1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/hdreg.h> 23 #include <linux/delay.h> 24 #include <linux/wait.h> 25 #include <linux/pr.h> 26 27 #define DM_MSG_PREFIX "core" 28 29 #ifdef CONFIG_PRINTK 30 /* 31 * ratelimit state to be used in DMXXX_LIMIT(). 32 */ 33 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 34 DEFAULT_RATELIMIT_INTERVAL, 35 DEFAULT_RATELIMIT_BURST); 36 EXPORT_SYMBOL(dm_ratelimit_state); 37 #endif 38 39 /* 40 * Cookies are numeric values sent with CHANGE and REMOVE 41 * uevents while resuming, removing or renaming the device. 42 */ 43 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 44 #define DM_COOKIE_LENGTH 24 45 46 static const char *_name = DM_NAME; 47 48 static unsigned int major = 0; 49 static unsigned int _major = 0; 50 51 static DEFINE_IDR(_minor_idr); 52 53 static DEFINE_SPINLOCK(_minor_lock); 54 55 static void do_deferred_remove(struct work_struct *w); 56 57 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 58 59 static struct workqueue_struct *deferred_remove_workqueue; 60 61 /* 62 * One of these is allocated per bio. 63 */ 64 struct dm_io { 65 struct mapped_device *md; 66 int error; 67 atomic_t io_count; 68 struct bio *bio; 69 unsigned long start_time; 70 spinlock_t endio_lock; 71 struct dm_stats_aux stats_aux; 72 }; 73 74 #define MINOR_ALLOCED ((void *)-1) 75 76 /* 77 * Bits for the md->flags field. 78 */ 79 #define DMF_BLOCK_IO_FOR_SUSPEND 0 80 #define DMF_SUSPENDED 1 81 #define DMF_FROZEN 2 82 #define DMF_FREEING 3 83 #define DMF_DELETING 4 84 #define DMF_NOFLUSH_SUSPENDING 5 85 #define DMF_DEFERRED_REMOVE 6 86 #define DMF_SUSPENDED_INTERNALLY 7 87 88 #define DM_NUMA_NODE NUMA_NO_NODE 89 static int dm_numa_node = DM_NUMA_NODE; 90 91 /* 92 * For mempools pre-allocation at the table loading time. 93 */ 94 struct dm_md_mempools { 95 mempool_t *io_pool; 96 struct bio_set *bs; 97 }; 98 99 struct table_device { 100 struct list_head list; 101 atomic_t count; 102 struct dm_dev dm_dev; 103 }; 104 105 static struct kmem_cache *_io_cache; 106 static struct kmem_cache *_rq_tio_cache; 107 static struct kmem_cache *_rq_cache; 108 109 /* 110 * Bio-based DM's mempools' reserved IOs set by the user. 111 */ 112 #define RESERVED_BIO_BASED_IOS 16 113 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 114 115 static int __dm_get_module_param_int(int *module_param, int min, int max) 116 { 117 int param = ACCESS_ONCE(*module_param); 118 int modified_param = 0; 119 bool modified = true; 120 121 if (param < min) 122 modified_param = min; 123 else if (param > max) 124 modified_param = max; 125 else 126 modified = false; 127 128 if (modified) { 129 (void)cmpxchg(module_param, param, modified_param); 130 param = modified_param; 131 } 132 133 return param; 134 } 135 136 unsigned __dm_get_module_param(unsigned *module_param, 137 unsigned def, unsigned max) 138 { 139 unsigned param = ACCESS_ONCE(*module_param); 140 unsigned modified_param = 0; 141 142 if (!param) 143 modified_param = def; 144 else if (param > max) 145 modified_param = max; 146 147 if (modified_param) { 148 (void)cmpxchg(module_param, param, modified_param); 149 param = modified_param; 150 } 151 152 return param; 153 } 154 155 unsigned dm_get_reserved_bio_based_ios(void) 156 { 157 return __dm_get_module_param(&reserved_bio_based_ios, 158 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 159 } 160 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 161 162 static unsigned dm_get_numa_node(void) 163 { 164 return __dm_get_module_param_int(&dm_numa_node, 165 DM_NUMA_NODE, num_online_nodes() - 1); 166 } 167 168 static int __init local_init(void) 169 { 170 int r = -ENOMEM; 171 172 /* allocate a slab for the dm_ios */ 173 _io_cache = KMEM_CACHE(dm_io, 0); 174 if (!_io_cache) 175 return r; 176 177 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 178 if (!_rq_tio_cache) 179 goto out_free_io_cache; 180 181 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 182 __alignof__(struct request), 0, NULL); 183 if (!_rq_cache) 184 goto out_free_rq_tio_cache; 185 186 r = dm_uevent_init(); 187 if (r) 188 goto out_free_rq_cache; 189 190 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 191 if (!deferred_remove_workqueue) { 192 r = -ENOMEM; 193 goto out_uevent_exit; 194 } 195 196 _major = major; 197 r = register_blkdev(_major, _name); 198 if (r < 0) 199 goto out_free_workqueue; 200 201 if (!_major) 202 _major = r; 203 204 return 0; 205 206 out_free_workqueue: 207 destroy_workqueue(deferred_remove_workqueue); 208 out_uevent_exit: 209 dm_uevent_exit(); 210 out_free_rq_cache: 211 kmem_cache_destroy(_rq_cache); 212 out_free_rq_tio_cache: 213 kmem_cache_destroy(_rq_tio_cache); 214 out_free_io_cache: 215 kmem_cache_destroy(_io_cache); 216 217 return r; 218 } 219 220 static void local_exit(void) 221 { 222 flush_scheduled_work(); 223 destroy_workqueue(deferred_remove_workqueue); 224 225 kmem_cache_destroy(_rq_cache); 226 kmem_cache_destroy(_rq_tio_cache); 227 kmem_cache_destroy(_io_cache); 228 unregister_blkdev(_major, _name); 229 dm_uevent_exit(); 230 231 _major = 0; 232 233 DMINFO("cleaned up"); 234 } 235 236 static int (*_inits[])(void) __initdata = { 237 local_init, 238 dm_target_init, 239 dm_linear_init, 240 dm_stripe_init, 241 dm_io_init, 242 dm_kcopyd_init, 243 dm_interface_init, 244 dm_statistics_init, 245 }; 246 247 static void (*_exits[])(void) = { 248 local_exit, 249 dm_target_exit, 250 dm_linear_exit, 251 dm_stripe_exit, 252 dm_io_exit, 253 dm_kcopyd_exit, 254 dm_interface_exit, 255 dm_statistics_exit, 256 }; 257 258 static int __init dm_init(void) 259 { 260 const int count = ARRAY_SIZE(_inits); 261 262 int r, i; 263 264 for (i = 0; i < count; i++) { 265 r = _inits[i](); 266 if (r) 267 goto bad; 268 } 269 270 return 0; 271 272 bad: 273 while (i--) 274 _exits[i](); 275 276 return r; 277 } 278 279 static void __exit dm_exit(void) 280 { 281 int i = ARRAY_SIZE(_exits); 282 283 while (i--) 284 _exits[i](); 285 286 /* 287 * Should be empty by this point. 288 */ 289 idr_destroy(&_minor_idr); 290 } 291 292 /* 293 * Block device functions 294 */ 295 int dm_deleting_md(struct mapped_device *md) 296 { 297 return test_bit(DMF_DELETING, &md->flags); 298 } 299 300 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 301 { 302 struct mapped_device *md; 303 304 spin_lock(&_minor_lock); 305 306 md = bdev->bd_disk->private_data; 307 if (!md) 308 goto out; 309 310 if (test_bit(DMF_FREEING, &md->flags) || 311 dm_deleting_md(md)) { 312 md = NULL; 313 goto out; 314 } 315 316 dm_get(md); 317 atomic_inc(&md->open_count); 318 out: 319 spin_unlock(&_minor_lock); 320 321 return md ? 0 : -ENXIO; 322 } 323 324 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 325 { 326 struct mapped_device *md; 327 328 spin_lock(&_minor_lock); 329 330 md = disk->private_data; 331 if (WARN_ON(!md)) 332 goto out; 333 334 if (atomic_dec_and_test(&md->open_count) && 335 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 336 queue_work(deferred_remove_workqueue, &deferred_remove_work); 337 338 dm_put(md); 339 out: 340 spin_unlock(&_minor_lock); 341 } 342 343 int dm_open_count(struct mapped_device *md) 344 { 345 return atomic_read(&md->open_count); 346 } 347 348 /* 349 * Guarantees nothing is using the device before it's deleted. 350 */ 351 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 352 { 353 int r = 0; 354 355 spin_lock(&_minor_lock); 356 357 if (dm_open_count(md)) { 358 r = -EBUSY; 359 if (mark_deferred) 360 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 361 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 362 r = -EEXIST; 363 else 364 set_bit(DMF_DELETING, &md->flags); 365 366 spin_unlock(&_minor_lock); 367 368 return r; 369 } 370 371 int dm_cancel_deferred_remove(struct mapped_device *md) 372 { 373 int r = 0; 374 375 spin_lock(&_minor_lock); 376 377 if (test_bit(DMF_DELETING, &md->flags)) 378 r = -EBUSY; 379 else 380 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 381 382 spin_unlock(&_minor_lock); 383 384 return r; 385 } 386 387 static void do_deferred_remove(struct work_struct *w) 388 { 389 dm_deferred_remove(); 390 } 391 392 sector_t dm_get_size(struct mapped_device *md) 393 { 394 return get_capacity(md->disk); 395 } 396 397 struct request_queue *dm_get_md_queue(struct mapped_device *md) 398 { 399 return md->queue; 400 } 401 402 struct dm_stats *dm_get_stats(struct mapped_device *md) 403 { 404 return &md->stats; 405 } 406 407 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 408 { 409 struct mapped_device *md = bdev->bd_disk->private_data; 410 411 return dm_get_geometry(md, geo); 412 } 413 414 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 415 struct block_device **bdev, 416 fmode_t *mode) 417 { 418 struct dm_target *tgt; 419 struct dm_table *map; 420 int srcu_idx, r; 421 422 retry: 423 r = -ENOTTY; 424 map = dm_get_live_table(md, &srcu_idx); 425 if (!map || !dm_table_get_size(map)) 426 goto out; 427 428 /* We only support devices that have a single target */ 429 if (dm_table_get_num_targets(map) != 1) 430 goto out; 431 432 tgt = dm_table_get_target(map, 0); 433 if (!tgt->type->prepare_ioctl) 434 goto out; 435 436 if (dm_suspended_md(md)) { 437 r = -EAGAIN; 438 goto out; 439 } 440 441 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 442 if (r < 0) 443 goto out; 444 445 bdgrab(*bdev); 446 dm_put_live_table(md, srcu_idx); 447 return r; 448 449 out: 450 dm_put_live_table(md, srcu_idx); 451 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 452 msleep(10); 453 goto retry; 454 } 455 return r; 456 } 457 458 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 459 unsigned int cmd, unsigned long arg) 460 { 461 struct mapped_device *md = bdev->bd_disk->private_data; 462 int r; 463 464 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 465 if (r < 0) 466 return r; 467 468 if (r > 0) { 469 /* 470 * Target determined this ioctl is being issued against a 471 * subset of the parent bdev; require extra privileges. 472 */ 473 if (!capable(CAP_SYS_RAWIO)) { 474 DMWARN_LIMIT( 475 "%s: sending ioctl %x to DM device without required privilege.", 476 current->comm, cmd); 477 r = -ENOIOCTLCMD; 478 goto out; 479 } 480 } 481 482 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 483 out: 484 bdput(bdev); 485 return r; 486 } 487 488 static struct dm_io *alloc_io(struct mapped_device *md) 489 { 490 return mempool_alloc(md->io_pool, GFP_NOIO); 491 } 492 493 static void free_io(struct mapped_device *md, struct dm_io *io) 494 { 495 mempool_free(io, md->io_pool); 496 } 497 498 static void free_tio(struct dm_target_io *tio) 499 { 500 bio_put(&tio->clone); 501 } 502 503 int md_in_flight(struct mapped_device *md) 504 { 505 return atomic_read(&md->pending[READ]) + 506 atomic_read(&md->pending[WRITE]); 507 } 508 509 static void start_io_acct(struct dm_io *io) 510 { 511 struct mapped_device *md = io->md; 512 struct bio *bio = io->bio; 513 int cpu; 514 int rw = bio_data_dir(bio); 515 516 io->start_time = jiffies; 517 518 cpu = part_stat_lock(); 519 part_round_stats(cpu, &dm_disk(md)->part0); 520 part_stat_unlock(); 521 atomic_set(&dm_disk(md)->part0.in_flight[rw], 522 atomic_inc_return(&md->pending[rw])); 523 524 if (unlikely(dm_stats_used(&md->stats))) 525 dm_stats_account_io(&md->stats, bio_data_dir(bio), 526 bio->bi_iter.bi_sector, bio_sectors(bio), 527 false, 0, &io->stats_aux); 528 } 529 530 static void end_io_acct(struct dm_io *io) 531 { 532 struct mapped_device *md = io->md; 533 struct bio *bio = io->bio; 534 unsigned long duration = jiffies - io->start_time; 535 int pending; 536 int rw = bio_data_dir(bio); 537 538 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 539 540 if (unlikely(dm_stats_used(&md->stats))) 541 dm_stats_account_io(&md->stats, bio_data_dir(bio), 542 bio->bi_iter.bi_sector, bio_sectors(bio), 543 true, duration, &io->stats_aux); 544 545 /* 546 * After this is decremented the bio must not be touched if it is 547 * a flush. 548 */ 549 pending = atomic_dec_return(&md->pending[rw]); 550 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 551 pending += atomic_read(&md->pending[rw^0x1]); 552 553 /* nudge anyone waiting on suspend queue */ 554 if (!pending) 555 wake_up(&md->wait); 556 } 557 558 /* 559 * Add the bio to the list of deferred io. 560 */ 561 static void queue_io(struct mapped_device *md, struct bio *bio) 562 { 563 unsigned long flags; 564 565 spin_lock_irqsave(&md->deferred_lock, flags); 566 bio_list_add(&md->deferred, bio); 567 spin_unlock_irqrestore(&md->deferred_lock, flags); 568 queue_work(md->wq, &md->work); 569 } 570 571 /* 572 * Everyone (including functions in this file), should use this 573 * function to access the md->map field, and make sure they call 574 * dm_put_live_table() when finished. 575 */ 576 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 577 { 578 *srcu_idx = srcu_read_lock(&md->io_barrier); 579 580 return srcu_dereference(md->map, &md->io_barrier); 581 } 582 583 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 584 { 585 srcu_read_unlock(&md->io_barrier, srcu_idx); 586 } 587 588 void dm_sync_table(struct mapped_device *md) 589 { 590 synchronize_srcu(&md->io_barrier); 591 synchronize_rcu_expedited(); 592 } 593 594 /* 595 * A fast alternative to dm_get_live_table/dm_put_live_table. 596 * The caller must not block between these two functions. 597 */ 598 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 599 { 600 rcu_read_lock(); 601 return rcu_dereference(md->map); 602 } 603 604 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 605 { 606 rcu_read_unlock(); 607 } 608 609 /* 610 * Open a table device so we can use it as a map destination. 611 */ 612 static int open_table_device(struct table_device *td, dev_t dev, 613 struct mapped_device *md) 614 { 615 static char *_claim_ptr = "I belong to device-mapper"; 616 struct block_device *bdev; 617 618 int r; 619 620 BUG_ON(td->dm_dev.bdev); 621 622 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 623 if (IS_ERR(bdev)) 624 return PTR_ERR(bdev); 625 626 r = bd_link_disk_holder(bdev, dm_disk(md)); 627 if (r) { 628 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 629 return r; 630 } 631 632 td->dm_dev.bdev = bdev; 633 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 634 return 0; 635 } 636 637 /* 638 * Close a table device that we've been using. 639 */ 640 static void close_table_device(struct table_device *td, struct mapped_device *md) 641 { 642 if (!td->dm_dev.bdev) 643 return; 644 645 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 646 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 647 put_dax(td->dm_dev.dax_dev); 648 td->dm_dev.bdev = NULL; 649 td->dm_dev.dax_dev = NULL; 650 } 651 652 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 653 fmode_t mode) { 654 struct table_device *td; 655 656 list_for_each_entry(td, l, list) 657 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 658 return td; 659 660 return NULL; 661 } 662 663 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 664 struct dm_dev **result) { 665 int r; 666 struct table_device *td; 667 668 mutex_lock(&md->table_devices_lock); 669 td = find_table_device(&md->table_devices, dev, mode); 670 if (!td) { 671 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 672 if (!td) { 673 mutex_unlock(&md->table_devices_lock); 674 return -ENOMEM; 675 } 676 677 td->dm_dev.mode = mode; 678 td->dm_dev.bdev = NULL; 679 680 if ((r = open_table_device(td, dev, md))) { 681 mutex_unlock(&md->table_devices_lock); 682 kfree(td); 683 return r; 684 } 685 686 format_dev_t(td->dm_dev.name, dev); 687 688 atomic_set(&td->count, 0); 689 list_add(&td->list, &md->table_devices); 690 } 691 atomic_inc(&td->count); 692 mutex_unlock(&md->table_devices_lock); 693 694 *result = &td->dm_dev; 695 return 0; 696 } 697 EXPORT_SYMBOL_GPL(dm_get_table_device); 698 699 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 700 { 701 struct table_device *td = container_of(d, struct table_device, dm_dev); 702 703 mutex_lock(&md->table_devices_lock); 704 if (atomic_dec_and_test(&td->count)) { 705 close_table_device(td, md); 706 list_del(&td->list); 707 kfree(td); 708 } 709 mutex_unlock(&md->table_devices_lock); 710 } 711 EXPORT_SYMBOL(dm_put_table_device); 712 713 static void free_table_devices(struct list_head *devices) 714 { 715 struct list_head *tmp, *next; 716 717 list_for_each_safe(tmp, next, devices) { 718 struct table_device *td = list_entry(tmp, struct table_device, list); 719 720 DMWARN("dm_destroy: %s still exists with %d references", 721 td->dm_dev.name, atomic_read(&td->count)); 722 kfree(td); 723 } 724 } 725 726 /* 727 * Get the geometry associated with a dm device 728 */ 729 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 730 { 731 *geo = md->geometry; 732 733 return 0; 734 } 735 736 /* 737 * Set the geometry of a device. 738 */ 739 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 740 { 741 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 742 743 if (geo->start > sz) { 744 DMWARN("Start sector is beyond the geometry limits."); 745 return -EINVAL; 746 } 747 748 md->geometry = *geo; 749 750 return 0; 751 } 752 753 /*----------------------------------------------------------------- 754 * CRUD START: 755 * A more elegant soln is in the works that uses the queue 756 * merge fn, unfortunately there are a couple of changes to 757 * the block layer that I want to make for this. So in the 758 * interests of getting something for people to use I give 759 * you this clearly demarcated crap. 760 *---------------------------------------------------------------*/ 761 762 static int __noflush_suspending(struct mapped_device *md) 763 { 764 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 765 } 766 767 /* 768 * Decrements the number of outstanding ios that a bio has been 769 * cloned into, completing the original io if necc. 770 */ 771 static void dec_pending(struct dm_io *io, int error) 772 { 773 unsigned long flags; 774 int io_error; 775 struct bio *bio; 776 struct mapped_device *md = io->md; 777 778 /* Push-back supersedes any I/O errors */ 779 if (unlikely(error)) { 780 spin_lock_irqsave(&io->endio_lock, flags); 781 if (!(io->error > 0 && __noflush_suspending(md))) 782 io->error = error; 783 spin_unlock_irqrestore(&io->endio_lock, flags); 784 } 785 786 if (atomic_dec_and_test(&io->io_count)) { 787 if (io->error == DM_ENDIO_REQUEUE) { 788 /* 789 * Target requested pushing back the I/O. 790 */ 791 spin_lock_irqsave(&md->deferred_lock, flags); 792 if (__noflush_suspending(md)) 793 bio_list_add_head(&md->deferred, io->bio); 794 else 795 /* noflush suspend was interrupted. */ 796 io->error = -EIO; 797 spin_unlock_irqrestore(&md->deferred_lock, flags); 798 } 799 800 io_error = io->error; 801 bio = io->bio; 802 end_io_acct(io); 803 free_io(md, io); 804 805 if (io_error == DM_ENDIO_REQUEUE) 806 return; 807 808 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 809 /* 810 * Preflush done for flush with data, reissue 811 * without REQ_PREFLUSH. 812 */ 813 bio->bi_opf &= ~REQ_PREFLUSH; 814 queue_io(md, bio); 815 } else { 816 /* done with normal IO or empty flush */ 817 bio->bi_error = io_error; 818 bio_endio(bio); 819 } 820 } 821 } 822 823 void disable_write_same(struct mapped_device *md) 824 { 825 struct queue_limits *limits = dm_get_queue_limits(md); 826 827 /* device doesn't really support WRITE SAME, disable it */ 828 limits->max_write_same_sectors = 0; 829 } 830 831 void disable_write_zeroes(struct mapped_device *md) 832 { 833 struct queue_limits *limits = dm_get_queue_limits(md); 834 835 /* device doesn't really support WRITE ZEROES, disable it */ 836 limits->max_write_zeroes_sectors = 0; 837 } 838 839 static void clone_endio(struct bio *bio) 840 { 841 int error = bio->bi_error; 842 int r = error; 843 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 844 struct dm_io *io = tio->io; 845 struct mapped_device *md = tio->io->md; 846 dm_endio_fn endio = tio->ti->type->end_io; 847 848 if (endio) { 849 r = endio(tio->ti, bio, error); 850 if (r < 0 || r == DM_ENDIO_REQUEUE) 851 /* 852 * error and requeue request are handled 853 * in dec_pending(). 854 */ 855 error = r; 856 else if (r == DM_ENDIO_INCOMPLETE) 857 /* The target will handle the io */ 858 return; 859 else if (r) { 860 DMWARN("unimplemented target endio return value: %d", r); 861 BUG(); 862 } 863 } 864 865 if (unlikely(r == -EREMOTEIO)) { 866 if (bio_op(bio) == REQ_OP_WRITE_SAME && 867 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors) 868 disable_write_same(md); 869 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 870 !bdev_get_queue(bio->bi_bdev)->limits.max_write_zeroes_sectors) 871 disable_write_zeroes(md); 872 } 873 874 free_tio(tio); 875 dec_pending(io, error); 876 } 877 878 /* 879 * Return maximum size of I/O possible at the supplied sector up to the current 880 * target boundary. 881 */ 882 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 883 { 884 sector_t target_offset = dm_target_offset(ti, sector); 885 886 return ti->len - target_offset; 887 } 888 889 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 890 { 891 sector_t len = max_io_len_target_boundary(sector, ti); 892 sector_t offset, max_len; 893 894 /* 895 * Does the target need to split even further? 896 */ 897 if (ti->max_io_len) { 898 offset = dm_target_offset(ti, sector); 899 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 900 max_len = sector_div(offset, ti->max_io_len); 901 else 902 max_len = offset & (ti->max_io_len - 1); 903 max_len = ti->max_io_len - max_len; 904 905 if (len > max_len) 906 len = max_len; 907 } 908 909 return len; 910 } 911 912 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 913 { 914 if (len > UINT_MAX) { 915 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 916 (unsigned long long)len, UINT_MAX); 917 ti->error = "Maximum size of target IO is too large"; 918 return -EINVAL; 919 } 920 921 ti->max_io_len = (uint32_t) len; 922 923 return 0; 924 } 925 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 926 927 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 928 sector_t sector, int *srcu_idx) 929 { 930 struct dm_table *map; 931 struct dm_target *ti; 932 933 map = dm_get_live_table(md, srcu_idx); 934 if (!map) 935 return NULL; 936 937 ti = dm_table_find_target(map, sector); 938 if (!dm_target_is_valid(ti)) 939 return NULL; 940 941 return ti; 942 } 943 944 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 945 long nr_pages, void **kaddr, pfn_t *pfn) 946 { 947 struct mapped_device *md = dax_get_private(dax_dev); 948 sector_t sector = pgoff * PAGE_SECTORS; 949 struct dm_target *ti; 950 long len, ret = -EIO; 951 int srcu_idx; 952 953 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 954 955 if (!ti) 956 goto out; 957 if (!ti->type->direct_access) 958 goto out; 959 len = max_io_len(sector, ti) / PAGE_SECTORS; 960 if (len < 1) 961 goto out; 962 nr_pages = min(len, nr_pages); 963 if (ti->type->direct_access) 964 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 965 966 out: 967 dm_put_live_table(md, srcu_idx); 968 969 return ret; 970 } 971 972 /* 973 * A target may call dm_accept_partial_bio only from the map routine. It is 974 * allowed for all bio types except REQ_PREFLUSH. 975 * 976 * dm_accept_partial_bio informs the dm that the target only wants to process 977 * additional n_sectors sectors of the bio and the rest of the data should be 978 * sent in a next bio. 979 * 980 * A diagram that explains the arithmetics: 981 * +--------------------+---------------+-------+ 982 * | 1 | 2 | 3 | 983 * +--------------------+---------------+-------+ 984 * 985 * <-------------- *tio->len_ptr ---------------> 986 * <------- bi_size -------> 987 * <-- n_sectors --> 988 * 989 * Region 1 was already iterated over with bio_advance or similar function. 990 * (it may be empty if the target doesn't use bio_advance) 991 * Region 2 is the remaining bio size that the target wants to process. 992 * (it may be empty if region 1 is non-empty, although there is no reason 993 * to make it empty) 994 * The target requires that region 3 is to be sent in the next bio. 995 * 996 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 997 * the partially processed part (the sum of regions 1+2) must be the same for all 998 * copies of the bio. 999 */ 1000 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1001 { 1002 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1003 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1004 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1005 BUG_ON(bi_size > *tio->len_ptr); 1006 BUG_ON(n_sectors > bi_size); 1007 *tio->len_ptr -= bi_size - n_sectors; 1008 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1009 } 1010 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1011 1012 /* 1013 * Flush current->bio_list when the target map method blocks. 1014 * This fixes deadlocks in snapshot and possibly in other targets. 1015 */ 1016 struct dm_offload { 1017 struct blk_plug plug; 1018 struct blk_plug_cb cb; 1019 }; 1020 1021 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule) 1022 { 1023 struct dm_offload *o = container_of(cb, struct dm_offload, cb); 1024 struct bio_list list; 1025 struct bio *bio; 1026 int i; 1027 1028 INIT_LIST_HEAD(&o->cb.list); 1029 1030 if (unlikely(!current->bio_list)) 1031 return; 1032 1033 for (i = 0; i < 2; i++) { 1034 list = current->bio_list[i]; 1035 bio_list_init(¤t->bio_list[i]); 1036 1037 while ((bio = bio_list_pop(&list))) { 1038 struct bio_set *bs = bio->bi_pool; 1039 if (unlikely(!bs) || bs == fs_bio_set) { 1040 bio_list_add(¤t->bio_list[i], bio); 1041 continue; 1042 } 1043 1044 spin_lock(&bs->rescue_lock); 1045 bio_list_add(&bs->rescue_list, bio); 1046 queue_work(bs->rescue_workqueue, &bs->rescue_work); 1047 spin_unlock(&bs->rescue_lock); 1048 } 1049 } 1050 } 1051 1052 static void dm_offload_start(struct dm_offload *o) 1053 { 1054 blk_start_plug(&o->plug); 1055 o->cb.callback = flush_current_bio_list; 1056 list_add(&o->cb.list, ¤t->plug->cb_list); 1057 } 1058 1059 static void dm_offload_end(struct dm_offload *o) 1060 { 1061 list_del(&o->cb.list); 1062 blk_finish_plug(&o->plug); 1063 } 1064 1065 static void __map_bio(struct dm_target_io *tio) 1066 { 1067 int r; 1068 sector_t sector; 1069 struct dm_offload o; 1070 struct bio *clone = &tio->clone; 1071 struct dm_target *ti = tio->ti; 1072 1073 clone->bi_end_io = clone_endio; 1074 1075 /* 1076 * Map the clone. If r == 0 we don't need to do 1077 * anything, the target has assumed ownership of 1078 * this io. 1079 */ 1080 atomic_inc(&tio->io->io_count); 1081 sector = clone->bi_iter.bi_sector; 1082 1083 dm_offload_start(&o); 1084 r = ti->type->map(ti, clone); 1085 dm_offload_end(&o); 1086 1087 if (r == DM_MAPIO_REMAPPED) { 1088 /* the bio has been remapped so dispatch it */ 1089 1090 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1091 tio->io->bio->bi_bdev->bd_dev, sector); 1092 1093 generic_make_request(clone); 1094 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1095 /* error the io and bail out, or requeue it if needed */ 1096 dec_pending(tio->io, r); 1097 free_tio(tio); 1098 } else if (r != DM_MAPIO_SUBMITTED) { 1099 DMWARN("unimplemented target map return value: %d", r); 1100 BUG(); 1101 } 1102 } 1103 1104 struct clone_info { 1105 struct mapped_device *md; 1106 struct dm_table *map; 1107 struct bio *bio; 1108 struct dm_io *io; 1109 sector_t sector; 1110 unsigned sector_count; 1111 }; 1112 1113 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1114 { 1115 bio->bi_iter.bi_sector = sector; 1116 bio->bi_iter.bi_size = to_bytes(len); 1117 } 1118 1119 /* 1120 * Creates a bio that consists of range of complete bvecs. 1121 */ 1122 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1123 sector_t sector, unsigned len) 1124 { 1125 struct bio *clone = &tio->clone; 1126 1127 __bio_clone_fast(clone, bio); 1128 1129 if (unlikely(bio_integrity(bio) != NULL)) { 1130 int r; 1131 1132 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1133 !dm_target_passes_integrity(tio->ti->type))) { 1134 DMWARN("%s: the target %s doesn't support integrity data.", 1135 dm_device_name(tio->io->md), 1136 tio->ti->type->name); 1137 return -EIO; 1138 } 1139 1140 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1141 if (r < 0) 1142 return r; 1143 } 1144 1145 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1146 clone->bi_iter.bi_size = to_bytes(len); 1147 1148 if (unlikely(bio_integrity(bio) != NULL)) 1149 bio_integrity_trim(clone, 0, len); 1150 1151 return 0; 1152 } 1153 1154 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1155 struct dm_target *ti, 1156 unsigned target_bio_nr) 1157 { 1158 struct dm_target_io *tio; 1159 struct bio *clone; 1160 1161 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1162 tio = container_of(clone, struct dm_target_io, clone); 1163 1164 tio->io = ci->io; 1165 tio->ti = ti; 1166 tio->target_bio_nr = target_bio_nr; 1167 1168 return tio; 1169 } 1170 1171 static void __clone_and_map_simple_bio(struct clone_info *ci, 1172 struct dm_target *ti, 1173 unsigned target_bio_nr, unsigned *len) 1174 { 1175 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1176 struct bio *clone = &tio->clone; 1177 1178 tio->len_ptr = len; 1179 1180 __bio_clone_fast(clone, ci->bio); 1181 if (len) 1182 bio_setup_sector(clone, ci->sector, *len); 1183 1184 __map_bio(tio); 1185 } 1186 1187 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1188 unsigned num_bios, unsigned *len) 1189 { 1190 unsigned target_bio_nr; 1191 1192 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1193 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1194 } 1195 1196 static int __send_empty_flush(struct clone_info *ci) 1197 { 1198 unsigned target_nr = 0; 1199 struct dm_target *ti; 1200 1201 BUG_ON(bio_has_data(ci->bio)); 1202 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1203 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1204 1205 return 0; 1206 } 1207 1208 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1209 sector_t sector, unsigned *len) 1210 { 1211 struct bio *bio = ci->bio; 1212 struct dm_target_io *tio; 1213 unsigned target_bio_nr; 1214 unsigned num_target_bios = 1; 1215 int r = 0; 1216 1217 /* 1218 * Does the target want to receive duplicate copies of the bio? 1219 */ 1220 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1221 num_target_bios = ti->num_write_bios(ti, bio); 1222 1223 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1224 tio = alloc_tio(ci, ti, target_bio_nr); 1225 tio->len_ptr = len; 1226 r = clone_bio(tio, bio, sector, *len); 1227 if (r < 0) { 1228 free_tio(tio); 1229 break; 1230 } 1231 __map_bio(tio); 1232 } 1233 1234 return r; 1235 } 1236 1237 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1238 1239 static unsigned get_num_discard_bios(struct dm_target *ti) 1240 { 1241 return ti->num_discard_bios; 1242 } 1243 1244 static unsigned get_num_write_same_bios(struct dm_target *ti) 1245 { 1246 return ti->num_write_same_bios; 1247 } 1248 1249 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1250 { 1251 return ti->num_write_zeroes_bios; 1252 } 1253 1254 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1255 1256 static bool is_split_required_for_discard(struct dm_target *ti) 1257 { 1258 return ti->split_discard_bios; 1259 } 1260 1261 static int __send_changing_extent_only(struct clone_info *ci, 1262 get_num_bios_fn get_num_bios, 1263 is_split_required_fn is_split_required) 1264 { 1265 struct dm_target *ti; 1266 unsigned len; 1267 unsigned num_bios; 1268 1269 do { 1270 ti = dm_table_find_target(ci->map, ci->sector); 1271 if (!dm_target_is_valid(ti)) 1272 return -EIO; 1273 1274 /* 1275 * Even though the device advertised support for this type of 1276 * request, that does not mean every target supports it, and 1277 * reconfiguration might also have changed that since the 1278 * check was performed. 1279 */ 1280 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1281 if (!num_bios) 1282 return -EOPNOTSUPP; 1283 1284 if (is_split_required && !is_split_required(ti)) 1285 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1286 else 1287 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1288 1289 __send_duplicate_bios(ci, ti, num_bios, &len); 1290 1291 ci->sector += len; 1292 } while (ci->sector_count -= len); 1293 1294 return 0; 1295 } 1296 1297 static int __send_discard(struct clone_info *ci) 1298 { 1299 return __send_changing_extent_only(ci, get_num_discard_bios, 1300 is_split_required_for_discard); 1301 } 1302 1303 static int __send_write_same(struct clone_info *ci) 1304 { 1305 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1306 } 1307 1308 static int __send_write_zeroes(struct clone_info *ci) 1309 { 1310 return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL); 1311 } 1312 1313 /* 1314 * Select the correct strategy for processing a non-flush bio. 1315 */ 1316 static int __split_and_process_non_flush(struct clone_info *ci) 1317 { 1318 struct bio *bio = ci->bio; 1319 struct dm_target *ti; 1320 unsigned len; 1321 int r; 1322 1323 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1324 return __send_discard(ci); 1325 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1326 return __send_write_same(ci); 1327 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES)) 1328 return __send_write_zeroes(ci); 1329 1330 ti = dm_table_find_target(ci->map, ci->sector); 1331 if (!dm_target_is_valid(ti)) 1332 return -EIO; 1333 1334 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1335 1336 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1337 if (r < 0) 1338 return r; 1339 1340 ci->sector += len; 1341 ci->sector_count -= len; 1342 1343 return 0; 1344 } 1345 1346 /* 1347 * Entry point to split a bio into clones and submit them to the targets. 1348 */ 1349 static void __split_and_process_bio(struct mapped_device *md, 1350 struct dm_table *map, struct bio *bio) 1351 { 1352 struct clone_info ci; 1353 int error = 0; 1354 1355 if (unlikely(!map)) { 1356 bio_io_error(bio); 1357 return; 1358 } 1359 1360 ci.map = map; 1361 ci.md = md; 1362 ci.io = alloc_io(md); 1363 ci.io->error = 0; 1364 atomic_set(&ci.io->io_count, 1); 1365 ci.io->bio = bio; 1366 ci.io->md = md; 1367 spin_lock_init(&ci.io->endio_lock); 1368 ci.sector = bio->bi_iter.bi_sector; 1369 1370 start_io_acct(ci.io); 1371 1372 if (bio->bi_opf & REQ_PREFLUSH) { 1373 ci.bio = &ci.md->flush_bio; 1374 ci.sector_count = 0; 1375 error = __send_empty_flush(&ci); 1376 /* dec_pending submits any data associated with flush */ 1377 } else { 1378 ci.bio = bio; 1379 ci.sector_count = bio_sectors(bio); 1380 while (ci.sector_count && !error) 1381 error = __split_and_process_non_flush(&ci); 1382 } 1383 1384 /* drop the extra reference count */ 1385 dec_pending(ci.io, error); 1386 } 1387 /*----------------------------------------------------------------- 1388 * CRUD END 1389 *---------------------------------------------------------------*/ 1390 1391 /* 1392 * The request function that just remaps the bio built up by 1393 * dm_merge_bvec. 1394 */ 1395 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1396 { 1397 int rw = bio_data_dir(bio); 1398 struct mapped_device *md = q->queuedata; 1399 int srcu_idx; 1400 struct dm_table *map; 1401 1402 map = dm_get_live_table(md, &srcu_idx); 1403 1404 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1405 1406 /* if we're suspended, we have to queue this io for later */ 1407 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1408 dm_put_live_table(md, srcu_idx); 1409 1410 if (!(bio->bi_opf & REQ_RAHEAD)) 1411 queue_io(md, bio); 1412 else 1413 bio_io_error(bio); 1414 return BLK_QC_T_NONE; 1415 } 1416 1417 __split_and_process_bio(md, map, bio); 1418 dm_put_live_table(md, srcu_idx); 1419 return BLK_QC_T_NONE; 1420 } 1421 1422 static int dm_any_congested(void *congested_data, int bdi_bits) 1423 { 1424 int r = bdi_bits; 1425 struct mapped_device *md = congested_data; 1426 struct dm_table *map; 1427 1428 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1429 if (dm_request_based(md)) { 1430 /* 1431 * With request-based DM we only need to check the 1432 * top-level queue for congestion. 1433 */ 1434 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1435 } else { 1436 map = dm_get_live_table_fast(md); 1437 if (map) 1438 r = dm_table_any_congested(map, bdi_bits); 1439 dm_put_live_table_fast(md); 1440 } 1441 } 1442 1443 return r; 1444 } 1445 1446 /*----------------------------------------------------------------- 1447 * An IDR is used to keep track of allocated minor numbers. 1448 *---------------------------------------------------------------*/ 1449 static void free_minor(int minor) 1450 { 1451 spin_lock(&_minor_lock); 1452 idr_remove(&_minor_idr, minor); 1453 spin_unlock(&_minor_lock); 1454 } 1455 1456 /* 1457 * See if the device with a specific minor # is free. 1458 */ 1459 static int specific_minor(int minor) 1460 { 1461 int r; 1462 1463 if (minor >= (1 << MINORBITS)) 1464 return -EINVAL; 1465 1466 idr_preload(GFP_KERNEL); 1467 spin_lock(&_minor_lock); 1468 1469 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1470 1471 spin_unlock(&_minor_lock); 1472 idr_preload_end(); 1473 if (r < 0) 1474 return r == -ENOSPC ? -EBUSY : r; 1475 return 0; 1476 } 1477 1478 static int next_free_minor(int *minor) 1479 { 1480 int r; 1481 1482 idr_preload(GFP_KERNEL); 1483 spin_lock(&_minor_lock); 1484 1485 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1486 1487 spin_unlock(&_minor_lock); 1488 idr_preload_end(); 1489 if (r < 0) 1490 return r; 1491 *minor = r; 1492 return 0; 1493 } 1494 1495 static const struct block_device_operations dm_blk_dops; 1496 static const struct dax_operations dm_dax_ops; 1497 1498 static void dm_wq_work(struct work_struct *work); 1499 1500 void dm_init_md_queue(struct mapped_device *md) 1501 { 1502 /* 1503 * Request-based dm devices cannot be stacked on top of bio-based dm 1504 * devices. The type of this dm device may not have been decided yet. 1505 * The type is decided at the first table loading time. 1506 * To prevent problematic device stacking, clear the queue flag 1507 * for request stacking support until then. 1508 * 1509 * This queue is new, so no concurrency on the queue_flags. 1510 */ 1511 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1512 1513 /* 1514 * Initialize data that will only be used by a non-blk-mq DM queue 1515 * - must do so here (in alloc_dev callchain) before queue is used 1516 */ 1517 md->queue->queuedata = md; 1518 md->queue->backing_dev_info->congested_data = md; 1519 } 1520 1521 void dm_init_normal_md_queue(struct mapped_device *md) 1522 { 1523 md->use_blk_mq = false; 1524 dm_init_md_queue(md); 1525 1526 /* 1527 * Initialize aspects of queue that aren't relevant for blk-mq 1528 */ 1529 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1530 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1531 } 1532 1533 static void cleanup_mapped_device(struct mapped_device *md) 1534 { 1535 if (md->wq) 1536 destroy_workqueue(md->wq); 1537 if (md->kworker_task) 1538 kthread_stop(md->kworker_task); 1539 mempool_destroy(md->io_pool); 1540 if (md->bs) 1541 bioset_free(md->bs); 1542 1543 if (md->dax_dev) { 1544 kill_dax(md->dax_dev); 1545 put_dax(md->dax_dev); 1546 md->dax_dev = NULL; 1547 } 1548 1549 if (md->disk) { 1550 spin_lock(&_minor_lock); 1551 md->disk->private_data = NULL; 1552 spin_unlock(&_minor_lock); 1553 del_gendisk(md->disk); 1554 put_disk(md->disk); 1555 } 1556 1557 if (md->queue) 1558 blk_cleanup_queue(md->queue); 1559 1560 cleanup_srcu_struct(&md->io_barrier); 1561 1562 if (md->bdev) { 1563 bdput(md->bdev); 1564 md->bdev = NULL; 1565 } 1566 1567 dm_mq_cleanup_mapped_device(md); 1568 } 1569 1570 /* 1571 * Allocate and initialise a blank device with a given minor. 1572 */ 1573 static struct mapped_device *alloc_dev(int minor) 1574 { 1575 int r, numa_node_id = dm_get_numa_node(); 1576 struct dax_device *dax_dev; 1577 struct mapped_device *md; 1578 void *old_md; 1579 1580 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1581 if (!md) { 1582 DMWARN("unable to allocate device, out of memory."); 1583 return NULL; 1584 } 1585 1586 if (!try_module_get(THIS_MODULE)) 1587 goto bad_module_get; 1588 1589 /* get a minor number for the dev */ 1590 if (minor == DM_ANY_MINOR) 1591 r = next_free_minor(&minor); 1592 else 1593 r = specific_minor(minor); 1594 if (r < 0) 1595 goto bad_minor; 1596 1597 r = init_srcu_struct(&md->io_barrier); 1598 if (r < 0) 1599 goto bad_io_barrier; 1600 1601 md->numa_node_id = numa_node_id; 1602 md->use_blk_mq = dm_use_blk_mq_default(); 1603 md->init_tio_pdu = false; 1604 md->type = DM_TYPE_NONE; 1605 mutex_init(&md->suspend_lock); 1606 mutex_init(&md->type_lock); 1607 mutex_init(&md->table_devices_lock); 1608 spin_lock_init(&md->deferred_lock); 1609 atomic_set(&md->holders, 1); 1610 atomic_set(&md->open_count, 0); 1611 atomic_set(&md->event_nr, 0); 1612 atomic_set(&md->uevent_seq, 0); 1613 INIT_LIST_HEAD(&md->uevent_list); 1614 INIT_LIST_HEAD(&md->table_devices); 1615 spin_lock_init(&md->uevent_lock); 1616 1617 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1618 if (!md->queue) 1619 goto bad; 1620 1621 dm_init_md_queue(md); 1622 1623 md->disk = alloc_disk_node(1, numa_node_id); 1624 if (!md->disk) 1625 goto bad; 1626 1627 atomic_set(&md->pending[0], 0); 1628 atomic_set(&md->pending[1], 0); 1629 init_waitqueue_head(&md->wait); 1630 INIT_WORK(&md->work, dm_wq_work); 1631 init_waitqueue_head(&md->eventq); 1632 init_completion(&md->kobj_holder.completion); 1633 md->kworker_task = NULL; 1634 1635 md->disk->major = _major; 1636 md->disk->first_minor = minor; 1637 md->disk->fops = &dm_blk_dops; 1638 md->disk->queue = md->queue; 1639 md->disk->private_data = md; 1640 sprintf(md->disk->disk_name, "dm-%d", minor); 1641 1642 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1643 if (!dax_dev) 1644 goto bad; 1645 md->dax_dev = dax_dev; 1646 1647 add_disk(md->disk); 1648 format_dev_t(md->name, MKDEV(_major, minor)); 1649 1650 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1651 if (!md->wq) 1652 goto bad; 1653 1654 md->bdev = bdget_disk(md->disk, 0); 1655 if (!md->bdev) 1656 goto bad; 1657 1658 bio_init(&md->flush_bio, NULL, 0); 1659 md->flush_bio.bi_bdev = md->bdev; 1660 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1661 1662 dm_stats_init(&md->stats); 1663 1664 /* Populate the mapping, nobody knows we exist yet */ 1665 spin_lock(&_minor_lock); 1666 old_md = idr_replace(&_minor_idr, md, minor); 1667 spin_unlock(&_minor_lock); 1668 1669 BUG_ON(old_md != MINOR_ALLOCED); 1670 1671 return md; 1672 1673 bad: 1674 cleanup_mapped_device(md); 1675 bad_io_barrier: 1676 free_minor(minor); 1677 bad_minor: 1678 module_put(THIS_MODULE); 1679 bad_module_get: 1680 kfree(md); 1681 return NULL; 1682 } 1683 1684 static void unlock_fs(struct mapped_device *md); 1685 1686 static void free_dev(struct mapped_device *md) 1687 { 1688 int minor = MINOR(disk_devt(md->disk)); 1689 1690 unlock_fs(md); 1691 1692 cleanup_mapped_device(md); 1693 1694 free_table_devices(&md->table_devices); 1695 dm_stats_cleanup(&md->stats); 1696 free_minor(minor); 1697 1698 module_put(THIS_MODULE); 1699 kfree(md); 1700 } 1701 1702 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1703 { 1704 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1705 1706 if (md->bs) { 1707 /* The md already has necessary mempools. */ 1708 if (dm_table_bio_based(t)) { 1709 /* 1710 * Reload bioset because front_pad may have changed 1711 * because a different table was loaded. 1712 */ 1713 bioset_free(md->bs); 1714 md->bs = p->bs; 1715 p->bs = NULL; 1716 } 1717 /* 1718 * There's no need to reload with request-based dm 1719 * because the size of front_pad doesn't change. 1720 * Note for future: If you are to reload bioset, 1721 * prep-ed requests in the queue may refer 1722 * to bio from the old bioset, so you must walk 1723 * through the queue to unprep. 1724 */ 1725 goto out; 1726 } 1727 1728 BUG_ON(!p || md->io_pool || md->bs); 1729 1730 md->io_pool = p->io_pool; 1731 p->io_pool = NULL; 1732 md->bs = p->bs; 1733 p->bs = NULL; 1734 1735 out: 1736 /* mempool bind completed, no longer need any mempools in the table */ 1737 dm_table_free_md_mempools(t); 1738 } 1739 1740 /* 1741 * Bind a table to the device. 1742 */ 1743 static void event_callback(void *context) 1744 { 1745 unsigned long flags; 1746 LIST_HEAD(uevents); 1747 struct mapped_device *md = (struct mapped_device *) context; 1748 1749 spin_lock_irqsave(&md->uevent_lock, flags); 1750 list_splice_init(&md->uevent_list, &uevents); 1751 spin_unlock_irqrestore(&md->uevent_lock, flags); 1752 1753 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1754 1755 atomic_inc(&md->event_nr); 1756 wake_up(&md->eventq); 1757 } 1758 1759 /* 1760 * Protected by md->suspend_lock obtained by dm_swap_table(). 1761 */ 1762 static void __set_size(struct mapped_device *md, sector_t size) 1763 { 1764 lockdep_assert_held(&md->suspend_lock); 1765 1766 set_capacity(md->disk, size); 1767 1768 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1769 } 1770 1771 /* 1772 * Returns old map, which caller must destroy. 1773 */ 1774 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1775 struct queue_limits *limits) 1776 { 1777 struct dm_table *old_map; 1778 struct request_queue *q = md->queue; 1779 sector_t size; 1780 1781 lockdep_assert_held(&md->suspend_lock); 1782 1783 size = dm_table_get_size(t); 1784 1785 /* 1786 * Wipe any geometry if the size of the table changed. 1787 */ 1788 if (size != dm_get_size(md)) 1789 memset(&md->geometry, 0, sizeof(md->geometry)); 1790 1791 __set_size(md, size); 1792 1793 dm_table_event_callback(t, event_callback, md); 1794 1795 /* 1796 * The queue hasn't been stopped yet, if the old table type wasn't 1797 * for request-based during suspension. So stop it to prevent 1798 * I/O mapping before resume. 1799 * This must be done before setting the queue restrictions, 1800 * because request-based dm may be run just after the setting. 1801 */ 1802 if (dm_table_request_based(t)) { 1803 dm_stop_queue(q); 1804 /* 1805 * Leverage the fact that request-based DM targets are 1806 * immutable singletons and establish md->immutable_target 1807 * - used to optimize both dm_request_fn and dm_mq_queue_rq 1808 */ 1809 md->immutable_target = dm_table_get_immutable_target(t); 1810 } 1811 1812 __bind_mempools(md, t); 1813 1814 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1815 rcu_assign_pointer(md->map, (void *)t); 1816 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1817 1818 dm_table_set_restrictions(t, q, limits); 1819 if (old_map) 1820 dm_sync_table(md); 1821 1822 return old_map; 1823 } 1824 1825 /* 1826 * Returns unbound table for the caller to free. 1827 */ 1828 static struct dm_table *__unbind(struct mapped_device *md) 1829 { 1830 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1831 1832 if (!map) 1833 return NULL; 1834 1835 dm_table_event_callback(map, NULL, NULL); 1836 RCU_INIT_POINTER(md->map, NULL); 1837 dm_sync_table(md); 1838 1839 return map; 1840 } 1841 1842 /* 1843 * Constructor for a new device. 1844 */ 1845 int dm_create(int minor, struct mapped_device **result) 1846 { 1847 struct mapped_device *md; 1848 1849 md = alloc_dev(minor); 1850 if (!md) 1851 return -ENXIO; 1852 1853 dm_sysfs_init(md); 1854 1855 *result = md; 1856 return 0; 1857 } 1858 1859 /* 1860 * Functions to manage md->type. 1861 * All are required to hold md->type_lock. 1862 */ 1863 void dm_lock_md_type(struct mapped_device *md) 1864 { 1865 mutex_lock(&md->type_lock); 1866 } 1867 1868 void dm_unlock_md_type(struct mapped_device *md) 1869 { 1870 mutex_unlock(&md->type_lock); 1871 } 1872 1873 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1874 { 1875 BUG_ON(!mutex_is_locked(&md->type_lock)); 1876 md->type = type; 1877 } 1878 1879 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1880 { 1881 return md->type; 1882 } 1883 1884 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1885 { 1886 return md->immutable_target_type; 1887 } 1888 1889 /* 1890 * The queue_limits are only valid as long as you have a reference 1891 * count on 'md'. 1892 */ 1893 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1894 { 1895 BUG_ON(!atomic_read(&md->holders)); 1896 return &md->queue->limits; 1897 } 1898 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1899 1900 /* 1901 * Setup the DM device's queue based on md's type 1902 */ 1903 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1904 { 1905 int r; 1906 enum dm_queue_mode type = dm_get_md_type(md); 1907 1908 switch (type) { 1909 case DM_TYPE_REQUEST_BASED: 1910 r = dm_old_init_request_queue(md, t); 1911 if (r) { 1912 DMERR("Cannot initialize queue for request-based mapped device"); 1913 return r; 1914 } 1915 break; 1916 case DM_TYPE_MQ_REQUEST_BASED: 1917 r = dm_mq_init_request_queue(md, t); 1918 if (r) { 1919 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 1920 return r; 1921 } 1922 break; 1923 case DM_TYPE_BIO_BASED: 1924 case DM_TYPE_DAX_BIO_BASED: 1925 dm_init_normal_md_queue(md); 1926 blk_queue_make_request(md->queue, dm_make_request); 1927 /* 1928 * DM handles splitting bios as needed. Free the bio_split bioset 1929 * since it won't be used (saves 1 process per bio-based DM device). 1930 */ 1931 bioset_free(md->queue->bio_split); 1932 md->queue->bio_split = NULL; 1933 1934 if (type == DM_TYPE_DAX_BIO_BASED) 1935 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue); 1936 break; 1937 case DM_TYPE_NONE: 1938 WARN_ON_ONCE(true); 1939 break; 1940 } 1941 1942 return 0; 1943 } 1944 1945 struct mapped_device *dm_get_md(dev_t dev) 1946 { 1947 struct mapped_device *md; 1948 unsigned minor = MINOR(dev); 1949 1950 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1951 return NULL; 1952 1953 spin_lock(&_minor_lock); 1954 1955 md = idr_find(&_minor_idr, minor); 1956 if (md) { 1957 if ((md == MINOR_ALLOCED || 1958 (MINOR(disk_devt(dm_disk(md))) != minor) || 1959 dm_deleting_md(md) || 1960 test_bit(DMF_FREEING, &md->flags))) { 1961 md = NULL; 1962 goto out; 1963 } 1964 dm_get(md); 1965 } 1966 1967 out: 1968 spin_unlock(&_minor_lock); 1969 1970 return md; 1971 } 1972 EXPORT_SYMBOL_GPL(dm_get_md); 1973 1974 void *dm_get_mdptr(struct mapped_device *md) 1975 { 1976 return md->interface_ptr; 1977 } 1978 1979 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1980 { 1981 md->interface_ptr = ptr; 1982 } 1983 1984 void dm_get(struct mapped_device *md) 1985 { 1986 atomic_inc(&md->holders); 1987 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1988 } 1989 1990 int dm_hold(struct mapped_device *md) 1991 { 1992 spin_lock(&_minor_lock); 1993 if (test_bit(DMF_FREEING, &md->flags)) { 1994 spin_unlock(&_minor_lock); 1995 return -EBUSY; 1996 } 1997 dm_get(md); 1998 spin_unlock(&_minor_lock); 1999 return 0; 2000 } 2001 EXPORT_SYMBOL_GPL(dm_hold); 2002 2003 const char *dm_device_name(struct mapped_device *md) 2004 { 2005 return md->name; 2006 } 2007 EXPORT_SYMBOL_GPL(dm_device_name); 2008 2009 static void __dm_destroy(struct mapped_device *md, bool wait) 2010 { 2011 struct request_queue *q = dm_get_md_queue(md); 2012 struct dm_table *map; 2013 int srcu_idx; 2014 2015 might_sleep(); 2016 2017 spin_lock(&_minor_lock); 2018 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2019 set_bit(DMF_FREEING, &md->flags); 2020 spin_unlock(&_minor_lock); 2021 2022 blk_set_queue_dying(q); 2023 2024 if (dm_request_based(md) && md->kworker_task) 2025 kthread_flush_worker(&md->kworker); 2026 2027 /* 2028 * Take suspend_lock so that presuspend and postsuspend methods 2029 * do not race with internal suspend. 2030 */ 2031 mutex_lock(&md->suspend_lock); 2032 map = dm_get_live_table(md, &srcu_idx); 2033 if (!dm_suspended_md(md)) { 2034 dm_table_presuspend_targets(map); 2035 dm_table_postsuspend_targets(map); 2036 } 2037 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2038 dm_put_live_table(md, srcu_idx); 2039 mutex_unlock(&md->suspend_lock); 2040 2041 /* 2042 * Rare, but there may be I/O requests still going to complete, 2043 * for example. Wait for all references to disappear. 2044 * No one should increment the reference count of the mapped_device, 2045 * after the mapped_device state becomes DMF_FREEING. 2046 */ 2047 if (wait) 2048 while (atomic_read(&md->holders)) 2049 msleep(1); 2050 else if (atomic_read(&md->holders)) 2051 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2052 dm_device_name(md), atomic_read(&md->holders)); 2053 2054 dm_sysfs_exit(md); 2055 dm_table_destroy(__unbind(md)); 2056 free_dev(md); 2057 } 2058 2059 void dm_destroy(struct mapped_device *md) 2060 { 2061 __dm_destroy(md, true); 2062 } 2063 2064 void dm_destroy_immediate(struct mapped_device *md) 2065 { 2066 __dm_destroy(md, false); 2067 } 2068 2069 void dm_put(struct mapped_device *md) 2070 { 2071 atomic_dec(&md->holders); 2072 } 2073 EXPORT_SYMBOL_GPL(dm_put); 2074 2075 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2076 { 2077 int r = 0; 2078 DEFINE_WAIT(wait); 2079 2080 while (1) { 2081 prepare_to_wait(&md->wait, &wait, task_state); 2082 2083 if (!md_in_flight(md)) 2084 break; 2085 2086 if (signal_pending_state(task_state, current)) { 2087 r = -EINTR; 2088 break; 2089 } 2090 2091 io_schedule(); 2092 } 2093 finish_wait(&md->wait, &wait); 2094 2095 return r; 2096 } 2097 2098 /* 2099 * Process the deferred bios 2100 */ 2101 static void dm_wq_work(struct work_struct *work) 2102 { 2103 struct mapped_device *md = container_of(work, struct mapped_device, 2104 work); 2105 struct bio *c; 2106 int srcu_idx; 2107 struct dm_table *map; 2108 2109 map = dm_get_live_table(md, &srcu_idx); 2110 2111 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2112 spin_lock_irq(&md->deferred_lock); 2113 c = bio_list_pop(&md->deferred); 2114 spin_unlock_irq(&md->deferred_lock); 2115 2116 if (!c) 2117 break; 2118 2119 if (dm_request_based(md)) 2120 generic_make_request(c); 2121 else 2122 __split_and_process_bio(md, map, c); 2123 } 2124 2125 dm_put_live_table(md, srcu_idx); 2126 } 2127 2128 static void dm_queue_flush(struct mapped_device *md) 2129 { 2130 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2131 smp_mb__after_atomic(); 2132 queue_work(md->wq, &md->work); 2133 } 2134 2135 /* 2136 * Swap in a new table, returning the old one for the caller to destroy. 2137 */ 2138 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2139 { 2140 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2141 struct queue_limits limits; 2142 int r; 2143 2144 mutex_lock(&md->suspend_lock); 2145 2146 /* device must be suspended */ 2147 if (!dm_suspended_md(md)) 2148 goto out; 2149 2150 /* 2151 * If the new table has no data devices, retain the existing limits. 2152 * This helps multipath with queue_if_no_path if all paths disappear, 2153 * then new I/O is queued based on these limits, and then some paths 2154 * reappear. 2155 */ 2156 if (dm_table_has_no_data_devices(table)) { 2157 live_map = dm_get_live_table_fast(md); 2158 if (live_map) 2159 limits = md->queue->limits; 2160 dm_put_live_table_fast(md); 2161 } 2162 2163 if (!live_map) { 2164 r = dm_calculate_queue_limits(table, &limits); 2165 if (r) { 2166 map = ERR_PTR(r); 2167 goto out; 2168 } 2169 } 2170 2171 map = __bind(md, table, &limits); 2172 2173 out: 2174 mutex_unlock(&md->suspend_lock); 2175 return map; 2176 } 2177 2178 /* 2179 * Functions to lock and unlock any filesystem running on the 2180 * device. 2181 */ 2182 static int lock_fs(struct mapped_device *md) 2183 { 2184 int r; 2185 2186 WARN_ON(md->frozen_sb); 2187 2188 md->frozen_sb = freeze_bdev(md->bdev); 2189 if (IS_ERR(md->frozen_sb)) { 2190 r = PTR_ERR(md->frozen_sb); 2191 md->frozen_sb = NULL; 2192 return r; 2193 } 2194 2195 set_bit(DMF_FROZEN, &md->flags); 2196 2197 return 0; 2198 } 2199 2200 static void unlock_fs(struct mapped_device *md) 2201 { 2202 if (!test_bit(DMF_FROZEN, &md->flags)) 2203 return; 2204 2205 thaw_bdev(md->bdev, md->frozen_sb); 2206 md->frozen_sb = NULL; 2207 clear_bit(DMF_FROZEN, &md->flags); 2208 } 2209 2210 /* 2211 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2212 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2213 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2214 * 2215 * If __dm_suspend returns 0, the device is completely quiescent 2216 * now. There is no request-processing activity. All new requests 2217 * are being added to md->deferred list. 2218 */ 2219 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2220 unsigned suspend_flags, long task_state, 2221 int dmf_suspended_flag) 2222 { 2223 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2224 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2225 int r; 2226 2227 lockdep_assert_held(&md->suspend_lock); 2228 2229 /* 2230 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2231 * This flag is cleared before dm_suspend returns. 2232 */ 2233 if (noflush) 2234 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2235 else 2236 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2237 2238 /* 2239 * This gets reverted if there's an error later and the targets 2240 * provide the .presuspend_undo hook. 2241 */ 2242 dm_table_presuspend_targets(map); 2243 2244 /* 2245 * Flush I/O to the device. 2246 * Any I/O submitted after lock_fs() may not be flushed. 2247 * noflush takes precedence over do_lockfs. 2248 * (lock_fs() flushes I/Os and waits for them to complete.) 2249 */ 2250 if (!noflush && do_lockfs) { 2251 r = lock_fs(md); 2252 if (r) { 2253 dm_table_presuspend_undo_targets(map); 2254 return r; 2255 } 2256 } 2257 2258 /* 2259 * Here we must make sure that no processes are submitting requests 2260 * to target drivers i.e. no one may be executing 2261 * __split_and_process_bio. This is called from dm_request and 2262 * dm_wq_work. 2263 * 2264 * To get all processes out of __split_and_process_bio in dm_request, 2265 * we take the write lock. To prevent any process from reentering 2266 * __split_and_process_bio from dm_request and quiesce the thread 2267 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2268 * flush_workqueue(md->wq). 2269 */ 2270 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2271 if (map) 2272 synchronize_srcu(&md->io_barrier); 2273 2274 /* 2275 * Stop md->queue before flushing md->wq in case request-based 2276 * dm defers requests to md->wq from md->queue. 2277 */ 2278 if (dm_request_based(md)) { 2279 dm_stop_queue(md->queue); 2280 if (md->kworker_task) 2281 kthread_flush_worker(&md->kworker); 2282 } 2283 2284 flush_workqueue(md->wq); 2285 2286 /* 2287 * At this point no more requests are entering target request routines. 2288 * We call dm_wait_for_completion to wait for all existing requests 2289 * to finish. 2290 */ 2291 r = dm_wait_for_completion(md, task_state); 2292 if (!r) 2293 set_bit(dmf_suspended_flag, &md->flags); 2294 2295 if (noflush) 2296 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2297 if (map) 2298 synchronize_srcu(&md->io_barrier); 2299 2300 /* were we interrupted ? */ 2301 if (r < 0) { 2302 dm_queue_flush(md); 2303 2304 if (dm_request_based(md)) 2305 dm_start_queue(md->queue); 2306 2307 unlock_fs(md); 2308 dm_table_presuspend_undo_targets(map); 2309 /* pushback list is already flushed, so skip flush */ 2310 } 2311 2312 return r; 2313 } 2314 2315 /* 2316 * We need to be able to change a mapping table under a mounted 2317 * filesystem. For example we might want to move some data in 2318 * the background. Before the table can be swapped with 2319 * dm_bind_table, dm_suspend must be called to flush any in 2320 * flight bios and ensure that any further io gets deferred. 2321 */ 2322 /* 2323 * Suspend mechanism in request-based dm. 2324 * 2325 * 1. Flush all I/Os by lock_fs() if needed. 2326 * 2. Stop dispatching any I/O by stopping the request_queue. 2327 * 3. Wait for all in-flight I/Os to be completed or requeued. 2328 * 2329 * To abort suspend, start the request_queue. 2330 */ 2331 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2332 { 2333 struct dm_table *map = NULL; 2334 int r = 0; 2335 2336 retry: 2337 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2338 2339 if (dm_suspended_md(md)) { 2340 r = -EINVAL; 2341 goto out_unlock; 2342 } 2343 2344 if (dm_suspended_internally_md(md)) { 2345 /* already internally suspended, wait for internal resume */ 2346 mutex_unlock(&md->suspend_lock); 2347 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2348 if (r) 2349 return r; 2350 goto retry; 2351 } 2352 2353 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2354 2355 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2356 if (r) 2357 goto out_unlock; 2358 2359 dm_table_postsuspend_targets(map); 2360 2361 out_unlock: 2362 mutex_unlock(&md->suspend_lock); 2363 return r; 2364 } 2365 2366 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2367 { 2368 if (map) { 2369 int r = dm_table_resume_targets(map); 2370 if (r) 2371 return r; 2372 } 2373 2374 dm_queue_flush(md); 2375 2376 /* 2377 * Flushing deferred I/Os must be done after targets are resumed 2378 * so that mapping of targets can work correctly. 2379 * Request-based dm is queueing the deferred I/Os in its request_queue. 2380 */ 2381 if (dm_request_based(md)) 2382 dm_start_queue(md->queue); 2383 2384 unlock_fs(md); 2385 2386 return 0; 2387 } 2388 2389 int dm_resume(struct mapped_device *md) 2390 { 2391 int r; 2392 struct dm_table *map = NULL; 2393 2394 retry: 2395 r = -EINVAL; 2396 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2397 2398 if (!dm_suspended_md(md)) 2399 goto out; 2400 2401 if (dm_suspended_internally_md(md)) { 2402 /* already internally suspended, wait for internal resume */ 2403 mutex_unlock(&md->suspend_lock); 2404 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2405 if (r) 2406 return r; 2407 goto retry; 2408 } 2409 2410 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2411 if (!map || !dm_table_get_size(map)) 2412 goto out; 2413 2414 r = __dm_resume(md, map); 2415 if (r) 2416 goto out; 2417 2418 clear_bit(DMF_SUSPENDED, &md->flags); 2419 out: 2420 mutex_unlock(&md->suspend_lock); 2421 2422 return r; 2423 } 2424 2425 /* 2426 * Internal suspend/resume works like userspace-driven suspend. It waits 2427 * until all bios finish and prevents issuing new bios to the target drivers. 2428 * It may be used only from the kernel. 2429 */ 2430 2431 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2432 { 2433 struct dm_table *map = NULL; 2434 2435 lockdep_assert_held(&md->suspend_lock); 2436 2437 if (md->internal_suspend_count++) 2438 return; /* nested internal suspend */ 2439 2440 if (dm_suspended_md(md)) { 2441 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2442 return; /* nest suspend */ 2443 } 2444 2445 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2446 2447 /* 2448 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2449 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2450 * would require changing .presuspend to return an error -- avoid this 2451 * until there is a need for more elaborate variants of internal suspend. 2452 */ 2453 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2454 DMF_SUSPENDED_INTERNALLY); 2455 2456 dm_table_postsuspend_targets(map); 2457 } 2458 2459 static void __dm_internal_resume(struct mapped_device *md) 2460 { 2461 BUG_ON(!md->internal_suspend_count); 2462 2463 if (--md->internal_suspend_count) 2464 return; /* resume from nested internal suspend */ 2465 2466 if (dm_suspended_md(md)) 2467 goto done; /* resume from nested suspend */ 2468 2469 /* 2470 * NOTE: existing callers don't need to call dm_table_resume_targets 2471 * (which may fail -- so best to avoid it for now by passing NULL map) 2472 */ 2473 (void) __dm_resume(md, NULL); 2474 2475 done: 2476 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2477 smp_mb__after_atomic(); 2478 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2479 } 2480 2481 void dm_internal_suspend_noflush(struct mapped_device *md) 2482 { 2483 mutex_lock(&md->suspend_lock); 2484 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2485 mutex_unlock(&md->suspend_lock); 2486 } 2487 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2488 2489 void dm_internal_resume(struct mapped_device *md) 2490 { 2491 mutex_lock(&md->suspend_lock); 2492 __dm_internal_resume(md); 2493 mutex_unlock(&md->suspend_lock); 2494 } 2495 EXPORT_SYMBOL_GPL(dm_internal_resume); 2496 2497 /* 2498 * Fast variants of internal suspend/resume hold md->suspend_lock, 2499 * which prevents interaction with userspace-driven suspend. 2500 */ 2501 2502 void dm_internal_suspend_fast(struct mapped_device *md) 2503 { 2504 mutex_lock(&md->suspend_lock); 2505 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2506 return; 2507 2508 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2509 synchronize_srcu(&md->io_barrier); 2510 flush_workqueue(md->wq); 2511 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2512 } 2513 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2514 2515 void dm_internal_resume_fast(struct mapped_device *md) 2516 { 2517 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2518 goto done; 2519 2520 dm_queue_flush(md); 2521 2522 done: 2523 mutex_unlock(&md->suspend_lock); 2524 } 2525 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2526 2527 /*----------------------------------------------------------------- 2528 * Event notification. 2529 *---------------------------------------------------------------*/ 2530 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2531 unsigned cookie) 2532 { 2533 char udev_cookie[DM_COOKIE_LENGTH]; 2534 char *envp[] = { udev_cookie, NULL }; 2535 2536 if (!cookie) 2537 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2538 else { 2539 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2540 DM_COOKIE_ENV_VAR_NAME, cookie); 2541 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2542 action, envp); 2543 } 2544 } 2545 2546 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2547 { 2548 return atomic_add_return(1, &md->uevent_seq); 2549 } 2550 2551 uint32_t dm_get_event_nr(struct mapped_device *md) 2552 { 2553 return atomic_read(&md->event_nr); 2554 } 2555 2556 int dm_wait_event(struct mapped_device *md, int event_nr) 2557 { 2558 return wait_event_interruptible(md->eventq, 2559 (event_nr != atomic_read(&md->event_nr))); 2560 } 2561 2562 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2563 { 2564 unsigned long flags; 2565 2566 spin_lock_irqsave(&md->uevent_lock, flags); 2567 list_add(elist, &md->uevent_list); 2568 spin_unlock_irqrestore(&md->uevent_lock, flags); 2569 } 2570 2571 /* 2572 * The gendisk is only valid as long as you have a reference 2573 * count on 'md'. 2574 */ 2575 struct gendisk *dm_disk(struct mapped_device *md) 2576 { 2577 return md->disk; 2578 } 2579 EXPORT_SYMBOL_GPL(dm_disk); 2580 2581 struct kobject *dm_kobject(struct mapped_device *md) 2582 { 2583 return &md->kobj_holder.kobj; 2584 } 2585 2586 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2587 { 2588 struct mapped_device *md; 2589 2590 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2591 2592 if (test_bit(DMF_FREEING, &md->flags) || 2593 dm_deleting_md(md)) 2594 return NULL; 2595 2596 dm_get(md); 2597 return md; 2598 } 2599 2600 int dm_suspended_md(struct mapped_device *md) 2601 { 2602 return test_bit(DMF_SUSPENDED, &md->flags); 2603 } 2604 2605 int dm_suspended_internally_md(struct mapped_device *md) 2606 { 2607 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2608 } 2609 2610 int dm_test_deferred_remove_flag(struct mapped_device *md) 2611 { 2612 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2613 } 2614 2615 int dm_suspended(struct dm_target *ti) 2616 { 2617 return dm_suspended_md(dm_table_get_md(ti->table)); 2618 } 2619 EXPORT_SYMBOL_GPL(dm_suspended); 2620 2621 int dm_noflush_suspending(struct dm_target *ti) 2622 { 2623 return __noflush_suspending(dm_table_get_md(ti->table)); 2624 } 2625 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2626 2627 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2628 unsigned integrity, unsigned per_io_data_size) 2629 { 2630 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2631 unsigned int pool_size = 0; 2632 unsigned int front_pad; 2633 2634 if (!pools) 2635 return NULL; 2636 2637 switch (type) { 2638 case DM_TYPE_BIO_BASED: 2639 case DM_TYPE_DAX_BIO_BASED: 2640 pool_size = dm_get_reserved_bio_based_ios(); 2641 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2642 2643 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache); 2644 if (!pools->io_pool) 2645 goto out; 2646 break; 2647 case DM_TYPE_REQUEST_BASED: 2648 case DM_TYPE_MQ_REQUEST_BASED: 2649 pool_size = dm_get_reserved_rq_based_ios(); 2650 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2651 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2652 break; 2653 default: 2654 BUG(); 2655 } 2656 2657 pools->bs = bioset_create_nobvec(pool_size, front_pad); 2658 if (!pools->bs) 2659 goto out; 2660 2661 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2662 goto out; 2663 2664 return pools; 2665 2666 out: 2667 dm_free_md_mempools(pools); 2668 2669 return NULL; 2670 } 2671 2672 void dm_free_md_mempools(struct dm_md_mempools *pools) 2673 { 2674 if (!pools) 2675 return; 2676 2677 mempool_destroy(pools->io_pool); 2678 2679 if (pools->bs) 2680 bioset_free(pools->bs); 2681 2682 kfree(pools); 2683 } 2684 2685 struct dm_pr { 2686 u64 old_key; 2687 u64 new_key; 2688 u32 flags; 2689 bool fail_early; 2690 }; 2691 2692 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2693 void *data) 2694 { 2695 struct mapped_device *md = bdev->bd_disk->private_data; 2696 struct dm_table *table; 2697 struct dm_target *ti; 2698 int ret = -ENOTTY, srcu_idx; 2699 2700 table = dm_get_live_table(md, &srcu_idx); 2701 if (!table || !dm_table_get_size(table)) 2702 goto out; 2703 2704 /* We only support devices that have a single target */ 2705 if (dm_table_get_num_targets(table) != 1) 2706 goto out; 2707 ti = dm_table_get_target(table, 0); 2708 2709 ret = -EINVAL; 2710 if (!ti->type->iterate_devices) 2711 goto out; 2712 2713 ret = ti->type->iterate_devices(ti, fn, data); 2714 out: 2715 dm_put_live_table(md, srcu_idx); 2716 return ret; 2717 } 2718 2719 /* 2720 * For register / unregister we need to manually call out to every path. 2721 */ 2722 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2723 sector_t start, sector_t len, void *data) 2724 { 2725 struct dm_pr *pr = data; 2726 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2727 2728 if (!ops || !ops->pr_register) 2729 return -EOPNOTSUPP; 2730 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2731 } 2732 2733 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2734 u32 flags) 2735 { 2736 struct dm_pr pr = { 2737 .old_key = old_key, 2738 .new_key = new_key, 2739 .flags = flags, 2740 .fail_early = true, 2741 }; 2742 int ret; 2743 2744 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2745 if (ret && new_key) { 2746 /* unregister all paths if we failed to register any path */ 2747 pr.old_key = new_key; 2748 pr.new_key = 0; 2749 pr.flags = 0; 2750 pr.fail_early = false; 2751 dm_call_pr(bdev, __dm_pr_register, &pr); 2752 } 2753 2754 return ret; 2755 } 2756 2757 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2758 u32 flags) 2759 { 2760 struct mapped_device *md = bdev->bd_disk->private_data; 2761 const struct pr_ops *ops; 2762 fmode_t mode; 2763 int r; 2764 2765 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2766 if (r < 0) 2767 return r; 2768 2769 ops = bdev->bd_disk->fops->pr_ops; 2770 if (ops && ops->pr_reserve) 2771 r = ops->pr_reserve(bdev, key, type, flags); 2772 else 2773 r = -EOPNOTSUPP; 2774 2775 bdput(bdev); 2776 return r; 2777 } 2778 2779 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2780 { 2781 struct mapped_device *md = bdev->bd_disk->private_data; 2782 const struct pr_ops *ops; 2783 fmode_t mode; 2784 int r; 2785 2786 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2787 if (r < 0) 2788 return r; 2789 2790 ops = bdev->bd_disk->fops->pr_ops; 2791 if (ops && ops->pr_release) 2792 r = ops->pr_release(bdev, key, type); 2793 else 2794 r = -EOPNOTSUPP; 2795 2796 bdput(bdev); 2797 return r; 2798 } 2799 2800 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2801 enum pr_type type, bool abort) 2802 { 2803 struct mapped_device *md = bdev->bd_disk->private_data; 2804 const struct pr_ops *ops; 2805 fmode_t mode; 2806 int r; 2807 2808 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2809 if (r < 0) 2810 return r; 2811 2812 ops = bdev->bd_disk->fops->pr_ops; 2813 if (ops && ops->pr_preempt) 2814 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2815 else 2816 r = -EOPNOTSUPP; 2817 2818 bdput(bdev); 2819 return r; 2820 } 2821 2822 static int dm_pr_clear(struct block_device *bdev, u64 key) 2823 { 2824 struct mapped_device *md = bdev->bd_disk->private_data; 2825 const struct pr_ops *ops; 2826 fmode_t mode; 2827 int r; 2828 2829 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2830 if (r < 0) 2831 return r; 2832 2833 ops = bdev->bd_disk->fops->pr_ops; 2834 if (ops && ops->pr_clear) 2835 r = ops->pr_clear(bdev, key); 2836 else 2837 r = -EOPNOTSUPP; 2838 2839 bdput(bdev); 2840 return r; 2841 } 2842 2843 static const struct pr_ops dm_pr_ops = { 2844 .pr_register = dm_pr_register, 2845 .pr_reserve = dm_pr_reserve, 2846 .pr_release = dm_pr_release, 2847 .pr_preempt = dm_pr_preempt, 2848 .pr_clear = dm_pr_clear, 2849 }; 2850 2851 static const struct block_device_operations dm_blk_dops = { 2852 .open = dm_blk_open, 2853 .release = dm_blk_close, 2854 .ioctl = dm_blk_ioctl, 2855 .getgeo = dm_blk_getgeo, 2856 .pr_ops = &dm_pr_ops, 2857 .owner = THIS_MODULE 2858 }; 2859 2860 static const struct dax_operations dm_dax_ops = { 2861 .direct_access = dm_dax_direct_access, 2862 }; 2863 2864 /* 2865 * module hooks 2866 */ 2867 module_init(dm_init); 2868 module_exit(dm_exit); 2869 2870 module_param(major, uint, 0); 2871 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2872 2873 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2874 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2875 2876 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2877 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2878 2879 MODULE_DESCRIPTION(DM_NAME " driver"); 2880 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2881 MODULE_LICENSE("GPL"); 2882