1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/kthread.h> 24 25 #include <trace/events/block.h> 26 27 #define DM_MSG_PREFIX "core" 28 29 #ifdef CONFIG_PRINTK 30 /* 31 * ratelimit state to be used in DMXXX_LIMIT(). 32 */ 33 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 34 DEFAULT_RATELIMIT_INTERVAL, 35 DEFAULT_RATELIMIT_BURST); 36 EXPORT_SYMBOL(dm_ratelimit_state); 37 #endif 38 39 /* 40 * Cookies are numeric values sent with CHANGE and REMOVE 41 * uevents while resuming, removing or renaming the device. 42 */ 43 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 44 #define DM_COOKIE_LENGTH 24 45 46 static const char *_name = DM_NAME; 47 48 static unsigned int major = 0; 49 static unsigned int _major = 0; 50 51 static DEFINE_IDR(_minor_idr); 52 53 static DEFINE_SPINLOCK(_minor_lock); 54 55 static void do_deferred_remove(struct work_struct *w); 56 57 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 58 59 static struct workqueue_struct *deferred_remove_workqueue; 60 61 /* 62 * For bio-based dm. 63 * One of these is allocated per bio. 64 */ 65 struct dm_io { 66 struct mapped_device *md; 67 int error; 68 atomic_t io_count; 69 struct bio *bio; 70 unsigned long start_time; 71 spinlock_t endio_lock; 72 struct dm_stats_aux stats_aux; 73 }; 74 75 /* 76 * For request-based dm. 77 * One of these is allocated per request. 78 */ 79 struct dm_rq_target_io { 80 struct mapped_device *md; 81 struct dm_target *ti; 82 struct request *orig, *clone; 83 struct kthread_work work; 84 int error; 85 union map_info info; 86 }; 87 88 /* 89 * For request-based dm - the bio clones we allocate are embedded in these 90 * structs. 91 * 92 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 93 * the bioset is created - this means the bio has to come at the end of the 94 * struct. 95 */ 96 struct dm_rq_clone_bio_info { 97 struct bio *orig; 98 struct dm_rq_target_io *tio; 99 struct bio clone; 100 }; 101 102 union map_info *dm_get_rq_mapinfo(struct request *rq) 103 { 104 if (rq && rq->end_io_data) 105 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 106 return NULL; 107 } 108 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 109 110 #define MINOR_ALLOCED ((void *)-1) 111 112 /* 113 * Bits for the md->flags field. 114 */ 115 #define DMF_BLOCK_IO_FOR_SUSPEND 0 116 #define DMF_SUSPENDED 1 117 #define DMF_FROZEN 2 118 #define DMF_FREEING 3 119 #define DMF_DELETING 4 120 #define DMF_NOFLUSH_SUSPENDING 5 121 #define DMF_MERGE_IS_OPTIONAL 6 122 #define DMF_DEFERRED_REMOVE 7 123 #define DMF_SUSPENDED_INTERNALLY 8 124 125 /* 126 * A dummy definition to make RCU happy. 127 * struct dm_table should never be dereferenced in this file. 128 */ 129 struct dm_table { 130 int undefined__; 131 }; 132 133 /* 134 * Work processed by per-device workqueue. 135 */ 136 struct mapped_device { 137 struct srcu_struct io_barrier; 138 struct mutex suspend_lock; 139 atomic_t holders; 140 atomic_t open_count; 141 142 /* 143 * The current mapping. 144 * Use dm_get_live_table{_fast} or take suspend_lock for 145 * dereference. 146 */ 147 struct dm_table __rcu *map; 148 149 struct list_head table_devices; 150 struct mutex table_devices_lock; 151 152 unsigned long flags; 153 154 struct request_queue *queue; 155 unsigned type; 156 /* Protect queue and type against concurrent access. */ 157 struct mutex type_lock; 158 159 struct target_type *immutable_target_type; 160 161 struct gendisk *disk; 162 char name[16]; 163 164 void *interface_ptr; 165 166 /* 167 * A list of ios that arrived while we were suspended. 168 */ 169 atomic_t pending[2]; 170 wait_queue_head_t wait; 171 struct work_struct work; 172 struct bio_list deferred; 173 spinlock_t deferred_lock; 174 175 /* 176 * Processing queue (flush) 177 */ 178 struct workqueue_struct *wq; 179 180 /* 181 * io objects are allocated from here. 182 */ 183 mempool_t *io_pool; 184 mempool_t *rq_pool; 185 186 struct bio_set *bs; 187 188 /* 189 * Event handling. 190 */ 191 atomic_t event_nr; 192 wait_queue_head_t eventq; 193 atomic_t uevent_seq; 194 struct list_head uevent_list; 195 spinlock_t uevent_lock; /* Protect access to uevent_list */ 196 197 /* 198 * freeze/thaw support require holding onto a super block 199 */ 200 struct super_block *frozen_sb; 201 struct block_device *bdev; 202 203 /* forced geometry settings */ 204 struct hd_geometry geometry; 205 206 /* kobject and completion */ 207 struct dm_kobject_holder kobj_holder; 208 209 /* zero-length flush that will be cloned and submitted to targets */ 210 struct bio flush_bio; 211 212 /* the number of internal suspends */ 213 unsigned internal_suspend_count; 214 215 struct dm_stats stats; 216 217 struct kthread_worker kworker; 218 struct task_struct *kworker_task; 219 }; 220 221 /* 222 * For mempools pre-allocation at the table loading time. 223 */ 224 struct dm_md_mempools { 225 mempool_t *io_pool; 226 mempool_t *rq_pool; 227 struct bio_set *bs; 228 }; 229 230 struct table_device { 231 struct list_head list; 232 atomic_t count; 233 struct dm_dev dm_dev; 234 }; 235 236 #define RESERVED_BIO_BASED_IOS 16 237 #define RESERVED_REQUEST_BASED_IOS 256 238 #define RESERVED_MAX_IOS 1024 239 static struct kmem_cache *_io_cache; 240 static struct kmem_cache *_rq_tio_cache; 241 static struct kmem_cache *_rq_cache; 242 243 /* 244 * Bio-based DM's mempools' reserved IOs set by the user. 245 */ 246 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 247 248 /* 249 * Request-based DM's mempools' reserved IOs set by the user. 250 */ 251 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 252 253 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios, 254 unsigned def, unsigned max) 255 { 256 unsigned ios = ACCESS_ONCE(*reserved_ios); 257 unsigned modified_ios = 0; 258 259 if (!ios) 260 modified_ios = def; 261 else if (ios > max) 262 modified_ios = max; 263 264 if (modified_ios) { 265 (void)cmpxchg(reserved_ios, ios, modified_ios); 266 ios = modified_ios; 267 } 268 269 return ios; 270 } 271 272 unsigned dm_get_reserved_bio_based_ios(void) 273 { 274 return __dm_get_reserved_ios(&reserved_bio_based_ios, 275 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 276 } 277 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 278 279 unsigned dm_get_reserved_rq_based_ios(void) 280 { 281 return __dm_get_reserved_ios(&reserved_rq_based_ios, 282 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 283 } 284 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 285 286 static int __init local_init(void) 287 { 288 int r = -ENOMEM; 289 290 /* allocate a slab for the dm_ios */ 291 _io_cache = KMEM_CACHE(dm_io, 0); 292 if (!_io_cache) 293 return r; 294 295 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 296 if (!_rq_tio_cache) 297 goto out_free_io_cache; 298 299 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request), 300 __alignof__(struct request), 0, NULL); 301 if (!_rq_cache) 302 goto out_free_rq_tio_cache; 303 304 r = dm_uevent_init(); 305 if (r) 306 goto out_free_rq_cache; 307 308 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 309 if (!deferred_remove_workqueue) { 310 r = -ENOMEM; 311 goto out_uevent_exit; 312 } 313 314 _major = major; 315 r = register_blkdev(_major, _name); 316 if (r < 0) 317 goto out_free_workqueue; 318 319 if (!_major) 320 _major = r; 321 322 return 0; 323 324 out_free_workqueue: 325 destroy_workqueue(deferred_remove_workqueue); 326 out_uevent_exit: 327 dm_uevent_exit(); 328 out_free_rq_cache: 329 kmem_cache_destroy(_rq_cache); 330 out_free_rq_tio_cache: 331 kmem_cache_destroy(_rq_tio_cache); 332 out_free_io_cache: 333 kmem_cache_destroy(_io_cache); 334 335 return r; 336 } 337 338 static void local_exit(void) 339 { 340 flush_scheduled_work(); 341 destroy_workqueue(deferred_remove_workqueue); 342 343 kmem_cache_destroy(_rq_cache); 344 kmem_cache_destroy(_rq_tio_cache); 345 kmem_cache_destroy(_io_cache); 346 unregister_blkdev(_major, _name); 347 dm_uevent_exit(); 348 349 _major = 0; 350 351 DMINFO("cleaned up"); 352 } 353 354 static int (*_inits[])(void) __initdata = { 355 local_init, 356 dm_target_init, 357 dm_linear_init, 358 dm_stripe_init, 359 dm_io_init, 360 dm_kcopyd_init, 361 dm_interface_init, 362 dm_statistics_init, 363 }; 364 365 static void (*_exits[])(void) = { 366 local_exit, 367 dm_target_exit, 368 dm_linear_exit, 369 dm_stripe_exit, 370 dm_io_exit, 371 dm_kcopyd_exit, 372 dm_interface_exit, 373 dm_statistics_exit, 374 }; 375 376 static int __init dm_init(void) 377 { 378 const int count = ARRAY_SIZE(_inits); 379 380 int r, i; 381 382 for (i = 0; i < count; i++) { 383 r = _inits[i](); 384 if (r) 385 goto bad; 386 } 387 388 return 0; 389 390 bad: 391 while (i--) 392 _exits[i](); 393 394 return r; 395 } 396 397 static void __exit dm_exit(void) 398 { 399 int i = ARRAY_SIZE(_exits); 400 401 while (i--) 402 _exits[i](); 403 404 /* 405 * Should be empty by this point. 406 */ 407 idr_destroy(&_minor_idr); 408 } 409 410 /* 411 * Block device functions 412 */ 413 int dm_deleting_md(struct mapped_device *md) 414 { 415 return test_bit(DMF_DELETING, &md->flags); 416 } 417 418 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 419 { 420 struct mapped_device *md; 421 422 spin_lock(&_minor_lock); 423 424 md = bdev->bd_disk->private_data; 425 if (!md) 426 goto out; 427 428 if (test_bit(DMF_FREEING, &md->flags) || 429 dm_deleting_md(md)) { 430 md = NULL; 431 goto out; 432 } 433 434 dm_get(md); 435 atomic_inc(&md->open_count); 436 out: 437 spin_unlock(&_minor_lock); 438 439 return md ? 0 : -ENXIO; 440 } 441 442 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 443 { 444 struct mapped_device *md; 445 446 spin_lock(&_minor_lock); 447 448 md = disk->private_data; 449 if (WARN_ON(!md)) 450 goto out; 451 452 if (atomic_dec_and_test(&md->open_count) && 453 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 454 queue_work(deferred_remove_workqueue, &deferred_remove_work); 455 456 dm_put(md); 457 out: 458 spin_unlock(&_minor_lock); 459 } 460 461 int dm_open_count(struct mapped_device *md) 462 { 463 return atomic_read(&md->open_count); 464 } 465 466 /* 467 * Guarantees nothing is using the device before it's deleted. 468 */ 469 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 470 { 471 int r = 0; 472 473 spin_lock(&_minor_lock); 474 475 if (dm_open_count(md)) { 476 r = -EBUSY; 477 if (mark_deferred) 478 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 479 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 480 r = -EEXIST; 481 else 482 set_bit(DMF_DELETING, &md->flags); 483 484 spin_unlock(&_minor_lock); 485 486 return r; 487 } 488 489 int dm_cancel_deferred_remove(struct mapped_device *md) 490 { 491 int r = 0; 492 493 spin_lock(&_minor_lock); 494 495 if (test_bit(DMF_DELETING, &md->flags)) 496 r = -EBUSY; 497 else 498 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 499 500 spin_unlock(&_minor_lock); 501 502 return r; 503 } 504 505 static void do_deferred_remove(struct work_struct *w) 506 { 507 dm_deferred_remove(); 508 } 509 510 sector_t dm_get_size(struct mapped_device *md) 511 { 512 return get_capacity(md->disk); 513 } 514 515 struct request_queue *dm_get_md_queue(struct mapped_device *md) 516 { 517 return md->queue; 518 } 519 520 struct dm_stats *dm_get_stats(struct mapped_device *md) 521 { 522 return &md->stats; 523 } 524 525 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 526 { 527 struct mapped_device *md = bdev->bd_disk->private_data; 528 529 return dm_get_geometry(md, geo); 530 } 531 532 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 533 unsigned int cmd, unsigned long arg) 534 { 535 struct mapped_device *md = bdev->bd_disk->private_data; 536 int srcu_idx; 537 struct dm_table *map; 538 struct dm_target *tgt; 539 int r = -ENOTTY; 540 541 retry: 542 map = dm_get_live_table(md, &srcu_idx); 543 544 if (!map || !dm_table_get_size(map)) 545 goto out; 546 547 /* We only support devices that have a single target */ 548 if (dm_table_get_num_targets(map) != 1) 549 goto out; 550 551 tgt = dm_table_get_target(map, 0); 552 if (!tgt->type->ioctl) 553 goto out; 554 555 if (dm_suspended_md(md)) { 556 r = -EAGAIN; 557 goto out; 558 } 559 560 r = tgt->type->ioctl(tgt, cmd, arg); 561 562 out: 563 dm_put_live_table(md, srcu_idx); 564 565 if (r == -ENOTCONN) { 566 msleep(10); 567 goto retry; 568 } 569 570 return r; 571 } 572 573 static struct dm_io *alloc_io(struct mapped_device *md) 574 { 575 return mempool_alloc(md->io_pool, GFP_NOIO); 576 } 577 578 static void free_io(struct mapped_device *md, struct dm_io *io) 579 { 580 mempool_free(io, md->io_pool); 581 } 582 583 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 584 { 585 bio_put(&tio->clone); 586 } 587 588 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 589 gfp_t gfp_mask) 590 { 591 return mempool_alloc(md->io_pool, gfp_mask); 592 } 593 594 static void free_rq_tio(struct dm_rq_target_io *tio) 595 { 596 mempool_free(tio, tio->md->io_pool); 597 } 598 599 static struct request *alloc_clone_request(struct mapped_device *md, 600 gfp_t gfp_mask) 601 { 602 return mempool_alloc(md->rq_pool, gfp_mask); 603 } 604 605 static void free_clone_request(struct mapped_device *md, struct request *rq) 606 { 607 mempool_free(rq, md->rq_pool); 608 } 609 610 static int md_in_flight(struct mapped_device *md) 611 { 612 return atomic_read(&md->pending[READ]) + 613 atomic_read(&md->pending[WRITE]); 614 } 615 616 static void start_io_acct(struct dm_io *io) 617 { 618 struct mapped_device *md = io->md; 619 struct bio *bio = io->bio; 620 int cpu; 621 int rw = bio_data_dir(bio); 622 623 io->start_time = jiffies; 624 625 cpu = part_stat_lock(); 626 part_round_stats(cpu, &dm_disk(md)->part0); 627 part_stat_unlock(); 628 atomic_set(&dm_disk(md)->part0.in_flight[rw], 629 atomic_inc_return(&md->pending[rw])); 630 631 if (unlikely(dm_stats_used(&md->stats))) 632 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 633 bio_sectors(bio), false, 0, &io->stats_aux); 634 } 635 636 static void end_io_acct(struct dm_io *io) 637 { 638 struct mapped_device *md = io->md; 639 struct bio *bio = io->bio; 640 unsigned long duration = jiffies - io->start_time; 641 int pending; 642 int rw = bio_data_dir(bio); 643 644 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 645 646 if (unlikely(dm_stats_used(&md->stats))) 647 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 648 bio_sectors(bio), true, duration, &io->stats_aux); 649 650 /* 651 * After this is decremented the bio must not be touched if it is 652 * a flush. 653 */ 654 pending = atomic_dec_return(&md->pending[rw]); 655 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 656 pending += atomic_read(&md->pending[rw^0x1]); 657 658 /* nudge anyone waiting on suspend queue */ 659 if (!pending) 660 wake_up(&md->wait); 661 } 662 663 /* 664 * Add the bio to the list of deferred io. 665 */ 666 static void queue_io(struct mapped_device *md, struct bio *bio) 667 { 668 unsigned long flags; 669 670 spin_lock_irqsave(&md->deferred_lock, flags); 671 bio_list_add(&md->deferred, bio); 672 spin_unlock_irqrestore(&md->deferred_lock, flags); 673 queue_work(md->wq, &md->work); 674 } 675 676 /* 677 * Everyone (including functions in this file), should use this 678 * function to access the md->map field, and make sure they call 679 * dm_put_live_table() when finished. 680 */ 681 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 682 { 683 *srcu_idx = srcu_read_lock(&md->io_barrier); 684 685 return srcu_dereference(md->map, &md->io_barrier); 686 } 687 688 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 689 { 690 srcu_read_unlock(&md->io_barrier, srcu_idx); 691 } 692 693 void dm_sync_table(struct mapped_device *md) 694 { 695 synchronize_srcu(&md->io_barrier); 696 synchronize_rcu_expedited(); 697 } 698 699 /* 700 * A fast alternative to dm_get_live_table/dm_put_live_table. 701 * The caller must not block between these two functions. 702 */ 703 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 704 { 705 rcu_read_lock(); 706 return rcu_dereference(md->map); 707 } 708 709 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 710 { 711 rcu_read_unlock(); 712 } 713 714 /* 715 * Open a table device so we can use it as a map destination. 716 */ 717 static int open_table_device(struct table_device *td, dev_t dev, 718 struct mapped_device *md) 719 { 720 static char *_claim_ptr = "I belong to device-mapper"; 721 struct block_device *bdev; 722 723 int r; 724 725 BUG_ON(td->dm_dev.bdev); 726 727 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 728 if (IS_ERR(bdev)) 729 return PTR_ERR(bdev); 730 731 r = bd_link_disk_holder(bdev, dm_disk(md)); 732 if (r) { 733 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 734 return r; 735 } 736 737 td->dm_dev.bdev = bdev; 738 return 0; 739 } 740 741 /* 742 * Close a table device that we've been using. 743 */ 744 static void close_table_device(struct table_device *td, struct mapped_device *md) 745 { 746 if (!td->dm_dev.bdev) 747 return; 748 749 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 750 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 751 td->dm_dev.bdev = NULL; 752 } 753 754 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 755 fmode_t mode) { 756 struct table_device *td; 757 758 list_for_each_entry(td, l, list) 759 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 760 return td; 761 762 return NULL; 763 } 764 765 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 766 struct dm_dev **result) { 767 int r; 768 struct table_device *td; 769 770 mutex_lock(&md->table_devices_lock); 771 td = find_table_device(&md->table_devices, dev, mode); 772 if (!td) { 773 td = kmalloc(sizeof(*td), GFP_KERNEL); 774 if (!td) { 775 mutex_unlock(&md->table_devices_lock); 776 return -ENOMEM; 777 } 778 779 td->dm_dev.mode = mode; 780 td->dm_dev.bdev = NULL; 781 782 if ((r = open_table_device(td, dev, md))) { 783 mutex_unlock(&md->table_devices_lock); 784 kfree(td); 785 return r; 786 } 787 788 format_dev_t(td->dm_dev.name, dev); 789 790 atomic_set(&td->count, 0); 791 list_add(&td->list, &md->table_devices); 792 } 793 atomic_inc(&td->count); 794 mutex_unlock(&md->table_devices_lock); 795 796 *result = &td->dm_dev; 797 return 0; 798 } 799 EXPORT_SYMBOL_GPL(dm_get_table_device); 800 801 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 802 { 803 struct table_device *td = container_of(d, struct table_device, dm_dev); 804 805 mutex_lock(&md->table_devices_lock); 806 if (atomic_dec_and_test(&td->count)) { 807 close_table_device(td, md); 808 list_del(&td->list); 809 kfree(td); 810 } 811 mutex_unlock(&md->table_devices_lock); 812 } 813 EXPORT_SYMBOL(dm_put_table_device); 814 815 static void free_table_devices(struct list_head *devices) 816 { 817 struct list_head *tmp, *next; 818 819 list_for_each_safe(tmp, next, devices) { 820 struct table_device *td = list_entry(tmp, struct table_device, list); 821 822 DMWARN("dm_destroy: %s still exists with %d references", 823 td->dm_dev.name, atomic_read(&td->count)); 824 kfree(td); 825 } 826 } 827 828 /* 829 * Get the geometry associated with a dm device 830 */ 831 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 832 { 833 *geo = md->geometry; 834 835 return 0; 836 } 837 838 /* 839 * Set the geometry of a device. 840 */ 841 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 842 { 843 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 844 845 if (geo->start > sz) { 846 DMWARN("Start sector is beyond the geometry limits."); 847 return -EINVAL; 848 } 849 850 md->geometry = *geo; 851 852 return 0; 853 } 854 855 /*----------------------------------------------------------------- 856 * CRUD START: 857 * A more elegant soln is in the works that uses the queue 858 * merge fn, unfortunately there are a couple of changes to 859 * the block layer that I want to make for this. So in the 860 * interests of getting something for people to use I give 861 * you this clearly demarcated crap. 862 *---------------------------------------------------------------*/ 863 864 static int __noflush_suspending(struct mapped_device *md) 865 { 866 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 867 } 868 869 /* 870 * Decrements the number of outstanding ios that a bio has been 871 * cloned into, completing the original io if necc. 872 */ 873 static void dec_pending(struct dm_io *io, int error) 874 { 875 unsigned long flags; 876 int io_error; 877 struct bio *bio; 878 struct mapped_device *md = io->md; 879 880 /* Push-back supersedes any I/O errors */ 881 if (unlikely(error)) { 882 spin_lock_irqsave(&io->endio_lock, flags); 883 if (!(io->error > 0 && __noflush_suspending(md))) 884 io->error = error; 885 spin_unlock_irqrestore(&io->endio_lock, flags); 886 } 887 888 if (atomic_dec_and_test(&io->io_count)) { 889 if (io->error == DM_ENDIO_REQUEUE) { 890 /* 891 * Target requested pushing back the I/O. 892 */ 893 spin_lock_irqsave(&md->deferred_lock, flags); 894 if (__noflush_suspending(md)) 895 bio_list_add_head(&md->deferred, io->bio); 896 else 897 /* noflush suspend was interrupted. */ 898 io->error = -EIO; 899 spin_unlock_irqrestore(&md->deferred_lock, flags); 900 } 901 902 io_error = io->error; 903 bio = io->bio; 904 end_io_acct(io); 905 free_io(md, io); 906 907 if (io_error == DM_ENDIO_REQUEUE) 908 return; 909 910 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 911 /* 912 * Preflush done for flush with data, reissue 913 * without REQ_FLUSH. 914 */ 915 bio->bi_rw &= ~REQ_FLUSH; 916 queue_io(md, bio); 917 } else { 918 /* done with normal IO or empty flush */ 919 trace_block_bio_complete(md->queue, bio, io_error); 920 bio_endio(bio, io_error); 921 } 922 } 923 } 924 925 static void disable_write_same(struct mapped_device *md) 926 { 927 struct queue_limits *limits = dm_get_queue_limits(md); 928 929 /* device doesn't really support WRITE SAME, disable it */ 930 limits->max_write_same_sectors = 0; 931 } 932 933 static void clone_endio(struct bio *bio, int error) 934 { 935 int r = error; 936 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 937 struct dm_io *io = tio->io; 938 struct mapped_device *md = tio->io->md; 939 dm_endio_fn endio = tio->ti->type->end_io; 940 941 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 942 error = -EIO; 943 944 if (endio) { 945 r = endio(tio->ti, bio, error); 946 if (r < 0 || r == DM_ENDIO_REQUEUE) 947 /* 948 * error and requeue request are handled 949 * in dec_pending(). 950 */ 951 error = r; 952 else if (r == DM_ENDIO_INCOMPLETE) 953 /* The target will handle the io */ 954 return; 955 else if (r) { 956 DMWARN("unimplemented target endio return value: %d", r); 957 BUG(); 958 } 959 } 960 961 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 962 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 963 disable_write_same(md); 964 965 free_tio(md, tio); 966 dec_pending(io, error); 967 } 968 969 /* 970 * Partial completion handling for request-based dm 971 */ 972 static void end_clone_bio(struct bio *clone, int error) 973 { 974 struct dm_rq_clone_bio_info *info = 975 container_of(clone, struct dm_rq_clone_bio_info, clone); 976 struct dm_rq_target_io *tio = info->tio; 977 struct bio *bio = info->orig; 978 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 979 980 bio_put(clone); 981 982 if (tio->error) 983 /* 984 * An error has already been detected on the request. 985 * Once error occurred, just let clone->end_io() handle 986 * the remainder. 987 */ 988 return; 989 else if (error) { 990 /* 991 * Don't notice the error to the upper layer yet. 992 * The error handling decision is made by the target driver, 993 * when the request is completed. 994 */ 995 tio->error = error; 996 return; 997 } 998 999 /* 1000 * I/O for the bio successfully completed. 1001 * Notice the data completion to the upper layer. 1002 */ 1003 1004 /* 1005 * bios are processed from the head of the list. 1006 * So the completing bio should always be rq->bio. 1007 * If it's not, something wrong is happening. 1008 */ 1009 if (tio->orig->bio != bio) 1010 DMERR("bio completion is going in the middle of the request"); 1011 1012 /* 1013 * Update the original request. 1014 * Do not use blk_end_request() here, because it may complete 1015 * the original request before the clone, and break the ordering. 1016 */ 1017 blk_update_request(tio->orig, 0, nr_bytes); 1018 } 1019 1020 /* 1021 * Don't touch any member of the md after calling this function because 1022 * the md may be freed in dm_put() at the end of this function. 1023 * Or do dm_get() before calling this function and dm_put() later. 1024 */ 1025 static void rq_completed(struct mapped_device *md, int rw, bool run_queue) 1026 { 1027 atomic_dec(&md->pending[rw]); 1028 1029 /* nudge anyone waiting on suspend queue */ 1030 if (!md_in_flight(md)) 1031 wake_up(&md->wait); 1032 1033 /* 1034 * Run this off this callpath, as drivers could invoke end_io while 1035 * inside their request_fn (and holding the queue lock). Calling 1036 * back into ->request_fn() could deadlock attempting to grab the 1037 * queue lock again. 1038 */ 1039 if (run_queue) 1040 blk_run_queue_async(md->queue); 1041 1042 /* 1043 * dm_put() must be at the end of this function. See the comment above 1044 */ 1045 dm_put(md); 1046 } 1047 1048 static void free_rq_clone(struct request *clone) 1049 { 1050 struct dm_rq_target_io *tio = clone->end_io_data; 1051 1052 blk_rq_unprep_clone(clone); 1053 if (clone->q && clone->q->mq_ops) 1054 tio->ti->type->release_clone_rq(clone); 1055 else 1056 free_clone_request(tio->md, clone); 1057 free_rq_tio(tio); 1058 } 1059 1060 /* 1061 * Complete the clone and the original request. 1062 * Must be called without clone's queue lock held, 1063 * see end_clone_request() for more details. 1064 */ 1065 static void dm_end_request(struct request *clone, int error) 1066 { 1067 int rw = rq_data_dir(clone); 1068 struct dm_rq_target_io *tio = clone->end_io_data; 1069 struct mapped_device *md = tio->md; 1070 struct request *rq = tio->orig; 1071 1072 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1073 rq->errors = clone->errors; 1074 rq->resid_len = clone->resid_len; 1075 1076 if (rq->sense) 1077 /* 1078 * We are using the sense buffer of the original 1079 * request. 1080 * So setting the length of the sense data is enough. 1081 */ 1082 rq->sense_len = clone->sense_len; 1083 } 1084 1085 free_rq_clone(clone); 1086 blk_end_request_all(rq, error); 1087 rq_completed(md, rw, true); 1088 } 1089 1090 static void dm_unprep_request(struct request *rq) 1091 { 1092 struct dm_rq_target_io *tio = rq->special; 1093 struct request *clone = tio->clone; 1094 1095 rq->special = NULL; 1096 rq->cmd_flags &= ~REQ_DONTPREP; 1097 1098 if (clone) 1099 free_rq_clone(clone); 1100 } 1101 1102 /* 1103 * Requeue the original request of a clone. 1104 */ 1105 static void dm_requeue_unmapped_original_request(struct mapped_device *md, 1106 struct request *rq) 1107 { 1108 int rw = rq_data_dir(rq); 1109 struct request_queue *q = rq->q; 1110 unsigned long flags; 1111 1112 dm_unprep_request(rq); 1113 1114 spin_lock_irqsave(q->queue_lock, flags); 1115 blk_requeue_request(q, rq); 1116 spin_unlock_irqrestore(q->queue_lock, flags); 1117 1118 rq_completed(md, rw, false); 1119 } 1120 1121 static void dm_requeue_unmapped_request(struct request *clone) 1122 { 1123 struct dm_rq_target_io *tio = clone->end_io_data; 1124 1125 dm_requeue_unmapped_original_request(tio->md, tio->orig); 1126 } 1127 1128 static void __stop_queue(struct request_queue *q) 1129 { 1130 blk_stop_queue(q); 1131 } 1132 1133 static void stop_queue(struct request_queue *q) 1134 { 1135 unsigned long flags; 1136 1137 spin_lock_irqsave(q->queue_lock, flags); 1138 __stop_queue(q); 1139 spin_unlock_irqrestore(q->queue_lock, flags); 1140 } 1141 1142 static void __start_queue(struct request_queue *q) 1143 { 1144 if (blk_queue_stopped(q)) 1145 blk_start_queue(q); 1146 } 1147 1148 static void start_queue(struct request_queue *q) 1149 { 1150 unsigned long flags; 1151 1152 spin_lock_irqsave(q->queue_lock, flags); 1153 __start_queue(q); 1154 spin_unlock_irqrestore(q->queue_lock, flags); 1155 } 1156 1157 static void dm_done(struct request *clone, int error, bool mapped) 1158 { 1159 int r = error; 1160 struct dm_rq_target_io *tio = clone->end_io_data; 1161 dm_request_endio_fn rq_end_io = NULL; 1162 1163 if (tio->ti) { 1164 rq_end_io = tio->ti->type->rq_end_io; 1165 1166 if (mapped && rq_end_io) 1167 r = rq_end_io(tio->ti, clone, error, &tio->info); 1168 } 1169 1170 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1171 !clone->q->limits.max_write_same_sectors)) 1172 disable_write_same(tio->md); 1173 1174 if (r <= 0) 1175 /* The target wants to complete the I/O */ 1176 dm_end_request(clone, r); 1177 else if (r == DM_ENDIO_INCOMPLETE) 1178 /* The target will handle the I/O */ 1179 return; 1180 else if (r == DM_ENDIO_REQUEUE) 1181 /* The target wants to requeue the I/O */ 1182 dm_requeue_unmapped_request(clone); 1183 else { 1184 DMWARN("unimplemented target endio return value: %d", r); 1185 BUG(); 1186 } 1187 } 1188 1189 /* 1190 * Request completion handler for request-based dm 1191 */ 1192 static void dm_softirq_done(struct request *rq) 1193 { 1194 bool mapped = true; 1195 struct dm_rq_target_io *tio = rq->special; 1196 struct request *clone = tio->clone; 1197 1198 if (!clone) { 1199 blk_end_request_all(rq, tio->error); 1200 rq_completed(tio->md, rq_data_dir(rq), false); 1201 free_rq_tio(tio); 1202 return; 1203 } 1204 1205 if (rq->cmd_flags & REQ_FAILED) 1206 mapped = false; 1207 1208 dm_done(clone, tio->error, mapped); 1209 } 1210 1211 /* 1212 * Complete the clone and the original request with the error status 1213 * through softirq context. 1214 */ 1215 static void dm_complete_request(struct request *rq, int error) 1216 { 1217 struct dm_rq_target_io *tio = rq->special; 1218 1219 tio->error = error; 1220 blk_complete_request(rq); 1221 } 1222 1223 /* 1224 * Complete the not-mapped clone and the original request with the error status 1225 * through softirq context. 1226 * Target's rq_end_io() function isn't called. 1227 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail. 1228 */ 1229 static void dm_kill_unmapped_request(struct request *rq, int error) 1230 { 1231 rq->cmd_flags |= REQ_FAILED; 1232 dm_complete_request(rq, error); 1233 } 1234 1235 /* 1236 * Called with the clone's queue lock held 1237 */ 1238 static void end_clone_request(struct request *clone, int error) 1239 { 1240 struct dm_rq_target_io *tio = clone->end_io_data; 1241 1242 if (!clone->q->mq_ops) { 1243 /* 1244 * For just cleaning up the information of the queue in which 1245 * the clone was dispatched. 1246 * The clone is *NOT* freed actually here because it is alloced 1247 * from dm own mempool (REQ_ALLOCED isn't set). 1248 */ 1249 __blk_put_request(clone->q, clone); 1250 } 1251 1252 /* 1253 * Actual request completion is done in a softirq context which doesn't 1254 * hold the clone's queue lock. Otherwise, deadlock could occur because: 1255 * - another request may be submitted by the upper level driver 1256 * of the stacking during the completion 1257 * - the submission which requires queue lock may be done 1258 * against this clone's queue 1259 */ 1260 dm_complete_request(tio->orig, error); 1261 } 1262 1263 /* 1264 * Return maximum size of I/O possible at the supplied sector up to the current 1265 * target boundary. 1266 */ 1267 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1268 { 1269 sector_t target_offset = dm_target_offset(ti, sector); 1270 1271 return ti->len - target_offset; 1272 } 1273 1274 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1275 { 1276 sector_t len = max_io_len_target_boundary(sector, ti); 1277 sector_t offset, max_len; 1278 1279 /* 1280 * Does the target need to split even further? 1281 */ 1282 if (ti->max_io_len) { 1283 offset = dm_target_offset(ti, sector); 1284 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1285 max_len = sector_div(offset, ti->max_io_len); 1286 else 1287 max_len = offset & (ti->max_io_len - 1); 1288 max_len = ti->max_io_len - max_len; 1289 1290 if (len > max_len) 1291 len = max_len; 1292 } 1293 1294 return len; 1295 } 1296 1297 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1298 { 1299 if (len > UINT_MAX) { 1300 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1301 (unsigned long long)len, UINT_MAX); 1302 ti->error = "Maximum size of target IO is too large"; 1303 return -EINVAL; 1304 } 1305 1306 ti->max_io_len = (uint32_t) len; 1307 1308 return 0; 1309 } 1310 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1311 1312 /* 1313 * A target may call dm_accept_partial_bio only from the map routine. It is 1314 * allowed for all bio types except REQ_FLUSH. 1315 * 1316 * dm_accept_partial_bio informs the dm that the target only wants to process 1317 * additional n_sectors sectors of the bio and the rest of the data should be 1318 * sent in a next bio. 1319 * 1320 * A diagram that explains the arithmetics: 1321 * +--------------------+---------------+-------+ 1322 * | 1 | 2 | 3 | 1323 * +--------------------+---------------+-------+ 1324 * 1325 * <-------------- *tio->len_ptr ---------------> 1326 * <------- bi_size -------> 1327 * <-- n_sectors --> 1328 * 1329 * Region 1 was already iterated over with bio_advance or similar function. 1330 * (it may be empty if the target doesn't use bio_advance) 1331 * Region 2 is the remaining bio size that the target wants to process. 1332 * (it may be empty if region 1 is non-empty, although there is no reason 1333 * to make it empty) 1334 * The target requires that region 3 is to be sent in the next bio. 1335 * 1336 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1337 * the partially processed part (the sum of regions 1+2) must be the same for all 1338 * copies of the bio. 1339 */ 1340 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1341 { 1342 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1343 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1344 BUG_ON(bio->bi_rw & REQ_FLUSH); 1345 BUG_ON(bi_size > *tio->len_ptr); 1346 BUG_ON(n_sectors > bi_size); 1347 *tio->len_ptr -= bi_size - n_sectors; 1348 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1349 } 1350 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1351 1352 static void __map_bio(struct dm_target_io *tio) 1353 { 1354 int r; 1355 sector_t sector; 1356 struct mapped_device *md; 1357 struct bio *clone = &tio->clone; 1358 struct dm_target *ti = tio->ti; 1359 1360 clone->bi_end_io = clone_endio; 1361 1362 /* 1363 * Map the clone. If r == 0 we don't need to do 1364 * anything, the target has assumed ownership of 1365 * this io. 1366 */ 1367 atomic_inc(&tio->io->io_count); 1368 sector = clone->bi_iter.bi_sector; 1369 r = ti->type->map(ti, clone); 1370 if (r == DM_MAPIO_REMAPPED) { 1371 /* the bio has been remapped so dispatch it */ 1372 1373 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1374 tio->io->bio->bi_bdev->bd_dev, sector); 1375 1376 generic_make_request(clone); 1377 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1378 /* error the io and bail out, or requeue it if needed */ 1379 md = tio->io->md; 1380 dec_pending(tio->io, r); 1381 free_tio(md, tio); 1382 } else if (r) { 1383 DMWARN("unimplemented target map return value: %d", r); 1384 BUG(); 1385 } 1386 } 1387 1388 struct clone_info { 1389 struct mapped_device *md; 1390 struct dm_table *map; 1391 struct bio *bio; 1392 struct dm_io *io; 1393 sector_t sector; 1394 unsigned sector_count; 1395 }; 1396 1397 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1398 { 1399 bio->bi_iter.bi_sector = sector; 1400 bio->bi_iter.bi_size = to_bytes(len); 1401 } 1402 1403 /* 1404 * Creates a bio that consists of range of complete bvecs. 1405 */ 1406 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1407 sector_t sector, unsigned len) 1408 { 1409 struct bio *clone = &tio->clone; 1410 1411 __bio_clone_fast(clone, bio); 1412 1413 if (bio_integrity(bio)) 1414 bio_integrity_clone(clone, bio, GFP_NOIO); 1415 1416 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1417 clone->bi_iter.bi_size = to_bytes(len); 1418 1419 if (bio_integrity(bio)) 1420 bio_integrity_trim(clone, 0, len); 1421 } 1422 1423 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1424 struct dm_target *ti, 1425 unsigned target_bio_nr) 1426 { 1427 struct dm_target_io *tio; 1428 struct bio *clone; 1429 1430 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1431 tio = container_of(clone, struct dm_target_io, clone); 1432 1433 tio->io = ci->io; 1434 tio->ti = ti; 1435 tio->target_bio_nr = target_bio_nr; 1436 1437 return tio; 1438 } 1439 1440 static void __clone_and_map_simple_bio(struct clone_info *ci, 1441 struct dm_target *ti, 1442 unsigned target_bio_nr, unsigned *len) 1443 { 1444 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1445 struct bio *clone = &tio->clone; 1446 1447 tio->len_ptr = len; 1448 1449 __bio_clone_fast(clone, ci->bio); 1450 if (len) 1451 bio_setup_sector(clone, ci->sector, *len); 1452 1453 __map_bio(tio); 1454 } 1455 1456 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1457 unsigned num_bios, unsigned *len) 1458 { 1459 unsigned target_bio_nr; 1460 1461 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1462 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1463 } 1464 1465 static int __send_empty_flush(struct clone_info *ci) 1466 { 1467 unsigned target_nr = 0; 1468 struct dm_target *ti; 1469 1470 BUG_ON(bio_has_data(ci->bio)); 1471 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1472 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1473 1474 return 0; 1475 } 1476 1477 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1478 sector_t sector, unsigned *len) 1479 { 1480 struct bio *bio = ci->bio; 1481 struct dm_target_io *tio; 1482 unsigned target_bio_nr; 1483 unsigned num_target_bios = 1; 1484 1485 /* 1486 * Does the target want to receive duplicate copies of the bio? 1487 */ 1488 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1489 num_target_bios = ti->num_write_bios(ti, bio); 1490 1491 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1492 tio = alloc_tio(ci, ti, target_bio_nr); 1493 tio->len_ptr = len; 1494 clone_bio(tio, bio, sector, *len); 1495 __map_bio(tio); 1496 } 1497 } 1498 1499 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1500 1501 static unsigned get_num_discard_bios(struct dm_target *ti) 1502 { 1503 return ti->num_discard_bios; 1504 } 1505 1506 static unsigned get_num_write_same_bios(struct dm_target *ti) 1507 { 1508 return ti->num_write_same_bios; 1509 } 1510 1511 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1512 1513 static bool is_split_required_for_discard(struct dm_target *ti) 1514 { 1515 return ti->split_discard_bios; 1516 } 1517 1518 static int __send_changing_extent_only(struct clone_info *ci, 1519 get_num_bios_fn get_num_bios, 1520 is_split_required_fn is_split_required) 1521 { 1522 struct dm_target *ti; 1523 unsigned len; 1524 unsigned num_bios; 1525 1526 do { 1527 ti = dm_table_find_target(ci->map, ci->sector); 1528 if (!dm_target_is_valid(ti)) 1529 return -EIO; 1530 1531 /* 1532 * Even though the device advertised support for this type of 1533 * request, that does not mean every target supports it, and 1534 * reconfiguration might also have changed that since the 1535 * check was performed. 1536 */ 1537 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1538 if (!num_bios) 1539 return -EOPNOTSUPP; 1540 1541 if (is_split_required && !is_split_required(ti)) 1542 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1543 else 1544 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1545 1546 __send_duplicate_bios(ci, ti, num_bios, &len); 1547 1548 ci->sector += len; 1549 } while (ci->sector_count -= len); 1550 1551 return 0; 1552 } 1553 1554 static int __send_discard(struct clone_info *ci) 1555 { 1556 return __send_changing_extent_only(ci, get_num_discard_bios, 1557 is_split_required_for_discard); 1558 } 1559 1560 static int __send_write_same(struct clone_info *ci) 1561 { 1562 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1563 } 1564 1565 /* 1566 * Select the correct strategy for processing a non-flush bio. 1567 */ 1568 static int __split_and_process_non_flush(struct clone_info *ci) 1569 { 1570 struct bio *bio = ci->bio; 1571 struct dm_target *ti; 1572 unsigned len; 1573 1574 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1575 return __send_discard(ci); 1576 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1577 return __send_write_same(ci); 1578 1579 ti = dm_table_find_target(ci->map, ci->sector); 1580 if (!dm_target_is_valid(ti)) 1581 return -EIO; 1582 1583 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1584 1585 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1586 1587 ci->sector += len; 1588 ci->sector_count -= len; 1589 1590 return 0; 1591 } 1592 1593 /* 1594 * Entry point to split a bio into clones and submit them to the targets. 1595 */ 1596 static void __split_and_process_bio(struct mapped_device *md, 1597 struct dm_table *map, struct bio *bio) 1598 { 1599 struct clone_info ci; 1600 int error = 0; 1601 1602 if (unlikely(!map)) { 1603 bio_io_error(bio); 1604 return; 1605 } 1606 1607 ci.map = map; 1608 ci.md = md; 1609 ci.io = alloc_io(md); 1610 ci.io->error = 0; 1611 atomic_set(&ci.io->io_count, 1); 1612 ci.io->bio = bio; 1613 ci.io->md = md; 1614 spin_lock_init(&ci.io->endio_lock); 1615 ci.sector = bio->bi_iter.bi_sector; 1616 1617 start_io_acct(ci.io); 1618 1619 if (bio->bi_rw & REQ_FLUSH) { 1620 ci.bio = &ci.md->flush_bio; 1621 ci.sector_count = 0; 1622 error = __send_empty_flush(&ci); 1623 /* dec_pending submits any data associated with flush */ 1624 } else { 1625 ci.bio = bio; 1626 ci.sector_count = bio_sectors(bio); 1627 while (ci.sector_count && !error) 1628 error = __split_and_process_non_flush(&ci); 1629 } 1630 1631 /* drop the extra reference count */ 1632 dec_pending(ci.io, error); 1633 } 1634 /*----------------------------------------------------------------- 1635 * CRUD END 1636 *---------------------------------------------------------------*/ 1637 1638 static int dm_merge_bvec(struct request_queue *q, 1639 struct bvec_merge_data *bvm, 1640 struct bio_vec *biovec) 1641 { 1642 struct mapped_device *md = q->queuedata; 1643 struct dm_table *map = dm_get_live_table_fast(md); 1644 struct dm_target *ti; 1645 sector_t max_sectors; 1646 int max_size = 0; 1647 1648 if (unlikely(!map)) 1649 goto out; 1650 1651 ti = dm_table_find_target(map, bvm->bi_sector); 1652 if (!dm_target_is_valid(ti)) 1653 goto out; 1654 1655 /* 1656 * Find maximum amount of I/O that won't need splitting 1657 */ 1658 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1659 (sector_t) queue_max_sectors(q)); 1660 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1661 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */ 1662 max_size = 0; 1663 1664 /* 1665 * merge_bvec_fn() returns number of bytes 1666 * it can accept at this offset 1667 * max is precomputed maximal io size 1668 */ 1669 if (max_size && ti->type->merge) 1670 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1671 /* 1672 * If the target doesn't support merge method and some of the devices 1673 * provided their merge_bvec method (we know this by looking for the 1674 * max_hw_sectors that dm_set_device_limits may set), then we can't 1675 * allow bios with multiple vector entries. So always set max_size 1676 * to 0, and the code below allows just one page. 1677 */ 1678 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1679 max_size = 0; 1680 1681 out: 1682 dm_put_live_table_fast(md); 1683 /* 1684 * Always allow an entire first page 1685 */ 1686 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1687 max_size = biovec->bv_len; 1688 1689 return max_size; 1690 } 1691 1692 /* 1693 * The request function that just remaps the bio built up by 1694 * dm_merge_bvec. 1695 */ 1696 static void _dm_request(struct request_queue *q, struct bio *bio) 1697 { 1698 int rw = bio_data_dir(bio); 1699 struct mapped_device *md = q->queuedata; 1700 int srcu_idx; 1701 struct dm_table *map; 1702 1703 map = dm_get_live_table(md, &srcu_idx); 1704 1705 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1706 1707 /* if we're suspended, we have to queue this io for later */ 1708 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1709 dm_put_live_table(md, srcu_idx); 1710 1711 if (bio_rw(bio) != READA) 1712 queue_io(md, bio); 1713 else 1714 bio_io_error(bio); 1715 return; 1716 } 1717 1718 __split_and_process_bio(md, map, bio); 1719 dm_put_live_table(md, srcu_idx); 1720 return; 1721 } 1722 1723 int dm_request_based(struct mapped_device *md) 1724 { 1725 return blk_queue_stackable(md->queue); 1726 } 1727 1728 static void dm_request(struct request_queue *q, struct bio *bio) 1729 { 1730 struct mapped_device *md = q->queuedata; 1731 1732 if (dm_request_based(md)) 1733 blk_queue_bio(q, bio); 1734 else 1735 _dm_request(q, bio); 1736 } 1737 1738 static void dm_dispatch_clone_request(struct request *clone, struct request *rq) 1739 { 1740 int r; 1741 1742 if (blk_queue_io_stat(clone->q)) 1743 clone->cmd_flags |= REQ_IO_STAT; 1744 1745 clone->start_time = jiffies; 1746 r = blk_insert_cloned_request(clone->q, clone); 1747 if (r) 1748 /* must complete clone in terms of original request */ 1749 dm_complete_request(rq, r); 1750 } 1751 1752 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1753 void *data) 1754 { 1755 struct dm_rq_target_io *tio = data; 1756 struct dm_rq_clone_bio_info *info = 1757 container_of(bio, struct dm_rq_clone_bio_info, clone); 1758 1759 info->orig = bio_orig; 1760 info->tio = tio; 1761 bio->bi_end_io = end_clone_bio; 1762 1763 return 0; 1764 } 1765 1766 static int setup_clone(struct request *clone, struct request *rq, 1767 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1768 { 1769 int r; 1770 1771 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask, 1772 dm_rq_bio_constructor, tio); 1773 if (r) 1774 return r; 1775 1776 clone->cmd = rq->cmd; 1777 clone->cmd_len = rq->cmd_len; 1778 clone->sense = rq->sense; 1779 clone->end_io = end_clone_request; 1780 clone->end_io_data = tio; 1781 1782 tio->clone = clone; 1783 1784 return 0; 1785 } 1786 1787 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1788 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1789 { 1790 struct request *clone = alloc_clone_request(md, gfp_mask); 1791 1792 if (!clone) 1793 return NULL; 1794 1795 blk_rq_init(NULL, clone); 1796 if (setup_clone(clone, rq, tio, gfp_mask)) { 1797 /* -ENOMEM */ 1798 free_clone_request(md, clone); 1799 return NULL; 1800 } 1801 1802 return clone; 1803 } 1804 1805 static void map_tio_request(struct kthread_work *work); 1806 1807 static struct dm_rq_target_io *prep_tio(struct request *rq, 1808 struct mapped_device *md, gfp_t gfp_mask) 1809 { 1810 struct dm_rq_target_io *tio; 1811 int srcu_idx; 1812 struct dm_table *table; 1813 1814 tio = alloc_rq_tio(md, gfp_mask); 1815 if (!tio) 1816 return NULL; 1817 1818 tio->md = md; 1819 tio->ti = NULL; 1820 tio->clone = NULL; 1821 tio->orig = rq; 1822 tio->error = 0; 1823 memset(&tio->info, 0, sizeof(tio->info)); 1824 init_kthread_work(&tio->work, map_tio_request); 1825 1826 table = dm_get_live_table(md, &srcu_idx); 1827 if (!dm_table_mq_request_based(table)) { 1828 if (!clone_rq(rq, md, tio, gfp_mask)) { 1829 dm_put_live_table(md, srcu_idx); 1830 free_rq_tio(tio); 1831 return NULL; 1832 } 1833 } 1834 dm_put_live_table(md, srcu_idx); 1835 1836 return tio; 1837 } 1838 1839 /* 1840 * Called with the queue lock held. 1841 */ 1842 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1843 { 1844 struct mapped_device *md = q->queuedata; 1845 struct dm_rq_target_io *tio; 1846 1847 if (unlikely(rq->special)) { 1848 DMWARN("Already has something in rq->special."); 1849 return BLKPREP_KILL; 1850 } 1851 1852 tio = prep_tio(rq, md, GFP_ATOMIC); 1853 if (!tio) 1854 return BLKPREP_DEFER; 1855 1856 rq->special = tio; 1857 rq->cmd_flags |= REQ_DONTPREP; 1858 1859 return BLKPREP_OK; 1860 } 1861 1862 /* 1863 * Returns: 1864 * 0 : the request has been processed 1865 * DM_MAPIO_REQUEUE : the original request needs to be requeued 1866 * < 0 : the request was completed due to failure 1867 */ 1868 static int map_request(struct dm_target *ti, struct request *rq, 1869 struct mapped_device *md) 1870 { 1871 int r; 1872 struct dm_rq_target_io *tio = rq->special; 1873 struct request *clone = NULL; 1874 1875 if (tio->clone) { 1876 clone = tio->clone; 1877 r = ti->type->map_rq(ti, clone, &tio->info); 1878 } else { 1879 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone); 1880 if (r < 0) { 1881 /* The target wants to complete the I/O */ 1882 dm_kill_unmapped_request(rq, r); 1883 return r; 1884 } 1885 if (IS_ERR(clone)) 1886 return DM_MAPIO_REQUEUE; 1887 if (setup_clone(clone, rq, tio, GFP_KERNEL)) { 1888 /* -ENOMEM */ 1889 ti->type->release_clone_rq(clone); 1890 return DM_MAPIO_REQUEUE; 1891 } 1892 } 1893 1894 switch (r) { 1895 case DM_MAPIO_SUBMITTED: 1896 /* The target has taken the I/O to submit by itself later */ 1897 break; 1898 case DM_MAPIO_REMAPPED: 1899 /* The target has remapped the I/O so dispatch it */ 1900 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1901 blk_rq_pos(rq)); 1902 dm_dispatch_clone_request(clone, rq); 1903 break; 1904 case DM_MAPIO_REQUEUE: 1905 /* The target wants to requeue the I/O */ 1906 dm_requeue_unmapped_request(clone); 1907 break; 1908 default: 1909 if (r > 0) { 1910 DMWARN("unimplemented target map return value: %d", r); 1911 BUG(); 1912 } 1913 1914 /* The target wants to complete the I/O */ 1915 dm_kill_unmapped_request(rq, r); 1916 return r; 1917 } 1918 1919 return 0; 1920 } 1921 1922 static void map_tio_request(struct kthread_work *work) 1923 { 1924 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work); 1925 struct request *rq = tio->orig; 1926 struct mapped_device *md = tio->md; 1927 1928 if (map_request(tio->ti, rq, md) == DM_MAPIO_REQUEUE) 1929 dm_requeue_unmapped_original_request(md, rq); 1930 } 1931 1932 static void dm_start_request(struct mapped_device *md, struct request *orig) 1933 { 1934 blk_start_request(orig); 1935 atomic_inc(&md->pending[rq_data_dir(orig)]); 1936 1937 /* 1938 * Hold the md reference here for the in-flight I/O. 1939 * We can't rely on the reference count by device opener, 1940 * because the device may be closed during the request completion 1941 * when all bios are completed. 1942 * See the comment in rq_completed() too. 1943 */ 1944 dm_get(md); 1945 } 1946 1947 /* 1948 * q->request_fn for request-based dm. 1949 * Called with the queue lock held. 1950 */ 1951 static void dm_request_fn(struct request_queue *q) 1952 { 1953 struct mapped_device *md = q->queuedata; 1954 int srcu_idx; 1955 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 1956 struct dm_target *ti; 1957 struct request *rq; 1958 struct dm_rq_target_io *tio; 1959 sector_t pos; 1960 1961 /* 1962 * For suspend, check blk_queue_stopped() and increment 1963 * ->pending within a single queue_lock not to increment the 1964 * number of in-flight I/Os after the queue is stopped in 1965 * dm_suspend(). 1966 */ 1967 while (!blk_queue_stopped(q)) { 1968 rq = blk_peek_request(q); 1969 if (!rq) 1970 goto delay_and_out; 1971 1972 /* always use block 0 to find the target for flushes for now */ 1973 pos = 0; 1974 if (!(rq->cmd_flags & REQ_FLUSH)) 1975 pos = blk_rq_pos(rq); 1976 1977 ti = dm_table_find_target(map, pos); 1978 if (!dm_target_is_valid(ti)) { 1979 /* 1980 * Must perform setup, that rq_completed() requires, 1981 * before calling dm_kill_unmapped_request 1982 */ 1983 DMERR_LIMIT("request attempted access beyond the end of device"); 1984 dm_start_request(md, rq); 1985 dm_kill_unmapped_request(rq, -EIO); 1986 continue; 1987 } 1988 1989 if (ti->type->busy && ti->type->busy(ti)) 1990 goto delay_and_out; 1991 1992 dm_start_request(md, rq); 1993 1994 tio = rq->special; 1995 /* Establish tio->ti before queuing work (map_tio_request) */ 1996 tio->ti = ti; 1997 queue_kthread_work(&md->kworker, &tio->work); 1998 BUG_ON(!irqs_disabled()); 1999 } 2000 2001 goto out; 2002 2003 delay_and_out: 2004 blk_delay_queue(q, HZ / 10); 2005 out: 2006 dm_put_live_table(md, srcu_idx); 2007 } 2008 2009 int dm_underlying_device_busy(struct request_queue *q) 2010 { 2011 return blk_lld_busy(q); 2012 } 2013 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 2014 2015 static int dm_lld_busy(struct request_queue *q) 2016 { 2017 int r; 2018 struct mapped_device *md = q->queuedata; 2019 struct dm_table *map = dm_get_live_table_fast(md); 2020 2021 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 2022 r = 1; 2023 else 2024 r = dm_table_any_busy_target(map); 2025 2026 dm_put_live_table_fast(md); 2027 2028 return r; 2029 } 2030 2031 static int dm_any_congested(void *congested_data, int bdi_bits) 2032 { 2033 int r = bdi_bits; 2034 struct mapped_device *md = congested_data; 2035 struct dm_table *map; 2036 2037 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2038 map = dm_get_live_table_fast(md); 2039 if (map) { 2040 /* 2041 * Request-based dm cares about only own queue for 2042 * the query about congestion status of request_queue 2043 */ 2044 if (dm_request_based(md)) 2045 r = md->queue->backing_dev_info.state & 2046 bdi_bits; 2047 else 2048 r = dm_table_any_congested(map, bdi_bits); 2049 } 2050 dm_put_live_table_fast(md); 2051 } 2052 2053 return r; 2054 } 2055 2056 /*----------------------------------------------------------------- 2057 * An IDR is used to keep track of allocated minor numbers. 2058 *---------------------------------------------------------------*/ 2059 static void free_minor(int minor) 2060 { 2061 spin_lock(&_minor_lock); 2062 idr_remove(&_minor_idr, minor); 2063 spin_unlock(&_minor_lock); 2064 } 2065 2066 /* 2067 * See if the device with a specific minor # is free. 2068 */ 2069 static int specific_minor(int minor) 2070 { 2071 int r; 2072 2073 if (minor >= (1 << MINORBITS)) 2074 return -EINVAL; 2075 2076 idr_preload(GFP_KERNEL); 2077 spin_lock(&_minor_lock); 2078 2079 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2080 2081 spin_unlock(&_minor_lock); 2082 idr_preload_end(); 2083 if (r < 0) 2084 return r == -ENOSPC ? -EBUSY : r; 2085 return 0; 2086 } 2087 2088 static int next_free_minor(int *minor) 2089 { 2090 int r; 2091 2092 idr_preload(GFP_KERNEL); 2093 spin_lock(&_minor_lock); 2094 2095 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2096 2097 spin_unlock(&_minor_lock); 2098 idr_preload_end(); 2099 if (r < 0) 2100 return r; 2101 *minor = r; 2102 return 0; 2103 } 2104 2105 static const struct block_device_operations dm_blk_dops; 2106 2107 static void dm_wq_work(struct work_struct *work); 2108 2109 static void dm_init_md_queue(struct mapped_device *md) 2110 { 2111 /* 2112 * Request-based dm devices cannot be stacked on top of bio-based dm 2113 * devices. The type of this dm device has not been decided yet. 2114 * The type is decided at the first table loading time. 2115 * To prevent problematic device stacking, clear the queue flag 2116 * for request stacking support until then. 2117 * 2118 * This queue is new, so no concurrency on the queue_flags. 2119 */ 2120 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2121 2122 md->queue->queuedata = md; 2123 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2124 md->queue->backing_dev_info.congested_data = md; 2125 blk_queue_make_request(md->queue, dm_request); 2126 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2127 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 2128 } 2129 2130 /* 2131 * Allocate and initialise a blank device with a given minor. 2132 */ 2133 static struct mapped_device *alloc_dev(int minor) 2134 { 2135 int r; 2136 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 2137 void *old_md; 2138 2139 if (!md) { 2140 DMWARN("unable to allocate device, out of memory."); 2141 return NULL; 2142 } 2143 2144 if (!try_module_get(THIS_MODULE)) 2145 goto bad_module_get; 2146 2147 /* get a minor number for the dev */ 2148 if (minor == DM_ANY_MINOR) 2149 r = next_free_minor(&minor); 2150 else 2151 r = specific_minor(minor); 2152 if (r < 0) 2153 goto bad_minor; 2154 2155 r = init_srcu_struct(&md->io_barrier); 2156 if (r < 0) 2157 goto bad_io_barrier; 2158 2159 md->type = DM_TYPE_NONE; 2160 mutex_init(&md->suspend_lock); 2161 mutex_init(&md->type_lock); 2162 mutex_init(&md->table_devices_lock); 2163 spin_lock_init(&md->deferred_lock); 2164 atomic_set(&md->holders, 1); 2165 atomic_set(&md->open_count, 0); 2166 atomic_set(&md->event_nr, 0); 2167 atomic_set(&md->uevent_seq, 0); 2168 INIT_LIST_HEAD(&md->uevent_list); 2169 INIT_LIST_HEAD(&md->table_devices); 2170 spin_lock_init(&md->uevent_lock); 2171 2172 md->queue = blk_alloc_queue(GFP_KERNEL); 2173 if (!md->queue) 2174 goto bad_queue; 2175 2176 dm_init_md_queue(md); 2177 2178 md->disk = alloc_disk(1); 2179 if (!md->disk) 2180 goto bad_disk; 2181 2182 atomic_set(&md->pending[0], 0); 2183 atomic_set(&md->pending[1], 0); 2184 init_waitqueue_head(&md->wait); 2185 INIT_WORK(&md->work, dm_wq_work); 2186 init_waitqueue_head(&md->eventq); 2187 init_completion(&md->kobj_holder.completion); 2188 md->kworker_task = NULL; 2189 2190 md->disk->major = _major; 2191 md->disk->first_minor = minor; 2192 md->disk->fops = &dm_blk_dops; 2193 md->disk->queue = md->queue; 2194 md->disk->private_data = md; 2195 sprintf(md->disk->disk_name, "dm-%d", minor); 2196 add_disk(md->disk); 2197 format_dev_t(md->name, MKDEV(_major, minor)); 2198 2199 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2200 if (!md->wq) 2201 goto bad_thread; 2202 2203 md->bdev = bdget_disk(md->disk, 0); 2204 if (!md->bdev) 2205 goto bad_bdev; 2206 2207 bio_init(&md->flush_bio); 2208 md->flush_bio.bi_bdev = md->bdev; 2209 md->flush_bio.bi_rw = WRITE_FLUSH; 2210 2211 dm_stats_init(&md->stats); 2212 2213 /* Populate the mapping, nobody knows we exist yet */ 2214 spin_lock(&_minor_lock); 2215 old_md = idr_replace(&_minor_idr, md, minor); 2216 spin_unlock(&_minor_lock); 2217 2218 BUG_ON(old_md != MINOR_ALLOCED); 2219 2220 return md; 2221 2222 bad_bdev: 2223 destroy_workqueue(md->wq); 2224 bad_thread: 2225 del_gendisk(md->disk); 2226 put_disk(md->disk); 2227 bad_disk: 2228 blk_cleanup_queue(md->queue); 2229 bad_queue: 2230 cleanup_srcu_struct(&md->io_barrier); 2231 bad_io_barrier: 2232 free_minor(minor); 2233 bad_minor: 2234 module_put(THIS_MODULE); 2235 bad_module_get: 2236 kfree(md); 2237 return NULL; 2238 } 2239 2240 static void unlock_fs(struct mapped_device *md); 2241 2242 static void free_dev(struct mapped_device *md) 2243 { 2244 int minor = MINOR(disk_devt(md->disk)); 2245 2246 unlock_fs(md); 2247 destroy_workqueue(md->wq); 2248 2249 if (md->kworker_task) 2250 kthread_stop(md->kworker_task); 2251 if (md->io_pool) 2252 mempool_destroy(md->io_pool); 2253 if (md->rq_pool) 2254 mempool_destroy(md->rq_pool); 2255 if (md->bs) 2256 bioset_free(md->bs); 2257 2258 cleanup_srcu_struct(&md->io_barrier); 2259 free_table_devices(&md->table_devices); 2260 dm_stats_cleanup(&md->stats); 2261 2262 spin_lock(&_minor_lock); 2263 md->disk->private_data = NULL; 2264 spin_unlock(&_minor_lock); 2265 if (blk_get_integrity(md->disk)) 2266 blk_integrity_unregister(md->disk); 2267 del_gendisk(md->disk); 2268 put_disk(md->disk); 2269 blk_cleanup_queue(md->queue); 2270 bdput(md->bdev); 2271 free_minor(minor); 2272 2273 module_put(THIS_MODULE); 2274 kfree(md); 2275 } 2276 2277 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2278 { 2279 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2280 2281 if (md->io_pool && md->bs) { 2282 /* The md already has necessary mempools. */ 2283 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2284 /* 2285 * Reload bioset because front_pad may have changed 2286 * because a different table was loaded. 2287 */ 2288 bioset_free(md->bs); 2289 md->bs = p->bs; 2290 p->bs = NULL; 2291 } 2292 /* 2293 * There's no need to reload with request-based dm 2294 * because the size of front_pad doesn't change. 2295 * Note for future: If you are to reload bioset, 2296 * prep-ed requests in the queue may refer 2297 * to bio from the old bioset, so you must walk 2298 * through the queue to unprep. 2299 */ 2300 goto out; 2301 } 2302 2303 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 2304 2305 md->io_pool = p->io_pool; 2306 p->io_pool = NULL; 2307 md->rq_pool = p->rq_pool; 2308 p->rq_pool = NULL; 2309 md->bs = p->bs; 2310 p->bs = NULL; 2311 2312 out: 2313 /* mempool bind completed, now no need any mempools in the table */ 2314 dm_table_free_md_mempools(t); 2315 } 2316 2317 /* 2318 * Bind a table to the device. 2319 */ 2320 static void event_callback(void *context) 2321 { 2322 unsigned long flags; 2323 LIST_HEAD(uevents); 2324 struct mapped_device *md = (struct mapped_device *) context; 2325 2326 spin_lock_irqsave(&md->uevent_lock, flags); 2327 list_splice_init(&md->uevent_list, &uevents); 2328 spin_unlock_irqrestore(&md->uevent_lock, flags); 2329 2330 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2331 2332 atomic_inc(&md->event_nr); 2333 wake_up(&md->eventq); 2334 } 2335 2336 /* 2337 * Protected by md->suspend_lock obtained by dm_swap_table(). 2338 */ 2339 static void __set_size(struct mapped_device *md, sector_t size) 2340 { 2341 set_capacity(md->disk, size); 2342 2343 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2344 } 2345 2346 /* 2347 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2348 * 2349 * If this function returns 0, then the device is either a non-dm 2350 * device without a merge_bvec_fn, or it is a dm device that is 2351 * able to split any bios it receives that are too big. 2352 */ 2353 int dm_queue_merge_is_compulsory(struct request_queue *q) 2354 { 2355 struct mapped_device *dev_md; 2356 2357 if (!q->merge_bvec_fn) 2358 return 0; 2359 2360 if (q->make_request_fn == dm_request) { 2361 dev_md = q->queuedata; 2362 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2363 return 0; 2364 } 2365 2366 return 1; 2367 } 2368 2369 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2370 struct dm_dev *dev, sector_t start, 2371 sector_t len, void *data) 2372 { 2373 struct block_device *bdev = dev->bdev; 2374 struct request_queue *q = bdev_get_queue(bdev); 2375 2376 return dm_queue_merge_is_compulsory(q); 2377 } 2378 2379 /* 2380 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2381 * on the properties of the underlying devices. 2382 */ 2383 static int dm_table_merge_is_optional(struct dm_table *table) 2384 { 2385 unsigned i = 0; 2386 struct dm_target *ti; 2387 2388 while (i < dm_table_get_num_targets(table)) { 2389 ti = dm_table_get_target(table, i++); 2390 2391 if (ti->type->iterate_devices && 2392 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2393 return 0; 2394 } 2395 2396 return 1; 2397 } 2398 2399 /* 2400 * Returns old map, which caller must destroy. 2401 */ 2402 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2403 struct queue_limits *limits) 2404 { 2405 struct dm_table *old_map; 2406 struct request_queue *q = md->queue; 2407 sector_t size; 2408 int merge_is_optional; 2409 2410 size = dm_table_get_size(t); 2411 2412 /* 2413 * Wipe any geometry if the size of the table changed. 2414 */ 2415 if (size != dm_get_size(md)) 2416 memset(&md->geometry, 0, sizeof(md->geometry)); 2417 2418 __set_size(md, size); 2419 2420 dm_table_event_callback(t, event_callback, md); 2421 2422 /* 2423 * The queue hasn't been stopped yet, if the old table type wasn't 2424 * for request-based during suspension. So stop it to prevent 2425 * I/O mapping before resume. 2426 * This must be done before setting the queue restrictions, 2427 * because request-based dm may be run just after the setting. 2428 */ 2429 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2430 stop_queue(q); 2431 2432 __bind_mempools(md, t); 2433 2434 merge_is_optional = dm_table_merge_is_optional(t); 2435 2436 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2437 rcu_assign_pointer(md->map, t); 2438 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2439 2440 dm_table_set_restrictions(t, q, limits); 2441 if (merge_is_optional) 2442 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2443 else 2444 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2445 if (old_map) 2446 dm_sync_table(md); 2447 2448 return old_map; 2449 } 2450 2451 /* 2452 * Returns unbound table for the caller to free. 2453 */ 2454 static struct dm_table *__unbind(struct mapped_device *md) 2455 { 2456 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2457 2458 if (!map) 2459 return NULL; 2460 2461 dm_table_event_callback(map, NULL, NULL); 2462 RCU_INIT_POINTER(md->map, NULL); 2463 dm_sync_table(md); 2464 2465 return map; 2466 } 2467 2468 /* 2469 * Constructor for a new device. 2470 */ 2471 int dm_create(int minor, struct mapped_device **result) 2472 { 2473 struct mapped_device *md; 2474 2475 md = alloc_dev(minor); 2476 if (!md) 2477 return -ENXIO; 2478 2479 dm_sysfs_init(md); 2480 2481 *result = md; 2482 return 0; 2483 } 2484 2485 /* 2486 * Functions to manage md->type. 2487 * All are required to hold md->type_lock. 2488 */ 2489 void dm_lock_md_type(struct mapped_device *md) 2490 { 2491 mutex_lock(&md->type_lock); 2492 } 2493 2494 void dm_unlock_md_type(struct mapped_device *md) 2495 { 2496 mutex_unlock(&md->type_lock); 2497 } 2498 2499 void dm_set_md_type(struct mapped_device *md, unsigned type) 2500 { 2501 BUG_ON(!mutex_is_locked(&md->type_lock)); 2502 md->type = type; 2503 } 2504 2505 unsigned dm_get_md_type(struct mapped_device *md) 2506 { 2507 BUG_ON(!mutex_is_locked(&md->type_lock)); 2508 return md->type; 2509 } 2510 2511 static bool dm_md_type_request_based(struct mapped_device *md) 2512 { 2513 unsigned table_type = dm_get_md_type(md); 2514 2515 return (table_type == DM_TYPE_REQUEST_BASED || 2516 table_type == DM_TYPE_MQ_REQUEST_BASED); 2517 } 2518 2519 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2520 { 2521 return md->immutable_target_type; 2522 } 2523 2524 /* 2525 * The queue_limits are only valid as long as you have a reference 2526 * count on 'md'. 2527 */ 2528 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2529 { 2530 BUG_ON(!atomic_read(&md->holders)); 2531 return &md->queue->limits; 2532 } 2533 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2534 2535 /* 2536 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2537 */ 2538 static int dm_init_request_based_queue(struct mapped_device *md) 2539 { 2540 struct request_queue *q = NULL; 2541 2542 if (md->queue->elevator) 2543 return 1; 2544 2545 /* Fully initialize the queue */ 2546 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2547 if (!q) 2548 return 0; 2549 2550 md->queue = q; 2551 dm_init_md_queue(md); 2552 blk_queue_softirq_done(md->queue, dm_softirq_done); 2553 blk_queue_prep_rq(md->queue, dm_prep_fn); 2554 blk_queue_lld_busy(md->queue, dm_lld_busy); 2555 2556 /* Also initialize the request-based DM worker thread */ 2557 init_kthread_worker(&md->kworker); 2558 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker, 2559 "kdmwork-%s", dm_device_name(md)); 2560 2561 elv_register_queue(md->queue); 2562 2563 return 1; 2564 } 2565 2566 /* 2567 * Setup the DM device's queue based on md's type 2568 */ 2569 int dm_setup_md_queue(struct mapped_device *md) 2570 { 2571 if (dm_md_type_request_based(md) && !dm_init_request_based_queue(md)) { 2572 DMWARN("Cannot initialize queue for request-based mapped device"); 2573 return -EINVAL; 2574 } 2575 2576 return 0; 2577 } 2578 2579 struct mapped_device *dm_get_md(dev_t dev) 2580 { 2581 struct mapped_device *md; 2582 unsigned minor = MINOR(dev); 2583 2584 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2585 return NULL; 2586 2587 spin_lock(&_minor_lock); 2588 2589 md = idr_find(&_minor_idr, minor); 2590 if (md) { 2591 if ((md == MINOR_ALLOCED || 2592 (MINOR(disk_devt(dm_disk(md))) != minor) || 2593 dm_deleting_md(md) || 2594 test_bit(DMF_FREEING, &md->flags))) { 2595 md = NULL; 2596 goto out; 2597 } 2598 dm_get(md); 2599 } 2600 2601 out: 2602 spin_unlock(&_minor_lock); 2603 2604 return md; 2605 } 2606 EXPORT_SYMBOL_GPL(dm_get_md); 2607 2608 void *dm_get_mdptr(struct mapped_device *md) 2609 { 2610 return md->interface_ptr; 2611 } 2612 2613 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2614 { 2615 md->interface_ptr = ptr; 2616 } 2617 2618 void dm_get(struct mapped_device *md) 2619 { 2620 atomic_inc(&md->holders); 2621 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2622 } 2623 2624 int dm_hold(struct mapped_device *md) 2625 { 2626 spin_lock(&_minor_lock); 2627 if (test_bit(DMF_FREEING, &md->flags)) { 2628 spin_unlock(&_minor_lock); 2629 return -EBUSY; 2630 } 2631 dm_get(md); 2632 spin_unlock(&_minor_lock); 2633 return 0; 2634 } 2635 EXPORT_SYMBOL_GPL(dm_hold); 2636 2637 const char *dm_device_name(struct mapped_device *md) 2638 { 2639 return md->name; 2640 } 2641 EXPORT_SYMBOL_GPL(dm_device_name); 2642 2643 static void __dm_destroy(struct mapped_device *md, bool wait) 2644 { 2645 struct dm_table *map; 2646 int srcu_idx; 2647 2648 might_sleep(); 2649 2650 map = dm_get_live_table(md, &srcu_idx); 2651 2652 spin_lock(&_minor_lock); 2653 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2654 set_bit(DMF_FREEING, &md->flags); 2655 spin_unlock(&_minor_lock); 2656 2657 if (dm_request_based(md)) 2658 flush_kthread_worker(&md->kworker); 2659 2660 /* 2661 * Take suspend_lock so that presuspend and postsuspend methods 2662 * do not race with internal suspend. 2663 */ 2664 mutex_lock(&md->suspend_lock); 2665 if (!dm_suspended_md(md)) { 2666 dm_table_presuspend_targets(map); 2667 dm_table_postsuspend_targets(map); 2668 } 2669 mutex_unlock(&md->suspend_lock); 2670 2671 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2672 dm_put_live_table(md, srcu_idx); 2673 2674 /* 2675 * Rare, but there may be I/O requests still going to complete, 2676 * for example. Wait for all references to disappear. 2677 * No one should increment the reference count of the mapped_device, 2678 * after the mapped_device state becomes DMF_FREEING. 2679 */ 2680 if (wait) 2681 while (atomic_read(&md->holders)) 2682 msleep(1); 2683 else if (atomic_read(&md->holders)) 2684 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2685 dm_device_name(md), atomic_read(&md->holders)); 2686 2687 dm_sysfs_exit(md); 2688 dm_table_destroy(__unbind(md)); 2689 free_dev(md); 2690 } 2691 2692 void dm_destroy(struct mapped_device *md) 2693 { 2694 __dm_destroy(md, true); 2695 } 2696 2697 void dm_destroy_immediate(struct mapped_device *md) 2698 { 2699 __dm_destroy(md, false); 2700 } 2701 2702 void dm_put(struct mapped_device *md) 2703 { 2704 atomic_dec(&md->holders); 2705 } 2706 EXPORT_SYMBOL_GPL(dm_put); 2707 2708 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2709 { 2710 int r = 0; 2711 DECLARE_WAITQUEUE(wait, current); 2712 2713 add_wait_queue(&md->wait, &wait); 2714 2715 while (1) { 2716 set_current_state(interruptible); 2717 2718 if (!md_in_flight(md)) 2719 break; 2720 2721 if (interruptible == TASK_INTERRUPTIBLE && 2722 signal_pending(current)) { 2723 r = -EINTR; 2724 break; 2725 } 2726 2727 io_schedule(); 2728 } 2729 set_current_state(TASK_RUNNING); 2730 2731 remove_wait_queue(&md->wait, &wait); 2732 2733 return r; 2734 } 2735 2736 /* 2737 * Process the deferred bios 2738 */ 2739 static void dm_wq_work(struct work_struct *work) 2740 { 2741 struct mapped_device *md = container_of(work, struct mapped_device, 2742 work); 2743 struct bio *c; 2744 int srcu_idx; 2745 struct dm_table *map; 2746 2747 map = dm_get_live_table(md, &srcu_idx); 2748 2749 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2750 spin_lock_irq(&md->deferred_lock); 2751 c = bio_list_pop(&md->deferred); 2752 spin_unlock_irq(&md->deferred_lock); 2753 2754 if (!c) 2755 break; 2756 2757 if (dm_request_based(md)) 2758 generic_make_request(c); 2759 else 2760 __split_and_process_bio(md, map, c); 2761 } 2762 2763 dm_put_live_table(md, srcu_idx); 2764 } 2765 2766 static void dm_queue_flush(struct mapped_device *md) 2767 { 2768 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2769 smp_mb__after_atomic(); 2770 queue_work(md->wq, &md->work); 2771 } 2772 2773 /* 2774 * Swap in a new table, returning the old one for the caller to destroy. 2775 */ 2776 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2777 { 2778 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2779 struct queue_limits limits; 2780 int r; 2781 2782 mutex_lock(&md->suspend_lock); 2783 2784 /* device must be suspended */ 2785 if (!dm_suspended_md(md)) 2786 goto out; 2787 2788 /* 2789 * If the new table has no data devices, retain the existing limits. 2790 * This helps multipath with queue_if_no_path if all paths disappear, 2791 * then new I/O is queued based on these limits, and then some paths 2792 * reappear. 2793 */ 2794 if (dm_table_has_no_data_devices(table)) { 2795 live_map = dm_get_live_table_fast(md); 2796 if (live_map) 2797 limits = md->queue->limits; 2798 dm_put_live_table_fast(md); 2799 } 2800 2801 if (!live_map) { 2802 r = dm_calculate_queue_limits(table, &limits); 2803 if (r) { 2804 map = ERR_PTR(r); 2805 goto out; 2806 } 2807 } 2808 2809 map = __bind(md, table, &limits); 2810 2811 out: 2812 mutex_unlock(&md->suspend_lock); 2813 return map; 2814 } 2815 2816 /* 2817 * Functions to lock and unlock any filesystem running on the 2818 * device. 2819 */ 2820 static int lock_fs(struct mapped_device *md) 2821 { 2822 int r; 2823 2824 WARN_ON(md->frozen_sb); 2825 2826 md->frozen_sb = freeze_bdev(md->bdev); 2827 if (IS_ERR(md->frozen_sb)) { 2828 r = PTR_ERR(md->frozen_sb); 2829 md->frozen_sb = NULL; 2830 return r; 2831 } 2832 2833 set_bit(DMF_FROZEN, &md->flags); 2834 2835 return 0; 2836 } 2837 2838 static void unlock_fs(struct mapped_device *md) 2839 { 2840 if (!test_bit(DMF_FROZEN, &md->flags)) 2841 return; 2842 2843 thaw_bdev(md->bdev, md->frozen_sb); 2844 md->frozen_sb = NULL; 2845 clear_bit(DMF_FROZEN, &md->flags); 2846 } 2847 2848 /* 2849 * If __dm_suspend returns 0, the device is completely quiescent 2850 * now. There is no request-processing activity. All new requests 2851 * are being added to md->deferred list. 2852 * 2853 * Caller must hold md->suspend_lock 2854 */ 2855 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2856 unsigned suspend_flags, int interruptible) 2857 { 2858 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2859 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2860 int r; 2861 2862 /* 2863 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2864 * This flag is cleared before dm_suspend returns. 2865 */ 2866 if (noflush) 2867 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2868 2869 /* 2870 * This gets reverted if there's an error later and the targets 2871 * provide the .presuspend_undo hook. 2872 */ 2873 dm_table_presuspend_targets(map); 2874 2875 /* 2876 * Flush I/O to the device. 2877 * Any I/O submitted after lock_fs() may not be flushed. 2878 * noflush takes precedence over do_lockfs. 2879 * (lock_fs() flushes I/Os and waits for them to complete.) 2880 */ 2881 if (!noflush && do_lockfs) { 2882 r = lock_fs(md); 2883 if (r) { 2884 dm_table_presuspend_undo_targets(map); 2885 return r; 2886 } 2887 } 2888 2889 /* 2890 * Here we must make sure that no processes are submitting requests 2891 * to target drivers i.e. no one may be executing 2892 * __split_and_process_bio. This is called from dm_request and 2893 * dm_wq_work. 2894 * 2895 * To get all processes out of __split_and_process_bio in dm_request, 2896 * we take the write lock. To prevent any process from reentering 2897 * __split_and_process_bio from dm_request and quiesce the thread 2898 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2899 * flush_workqueue(md->wq). 2900 */ 2901 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2902 if (map) 2903 synchronize_srcu(&md->io_barrier); 2904 2905 /* 2906 * Stop md->queue before flushing md->wq in case request-based 2907 * dm defers requests to md->wq from md->queue. 2908 */ 2909 if (dm_request_based(md)) { 2910 stop_queue(md->queue); 2911 flush_kthread_worker(&md->kworker); 2912 } 2913 2914 flush_workqueue(md->wq); 2915 2916 /* 2917 * At this point no more requests are entering target request routines. 2918 * We call dm_wait_for_completion to wait for all existing requests 2919 * to finish. 2920 */ 2921 r = dm_wait_for_completion(md, interruptible); 2922 2923 if (noflush) 2924 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2925 if (map) 2926 synchronize_srcu(&md->io_barrier); 2927 2928 /* were we interrupted ? */ 2929 if (r < 0) { 2930 dm_queue_flush(md); 2931 2932 if (dm_request_based(md)) 2933 start_queue(md->queue); 2934 2935 unlock_fs(md); 2936 dm_table_presuspend_undo_targets(map); 2937 /* pushback list is already flushed, so skip flush */ 2938 } 2939 2940 return r; 2941 } 2942 2943 /* 2944 * We need to be able to change a mapping table under a mounted 2945 * filesystem. For example we might want to move some data in 2946 * the background. Before the table can be swapped with 2947 * dm_bind_table, dm_suspend must be called to flush any in 2948 * flight bios and ensure that any further io gets deferred. 2949 */ 2950 /* 2951 * Suspend mechanism in request-based dm. 2952 * 2953 * 1. Flush all I/Os by lock_fs() if needed. 2954 * 2. Stop dispatching any I/O by stopping the request_queue. 2955 * 3. Wait for all in-flight I/Os to be completed or requeued. 2956 * 2957 * To abort suspend, start the request_queue. 2958 */ 2959 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2960 { 2961 struct dm_table *map = NULL; 2962 int r = 0; 2963 2964 retry: 2965 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2966 2967 if (dm_suspended_md(md)) { 2968 r = -EINVAL; 2969 goto out_unlock; 2970 } 2971 2972 if (dm_suspended_internally_md(md)) { 2973 /* already internally suspended, wait for internal resume */ 2974 mutex_unlock(&md->suspend_lock); 2975 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2976 if (r) 2977 return r; 2978 goto retry; 2979 } 2980 2981 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2982 2983 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 2984 if (r) 2985 goto out_unlock; 2986 2987 set_bit(DMF_SUSPENDED, &md->flags); 2988 2989 dm_table_postsuspend_targets(map); 2990 2991 out_unlock: 2992 mutex_unlock(&md->suspend_lock); 2993 return r; 2994 } 2995 2996 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2997 { 2998 if (map) { 2999 int r = dm_table_resume_targets(map); 3000 if (r) 3001 return r; 3002 } 3003 3004 dm_queue_flush(md); 3005 3006 /* 3007 * Flushing deferred I/Os must be done after targets are resumed 3008 * so that mapping of targets can work correctly. 3009 * Request-based dm is queueing the deferred I/Os in its request_queue. 3010 */ 3011 if (dm_request_based(md)) 3012 start_queue(md->queue); 3013 3014 unlock_fs(md); 3015 3016 return 0; 3017 } 3018 3019 int dm_resume(struct mapped_device *md) 3020 { 3021 int r = -EINVAL; 3022 struct dm_table *map = NULL; 3023 3024 retry: 3025 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3026 3027 if (!dm_suspended_md(md)) 3028 goto out; 3029 3030 if (dm_suspended_internally_md(md)) { 3031 /* already internally suspended, wait for internal resume */ 3032 mutex_unlock(&md->suspend_lock); 3033 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3034 if (r) 3035 return r; 3036 goto retry; 3037 } 3038 3039 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3040 if (!map || !dm_table_get_size(map)) 3041 goto out; 3042 3043 r = __dm_resume(md, map); 3044 if (r) 3045 goto out; 3046 3047 clear_bit(DMF_SUSPENDED, &md->flags); 3048 3049 r = 0; 3050 out: 3051 mutex_unlock(&md->suspend_lock); 3052 3053 return r; 3054 } 3055 3056 /* 3057 * Internal suspend/resume works like userspace-driven suspend. It waits 3058 * until all bios finish and prevents issuing new bios to the target drivers. 3059 * It may be used only from the kernel. 3060 */ 3061 3062 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 3063 { 3064 struct dm_table *map = NULL; 3065 3066 if (md->internal_suspend_count++) 3067 return; /* nested internal suspend */ 3068 3069 if (dm_suspended_md(md)) { 3070 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3071 return; /* nest suspend */ 3072 } 3073 3074 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3075 3076 /* 3077 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3078 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3079 * would require changing .presuspend to return an error -- avoid this 3080 * until there is a need for more elaborate variants of internal suspend. 3081 */ 3082 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 3083 3084 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3085 3086 dm_table_postsuspend_targets(map); 3087 } 3088 3089 static void __dm_internal_resume(struct mapped_device *md) 3090 { 3091 BUG_ON(!md->internal_suspend_count); 3092 3093 if (--md->internal_suspend_count) 3094 return; /* resume from nested internal suspend */ 3095 3096 if (dm_suspended_md(md)) 3097 goto done; /* resume from nested suspend */ 3098 3099 /* 3100 * NOTE: existing callers don't need to call dm_table_resume_targets 3101 * (which may fail -- so best to avoid it for now by passing NULL map) 3102 */ 3103 (void) __dm_resume(md, NULL); 3104 3105 done: 3106 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3107 smp_mb__after_atomic(); 3108 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3109 } 3110 3111 void dm_internal_suspend_noflush(struct mapped_device *md) 3112 { 3113 mutex_lock(&md->suspend_lock); 3114 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3115 mutex_unlock(&md->suspend_lock); 3116 } 3117 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3118 3119 void dm_internal_resume(struct mapped_device *md) 3120 { 3121 mutex_lock(&md->suspend_lock); 3122 __dm_internal_resume(md); 3123 mutex_unlock(&md->suspend_lock); 3124 } 3125 EXPORT_SYMBOL_GPL(dm_internal_resume); 3126 3127 /* 3128 * Fast variants of internal suspend/resume hold md->suspend_lock, 3129 * which prevents interaction with userspace-driven suspend. 3130 */ 3131 3132 void dm_internal_suspend_fast(struct mapped_device *md) 3133 { 3134 mutex_lock(&md->suspend_lock); 3135 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3136 return; 3137 3138 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3139 synchronize_srcu(&md->io_barrier); 3140 flush_workqueue(md->wq); 3141 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3142 } 3143 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3144 3145 void dm_internal_resume_fast(struct mapped_device *md) 3146 { 3147 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3148 goto done; 3149 3150 dm_queue_flush(md); 3151 3152 done: 3153 mutex_unlock(&md->suspend_lock); 3154 } 3155 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3156 3157 /*----------------------------------------------------------------- 3158 * Event notification. 3159 *---------------------------------------------------------------*/ 3160 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3161 unsigned cookie) 3162 { 3163 char udev_cookie[DM_COOKIE_LENGTH]; 3164 char *envp[] = { udev_cookie, NULL }; 3165 3166 if (!cookie) 3167 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 3168 else { 3169 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3170 DM_COOKIE_ENV_VAR_NAME, cookie); 3171 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 3172 action, envp); 3173 } 3174 } 3175 3176 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3177 { 3178 return atomic_add_return(1, &md->uevent_seq); 3179 } 3180 3181 uint32_t dm_get_event_nr(struct mapped_device *md) 3182 { 3183 return atomic_read(&md->event_nr); 3184 } 3185 3186 int dm_wait_event(struct mapped_device *md, int event_nr) 3187 { 3188 return wait_event_interruptible(md->eventq, 3189 (event_nr != atomic_read(&md->event_nr))); 3190 } 3191 3192 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3193 { 3194 unsigned long flags; 3195 3196 spin_lock_irqsave(&md->uevent_lock, flags); 3197 list_add(elist, &md->uevent_list); 3198 spin_unlock_irqrestore(&md->uevent_lock, flags); 3199 } 3200 3201 /* 3202 * The gendisk is only valid as long as you have a reference 3203 * count on 'md'. 3204 */ 3205 struct gendisk *dm_disk(struct mapped_device *md) 3206 { 3207 return md->disk; 3208 } 3209 3210 struct kobject *dm_kobject(struct mapped_device *md) 3211 { 3212 return &md->kobj_holder.kobj; 3213 } 3214 3215 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3216 { 3217 struct mapped_device *md; 3218 3219 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3220 3221 if (test_bit(DMF_FREEING, &md->flags) || 3222 dm_deleting_md(md)) 3223 return NULL; 3224 3225 dm_get(md); 3226 return md; 3227 } 3228 3229 int dm_suspended_md(struct mapped_device *md) 3230 { 3231 return test_bit(DMF_SUSPENDED, &md->flags); 3232 } 3233 3234 int dm_suspended_internally_md(struct mapped_device *md) 3235 { 3236 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3237 } 3238 3239 int dm_test_deferred_remove_flag(struct mapped_device *md) 3240 { 3241 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3242 } 3243 3244 int dm_suspended(struct dm_target *ti) 3245 { 3246 return dm_suspended_md(dm_table_get_md(ti->table)); 3247 } 3248 EXPORT_SYMBOL_GPL(dm_suspended); 3249 3250 int dm_noflush_suspending(struct dm_target *ti) 3251 { 3252 return __noflush_suspending(dm_table_get_md(ti->table)); 3253 } 3254 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3255 3256 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 3257 { 3258 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 3259 struct kmem_cache *cachep; 3260 unsigned int pool_size = 0; 3261 unsigned int front_pad; 3262 3263 if (!pools) 3264 return NULL; 3265 3266 switch (type) { 3267 case DM_TYPE_BIO_BASED: 3268 cachep = _io_cache; 3269 pool_size = dm_get_reserved_bio_based_ios(); 3270 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3271 break; 3272 case DM_TYPE_REQUEST_BASED: 3273 pool_size = dm_get_reserved_rq_based_ios(); 3274 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 3275 if (!pools->rq_pool) 3276 goto out; 3277 /* fall through to setup remaining rq-based pools */ 3278 case DM_TYPE_MQ_REQUEST_BASED: 3279 cachep = _rq_tio_cache; 3280 if (!pool_size) 3281 pool_size = dm_get_reserved_rq_based_ios(); 3282 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3283 /* per_bio_data_size is not used. See __bind_mempools(). */ 3284 WARN_ON(per_bio_data_size != 0); 3285 break; 3286 default: 3287 goto out; 3288 } 3289 3290 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3291 if (!pools->io_pool) 3292 goto out; 3293 3294 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3295 if (!pools->bs) 3296 goto out; 3297 3298 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3299 goto out; 3300 3301 return pools; 3302 3303 out: 3304 dm_free_md_mempools(pools); 3305 3306 return NULL; 3307 } 3308 3309 void dm_free_md_mempools(struct dm_md_mempools *pools) 3310 { 3311 if (!pools) 3312 return; 3313 3314 if (pools->io_pool) 3315 mempool_destroy(pools->io_pool); 3316 3317 if (pools->rq_pool) 3318 mempool_destroy(pools->rq_pool); 3319 3320 if (pools->bs) 3321 bioset_free(pools->bs); 3322 3323 kfree(pools); 3324 } 3325 3326 static const struct block_device_operations dm_blk_dops = { 3327 .open = dm_blk_open, 3328 .release = dm_blk_close, 3329 .ioctl = dm_blk_ioctl, 3330 .getgeo = dm_blk_getgeo, 3331 .owner = THIS_MODULE 3332 }; 3333 3334 /* 3335 * module hooks 3336 */ 3337 module_init(dm_init); 3338 module_exit(dm_exit); 3339 3340 module_param(major, uint, 0); 3341 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3342 3343 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3344 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3345 3346 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3347 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3348 3349 MODULE_DESCRIPTION(DM_NAME " driver"); 3350 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3351 MODULE_LICENSE("GPL"); 3352