xref: /linux/drivers/md/dm.c (revision e15d5a53ea3239e537d3a0c4bdfce8a4ea4e0da6)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set bs;
152 	struct bio_set io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 /*
162  * Bio-based DM's mempools' reserved IOs set by the user.
163  */
164 #define RESERVED_BIO_BASED_IOS		16
165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
166 
167 static int __dm_get_module_param_int(int *module_param, int min, int max)
168 {
169 	int param = READ_ONCE(*module_param);
170 	int modified_param = 0;
171 	bool modified = true;
172 
173 	if (param < min)
174 		modified_param = min;
175 	else if (param > max)
176 		modified_param = max;
177 	else
178 		modified = false;
179 
180 	if (modified) {
181 		(void)cmpxchg(module_param, param, modified_param);
182 		param = modified_param;
183 	}
184 
185 	return param;
186 }
187 
188 unsigned __dm_get_module_param(unsigned *module_param,
189 			       unsigned def, unsigned max)
190 {
191 	unsigned param = READ_ONCE(*module_param);
192 	unsigned modified_param = 0;
193 
194 	if (!param)
195 		modified_param = def;
196 	else if (param > max)
197 		modified_param = max;
198 
199 	if (modified_param) {
200 		(void)cmpxchg(module_param, param, modified_param);
201 		param = modified_param;
202 	}
203 
204 	return param;
205 }
206 
207 unsigned dm_get_reserved_bio_based_ios(void)
208 {
209 	return __dm_get_module_param(&reserved_bio_based_ios,
210 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
211 }
212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
213 
214 static unsigned dm_get_numa_node(void)
215 {
216 	return __dm_get_module_param_int(&dm_numa_node,
217 					 DM_NUMA_NODE, num_online_nodes() - 1);
218 }
219 
220 static int __init local_init(void)
221 {
222 	int r;
223 
224 	r = dm_uevent_init();
225 	if (r)
226 		return r;
227 
228 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
229 	if (!deferred_remove_workqueue) {
230 		r = -ENOMEM;
231 		goto out_uevent_exit;
232 	}
233 
234 	_major = major;
235 	r = register_blkdev(_major, _name);
236 	if (r < 0)
237 		goto out_free_workqueue;
238 
239 	if (!_major)
240 		_major = r;
241 
242 	return 0;
243 
244 out_free_workqueue:
245 	destroy_workqueue(deferred_remove_workqueue);
246 out_uevent_exit:
247 	dm_uevent_exit();
248 
249 	return r;
250 }
251 
252 static void local_exit(void)
253 {
254 	flush_scheduled_work();
255 	destroy_workqueue(deferred_remove_workqueue);
256 
257 	unregister_blkdev(_major, _name);
258 	dm_uevent_exit();
259 
260 	_major = 0;
261 
262 	DMINFO("cleaned up");
263 }
264 
265 static int (*_inits[])(void) __initdata = {
266 	local_init,
267 	dm_target_init,
268 	dm_linear_init,
269 	dm_stripe_init,
270 	dm_io_init,
271 	dm_kcopyd_init,
272 	dm_interface_init,
273 	dm_statistics_init,
274 };
275 
276 static void (*_exits[])(void) = {
277 	local_exit,
278 	dm_target_exit,
279 	dm_linear_exit,
280 	dm_stripe_exit,
281 	dm_io_exit,
282 	dm_kcopyd_exit,
283 	dm_interface_exit,
284 	dm_statistics_exit,
285 };
286 
287 static int __init dm_init(void)
288 {
289 	const int count = ARRAY_SIZE(_inits);
290 
291 	int r, i;
292 
293 	for (i = 0; i < count; i++) {
294 		r = _inits[i]();
295 		if (r)
296 			goto bad;
297 	}
298 
299 	return 0;
300 
301       bad:
302 	while (i--)
303 		_exits[i]();
304 
305 	return r;
306 }
307 
308 static void __exit dm_exit(void)
309 {
310 	int i = ARRAY_SIZE(_exits);
311 
312 	while (i--)
313 		_exits[i]();
314 
315 	/*
316 	 * Should be empty by this point.
317 	 */
318 	idr_destroy(&_minor_idr);
319 }
320 
321 /*
322  * Block device functions
323  */
324 int dm_deleting_md(struct mapped_device *md)
325 {
326 	return test_bit(DMF_DELETING, &md->flags);
327 }
328 
329 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
330 {
331 	struct mapped_device *md;
332 
333 	spin_lock(&_minor_lock);
334 
335 	md = bdev->bd_disk->private_data;
336 	if (!md)
337 		goto out;
338 
339 	if (test_bit(DMF_FREEING, &md->flags) ||
340 	    dm_deleting_md(md)) {
341 		md = NULL;
342 		goto out;
343 	}
344 
345 	dm_get(md);
346 	atomic_inc(&md->open_count);
347 out:
348 	spin_unlock(&_minor_lock);
349 
350 	return md ? 0 : -ENXIO;
351 }
352 
353 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
354 {
355 	struct mapped_device *md;
356 
357 	spin_lock(&_minor_lock);
358 
359 	md = disk->private_data;
360 	if (WARN_ON(!md))
361 		goto out;
362 
363 	if (atomic_dec_and_test(&md->open_count) &&
364 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
365 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
366 
367 	dm_put(md);
368 out:
369 	spin_unlock(&_minor_lock);
370 }
371 
372 int dm_open_count(struct mapped_device *md)
373 {
374 	return atomic_read(&md->open_count);
375 }
376 
377 /*
378  * Guarantees nothing is using the device before it's deleted.
379  */
380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
381 {
382 	int r = 0;
383 
384 	spin_lock(&_minor_lock);
385 
386 	if (dm_open_count(md)) {
387 		r = -EBUSY;
388 		if (mark_deferred)
389 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
390 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
391 		r = -EEXIST;
392 	else
393 		set_bit(DMF_DELETING, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 int dm_cancel_deferred_remove(struct mapped_device *md)
401 {
402 	int r = 0;
403 
404 	spin_lock(&_minor_lock);
405 
406 	if (test_bit(DMF_DELETING, &md->flags))
407 		r = -EBUSY;
408 	else
409 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
410 
411 	spin_unlock(&_minor_lock);
412 
413 	return r;
414 }
415 
416 static void do_deferred_remove(struct work_struct *w)
417 {
418 	dm_deferred_remove();
419 }
420 
421 sector_t dm_get_size(struct mapped_device *md)
422 {
423 	return get_capacity(md->disk);
424 }
425 
426 struct request_queue *dm_get_md_queue(struct mapped_device *md)
427 {
428 	return md->queue;
429 }
430 
431 struct dm_stats *dm_get_stats(struct mapped_device *md)
432 {
433 	return &md->stats;
434 }
435 
436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
437 {
438 	struct mapped_device *md = bdev->bd_disk->private_data;
439 
440 	return dm_get_geometry(md, geo);
441 }
442 
443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
444 			       struct blk_zone *zones, unsigned int *nr_zones)
445 {
446 #ifdef CONFIG_BLK_DEV_ZONED
447 	struct mapped_device *md = disk->private_data;
448 	struct dm_target *tgt;
449 	struct dm_table *map;
450 	int srcu_idx, ret;
451 
452 	if (dm_suspended_md(md))
453 		return -EAGAIN;
454 
455 	map = dm_get_live_table(md, &srcu_idx);
456 	if (!map)
457 		return -EIO;
458 
459 	tgt = dm_table_find_target(map, sector);
460 	if (!dm_target_is_valid(tgt)) {
461 		ret = -EIO;
462 		goto out;
463 	}
464 
465 	/*
466 	 * If we are executing this, we already know that the block device
467 	 * is a zoned device and so each target should have support for that
468 	 * type of drive. A missing report_zones method means that the target
469 	 * driver has a problem.
470 	 */
471 	if (WARN_ON(!tgt->type->report_zones)) {
472 		ret = -EIO;
473 		goto out;
474 	}
475 
476 	/*
477 	 * blkdev_report_zones() will loop and call this again to cover all the
478 	 * zones of the target, eventually moving on to the next target.
479 	 * So there is no need to loop here trying to fill the entire array
480 	 * of zones.
481 	 */
482 	ret = tgt->type->report_zones(tgt, sector, zones, nr_zones);
483 
484 out:
485 	dm_put_live_table(md, srcu_idx);
486 	return ret;
487 #else
488 	return -ENOTSUPP;
489 #endif
490 }
491 
492 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
493 			    struct block_device **bdev)
494 	__acquires(md->io_barrier)
495 {
496 	struct dm_target *tgt;
497 	struct dm_table *map;
498 	int r;
499 
500 retry:
501 	r = -ENOTTY;
502 	map = dm_get_live_table(md, srcu_idx);
503 	if (!map || !dm_table_get_size(map))
504 		return r;
505 
506 	/* We only support devices that have a single target */
507 	if (dm_table_get_num_targets(map) != 1)
508 		return r;
509 
510 	tgt = dm_table_get_target(map, 0);
511 	if (!tgt->type->prepare_ioctl)
512 		return r;
513 
514 	if (dm_suspended_md(md))
515 		return -EAGAIN;
516 
517 	r = tgt->type->prepare_ioctl(tgt, bdev);
518 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
519 		dm_put_live_table(md, *srcu_idx);
520 		msleep(10);
521 		goto retry;
522 	}
523 
524 	return r;
525 }
526 
527 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
528 	__releases(md->io_barrier)
529 {
530 	dm_put_live_table(md, srcu_idx);
531 }
532 
533 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
534 			unsigned int cmd, unsigned long arg)
535 {
536 	struct mapped_device *md = bdev->bd_disk->private_data;
537 	int r, srcu_idx;
538 
539 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
540 	if (r < 0)
541 		goto out;
542 
543 	if (r > 0) {
544 		/*
545 		 * Target determined this ioctl is being issued against a
546 		 * subset of the parent bdev; require extra privileges.
547 		 */
548 		if (!capable(CAP_SYS_RAWIO)) {
549 			DMWARN_LIMIT(
550 	"%s: sending ioctl %x to DM device without required privilege.",
551 				current->comm, cmd);
552 			r = -ENOIOCTLCMD;
553 			goto out;
554 		}
555 	}
556 
557 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
558 out:
559 	dm_unprepare_ioctl(md, srcu_idx);
560 	return r;
561 }
562 
563 static void start_io_acct(struct dm_io *io);
564 
565 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
566 {
567 	struct dm_io *io;
568 	struct dm_target_io *tio;
569 	struct bio *clone;
570 
571 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
572 	if (!clone)
573 		return NULL;
574 
575 	tio = container_of(clone, struct dm_target_io, clone);
576 	tio->inside_dm_io = true;
577 	tio->io = NULL;
578 
579 	io = container_of(tio, struct dm_io, tio);
580 	io->magic = DM_IO_MAGIC;
581 	io->status = 0;
582 	atomic_set(&io->io_count, 1);
583 	io->orig_bio = bio;
584 	io->md = md;
585 	spin_lock_init(&io->endio_lock);
586 
587 	start_io_acct(io);
588 
589 	return io;
590 }
591 
592 static void free_io(struct mapped_device *md, struct dm_io *io)
593 {
594 	bio_put(&io->tio.clone);
595 }
596 
597 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
598 				      unsigned target_bio_nr, gfp_t gfp_mask)
599 {
600 	struct dm_target_io *tio;
601 
602 	if (!ci->io->tio.io) {
603 		/* the dm_target_io embedded in ci->io is available */
604 		tio = &ci->io->tio;
605 	} else {
606 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
607 		if (!clone)
608 			return NULL;
609 
610 		tio = container_of(clone, struct dm_target_io, clone);
611 		tio->inside_dm_io = false;
612 	}
613 
614 	tio->magic = DM_TIO_MAGIC;
615 	tio->io = ci->io;
616 	tio->ti = ti;
617 	tio->target_bio_nr = target_bio_nr;
618 
619 	return tio;
620 }
621 
622 static void free_tio(struct dm_target_io *tio)
623 {
624 	if (tio->inside_dm_io)
625 		return;
626 	bio_put(&tio->clone);
627 }
628 
629 static bool md_in_flight_bios(struct mapped_device *md)
630 {
631 	int cpu;
632 	struct hd_struct *part = &dm_disk(md)->part0;
633 	long sum = 0;
634 
635 	for_each_possible_cpu(cpu) {
636 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
637 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
638 	}
639 
640 	return sum != 0;
641 }
642 
643 static bool md_in_flight(struct mapped_device *md)
644 {
645 	if (queue_is_mq(md->queue))
646 		return blk_mq_queue_inflight(md->queue);
647 	else
648 		return md_in_flight_bios(md);
649 }
650 
651 static void start_io_acct(struct dm_io *io)
652 {
653 	struct mapped_device *md = io->md;
654 	struct bio *bio = io->orig_bio;
655 
656 	io->start_time = jiffies;
657 
658 	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
659 			      &dm_disk(md)->part0);
660 
661 	if (unlikely(dm_stats_used(&md->stats)))
662 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
663 				    bio->bi_iter.bi_sector, bio_sectors(bio),
664 				    false, 0, &io->stats_aux);
665 }
666 
667 static void end_io_acct(struct dm_io *io)
668 {
669 	struct mapped_device *md = io->md;
670 	struct bio *bio = io->orig_bio;
671 	unsigned long duration = jiffies - io->start_time;
672 
673 	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
674 			    io->start_time);
675 
676 	if (unlikely(dm_stats_used(&md->stats)))
677 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
678 				    bio->bi_iter.bi_sector, bio_sectors(bio),
679 				    true, duration, &io->stats_aux);
680 
681 	/* nudge anyone waiting on suspend queue */
682 	if (unlikely(wq_has_sleeper(&md->wait)))
683 		wake_up(&md->wait);
684 }
685 
686 /*
687  * Add the bio to the list of deferred io.
688  */
689 static void queue_io(struct mapped_device *md, struct bio *bio)
690 {
691 	unsigned long flags;
692 
693 	spin_lock_irqsave(&md->deferred_lock, flags);
694 	bio_list_add(&md->deferred, bio);
695 	spin_unlock_irqrestore(&md->deferred_lock, flags);
696 	queue_work(md->wq, &md->work);
697 }
698 
699 /*
700  * Everyone (including functions in this file), should use this
701  * function to access the md->map field, and make sure they call
702  * dm_put_live_table() when finished.
703  */
704 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
705 {
706 	*srcu_idx = srcu_read_lock(&md->io_barrier);
707 
708 	return srcu_dereference(md->map, &md->io_barrier);
709 }
710 
711 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
712 {
713 	srcu_read_unlock(&md->io_barrier, srcu_idx);
714 }
715 
716 void dm_sync_table(struct mapped_device *md)
717 {
718 	synchronize_srcu(&md->io_barrier);
719 	synchronize_rcu_expedited();
720 }
721 
722 /*
723  * A fast alternative to dm_get_live_table/dm_put_live_table.
724  * The caller must not block between these two functions.
725  */
726 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
727 {
728 	rcu_read_lock();
729 	return rcu_dereference(md->map);
730 }
731 
732 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
733 {
734 	rcu_read_unlock();
735 }
736 
737 static char *_dm_claim_ptr = "I belong to device-mapper";
738 
739 /*
740  * Open a table device so we can use it as a map destination.
741  */
742 static int open_table_device(struct table_device *td, dev_t dev,
743 			     struct mapped_device *md)
744 {
745 	struct block_device *bdev;
746 
747 	int r;
748 
749 	BUG_ON(td->dm_dev.bdev);
750 
751 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
752 	if (IS_ERR(bdev))
753 		return PTR_ERR(bdev);
754 
755 	r = bd_link_disk_holder(bdev, dm_disk(md));
756 	if (r) {
757 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 		return r;
759 	}
760 
761 	td->dm_dev.bdev = bdev;
762 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
763 	return 0;
764 }
765 
766 /*
767  * Close a table device that we've been using.
768  */
769 static void close_table_device(struct table_device *td, struct mapped_device *md)
770 {
771 	if (!td->dm_dev.bdev)
772 		return;
773 
774 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
775 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
776 	put_dax(td->dm_dev.dax_dev);
777 	td->dm_dev.bdev = NULL;
778 	td->dm_dev.dax_dev = NULL;
779 }
780 
781 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
782 					      fmode_t mode)
783 {
784 	struct table_device *td;
785 
786 	list_for_each_entry(td, l, list)
787 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
788 			return td;
789 
790 	return NULL;
791 }
792 
793 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
794 			struct dm_dev **result)
795 {
796 	int r;
797 	struct table_device *td;
798 
799 	mutex_lock(&md->table_devices_lock);
800 	td = find_table_device(&md->table_devices, dev, mode);
801 	if (!td) {
802 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
803 		if (!td) {
804 			mutex_unlock(&md->table_devices_lock);
805 			return -ENOMEM;
806 		}
807 
808 		td->dm_dev.mode = mode;
809 		td->dm_dev.bdev = NULL;
810 
811 		if ((r = open_table_device(td, dev, md))) {
812 			mutex_unlock(&md->table_devices_lock);
813 			kfree(td);
814 			return r;
815 		}
816 
817 		format_dev_t(td->dm_dev.name, dev);
818 
819 		refcount_set(&td->count, 1);
820 		list_add(&td->list, &md->table_devices);
821 	} else {
822 		refcount_inc(&td->count);
823 	}
824 	mutex_unlock(&md->table_devices_lock);
825 
826 	*result = &td->dm_dev;
827 	return 0;
828 }
829 EXPORT_SYMBOL_GPL(dm_get_table_device);
830 
831 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
832 {
833 	struct table_device *td = container_of(d, struct table_device, dm_dev);
834 
835 	mutex_lock(&md->table_devices_lock);
836 	if (refcount_dec_and_test(&td->count)) {
837 		close_table_device(td, md);
838 		list_del(&td->list);
839 		kfree(td);
840 	}
841 	mutex_unlock(&md->table_devices_lock);
842 }
843 EXPORT_SYMBOL(dm_put_table_device);
844 
845 static void free_table_devices(struct list_head *devices)
846 {
847 	struct list_head *tmp, *next;
848 
849 	list_for_each_safe(tmp, next, devices) {
850 		struct table_device *td = list_entry(tmp, struct table_device, list);
851 
852 		DMWARN("dm_destroy: %s still exists with %d references",
853 		       td->dm_dev.name, refcount_read(&td->count));
854 		kfree(td);
855 	}
856 }
857 
858 /*
859  * Get the geometry associated with a dm device
860  */
861 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
862 {
863 	*geo = md->geometry;
864 
865 	return 0;
866 }
867 
868 /*
869  * Set the geometry of a device.
870  */
871 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
872 {
873 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
874 
875 	if (geo->start > sz) {
876 		DMWARN("Start sector is beyond the geometry limits.");
877 		return -EINVAL;
878 	}
879 
880 	md->geometry = *geo;
881 
882 	return 0;
883 }
884 
885 static int __noflush_suspending(struct mapped_device *md)
886 {
887 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
888 }
889 
890 /*
891  * Decrements the number of outstanding ios that a bio has been
892  * cloned into, completing the original io if necc.
893  */
894 static void dec_pending(struct dm_io *io, blk_status_t error)
895 {
896 	unsigned long flags;
897 	blk_status_t io_error;
898 	struct bio *bio;
899 	struct mapped_device *md = io->md;
900 
901 	/* Push-back supersedes any I/O errors */
902 	if (unlikely(error)) {
903 		spin_lock_irqsave(&io->endio_lock, flags);
904 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
905 			io->status = error;
906 		spin_unlock_irqrestore(&io->endio_lock, flags);
907 	}
908 
909 	if (atomic_dec_and_test(&io->io_count)) {
910 		if (io->status == BLK_STS_DM_REQUEUE) {
911 			/*
912 			 * Target requested pushing back the I/O.
913 			 */
914 			spin_lock_irqsave(&md->deferred_lock, flags);
915 			if (__noflush_suspending(md))
916 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
917 				bio_list_add_head(&md->deferred, io->orig_bio);
918 			else
919 				/* noflush suspend was interrupted. */
920 				io->status = BLK_STS_IOERR;
921 			spin_unlock_irqrestore(&md->deferred_lock, flags);
922 		}
923 
924 		io_error = io->status;
925 		bio = io->orig_bio;
926 		end_io_acct(io);
927 		free_io(md, io);
928 
929 		if (io_error == BLK_STS_DM_REQUEUE)
930 			return;
931 
932 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
933 			/*
934 			 * Preflush done for flush with data, reissue
935 			 * without REQ_PREFLUSH.
936 			 */
937 			bio->bi_opf &= ~REQ_PREFLUSH;
938 			queue_io(md, bio);
939 		} else {
940 			/* done with normal IO or empty flush */
941 			if (io_error)
942 				bio->bi_status = io_error;
943 			bio_endio(bio);
944 		}
945 	}
946 }
947 
948 void disable_discard(struct mapped_device *md)
949 {
950 	struct queue_limits *limits = dm_get_queue_limits(md);
951 
952 	/* device doesn't really support DISCARD, disable it */
953 	limits->max_discard_sectors = 0;
954 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
955 }
956 
957 void disable_write_same(struct mapped_device *md)
958 {
959 	struct queue_limits *limits = dm_get_queue_limits(md);
960 
961 	/* device doesn't really support WRITE SAME, disable it */
962 	limits->max_write_same_sectors = 0;
963 }
964 
965 void disable_write_zeroes(struct mapped_device *md)
966 {
967 	struct queue_limits *limits = dm_get_queue_limits(md);
968 
969 	/* device doesn't really support WRITE ZEROES, disable it */
970 	limits->max_write_zeroes_sectors = 0;
971 }
972 
973 static void clone_endio(struct bio *bio)
974 {
975 	blk_status_t error = bio->bi_status;
976 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
977 	struct dm_io *io = tio->io;
978 	struct mapped_device *md = tio->io->md;
979 	dm_endio_fn endio = tio->ti->type->end_io;
980 
981 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
982 		if (bio_op(bio) == REQ_OP_DISCARD &&
983 		    !bio->bi_disk->queue->limits.max_discard_sectors)
984 			disable_discard(md);
985 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
986 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
987 			disable_write_same(md);
988 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
989 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
990 			disable_write_zeroes(md);
991 	}
992 
993 	if (endio) {
994 		int r = endio(tio->ti, bio, &error);
995 		switch (r) {
996 		case DM_ENDIO_REQUEUE:
997 			error = BLK_STS_DM_REQUEUE;
998 			/*FALLTHRU*/
999 		case DM_ENDIO_DONE:
1000 			break;
1001 		case DM_ENDIO_INCOMPLETE:
1002 			/* The target will handle the io */
1003 			return;
1004 		default:
1005 			DMWARN("unimplemented target endio return value: %d", r);
1006 			BUG();
1007 		}
1008 	}
1009 
1010 	free_tio(tio);
1011 	dec_pending(io, error);
1012 }
1013 
1014 /*
1015  * Return maximum size of I/O possible at the supplied sector up to the current
1016  * target boundary.
1017  */
1018 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1019 {
1020 	sector_t target_offset = dm_target_offset(ti, sector);
1021 
1022 	return ti->len - target_offset;
1023 }
1024 
1025 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1026 {
1027 	sector_t len = max_io_len_target_boundary(sector, ti);
1028 	sector_t offset, max_len;
1029 
1030 	/*
1031 	 * Does the target need to split even further?
1032 	 */
1033 	if (ti->max_io_len) {
1034 		offset = dm_target_offset(ti, sector);
1035 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1036 			max_len = sector_div(offset, ti->max_io_len);
1037 		else
1038 			max_len = offset & (ti->max_io_len - 1);
1039 		max_len = ti->max_io_len - max_len;
1040 
1041 		if (len > max_len)
1042 			len = max_len;
1043 	}
1044 
1045 	return len;
1046 }
1047 
1048 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1049 {
1050 	if (len > UINT_MAX) {
1051 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1052 		      (unsigned long long)len, UINT_MAX);
1053 		ti->error = "Maximum size of target IO is too large";
1054 		return -EINVAL;
1055 	}
1056 
1057 	ti->max_io_len = (uint32_t) len;
1058 
1059 	return 0;
1060 }
1061 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1062 
1063 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1064 						sector_t sector, int *srcu_idx)
1065 	__acquires(md->io_barrier)
1066 {
1067 	struct dm_table *map;
1068 	struct dm_target *ti;
1069 
1070 	map = dm_get_live_table(md, srcu_idx);
1071 	if (!map)
1072 		return NULL;
1073 
1074 	ti = dm_table_find_target(map, sector);
1075 	if (!dm_target_is_valid(ti))
1076 		return NULL;
1077 
1078 	return ti;
1079 }
1080 
1081 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1082 				 long nr_pages, void **kaddr, pfn_t *pfn)
1083 {
1084 	struct mapped_device *md = dax_get_private(dax_dev);
1085 	sector_t sector = pgoff * PAGE_SECTORS;
1086 	struct dm_target *ti;
1087 	long len, ret = -EIO;
1088 	int srcu_idx;
1089 
1090 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1091 
1092 	if (!ti)
1093 		goto out;
1094 	if (!ti->type->direct_access)
1095 		goto out;
1096 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1097 	if (len < 1)
1098 		goto out;
1099 	nr_pages = min(len, nr_pages);
1100 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1101 
1102  out:
1103 	dm_put_live_table(md, srcu_idx);
1104 
1105 	return ret;
1106 }
1107 
1108 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1109 		int blocksize, sector_t start, sector_t len)
1110 {
1111 	struct mapped_device *md = dax_get_private(dax_dev);
1112 	struct dm_table *map;
1113 	int srcu_idx;
1114 	bool ret;
1115 
1116 	map = dm_get_live_table(md, &srcu_idx);
1117 	if (!map)
1118 		return false;
1119 
1120 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1121 
1122 	dm_put_live_table(md, srcu_idx);
1123 
1124 	return ret;
1125 }
1126 
1127 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1128 				    void *addr, size_t bytes, struct iov_iter *i)
1129 {
1130 	struct mapped_device *md = dax_get_private(dax_dev);
1131 	sector_t sector = pgoff * PAGE_SECTORS;
1132 	struct dm_target *ti;
1133 	long ret = 0;
1134 	int srcu_idx;
1135 
1136 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1137 
1138 	if (!ti)
1139 		goto out;
1140 	if (!ti->type->dax_copy_from_iter) {
1141 		ret = copy_from_iter(addr, bytes, i);
1142 		goto out;
1143 	}
1144 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1145  out:
1146 	dm_put_live_table(md, srcu_idx);
1147 
1148 	return ret;
1149 }
1150 
1151 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1152 		void *addr, size_t bytes, struct iov_iter *i)
1153 {
1154 	struct mapped_device *md = dax_get_private(dax_dev);
1155 	sector_t sector = pgoff * PAGE_SECTORS;
1156 	struct dm_target *ti;
1157 	long ret = 0;
1158 	int srcu_idx;
1159 
1160 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1161 
1162 	if (!ti)
1163 		goto out;
1164 	if (!ti->type->dax_copy_to_iter) {
1165 		ret = copy_to_iter(addr, bytes, i);
1166 		goto out;
1167 	}
1168 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1169  out:
1170 	dm_put_live_table(md, srcu_idx);
1171 
1172 	return ret;
1173 }
1174 
1175 /*
1176  * A target may call dm_accept_partial_bio only from the map routine.  It is
1177  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1178  *
1179  * dm_accept_partial_bio informs the dm that the target only wants to process
1180  * additional n_sectors sectors of the bio and the rest of the data should be
1181  * sent in a next bio.
1182  *
1183  * A diagram that explains the arithmetics:
1184  * +--------------------+---------------+-------+
1185  * |         1          |       2       |   3   |
1186  * +--------------------+---------------+-------+
1187  *
1188  * <-------------- *tio->len_ptr --------------->
1189  *                      <------- bi_size ------->
1190  *                      <-- n_sectors -->
1191  *
1192  * Region 1 was already iterated over with bio_advance or similar function.
1193  *	(it may be empty if the target doesn't use bio_advance)
1194  * Region 2 is the remaining bio size that the target wants to process.
1195  *	(it may be empty if region 1 is non-empty, although there is no reason
1196  *	 to make it empty)
1197  * The target requires that region 3 is to be sent in the next bio.
1198  *
1199  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1200  * the partially processed part (the sum of regions 1+2) must be the same for all
1201  * copies of the bio.
1202  */
1203 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1204 {
1205 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1206 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1207 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1208 	BUG_ON(bi_size > *tio->len_ptr);
1209 	BUG_ON(n_sectors > bi_size);
1210 	*tio->len_ptr -= bi_size - n_sectors;
1211 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1212 }
1213 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1214 
1215 /*
1216  * The zone descriptors obtained with a zone report indicate
1217  * zone positions within the underlying device of the target. The zone
1218  * descriptors must be remapped to match their position within the dm device.
1219  * The caller target should obtain the zones information using
1220  * blkdev_report_zones() to ensure that remapping for partition offset is
1221  * already handled.
1222  */
1223 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1224 			  struct blk_zone *zones, unsigned int *nr_zones)
1225 {
1226 #ifdef CONFIG_BLK_DEV_ZONED
1227 	struct blk_zone *zone;
1228 	unsigned int nrz = *nr_zones;
1229 	int i;
1230 
1231 	/*
1232 	 * Remap the start sector and write pointer position of the zones in
1233 	 * the array. Since we may have obtained from the target underlying
1234 	 * device more zones that the target size, also adjust the number
1235 	 * of zones.
1236 	 */
1237 	for (i = 0; i < nrz; i++) {
1238 		zone = zones + i;
1239 		if (zone->start >= start + ti->len) {
1240 			memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1241 			break;
1242 		}
1243 
1244 		zone->start = zone->start + ti->begin - start;
1245 		if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1246 			continue;
1247 
1248 		if (zone->cond == BLK_ZONE_COND_FULL)
1249 			zone->wp = zone->start + zone->len;
1250 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
1251 			zone->wp = zone->start;
1252 		else
1253 			zone->wp = zone->wp + ti->begin - start;
1254 	}
1255 
1256 	*nr_zones = i;
1257 #else /* !CONFIG_BLK_DEV_ZONED */
1258 	*nr_zones = 0;
1259 #endif
1260 }
1261 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1262 
1263 static blk_qc_t __map_bio(struct dm_target_io *tio)
1264 {
1265 	int r;
1266 	sector_t sector;
1267 	struct bio *clone = &tio->clone;
1268 	struct dm_io *io = tio->io;
1269 	struct mapped_device *md = io->md;
1270 	struct dm_target *ti = tio->ti;
1271 	blk_qc_t ret = BLK_QC_T_NONE;
1272 
1273 	clone->bi_end_io = clone_endio;
1274 
1275 	/*
1276 	 * Map the clone.  If r == 0 we don't need to do
1277 	 * anything, the target has assumed ownership of
1278 	 * this io.
1279 	 */
1280 	atomic_inc(&io->io_count);
1281 	sector = clone->bi_iter.bi_sector;
1282 
1283 	r = ti->type->map(ti, clone);
1284 	switch (r) {
1285 	case DM_MAPIO_SUBMITTED:
1286 		break;
1287 	case DM_MAPIO_REMAPPED:
1288 		/* the bio has been remapped so dispatch it */
1289 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1290 				      bio_dev(io->orig_bio), sector);
1291 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1292 			ret = direct_make_request(clone);
1293 		else
1294 			ret = generic_make_request(clone);
1295 		break;
1296 	case DM_MAPIO_KILL:
1297 		free_tio(tio);
1298 		dec_pending(io, BLK_STS_IOERR);
1299 		break;
1300 	case DM_MAPIO_REQUEUE:
1301 		free_tio(tio);
1302 		dec_pending(io, BLK_STS_DM_REQUEUE);
1303 		break;
1304 	default:
1305 		DMWARN("unimplemented target map return value: %d", r);
1306 		BUG();
1307 	}
1308 
1309 	return ret;
1310 }
1311 
1312 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1313 {
1314 	bio->bi_iter.bi_sector = sector;
1315 	bio->bi_iter.bi_size = to_bytes(len);
1316 }
1317 
1318 /*
1319  * Creates a bio that consists of range of complete bvecs.
1320  */
1321 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1322 		     sector_t sector, unsigned len)
1323 {
1324 	struct bio *clone = &tio->clone;
1325 
1326 	__bio_clone_fast(clone, bio);
1327 
1328 	if (bio_integrity(bio)) {
1329 		int r;
1330 
1331 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1332 			     !dm_target_passes_integrity(tio->ti->type))) {
1333 			DMWARN("%s: the target %s doesn't support integrity data.",
1334 				dm_device_name(tio->io->md),
1335 				tio->ti->type->name);
1336 			return -EIO;
1337 		}
1338 
1339 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1340 		if (r < 0)
1341 			return r;
1342 	}
1343 
1344 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1345 	clone->bi_iter.bi_size = to_bytes(len);
1346 
1347 	if (bio_integrity(bio))
1348 		bio_integrity_trim(clone);
1349 
1350 	return 0;
1351 }
1352 
1353 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1354 				struct dm_target *ti, unsigned num_bios)
1355 {
1356 	struct dm_target_io *tio;
1357 	int try;
1358 
1359 	if (!num_bios)
1360 		return;
1361 
1362 	if (num_bios == 1) {
1363 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1364 		bio_list_add(blist, &tio->clone);
1365 		return;
1366 	}
1367 
1368 	for (try = 0; try < 2; try++) {
1369 		int bio_nr;
1370 		struct bio *bio;
1371 
1372 		if (try)
1373 			mutex_lock(&ci->io->md->table_devices_lock);
1374 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1375 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1376 			if (!tio)
1377 				break;
1378 
1379 			bio_list_add(blist, &tio->clone);
1380 		}
1381 		if (try)
1382 			mutex_unlock(&ci->io->md->table_devices_lock);
1383 		if (bio_nr == num_bios)
1384 			return;
1385 
1386 		while ((bio = bio_list_pop(blist))) {
1387 			tio = container_of(bio, struct dm_target_io, clone);
1388 			free_tio(tio);
1389 		}
1390 	}
1391 }
1392 
1393 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1394 					   struct dm_target_io *tio, unsigned *len)
1395 {
1396 	struct bio *clone = &tio->clone;
1397 
1398 	tio->len_ptr = len;
1399 
1400 	__bio_clone_fast(clone, ci->bio);
1401 	if (len)
1402 		bio_setup_sector(clone, ci->sector, *len);
1403 
1404 	return __map_bio(tio);
1405 }
1406 
1407 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1408 				  unsigned num_bios, unsigned *len)
1409 {
1410 	struct bio_list blist = BIO_EMPTY_LIST;
1411 	struct bio *bio;
1412 	struct dm_target_io *tio;
1413 
1414 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1415 
1416 	while ((bio = bio_list_pop(&blist))) {
1417 		tio = container_of(bio, struct dm_target_io, clone);
1418 		(void) __clone_and_map_simple_bio(ci, tio, len);
1419 	}
1420 }
1421 
1422 static int __send_empty_flush(struct clone_info *ci)
1423 {
1424 	unsigned target_nr = 0;
1425 	struct dm_target *ti;
1426 
1427 	/*
1428 	 * Empty flush uses a statically initialized bio, as the base for
1429 	 * cloning.  However, blkg association requires that a bdev is
1430 	 * associated with a gendisk, which doesn't happen until the bdev is
1431 	 * opened.  So, blkg association is done at issue time of the flush
1432 	 * rather than when the device is created in alloc_dev().
1433 	 */
1434 	bio_set_dev(ci->bio, ci->io->md->bdev);
1435 
1436 	BUG_ON(bio_has_data(ci->bio));
1437 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1438 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1439 
1440 	bio_disassociate_blkg(ci->bio);
1441 
1442 	return 0;
1443 }
1444 
1445 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1446 				    sector_t sector, unsigned *len)
1447 {
1448 	struct bio *bio = ci->bio;
1449 	struct dm_target_io *tio;
1450 	int r;
1451 
1452 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1453 	tio->len_ptr = len;
1454 	r = clone_bio(tio, bio, sector, *len);
1455 	if (r < 0) {
1456 		free_tio(tio);
1457 		return r;
1458 	}
1459 	(void) __map_bio(tio);
1460 
1461 	return 0;
1462 }
1463 
1464 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1465 
1466 static unsigned get_num_discard_bios(struct dm_target *ti)
1467 {
1468 	return ti->num_discard_bios;
1469 }
1470 
1471 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1472 {
1473 	return ti->num_secure_erase_bios;
1474 }
1475 
1476 static unsigned get_num_write_same_bios(struct dm_target *ti)
1477 {
1478 	return ti->num_write_same_bios;
1479 }
1480 
1481 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1482 {
1483 	return ti->num_write_zeroes_bios;
1484 }
1485 
1486 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1487 				       unsigned num_bios)
1488 {
1489 	unsigned len;
1490 
1491 	/*
1492 	 * Even though the device advertised support for this type of
1493 	 * request, that does not mean every target supports it, and
1494 	 * reconfiguration might also have changed that since the
1495 	 * check was performed.
1496 	 */
1497 	if (!num_bios)
1498 		return -EOPNOTSUPP;
1499 
1500 	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1501 
1502 	__send_duplicate_bios(ci, ti, num_bios, &len);
1503 
1504 	ci->sector += len;
1505 	ci->sector_count -= len;
1506 
1507 	return 0;
1508 }
1509 
1510 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1511 {
1512 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1513 }
1514 
1515 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1516 {
1517 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1518 }
1519 
1520 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1521 {
1522 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1523 }
1524 
1525 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1526 {
1527 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1528 }
1529 
1530 static bool is_abnormal_io(struct bio *bio)
1531 {
1532 	bool r = false;
1533 
1534 	switch (bio_op(bio)) {
1535 	case REQ_OP_DISCARD:
1536 	case REQ_OP_SECURE_ERASE:
1537 	case REQ_OP_WRITE_SAME:
1538 	case REQ_OP_WRITE_ZEROES:
1539 		r = true;
1540 		break;
1541 	}
1542 
1543 	return r;
1544 }
1545 
1546 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1547 				  int *result)
1548 {
1549 	struct bio *bio = ci->bio;
1550 
1551 	if (bio_op(bio) == REQ_OP_DISCARD)
1552 		*result = __send_discard(ci, ti);
1553 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1554 		*result = __send_secure_erase(ci, ti);
1555 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1556 		*result = __send_write_same(ci, ti);
1557 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1558 		*result = __send_write_zeroes(ci, ti);
1559 	else
1560 		return false;
1561 
1562 	return true;
1563 }
1564 
1565 /*
1566  * Select the correct strategy for processing a non-flush bio.
1567  */
1568 static int __split_and_process_non_flush(struct clone_info *ci)
1569 {
1570 	struct dm_target *ti;
1571 	unsigned len;
1572 	int r;
1573 
1574 	ti = dm_table_find_target(ci->map, ci->sector);
1575 	if (!dm_target_is_valid(ti))
1576 		return -EIO;
1577 
1578 	if (__process_abnormal_io(ci, ti, &r))
1579 		return r;
1580 
1581 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1582 
1583 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1584 	if (r < 0)
1585 		return r;
1586 
1587 	ci->sector += len;
1588 	ci->sector_count -= len;
1589 
1590 	return 0;
1591 }
1592 
1593 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1594 			    struct dm_table *map, struct bio *bio)
1595 {
1596 	ci->map = map;
1597 	ci->io = alloc_io(md, bio);
1598 	ci->sector = bio->bi_iter.bi_sector;
1599 }
1600 
1601 #define __dm_part_stat_sub(part, field, subnd)	\
1602 	(part_stat_get(part, field) -= (subnd))
1603 
1604 /*
1605  * Entry point to split a bio into clones and submit them to the targets.
1606  */
1607 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1608 					struct dm_table *map, struct bio *bio)
1609 {
1610 	struct clone_info ci;
1611 	blk_qc_t ret = BLK_QC_T_NONE;
1612 	int error = 0;
1613 
1614 	init_clone_info(&ci, md, map, bio);
1615 
1616 	if (bio->bi_opf & REQ_PREFLUSH) {
1617 		struct bio flush_bio;
1618 
1619 		/*
1620 		 * Use an on-stack bio for this, it's safe since we don't
1621 		 * need to reference it after submit. It's just used as
1622 		 * the basis for the clone(s).
1623 		 */
1624 		bio_init(&flush_bio, NULL, 0);
1625 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1626 		ci.bio = &flush_bio;
1627 		ci.sector_count = 0;
1628 		error = __send_empty_flush(&ci);
1629 		/* dec_pending submits any data associated with flush */
1630 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1631 		ci.bio = bio;
1632 		ci.sector_count = 0;
1633 		error = __split_and_process_non_flush(&ci);
1634 	} else {
1635 		ci.bio = bio;
1636 		ci.sector_count = bio_sectors(bio);
1637 		while (ci.sector_count && !error) {
1638 			error = __split_and_process_non_flush(&ci);
1639 			if (current->bio_list && ci.sector_count && !error) {
1640 				/*
1641 				 * Remainder must be passed to generic_make_request()
1642 				 * so that it gets handled *after* bios already submitted
1643 				 * have been completely processed.
1644 				 * We take a clone of the original to store in
1645 				 * ci.io->orig_bio to be used by end_io_acct() and
1646 				 * for dec_pending to use for completion handling.
1647 				 */
1648 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1649 							  GFP_NOIO, &md->queue->bio_split);
1650 				ci.io->orig_bio = b;
1651 
1652 				/*
1653 				 * Adjust IO stats for each split, otherwise upon queue
1654 				 * reentry there will be redundant IO accounting.
1655 				 * NOTE: this is a stop-gap fix, a proper fix involves
1656 				 * significant refactoring of DM core's bio splitting
1657 				 * (by eliminating DM's splitting and just using bio_split)
1658 				 */
1659 				part_stat_lock();
1660 				__dm_part_stat_sub(&dm_disk(md)->part0,
1661 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1662 				part_stat_unlock();
1663 
1664 				bio_chain(b, bio);
1665 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1666 				ret = generic_make_request(bio);
1667 				break;
1668 			}
1669 		}
1670 	}
1671 
1672 	/* drop the extra reference count */
1673 	dec_pending(ci.io, errno_to_blk_status(error));
1674 	return ret;
1675 }
1676 
1677 /*
1678  * Optimized variant of __split_and_process_bio that leverages the
1679  * fact that targets that use it do _not_ have a need to split bios.
1680  */
1681 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1682 			      struct bio *bio, struct dm_target *ti)
1683 {
1684 	struct clone_info ci;
1685 	blk_qc_t ret = BLK_QC_T_NONE;
1686 	int error = 0;
1687 
1688 	init_clone_info(&ci, md, map, bio);
1689 
1690 	if (bio->bi_opf & REQ_PREFLUSH) {
1691 		struct bio flush_bio;
1692 
1693 		/*
1694 		 * Use an on-stack bio for this, it's safe since we don't
1695 		 * need to reference it after submit. It's just used as
1696 		 * the basis for the clone(s).
1697 		 */
1698 		bio_init(&flush_bio, NULL, 0);
1699 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1700 		ci.bio = &flush_bio;
1701 		ci.sector_count = 0;
1702 		error = __send_empty_flush(&ci);
1703 		/* dec_pending submits any data associated with flush */
1704 	} else {
1705 		struct dm_target_io *tio;
1706 
1707 		ci.bio = bio;
1708 		ci.sector_count = bio_sectors(bio);
1709 		if (__process_abnormal_io(&ci, ti, &error))
1710 			goto out;
1711 
1712 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1713 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1714 	}
1715 out:
1716 	/* drop the extra reference count */
1717 	dec_pending(ci.io, errno_to_blk_status(error));
1718 	return ret;
1719 }
1720 
1721 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1722 {
1723 	unsigned len, sector_count;
1724 
1725 	sector_count = bio_sectors(*bio);
1726 	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1727 
1728 	if (sector_count > len) {
1729 		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1730 
1731 		bio_chain(split, *bio);
1732 		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1733 		generic_make_request(*bio);
1734 		*bio = split;
1735 	}
1736 }
1737 
1738 static blk_qc_t dm_process_bio(struct mapped_device *md,
1739 			       struct dm_table *map, struct bio *bio)
1740 {
1741 	blk_qc_t ret = BLK_QC_T_NONE;
1742 	struct dm_target *ti = md->immutable_target;
1743 
1744 	if (unlikely(!map)) {
1745 		bio_io_error(bio);
1746 		return ret;
1747 	}
1748 
1749 	if (!ti) {
1750 		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1751 		if (unlikely(!ti || !dm_target_is_valid(ti))) {
1752 			bio_io_error(bio);
1753 			return ret;
1754 		}
1755 	}
1756 
1757 	/*
1758 	 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1759 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1760 	 * won't be imposed.
1761 	 */
1762 	if (current->bio_list) {
1763 		blk_queue_split(md->queue, &bio);
1764 		if (!is_abnormal_io(bio))
1765 			dm_queue_split(md, ti, &bio);
1766 	}
1767 
1768 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1769 		return __process_bio(md, map, bio, ti);
1770 	else
1771 		return __split_and_process_bio(md, map, bio);
1772 }
1773 
1774 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1775 {
1776 	struct mapped_device *md = q->queuedata;
1777 	blk_qc_t ret = BLK_QC_T_NONE;
1778 	int srcu_idx;
1779 	struct dm_table *map;
1780 
1781 	map = dm_get_live_table(md, &srcu_idx);
1782 
1783 	/* if we're suspended, we have to queue this io for later */
1784 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1785 		dm_put_live_table(md, srcu_idx);
1786 
1787 		if (!(bio->bi_opf & REQ_RAHEAD))
1788 			queue_io(md, bio);
1789 		else
1790 			bio_io_error(bio);
1791 		return ret;
1792 	}
1793 
1794 	ret = dm_process_bio(md, map, bio);
1795 
1796 	dm_put_live_table(md, srcu_idx);
1797 	return ret;
1798 }
1799 
1800 static int dm_any_congested(void *congested_data, int bdi_bits)
1801 {
1802 	int r = bdi_bits;
1803 	struct mapped_device *md = congested_data;
1804 	struct dm_table *map;
1805 
1806 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1807 		if (dm_request_based(md)) {
1808 			/*
1809 			 * With request-based DM we only need to check the
1810 			 * top-level queue for congestion.
1811 			 */
1812 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1813 		} else {
1814 			map = dm_get_live_table_fast(md);
1815 			if (map)
1816 				r = dm_table_any_congested(map, bdi_bits);
1817 			dm_put_live_table_fast(md);
1818 		}
1819 	}
1820 
1821 	return r;
1822 }
1823 
1824 /*-----------------------------------------------------------------
1825  * An IDR is used to keep track of allocated minor numbers.
1826  *---------------------------------------------------------------*/
1827 static void free_minor(int minor)
1828 {
1829 	spin_lock(&_minor_lock);
1830 	idr_remove(&_minor_idr, minor);
1831 	spin_unlock(&_minor_lock);
1832 }
1833 
1834 /*
1835  * See if the device with a specific minor # is free.
1836  */
1837 static int specific_minor(int minor)
1838 {
1839 	int r;
1840 
1841 	if (minor >= (1 << MINORBITS))
1842 		return -EINVAL;
1843 
1844 	idr_preload(GFP_KERNEL);
1845 	spin_lock(&_minor_lock);
1846 
1847 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1848 
1849 	spin_unlock(&_minor_lock);
1850 	idr_preload_end();
1851 	if (r < 0)
1852 		return r == -ENOSPC ? -EBUSY : r;
1853 	return 0;
1854 }
1855 
1856 static int next_free_minor(int *minor)
1857 {
1858 	int r;
1859 
1860 	idr_preload(GFP_KERNEL);
1861 	spin_lock(&_minor_lock);
1862 
1863 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1864 
1865 	spin_unlock(&_minor_lock);
1866 	idr_preload_end();
1867 	if (r < 0)
1868 		return r;
1869 	*minor = r;
1870 	return 0;
1871 }
1872 
1873 static const struct block_device_operations dm_blk_dops;
1874 static const struct dax_operations dm_dax_ops;
1875 
1876 static void dm_wq_work(struct work_struct *work);
1877 
1878 static void dm_init_normal_md_queue(struct mapped_device *md)
1879 {
1880 	/*
1881 	 * Initialize aspects of queue that aren't relevant for blk-mq
1882 	 */
1883 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1884 }
1885 
1886 static void cleanup_mapped_device(struct mapped_device *md)
1887 {
1888 	if (md->wq)
1889 		destroy_workqueue(md->wq);
1890 	bioset_exit(&md->bs);
1891 	bioset_exit(&md->io_bs);
1892 
1893 	if (md->dax_dev) {
1894 		kill_dax(md->dax_dev);
1895 		put_dax(md->dax_dev);
1896 		md->dax_dev = NULL;
1897 	}
1898 
1899 	if (md->disk) {
1900 		spin_lock(&_minor_lock);
1901 		md->disk->private_data = NULL;
1902 		spin_unlock(&_minor_lock);
1903 		del_gendisk(md->disk);
1904 		put_disk(md->disk);
1905 	}
1906 
1907 	if (md->queue)
1908 		blk_cleanup_queue(md->queue);
1909 
1910 	cleanup_srcu_struct(&md->io_barrier);
1911 
1912 	if (md->bdev) {
1913 		bdput(md->bdev);
1914 		md->bdev = NULL;
1915 	}
1916 
1917 	mutex_destroy(&md->suspend_lock);
1918 	mutex_destroy(&md->type_lock);
1919 	mutex_destroy(&md->table_devices_lock);
1920 
1921 	dm_mq_cleanup_mapped_device(md);
1922 }
1923 
1924 /*
1925  * Allocate and initialise a blank device with a given minor.
1926  */
1927 static struct mapped_device *alloc_dev(int minor)
1928 {
1929 	int r, numa_node_id = dm_get_numa_node();
1930 	struct mapped_device *md;
1931 	void *old_md;
1932 
1933 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1934 	if (!md) {
1935 		DMWARN("unable to allocate device, out of memory.");
1936 		return NULL;
1937 	}
1938 
1939 	if (!try_module_get(THIS_MODULE))
1940 		goto bad_module_get;
1941 
1942 	/* get a minor number for the dev */
1943 	if (minor == DM_ANY_MINOR)
1944 		r = next_free_minor(&minor);
1945 	else
1946 		r = specific_minor(minor);
1947 	if (r < 0)
1948 		goto bad_minor;
1949 
1950 	r = init_srcu_struct(&md->io_barrier);
1951 	if (r < 0)
1952 		goto bad_io_barrier;
1953 
1954 	md->numa_node_id = numa_node_id;
1955 	md->init_tio_pdu = false;
1956 	md->type = DM_TYPE_NONE;
1957 	mutex_init(&md->suspend_lock);
1958 	mutex_init(&md->type_lock);
1959 	mutex_init(&md->table_devices_lock);
1960 	spin_lock_init(&md->deferred_lock);
1961 	atomic_set(&md->holders, 1);
1962 	atomic_set(&md->open_count, 0);
1963 	atomic_set(&md->event_nr, 0);
1964 	atomic_set(&md->uevent_seq, 0);
1965 	INIT_LIST_HEAD(&md->uevent_list);
1966 	INIT_LIST_HEAD(&md->table_devices);
1967 	spin_lock_init(&md->uevent_lock);
1968 
1969 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1970 	if (!md->queue)
1971 		goto bad;
1972 	md->queue->queuedata = md;
1973 	md->queue->backing_dev_info->congested_data = md;
1974 
1975 	md->disk = alloc_disk_node(1, md->numa_node_id);
1976 	if (!md->disk)
1977 		goto bad;
1978 
1979 	init_waitqueue_head(&md->wait);
1980 	INIT_WORK(&md->work, dm_wq_work);
1981 	init_waitqueue_head(&md->eventq);
1982 	init_completion(&md->kobj_holder.completion);
1983 
1984 	md->disk->major = _major;
1985 	md->disk->first_minor = minor;
1986 	md->disk->fops = &dm_blk_dops;
1987 	md->disk->queue = md->queue;
1988 	md->disk->private_data = md;
1989 	sprintf(md->disk->disk_name, "dm-%d", minor);
1990 
1991 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1992 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1993 					&dm_dax_ops, 0);
1994 		if (!md->dax_dev)
1995 			goto bad;
1996 	}
1997 
1998 	add_disk_no_queue_reg(md->disk);
1999 	format_dev_t(md->name, MKDEV(_major, minor));
2000 
2001 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2002 	if (!md->wq)
2003 		goto bad;
2004 
2005 	md->bdev = bdget_disk(md->disk, 0);
2006 	if (!md->bdev)
2007 		goto bad;
2008 
2009 	dm_stats_init(&md->stats);
2010 
2011 	/* Populate the mapping, nobody knows we exist yet */
2012 	spin_lock(&_minor_lock);
2013 	old_md = idr_replace(&_minor_idr, md, minor);
2014 	spin_unlock(&_minor_lock);
2015 
2016 	BUG_ON(old_md != MINOR_ALLOCED);
2017 
2018 	return md;
2019 
2020 bad:
2021 	cleanup_mapped_device(md);
2022 bad_io_barrier:
2023 	free_minor(minor);
2024 bad_minor:
2025 	module_put(THIS_MODULE);
2026 bad_module_get:
2027 	kvfree(md);
2028 	return NULL;
2029 }
2030 
2031 static void unlock_fs(struct mapped_device *md);
2032 
2033 static void free_dev(struct mapped_device *md)
2034 {
2035 	int minor = MINOR(disk_devt(md->disk));
2036 
2037 	unlock_fs(md);
2038 
2039 	cleanup_mapped_device(md);
2040 
2041 	free_table_devices(&md->table_devices);
2042 	dm_stats_cleanup(&md->stats);
2043 	free_minor(minor);
2044 
2045 	module_put(THIS_MODULE);
2046 	kvfree(md);
2047 }
2048 
2049 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2050 {
2051 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2052 	int ret = 0;
2053 
2054 	if (dm_table_bio_based(t)) {
2055 		/*
2056 		 * The md may already have mempools that need changing.
2057 		 * If so, reload bioset because front_pad may have changed
2058 		 * because a different table was loaded.
2059 		 */
2060 		bioset_exit(&md->bs);
2061 		bioset_exit(&md->io_bs);
2062 
2063 	} else if (bioset_initialized(&md->bs)) {
2064 		/*
2065 		 * There's no need to reload with request-based dm
2066 		 * because the size of front_pad doesn't change.
2067 		 * Note for future: If you are to reload bioset,
2068 		 * prep-ed requests in the queue may refer
2069 		 * to bio from the old bioset, so you must walk
2070 		 * through the queue to unprep.
2071 		 */
2072 		goto out;
2073 	}
2074 
2075 	BUG_ON(!p ||
2076 	       bioset_initialized(&md->bs) ||
2077 	       bioset_initialized(&md->io_bs));
2078 
2079 	ret = bioset_init_from_src(&md->bs, &p->bs);
2080 	if (ret)
2081 		goto out;
2082 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2083 	if (ret)
2084 		bioset_exit(&md->bs);
2085 out:
2086 	/* mempool bind completed, no longer need any mempools in the table */
2087 	dm_table_free_md_mempools(t);
2088 	return ret;
2089 }
2090 
2091 /*
2092  * Bind a table to the device.
2093  */
2094 static void event_callback(void *context)
2095 {
2096 	unsigned long flags;
2097 	LIST_HEAD(uevents);
2098 	struct mapped_device *md = (struct mapped_device *) context;
2099 
2100 	spin_lock_irqsave(&md->uevent_lock, flags);
2101 	list_splice_init(&md->uevent_list, &uevents);
2102 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2103 
2104 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2105 
2106 	atomic_inc(&md->event_nr);
2107 	wake_up(&md->eventq);
2108 	dm_issue_global_event();
2109 }
2110 
2111 /*
2112  * Protected by md->suspend_lock obtained by dm_swap_table().
2113  */
2114 static void __set_size(struct mapped_device *md, sector_t size)
2115 {
2116 	lockdep_assert_held(&md->suspend_lock);
2117 
2118 	set_capacity(md->disk, size);
2119 
2120 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2121 }
2122 
2123 /*
2124  * Returns old map, which caller must destroy.
2125  */
2126 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2127 			       struct queue_limits *limits)
2128 {
2129 	struct dm_table *old_map;
2130 	struct request_queue *q = md->queue;
2131 	bool request_based = dm_table_request_based(t);
2132 	sector_t size;
2133 	int ret;
2134 
2135 	lockdep_assert_held(&md->suspend_lock);
2136 
2137 	size = dm_table_get_size(t);
2138 
2139 	/*
2140 	 * Wipe any geometry if the size of the table changed.
2141 	 */
2142 	if (size != dm_get_size(md))
2143 		memset(&md->geometry, 0, sizeof(md->geometry));
2144 
2145 	__set_size(md, size);
2146 
2147 	dm_table_event_callback(t, event_callback, md);
2148 
2149 	/*
2150 	 * The queue hasn't been stopped yet, if the old table type wasn't
2151 	 * for request-based during suspension.  So stop it to prevent
2152 	 * I/O mapping before resume.
2153 	 * This must be done before setting the queue restrictions,
2154 	 * because request-based dm may be run just after the setting.
2155 	 */
2156 	if (request_based)
2157 		dm_stop_queue(q);
2158 
2159 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2160 		/*
2161 		 * Leverage the fact that request-based DM targets and
2162 		 * NVMe bio based targets are immutable singletons
2163 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2164 		 *   and __process_bio.
2165 		 */
2166 		md->immutable_target = dm_table_get_immutable_target(t);
2167 	}
2168 
2169 	ret = __bind_mempools(md, t);
2170 	if (ret) {
2171 		old_map = ERR_PTR(ret);
2172 		goto out;
2173 	}
2174 
2175 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2176 	rcu_assign_pointer(md->map, (void *)t);
2177 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2178 
2179 	dm_table_set_restrictions(t, q, limits);
2180 	if (old_map)
2181 		dm_sync_table(md);
2182 
2183 out:
2184 	return old_map;
2185 }
2186 
2187 /*
2188  * Returns unbound table for the caller to free.
2189  */
2190 static struct dm_table *__unbind(struct mapped_device *md)
2191 {
2192 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2193 
2194 	if (!map)
2195 		return NULL;
2196 
2197 	dm_table_event_callback(map, NULL, NULL);
2198 	RCU_INIT_POINTER(md->map, NULL);
2199 	dm_sync_table(md);
2200 
2201 	return map;
2202 }
2203 
2204 /*
2205  * Constructor for a new device.
2206  */
2207 int dm_create(int minor, struct mapped_device **result)
2208 {
2209 	int r;
2210 	struct mapped_device *md;
2211 
2212 	md = alloc_dev(minor);
2213 	if (!md)
2214 		return -ENXIO;
2215 
2216 	r = dm_sysfs_init(md);
2217 	if (r) {
2218 		free_dev(md);
2219 		return r;
2220 	}
2221 
2222 	*result = md;
2223 	return 0;
2224 }
2225 
2226 /*
2227  * Functions to manage md->type.
2228  * All are required to hold md->type_lock.
2229  */
2230 void dm_lock_md_type(struct mapped_device *md)
2231 {
2232 	mutex_lock(&md->type_lock);
2233 }
2234 
2235 void dm_unlock_md_type(struct mapped_device *md)
2236 {
2237 	mutex_unlock(&md->type_lock);
2238 }
2239 
2240 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2241 {
2242 	BUG_ON(!mutex_is_locked(&md->type_lock));
2243 	md->type = type;
2244 }
2245 
2246 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2247 {
2248 	return md->type;
2249 }
2250 
2251 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2252 {
2253 	return md->immutable_target_type;
2254 }
2255 
2256 /*
2257  * The queue_limits are only valid as long as you have a reference
2258  * count on 'md'.
2259  */
2260 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2261 {
2262 	BUG_ON(!atomic_read(&md->holders));
2263 	return &md->queue->limits;
2264 }
2265 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2266 
2267 /*
2268  * Setup the DM device's queue based on md's type
2269  */
2270 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2271 {
2272 	int r;
2273 	struct queue_limits limits;
2274 	enum dm_queue_mode type = dm_get_md_type(md);
2275 
2276 	switch (type) {
2277 	case DM_TYPE_REQUEST_BASED:
2278 		r = dm_mq_init_request_queue(md, t);
2279 		if (r) {
2280 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2281 			return r;
2282 		}
2283 		break;
2284 	case DM_TYPE_BIO_BASED:
2285 	case DM_TYPE_DAX_BIO_BASED:
2286 	case DM_TYPE_NVME_BIO_BASED:
2287 		dm_init_normal_md_queue(md);
2288 		blk_queue_make_request(md->queue, dm_make_request);
2289 		break;
2290 	case DM_TYPE_NONE:
2291 		WARN_ON_ONCE(true);
2292 		break;
2293 	}
2294 
2295 	r = dm_calculate_queue_limits(t, &limits);
2296 	if (r) {
2297 		DMERR("Cannot calculate initial queue limits");
2298 		return r;
2299 	}
2300 	dm_table_set_restrictions(t, md->queue, &limits);
2301 	blk_register_queue(md->disk);
2302 
2303 	return 0;
2304 }
2305 
2306 struct mapped_device *dm_get_md(dev_t dev)
2307 {
2308 	struct mapped_device *md;
2309 	unsigned minor = MINOR(dev);
2310 
2311 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2312 		return NULL;
2313 
2314 	spin_lock(&_minor_lock);
2315 
2316 	md = idr_find(&_minor_idr, minor);
2317 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2318 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2319 		md = NULL;
2320 		goto out;
2321 	}
2322 	dm_get(md);
2323 out:
2324 	spin_unlock(&_minor_lock);
2325 
2326 	return md;
2327 }
2328 EXPORT_SYMBOL_GPL(dm_get_md);
2329 
2330 void *dm_get_mdptr(struct mapped_device *md)
2331 {
2332 	return md->interface_ptr;
2333 }
2334 
2335 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2336 {
2337 	md->interface_ptr = ptr;
2338 }
2339 
2340 void dm_get(struct mapped_device *md)
2341 {
2342 	atomic_inc(&md->holders);
2343 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2344 }
2345 
2346 int dm_hold(struct mapped_device *md)
2347 {
2348 	spin_lock(&_minor_lock);
2349 	if (test_bit(DMF_FREEING, &md->flags)) {
2350 		spin_unlock(&_minor_lock);
2351 		return -EBUSY;
2352 	}
2353 	dm_get(md);
2354 	spin_unlock(&_minor_lock);
2355 	return 0;
2356 }
2357 EXPORT_SYMBOL_GPL(dm_hold);
2358 
2359 const char *dm_device_name(struct mapped_device *md)
2360 {
2361 	return md->name;
2362 }
2363 EXPORT_SYMBOL_GPL(dm_device_name);
2364 
2365 static void __dm_destroy(struct mapped_device *md, bool wait)
2366 {
2367 	struct dm_table *map;
2368 	int srcu_idx;
2369 
2370 	might_sleep();
2371 
2372 	spin_lock(&_minor_lock);
2373 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2374 	set_bit(DMF_FREEING, &md->flags);
2375 	spin_unlock(&_minor_lock);
2376 
2377 	blk_set_queue_dying(md->queue);
2378 
2379 	/*
2380 	 * Take suspend_lock so that presuspend and postsuspend methods
2381 	 * do not race with internal suspend.
2382 	 */
2383 	mutex_lock(&md->suspend_lock);
2384 	map = dm_get_live_table(md, &srcu_idx);
2385 	if (!dm_suspended_md(md)) {
2386 		dm_table_presuspend_targets(map);
2387 		dm_table_postsuspend_targets(map);
2388 	}
2389 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2390 	dm_put_live_table(md, srcu_idx);
2391 	mutex_unlock(&md->suspend_lock);
2392 
2393 	/*
2394 	 * Rare, but there may be I/O requests still going to complete,
2395 	 * for example.  Wait for all references to disappear.
2396 	 * No one should increment the reference count of the mapped_device,
2397 	 * after the mapped_device state becomes DMF_FREEING.
2398 	 */
2399 	if (wait)
2400 		while (atomic_read(&md->holders))
2401 			msleep(1);
2402 	else if (atomic_read(&md->holders))
2403 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2404 		       dm_device_name(md), atomic_read(&md->holders));
2405 
2406 	dm_sysfs_exit(md);
2407 	dm_table_destroy(__unbind(md));
2408 	free_dev(md);
2409 }
2410 
2411 void dm_destroy(struct mapped_device *md)
2412 {
2413 	__dm_destroy(md, true);
2414 }
2415 
2416 void dm_destroy_immediate(struct mapped_device *md)
2417 {
2418 	__dm_destroy(md, false);
2419 }
2420 
2421 void dm_put(struct mapped_device *md)
2422 {
2423 	atomic_dec(&md->holders);
2424 }
2425 EXPORT_SYMBOL_GPL(dm_put);
2426 
2427 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2428 {
2429 	int r = 0;
2430 	DEFINE_WAIT(wait);
2431 
2432 	while (1) {
2433 		prepare_to_wait(&md->wait, &wait, task_state);
2434 
2435 		if (!md_in_flight(md))
2436 			break;
2437 
2438 		if (signal_pending_state(task_state, current)) {
2439 			r = -EINTR;
2440 			break;
2441 		}
2442 
2443 		io_schedule();
2444 	}
2445 	finish_wait(&md->wait, &wait);
2446 
2447 	return r;
2448 }
2449 
2450 /*
2451  * Process the deferred bios
2452  */
2453 static void dm_wq_work(struct work_struct *work)
2454 {
2455 	struct mapped_device *md = container_of(work, struct mapped_device,
2456 						work);
2457 	struct bio *c;
2458 	int srcu_idx;
2459 	struct dm_table *map;
2460 
2461 	map = dm_get_live_table(md, &srcu_idx);
2462 
2463 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2464 		spin_lock_irq(&md->deferred_lock);
2465 		c = bio_list_pop(&md->deferred);
2466 		spin_unlock_irq(&md->deferred_lock);
2467 
2468 		if (!c)
2469 			break;
2470 
2471 		if (dm_request_based(md))
2472 			(void) generic_make_request(c);
2473 		else
2474 			(void) dm_process_bio(md, map, c);
2475 	}
2476 
2477 	dm_put_live_table(md, srcu_idx);
2478 }
2479 
2480 static void dm_queue_flush(struct mapped_device *md)
2481 {
2482 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2483 	smp_mb__after_atomic();
2484 	queue_work(md->wq, &md->work);
2485 }
2486 
2487 /*
2488  * Swap in a new table, returning the old one for the caller to destroy.
2489  */
2490 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2491 {
2492 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2493 	struct queue_limits limits;
2494 	int r;
2495 
2496 	mutex_lock(&md->suspend_lock);
2497 
2498 	/* device must be suspended */
2499 	if (!dm_suspended_md(md))
2500 		goto out;
2501 
2502 	/*
2503 	 * If the new table has no data devices, retain the existing limits.
2504 	 * This helps multipath with queue_if_no_path if all paths disappear,
2505 	 * then new I/O is queued based on these limits, and then some paths
2506 	 * reappear.
2507 	 */
2508 	if (dm_table_has_no_data_devices(table)) {
2509 		live_map = dm_get_live_table_fast(md);
2510 		if (live_map)
2511 			limits = md->queue->limits;
2512 		dm_put_live_table_fast(md);
2513 	}
2514 
2515 	if (!live_map) {
2516 		r = dm_calculate_queue_limits(table, &limits);
2517 		if (r) {
2518 			map = ERR_PTR(r);
2519 			goto out;
2520 		}
2521 	}
2522 
2523 	map = __bind(md, table, &limits);
2524 	dm_issue_global_event();
2525 
2526 out:
2527 	mutex_unlock(&md->suspend_lock);
2528 	return map;
2529 }
2530 
2531 /*
2532  * Functions to lock and unlock any filesystem running on the
2533  * device.
2534  */
2535 static int lock_fs(struct mapped_device *md)
2536 {
2537 	int r;
2538 
2539 	WARN_ON(md->frozen_sb);
2540 
2541 	md->frozen_sb = freeze_bdev(md->bdev);
2542 	if (IS_ERR(md->frozen_sb)) {
2543 		r = PTR_ERR(md->frozen_sb);
2544 		md->frozen_sb = NULL;
2545 		return r;
2546 	}
2547 
2548 	set_bit(DMF_FROZEN, &md->flags);
2549 
2550 	return 0;
2551 }
2552 
2553 static void unlock_fs(struct mapped_device *md)
2554 {
2555 	if (!test_bit(DMF_FROZEN, &md->flags))
2556 		return;
2557 
2558 	thaw_bdev(md->bdev, md->frozen_sb);
2559 	md->frozen_sb = NULL;
2560 	clear_bit(DMF_FROZEN, &md->flags);
2561 }
2562 
2563 /*
2564  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2565  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2566  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2567  *
2568  * If __dm_suspend returns 0, the device is completely quiescent
2569  * now. There is no request-processing activity. All new requests
2570  * are being added to md->deferred list.
2571  */
2572 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2573 			unsigned suspend_flags, long task_state,
2574 			int dmf_suspended_flag)
2575 {
2576 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2577 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2578 	int r;
2579 
2580 	lockdep_assert_held(&md->suspend_lock);
2581 
2582 	/*
2583 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2584 	 * This flag is cleared before dm_suspend returns.
2585 	 */
2586 	if (noflush)
2587 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2588 	else
2589 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2590 
2591 	/*
2592 	 * This gets reverted if there's an error later and the targets
2593 	 * provide the .presuspend_undo hook.
2594 	 */
2595 	dm_table_presuspend_targets(map);
2596 
2597 	/*
2598 	 * Flush I/O to the device.
2599 	 * Any I/O submitted after lock_fs() may not be flushed.
2600 	 * noflush takes precedence over do_lockfs.
2601 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2602 	 */
2603 	if (!noflush && do_lockfs) {
2604 		r = lock_fs(md);
2605 		if (r) {
2606 			dm_table_presuspend_undo_targets(map);
2607 			return r;
2608 		}
2609 	}
2610 
2611 	/*
2612 	 * Here we must make sure that no processes are submitting requests
2613 	 * to target drivers i.e. no one may be executing
2614 	 * __split_and_process_bio. This is called from dm_request and
2615 	 * dm_wq_work.
2616 	 *
2617 	 * To get all processes out of __split_and_process_bio in dm_request,
2618 	 * we take the write lock. To prevent any process from reentering
2619 	 * __split_and_process_bio from dm_request and quiesce the thread
2620 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2621 	 * flush_workqueue(md->wq).
2622 	 */
2623 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2624 	if (map)
2625 		synchronize_srcu(&md->io_barrier);
2626 
2627 	/*
2628 	 * Stop md->queue before flushing md->wq in case request-based
2629 	 * dm defers requests to md->wq from md->queue.
2630 	 */
2631 	if (dm_request_based(md))
2632 		dm_stop_queue(md->queue);
2633 
2634 	flush_workqueue(md->wq);
2635 
2636 	/*
2637 	 * At this point no more requests are entering target request routines.
2638 	 * We call dm_wait_for_completion to wait for all existing requests
2639 	 * to finish.
2640 	 */
2641 	r = dm_wait_for_completion(md, task_state);
2642 	if (!r)
2643 		set_bit(dmf_suspended_flag, &md->flags);
2644 
2645 	if (noflush)
2646 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2647 	if (map)
2648 		synchronize_srcu(&md->io_barrier);
2649 
2650 	/* were we interrupted ? */
2651 	if (r < 0) {
2652 		dm_queue_flush(md);
2653 
2654 		if (dm_request_based(md))
2655 			dm_start_queue(md->queue);
2656 
2657 		unlock_fs(md);
2658 		dm_table_presuspend_undo_targets(map);
2659 		/* pushback list is already flushed, so skip flush */
2660 	}
2661 
2662 	return r;
2663 }
2664 
2665 /*
2666  * We need to be able to change a mapping table under a mounted
2667  * filesystem.  For example we might want to move some data in
2668  * the background.  Before the table can be swapped with
2669  * dm_bind_table, dm_suspend must be called to flush any in
2670  * flight bios and ensure that any further io gets deferred.
2671  */
2672 /*
2673  * Suspend mechanism in request-based dm.
2674  *
2675  * 1. Flush all I/Os by lock_fs() if needed.
2676  * 2. Stop dispatching any I/O by stopping the request_queue.
2677  * 3. Wait for all in-flight I/Os to be completed or requeued.
2678  *
2679  * To abort suspend, start the request_queue.
2680  */
2681 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2682 {
2683 	struct dm_table *map = NULL;
2684 	int r = 0;
2685 
2686 retry:
2687 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2688 
2689 	if (dm_suspended_md(md)) {
2690 		r = -EINVAL;
2691 		goto out_unlock;
2692 	}
2693 
2694 	if (dm_suspended_internally_md(md)) {
2695 		/* already internally suspended, wait for internal resume */
2696 		mutex_unlock(&md->suspend_lock);
2697 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2698 		if (r)
2699 			return r;
2700 		goto retry;
2701 	}
2702 
2703 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2704 
2705 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2706 	if (r)
2707 		goto out_unlock;
2708 
2709 	dm_table_postsuspend_targets(map);
2710 
2711 out_unlock:
2712 	mutex_unlock(&md->suspend_lock);
2713 	return r;
2714 }
2715 
2716 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2717 {
2718 	if (map) {
2719 		int r = dm_table_resume_targets(map);
2720 		if (r)
2721 			return r;
2722 	}
2723 
2724 	dm_queue_flush(md);
2725 
2726 	/*
2727 	 * Flushing deferred I/Os must be done after targets are resumed
2728 	 * so that mapping of targets can work correctly.
2729 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2730 	 */
2731 	if (dm_request_based(md))
2732 		dm_start_queue(md->queue);
2733 
2734 	unlock_fs(md);
2735 
2736 	return 0;
2737 }
2738 
2739 int dm_resume(struct mapped_device *md)
2740 {
2741 	int r;
2742 	struct dm_table *map = NULL;
2743 
2744 retry:
2745 	r = -EINVAL;
2746 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2747 
2748 	if (!dm_suspended_md(md))
2749 		goto out;
2750 
2751 	if (dm_suspended_internally_md(md)) {
2752 		/* already internally suspended, wait for internal resume */
2753 		mutex_unlock(&md->suspend_lock);
2754 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2755 		if (r)
2756 			return r;
2757 		goto retry;
2758 	}
2759 
2760 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2761 	if (!map || !dm_table_get_size(map))
2762 		goto out;
2763 
2764 	r = __dm_resume(md, map);
2765 	if (r)
2766 		goto out;
2767 
2768 	clear_bit(DMF_SUSPENDED, &md->flags);
2769 out:
2770 	mutex_unlock(&md->suspend_lock);
2771 
2772 	return r;
2773 }
2774 
2775 /*
2776  * Internal suspend/resume works like userspace-driven suspend. It waits
2777  * until all bios finish and prevents issuing new bios to the target drivers.
2778  * It may be used only from the kernel.
2779  */
2780 
2781 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2782 {
2783 	struct dm_table *map = NULL;
2784 
2785 	lockdep_assert_held(&md->suspend_lock);
2786 
2787 	if (md->internal_suspend_count++)
2788 		return; /* nested internal suspend */
2789 
2790 	if (dm_suspended_md(md)) {
2791 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2792 		return; /* nest suspend */
2793 	}
2794 
2795 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2796 
2797 	/*
2798 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2799 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2800 	 * would require changing .presuspend to return an error -- avoid this
2801 	 * until there is a need for more elaborate variants of internal suspend.
2802 	 */
2803 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2804 			    DMF_SUSPENDED_INTERNALLY);
2805 
2806 	dm_table_postsuspend_targets(map);
2807 }
2808 
2809 static void __dm_internal_resume(struct mapped_device *md)
2810 {
2811 	BUG_ON(!md->internal_suspend_count);
2812 
2813 	if (--md->internal_suspend_count)
2814 		return; /* resume from nested internal suspend */
2815 
2816 	if (dm_suspended_md(md))
2817 		goto done; /* resume from nested suspend */
2818 
2819 	/*
2820 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2821 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2822 	 */
2823 	(void) __dm_resume(md, NULL);
2824 
2825 done:
2826 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2827 	smp_mb__after_atomic();
2828 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2829 }
2830 
2831 void dm_internal_suspend_noflush(struct mapped_device *md)
2832 {
2833 	mutex_lock(&md->suspend_lock);
2834 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2835 	mutex_unlock(&md->suspend_lock);
2836 }
2837 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2838 
2839 void dm_internal_resume(struct mapped_device *md)
2840 {
2841 	mutex_lock(&md->suspend_lock);
2842 	__dm_internal_resume(md);
2843 	mutex_unlock(&md->suspend_lock);
2844 }
2845 EXPORT_SYMBOL_GPL(dm_internal_resume);
2846 
2847 /*
2848  * Fast variants of internal suspend/resume hold md->suspend_lock,
2849  * which prevents interaction with userspace-driven suspend.
2850  */
2851 
2852 void dm_internal_suspend_fast(struct mapped_device *md)
2853 {
2854 	mutex_lock(&md->suspend_lock);
2855 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2856 		return;
2857 
2858 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2859 	synchronize_srcu(&md->io_barrier);
2860 	flush_workqueue(md->wq);
2861 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2862 }
2863 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2864 
2865 void dm_internal_resume_fast(struct mapped_device *md)
2866 {
2867 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2868 		goto done;
2869 
2870 	dm_queue_flush(md);
2871 
2872 done:
2873 	mutex_unlock(&md->suspend_lock);
2874 }
2875 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2876 
2877 /*-----------------------------------------------------------------
2878  * Event notification.
2879  *---------------------------------------------------------------*/
2880 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2881 		       unsigned cookie)
2882 {
2883 	char udev_cookie[DM_COOKIE_LENGTH];
2884 	char *envp[] = { udev_cookie, NULL };
2885 
2886 	if (!cookie)
2887 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2888 	else {
2889 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2890 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2891 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2892 					  action, envp);
2893 	}
2894 }
2895 
2896 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2897 {
2898 	return atomic_add_return(1, &md->uevent_seq);
2899 }
2900 
2901 uint32_t dm_get_event_nr(struct mapped_device *md)
2902 {
2903 	return atomic_read(&md->event_nr);
2904 }
2905 
2906 int dm_wait_event(struct mapped_device *md, int event_nr)
2907 {
2908 	return wait_event_interruptible(md->eventq,
2909 			(event_nr != atomic_read(&md->event_nr)));
2910 }
2911 
2912 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2913 {
2914 	unsigned long flags;
2915 
2916 	spin_lock_irqsave(&md->uevent_lock, flags);
2917 	list_add(elist, &md->uevent_list);
2918 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2919 }
2920 
2921 /*
2922  * The gendisk is only valid as long as you have a reference
2923  * count on 'md'.
2924  */
2925 struct gendisk *dm_disk(struct mapped_device *md)
2926 {
2927 	return md->disk;
2928 }
2929 EXPORT_SYMBOL_GPL(dm_disk);
2930 
2931 struct kobject *dm_kobject(struct mapped_device *md)
2932 {
2933 	return &md->kobj_holder.kobj;
2934 }
2935 
2936 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2937 {
2938 	struct mapped_device *md;
2939 
2940 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2941 
2942 	spin_lock(&_minor_lock);
2943 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2944 		md = NULL;
2945 		goto out;
2946 	}
2947 	dm_get(md);
2948 out:
2949 	spin_unlock(&_minor_lock);
2950 
2951 	return md;
2952 }
2953 
2954 int dm_suspended_md(struct mapped_device *md)
2955 {
2956 	return test_bit(DMF_SUSPENDED, &md->flags);
2957 }
2958 
2959 int dm_suspended_internally_md(struct mapped_device *md)
2960 {
2961 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2962 }
2963 
2964 int dm_test_deferred_remove_flag(struct mapped_device *md)
2965 {
2966 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2967 }
2968 
2969 int dm_suspended(struct dm_target *ti)
2970 {
2971 	return dm_suspended_md(dm_table_get_md(ti->table));
2972 }
2973 EXPORT_SYMBOL_GPL(dm_suspended);
2974 
2975 int dm_noflush_suspending(struct dm_target *ti)
2976 {
2977 	return __noflush_suspending(dm_table_get_md(ti->table));
2978 }
2979 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2980 
2981 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2982 					    unsigned integrity, unsigned per_io_data_size,
2983 					    unsigned min_pool_size)
2984 {
2985 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2986 	unsigned int pool_size = 0;
2987 	unsigned int front_pad, io_front_pad;
2988 	int ret;
2989 
2990 	if (!pools)
2991 		return NULL;
2992 
2993 	switch (type) {
2994 	case DM_TYPE_BIO_BASED:
2995 	case DM_TYPE_DAX_BIO_BASED:
2996 	case DM_TYPE_NVME_BIO_BASED:
2997 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2998 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2999 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3000 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3001 		if (ret)
3002 			goto out;
3003 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3004 			goto out;
3005 		break;
3006 	case DM_TYPE_REQUEST_BASED:
3007 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3008 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3009 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3010 		break;
3011 	default:
3012 		BUG();
3013 	}
3014 
3015 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3016 	if (ret)
3017 		goto out;
3018 
3019 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3020 		goto out;
3021 
3022 	return pools;
3023 
3024 out:
3025 	dm_free_md_mempools(pools);
3026 
3027 	return NULL;
3028 }
3029 
3030 void dm_free_md_mempools(struct dm_md_mempools *pools)
3031 {
3032 	if (!pools)
3033 		return;
3034 
3035 	bioset_exit(&pools->bs);
3036 	bioset_exit(&pools->io_bs);
3037 
3038 	kfree(pools);
3039 }
3040 
3041 struct dm_pr {
3042 	u64	old_key;
3043 	u64	new_key;
3044 	u32	flags;
3045 	bool	fail_early;
3046 };
3047 
3048 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3049 		      void *data)
3050 {
3051 	struct mapped_device *md = bdev->bd_disk->private_data;
3052 	struct dm_table *table;
3053 	struct dm_target *ti;
3054 	int ret = -ENOTTY, srcu_idx;
3055 
3056 	table = dm_get_live_table(md, &srcu_idx);
3057 	if (!table || !dm_table_get_size(table))
3058 		goto out;
3059 
3060 	/* We only support devices that have a single target */
3061 	if (dm_table_get_num_targets(table) != 1)
3062 		goto out;
3063 	ti = dm_table_get_target(table, 0);
3064 
3065 	ret = -EINVAL;
3066 	if (!ti->type->iterate_devices)
3067 		goto out;
3068 
3069 	ret = ti->type->iterate_devices(ti, fn, data);
3070 out:
3071 	dm_put_live_table(md, srcu_idx);
3072 	return ret;
3073 }
3074 
3075 /*
3076  * For register / unregister we need to manually call out to every path.
3077  */
3078 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3079 			    sector_t start, sector_t len, void *data)
3080 {
3081 	struct dm_pr *pr = data;
3082 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3083 
3084 	if (!ops || !ops->pr_register)
3085 		return -EOPNOTSUPP;
3086 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3087 }
3088 
3089 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3090 			  u32 flags)
3091 {
3092 	struct dm_pr pr = {
3093 		.old_key	= old_key,
3094 		.new_key	= new_key,
3095 		.flags		= flags,
3096 		.fail_early	= true,
3097 	};
3098 	int ret;
3099 
3100 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3101 	if (ret && new_key) {
3102 		/* unregister all paths if we failed to register any path */
3103 		pr.old_key = new_key;
3104 		pr.new_key = 0;
3105 		pr.flags = 0;
3106 		pr.fail_early = false;
3107 		dm_call_pr(bdev, __dm_pr_register, &pr);
3108 	}
3109 
3110 	return ret;
3111 }
3112 
3113 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3114 			 u32 flags)
3115 {
3116 	struct mapped_device *md = bdev->bd_disk->private_data;
3117 	const struct pr_ops *ops;
3118 	int r, srcu_idx;
3119 
3120 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3121 	if (r < 0)
3122 		goto out;
3123 
3124 	ops = bdev->bd_disk->fops->pr_ops;
3125 	if (ops && ops->pr_reserve)
3126 		r = ops->pr_reserve(bdev, key, type, flags);
3127 	else
3128 		r = -EOPNOTSUPP;
3129 out:
3130 	dm_unprepare_ioctl(md, srcu_idx);
3131 	return r;
3132 }
3133 
3134 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3135 {
3136 	struct mapped_device *md = bdev->bd_disk->private_data;
3137 	const struct pr_ops *ops;
3138 	int r, srcu_idx;
3139 
3140 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3141 	if (r < 0)
3142 		goto out;
3143 
3144 	ops = bdev->bd_disk->fops->pr_ops;
3145 	if (ops && ops->pr_release)
3146 		r = ops->pr_release(bdev, key, type);
3147 	else
3148 		r = -EOPNOTSUPP;
3149 out:
3150 	dm_unprepare_ioctl(md, srcu_idx);
3151 	return r;
3152 }
3153 
3154 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3155 			 enum pr_type type, bool abort)
3156 {
3157 	struct mapped_device *md = bdev->bd_disk->private_data;
3158 	const struct pr_ops *ops;
3159 	int r, srcu_idx;
3160 
3161 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3162 	if (r < 0)
3163 		goto out;
3164 
3165 	ops = bdev->bd_disk->fops->pr_ops;
3166 	if (ops && ops->pr_preempt)
3167 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3168 	else
3169 		r = -EOPNOTSUPP;
3170 out:
3171 	dm_unprepare_ioctl(md, srcu_idx);
3172 	return r;
3173 }
3174 
3175 static int dm_pr_clear(struct block_device *bdev, u64 key)
3176 {
3177 	struct mapped_device *md = bdev->bd_disk->private_data;
3178 	const struct pr_ops *ops;
3179 	int r, srcu_idx;
3180 
3181 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3182 	if (r < 0)
3183 		goto out;
3184 
3185 	ops = bdev->bd_disk->fops->pr_ops;
3186 	if (ops && ops->pr_clear)
3187 		r = ops->pr_clear(bdev, key);
3188 	else
3189 		r = -EOPNOTSUPP;
3190 out:
3191 	dm_unprepare_ioctl(md, srcu_idx);
3192 	return r;
3193 }
3194 
3195 static const struct pr_ops dm_pr_ops = {
3196 	.pr_register	= dm_pr_register,
3197 	.pr_reserve	= dm_pr_reserve,
3198 	.pr_release	= dm_pr_release,
3199 	.pr_preempt	= dm_pr_preempt,
3200 	.pr_clear	= dm_pr_clear,
3201 };
3202 
3203 static const struct block_device_operations dm_blk_dops = {
3204 	.open = dm_blk_open,
3205 	.release = dm_blk_close,
3206 	.ioctl = dm_blk_ioctl,
3207 	.getgeo = dm_blk_getgeo,
3208 	.report_zones = dm_blk_report_zones,
3209 	.pr_ops = &dm_pr_ops,
3210 	.owner = THIS_MODULE
3211 };
3212 
3213 static const struct dax_operations dm_dax_ops = {
3214 	.direct_access = dm_dax_direct_access,
3215 	.dax_supported = dm_dax_supported,
3216 	.copy_from_iter = dm_dax_copy_from_iter,
3217 	.copy_to_iter = dm_dax_copy_to_iter,
3218 };
3219 
3220 /*
3221  * module hooks
3222  */
3223 module_init(dm_init);
3224 module_exit(dm_exit);
3225 
3226 module_param(major, uint, 0);
3227 MODULE_PARM_DESC(major, "The major number of the device mapper");
3228 
3229 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3230 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3231 
3232 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3233 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3234 
3235 MODULE_DESCRIPTION(DM_NAME " driver");
3236 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3237 MODULE_LICENSE("GPL");
3238