1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/bio-integrity.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/signal.h> 20 #include <linux/blkpg.h> 21 #include <linux/bio.h> 22 #include <linux/mempool.h> 23 #include <linux/dax.h> 24 #include <linux/slab.h> 25 #include <linux/idr.h> 26 #include <linux/uio.h> 27 #include <linux/hdreg.h> 28 #include <linux/delay.h> 29 #include <linux/wait.h> 30 #include <linux/pr.h> 31 #include <linux/refcount.h> 32 #include <linux/part_stat.h> 33 #include <linux/blk-crypto.h> 34 #include <linux/blk-crypto-profile.h> 35 36 #define DM_MSG_PREFIX "core" 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 /* 46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 47 * dm_io into one list, and reuse bio->bi_private as the list head. Before 48 * ending this fs bio, we will recover its ->bi_private. 49 */ 50 #define REQ_DM_POLL_LIST REQ_DRV 51 52 static const char *_name = DM_NAME; 53 54 static unsigned int major; 55 static unsigned int _major; 56 57 static DEFINE_IDR(_minor_idr); 58 59 static DEFINE_SPINLOCK(_minor_lock); 60 61 static void do_deferred_remove(struct work_struct *w); 62 63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 64 65 static struct workqueue_struct *deferred_remove_workqueue; 66 67 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 69 70 void dm_issue_global_event(void) 71 { 72 atomic_inc(&dm_global_event_nr); 73 wake_up(&dm_global_eventq); 74 } 75 76 DEFINE_STATIC_KEY_FALSE(stats_enabled); 77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 78 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 79 80 /* 81 * One of these is allocated (on-stack) per original bio. 82 */ 83 struct clone_info { 84 struct dm_table *map; 85 struct bio *bio; 86 struct dm_io *io; 87 sector_t sector; 88 unsigned int sector_count; 89 bool is_abnormal_io:1; 90 bool submit_as_polled:1; 91 }; 92 93 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 94 { 95 return container_of(clone, struct dm_target_io, clone); 96 } 97 98 void *dm_per_bio_data(struct bio *bio, size_t data_size) 99 { 100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 102 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 103 } 104 EXPORT_SYMBOL_GPL(dm_per_bio_data); 105 106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 107 { 108 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 109 110 if (io->magic == DM_IO_MAGIC) 111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 112 BUG_ON(io->magic != DM_TIO_MAGIC); 113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 114 } 115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 116 117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 118 { 119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 120 } 121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 122 123 #define MINOR_ALLOCED ((void *)-1) 124 125 #define DM_NUMA_NODE NUMA_NO_NODE 126 static int dm_numa_node = DM_NUMA_NODE; 127 128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 129 static int swap_bios = DEFAULT_SWAP_BIOS; 130 static int get_swap_bios(void) 131 { 132 int latch = READ_ONCE(swap_bios); 133 134 if (unlikely(latch <= 0)) 135 latch = DEFAULT_SWAP_BIOS; 136 return latch; 137 } 138 139 struct table_device { 140 struct list_head list; 141 refcount_t count; 142 struct dm_dev dm_dev; 143 }; 144 145 /* 146 * Bio-based DM's mempools' reserved IOs set by the user. 147 */ 148 #define RESERVED_BIO_BASED_IOS 16 149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 150 151 static int __dm_get_module_param_int(int *module_param, int min, int max) 152 { 153 int param = READ_ONCE(*module_param); 154 int modified_param = 0; 155 bool modified = true; 156 157 if (param < min) 158 modified_param = min; 159 else if (param > max) 160 modified_param = max; 161 else 162 modified = false; 163 164 if (modified) { 165 (void)cmpxchg(module_param, param, modified_param); 166 param = modified_param; 167 } 168 169 return param; 170 } 171 172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 173 { 174 unsigned int param = READ_ONCE(*module_param); 175 unsigned int modified_param = 0; 176 177 if (!param) 178 modified_param = def; 179 else if (param > max) 180 modified_param = max; 181 182 if (modified_param) { 183 (void)cmpxchg(module_param, param, modified_param); 184 param = modified_param; 185 } 186 187 return param; 188 } 189 190 unsigned int dm_get_reserved_bio_based_ios(void) 191 { 192 return __dm_get_module_param(&reserved_bio_based_ios, 193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 194 } 195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 196 197 static unsigned int dm_get_numa_node(void) 198 { 199 return __dm_get_module_param_int(&dm_numa_node, 200 DM_NUMA_NODE, num_online_nodes() - 1); 201 } 202 203 static int __init local_init(void) 204 { 205 int r; 206 207 r = dm_uevent_init(); 208 if (r) 209 return r; 210 211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); 212 if (!deferred_remove_workqueue) { 213 r = -ENOMEM; 214 goto out_uevent_exit; 215 } 216 217 _major = major; 218 r = register_blkdev(_major, _name); 219 if (r < 0) 220 goto out_free_workqueue; 221 222 if (!_major) 223 _major = r; 224 225 return 0; 226 227 out_free_workqueue: 228 destroy_workqueue(deferred_remove_workqueue); 229 out_uevent_exit: 230 dm_uevent_exit(); 231 232 return r; 233 } 234 235 static void local_exit(void) 236 { 237 destroy_workqueue(deferred_remove_workqueue); 238 239 unregister_blkdev(_major, _name); 240 dm_uevent_exit(); 241 242 _major = 0; 243 244 DMINFO("cleaned up"); 245 } 246 247 static int (*_inits[])(void) __initdata = { 248 local_init, 249 dm_target_init, 250 dm_linear_init, 251 dm_stripe_init, 252 dm_io_init, 253 dm_kcopyd_init, 254 dm_interface_init, 255 dm_statistics_init, 256 }; 257 258 static void (*_exits[])(void) = { 259 local_exit, 260 dm_target_exit, 261 dm_linear_exit, 262 dm_stripe_exit, 263 dm_io_exit, 264 dm_kcopyd_exit, 265 dm_interface_exit, 266 dm_statistics_exit, 267 }; 268 269 static int __init dm_init(void) 270 { 271 const int count = ARRAY_SIZE(_inits); 272 int r, i; 273 274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 276 " Duplicate IMA measurements will not be recorded in the IMA log."); 277 #endif 278 279 for (i = 0; i < count; i++) { 280 r = _inits[i](); 281 if (r) 282 goto bad; 283 } 284 285 return 0; 286 bad: 287 while (i--) 288 _exits[i](); 289 290 return r; 291 } 292 293 static void __exit dm_exit(void) 294 { 295 int i = ARRAY_SIZE(_exits); 296 297 while (i--) 298 _exits[i](); 299 300 /* 301 * Should be empty by this point. 302 */ 303 idr_destroy(&_minor_idr); 304 } 305 306 /* 307 * Block device functions 308 */ 309 int dm_deleting_md(struct mapped_device *md) 310 { 311 return test_bit(DMF_DELETING, &md->flags); 312 } 313 314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 315 { 316 struct mapped_device *md; 317 318 spin_lock(&_minor_lock); 319 320 md = disk->private_data; 321 if (!md) 322 goto out; 323 324 if (test_bit(DMF_FREEING, &md->flags) || 325 dm_deleting_md(md)) { 326 md = NULL; 327 goto out; 328 } 329 330 dm_get(md); 331 atomic_inc(&md->open_count); 332 out: 333 spin_unlock(&_minor_lock); 334 335 return md ? 0 : -ENXIO; 336 } 337 338 static void dm_blk_close(struct gendisk *disk) 339 { 340 struct mapped_device *md; 341 342 spin_lock(&_minor_lock); 343 344 md = disk->private_data; 345 if (WARN_ON(!md)) 346 goto out; 347 348 if (atomic_dec_and_test(&md->open_count) && 349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 350 queue_work(deferred_remove_workqueue, &deferred_remove_work); 351 352 dm_put(md); 353 out: 354 spin_unlock(&_minor_lock); 355 } 356 357 int dm_open_count(struct mapped_device *md) 358 { 359 return atomic_read(&md->open_count); 360 } 361 362 /* 363 * Guarantees nothing is using the device before it's deleted. 364 */ 365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 366 { 367 int r = 0; 368 369 spin_lock(&_minor_lock); 370 371 if (dm_open_count(md)) { 372 r = -EBUSY; 373 if (mark_deferred) 374 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 376 r = -EEXIST; 377 else 378 set_bit(DMF_DELETING, &md->flags); 379 380 spin_unlock(&_minor_lock); 381 382 return r; 383 } 384 385 int dm_cancel_deferred_remove(struct mapped_device *md) 386 { 387 int r = 0; 388 389 spin_lock(&_minor_lock); 390 391 if (test_bit(DMF_DELETING, &md->flags)) 392 r = -EBUSY; 393 else 394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 395 396 spin_unlock(&_minor_lock); 397 398 return r; 399 } 400 401 static void do_deferred_remove(struct work_struct *w) 402 { 403 dm_deferred_remove(); 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 414 struct block_device **bdev) 415 { 416 struct dm_target *ti; 417 struct dm_table *map; 418 int r; 419 420 retry: 421 r = -ENOTTY; 422 map = dm_get_live_table(md, srcu_idx); 423 if (!map || !dm_table_get_size(map)) 424 return r; 425 426 /* We only support devices that have a single target */ 427 if (map->num_targets != 1) 428 return r; 429 430 ti = dm_table_get_target(map, 0); 431 if (!ti->type->prepare_ioctl) 432 return r; 433 434 if (dm_suspended_md(md)) 435 return -EAGAIN; 436 437 r = ti->type->prepare_ioctl(ti, bdev); 438 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 439 dm_put_live_table(md, *srcu_idx); 440 fsleep(10000); 441 goto retry; 442 } 443 444 return r; 445 } 446 447 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 448 { 449 dm_put_live_table(md, srcu_idx); 450 } 451 452 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 453 unsigned int cmd, unsigned long arg) 454 { 455 struct mapped_device *md = bdev->bd_disk->private_data; 456 int r, srcu_idx; 457 458 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 459 if (r < 0) 460 goto out; 461 462 if (r > 0) { 463 /* 464 * Target determined this ioctl is being issued against a 465 * subset of the parent bdev; require extra privileges. 466 */ 467 if (!capable(CAP_SYS_RAWIO)) { 468 DMDEBUG_LIMIT( 469 "%s: sending ioctl %x to DM device without required privilege.", 470 current->comm, cmd); 471 r = -ENOIOCTLCMD; 472 goto out; 473 } 474 } 475 476 if (!bdev->bd_disk->fops->ioctl) 477 r = -ENOTTY; 478 else 479 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 480 out: 481 dm_unprepare_ioctl(md, srcu_idx); 482 return r; 483 } 484 485 u64 dm_start_time_ns_from_clone(struct bio *bio) 486 { 487 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 488 } 489 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 490 491 static inline bool bio_is_flush_with_data(struct bio *bio) 492 { 493 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 494 } 495 496 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) 497 { 498 /* 499 * If REQ_PREFLUSH set, don't account payload, it will be 500 * submitted (and accounted) after this flush completes. 501 */ 502 if (bio_is_flush_with_data(bio)) 503 return 0; 504 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 505 return io->sectors; 506 return bio_sectors(bio); 507 } 508 509 static void dm_io_acct(struct dm_io *io, bool end) 510 { 511 struct bio *bio = io->orig_bio; 512 513 if (dm_io_flagged(io, DM_IO_BLK_STAT)) { 514 if (!end) 515 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), 516 io->start_time); 517 else 518 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), 519 dm_io_sectors(io, bio), 520 io->start_time); 521 } 522 523 if (static_branch_unlikely(&stats_enabled) && 524 unlikely(dm_stats_used(&io->md->stats))) { 525 sector_t sector; 526 527 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 528 sector = bio_end_sector(bio) - io->sector_offset; 529 else 530 sector = bio->bi_iter.bi_sector; 531 532 dm_stats_account_io(&io->md->stats, bio_data_dir(bio), 533 sector, dm_io_sectors(io, bio), 534 end, io->start_time, &io->stats_aux); 535 } 536 } 537 538 static void __dm_start_io_acct(struct dm_io *io) 539 { 540 dm_io_acct(io, false); 541 } 542 543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 544 { 545 /* 546 * Ensure IO accounting is only ever started once. 547 */ 548 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 549 return; 550 551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 553 dm_io_set_flag(io, DM_IO_ACCOUNTED); 554 } else { 555 unsigned long flags; 556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 557 spin_lock_irqsave(&io->lock, flags); 558 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 559 spin_unlock_irqrestore(&io->lock, flags); 560 return; 561 } 562 dm_io_set_flag(io, DM_IO_ACCOUNTED); 563 spin_unlock_irqrestore(&io->lock, flags); 564 } 565 566 __dm_start_io_acct(io); 567 } 568 569 static void dm_end_io_acct(struct dm_io *io) 570 { 571 dm_io_acct(io, true); 572 } 573 574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask) 575 { 576 struct dm_io *io; 577 struct dm_target_io *tio; 578 struct bio *clone; 579 580 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs); 581 if (unlikely(!clone)) 582 return NULL; 583 tio = clone_to_tio(clone); 584 tio->flags = 0; 585 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 586 tio->io = NULL; 587 588 io = container_of(tio, struct dm_io, tio); 589 io->magic = DM_IO_MAGIC; 590 io->status = BLK_STS_OK; 591 592 /* one ref is for submission, the other is for completion */ 593 atomic_set(&io->io_count, 2); 594 this_cpu_inc(*md->pending_io); 595 io->orig_bio = bio; 596 io->md = md; 597 spin_lock_init(&io->lock); 598 io->start_time = jiffies; 599 io->flags = 0; 600 if (blk_queue_io_stat(md->queue)) 601 dm_io_set_flag(io, DM_IO_BLK_STAT); 602 603 if (static_branch_unlikely(&stats_enabled) && 604 unlikely(dm_stats_used(&md->stats))) 605 dm_stats_record_start(&md->stats, &io->stats_aux); 606 607 return io; 608 } 609 610 static void free_io(struct dm_io *io) 611 { 612 bio_put(&io->tio.clone); 613 } 614 615 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 616 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 617 { 618 struct mapped_device *md = ci->io->md; 619 struct dm_target_io *tio; 620 struct bio *clone; 621 622 if (!ci->io->tio.io) { 623 /* the dm_target_io embedded in ci->io is available */ 624 tio = &ci->io->tio; 625 /* alloc_io() already initialized embedded clone */ 626 clone = &tio->clone; 627 } else { 628 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 629 &md->mempools->bs); 630 if (!clone) 631 return NULL; 632 633 /* REQ_DM_POLL_LIST shouldn't be inherited */ 634 clone->bi_opf &= ~REQ_DM_POLL_LIST; 635 636 tio = clone_to_tio(clone); 637 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 638 } 639 640 tio->magic = DM_TIO_MAGIC; 641 tio->io = ci->io; 642 tio->ti = ti; 643 tio->target_bio_nr = target_bio_nr; 644 tio->len_ptr = len; 645 tio->old_sector = 0; 646 647 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 648 clone->bi_bdev = md->disk->part0; 649 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev)) 650 bio_set_dev(clone, md->disk->part0); 651 652 if (len) { 653 clone->bi_iter.bi_size = to_bytes(*len); 654 if (bio_integrity(clone)) 655 bio_integrity_trim(clone); 656 } 657 658 return clone; 659 } 660 661 static void free_tio(struct bio *clone) 662 { 663 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 664 return; 665 bio_put(clone); 666 } 667 668 /* 669 * Add the bio to the list of deferred io. 670 */ 671 static void queue_io(struct mapped_device *md, struct bio *bio) 672 { 673 unsigned long flags; 674 675 spin_lock_irqsave(&md->deferred_lock, flags); 676 bio_list_add(&md->deferred, bio); 677 spin_unlock_irqrestore(&md->deferred_lock, flags); 678 queue_work(md->wq, &md->work); 679 } 680 681 /* 682 * Everyone (including functions in this file), should use this 683 * function to access the md->map field, and make sure they call 684 * dm_put_live_table() when finished. 685 */ 686 struct dm_table *dm_get_live_table(struct mapped_device *md, 687 int *srcu_idx) __acquires(md->io_barrier) 688 { 689 *srcu_idx = srcu_read_lock(&md->io_barrier); 690 691 return srcu_dereference(md->map, &md->io_barrier); 692 } 693 694 void dm_put_live_table(struct mapped_device *md, 695 int srcu_idx) __releases(md->io_barrier) 696 { 697 srcu_read_unlock(&md->io_barrier, srcu_idx); 698 } 699 700 void dm_sync_table(struct mapped_device *md) 701 { 702 synchronize_srcu(&md->io_barrier); 703 synchronize_rcu_expedited(); 704 } 705 706 /* 707 * A fast alternative to dm_get_live_table/dm_put_live_table. 708 * The caller must not block between these two functions. 709 */ 710 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 711 { 712 rcu_read_lock(); 713 return rcu_dereference(md->map); 714 } 715 716 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 717 { 718 rcu_read_unlock(); 719 } 720 721 static char *_dm_claim_ptr = "I belong to device-mapper"; 722 723 /* 724 * Open a table device so we can use it as a map destination. 725 */ 726 static struct table_device *open_table_device(struct mapped_device *md, 727 dev_t dev, blk_mode_t mode) 728 { 729 struct table_device *td; 730 struct file *bdev_file; 731 struct block_device *bdev; 732 u64 part_off; 733 int r; 734 735 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 736 if (!td) 737 return ERR_PTR(-ENOMEM); 738 refcount_set(&td->count, 1); 739 740 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL); 741 if (IS_ERR(bdev_file)) { 742 r = PTR_ERR(bdev_file); 743 goto out_free_td; 744 } 745 746 bdev = file_bdev(bdev_file); 747 748 /* 749 * We can be called before the dm disk is added. In that case we can't 750 * register the holder relation here. It will be done once add_disk was 751 * called. 752 */ 753 if (md->disk->slave_dir) { 754 r = bd_link_disk_holder(bdev, md->disk); 755 if (r) 756 goto out_blkdev_put; 757 } 758 759 td->dm_dev.mode = mode; 760 td->dm_dev.bdev = bdev; 761 td->dm_dev.bdev_file = bdev_file; 762 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, 763 NULL, NULL); 764 format_dev_t(td->dm_dev.name, dev); 765 list_add(&td->list, &md->table_devices); 766 return td; 767 768 out_blkdev_put: 769 __fput_sync(bdev_file); 770 out_free_td: 771 kfree(td); 772 return ERR_PTR(r); 773 } 774 775 /* 776 * Close a table device that we've been using. 777 */ 778 static void close_table_device(struct table_device *td, struct mapped_device *md) 779 { 780 if (md->disk->slave_dir) 781 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 782 783 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */ 784 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 785 fput(td->dm_dev.bdev_file); 786 else 787 __fput_sync(td->dm_dev.bdev_file); 788 789 put_dax(td->dm_dev.dax_dev); 790 list_del(&td->list); 791 kfree(td); 792 } 793 794 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 795 blk_mode_t mode) 796 { 797 struct table_device *td; 798 799 list_for_each_entry(td, l, list) 800 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 801 return td; 802 803 return NULL; 804 } 805 806 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 807 struct dm_dev **result) 808 { 809 struct table_device *td; 810 811 mutex_lock(&md->table_devices_lock); 812 td = find_table_device(&md->table_devices, dev, mode); 813 if (!td) { 814 td = open_table_device(md, dev, mode); 815 if (IS_ERR(td)) { 816 mutex_unlock(&md->table_devices_lock); 817 return PTR_ERR(td); 818 } 819 } else { 820 refcount_inc(&td->count); 821 } 822 mutex_unlock(&md->table_devices_lock); 823 824 *result = &td->dm_dev; 825 return 0; 826 } 827 828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 829 { 830 struct table_device *td = container_of(d, struct table_device, dm_dev); 831 832 mutex_lock(&md->table_devices_lock); 833 if (refcount_dec_and_test(&td->count)) 834 close_table_device(td, md); 835 mutex_unlock(&md->table_devices_lock); 836 } 837 838 /* 839 * Get the geometry associated with a dm device 840 */ 841 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 842 { 843 *geo = md->geometry; 844 845 return 0; 846 } 847 848 /* 849 * Set the geometry of a device. 850 */ 851 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 852 { 853 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 854 855 if (geo->start > sz) { 856 DMERR("Start sector is beyond the geometry limits."); 857 return -EINVAL; 858 } 859 860 md->geometry = *geo; 861 862 return 0; 863 } 864 865 static int __noflush_suspending(struct mapped_device *md) 866 { 867 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 868 } 869 870 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 871 { 872 struct mapped_device *md = io->md; 873 874 if (first_stage) { 875 struct dm_io *next = md->requeue_list; 876 877 md->requeue_list = io; 878 io->next = next; 879 } else { 880 bio_list_add_head(&md->deferred, io->orig_bio); 881 } 882 } 883 884 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 885 { 886 if (first_stage) 887 queue_work(md->wq, &md->requeue_work); 888 else 889 queue_work(md->wq, &md->work); 890 } 891 892 /* 893 * Return true if the dm_io's original bio is requeued. 894 * io->status is updated with error if requeue disallowed. 895 */ 896 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 897 { 898 struct bio *bio = io->orig_bio; 899 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 900 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 901 (bio->bi_opf & REQ_POLLED)); 902 struct mapped_device *md = io->md; 903 bool requeued = false; 904 905 if (handle_requeue || handle_polled_eagain) { 906 unsigned long flags; 907 908 if (bio->bi_opf & REQ_POLLED) { 909 /* 910 * Upper layer won't help us poll split bio 911 * (io->orig_bio may only reflect a subset of the 912 * pre-split original) so clear REQ_POLLED. 913 */ 914 bio_clear_polled(bio); 915 } 916 917 /* 918 * Target requested pushing back the I/O or 919 * polled IO hit BLK_STS_AGAIN. 920 */ 921 spin_lock_irqsave(&md->deferred_lock, flags); 922 if ((__noflush_suspending(md) && 923 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 924 handle_polled_eagain || first_stage) { 925 dm_requeue_add_io(io, first_stage); 926 requeued = true; 927 } else { 928 /* 929 * noflush suspend was interrupted or this is 930 * a write to a zoned target. 931 */ 932 io->status = BLK_STS_IOERR; 933 } 934 spin_unlock_irqrestore(&md->deferred_lock, flags); 935 } 936 937 if (requeued) 938 dm_kick_requeue(md, first_stage); 939 940 return requeued; 941 } 942 943 static void __dm_io_complete(struct dm_io *io, bool first_stage) 944 { 945 struct bio *bio = io->orig_bio; 946 struct mapped_device *md = io->md; 947 blk_status_t io_error; 948 bool requeued; 949 950 requeued = dm_handle_requeue(io, first_stage); 951 if (requeued && first_stage) 952 return; 953 954 io_error = io->status; 955 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 956 dm_end_io_acct(io); 957 else if (!io_error) { 958 /* 959 * Must handle target that DM_MAPIO_SUBMITTED only to 960 * then bio_endio() rather than dm_submit_bio_remap() 961 */ 962 __dm_start_io_acct(io); 963 dm_end_io_acct(io); 964 } 965 free_io(io); 966 smp_wmb(); 967 this_cpu_dec(*md->pending_io); 968 969 /* nudge anyone waiting on suspend queue */ 970 if (unlikely(wq_has_sleeper(&md->wait))) 971 wake_up(&md->wait); 972 973 /* Return early if the original bio was requeued */ 974 if (requeued) 975 return; 976 977 if (bio_is_flush_with_data(bio)) { 978 /* 979 * Preflush done for flush with data, reissue 980 * without REQ_PREFLUSH. 981 */ 982 bio->bi_opf &= ~REQ_PREFLUSH; 983 queue_io(md, bio); 984 } else { 985 /* done with normal IO or empty flush */ 986 if (io_error) 987 bio->bi_status = io_error; 988 bio_endio(bio); 989 } 990 } 991 992 static void dm_wq_requeue_work(struct work_struct *work) 993 { 994 struct mapped_device *md = container_of(work, struct mapped_device, 995 requeue_work); 996 unsigned long flags; 997 struct dm_io *io; 998 999 /* reuse deferred lock to simplify dm_handle_requeue */ 1000 spin_lock_irqsave(&md->deferred_lock, flags); 1001 io = md->requeue_list; 1002 md->requeue_list = NULL; 1003 spin_unlock_irqrestore(&md->deferred_lock, flags); 1004 1005 while (io) { 1006 struct dm_io *next = io->next; 1007 1008 dm_io_rewind(io, &md->disk->bio_split); 1009 1010 io->next = NULL; 1011 __dm_io_complete(io, false); 1012 io = next; 1013 cond_resched(); 1014 } 1015 } 1016 1017 /* 1018 * Two staged requeue: 1019 * 1020 * 1) io->orig_bio points to the real original bio, and the part mapped to 1021 * this io must be requeued, instead of other parts of the original bio. 1022 * 1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1024 */ 1025 static void dm_io_complete(struct dm_io *io) 1026 { 1027 bool first_requeue; 1028 1029 /* 1030 * Only dm_io that has been split needs two stage requeue, otherwise 1031 * we may run into long bio clone chain during suspend and OOM could 1032 * be triggered. 1033 * 1034 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1035 * also aren't handled via the first stage requeue. 1036 */ 1037 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1038 first_requeue = true; 1039 else 1040 first_requeue = false; 1041 1042 __dm_io_complete(io, first_requeue); 1043 } 1044 1045 /* 1046 * Decrements the number of outstanding ios that a bio has been 1047 * cloned into, completing the original io if necc. 1048 */ 1049 static inline void __dm_io_dec_pending(struct dm_io *io) 1050 { 1051 if (atomic_dec_and_test(&io->io_count)) 1052 dm_io_complete(io); 1053 } 1054 1055 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1056 { 1057 unsigned long flags; 1058 1059 /* Push-back supersedes any I/O errors */ 1060 spin_lock_irqsave(&io->lock, flags); 1061 if (!(io->status == BLK_STS_DM_REQUEUE && 1062 __noflush_suspending(io->md))) { 1063 io->status = error; 1064 } 1065 spin_unlock_irqrestore(&io->lock, flags); 1066 } 1067 1068 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1069 { 1070 if (unlikely(error)) 1071 dm_io_set_error(io, error); 1072 1073 __dm_io_dec_pending(io); 1074 } 1075 1076 /* 1077 * The queue_limits are only valid as long as you have a reference 1078 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1079 */ 1080 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1081 { 1082 return &md->queue->limits; 1083 } 1084 1085 void disable_discard(struct mapped_device *md) 1086 { 1087 struct queue_limits *limits = dm_get_queue_limits(md); 1088 1089 /* device doesn't really support DISCARD, disable it */ 1090 limits->max_hw_discard_sectors = 0; 1091 } 1092 1093 void disable_write_zeroes(struct mapped_device *md) 1094 { 1095 struct queue_limits *limits = dm_get_queue_limits(md); 1096 1097 /* device doesn't really support WRITE ZEROES, disable it */ 1098 limits->max_write_zeroes_sectors = 0; 1099 } 1100 1101 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1102 { 1103 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1104 } 1105 1106 static void clone_endio(struct bio *bio) 1107 { 1108 blk_status_t error = bio->bi_status; 1109 struct dm_target_io *tio = clone_to_tio(bio); 1110 struct dm_target *ti = tio->ti; 1111 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL; 1112 struct dm_io *io = tio->io; 1113 struct mapped_device *md = io->md; 1114 1115 if (unlikely(error == BLK_STS_TARGET)) { 1116 if (bio_op(bio) == REQ_OP_DISCARD && 1117 !bdev_max_discard_sectors(bio->bi_bdev)) 1118 disable_discard(md); 1119 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1120 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1121 disable_write_zeroes(md); 1122 } 1123 1124 if (static_branch_unlikely(&zoned_enabled) && 1125 unlikely(bdev_is_zoned(bio->bi_bdev))) 1126 dm_zone_endio(io, bio); 1127 1128 if (endio) { 1129 int r = endio(ti, bio, &error); 1130 1131 switch (r) { 1132 case DM_ENDIO_REQUEUE: 1133 if (static_branch_unlikely(&zoned_enabled)) { 1134 /* 1135 * Requeuing writes to a sequential zone of a zoned 1136 * target will break the sequential write pattern: 1137 * fail such IO. 1138 */ 1139 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1140 error = BLK_STS_IOERR; 1141 else 1142 error = BLK_STS_DM_REQUEUE; 1143 } else 1144 error = BLK_STS_DM_REQUEUE; 1145 fallthrough; 1146 case DM_ENDIO_DONE: 1147 break; 1148 case DM_ENDIO_INCOMPLETE: 1149 /* The target will handle the io */ 1150 return; 1151 default: 1152 DMCRIT("unimplemented target endio return value: %d", r); 1153 BUG(); 1154 } 1155 } 1156 1157 if (static_branch_unlikely(&swap_bios_enabled) && 1158 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio))) 1159 up(&md->swap_bios_semaphore); 1160 1161 free_tio(bio); 1162 dm_io_dec_pending(io, error); 1163 } 1164 1165 /* 1166 * Return maximum size of I/O possible at the supplied sector up to the current 1167 * target boundary. 1168 */ 1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1170 sector_t target_offset) 1171 { 1172 return ti->len - target_offset; 1173 } 1174 1175 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1176 unsigned int max_granularity, 1177 unsigned int max_sectors) 1178 { 1179 sector_t target_offset = dm_target_offset(ti, sector); 1180 sector_t len = max_io_len_target_boundary(ti, target_offset); 1181 1182 /* 1183 * Does the target need to split IO even further? 1184 * - varied (per target) IO splitting is a tenet of DM; this 1185 * explains why stacked chunk_sectors based splitting via 1186 * bio_split_to_limits() isn't possible here. 1187 */ 1188 if (!max_granularity) 1189 return len; 1190 return min_t(sector_t, len, 1191 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1192 blk_boundary_sectors_left(target_offset, max_granularity))); 1193 } 1194 1195 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1196 { 1197 return __max_io_len(ti, sector, ti->max_io_len, 0); 1198 } 1199 1200 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1201 { 1202 if (len > UINT_MAX) { 1203 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1204 (unsigned long long)len, UINT_MAX); 1205 ti->error = "Maximum size of target IO is too large"; 1206 return -EINVAL; 1207 } 1208 1209 ti->max_io_len = (uint32_t) len; 1210 1211 return 0; 1212 } 1213 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1214 1215 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1216 sector_t sector, int *srcu_idx) 1217 __acquires(md->io_barrier) 1218 { 1219 struct dm_table *map; 1220 struct dm_target *ti; 1221 1222 map = dm_get_live_table(md, srcu_idx); 1223 if (!map) 1224 return NULL; 1225 1226 ti = dm_table_find_target(map, sector); 1227 if (!ti) 1228 return NULL; 1229 1230 return ti; 1231 } 1232 1233 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1234 long nr_pages, enum dax_access_mode mode, void **kaddr, 1235 pfn_t *pfn) 1236 { 1237 struct mapped_device *md = dax_get_private(dax_dev); 1238 sector_t sector = pgoff * PAGE_SECTORS; 1239 struct dm_target *ti; 1240 long len, ret = -EIO; 1241 int srcu_idx; 1242 1243 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1244 1245 if (!ti) 1246 goto out; 1247 if (!ti->type->direct_access) 1248 goto out; 1249 len = max_io_len(ti, sector) / PAGE_SECTORS; 1250 if (len < 1) 1251 goto out; 1252 nr_pages = min(len, nr_pages); 1253 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1254 1255 out: 1256 dm_put_live_table(md, srcu_idx); 1257 1258 return ret; 1259 } 1260 1261 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1262 size_t nr_pages) 1263 { 1264 struct mapped_device *md = dax_get_private(dax_dev); 1265 sector_t sector = pgoff * PAGE_SECTORS; 1266 struct dm_target *ti; 1267 int ret = -EIO; 1268 int srcu_idx; 1269 1270 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1271 1272 if (!ti) 1273 goto out; 1274 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1275 /* 1276 * ->zero_page_range() is mandatory dax operation. If we are 1277 * here, something is wrong. 1278 */ 1279 goto out; 1280 } 1281 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1282 out: 1283 dm_put_live_table(md, srcu_idx); 1284 1285 return ret; 1286 } 1287 1288 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1289 void *addr, size_t bytes, struct iov_iter *i) 1290 { 1291 struct mapped_device *md = dax_get_private(dax_dev); 1292 sector_t sector = pgoff * PAGE_SECTORS; 1293 struct dm_target *ti; 1294 int srcu_idx; 1295 long ret = 0; 1296 1297 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1298 if (!ti || !ti->type->dax_recovery_write) 1299 goto out; 1300 1301 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1302 out: 1303 dm_put_live_table(md, srcu_idx); 1304 return ret; 1305 } 1306 1307 /* 1308 * A target may call dm_accept_partial_bio only from the map routine. It is 1309 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1310 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1311 * __send_duplicate_bios(). 1312 * 1313 * dm_accept_partial_bio informs the dm that the target only wants to process 1314 * additional n_sectors sectors of the bio and the rest of the data should be 1315 * sent in a next bio. 1316 * 1317 * A diagram that explains the arithmetics: 1318 * +--------------------+---------------+-------+ 1319 * | 1 | 2 | 3 | 1320 * +--------------------+---------------+-------+ 1321 * 1322 * <-------------- *tio->len_ptr ---------------> 1323 * <----- bio_sectors -----> 1324 * <-- n_sectors --> 1325 * 1326 * Region 1 was already iterated over with bio_advance or similar function. 1327 * (it may be empty if the target doesn't use bio_advance) 1328 * Region 2 is the remaining bio size that the target wants to process. 1329 * (it may be empty if region 1 is non-empty, although there is no reason 1330 * to make it empty) 1331 * The target requires that region 3 is to be sent in the next bio. 1332 * 1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1334 * the partially processed part (the sum of regions 1+2) must be the same for all 1335 * copies of the bio. 1336 */ 1337 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1338 { 1339 struct dm_target_io *tio = clone_to_tio(bio); 1340 struct dm_io *io = tio->io; 1341 unsigned int bio_sectors = bio_sectors(bio); 1342 1343 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1344 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1345 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1346 BUG_ON(bio_sectors > *tio->len_ptr); 1347 BUG_ON(n_sectors > bio_sectors); 1348 1349 *tio->len_ptr -= bio_sectors - n_sectors; 1350 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1351 1352 /* 1353 * __split_and_process_bio() may have already saved mapped part 1354 * for accounting but it is being reduced so update accordingly. 1355 */ 1356 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1357 io->sectors = n_sectors; 1358 io->sector_offset = bio_sectors(io->orig_bio); 1359 } 1360 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1361 1362 /* 1363 * @clone: clone bio that DM core passed to target's .map function 1364 * @tgt_clone: clone of @clone bio that target needs submitted 1365 * 1366 * Targets should use this interface to submit bios they take 1367 * ownership of when returning DM_MAPIO_SUBMITTED. 1368 * 1369 * Target should also enable ti->accounts_remapped_io 1370 */ 1371 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1372 { 1373 struct dm_target_io *tio = clone_to_tio(clone); 1374 struct dm_io *io = tio->io; 1375 1376 /* establish bio that will get submitted */ 1377 if (!tgt_clone) 1378 tgt_clone = clone; 1379 1380 /* 1381 * Account io->origin_bio to DM dev on behalf of target 1382 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1383 */ 1384 dm_start_io_acct(io, clone); 1385 1386 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1387 tio->old_sector); 1388 submit_bio_noacct(tgt_clone); 1389 } 1390 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1391 1392 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1393 { 1394 mutex_lock(&md->swap_bios_lock); 1395 while (latch < md->swap_bios) { 1396 cond_resched(); 1397 down(&md->swap_bios_semaphore); 1398 md->swap_bios--; 1399 } 1400 while (latch > md->swap_bios) { 1401 cond_resched(); 1402 up(&md->swap_bios_semaphore); 1403 md->swap_bios++; 1404 } 1405 mutex_unlock(&md->swap_bios_lock); 1406 } 1407 1408 static void __map_bio(struct bio *clone) 1409 { 1410 struct dm_target_io *tio = clone_to_tio(clone); 1411 struct dm_target *ti = tio->ti; 1412 struct dm_io *io = tio->io; 1413 struct mapped_device *md = io->md; 1414 int r; 1415 1416 clone->bi_end_io = clone_endio; 1417 1418 /* 1419 * Map the clone. 1420 */ 1421 tio->old_sector = clone->bi_iter.bi_sector; 1422 1423 if (static_branch_unlikely(&swap_bios_enabled) && 1424 unlikely(swap_bios_limit(ti, clone))) { 1425 int latch = get_swap_bios(); 1426 1427 if (unlikely(latch != md->swap_bios)) 1428 __set_swap_bios_limit(md, latch); 1429 down(&md->swap_bios_semaphore); 1430 } 1431 1432 if (likely(ti->type->map == linear_map)) 1433 r = linear_map(ti, clone); 1434 else if (ti->type->map == stripe_map) 1435 r = stripe_map(ti, clone); 1436 else 1437 r = ti->type->map(ti, clone); 1438 1439 switch (r) { 1440 case DM_MAPIO_SUBMITTED: 1441 /* target has assumed ownership of this io */ 1442 if (!ti->accounts_remapped_io) 1443 dm_start_io_acct(io, clone); 1444 break; 1445 case DM_MAPIO_REMAPPED: 1446 dm_submit_bio_remap(clone, NULL); 1447 break; 1448 case DM_MAPIO_KILL: 1449 case DM_MAPIO_REQUEUE: 1450 if (static_branch_unlikely(&swap_bios_enabled) && 1451 unlikely(swap_bios_limit(ti, clone))) 1452 up(&md->swap_bios_semaphore); 1453 free_tio(clone); 1454 if (r == DM_MAPIO_KILL) 1455 dm_io_dec_pending(io, BLK_STS_IOERR); 1456 else 1457 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1458 break; 1459 default: 1460 DMCRIT("unimplemented target map return value: %d", r); 1461 BUG(); 1462 } 1463 } 1464 1465 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1466 { 1467 struct dm_io *io = ci->io; 1468 1469 if (ci->sector_count > len) { 1470 /* 1471 * Split needed, save the mapped part for accounting. 1472 * NOTE: dm_accept_partial_bio() will update accordingly. 1473 */ 1474 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1475 io->sectors = len; 1476 io->sector_offset = bio_sectors(ci->bio); 1477 } 1478 } 1479 1480 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1481 struct dm_target *ti, unsigned int num_bios, 1482 unsigned *len) 1483 { 1484 struct bio *bio; 1485 int try; 1486 1487 for (try = 0; try < 2; try++) { 1488 int bio_nr; 1489 1490 if (try && num_bios > 1) 1491 mutex_lock(&ci->io->md->table_devices_lock); 1492 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1493 bio = alloc_tio(ci, ti, bio_nr, len, 1494 try ? GFP_NOIO : GFP_NOWAIT); 1495 if (!bio) 1496 break; 1497 1498 bio_list_add(blist, bio); 1499 } 1500 if (try && num_bios > 1) 1501 mutex_unlock(&ci->io->md->table_devices_lock); 1502 if (bio_nr == num_bios) 1503 return; 1504 1505 while ((bio = bio_list_pop(blist))) 1506 free_tio(bio); 1507 } 1508 } 1509 1510 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1511 unsigned int num_bios, unsigned int *len) 1512 { 1513 struct bio_list blist = BIO_EMPTY_LIST; 1514 struct bio *clone; 1515 unsigned int ret = 0; 1516 1517 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */ 1518 return 0; 1519 1520 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1521 if (len) 1522 setup_split_accounting(ci, *len); 1523 1524 /* 1525 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently 1526 * support allocating using GFP_NOWAIT with GFP_NOIO fallback. 1527 */ 1528 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1529 while ((clone = bio_list_pop(&blist))) { 1530 if (num_bios > 1) 1531 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1532 __map_bio(clone); 1533 ret += 1; 1534 } 1535 1536 return ret; 1537 } 1538 1539 static void __send_empty_flush(struct clone_info *ci) 1540 { 1541 struct dm_table *t = ci->map; 1542 struct bio flush_bio; 1543 1544 /* 1545 * Use an on-stack bio for this, it's safe since we don't 1546 * need to reference it after submit. It's just used as 1547 * the basis for the clone(s). 1548 */ 1549 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1550 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1551 1552 ci->bio = &flush_bio; 1553 ci->sector_count = 0; 1554 ci->io->tio.clone.bi_iter.bi_size = 0; 1555 1556 if (!t->flush_bypasses_map) { 1557 for (unsigned int i = 0; i < t->num_targets; i++) { 1558 unsigned int bios; 1559 struct dm_target *ti = dm_table_get_target(t, i); 1560 1561 if (unlikely(ti->num_flush_bios == 0)) 1562 continue; 1563 1564 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1565 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, 1566 NULL); 1567 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1568 } 1569 } else { 1570 /* 1571 * Note that there's no need to grab t->devices_lock here 1572 * because the targets that support flush optimization don't 1573 * modify the list of devices. 1574 */ 1575 struct list_head *devices = dm_table_get_devices(t); 1576 unsigned int len = 0; 1577 struct dm_dev_internal *dd; 1578 list_for_each_entry(dd, devices, list) { 1579 struct bio *clone; 1580 /* 1581 * Note that the structure dm_target_io is not 1582 * associated with any target (because the device may be 1583 * used by multiple targets), so we set tio->ti = NULL. 1584 * We must check for NULL in the I/O processing path, to 1585 * avoid NULL pointer dereference. 1586 */ 1587 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO); 1588 atomic_add(1, &ci->io->io_count); 1589 bio_set_dev(clone, dd->dm_dev->bdev); 1590 clone->bi_end_io = clone_endio; 1591 dm_submit_bio_remap(clone, NULL); 1592 } 1593 } 1594 1595 /* 1596 * alloc_io() takes one extra reference for submission, so the 1597 * reference won't reach 0 without the following subtraction 1598 */ 1599 atomic_sub(1, &ci->io->io_count); 1600 1601 bio_uninit(ci->bio); 1602 } 1603 1604 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1605 unsigned int num_bios, unsigned int max_granularity, 1606 unsigned int max_sectors) 1607 { 1608 unsigned int len, bios; 1609 1610 len = min_t(sector_t, ci->sector_count, 1611 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1612 1613 atomic_add(num_bios, &ci->io->io_count); 1614 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1615 /* 1616 * alloc_io() takes one extra reference for submission, so the 1617 * reference won't reach 0 without the following (+1) subtraction 1618 */ 1619 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1620 1621 ci->sector += len; 1622 ci->sector_count -= len; 1623 } 1624 1625 static bool is_abnormal_io(struct bio *bio) 1626 { 1627 switch (bio_op(bio)) { 1628 case REQ_OP_READ: 1629 case REQ_OP_WRITE: 1630 case REQ_OP_FLUSH: 1631 return false; 1632 case REQ_OP_DISCARD: 1633 case REQ_OP_SECURE_ERASE: 1634 case REQ_OP_WRITE_ZEROES: 1635 case REQ_OP_ZONE_RESET_ALL: 1636 return true; 1637 default: 1638 return false; 1639 } 1640 } 1641 1642 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1643 struct dm_target *ti) 1644 { 1645 unsigned int num_bios = 0; 1646 unsigned int max_granularity = 0; 1647 unsigned int max_sectors = 0; 1648 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1649 1650 switch (bio_op(ci->bio)) { 1651 case REQ_OP_DISCARD: 1652 num_bios = ti->num_discard_bios; 1653 max_sectors = limits->max_discard_sectors; 1654 if (ti->max_discard_granularity) 1655 max_granularity = max_sectors; 1656 break; 1657 case REQ_OP_SECURE_ERASE: 1658 num_bios = ti->num_secure_erase_bios; 1659 max_sectors = limits->max_secure_erase_sectors; 1660 break; 1661 case REQ_OP_WRITE_ZEROES: 1662 num_bios = ti->num_write_zeroes_bios; 1663 max_sectors = limits->max_write_zeroes_sectors; 1664 break; 1665 default: 1666 break; 1667 } 1668 1669 /* 1670 * Even though the device advertised support for this type of 1671 * request, that does not mean every target supports it, and 1672 * reconfiguration might also have changed that since the 1673 * check was performed. 1674 */ 1675 if (unlikely(!num_bios)) 1676 return BLK_STS_NOTSUPP; 1677 1678 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors); 1679 1680 return BLK_STS_OK; 1681 } 1682 1683 /* 1684 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1685 * associated with this bio, and this bio's bi_private needs to be 1686 * stored in dm_io->data before the reuse. 1687 * 1688 * bio->bi_private is owned by fs or upper layer, so block layer won't 1689 * touch it after splitting. Meantime it won't be changed by anyone after 1690 * bio is submitted. So this reuse is safe. 1691 */ 1692 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1693 { 1694 return (struct dm_io **)&bio->bi_private; 1695 } 1696 1697 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1698 { 1699 struct dm_io **head = dm_poll_list_head(bio); 1700 1701 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1702 bio->bi_opf |= REQ_DM_POLL_LIST; 1703 /* 1704 * Save .bi_private into dm_io, so that we can reuse 1705 * .bi_private as dm_io list head for storing dm_io list 1706 */ 1707 io->data = bio->bi_private; 1708 1709 /* tell block layer to poll for completion */ 1710 bio->bi_cookie = ~BLK_QC_T_NONE; 1711 1712 io->next = NULL; 1713 } else { 1714 /* 1715 * bio recursed due to split, reuse original poll list, 1716 * and save bio->bi_private too. 1717 */ 1718 io->data = (*head)->data; 1719 io->next = *head; 1720 } 1721 1722 *head = io; 1723 } 1724 1725 /* 1726 * Select the correct strategy for processing a non-flush bio. 1727 */ 1728 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1729 { 1730 struct bio *clone; 1731 struct dm_target *ti; 1732 unsigned int len; 1733 1734 ti = dm_table_find_target(ci->map, ci->sector); 1735 if (unlikely(!ti)) 1736 return BLK_STS_IOERR; 1737 1738 if (unlikely(ci->is_abnormal_io)) 1739 return __process_abnormal_io(ci, ti); 1740 1741 /* 1742 * Only support bio polling for normal IO, and the target io is 1743 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1744 */ 1745 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1746 1747 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1748 if (ci->bio->bi_opf & REQ_ATOMIC && len != ci->sector_count) 1749 return BLK_STS_IOERR; 1750 1751 setup_split_accounting(ci, len); 1752 1753 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) { 1754 if (unlikely(!dm_target_supports_nowait(ti->type))) 1755 return BLK_STS_NOTSUPP; 1756 1757 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT); 1758 if (unlikely(!clone)) 1759 return BLK_STS_AGAIN; 1760 } else { 1761 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1762 } 1763 __map_bio(clone); 1764 1765 ci->sector += len; 1766 ci->sector_count -= len; 1767 1768 return BLK_STS_OK; 1769 } 1770 1771 static void init_clone_info(struct clone_info *ci, struct dm_io *io, 1772 struct dm_table *map, struct bio *bio, bool is_abnormal) 1773 { 1774 ci->map = map; 1775 ci->io = io; 1776 ci->bio = bio; 1777 ci->is_abnormal_io = is_abnormal; 1778 ci->submit_as_polled = false; 1779 ci->sector = bio->bi_iter.bi_sector; 1780 ci->sector_count = bio_sectors(bio); 1781 1782 /* Shouldn't happen but sector_count was being set to 0 so... */ 1783 if (static_branch_unlikely(&zoned_enabled) && 1784 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1785 ci->sector_count = 0; 1786 } 1787 1788 #ifdef CONFIG_BLK_DEV_ZONED 1789 static inline bool dm_zone_bio_needs_split(struct mapped_device *md, 1790 struct bio *bio) 1791 { 1792 /* 1793 * For mapped device that need zone append emulation, we must 1794 * split any large BIO that straddles zone boundaries. 1795 */ 1796 return dm_emulate_zone_append(md) && bio_straddles_zones(bio) && 1797 !bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); 1798 } 1799 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1800 { 1801 return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0); 1802 } 1803 1804 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci, 1805 struct dm_target *ti) 1806 { 1807 struct bio_list blist = BIO_EMPTY_LIST; 1808 struct mapped_device *md = ci->io->md; 1809 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors; 1810 unsigned long *need_reset; 1811 unsigned int i, nr_zones, nr_reset; 1812 unsigned int num_bios = 0; 1813 blk_status_t sts = BLK_STS_OK; 1814 sector_t sector = ti->begin; 1815 struct bio *clone; 1816 int ret; 1817 1818 nr_zones = ti->len >> ilog2(zone_sectors); 1819 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO); 1820 if (!need_reset) 1821 return BLK_STS_RESOURCE; 1822 1823 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin, 1824 nr_zones, need_reset); 1825 if (ret) { 1826 sts = BLK_STS_IOERR; 1827 goto free_bitmap; 1828 } 1829 1830 /* If we have no zone to reset, we are done. */ 1831 nr_reset = bitmap_weight(need_reset, nr_zones); 1832 if (!nr_reset) 1833 goto free_bitmap; 1834 1835 atomic_add(nr_zones, &ci->io->io_count); 1836 1837 for (i = 0; i < nr_zones; i++) { 1838 1839 if (!test_bit(i, need_reset)) { 1840 sector += zone_sectors; 1841 continue; 1842 } 1843 1844 if (bio_list_empty(&blist)) { 1845 /* This may take a while, so be nice to others */ 1846 if (num_bios) 1847 cond_resched(); 1848 1849 /* 1850 * We may need to reset thousands of zones, so let's 1851 * not go crazy with the clone allocation. 1852 */ 1853 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32), 1854 NULL); 1855 } 1856 1857 /* Get a clone and change it to a regular reset operation. */ 1858 clone = bio_list_pop(&blist); 1859 clone->bi_opf &= ~REQ_OP_MASK; 1860 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC; 1861 clone->bi_iter.bi_sector = sector; 1862 clone->bi_iter.bi_size = 0; 1863 __map_bio(clone); 1864 1865 sector += zone_sectors; 1866 num_bios++; 1867 nr_reset--; 1868 } 1869 1870 WARN_ON_ONCE(!bio_list_empty(&blist)); 1871 atomic_sub(nr_zones - num_bios, &ci->io->io_count); 1872 ci->sector_count = 0; 1873 1874 free_bitmap: 1875 bitmap_free(need_reset); 1876 1877 return sts; 1878 } 1879 1880 static void __send_zone_reset_all_native(struct clone_info *ci, 1881 struct dm_target *ti) 1882 { 1883 unsigned int bios; 1884 1885 atomic_add(1, &ci->io->io_count); 1886 bios = __send_duplicate_bios(ci, ti, 1, NULL); 1887 atomic_sub(1 - bios, &ci->io->io_count); 1888 1889 ci->sector_count = 0; 1890 } 1891 1892 static blk_status_t __send_zone_reset_all(struct clone_info *ci) 1893 { 1894 struct dm_table *t = ci->map; 1895 blk_status_t sts = BLK_STS_OK; 1896 1897 for (unsigned int i = 0; i < t->num_targets; i++) { 1898 struct dm_target *ti = dm_table_get_target(t, i); 1899 1900 if (ti->zone_reset_all_supported) { 1901 __send_zone_reset_all_native(ci, ti); 1902 continue; 1903 } 1904 1905 sts = __send_zone_reset_all_emulated(ci, ti); 1906 if (sts != BLK_STS_OK) 1907 break; 1908 } 1909 1910 /* Release the reference that alloc_io() took for submission. */ 1911 atomic_sub(1, &ci->io->io_count); 1912 1913 return sts; 1914 } 1915 1916 #else 1917 static inline bool dm_zone_bio_needs_split(struct mapped_device *md, 1918 struct bio *bio) 1919 { 1920 return false; 1921 } 1922 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1923 { 1924 return false; 1925 } 1926 static blk_status_t __send_zone_reset_all(struct clone_info *ci) 1927 { 1928 return BLK_STS_NOTSUPP; 1929 } 1930 #endif 1931 1932 /* 1933 * Entry point to split a bio into clones and submit them to the targets. 1934 */ 1935 static void dm_split_and_process_bio(struct mapped_device *md, 1936 struct dm_table *map, struct bio *bio) 1937 { 1938 struct clone_info ci; 1939 struct dm_io *io; 1940 blk_status_t error = BLK_STS_OK; 1941 bool is_abnormal, need_split; 1942 1943 is_abnormal = is_abnormal_io(bio); 1944 if (static_branch_unlikely(&zoned_enabled)) { 1945 /* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */ 1946 need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) && 1947 (is_abnormal || dm_zone_bio_needs_split(md, bio)); 1948 } else { 1949 need_split = is_abnormal; 1950 } 1951 1952 if (unlikely(need_split)) { 1953 /* 1954 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1955 * otherwise associated queue_limits won't be imposed. 1956 * Also split the BIO for mapped devices needing zone append 1957 * emulation to ensure that the BIO does not cross zone 1958 * boundaries. 1959 */ 1960 bio = bio_split_to_limits(bio); 1961 if (!bio) 1962 return; 1963 } 1964 1965 /* 1966 * Use the block layer zone write plugging for mapped devices that 1967 * need zone append emulation (e.g. dm-crypt). 1968 */ 1969 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio)) 1970 return; 1971 1972 /* Only support nowait for normal IO */ 1973 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) { 1974 /* 1975 * Don't support NOWAIT for FLUSH because it may allocate 1976 * multiple bios and there's no easy way how to undo the 1977 * allocations. 1978 */ 1979 if (bio->bi_opf & REQ_PREFLUSH) { 1980 bio_wouldblock_error(bio); 1981 return; 1982 } 1983 io = alloc_io(md, bio, GFP_NOWAIT); 1984 if (unlikely(!io)) { 1985 /* Unable to do anything without dm_io. */ 1986 bio_wouldblock_error(bio); 1987 return; 1988 } 1989 } else { 1990 io = alloc_io(md, bio, GFP_NOIO); 1991 } 1992 init_clone_info(&ci, io, map, bio, is_abnormal); 1993 1994 if (bio->bi_opf & REQ_PREFLUSH) { 1995 __send_empty_flush(&ci); 1996 /* dm_io_complete submits any data associated with flush */ 1997 goto out; 1998 } 1999 2000 if (static_branch_unlikely(&zoned_enabled) && 2001 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) { 2002 error = __send_zone_reset_all(&ci); 2003 goto out; 2004 } 2005 2006 error = __split_and_process_bio(&ci); 2007 if (error || !ci.sector_count) 2008 goto out; 2009 /* 2010 * Remainder must be passed to submit_bio_noacct() so it gets handled 2011 * *after* bios already submitted have been completely processed. 2012 */ 2013 bio_trim(bio, io->sectors, ci.sector_count); 2014 trace_block_split(bio, bio->bi_iter.bi_sector); 2015 bio_inc_remaining(bio); 2016 submit_bio_noacct(bio); 2017 out: 2018 /* 2019 * Drop the extra reference count for non-POLLED bio, and hold one 2020 * reference for POLLED bio, which will be released in dm_poll_bio 2021 * 2022 * Add every dm_io instance into the dm_io list head which is stored 2023 * in bio->bi_private, so that dm_poll_bio can poll them all. 2024 */ 2025 if (error || !ci.submit_as_polled) { 2026 /* 2027 * In case of submission failure, the extra reference for 2028 * submitting io isn't consumed yet 2029 */ 2030 if (error) 2031 atomic_dec(&io->io_count); 2032 dm_io_dec_pending(io, error); 2033 } else 2034 dm_queue_poll_io(bio, io); 2035 } 2036 2037 static void dm_submit_bio(struct bio *bio) 2038 { 2039 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 2040 int srcu_idx; 2041 struct dm_table *map; 2042 2043 map = dm_get_live_table(md, &srcu_idx); 2044 if (unlikely(!map)) { 2045 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 2046 dm_device_name(md)); 2047 bio_io_error(bio); 2048 goto out; 2049 } 2050 2051 /* If suspended, queue this IO for later */ 2052 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 2053 if (bio->bi_opf & REQ_NOWAIT) 2054 bio_wouldblock_error(bio); 2055 else if (bio->bi_opf & REQ_RAHEAD) 2056 bio_io_error(bio); 2057 else 2058 queue_io(md, bio); 2059 goto out; 2060 } 2061 2062 dm_split_and_process_bio(md, map, bio); 2063 out: 2064 dm_put_live_table(md, srcu_idx); 2065 } 2066 2067 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 2068 unsigned int flags) 2069 { 2070 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 2071 2072 /* don't poll if the mapped io is done */ 2073 if (atomic_read(&io->io_count) > 1) 2074 bio_poll(&io->tio.clone, iob, flags); 2075 2076 /* bio_poll holds the last reference */ 2077 return atomic_read(&io->io_count) == 1; 2078 } 2079 2080 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 2081 unsigned int flags) 2082 { 2083 struct dm_io **head = dm_poll_list_head(bio); 2084 struct dm_io *list = *head; 2085 struct dm_io *tmp = NULL; 2086 struct dm_io *curr, *next; 2087 2088 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 2089 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 2090 return 0; 2091 2092 WARN_ON_ONCE(!list); 2093 2094 /* 2095 * Restore .bi_private before possibly completing dm_io. 2096 * 2097 * bio_poll() is only possible once @bio has been completely 2098 * submitted via submit_bio_noacct()'s depth-first submission. 2099 * So there is no dm_queue_poll_io() race associated with 2100 * clearing REQ_DM_POLL_LIST here. 2101 */ 2102 bio->bi_opf &= ~REQ_DM_POLL_LIST; 2103 bio->bi_private = list->data; 2104 2105 for (curr = list, next = curr->next; curr; curr = next, next = 2106 curr ? curr->next : NULL) { 2107 if (dm_poll_dm_io(curr, iob, flags)) { 2108 /* 2109 * clone_endio() has already occurred, so no 2110 * error handling is needed here. 2111 */ 2112 __dm_io_dec_pending(curr); 2113 } else { 2114 curr->next = tmp; 2115 tmp = curr; 2116 } 2117 } 2118 2119 /* Not done? */ 2120 if (tmp) { 2121 bio->bi_opf |= REQ_DM_POLL_LIST; 2122 /* Reset bio->bi_private to dm_io list head */ 2123 *head = tmp; 2124 return 0; 2125 } 2126 return 1; 2127 } 2128 2129 /* 2130 *--------------------------------------------------------------- 2131 * An IDR is used to keep track of allocated minor numbers. 2132 *--------------------------------------------------------------- 2133 */ 2134 static void free_minor(int minor) 2135 { 2136 spin_lock(&_minor_lock); 2137 idr_remove(&_minor_idr, minor); 2138 spin_unlock(&_minor_lock); 2139 } 2140 2141 /* 2142 * See if the device with a specific minor # is free. 2143 */ 2144 static int specific_minor(int minor) 2145 { 2146 int r; 2147 2148 if (minor >= (1 << MINORBITS)) 2149 return -EINVAL; 2150 2151 idr_preload(GFP_KERNEL); 2152 spin_lock(&_minor_lock); 2153 2154 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2155 2156 spin_unlock(&_minor_lock); 2157 idr_preload_end(); 2158 if (r < 0) 2159 return r == -ENOSPC ? -EBUSY : r; 2160 return 0; 2161 } 2162 2163 static int next_free_minor(int *minor) 2164 { 2165 int r; 2166 2167 idr_preload(GFP_KERNEL); 2168 spin_lock(&_minor_lock); 2169 2170 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2171 2172 spin_unlock(&_minor_lock); 2173 idr_preload_end(); 2174 if (r < 0) 2175 return r; 2176 *minor = r; 2177 return 0; 2178 } 2179 2180 static const struct block_device_operations dm_blk_dops; 2181 static const struct block_device_operations dm_rq_blk_dops; 2182 static const struct dax_operations dm_dax_ops; 2183 2184 static void dm_wq_work(struct work_struct *work); 2185 2186 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 2187 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 2188 { 2189 dm_destroy_crypto_profile(q->crypto_profile); 2190 } 2191 2192 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 2193 2194 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 2195 { 2196 } 2197 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 2198 2199 static void cleanup_mapped_device(struct mapped_device *md) 2200 { 2201 if (md->wq) 2202 destroy_workqueue(md->wq); 2203 dm_free_md_mempools(md->mempools); 2204 2205 if (md->dax_dev) { 2206 dax_remove_host(md->disk); 2207 kill_dax(md->dax_dev); 2208 put_dax(md->dax_dev); 2209 md->dax_dev = NULL; 2210 } 2211 2212 if (md->disk) { 2213 spin_lock(&_minor_lock); 2214 md->disk->private_data = NULL; 2215 spin_unlock(&_minor_lock); 2216 if (dm_get_md_type(md) != DM_TYPE_NONE) { 2217 struct table_device *td; 2218 2219 dm_sysfs_exit(md); 2220 list_for_each_entry(td, &md->table_devices, list) { 2221 bd_unlink_disk_holder(td->dm_dev.bdev, 2222 md->disk); 2223 } 2224 2225 /* 2226 * Hold lock to make sure del_gendisk() won't concurrent 2227 * with open/close_table_device(). 2228 */ 2229 mutex_lock(&md->table_devices_lock); 2230 del_gendisk(md->disk); 2231 mutex_unlock(&md->table_devices_lock); 2232 } 2233 dm_queue_destroy_crypto_profile(md->queue); 2234 put_disk(md->disk); 2235 } 2236 2237 if (md->pending_io) { 2238 free_percpu(md->pending_io); 2239 md->pending_io = NULL; 2240 } 2241 2242 cleanup_srcu_struct(&md->io_barrier); 2243 2244 mutex_destroy(&md->suspend_lock); 2245 mutex_destroy(&md->type_lock); 2246 mutex_destroy(&md->table_devices_lock); 2247 mutex_destroy(&md->swap_bios_lock); 2248 2249 dm_mq_cleanup_mapped_device(md); 2250 } 2251 2252 /* 2253 * Allocate and initialise a blank device with a given minor. 2254 */ 2255 static struct mapped_device *alloc_dev(int minor) 2256 { 2257 int r, numa_node_id = dm_get_numa_node(); 2258 struct dax_device *dax_dev; 2259 struct mapped_device *md; 2260 void *old_md; 2261 2262 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2263 if (!md) { 2264 DMERR("unable to allocate device, out of memory."); 2265 return NULL; 2266 } 2267 2268 if (!try_module_get(THIS_MODULE)) 2269 goto bad_module_get; 2270 2271 /* get a minor number for the dev */ 2272 if (minor == DM_ANY_MINOR) 2273 r = next_free_minor(&minor); 2274 else 2275 r = specific_minor(minor); 2276 if (r < 0) 2277 goto bad_minor; 2278 2279 r = init_srcu_struct(&md->io_barrier); 2280 if (r < 0) 2281 goto bad_io_barrier; 2282 2283 md->numa_node_id = numa_node_id; 2284 md->init_tio_pdu = false; 2285 md->type = DM_TYPE_NONE; 2286 mutex_init(&md->suspend_lock); 2287 mutex_init(&md->type_lock); 2288 mutex_init(&md->table_devices_lock); 2289 spin_lock_init(&md->deferred_lock); 2290 atomic_set(&md->holders, 1); 2291 atomic_set(&md->open_count, 0); 2292 atomic_set(&md->event_nr, 0); 2293 atomic_set(&md->uevent_seq, 0); 2294 INIT_LIST_HEAD(&md->uevent_list); 2295 INIT_LIST_HEAD(&md->table_devices); 2296 spin_lock_init(&md->uevent_lock); 2297 2298 /* 2299 * default to bio-based until DM table is loaded and md->type 2300 * established. If request-based table is loaded: blk-mq will 2301 * override accordingly. 2302 */ 2303 md->disk = blk_alloc_disk(NULL, md->numa_node_id); 2304 if (IS_ERR(md->disk)) { 2305 md->disk = NULL; 2306 goto bad; 2307 } 2308 md->queue = md->disk->queue; 2309 2310 init_waitqueue_head(&md->wait); 2311 INIT_WORK(&md->work, dm_wq_work); 2312 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2313 init_waitqueue_head(&md->eventq); 2314 init_completion(&md->kobj_holder.completion); 2315 2316 md->requeue_list = NULL; 2317 md->swap_bios = get_swap_bios(); 2318 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2319 mutex_init(&md->swap_bios_lock); 2320 2321 md->disk->major = _major; 2322 md->disk->first_minor = minor; 2323 md->disk->minors = 1; 2324 md->disk->flags |= GENHD_FL_NO_PART; 2325 md->disk->fops = &dm_blk_dops; 2326 md->disk->private_data = md; 2327 sprintf(md->disk->disk_name, "dm-%d", minor); 2328 2329 dax_dev = alloc_dax(md, &dm_dax_ops); 2330 if (IS_ERR(dax_dev)) { 2331 if (PTR_ERR(dax_dev) != -EOPNOTSUPP) 2332 goto bad; 2333 } else { 2334 set_dax_nocache(dax_dev); 2335 set_dax_nomc(dax_dev); 2336 md->dax_dev = dax_dev; 2337 if (dax_add_host(dax_dev, md->disk)) 2338 goto bad; 2339 } 2340 2341 format_dev_t(md->name, MKDEV(_major, minor)); 2342 2343 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2344 if (!md->wq) 2345 goto bad; 2346 2347 md->pending_io = alloc_percpu(unsigned long); 2348 if (!md->pending_io) 2349 goto bad; 2350 2351 r = dm_stats_init(&md->stats); 2352 if (r < 0) 2353 goto bad; 2354 2355 /* Populate the mapping, nobody knows we exist yet */ 2356 spin_lock(&_minor_lock); 2357 old_md = idr_replace(&_minor_idr, md, minor); 2358 spin_unlock(&_minor_lock); 2359 2360 BUG_ON(old_md != MINOR_ALLOCED); 2361 2362 return md; 2363 2364 bad: 2365 cleanup_mapped_device(md); 2366 bad_io_barrier: 2367 free_minor(minor); 2368 bad_minor: 2369 module_put(THIS_MODULE); 2370 bad_module_get: 2371 kvfree(md); 2372 return NULL; 2373 } 2374 2375 static void unlock_fs(struct mapped_device *md); 2376 2377 static void free_dev(struct mapped_device *md) 2378 { 2379 int minor = MINOR(disk_devt(md->disk)); 2380 2381 unlock_fs(md); 2382 2383 cleanup_mapped_device(md); 2384 2385 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2386 dm_stats_cleanup(&md->stats); 2387 free_minor(minor); 2388 2389 module_put(THIS_MODULE); 2390 kvfree(md); 2391 } 2392 2393 /* 2394 * Bind a table to the device. 2395 */ 2396 static void event_callback(void *context) 2397 { 2398 unsigned long flags; 2399 LIST_HEAD(uevents); 2400 struct mapped_device *md = context; 2401 2402 spin_lock_irqsave(&md->uevent_lock, flags); 2403 list_splice_init(&md->uevent_list, &uevents); 2404 spin_unlock_irqrestore(&md->uevent_lock, flags); 2405 2406 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2407 2408 atomic_inc(&md->event_nr); 2409 wake_up(&md->eventq); 2410 dm_issue_global_event(); 2411 } 2412 2413 /* 2414 * Returns old map, which caller must destroy. 2415 */ 2416 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2417 struct queue_limits *limits) 2418 { 2419 struct dm_table *old_map; 2420 sector_t size; 2421 int ret; 2422 2423 lockdep_assert_held(&md->suspend_lock); 2424 2425 size = dm_table_get_size(t); 2426 2427 /* 2428 * Wipe any geometry if the size of the table changed. 2429 */ 2430 if (size != dm_get_size(md)) 2431 memset(&md->geometry, 0, sizeof(md->geometry)); 2432 2433 set_capacity(md->disk, size); 2434 2435 dm_table_event_callback(t, event_callback, md); 2436 2437 if (dm_table_request_based(t)) { 2438 /* 2439 * Leverage the fact that request-based DM targets are 2440 * immutable singletons - used to optimize dm_mq_queue_rq. 2441 */ 2442 md->immutable_target = dm_table_get_immutable_target(t); 2443 2444 /* 2445 * There is no need to reload with request-based dm because the 2446 * size of front_pad doesn't change. 2447 * 2448 * Note for future: If you are to reload bioset, prep-ed 2449 * requests in the queue may refer to bio from the old bioset, 2450 * so you must walk through the queue to unprep. 2451 */ 2452 if (!md->mempools) { 2453 md->mempools = t->mempools; 2454 t->mempools = NULL; 2455 } 2456 } else { 2457 /* 2458 * The md may already have mempools that need changing. 2459 * If so, reload bioset because front_pad may have changed 2460 * because a different table was loaded. 2461 */ 2462 dm_free_md_mempools(md->mempools); 2463 md->mempools = t->mempools; 2464 t->mempools = NULL; 2465 } 2466 2467 ret = dm_table_set_restrictions(t, md->queue, limits); 2468 if (ret) { 2469 old_map = ERR_PTR(ret); 2470 goto out; 2471 } 2472 2473 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2474 rcu_assign_pointer(md->map, (void *)t); 2475 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2476 2477 if (old_map) 2478 dm_sync_table(md); 2479 out: 2480 return old_map; 2481 } 2482 2483 /* 2484 * Returns unbound table for the caller to free. 2485 */ 2486 static struct dm_table *__unbind(struct mapped_device *md) 2487 { 2488 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2489 2490 if (!map) 2491 return NULL; 2492 2493 dm_table_event_callback(map, NULL, NULL); 2494 RCU_INIT_POINTER(md->map, NULL); 2495 dm_sync_table(md); 2496 2497 return map; 2498 } 2499 2500 /* 2501 * Constructor for a new device. 2502 */ 2503 int dm_create(int minor, struct mapped_device **result) 2504 { 2505 struct mapped_device *md; 2506 2507 md = alloc_dev(minor); 2508 if (!md) 2509 return -ENXIO; 2510 2511 dm_ima_reset_data(md); 2512 2513 *result = md; 2514 return 0; 2515 } 2516 2517 /* 2518 * Functions to manage md->type. 2519 * All are required to hold md->type_lock. 2520 */ 2521 void dm_lock_md_type(struct mapped_device *md) 2522 { 2523 mutex_lock(&md->type_lock); 2524 } 2525 2526 void dm_unlock_md_type(struct mapped_device *md) 2527 { 2528 mutex_unlock(&md->type_lock); 2529 } 2530 2531 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2532 { 2533 return md->type; 2534 } 2535 2536 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2537 { 2538 return md->immutable_target_type; 2539 } 2540 2541 /* 2542 * Setup the DM device's queue based on md's type 2543 */ 2544 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2545 { 2546 enum dm_queue_mode type = dm_table_get_type(t); 2547 struct queue_limits limits; 2548 struct table_device *td; 2549 int r; 2550 2551 WARN_ON_ONCE(type == DM_TYPE_NONE); 2552 2553 if (type == DM_TYPE_REQUEST_BASED) { 2554 md->disk->fops = &dm_rq_blk_dops; 2555 r = dm_mq_init_request_queue(md, t); 2556 if (r) { 2557 DMERR("Cannot initialize queue for request-based dm mapped device"); 2558 return r; 2559 } 2560 } 2561 2562 r = dm_calculate_queue_limits(t, &limits); 2563 if (r) { 2564 DMERR("Cannot calculate initial queue limits"); 2565 return r; 2566 } 2567 r = dm_table_set_restrictions(t, md->queue, &limits); 2568 if (r) 2569 return r; 2570 2571 /* 2572 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2573 * with open_table_device() and close_table_device(). 2574 */ 2575 mutex_lock(&md->table_devices_lock); 2576 r = add_disk(md->disk); 2577 mutex_unlock(&md->table_devices_lock); 2578 if (r) 2579 return r; 2580 2581 /* 2582 * Register the holder relationship for devices added before the disk 2583 * was live. 2584 */ 2585 list_for_each_entry(td, &md->table_devices, list) { 2586 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2587 if (r) 2588 goto out_undo_holders; 2589 } 2590 2591 r = dm_sysfs_init(md); 2592 if (r) 2593 goto out_undo_holders; 2594 2595 md->type = type; 2596 return 0; 2597 2598 out_undo_holders: 2599 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2600 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2601 mutex_lock(&md->table_devices_lock); 2602 del_gendisk(md->disk); 2603 mutex_unlock(&md->table_devices_lock); 2604 return r; 2605 } 2606 2607 struct mapped_device *dm_get_md(dev_t dev) 2608 { 2609 struct mapped_device *md; 2610 unsigned int minor = MINOR(dev); 2611 2612 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2613 return NULL; 2614 2615 spin_lock(&_minor_lock); 2616 2617 md = idr_find(&_minor_idr, minor); 2618 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2619 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2620 md = NULL; 2621 goto out; 2622 } 2623 dm_get(md); 2624 out: 2625 spin_unlock(&_minor_lock); 2626 2627 return md; 2628 } 2629 EXPORT_SYMBOL_GPL(dm_get_md); 2630 2631 void *dm_get_mdptr(struct mapped_device *md) 2632 { 2633 return md->interface_ptr; 2634 } 2635 2636 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2637 { 2638 md->interface_ptr = ptr; 2639 } 2640 2641 void dm_get(struct mapped_device *md) 2642 { 2643 atomic_inc(&md->holders); 2644 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2645 } 2646 2647 int dm_hold(struct mapped_device *md) 2648 { 2649 spin_lock(&_minor_lock); 2650 if (test_bit(DMF_FREEING, &md->flags)) { 2651 spin_unlock(&_minor_lock); 2652 return -EBUSY; 2653 } 2654 dm_get(md); 2655 spin_unlock(&_minor_lock); 2656 return 0; 2657 } 2658 EXPORT_SYMBOL_GPL(dm_hold); 2659 2660 const char *dm_device_name(struct mapped_device *md) 2661 { 2662 return md->name; 2663 } 2664 EXPORT_SYMBOL_GPL(dm_device_name); 2665 2666 static void __dm_destroy(struct mapped_device *md, bool wait) 2667 { 2668 struct dm_table *map; 2669 int srcu_idx; 2670 2671 might_sleep(); 2672 2673 spin_lock(&_minor_lock); 2674 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2675 set_bit(DMF_FREEING, &md->flags); 2676 spin_unlock(&_minor_lock); 2677 2678 blk_mark_disk_dead(md->disk); 2679 2680 /* 2681 * Take suspend_lock so that presuspend and postsuspend methods 2682 * do not race with internal suspend. 2683 */ 2684 mutex_lock(&md->suspend_lock); 2685 map = dm_get_live_table(md, &srcu_idx); 2686 if (!dm_suspended_md(md)) { 2687 dm_table_presuspend_targets(map); 2688 set_bit(DMF_SUSPENDED, &md->flags); 2689 set_bit(DMF_POST_SUSPENDING, &md->flags); 2690 dm_table_postsuspend_targets(map); 2691 } 2692 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2693 dm_put_live_table(md, srcu_idx); 2694 mutex_unlock(&md->suspend_lock); 2695 2696 /* 2697 * Rare, but there may be I/O requests still going to complete, 2698 * for example. Wait for all references to disappear. 2699 * No one should increment the reference count of the mapped_device, 2700 * after the mapped_device state becomes DMF_FREEING. 2701 */ 2702 if (wait) 2703 while (atomic_read(&md->holders)) 2704 fsleep(1000); 2705 else if (atomic_read(&md->holders)) 2706 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2707 dm_device_name(md), atomic_read(&md->holders)); 2708 2709 dm_table_destroy(__unbind(md)); 2710 free_dev(md); 2711 } 2712 2713 void dm_destroy(struct mapped_device *md) 2714 { 2715 __dm_destroy(md, true); 2716 } 2717 2718 void dm_destroy_immediate(struct mapped_device *md) 2719 { 2720 __dm_destroy(md, false); 2721 } 2722 2723 void dm_put(struct mapped_device *md) 2724 { 2725 atomic_dec(&md->holders); 2726 } 2727 EXPORT_SYMBOL_GPL(dm_put); 2728 2729 static bool dm_in_flight_bios(struct mapped_device *md) 2730 { 2731 int cpu; 2732 unsigned long sum = 0; 2733 2734 for_each_possible_cpu(cpu) 2735 sum += *per_cpu_ptr(md->pending_io, cpu); 2736 2737 return sum != 0; 2738 } 2739 2740 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2741 { 2742 int r = 0; 2743 DEFINE_WAIT(wait); 2744 2745 while (true) { 2746 prepare_to_wait(&md->wait, &wait, task_state); 2747 2748 if (!dm_in_flight_bios(md)) 2749 break; 2750 2751 if (signal_pending_state(task_state, current)) { 2752 r = -ERESTARTSYS; 2753 break; 2754 } 2755 2756 io_schedule(); 2757 } 2758 finish_wait(&md->wait, &wait); 2759 2760 smp_rmb(); 2761 2762 return r; 2763 } 2764 2765 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2766 { 2767 int r = 0; 2768 2769 if (!queue_is_mq(md->queue)) 2770 return dm_wait_for_bios_completion(md, task_state); 2771 2772 while (true) { 2773 if (!blk_mq_queue_inflight(md->queue)) 2774 break; 2775 2776 if (signal_pending_state(task_state, current)) { 2777 r = -ERESTARTSYS; 2778 break; 2779 } 2780 2781 fsleep(5000); 2782 } 2783 2784 return r; 2785 } 2786 2787 /* 2788 * Process the deferred bios 2789 */ 2790 static void dm_wq_work(struct work_struct *work) 2791 { 2792 struct mapped_device *md = container_of(work, struct mapped_device, work); 2793 struct bio *bio; 2794 2795 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2796 spin_lock_irq(&md->deferred_lock); 2797 bio = bio_list_pop(&md->deferred); 2798 spin_unlock_irq(&md->deferred_lock); 2799 2800 if (!bio) 2801 break; 2802 2803 submit_bio_noacct(bio); 2804 cond_resched(); 2805 } 2806 } 2807 2808 static void dm_queue_flush(struct mapped_device *md) 2809 { 2810 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2811 smp_mb__after_atomic(); 2812 queue_work(md->wq, &md->work); 2813 } 2814 2815 /* 2816 * Swap in a new table, returning the old one for the caller to destroy. 2817 */ 2818 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2819 { 2820 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2821 struct queue_limits limits; 2822 int r; 2823 2824 mutex_lock(&md->suspend_lock); 2825 2826 /* device must be suspended */ 2827 if (!dm_suspended_md(md)) 2828 goto out; 2829 2830 /* 2831 * If the new table has no data devices, retain the existing limits. 2832 * This helps multipath with queue_if_no_path if all paths disappear, 2833 * then new I/O is queued based on these limits, and then some paths 2834 * reappear. 2835 */ 2836 if (dm_table_has_no_data_devices(table)) { 2837 live_map = dm_get_live_table_fast(md); 2838 if (live_map) 2839 limits = md->queue->limits; 2840 dm_put_live_table_fast(md); 2841 } 2842 2843 if (!live_map) { 2844 r = dm_calculate_queue_limits(table, &limits); 2845 if (r) { 2846 map = ERR_PTR(r); 2847 goto out; 2848 } 2849 } 2850 2851 map = __bind(md, table, &limits); 2852 dm_issue_global_event(); 2853 2854 out: 2855 mutex_unlock(&md->suspend_lock); 2856 return map; 2857 } 2858 2859 /* 2860 * Functions to lock and unlock any filesystem running on the 2861 * device. 2862 */ 2863 static int lock_fs(struct mapped_device *md) 2864 { 2865 int r; 2866 2867 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2868 2869 r = bdev_freeze(md->disk->part0); 2870 if (!r) 2871 set_bit(DMF_FROZEN, &md->flags); 2872 return r; 2873 } 2874 2875 static void unlock_fs(struct mapped_device *md) 2876 { 2877 if (!test_bit(DMF_FROZEN, &md->flags)) 2878 return; 2879 bdev_thaw(md->disk->part0); 2880 clear_bit(DMF_FROZEN, &md->flags); 2881 } 2882 2883 /* 2884 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2885 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2886 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2887 * 2888 * If __dm_suspend returns 0, the device is completely quiescent 2889 * now. There is no request-processing activity. All new requests 2890 * are being added to md->deferred list. 2891 */ 2892 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2893 unsigned int suspend_flags, unsigned int task_state, 2894 int dmf_suspended_flag) 2895 { 2896 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2897 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2898 int r; 2899 2900 lockdep_assert_held(&md->suspend_lock); 2901 2902 /* 2903 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2904 * This flag is cleared before dm_suspend returns. 2905 */ 2906 if (noflush) 2907 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2908 else 2909 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2910 2911 /* 2912 * This gets reverted if there's an error later and the targets 2913 * provide the .presuspend_undo hook. 2914 */ 2915 dm_table_presuspend_targets(map); 2916 2917 /* 2918 * Flush I/O to the device. 2919 * Any I/O submitted after lock_fs() may not be flushed. 2920 * noflush takes precedence over do_lockfs. 2921 * (lock_fs() flushes I/Os and waits for them to complete.) 2922 */ 2923 if (!noflush && do_lockfs) { 2924 r = lock_fs(md); 2925 if (r) { 2926 dm_table_presuspend_undo_targets(map); 2927 return r; 2928 } 2929 } 2930 2931 /* 2932 * Here we must make sure that no processes are submitting requests 2933 * to target drivers i.e. no one may be executing 2934 * dm_split_and_process_bio from dm_submit_bio. 2935 * 2936 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2937 * we take the write lock. To prevent any process from reentering 2938 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2939 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2940 * flush_workqueue(md->wq). 2941 */ 2942 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2943 if (map) 2944 synchronize_srcu(&md->io_barrier); 2945 2946 /* 2947 * Stop md->queue before flushing md->wq in case request-based 2948 * dm defers requests to md->wq from md->queue. 2949 */ 2950 if (dm_request_based(md)) 2951 dm_stop_queue(md->queue); 2952 2953 flush_workqueue(md->wq); 2954 2955 /* 2956 * At this point no more requests are entering target request routines. 2957 * We call dm_wait_for_completion to wait for all existing requests 2958 * to finish. 2959 */ 2960 r = dm_wait_for_completion(md, task_state); 2961 if (!r) 2962 set_bit(dmf_suspended_flag, &md->flags); 2963 2964 if (noflush) 2965 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2966 if (map) 2967 synchronize_srcu(&md->io_barrier); 2968 2969 /* were we interrupted ? */ 2970 if (r < 0) { 2971 dm_queue_flush(md); 2972 2973 if (dm_request_based(md)) 2974 dm_start_queue(md->queue); 2975 2976 unlock_fs(md); 2977 dm_table_presuspend_undo_targets(map); 2978 /* pushback list is already flushed, so skip flush */ 2979 } 2980 2981 return r; 2982 } 2983 2984 /* 2985 * We need to be able to change a mapping table under a mounted 2986 * filesystem. For example we might want to move some data in 2987 * the background. Before the table can be swapped with 2988 * dm_bind_table, dm_suspend must be called to flush any in 2989 * flight bios and ensure that any further io gets deferred. 2990 */ 2991 /* 2992 * Suspend mechanism in request-based dm. 2993 * 2994 * 1. Flush all I/Os by lock_fs() if needed. 2995 * 2. Stop dispatching any I/O by stopping the request_queue. 2996 * 3. Wait for all in-flight I/Os to be completed or requeued. 2997 * 2998 * To abort suspend, start the request_queue. 2999 */ 3000 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 3001 { 3002 struct dm_table *map = NULL; 3003 int r = 0; 3004 3005 retry: 3006 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3007 3008 if (dm_suspended_md(md)) { 3009 r = -EINVAL; 3010 goto out_unlock; 3011 } 3012 3013 if (dm_suspended_internally_md(md)) { 3014 /* already internally suspended, wait for internal resume */ 3015 mutex_unlock(&md->suspend_lock); 3016 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3017 if (r) 3018 return r; 3019 goto retry; 3020 } 3021 3022 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3023 if (!map) { 3024 /* avoid deadlock with fs/namespace.c:do_mount() */ 3025 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 3026 } 3027 3028 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 3029 if (r) 3030 goto out_unlock; 3031 3032 set_bit(DMF_POST_SUSPENDING, &md->flags); 3033 dm_table_postsuspend_targets(map); 3034 clear_bit(DMF_POST_SUSPENDING, &md->flags); 3035 3036 out_unlock: 3037 mutex_unlock(&md->suspend_lock); 3038 return r; 3039 } 3040 3041 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3042 { 3043 if (map) { 3044 int r = dm_table_resume_targets(map); 3045 3046 if (r) 3047 return r; 3048 } 3049 3050 dm_queue_flush(md); 3051 3052 /* 3053 * Flushing deferred I/Os must be done after targets are resumed 3054 * so that mapping of targets can work correctly. 3055 * Request-based dm is queueing the deferred I/Os in its request_queue. 3056 */ 3057 if (dm_request_based(md)) 3058 dm_start_queue(md->queue); 3059 3060 unlock_fs(md); 3061 3062 return 0; 3063 } 3064 3065 int dm_resume(struct mapped_device *md) 3066 { 3067 int r; 3068 struct dm_table *map = NULL; 3069 3070 retry: 3071 r = -EINVAL; 3072 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3073 3074 if (!dm_suspended_md(md)) 3075 goto out; 3076 3077 if (dm_suspended_internally_md(md)) { 3078 /* already internally suspended, wait for internal resume */ 3079 mutex_unlock(&md->suspend_lock); 3080 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3081 if (r) 3082 return r; 3083 goto retry; 3084 } 3085 3086 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3087 if (!map || !dm_table_get_size(map)) 3088 goto out; 3089 3090 r = __dm_resume(md, map); 3091 if (r) 3092 goto out; 3093 3094 clear_bit(DMF_SUSPENDED, &md->flags); 3095 out: 3096 mutex_unlock(&md->suspend_lock); 3097 3098 return r; 3099 } 3100 3101 /* 3102 * Internal suspend/resume works like userspace-driven suspend. It waits 3103 * until all bios finish and prevents issuing new bios to the target drivers. 3104 * It may be used only from the kernel. 3105 */ 3106 3107 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 3108 { 3109 struct dm_table *map = NULL; 3110 3111 lockdep_assert_held(&md->suspend_lock); 3112 3113 if (md->internal_suspend_count++) 3114 return; /* nested internal suspend */ 3115 3116 if (dm_suspended_md(md)) { 3117 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3118 return; /* nest suspend */ 3119 } 3120 3121 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3122 3123 /* 3124 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3125 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3126 * would require changing .presuspend to return an error -- avoid this 3127 * until there is a need for more elaborate variants of internal suspend. 3128 */ 3129 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 3130 DMF_SUSPENDED_INTERNALLY); 3131 3132 set_bit(DMF_POST_SUSPENDING, &md->flags); 3133 dm_table_postsuspend_targets(map); 3134 clear_bit(DMF_POST_SUSPENDING, &md->flags); 3135 } 3136 3137 static void __dm_internal_resume(struct mapped_device *md) 3138 { 3139 int r; 3140 struct dm_table *map; 3141 3142 BUG_ON(!md->internal_suspend_count); 3143 3144 if (--md->internal_suspend_count) 3145 return; /* resume from nested internal suspend */ 3146 3147 if (dm_suspended_md(md)) 3148 goto done; /* resume from nested suspend */ 3149 3150 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3151 r = __dm_resume(md, map); 3152 if (r) { 3153 /* 3154 * If a preresume method of some target failed, we are in a 3155 * tricky situation. We can't return an error to the caller. We 3156 * can't fake success because then the "resume" and 3157 * "postsuspend" methods would not be paired correctly, and it 3158 * would break various targets, for example it would cause list 3159 * corruption in the "origin" target. 3160 * 3161 * So, we fake normal suspend here, to make sure that the 3162 * "resume" and "postsuspend" methods will be paired correctly. 3163 */ 3164 DMERR("Preresume method failed: %d", r); 3165 set_bit(DMF_SUSPENDED, &md->flags); 3166 } 3167 done: 3168 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3169 smp_mb__after_atomic(); 3170 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3171 } 3172 3173 void dm_internal_suspend_noflush(struct mapped_device *md) 3174 { 3175 mutex_lock(&md->suspend_lock); 3176 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3177 mutex_unlock(&md->suspend_lock); 3178 } 3179 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3180 3181 void dm_internal_resume(struct mapped_device *md) 3182 { 3183 mutex_lock(&md->suspend_lock); 3184 __dm_internal_resume(md); 3185 mutex_unlock(&md->suspend_lock); 3186 } 3187 EXPORT_SYMBOL_GPL(dm_internal_resume); 3188 3189 /* 3190 * Fast variants of internal suspend/resume hold md->suspend_lock, 3191 * which prevents interaction with userspace-driven suspend. 3192 */ 3193 3194 void dm_internal_suspend_fast(struct mapped_device *md) 3195 { 3196 mutex_lock(&md->suspend_lock); 3197 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3198 return; 3199 3200 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3201 synchronize_srcu(&md->io_barrier); 3202 flush_workqueue(md->wq); 3203 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3204 } 3205 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3206 3207 void dm_internal_resume_fast(struct mapped_device *md) 3208 { 3209 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3210 goto done; 3211 3212 dm_queue_flush(md); 3213 3214 done: 3215 mutex_unlock(&md->suspend_lock); 3216 } 3217 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3218 3219 /* 3220 *--------------------------------------------------------------- 3221 * Event notification. 3222 *--------------------------------------------------------------- 3223 */ 3224 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3225 unsigned int cookie, bool need_resize_uevent) 3226 { 3227 int r; 3228 unsigned int noio_flag; 3229 char udev_cookie[DM_COOKIE_LENGTH]; 3230 char *envp[3] = { NULL, NULL, NULL }; 3231 char **envpp = envp; 3232 if (cookie) { 3233 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3234 DM_COOKIE_ENV_VAR_NAME, cookie); 3235 *envpp++ = udev_cookie; 3236 } 3237 if (need_resize_uevent) { 3238 *envpp++ = "RESIZE=1"; 3239 } 3240 3241 noio_flag = memalloc_noio_save(); 3242 3243 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3244 3245 memalloc_noio_restore(noio_flag); 3246 3247 return r; 3248 } 3249 3250 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3251 { 3252 return atomic_add_return(1, &md->uevent_seq); 3253 } 3254 3255 uint32_t dm_get_event_nr(struct mapped_device *md) 3256 { 3257 return atomic_read(&md->event_nr); 3258 } 3259 3260 int dm_wait_event(struct mapped_device *md, int event_nr) 3261 { 3262 return wait_event_interruptible(md->eventq, 3263 (event_nr != atomic_read(&md->event_nr))); 3264 } 3265 3266 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3267 { 3268 unsigned long flags; 3269 3270 spin_lock_irqsave(&md->uevent_lock, flags); 3271 list_add(elist, &md->uevent_list); 3272 spin_unlock_irqrestore(&md->uevent_lock, flags); 3273 } 3274 3275 /* 3276 * The gendisk is only valid as long as you have a reference 3277 * count on 'md'. 3278 */ 3279 struct gendisk *dm_disk(struct mapped_device *md) 3280 { 3281 return md->disk; 3282 } 3283 EXPORT_SYMBOL_GPL(dm_disk); 3284 3285 struct kobject *dm_kobject(struct mapped_device *md) 3286 { 3287 return &md->kobj_holder.kobj; 3288 } 3289 3290 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3291 { 3292 struct mapped_device *md; 3293 3294 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3295 3296 spin_lock(&_minor_lock); 3297 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3298 md = NULL; 3299 goto out; 3300 } 3301 dm_get(md); 3302 out: 3303 spin_unlock(&_minor_lock); 3304 3305 return md; 3306 } 3307 3308 int dm_suspended_md(struct mapped_device *md) 3309 { 3310 return test_bit(DMF_SUSPENDED, &md->flags); 3311 } 3312 3313 static int dm_post_suspending_md(struct mapped_device *md) 3314 { 3315 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3316 } 3317 3318 int dm_suspended_internally_md(struct mapped_device *md) 3319 { 3320 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3321 } 3322 3323 int dm_test_deferred_remove_flag(struct mapped_device *md) 3324 { 3325 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3326 } 3327 3328 int dm_suspended(struct dm_target *ti) 3329 { 3330 return dm_suspended_md(ti->table->md); 3331 } 3332 EXPORT_SYMBOL_GPL(dm_suspended); 3333 3334 int dm_post_suspending(struct dm_target *ti) 3335 { 3336 return dm_post_suspending_md(ti->table->md); 3337 } 3338 EXPORT_SYMBOL_GPL(dm_post_suspending); 3339 3340 int dm_noflush_suspending(struct dm_target *ti) 3341 { 3342 return __noflush_suspending(ti->table->md); 3343 } 3344 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3345 3346 void dm_free_md_mempools(struct dm_md_mempools *pools) 3347 { 3348 if (!pools) 3349 return; 3350 3351 bioset_exit(&pools->bs); 3352 bioset_exit(&pools->io_bs); 3353 3354 kfree(pools); 3355 } 3356 3357 struct dm_blkdev_id { 3358 u8 *id; 3359 enum blk_unique_id type; 3360 }; 3361 3362 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev, 3363 sector_t start, sector_t len, void *data) 3364 { 3365 struct dm_blkdev_id *dm_id = data; 3366 const struct block_device_operations *fops = dev->bdev->bd_disk->fops; 3367 3368 if (!fops->get_unique_id) 3369 return 0; 3370 3371 return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type); 3372 } 3373 3374 /* 3375 * Allow access to get_unique_id() for the first device returning a 3376 * non-zero result. Reasonable use expects all devices to have the 3377 * same unique id. 3378 */ 3379 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id, 3380 enum blk_unique_id type) 3381 { 3382 struct mapped_device *md = disk->private_data; 3383 struct dm_table *table; 3384 struct dm_target *ti; 3385 int ret = 0, srcu_idx; 3386 3387 struct dm_blkdev_id dm_id = { 3388 .id = id, 3389 .type = type, 3390 }; 3391 3392 table = dm_get_live_table(md, &srcu_idx); 3393 if (!table || !dm_table_get_size(table)) 3394 goto out; 3395 3396 /* We only support devices that have a single target */ 3397 if (table->num_targets != 1) 3398 goto out; 3399 ti = dm_table_get_target(table, 0); 3400 3401 if (!ti->type->iterate_devices) 3402 goto out; 3403 3404 ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id); 3405 out: 3406 dm_put_live_table(md, srcu_idx); 3407 return ret; 3408 } 3409 3410 struct dm_pr { 3411 u64 old_key; 3412 u64 new_key; 3413 u32 flags; 3414 bool abort; 3415 bool fail_early; 3416 int ret; 3417 enum pr_type type; 3418 struct pr_keys *read_keys; 3419 struct pr_held_reservation *rsv; 3420 }; 3421 3422 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3423 struct dm_pr *pr) 3424 { 3425 struct mapped_device *md = bdev->bd_disk->private_data; 3426 struct dm_table *table; 3427 struct dm_target *ti; 3428 int ret = -ENOTTY, srcu_idx; 3429 3430 table = dm_get_live_table(md, &srcu_idx); 3431 if (!table || !dm_table_get_size(table)) 3432 goto out; 3433 3434 /* We only support devices that have a single target */ 3435 if (table->num_targets != 1) 3436 goto out; 3437 ti = dm_table_get_target(table, 0); 3438 3439 if (dm_suspended_md(md)) { 3440 ret = -EAGAIN; 3441 goto out; 3442 } 3443 3444 ret = -EINVAL; 3445 if (!ti->type->iterate_devices) 3446 goto out; 3447 3448 ti->type->iterate_devices(ti, fn, pr); 3449 ret = 0; 3450 out: 3451 dm_put_live_table(md, srcu_idx); 3452 return ret; 3453 } 3454 3455 /* 3456 * For register / unregister we need to manually call out to every path. 3457 */ 3458 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3459 sector_t start, sector_t len, void *data) 3460 { 3461 struct dm_pr *pr = data; 3462 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3463 int ret; 3464 3465 if (!ops || !ops->pr_register) { 3466 pr->ret = -EOPNOTSUPP; 3467 return -1; 3468 } 3469 3470 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3471 if (!ret) 3472 return 0; 3473 3474 if (!pr->ret) 3475 pr->ret = ret; 3476 3477 if (pr->fail_early) 3478 return -1; 3479 3480 return 0; 3481 } 3482 3483 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3484 u32 flags) 3485 { 3486 struct dm_pr pr = { 3487 .old_key = old_key, 3488 .new_key = new_key, 3489 .flags = flags, 3490 .fail_early = true, 3491 .ret = 0, 3492 }; 3493 int ret; 3494 3495 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3496 if (ret) { 3497 /* Didn't even get to register a path */ 3498 return ret; 3499 } 3500 3501 if (!pr.ret) 3502 return 0; 3503 ret = pr.ret; 3504 3505 if (!new_key) 3506 return ret; 3507 3508 /* unregister all paths if we failed to register any path */ 3509 pr.old_key = new_key; 3510 pr.new_key = 0; 3511 pr.flags = 0; 3512 pr.fail_early = false; 3513 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3514 return ret; 3515 } 3516 3517 3518 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3519 sector_t start, sector_t len, void *data) 3520 { 3521 struct dm_pr *pr = data; 3522 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3523 3524 if (!ops || !ops->pr_reserve) { 3525 pr->ret = -EOPNOTSUPP; 3526 return -1; 3527 } 3528 3529 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3530 if (!pr->ret) 3531 return -1; 3532 3533 return 0; 3534 } 3535 3536 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3537 u32 flags) 3538 { 3539 struct dm_pr pr = { 3540 .old_key = key, 3541 .flags = flags, 3542 .type = type, 3543 .fail_early = false, 3544 .ret = 0, 3545 }; 3546 int ret; 3547 3548 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3549 if (ret) 3550 return ret; 3551 3552 return pr.ret; 3553 } 3554 3555 /* 3556 * If there is a non-All Registrants type of reservation, the release must be 3557 * sent down the holding path. For the cases where there is no reservation or 3558 * the path is not the holder the device will also return success, so we must 3559 * try each path to make sure we got the correct path. 3560 */ 3561 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3562 sector_t start, sector_t len, void *data) 3563 { 3564 struct dm_pr *pr = data; 3565 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3566 3567 if (!ops || !ops->pr_release) { 3568 pr->ret = -EOPNOTSUPP; 3569 return -1; 3570 } 3571 3572 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3573 if (pr->ret) 3574 return -1; 3575 3576 return 0; 3577 } 3578 3579 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3580 { 3581 struct dm_pr pr = { 3582 .old_key = key, 3583 .type = type, 3584 .fail_early = false, 3585 }; 3586 int ret; 3587 3588 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3589 if (ret) 3590 return ret; 3591 3592 return pr.ret; 3593 } 3594 3595 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3596 sector_t start, sector_t len, void *data) 3597 { 3598 struct dm_pr *pr = data; 3599 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3600 3601 if (!ops || !ops->pr_preempt) { 3602 pr->ret = -EOPNOTSUPP; 3603 return -1; 3604 } 3605 3606 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3607 pr->abort); 3608 if (!pr->ret) 3609 return -1; 3610 3611 return 0; 3612 } 3613 3614 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3615 enum pr_type type, bool abort) 3616 { 3617 struct dm_pr pr = { 3618 .new_key = new_key, 3619 .old_key = old_key, 3620 .type = type, 3621 .fail_early = false, 3622 }; 3623 int ret; 3624 3625 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3626 if (ret) 3627 return ret; 3628 3629 return pr.ret; 3630 } 3631 3632 static int dm_pr_clear(struct block_device *bdev, u64 key) 3633 { 3634 struct mapped_device *md = bdev->bd_disk->private_data; 3635 const struct pr_ops *ops; 3636 int r, srcu_idx; 3637 3638 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3639 if (r < 0) 3640 goto out; 3641 3642 ops = bdev->bd_disk->fops->pr_ops; 3643 if (ops && ops->pr_clear) 3644 r = ops->pr_clear(bdev, key); 3645 else 3646 r = -EOPNOTSUPP; 3647 out: 3648 dm_unprepare_ioctl(md, srcu_idx); 3649 return r; 3650 } 3651 3652 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, 3653 sector_t start, sector_t len, void *data) 3654 { 3655 struct dm_pr *pr = data; 3656 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3657 3658 if (!ops || !ops->pr_read_keys) { 3659 pr->ret = -EOPNOTSUPP; 3660 return -1; 3661 } 3662 3663 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); 3664 if (!pr->ret) 3665 return -1; 3666 3667 return 0; 3668 } 3669 3670 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) 3671 { 3672 struct dm_pr pr = { 3673 .read_keys = keys, 3674 }; 3675 int ret; 3676 3677 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); 3678 if (ret) 3679 return ret; 3680 3681 return pr.ret; 3682 } 3683 3684 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, 3685 sector_t start, sector_t len, void *data) 3686 { 3687 struct dm_pr *pr = data; 3688 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3689 3690 if (!ops || !ops->pr_read_reservation) { 3691 pr->ret = -EOPNOTSUPP; 3692 return -1; 3693 } 3694 3695 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); 3696 if (!pr->ret) 3697 return -1; 3698 3699 return 0; 3700 } 3701 3702 static int dm_pr_read_reservation(struct block_device *bdev, 3703 struct pr_held_reservation *rsv) 3704 { 3705 struct dm_pr pr = { 3706 .rsv = rsv, 3707 }; 3708 int ret; 3709 3710 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); 3711 if (ret) 3712 return ret; 3713 3714 return pr.ret; 3715 } 3716 3717 static const struct pr_ops dm_pr_ops = { 3718 .pr_register = dm_pr_register, 3719 .pr_reserve = dm_pr_reserve, 3720 .pr_release = dm_pr_release, 3721 .pr_preempt = dm_pr_preempt, 3722 .pr_clear = dm_pr_clear, 3723 .pr_read_keys = dm_pr_read_keys, 3724 .pr_read_reservation = dm_pr_read_reservation, 3725 }; 3726 3727 static const struct block_device_operations dm_blk_dops = { 3728 .submit_bio = dm_submit_bio, 3729 .poll_bio = dm_poll_bio, 3730 .open = dm_blk_open, 3731 .release = dm_blk_close, 3732 .ioctl = dm_blk_ioctl, 3733 .getgeo = dm_blk_getgeo, 3734 .report_zones = dm_blk_report_zones, 3735 .get_unique_id = dm_blk_get_unique_id, 3736 .pr_ops = &dm_pr_ops, 3737 .owner = THIS_MODULE 3738 }; 3739 3740 static const struct block_device_operations dm_rq_blk_dops = { 3741 .open = dm_blk_open, 3742 .release = dm_blk_close, 3743 .ioctl = dm_blk_ioctl, 3744 .getgeo = dm_blk_getgeo, 3745 .get_unique_id = dm_blk_get_unique_id, 3746 .pr_ops = &dm_pr_ops, 3747 .owner = THIS_MODULE 3748 }; 3749 3750 static const struct dax_operations dm_dax_ops = { 3751 .direct_access = dm_dax_direct_access, 3752 .zero_page_range = dm_dax_zero_page_range, 3753 .recovery_write = dm_dax_recovery_write, 3754 }; 3755 3756 /* 3757 * module hooks 3758 */ 3759 module_init(dm_init); 3760 module_exit(dm_exit); 3761 3762 module_param(major, uint, 0); 3763 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3764 3765 module_param(reserved_bio_based_ios, uint, 0644); 3766 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3767 3768 module_param(dm_numa_node, int, 0644); 3769 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3770 3771 module_param(swap_bios, int, 0644); 3772 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3773 3774 MODULE_DESCRIPTION(DM_NAME " driver"); 3775 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>"); 3776 MODULE_LICENSE("GPL"); 3777