworker_task)
1538 		kthread_stop(md->kworker_task);
1539 	mempool_destroy(md->io_pool);
1540 	if (md->bs)
1541 		bioset_free(md->bs);
1542 
1543 	if (md->dax_dev) {
1544 		kill_dax(md->dax_dev);
1545 		put_dax(md->dax_dev);
1546 		md->dax_dev = NULL;
1547 	}
1548 
1549 	if (md->disk) {
1550 		spin_lock(&_minor_lock);
1551 		md->disk->private_data = NULL;
1552 		spin_unlock(&_minor_lock);
1553 		del_gendisk(md->disk);
1554 		put_disk(md->disk);
1555 	}
1556 
1557 	if (md->queue)
1558 		blk_cleanup_queue(md->queue);
1559 
1560 	cleanup_srcu_struct(&md->io_barrier);
1561 
1562 	if (md->bdev) {
1563 		bdput(md->bdev);
1564 		md->bdev = NULL;
1565 	}
1566 
1567 	dm_mq_cleanup_mapped_device(md);
1568 }
1569 
1570 /*
1571  * Allocate and initialise a blank device with a given minor.
1572  */
1573 static struct mapped_device *alloc_dev(int minor)
1574 {
1575 	int r, numa_node_id = dm_get_numa_node();
1576 	struct dax_device *dax_dev;
1577 	struct mapped_device *md;
1578 	void *old_md;
1579 
1580 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1581 	if (!md) {
1582 		DMWARN("unable to allocate device, out of memory.");
1583 		return NULL;
1584 	}
1585 
1586 	if (!try_module_get(THIS_MODULE))
1587 		goto bad_module_get;
1588 
1589 	/* get a minor number for the dev */
1590 	if (minor == DM_ANY_MINOR)
1591 		r = next_free_minor(&minor);
1592 	else
1593 		r = specific_minor(minor);
1594 	if (r < 0)
1595 		goto bad_minor;
1596 
1597 	r = init_srcu_struct(&md->io_barrier);
1598 	if (r < 0)
1599 		goto bad_io_barrier;
1600 
1601 	md->numa_node_id = numa_node_id;
1602 	md->use_blk_mq = dm_use_blk_mq_default();
1603 	md->init_tio_pdu = false;
1604 	md->type = DM_TYPE_NONE;
1605 	mutex_init(&md->suspend_lock);
1606 	mutex_init(&md->type_lock);
1607 	mutex_init(&md->table_devices_lock);
1608 	spin_lock_init(&md->deferred_lock);
1609 	atomic_set(&md->holders, 1);
1610 	atomic_set(&md->open_count, 0);
1611 	atomic_set(&md->event_nr, 0);
1612 	atomic_set(&md->uevent_seq, 0);
1613 	INIT_LIST_HEAD(&md->uevent_list);
1614 	INIT_LIST_HEAD(&md->table_devices);
1615 	spin_lock_init(&md->uevent_lock);
1616 
1617 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1618 	if (!md->queue)
1619 		goto bad;
1620 
1621 	dm_init_md_queue(md);
1622 
1623 	md->disk = alloc_disk_node(1, numa_node_id);
1624 	if (!md->disk)
1625 		goto bad;
1626 
1627 	atomic_set(&md->pending[0], 0);
1628 	atomic_set(&md->pending[1], 0);
1629 	init_waitqueue_head(&md->wait);
1630 	INIT_WORK(&md->work, dm_wq_work);
1631 	init_waitqueue_head(&md->eventq);
1632 	init_completion(&md->kobj_holder.completion);
1633 	md->kworker_task = NULL;
1634 
1635 	md->disk->major = _major;
1636 	md->disk->first_minor = minor;
1637 	md->disk->fops = &dm_blk_dops;
1638 	md->disk->queue = md->queue;
1639 	md->disk->private_data = md;
1640 	sprintf(md->disk->disk_name, "dm-%d", minor);
1641 
1642 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1643 	if (!dax_dev)
1644 		goto bad;
1645 	md->dax_dev = dax_dev;
1646 
1647 	add_disk(md->disk);
1648 	format_dev_t(md->name, MKDEV(_major, minor));
1649 
1650 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1651 	if (!md->wq)
1652 		goto bad;
1653 
1654 	md->bdev = bdget_disk(md->disk, 0);
1655 	if (!md->bdev)
1656 		goto bad;
1657 
1658 	bio_init(&md->flush_bio, NULL, 0);
1659 	md->flush_bio.bi_bdev = md->bdev;
1660 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1661 
1662 	dm_stats_init(&md->stats);
1663 
1664 	/* Populate the mapping, nobody knows we exist yet */
1665 	spin_lock(&_minor_lock);
1666 	old_md = idr_replace(&_minor_idr, md, minor);
1667 	spin_unlock(&_minor_lock);
1668 
1669 	BUG_ON(old_md != MINOR_ALLOCED);
1670 
1671 	return md;
1672 
1673 bad:
1674 	cleanup_mapped_device(md);
1675 bad_io_barrier:
1676 	free_minor(minor);
1677 bad_minor:
1678 	module_put(THIS_MODULE);
1679 bad_module_get:
1680 	kfree(md);
1681 	return NULL;
1682 }
1683 
1684 static void unlock_fs(struct mapped_device *md);
1685 
1686 static void free_dev(struct mapped_device *md)
1687 {
1688 	int minor = MINOR(disk_devt(md->disk));
1689 
1690 	unlock_fs(md);
1691 
1692 	cleanup_mapped_device(md);
1693 
1694 	free_table_devices(&md->table_devices);
1695 	dm_stats_cleanup(&md->stats);
1696 	free_minor(minor);
1697 
1698 	module_put(THIS_MODULE);
1699 	kfree(md);
1700 }
1701 
1702 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1703 {
1704 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1705 
1706 	if (md->bs) {
1707 		/* The md already has necessary mempools. */
1708 		if (dm_table_bio_based(t)) {
1709 			/*
1710 			 * Reload bioset because front_pad may have changed
1711 			 * because a different table was loaded.
1712 			 */
1713 			bioset_free(md->bs);
1714 			md->bs = p->bs;
1715 			p->bs = NULL;
1716 		}
1717 		/*
1718 		 * There's no need to reload with request-based dm
1719 		 * because the size of front_pad doesn't change.
1720 		 * Note for future: If you are to reload bioset,
1721 		 * prep-ed requests in the queue may refer
1722 		 * to bio from the old bioset, so you must walk
1723 		 * through the queue to unprep.
1724 		 */
1725 		goto out;
1726 	}
1727 
1728 	BUG_ON(!p || md->io_pool || md->bs);
1729 
1730 	md->io_pool = p->io_pool;
1731 	p->io_pool = NULL;
1732 	md->bs = p->bs;
1733 	p->bs = NULL;
1734 
1735 out:
1736 	/* mempool bind completed, no longer need any mempools in the table */
1737 	dm_table_free_md_mempools(t);
1738 }
1739 
1740 /*
1741  * Bind a table to the device.
1742  */
1743 static void event_callback(void *context)
1744 {
1745 	unsigned long flags;
1746 	LIST_HEAD(uevents);
1747 	struct mapped_device *md = (struct mapped_device *) context;
1748 
1749 	spin_lock_irqsave(&md->uevent_lock, flags);
1750 	list_splice_init(&md->uevent_list, &uevents);
1751 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1752 
1753 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1754 
1755 	atomic_inc(&md->event_nr);
1756 	wake_up(&md->eventq);
1757 }
1758 
1759 /*
1760  * Protected by md->suspend_lock obtained by dm_swap_table().
1761  */
1762 static void __set_size(struct mapped_device *md, sector_t size)
1763 {
1764 	lockdep_assert_held(&md->suspend_lock);
1765 
1766 	set_capacity(md->disk, size);
1767 
1768 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1769 }
1770 
1771 /*
1772  * Returns old map, which caller must destroy.
1773  */
1774 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1775 			       struct queue_limits *limits)
1776 {
1777 	struct dm_table *old_map;
1778 	struct request_queue *q = md->queue;
1779 	sector_t size;
1780 
1781 	lockdep_assert_held(&md->suspend_lock);
1782 
1783 	size = dm_table_get_size(t);
1784 
1785 	/*
1786 	 * Wipe any geometry if the size of the table changed.
1787 	 */
1788 	if (size != dm_get_size(md))
1789 		memset(&md->geometry, 0, sizeof(md->geometry));
1790 
1791 	__set_size(md, size);
1792 
1793 	dm_table_event_callback(t, event_callback, md);
1794 
1795 	/*
1796 	 * The queue hasn't been stopped yet, if the old table type wasn't
1797 	 * for request-based during suspension.  So stop it to prevent
1798 	 * I/O mapping before resume.
1799 	 * This must be done before setting the queue restrictions,
1800 	 * because request-based dm may be run just after the setting.
1801 	 */
1802 	if (dm_table_request_based(t)) {
1803 		dm_stop_queue(q);
1804 		/*
1805 		 * Leverage the fact that request-based DM targets are
1806 		 * immutable singletons and establish md->immutable_target
1807 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1808 		 */
1809 		md->immutable_target = dm_table_get_immutable_target(t);
1810 	}
1811 
1812 	__bind_mempools(md, t);
1813 
1814 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1815 	rcu_assign_pointer(md->map, (void *)t);
1816 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1817 
1818 	dm_table_set_restrictions(t, q, limits);
1819 	if (old_map)
1820 		dm_sync_table(md);
1821 
1822 	return old_map;
1823 }
1824 
1825 /*
1826  * Returns unbound table for the caller to free.
1827  */
1828 static struct dm_table *__unbind(struct mapped_device *md)
1829 {
1830 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1831 
1832 	if (!map)
1833 		return NULL;
1834 
1835 	dm_table_event_callback(map, NULL, NULL);
1836 	RCU_INIT_POINTER(md->map, NULL);
1837 	dm_sync_table(md);
1838 
1839 	return map;
1840 }
1841 
1842 /*
1843  * Constructor for a new device.
1844  */
1845 int dm_create(int minor, struct mapped_device **result)
1846 {
1847 	struct mapped_device *md;
1848 
1849 	md = alloc_dev(minor);
1850 	if (!md)
1851 		return -ENXIO;
1852 
1853 	dm_sysfs_init(md);
1854 
1855 	*result = md;
1856 	return 0;
1857 }
1858 
1859 /*
1860  * Functions to manage md->type.
1861  * All are required to hold md->type_lock.
1862  */
1863 void dm_lock_md_type(struct mapped_device *md)
1864 {
1865 	mutex_lock(&md->type_lock);
1866 }
1867 
1868 void dm_unlock_md_type(struct mapped_device *md)
1869 {
1870 	mutex_unlock(&md->type_lock);
1871 }
1872 
1873 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1874 {
1875 	BUG_ON(!mutex_is_locked(&md->type_lock));
1876 	md->type = type;
1877 }
1878 
1879 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1880 {
1881 	return md->type;
1882 }
1883 
1884 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1885 {
1886 	return md->immutable_target_type;
1887 }
1888 
1889 /*
1890  * The queue_limits are only valid as long as you have a reference
1891  * count on 'md'.
1892  */
1893 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1894 {
1895 	BUG_ON(!atomic_read(&md->holders));
1896 	return &md->queue->limits;
1897 }
1898 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1899 
1900 /*
1901  * Setup the DM device's queue based on md's type
1902  */
1903 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1904 {
1905 	int r;
1906 	enum dm_queue_mode type = dm_get_md_type(md);
1907 
1908 	switch (type) {
1909 	case DM_TYPE_REQUEST_BASED:
1910 		r = dm_old_init_request_queue(md, t);
1911 		if (r) {
1912 			DMERR("Cannot initialize queue for request-based mapped device");
1913 			return r;
1914 		}
1915 		break;
1916 	case DM_TYPE_MQ_REQUEST_BASED:
1917 		r = dm_mq_init_request_queue(md, t);
1918 		if (r) {
1919 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1920 			return r;
1921 		}
1922 		break;
1923 	case DM_TYPE_BIO_BASED:
1924 	case DM_TYPE_DAX_BIO_BASED:
1925 		dm_init_normal_md_queue(md);
1926 		blk_queue_make_request(md->queue, dm_make_request);
1927 		/*
1928 		 * DM handles splitting bios as needed.  Free the bio_split bioset
1929 		 * since it won't be used (saves 1 process per bio-based DM device).
1930 		 */
1931 		bioset_free(md->queue->bio_split);
1932 		md->queue->bio_split = NULL;
1933 
1934 		if (type == DM_TYPE_DAX_BIO_BASED)
1935 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1936 		break;
1937 	case DM_TYPE_NONE:
1938 		WARN_ON_ONCE(true);
1939 		break;
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 struct mapped_device *dm_get_md(dev_t dev)
1946 {
1947 	struct mapped_device *md;
1948 	unsigned minor = MINOR(dev);
1949 
1950 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1951 		return NULL;
1952 
1953 	spin_lock(&_minor_lock);
1954 
1955 	md = idr_find(&_minor_idr, minor);
1956 	if (md) {
1957 		if ((md == MINOR_ALLOCED ||
1958 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
1959 		     dm_deleting_md(md) ||
1960 		     test_bit(DMF_FREEING, &md->flags))) {
1961 			md = NULL;
1962 			goto out;
1963 		}
1964 		dm_get(md);
1965 	}
1966 
1967 out:
1968 	spin_unlock(&_minor_lock);
1969 
1970 	return md;
1971 }
1972 EXPORT_SYMBOL_GPL(dm_get_md);
1973 
1974 void *dm_get_mdptr(struct mapped_device *md)
1975 {
1976 	return md->interface_ptr;
1977 }
1978 
1979 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1980 {
1981 	md->interface_ptr = ptr;
1982 }
1983 
1984 void dm_get(struct mapped_device *md)
1985 {
1986 	atomic_inc(&md->holders);
1987 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1988 }
1989 
1990 int dm_hold(struct mapped_device *md)
1991 {
1992 	spin_lock(&_minor_lock);
1993 	if (test_bit(DMF_FREEING, &md->flags)) {
1994 		spin_unlock(&_minor_lock);
1995 		return -EBUSY;
1996 	}
1997 	dm_get(md);
1998 	spin_unlock(&_minor_lock);
1999 	return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(dm_hold);
2002 
2003 const char *dm_device_name(struct mapped_device *md)
2004 {
2005 	return md->name;
2006 }
2007 EXPORT_SYMBOL_GPL(dm_device_name);
2008 
2009 static void __dm_destroy(struct mapped_device *md, bool wait)
2010 {
2011 	struct request_queue *q = dm_get_md_queue(md);
2012 	struct dm_table *map;
2013 	int srcu_idx;
2014 
2015 	might_sleep();
2016 
2017 	spin_lock(&_minor_lock);
2018 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2019 	set_bit(DMF_FREEING, &md->flags);
2020 	spin_unlock(&_minor_lock);
2021 
2022 	blk_set_queue_dying(q);
2023 
2024 	if (dm_request_based(md) && md->kworker_task)
2025 		kthread_flush_worker(&md->kworker);
2026 
2027 	/*
2028 	 * Take suspend_lock so that presuspend and postsuspend methods
2029 	 * do not race with internal suspend.
2030 	 */
2031 	mutex_lock(&md->suspend_lock);
2032 	map = dm_get_live_table(md, &srcu_idx);
2033 	if (!dm_suspended_md(md)) {
2034 		dm_table_presuspend_targets(map);
2035 		dm_table_postsuspend_targets(map);
2036 	}
2037 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2038 	dm_put_live_table(md, srcu_idx);
2039 	mutex_unlock(&md->suspend_lock);
2040 
2041 	/*
2042 	 * Rare, but there may be I/O requests still going to complete,
2043 	 * for example.  Wait for all references to disappear.
2044 	 * No one should increment the reference count of the mapped_device,
2045 	 * after the mapped_device state becomes DMF_FREEING.
2046 	 */
2047 	if (wait)
2048 		while (atomic_read(&md->holders))
2049 			msleep(1);
2050 	else if (atomic_read(&md->holders))
2051 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2052 		       dm_device_name(md), atomic_read(&md->holders));
2053 
2054 	dm_sysfs_exit(md);
2055 	dm_table_destroy(__unbind(md));
2056 	free_dev(md);
2057 }
2058 
2059 void dm_destroy(struct mapped_device *md)
2060 {
2061 	__dm_destroy(md, true);
2062 }
2063 
2064 void dm_destroy_immediate(struct mapped_device *md)
2065 {
2066 	__dm_destroy(md, false);
2067 }
2068 
2069 void dm_put(struct mapped_device *md)
2070 {
2071 	atomic_dec(&md->holders);
2072 }
2073 EXPORT_SYMBOL_GPL(dm_put);
2074 
2075 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2076 {
2077 	int r = 0;
2078 	DEFINE_WAIT(wait);
2079 
2080 	while (1) {
2081 		prepare_to_wait(&md->wait, &wait, task_state);
2082 
2083 		if (!md_in_flight(md))
2084 			break;
2085 
2086 		if (signal_pending_state(task_state, current)) {
2087 			r = -EINTR;
2088 			break;
2089 		}
2090 
2091 		io_schedule();
2092 	}
2093 	finish_wait(&md->wait, &wait);
2094 
2095 	return r;
2096 }
2097 
2098 /*
2099  * Process the deferred bios
2100  */
2101 static void dm_wq_work(struct work_struct *work)
2102 {
2103 	struct mapped_device *md = container_of(work, struct mapped_device,
2104 						work);
2105 	struct bio *c;
2106 	int srcu_idx;
2107 	struct dm_table *map;
2108 
2109 	map = dm_get_live_table(md, &srcu_idx);
2110 
2111 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2112 		spin_lock_irq(&md->deferred_lock);
2113 		c = bio_list_pop(&md->deferred);
2114 		spin_unlock_irq(&md->deferred_lock);
2115 
2116 		if (!c)
2117 			break;
2118 
2119 		if (dm_request_based(md))
2120 			generic_make_request(c);
2121 		else
2122 			__split_and_process_bio(md, map, c);
2123 	}
2124 
2125 	dm_put_live_table(md, srcu_idx);
2126 }
2127 
2128 static void dm_queue_flush(struct mapped_device *md)
2129 {
2130 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2131 	smp_mb__after_atomic();
2132 	queue_work(md->wq, &md->work);
2133 }
2134 
2135 /*
2136  * Swap in a new table, returning the old one for the caller to destroy.
2137  */
2138 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2139 {
2140 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2141 	struct queue_limits limits;
2142 	int r;
2143 
2144 	mutex_lock(&md->suspend_lock);
2145 
2146 	/* device must be suspended */
2147 	if (!dm_suspended_md(md))
2148 		goto out;
2149 
2150 	/*
2151 	 * If the new table has no data devices, retain the existing limits.
2152 	 * This helps multipath with queue_if_no_path if all paths disappear,
2153 	 * then new I/O is queued based on these limits, and then some paths
2154 	 * reappear.
2155 	 */
2156 	if (dm_table_has_no_data_devices(table)) {
2157 		live_map = dm_get_live_table_fast(md);
2158 		if (live_map)
2159 			limits = md->queue->limits;
2160 		dm_put_live_table_fast(md);
2161 	}
2162 
2163 	if (!live_map) {
2164 		r = dm_calculate_queue_limits(table, &limits);
2165 		if (r) {
2166 			map = ERR_PTR(r);
2167 			goto out;
2168 		}
2169 	}
2170 
2171 	map = __bind(md, table, &limits);
2172 
2173 out:
2174 	mutex_unlock(&md->suspend_lock);
2175 	return map;
2176 }
2177 
2178 /*
2179  * Functions to lock and unlock any filesystem running on the
2180  * device.
2181  */
2182 static int lock_fs(struct mapped_device *md)
2183 {
2184 	int r;
2185 
2186 	WARN_ON(md->frozen_sb);
2187 
2188 	md->frozen_sb = freeze_bdev(md->bdev);
2189 	if (IS_ERR(md->frozen_sb)) {
2190 		r = PTR_ERR(md->frozen_sb);
2191 		md->frozen_sb = NULL;
2192 		return r;
2193 	}
2194 
2195 	set_bit(DMF_FROZEN, &md->flags);
2196 
2197 	return 0;
2198 }
2199 
2200 static void unlock_fs(struct mapped_device *md)
2201 {
2202 	if (!test_bit(DMF_FROZEN, &md->flags))
2203 		return;
2204 
2205 	thaw_bdev(md->bdev, md->frozen_sb);
2206 	md->frozen_sb = NULL;
2207 	clear_bit(DMF_FROZEN, &md->flags);
2208 }
2209 
2210 /*
2211  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2212  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2213  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2214  *
2215  * If __dm_suspend returns 0, the device is completely quiescent
2216  * now. There is no request-processing activity. All new requests
2217  * are being added to md->deferred list.
2218  */
2219 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2220 			unsigned suspend_flags, long task_state,
2221 			int dmf_suspended_flag)
2222 {
2223 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2224 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2225 	int r;
2226 
2227 	lockdep_assert_held(&md->suspend_lock);
2228 
2229 	/*
2230 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2231 	 * This flag is cleared before dm_suspend returns.
2232 	 */
2233 	if (noflush)
2234 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2235 	else
2236 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2237 
2238 	/*
2239 	 * This gets reverted if there's an error later and the targets
2240 	 * provide the .presuspend_undo hook.
2241 	 */
2242 	dm_table_presuspend_targets(map);
2243 
2244 	/*
2245 	 * Flush I/O to the device.
2246 	 * Any I/O submitted after lock_fs() may not be flushed.
2247 	 * noflush takes precedence over do_lockfs.
2248 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2249 	 */
2250 	if (!noflush && do_lockfs) {
2251 		r = lock_fs(md);
2252 		if (r) {
2253 			dm_table_presuspend_undo_targets(map);
2254 			return r;
2255 		}
2256 	}
2257 
2258 	/*
2259 	 * Here we must make sure that no processes are submitting requests
2260 	 * to target drivers i.e. no one may be executing
2261 	 * __split_and_process_bio. This is called from dm_request and
2262 	 * dm_wq_work.
2263 	 *
2264 	 * To get all processes out of __split_and_process_bio in dm_request,
2265 	 * we take the write lock. To prevent any process from reentering
2266 	 * __split_and_process_bio from dm_request and quiesce the thread
2267 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2268 	 * flush_workqueue(md->wq).
2269 	 */
2270 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2271 	if (map)
2272 		synchronize_srcu(&md->io_barrier);
2273 
2274 	/*
2275 	 * Stop md->queue before flushing md->wq in case request-based
2276 	 * dm defers requests to md->wq from md->queue.
2277 	 */
2278 	if (dm_request_based(md)) {
2279 		dm_stop_queue(md->queue);
2280 		if (md->kworker_task)
2281 			kthread_flush_worker(&md->kworker);
2282 	}
2283 
2284 	flush_workqueue(md->wq);
2285 
2286 	/*
2287 	 * At this point no more requests are entering target request routines.
2288 	 * We call dm_wait_for_completion to wait for all existing requests
2289 	 * to finish.
2290 	 */
2291 	r = dm_wait_for_completion(md, task_state);
2292 	if (!r)
2293 		set_bit(dmf_suspended_flag, &md->flags);
2294 
2295 	if (noflush)
2296 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2297 	if (map)
2298 		synchronize_srcu(&md->io_barrier);
2299 
2300 	/* were we interrupted ? */
2301 	if (r < 0) {
2302 		dm_queue_flush(md);
2303 
2304 		if (dm_request_based(md))
2305 			dm_start_queue(md->queue);
2306 
2307 		unlock_fs(md);
2308 		dm_table_presuspend_undo_targets(map);
2309 		/* pushback list is already flushed, so skip flush */
2310 	}
2311 
2312 	return r;
2313 }
2314 
2315 /*
2316  * We need to be able to change a mapping table under a mounted
2317  * filesystem.  For example we might want to move some data in
2318  * the background.  Before the table can be swapped with
2319  * dm_bind_table, dm_suspend must be called to flush any in
2320  * flight bios and ensure that any further io gets deferred.
2321  */
2322 /*
2323  * Suspend mechanism in request-based dm.
2324  *
2325  * 1. Flush all I/Os by lock_fs() if needed.
2326  * 2. Stop dispatching any I/O by stopping the request_queue.
2327  * 3. Wait for all in-flight I/Os to be completed or requeued.
2328  *
2329  * To abort suspend, start the request_queue.
2330  */
2331 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2332 {
2333 	struct dm_table *map = NULL;
2334 	int r = 0;
2335 
2336 retry:
2337 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2338 
2339 	if (dm_suspended_md(md)) {
2340 		r = -EINVAL;
2341 		goto out_unlock;
2342 	}
2343 
2344 	if (dm_suspended_internally_md(md)) {
2345 		/* already internally suspended, wait for internal resume */
2346 		mutex_unlock(&md->suspend_lock);
2347 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2348 		if (r)
2349 			return r;
2350 		goto retry;
2351 	}
2352 
2353 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2354 
2355 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2356 	if (r)
2357 		goto out_unlock;
2358 
2359 	dm_table_postsuspend_targets(map);
2360 
2361 out_unlock:
2362 	mutex_unlock(&md->suspend_lock);
2363 	return r;
2364 }
2365 
2366 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2367 {
2368 	if (map) {
2369 		int r = dm_table_resume_targets(map);
2370 		if (r)
2371 			return r;
2372 	}
2373 
2374 	dm_queue_flush(md);
2375 
2376 	/*
2377 	 * Flushing deferred I/Os must be done after targets are resumed
2378 	 * so that mapping of targets can work correctly.
2379 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2380 	 */
2381 	if (dm_request_based(md))
2382 		dm_start_queue(md->queue);
2383 
2384 	unlock_fs(md);
2385 
2386 	return 0;
2387 }
2388 
2389 int dm_resume(struct mapped_device *md)
2390 {
2391 	int r;
2392 	struct dm_table *map = NULL;
2393 
2394 retry:
2395 	r = -EINVAL;
2396 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2397 
2398 	if (!dm_suspended_md(md))
2399 		goto out;
2400 
2401 	if (dm_suspended_internally_md(md)) {
2402 		/* already internally suspended, wait for internal resume */
2403 		mutex_unlock(&md->suspend_lock);
2404 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2405 		if (r)
2406 			return r;
2407 		goto retry;
2408 	}
2409 
2410 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2411 	if (!map || !dm_table_get_size(map))
2412 		goto out;
2413 
2414 	r = __dm_resume(md, map);
2415 	if (r)
2416 		goto out;
2417 
2418 	clear_bit(DMF_SUSPENDED, &md->flags);
2419 out:
2420 	mutex_unlock(&md->suspend_lock);
2421 
2422 	return r;
2423 }
2424 
2425 /*
2426  * Internal suspend/resume works like userspace-driven suspend. It waits
2427  * until all bios finish and prevents issuing new bios to the target drivers.
2428  * It may be used only from the kernel.
2429  */
2430 
2431 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2432 {
2433 	struct dm_table *map = NULL;
2434 
2435 	lockdep_assert_held(&md->suspend_lock);
2436 
2437 	if (md->internal_suspend_count++)
2438 		return; /* nested internal suspend */
2439 
2440 	if (dm_suspended_md(md)) {
2441 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2442 		return; /* nest suspend */
2443 	}
2444 
2445 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2446 
2447 	/*
2448 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2449 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2450 	 * would require changing .presuspend to return an error -- avoid this
2451 	 * until there is a need for more elaborate variants of internal suspend.
2452 	 */
2453 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2454 			    DMF_SUSPENDED_INTERNALLY);
2455 
2456 	dm_table_postsuspend_targets(map);
2457 }
2458 
2459 static void __dm_internal_resume(struct mapped_device *md)
2460 {
2461 	BUG_ON(!md->internal_suspend_count);
2462 
2463 	if (--md->internal_suspend_count)
2464 		return; /* resume from nested internal suspend */
2465 
2466 	if (dm_suspended_md(md))
2467 		goto done; /* resume from nested suspend */
2468 
2469 	/*
2470 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2471 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2472 	 */
2473 	(void) __dm_resume(md, NULL);
2474 
2475 done:
2476 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2477 	smp_mb__after_atomic();
2478 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2479 }
2480 
2481 void dm_internal_suspend_noflush(struct mapped_device *md)
2482 {
2483 	mutex_lock(&md->suspend_lock);
2484 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2485 	mutex_unlock(&md->suspend_lock);
2486 }
2487 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2488 
2489 void dm_internal_resume(struct mapped_device *md)
2490 {
2491 	mutex_lock(&md->suspend_lock);
2492 	__dm_internal_resume(md);
2493 	mutex_unlock(&md->suspend_lock);
2494 }
2495 EXPORT_SYMBOL_GPL(dm_internal_resume);
2496 
2497 /*
2498  * Fast variants of internal suspend/resume hold md->suspend_lock,
2499  * which prevents interaction with userspace-driven suspend.
2500  */
2501 
2502 void dm_internal_suspend_fast(struct mapped_device *md)
2503 {
2504 	mutex_lock(&md->suspend_lock);
2505 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2506 		return;
2507 
2508 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2509 	synchronize_srcu(&md->io_barrier);
2510 	flush_workqueue(md->wq);
2511 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2512 }
2513 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2514 
2515 void dm_internal_resume_fast(struct mapped_device *md)
2516 {
2517 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2518 		goto done;
2519 
2520 	dm_queue_flush(md);
2521 
2522 done:
2523 	mutex_unlock(&md->suspend_lock);
2524 }
2525 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2526 
2527 /*-----------------------------------------------------------------
2528  * Event notification.
2529  *---------------------------------------------------------------*/
2530 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2531 		       unsigned cookie)
2532 {
2533 	char udev_cookie[DM_COOKIE_LENGTH];
2534 	char *envp[] = { udev_cookie, NULL };
2535 
2536 	if (!cookie)
2537 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2538 	else {
2539 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2540 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2541 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2542 					  action, envp);
2543 	}
2544 }
2545 
2546 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2547 {
2548 	return atomic_add_return(1, &md->uevent_seq);
2549 }
2550 
2551 uint32_t dm_get_event_nr(struct mapped_device *md)
2552 {
2553 	return atomic_read(&md->event_nr);
2554 }
2555 
2556 int dm_wait_event(struct mapped_device *md, int event_nr)
2557 {
2558 	return wait_event_interruptible(md->eventq,
2559 			(event_nr != atomic_read(&md->event_nr)));
2560 }
2561 
2562 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2563 {
2564 	unsigned long flags;
2565 
2566 	spin_lock_irqsave(&md->uevent_lock, flags);
2567 	list_add(elist, &md->uevent_list);
2568 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2569 }
2570 
2571 /*
2572  * The gendisk is only valid as long as you have a reference
2573  * count on 'md'.
2574  */
2575 struct gendisk *dm_disk(struct mapped_device *md)
2576 {
2577 	return md->disk;
2578 }
2579 EXPORT_SYMBOL_GPL(dm_disk);
2580 
2581 struct kobject *dm_kobject(struct mapped_device *md)
2582 {
2583 	return &md->kobj_holder.kobj;
2584 }
2585 
2586 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2587 {
2588 	struct mapped_device *md;
2589 
2590 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2591 
2592 	if (test_bit(DMF_FREEING, &md->flags) ||
2593 	    dm_deleting_md(md))
2594 		return NULL;
2595 
2596 	dm_get(md);
2597 	return md;
2598 }
2599 
2600 int dm_suspended_md(struct mapped_device *md)
2601 {
2602 	return test_bit(DMF_SUSPENDED, &md->flags);
2603 }
2604 
2605 int dm_suspended_internally_md(struct mapped_device *md)
2606 {
2607 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2608 }
2609 
2610 int dm_test_deferred_remove_flag(struct mapped_device *md)
2611 {
2612 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2613 }
2614 
2615 int dm_suspended(struct dm_target *ti)
2616 {
2617 	return dm_suspended_md(dm_table_get_md(ti->table));
2618 }
2619 EXPORT_SYMBOL_GPL(dm_suspended);
2620 
2621 int dm_noflush_suspending(struct dm_target *ti)
2622 {
2623 	return __noflush_suspending(dm_table_get_md(ti->table));
2624 }
2625 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2626 
2627 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2628 					    unsigned integrity, unsigned per_io_data_size)
2629 {
2630 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2631 	unsigned int pool_size = 0;
2632 	unsigned int front_pad;
2633 
2634 	if (!pools)
2635 		return NULL;
2636 
2637 	switch (type) {
2638 	case DM_TYPE_BIO_BASED:
2639 	case DM_TYPE_DAX_BIO_BASED:
2640 		pool_size = dm_get_reserved_bio_based_ios();
2641 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2642 
2643 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2644 		if (!pools->io_pool)
2645 			goto out;
2646 		break;
2647 	case DM_TYPE_REQUEST_BASED:
2648 	case DM_TYPE_MQ_REQUEST_BASED:
2649 		pool_size = dm_get_reserved_rq_based_ios();
2650 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2651 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2652 		break;
2653 	default:
2654 		BUG();
2655 	}
2656 
2657 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
2658 	if (!pools->bs)
2659 		goto out;
2660 
2661 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2662 		goto out;
2663 
2664 	return pools;
2665 
2666 out:
2667 	dm_free_md_mempools(pools);
2668 
2669 	return NULL;
2670 }
2671 
2672 void dm_free_md_mempools(struct dm_md_mempools *pools)
2673 {
2674 	if (!pools)
2675 		return;
2676 
2677 	mempool_destroy(pools->io_pool);
2678 
2679 	if (pools->bs)
2680 		bioset_free(pools->bs);
2681 
2682 	kfree(pools);
2683 }
2684 
2685 struct dm_pr {
2686 	u64	old_key;
2687 	u64	new_key;
2688 	u32	flags;
2689 	bool	fail_early;
2690 };
2691 
2692 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2693 		      void *data)
2694 {
2695 	struct mapped_device *md = bdev->bd_disk->private_data;
2696 	struct dm_table *table;
2697 	struct dm_target *ti;
2698 	int ret = -ENOTTY, srcu_idx;
2699 
2700 	table = dm_get_live_table(md, &srcu_idx);
2701 	if (!table || !dm_table_get_size(table))
2702 		goto out;
2703 
2704 	/* We only support devices that have a single target */
2705 	if (dm_table_get_num_targets(table) != 1)
2706 		goto out;
2707 	ti = dm_table_get_target(table, 0);
2708 
2709 	ret = -EINVAL;
2710 	if (!ti->type->iterate_devices)
2711 		goto out;
2712 
2713 	ret = ti->type->iterate_devices(ti, fn, data);
2714 out:
2715 	dm_put_live_table(md, srcu_idx);
2716 	return ret;
2717 }
2718 
2719 /*
2720  * For register / unregister we need to manually call out to every path.
2721  */
2722 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2723 			    sector_t start, sector_t len, void *data)
2724 {
2725 	struct dm_pr *pr = data;
2726 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2727 
2728 	if (!ops || !ops->pr_register)
2729 		return -EOPNOTSUPP;
2730 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2731 }
2732 
2733 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2734 			  u32 flags)
2735 {
2736 	struct dm_pr pr = {
2737 		.old_key	= old_key,
2738 		.new_key	= new_key,
2739 		.flags		= flags,
2740 		.fail_early	= true,
2741 	};
2742 	int ret;
2743 
2744 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2745 	if (ret && new_key) {
2746 		/* unregister all paths if we failed to register any path */
2747 		pr.old_key = new_key;
2748 		pr.new_key = 0;
2749 		pr.flags = 0;
2750 		pr.fail_early = false;
2751 		dm_call_pr(bdev, __dm_pr_register, &pr);
2752 	}
2753 
2754 	return ret;
2755 }
2756 
2757 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2758 			 u32 flags)
2759 {
2760 	struct mapped_device *md = bdev->bd_disk->private_data;
2761 	const struct pr_ops *ops;
2762 	fmode_t mode;
2763 	int r;
2764 
2765 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2766 	if (r < 0)
2767 		return r;
2768 
2769 	ops = bdev->bd_disk->fops->pr_ops;
2770 	if (ops && ops->pr_reserve)
2771 		r = ops->pr_reserve(bdev, key, type, flags);
2772 	else
2773 		r = -EOPNOTSUPP;
2774 
2775 	bdput(bdev);
2776 	return r;
2777 }
2778 
2779 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2780 {
2781 	struct mapped_device *md = bdev->bd_disk->private_data;
2782 	const struct pr_ops *ops;
2783 	fmode_t mode;
2784 	int r;
2785 
2786 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2787 	if (r < 0)
2788 		return r;
2789 
2790 	ops = bdev->bd_disk->fops->pr_ops;
2791 	if (ops && ops->pr_release)
2792 		r = ops->pr_release(bdev, key, type);
2793 	else
2794 		r = -EOPNOTSUPP;
2795 
2796 	bdput(bdev);
2797 	return r;
2798 }
2799 
2800 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2801 			 enum pr_type type, bool abort)
2802 {
2803 	struct mapped_device *md = bdev->bd_disk->private_data;
2804 	const struct pr_ops *ops;
2805 	fmode_t mode;
2806 	int r;
2807 
2808 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2809 	if (r < 0)
2810 		return r;
2811 
2812 	ops = bdev->bd_disk->fops->pr_ops;
2813 	if (ops && ops->pr_preempt)
2814 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2815 	else
2816 		r = -EOPNOTSUPP;
2817 
2818 	bdput(bdev);
2819 	return r;
2820 }
2821 
2822 static int dm_pr_clear(struct block_device *bdev, u64 key)
2823 {
2824 	struct mapped_device *md = bdev->bd_disk->private_data;
2825 	const struct pr_ops *ops;
2826 	fmode_t mode;
2827 	int r;
2828 
2829 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2830 	if (r < 0)
2831 		return r;
2832 
2833 	ops = bdev->bd_disk->fops->pr_ops;
2834 	if (ops && ops->pr_clear)
2835 		r = ops->pr_clear(bdev, key);
2836 	else
2837 		r = -EOPNOTSUPP;
2838 
2839 	bdput(bdev);
2840 	return r;
2841 }
2842 
2843 static const struct pr_ops dm_pr_ops = {
2844 	.pr_register	= dm_pr_register,
2845 	.pr_reserve	= dm_pr_reserve,
2846 	.pr_release	= dm_pr_release,
2847 	.pr_preempt	= dm_pr_preempt,
2848 	.pr_clear	= dm_pr_clear,
2849 };
2850 
2851 static const struct block_device_operations dm_blk_dops = {
2852 	.open = dm_blk_open,
2853 	.release = dm_blk_close,
2854 	.ioctl = dm_blk_ioctl,
2855 	.getgeo = dm_blk_getgeo,
2856 	.pr_ops = &dm_pr_ops,
2857 	.owner = THIS_MODULE
2858 };
2859 
2860 static const struct dax_operations dm_dax_ops = {
2861 	.direct_access = dm_dax_direct_access,
2862 };
2863 
2864 /*
2865  * module hooks
2866  */
2867 module_init(dm_init);
2868 module_exit(dm_exit);
2869 
2870 module_param(major, uint, 0);
2871 MODULE_PARM_DESC(major, "The major number of the device mapper");
2872 
2873 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2874 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2875 
2876 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2877 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2878 
2879 MODULE_DESCRIPTION(DM_NAME " driver");
2880 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2881 MODULE_LICENSE("GPL");
2882