xref: /linux/drivers/md/dm.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 
25 #include <trace/events/block.h>
26 
27 #define DM_MSG_PREFIX "core"
28 
29 #ifdef CONFIG_PRINTK
30 /*
31  * ratelimit state to be used in DMXXX_LIMIT().
32  */
33 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
34 		       DEFAULT_RATELIMIT_INTERVAL,
35 		       DEFAULT_RATELIMIT_BURST);
36 EXPORT_SYMBOL(dm_ratelimit_state);
37 #endif
38 
39 /*
40  * Cookies are numeric values sent with CHANGE and REMOVE
41  * uevents while resuming, removing or renaming the device.
42  */
43 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
44 #define DM_COOKIE_LENGTH 24
45 
46 static const char *_name = DM_NAME;
47 
48 static unsigned int major = 0;
49 static unsigned int _major = 0;
50 
51 static DEFINE_IDR(_minor_idr);
52 
53 static DEFINE_SPINLOCK(_minor_lock);
54 
55 static void do_deferred_remove(struct work_struct *w);
56 
57 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
58 
59 static struct workqueue_struct *deferred_remove_workqueue;
60 
61 /*
62  * For bio-based dm.
63  * One of these is allocated per bio.
64  */
65 struct dm_io {
66 	struct mapped_device *md;
67 	int error;
68 	atomic_t io_count;
69 	struct bio *bio;
70 	unsigned long start_time;
71 	spinlock_t endio_lock;
72 	struct dm_stats_aux stats_aux;
73 };
74 
75 /*
76  * For request-based dm.
77  * One of these is allocated per request.
78  */
79 struct dm_rq_target_io {
80 	struct mapped_device *md;
81 	struct dm_target *ti;
82 	struct request *orig, *clone;
83 	struct kthread_work work;
84 	int error;
85 	union map_info info;
86 };
87 
88 /*
89  * For request-based dm - the bio clones we allocate are embedded in these
90  * structs.
91  *
92  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
93  * the bioset is created - this means the bio has to come at the end of the
94  * struct.
95  */
96 struct dm_rq_clone_bio_info {
97 	struct bio *orig;
98 	struct dm_rq_target_io *tio;
99 	struct bio clone;
100 };
101 
102 union map_info *dm_get_rq_mapinfo(struct request *rq)
103 {
104 	if (rq && rq->end_io_data)
105 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
106 	return NULL;
107 }
108 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
109 
110 #define MINOR_ALLOCED ((void *)-1)
111 
112 /*
113  * Bits for the md->flags field.
114  */
115 #define DMF_BLOCK_IO_FOR_SUSPEND 0
116 #define DMF_SUSPENDED 1
117 #define DMF_FROZEN 2
118 #define DMF_FREEING 3
119 #define DMF_DELETING 4
120 #define DMF_NOFLUSH_SUSPENDING 5
121 #define DMF_MERGE_IS_OPTIONAL 6
122 #define DMF_DEFERRED_REMOVE 7
123 #define DMF_SUSPENDED_INTERNALLY 8
124 
125 /*
126  * A dummy definition to make RCU happy.
127  * struct dm_table should never be dereferenced in this file.
128  */
129 struct dm_table {
130 	int undefined__;
131 };
132 
133 /*
134  * Work processed by per-device workqueue.
135  */
136 struct mapped_device {
137 	struct srcu_struct io_barrier;
138 	struct mutex suspend_lock;
139 	atomic_t holders;
140 	atomic_t open_count;
141 
142 	/*
143 	 * The current mapping.
144 	 * Use dm_get_live_table{_fast} or take suspend_lock for
145 	 * dereference.
146 	 */
147 	struct dm_table __rcu *map;
148 
149 	struct list_head table_devices;
150 	struct mutex table_devices_lock;
151 
152 	unsigned long flags;
153 
154 	struct request_queue *queue;
155 	unsigned type;
156 	/* Protect queue and type against concurrent access. */
157 	struct mutex type_lock;
158 
159 	struct target_type *immutable_target_type;
160 
161 	struct gendisk *disk;
162 	char name[16];
163 
164 	void *interface_ptr;
165 
166 	/*
167 	 * A list of ios that arrived while we were suspended.
168 	 */
169 	atomic_t pending[2];
170 	wait_queue_head_t wait;
171 	struct work_struct work;
172 	struct bio_list deferred;
173 	spinlock_t deferred_lock;
174 
175 	/*
176 	 * Processing queue (flush)
177 	 */
178 	struct workqueue_struct *wq;
179 
180 	/*
181 	 * io objects are allocated from here.
182 	 */
183 	mempool_t *io_pool;
184 	mempool_t *rq_pool;
185 
186 	struct bio_set *bs;
187 
188 	/*
189 	 * Event handling.
190 	 */
191 	atomic_t event_nr;
192 	wait_queue_head_t eventq;
193 	atomic_t uevent_seq;
194 	struct list_head uevent_list;
195 	spinlock_t uevent_lock; /* Protect access to uevent_list */
196 
197 	/*
198 	 * freeze/thaw support require holding onto a super block
199 	 */
200 	struct super_block *frozen_sb;
201 	struct block_device *bdev;
202 
203 	/* forced geometry settings */
204 	struct hd_geometry geometry;
205 
206 	/* kobject and completion */
207 	struct dm_kobject_holder kobj_holder;
208 
209 	/* zero-length flush that will be cloned and submitted to targets */
210 	struct bio flush_bio;
211 
212 	/* the number of internal suspends */
213 	unsigned internal_suspend_count;
214 
215 	struct dm_stats stats;
216 
217 	struct kthread_worker kworker;
218 	struct task_struct *kworker_task;
219 };
220 
221 /*
222  * For mempools pre-allocation at the table loading time.
223  */
224 struct dm_md_mempools {
225 	mempool_t *io_pool;
226 	mempool_t *rq_pool;
227 	struct bio_set *bs;
228 };
229 
230 struct table_device {
231 	struct list_head list;
232 	atomic_t count;
233 	struct dm_dev dm_dev;
234 };
235 
236 #define RESERVED_BIO_BASED_IOS		16
237 #define RESERVED_REQUEST_BASED_IOS	256
238 #define RESERVED_MAX_IOS		1024
239 static struct kmem_cache *_io_cache;
240 static struct kmem_cache *_rq_tio_cache;
241 static struct kmem_cache *_rq_cache;
242 
243 /*
244  * Bio-based DM's mempools' reserved IOs set by the user.
245  */
246 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
247 
248 /*
249  * Request-based DM's mempools' reserved IOs set by the user.
250  */
251 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
252 
253 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
254 				      unsigned def, unsigned max)
255 {
256 	unsigned ios = ACCESS_ONCE(*reserved_ios);
257 	unsigned modified_ios = 0;
258 
259 	if (!ios)
260 		modified_ios = def;
261 	else if (ios > max)
262 		modified_ios = max;
263 
264 	if (modified_ios) {
265 		(void)cmpxchg(reserved_ios, ios, modified_ios);
266 		ios = modified_ios;
267 	}
268 
269 	return ios;
270 }
271 
272 unsigned dm_get_reserved_bio_based_ios(void)
273 {
274 	return __dm_get_reserved_ios(&reserved_bio_based_ios,
275 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
276 }
277 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
278 
279 unsigned dm_get_reserved_rq_based_ios(void)
280 {
281 	return __dm_get_reserved_ios(&reserved_rq_based_ios,
282 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
283 }
284 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
285 
286 static int __init local_init(void)
287 {
288 	int r = -ENOMEM;
289 
290 	/* allocate a slab for the dm_ios */
291 	_io_cache = KMEM_CACHE(dm_io, 0);
292 	if (!_io_cache)
293 		return r;
294 
295 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
296 	if (!_rq_tio_cache)
297 		goto out_free_io_cache;
298 
299 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
300 				      __alignof__(struct request), 0, NULL);
301 	if (!_rq_cache)
302 		goto out_free_rq_tio_cache;
303 
304 	r = dm_uevent_init();
305 	if (r)
306 		goto out_free_rq_cache;
307 
308 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
309 	if (!deferred_remove_workqueue) {
310 		r = -ENOMEM;
311 		goto out_uevent_exit;
312 	}
313 
314 	_major = major;
315 	r = register_blkdev(_major, _name);
316 	if (r < 0)
317 		goto out_free_workqueue;
318 
319 	if (!_major)
320 		_major = r;
321 
322 	return 0;
323 
324 out_free_workqueue:
325 	destroy_workqueue(deferred_remove_workqueue);
326 out_uevent_exit:
327 	dm_uevent_exit();
328 out_free_rq_cache:
329 	kmem_cache_destroy(_rq_cache);
330 out_free_rq_tio_cache:
331 	kmem_cache_destroy(_rq_tio_cache);
332 out_free_io_cache:
333 	kmem_cache_destroy(_io_cache);
334 
335 	return r;
336 }
337 
338 static void local_exit(void)
339 {
340 	flush_scheduled_work();
341 	destroy_workqueue(deferred_remove_workqueue);
342 
343 	kmem_cache_destroy(_rq_cache);
344 	kmem_cache_destroy(_rq_tio_cache);
345 	kmem_cache_destroy(_io_cache);
346 	unregister_blkdev(_major, _name);
347 	dm_uevent_exit();
348 
349 	_major = 0;
350 
351 	DMINFO("cleaned up");
352 }
353 
354 static int (*_inits[])(void) __initdata = {
355 	local_init,
356 	dm_target_init,
357 	dm_linear_init,
358 	dm_stripe_init,
359 	dm_io_init,
360 	dm_kcopyd_init,
361 	dm_interface_init,
362 	dm_statistics_init,
363 };
364 
365 static void (*_exits[])(void) = {
366 	local_exit,
367 	dm_target_exit,
368 	dm_linear_exit,
369 	dm_stripe_exit,
370 	dm_io_exit,
371 	dm_kcopyd_exit,
372 	dm_interface_exit,
373 	dm_statistics_exit,
374 };
375 
376 static int __init dm_init(void)
377 {
378 	const int count = ARRAY_SIZE(_inits);
379 
380 	int r, i;
381 
382 	for (i = 0; i < count; i++) {
383 		r = _inits[i]();
384 		if (r)
385 			goto bad;
386 	}
387 
388 	return 0;
389 
390       bad:
391 	while (i--)
392 		_exits[i]();
393 
394 	return r;
395 }
396 
397 static void __exit dm_exit(void)
398 {
399 	int i = ARRAY_SIZE(_exits);
400 
401 	while (i--)
402 		_exits[i]();
403 
404 	/*
405 	 * Should be empty by this point.
406 	 */
407 	idr_destroy(&_minor_idr);
408 }
409 
410 /*
411  * Block device functions
412  */
413 int dm_deleting_md(struct mapped_device *md)
414 {
415 	return test_bit(DMF_DELETING, &md->flags);
416 }
417 
418 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
419 {
420 	struct mapped_device *md;
421 
422 	spin_lock(&_minor_lock);
423 
424 	md = bdev->bd_disk->private_data;
425 	if (!md)
426 		goto out;
427 
428 	if (test_bit(DMF_FREEING, &md->flags) ||
429 	    dm_deleting_md(md)) {
430 		md = NULL;
431 		goto out;
432 	}
433 
434 	dm_get(md);
435 	atomic_inc(&md->open_count);
436 out:
437 	spin_unlock(&_minor_lock);
438 
439 	return md ? 0 : -ENXIO;
440 }
441 
442 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
443 {
444 	struct mapped_device *md;
445 
446 	spin_lock(&_minor_lock);
447 
448 	md = disk->private_data;
449 	if (WARN_ON(!md))
450 		goto out;
451 
452 	if (atomic_dec_and_test(&md->open_count) &&
453 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
454 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
455 
456 	dm_put(md);
457 out:
458 	spin_unlock(&_minor_lock);
459 }
460 
461 int dm_open_count(struct mapped_device *md)
462 {
463 	return atomic_read(&md->open_count);
464 }
465 
466 /*
467  * Guarantees nothing is using the device before it's deleted.
468  */
469 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
470 {
471 	int r = 0;
472 
473 	spin_lock(&_minor_lock);
474 
475 	if (dm_open_count(md)) {
476 		r = -EBUSY;
477 		if (mark_deferred)
478 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
479 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
480 		r = -EEXIST;
481 	else
482 		set_bit(DMF_DELETING, &md->flags);
483 
484 	spin_unlock(&_minor_lock);
485 
486 	return r;
487 }
488 
489 int dm_cancel_deferred_remove(struct mapped_device *md)
490 {
491 	int r = 0;
492 
493 	spin_lock(&_minor_lock);
494 
495 	if (test_bit(DMF_DELETING, &md->flags))
496 		r = -EBUSY;
497 	else
498 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
499 
500 	spin_unlock(&_minor_lock);
501 
502 	return r;
503 }
504 
505 static void do_deferred_remove(struct work_struct *w)
506 {
507 	dm_deferred_remove();
508 }
509 
510 sector_t dm_get_size(struct mapped_device *md)
511 {
512 	return get_capacity(md->disk);
513 }
514 
515 struct request_queue *dm_get_md_queue(struct mapped_device *md)
516 {
517 	return md->queue;
518 }
519 
520 struct dm_stats *dm_get_stats(struct mapped_device *md)
521 {
522 	return &md->stats;
523 }
524 
525 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
526 {
527 	struct mapped_device *md = bdev->bd_disk->private_data;
528 
529 	return dm_get_geometry(md, geo);
530 }
531 
532 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
533 			unsigned int cmd, unsigned long arg)
534 {
535 	struct mapped_device *md = bdev->bd_disk->private_data;
536 	int srcu_idx;
537 	struct dm_table *map;
538 	struct dm_target *tgt;
539 	int r = -ENOTTY;
540 
541 retry:
542 	map = dm_get_live_table(md, &srcu_idx);
543 
544 	if (!map || !dm_table_get_size(map))
545 		goto out;
546 
547 	/* We only support devices that have a single target */
548 	if (dm_table_get_num_targets(map) != 1)
549 		goto out;
550 
551 	tgt = dm_table_get_target(map, 0);
552 	if (!tgt->type->ioctl)
553 		goto out;
554 
555 	if (dm_suspended_md(md)) {
556 		r = -EAGAIN;
557 		goto out;
558 	}
559 
560 	r = tgt->type->ioctl(tgt, cmd, arg);
561 
562 out:
563 	dm_put_live_table(md, srcu_idx);
564 
565 	if (r == -ENOTCONN) {
566 		msleep(10);
567 		goto retry;
568 	}
569 
570 	return r;
571 }
572 
573 static struct dm_io *alloc_io(struct mapped_device *md)
574 {
575 	return mempool_alloc(md->io_pool, GFP_NOIO);
576 }
577 
578 static void free_io(struct mapped_device *md, struct dm_io *io)
579 {
580 	mempool_free(io, md->io_pool);
581 }
582 
583 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
584 {
585 	bio_put(&tio->clone);
586 }
587 
588 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
589 					    gfp_t gfp_mask)
590 {
591 	return mempool_alloc(md->io_pool, gfp_mask);
592 }
593 
594 static void free_rq_tio(struct dm_rq_target_io *tio)
595 {
596 	mempool_free(tio, tio->md->io_pool);
597 }
598 
599 static struct request *alloc_clone_request(struct mapped_device *md,
600 					   gfp_t gfp_mask)
601 {
602 	return mempool_alloc(md->rq_pool, gfp_mask);
603 }
604 
605 static void free_clone_request(struct mapped_device *md, struct request *rq)
606 {
607 	mempool_free(rq, md->rq_pool);
608 }
609 
610 static int md_in_flight(struct mapped_device *md)
611 {
612 	return atomic_read(&md->pending[READ]) +
613 	       atomic_read(&md->pending[WRITE]);
614 }
615 
616 static void start_io_acct(struct dm_io *io)
617 {
618 	struct mapped_device *md = io->md;
619 	struct bio *bio = io->bio;
620 	int cpu;
621 	int rw = bio_data_dir(bio);
622 
623 	io->start_time = jiffies;
624 
625 	cpu = part_stat_lock();
626 	part_round_stats(cpu, &dm_disk(md)->part0);
627 	part_stat_unlock();
628 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
629 		atomic_inc_return(&md->pending[rw]));
630 
631 	if (unlikely(dm_stats_used(&md->stats)))
632 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
633 				    bio_sectors(bio), false, 0, &io->stats_aux);
634 }
635 
636 static void end_io_acct(struct dm_io *io)
637 {
638 	struct mapped_device *md = io->md;
639 	struct bio *bio = io->bio;
640 	unsigned long duration = jiffies - io->start_time;
641 	int pending;
642 	int rw = bio_data_dir(bio);
643 
644 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
645 
646 	if (unlikely(dm_stats_used(&md->stats)))
647 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
648 				    bio_sectors(bio), true, duration, &io->stats_aux);
649 
650 	/*
651 	 * After this is decremented the bio must not be touched if it is
652 	 * a flush.
653 	 */
654 	pending = atomic_dec_return(&md->pending[rw]);
655 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
656 	pending += atomic_read(&md->pending[rw^0x1]);
657 
658 	/* nudge anyone waiting on suspend queue */
659 	if (!pending)
660 		wake_up(&md->wait);
661 }
662 
663 /*
664  * Add the bio to the list of deferred io.
665  */
666 static void queue_io(struct mapped_device *md, struct bio *bio)
667 {
668 	unsigned long flags;
669 
670 	spin_lock_irqsave(&md->deferred_lock, flags);
671 	bio_list_add(&md->deferred, bio);
672 	spin_unlock_irqrestore(&md->deferred_lock, flags);
673 	queue_work(md->wq, &md->work);
674 }
675 
676 /*
677  * Everyone (including functions in this file), should use this
678  * function to access the md->map field, and make sure they call
679  * dm_put_live_table() when finished.
680  */
681 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
682 {
683 	*srcu_idx = srcu_read_lock(&md->io_barrier);
684 
685 	return srcu_dereference(md->map, &md->io_barrier);
686 }
687 
688 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
689 {
690 	srcu_read_unlock(&md->io_barrier, srcu_idx);
691 }
692 
693 void dm_sync_table(struct mapped_device *md)
694 {
695 	synchronize_srcu(&md->io_barrier);
696 	synchronize_rcu_expedited();
697 }
698 
699 /*
700  * A fast alternative to dm_get_live_table/dm_put_live_table.
701  * The caller must not block between these two functions.
702  */
703 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
704 {
705 	rcu_read_lock();
706 	return rcu_dereference(md->map);
707 }
708 
709 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
710 {
711 	rcu_read_unlock();
712 }
713 
714 /*
715  * Open a table device so we can use it as a map destination.
716  */
717 static int open_table_device(struct table_device *td, dev_t dev,
718 			     struct mapped_device *md)
719 {
720 	static char *_claim_ptr = "I belong to device-mapper";
721 	struct block_device *bdev;
722 
723 	int r;
724 
725 	BUG_ON(td->dm_dev.bdev);
726 
727 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
728 	if (IS_ERR(bdev))
729 		return PTR_ERR(bdev);
730 
731 	r = bd_link_disk_holder(bdev, dm_disk(md));
732 	if (r) {
733 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
734 		return r;
735 	}
736 
737 	td->dm_dev.bdev = bdev;
738 	return 0;
739 }
740 
741 /*
742  * Close a table device that we've been using.
743  */
744 static void close_table_device(struct table_device *td, struct mapped_device *md)
745 {
746 	if (!td->dm_dev.bdev)
747 		return;
748 
749 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
750 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
751 	td->dm_dev.bdev = NULL;
752 }
753 
754 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
755 					      fmode_t mode) {
756 	struct table_device *td;
757 
758 	list_for_each_entry(td, l, list)
759 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
760 			return td;
761 
762 	return NULL;
763 }
764 
765 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
766 			struct dm_dev **result) {
767 	int r;
768 	struct table_device *td;
769 
770 	mutex_lock(&md->table_devices_lock);
771 	td = find_table_device(&md->table_devices, dev, mode);
772 	if (!td) {
773 		td = kmalloc(sizeof(*td), GFP_KERNEL);
774 		if (!td) {
775 			mutex_unlock(&md->table_devices_lock);
776 			return -ENOMEM;
777 		}
778 
779 		td->dm_dev.mode = mode;
780 		td->dm_dev.bdev = NULL;
781 
782 		if ((r = open_table_device(td, dev, md))) {
783 			mutex_unlock(&md->table_devices_lock);
784 			kfree(td);
785 			return r;
786 		}
787 
788 		format_dev_t(td->dm_dev.name, dev);
789 
790 		atomic_set(&td->count, 0);
791 		list_add(&td->list, &md->table_devices);
792 	}
793 	atomic_inc(&td->count);
794 	mutex_unlock(&md->table_devices_lock);
795 
796 	*result = &td->dm_dev;
797 	return 0;
798 }
799 EXPORT_SYMBOL_GPL(dm_get_table_device);
800 
801 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
802 {
803 	struct table_device *td = container_of(d, struct table_device, dm_dev);
804 
805 	mutex_lock(&md->table_devices_lock);
806 	if (atomic_dec_and_test(&td->count)) {
807 		close_table_device(td, md);
808 		list_del(&td->list);
809 		kfree(td);
810 	}
811 	mutex_unlock(&md->table_devices_lock);
812 }
813 EXPORT_SYMBOL(dm_put_table_device);
814 
815 static void free_table_devices(struct list_head *devices)
816 {
817 	struct list_head *tmp, *next;
818 
819 	list_for_each_safe(tmp, next, devices) {
820 		struct table_device *td = list_entry(tmp, struct table_device, list);
821 
822 		DMWARN("dm_destroy: %s still exists with %d references",
823 		       td->dm_dev.name, atomic_read(&td->count));
824 		kfree(td);
825 	}
826 }
827 
828 /*
829  * Get the geometry associated with a dm device
830  */
831 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
832 {
833 	*geo = md->geometry;
834 
835 	return 0;
836 }
837 
838 /*
839  * Set the geometry of a device.
840  */
841 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
842 {
843 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
844 
845 	if (geo->start > sz) {
846 		DMWARN("Start sector is beyond the geometry limits.");
847 		return -EINVAL;
848 	}
849 
850 	md->geometry = *geo;
851 
852 	return 0;
853 }
854 
855 /*-----------------------------------------------------------------
856  * CRUD START:
857  *   A more elegant soln is in the works that uses the queue
858  *   merge fn, unfortunately there are a couple of changes to
859  *   the block layer that I want to make for this.  So in the
860  *   interests of getting something for people to use I give
861  *   you this clearly demarcated crap.
862  *---------------------------------------------------------------*/
863 
864 static int __noflush_suspending(struct mapped_device *md)
865 {
866 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867 }
868 
869 /*
870  * Decrements the number of outstanding ios that a bio has been
871  * cloned into, completing the original io if necc.
872  */
873 static void dec_pending(struct dm_io *io, int error)
874 {
875 	unsigned long flags;
876 	int io_error;
877 	struct bio *bio;
878 	struct mapped_device *md = io->md;
879 
880 	/* Push-back supersedes any I/O errors */
881 	if (unlikely(error)) {
882 		spin_lock_irqsave(&io->endio_lock, flags);
883 		if (!(io->error > 0 && __noflush_suspending(md)))
884 			io->error = error;
885 		spin_unlock_irqrestore(&io->endio_lock, flags);
886 	}
887 
888 	if (atomic_dec_and_test(&io->io_count)) {
889 		if (io->error == DM_ENDIO_REQUEUE) {
890 			/*
891 			 * Target requested pushing back the I/O.
892 			 */
893 			spin_lock_irqsave(&md->deferred_lock, flags);
894 			if (__noflush_suspending(md))
895 				bio_list_add_head(&md->deferred, io->bio);
896 			else
897 				/* noflush suspend was interrupted. */
898 				io->error = -EIO;
899 			spin_unlock_irqrestore(&md->deferred_lock, flags);
900 		}
901 
902 		io_error = io->error;
903 		bio = io->bio;
904 		end_io_acct(io);
905 		free_io(md, io);
906 
907 		if (io_error == DM_ENDIO_REQUEUE)
908 			return;
909 
910 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
911 			/*
912 			 * Preflush done for flush with data, reissue
913 			 * without REQ_FLUSH.
914 			 */
915 			bio->bi_rw &= ~REQ_FLUSH;
916 			queue_io(md, bio);
917 		} else {
918 			/* done with normal IO or empty flush */
919 			trace_block_bio_complete(md->queue, bio, io_error);
920 			bio_endio(bio, io_error);
921 		}
922 	}
923 }
924 
925 static void disable_write_same(struct mapped_device *md)
926 {
927 	struct queue_limits *limits = dm_get_queue_limits(md);
928 
929 	/* device doesn't really support WRITE SAME, disable it */
930 	limits->max_write_same_sectors = 0;
931 }
932 
933 static void clone_endio(struct bio *bio, int error)
934 {
935 	int r = error;
936 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
937 	struct dm_io *io = tio->io;
938 	struct mapped_device *md = tio->io->md;
939 	dm_endio_fn endio = tio->ti->type->end_io;
940 
941 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
942 		error = -EIO;
943 
944 	if (endio) {
945 		r = endio(tio->ti, bio, error);
946 		if (r < 0 || r == DM_ENDIO_REQUEUE)
947 			/*
948 			 * error and requeue request are handled
949 			 * in dec_pending().
950 			 */
951 			error = r;
952 		else if (r == DM_ENDIO_INCOMPLETE)
953 			/* The target will handle the io */
954 			return;
955 		else if (r) {
956 			DMWARN("unimplemented target endio return value: %d", r);
957 			BUG();
958 		}
959 	}
960 
961 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
962 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
963 		disable_write_same(md);
964 
965 	free_tio(md, tio);
966 	dec_pending(io, error);
967 }
968 
969 /*
970  * Partial completion handling for request-based dm
971  */
972 static void end_clone_bio(struct bio *clone, int error)
973 {
974 	struct dm_rq_clone_bio_info *info =
975 		container_of(clone, struct dm_rq_clone_bio_info, clone);
976 	struct dm_rq_target_io *tio = info->tio;
977 	struct bio *bio = info->orig;
978 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
979 
980 	bio_put(clone);
981 
982 	if (tio->error)
983 		/*
984 		 * An error has already been detected on the request.
985 		 * Once error occurred, just let clone->end_io() handle
986 		 * the remainder.
987 		 */
988 		return;
989 	else if (error) {
990 		/*
991 		 * Don't notice the error to the upper layer yet.
992 		 * The error handling decision is made by the target driver,
993 		 * when the request is completed.
994 		 */
995 		tio->error = error;
996 		return;
997 	}
998 
999 	/*
1000 	 * I/O for the bio successfully completed.
1001 	 * Notice the data completion to the upper layer.
1002 	 */
1003 
1004 	/*
1005 	 * bios are processed from the head of the list.
1006 	 * So the completing bio should always be rq->bio.
1007 	 * If it's not, something wrong is happening.
1008 	 */
1009 	if (tio->orig->bio != bio)
1010 		DMERR("bio completion is going in the middle of the request");
1011 
1012 	/*
1013 	 * Update the original request.
1014 	 * Do not use blk_end_request() here, because it may complete
1015 	 * the original request before the clone, and break the ordering.
1016 	 */
1017 	blk_update_request(tio->orig, 0, nr_bytes);
1018 }
1019 
1020 /*
1021  * Don't touch any member of the md after calling this function because
1022  * the md may be freed in dm_put() at the end of this function.
1023  * Or do dm_get() before calling this function and dm_put() later.
1024  */
1025 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1026 {
1027 	atomic_dec(&md->pending[rw]);
1028 
1029 	/* nudge anyone waiting on suspend queue */
1030 	if (!md_in_flight(md))
1031 		wake_up(&md->wait);
1032 
1033 	/*
1034 	 * Run this off this callpath, as drivers could invoke end_io while
1035 	 * inside their request_fn (and holding the queue lock). Calling
1036 	 * back into ->request_fn() could deadlock attempting to grab the
1037 	 * queue lock again.
1038 	 */
1039 	if (run_queue)
1040 		blk_run_queue_async(md->queue);
1041 
1042 	/*
1043 	 * dm_put() must be at the end of this function. See the comment above
1044 	 */
1045 	dm_put(md);
1046 }
1047 
1048 static void free_rq_clone(struct request *clone)
1049 {
1050 	struct dm_rq_target_io *tio = clone->end_io_data;
1051 
1052 	blk_rq_unprep_clone(clone);
1053 	if (clone->q && clone->q->mq_ops)
1054 		tio->ti->type->release_clone_rq(clone);
1055 	else
1056 		free_clone_request(tio->md, clone);
1057 	free_rq_tio(tio);
1058 }
1059 
1060 /*
1061  * Complete the clone and the original request.
1062  * Must be called without clone's queue lock held,
1063  * see end_clone_request() for more details.
1064  */
1065 static void dm_end_request(struct request *clone, int error)
1066 {
1067 	int rw = rq_data_dir(clone);
1068 	struct dm_rq_target_io *tio = clone->end_io_data;
1069 	struct mapped_device *md = tio->md;
1070 	struct request *rq = tio->orig;
1071 
1072 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1073 		rq->errors = clone->errors;
1074 		rq->resid_len = clone->resid_len;
1075 
1076 		if (rq->sense)
1077 			/*
1078 			 * We are using the sense buffer of the original
1079 			 * request.
1080 			 * So setting the length of the sense data is enough.
1081 			 */
1082 			rq->sense_len = clone->sense_len;
1083 	}
1084 
1085 	free_rq_clone(clone);
1086 	blk_end_request_all(rq, error);
1087 	rq_completed(md, rw, true);
1088 }
1089 
1090 static void dm_unprep_request(struct request *rq)
1091 {
1092 	struct dm_rq_target_io *tio = rq->special;
1093 	struct request *clone = tio->clone;
1094 
1095 	rq->special = NULL;
1096 	rq->cmd_flags &= ~REQ_DONTPREP;
1097 
1098 	if (clone)
1099 		free_rq_clone(clone);
1100 }
1101 
1102 /*
1103  * Requeue the original request of a clone.
1104  */
1105 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1106 						 struct request *rq)
1107 {
1108 	int rw = rq_data_dir(rq);
1109 	struct request_queue *q = rq->q;
1110 	unsigned long flags;
1111 
1112 	dm_unprep_request(rq);
1113 
1114 	spin_lock_irqsave(q->queue_lock, flags);
1115 	blk_requeue_request(q, rq);
1116 	spin_unlock_irqrestore(q->queue_lock, flags);
1117 
1118 	rq_completed(md, rw, false);
1119 }
1120 
1121 static void dm_requeue_unmapped_request(struct request *clone)
1122 {
1123 	struct dm_rq_target_io *tio = clone->end_io_data;
1124 
1125 	dm_requeue_unmapped_original_request(tio->md, tio->orig);
1126 }
1127 
1128 static void __stop_queue(struct request_queue *q)
1129 {
1130 	blk_stop_queue(q);
1131 }
1132 
1133 static void stop_queue(struct request_queue *q)
1134 {
1135 	unsigned long flags;
1136 
1137 	spin_lock_irqsave(q->queue_lock, flags);
1138 	__stop_queue(q);
1139 	spin_unlock_irqrestore(q->queue_lock, flags);
1140 }
1141 
1142 static void __start_queue(struct request_queue *q)
1143 {
1144 	if (blk_queue_stopped(q))
1145 		blk_start_queue(q);
1146 }
1147 
1148 static void start_queue(struct request_queue *q)
1149 {
1150 	unsigned long flags;
1151 
1152 	spin_lock_irqsave(q->queue_lock, flags);
1153 	__start_queue(q);
1154 	spin_unlock_irqrestore(q->queue_lock, flags);
1155 }
1156 
1157 static void dm_done(struct request *clone, int error, bool mapped)
1158 {
1159 	int r = error;
1160 	struct dm_rq_target_io *tio = clone->end_io_data;
1161 	dm_request_endio_fn rq_end_io = NULL;
1162 
1163 	if (tio->ti) {
1164 		rq_end_io = tio->ti->type->rq_end_io;
1165 
1166 		if (mapped && rq_end_io)
1167 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1168 	}
1169 
1170 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1171 		     !clone->q->limits.max_write_same_sectors))
1172 		disable_write_same(tio->md);
1173 
1174 	if (r <= 0)
1175 		/* The target wants to complete the I/O */
1176 		dm_end_request(clone, r);
1177 	else if (r == DM_ENDIO_INCOMPLETE)
1178 		/* The target will handle the I/O */
1179 		return;
1180 	else if (r == DM_ENDIO_REQUEUE)
1181 		/* The target wants to requeue the I/O */
1182 		dm_requeue_unmapped_request(clone);
1183 	else {
1184 		DMWARN("unimplemented target endio return value: %d", r);
1185 		BUG();
1186 	}
1187 }
1188 
1189 /*
1190  * Request completion handler for request-based dm
1191  */
1192 static void dm_softirq_done(struct request *rq)
1193 {
1194 	bool mapped = true;
1195 	struct dm_rq_target_io *tio = rq->special;
1196 	struct request *clone = tio->clone;
1197 
1198 	if (!clone) {
1199 		blk_end_request_all(rq, tio->error);
1200 		rq_completed(tio->md, rq_data_dir(rq), false);
1201 		free_rq_tio(tio);
1202 		return;
1203 	}
1204 
1205 	if (rq->cmd_flags & REQ_FAILED)
1206 		mapped = false;
1207 
1208 	dm_done(clone, tio->error, mapped);
1209 }
1210 
1211 /*
1212  * Complete the clone and the original request with the error status
1213  * through softirq context.
1214  */
1215 static void dm_complete_request(struct request *rq, int error)
1216 {
1217 	struct dm_rq_target_io *tio = rq->special;
1218 
1219 	tio->error = error;
1220 	blk_complete_request(rq);
1221 }
1222 
1223 /*
1224  * Complete the not-mapped clone and the original request with the error status
1225  * through softirq context.
1226  * Target's rq_end_io() function isn't called.
1227  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1228  */
1229 static void dm_kill_unmapped_request(struct request *rq, int error)
1230 {
1231 	rq->cmd_flags |= REQ_FAILED;
1232 	dm_complete_request(rq, error);
1233 }
1234 
1235 /*
1236  * Called with the clone's queue lock held
1237  */
1238 static void end_clone_request(struct request *clone, int error)
1239 {
1240 	struct dm_rq_target_io *tio = clone->end_io_data;
1241 
1242 	if (!clone->q->mq_ops) {
1243 		/*
1244 		 * For just cleaning up the information of the queue in which
1245 		 * the clone was dispatched.
1246 		 * The clone is *NOT* freed actually here because it is alloced
1247 		 * from dm own mempool (REQ_ALLOCED isn't set).
1248 		 */
1249 		__blk_put_request(clone->q, clone);
1250 	}
1251 
1252 	/*
1253 	 * Actual request completion is done in a softirq context which doesn't
1254 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1255 	 *     - another request may be submitted by the upper level driver
1256 	 *       of the stacking during the completion
1257 	 *     - the submission which requires queue lock may be done
1258 	 *       against this clone's queue
1259 	 */
1260 	dm_complete_request(tio->orig, error);
1261 }
1262 
1263 /*
1264  * Return maximum size of I/O possible at the supplied sector up to the current
1265  * target boundary.
1266  */
1267 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1268 {
1269 	sector_t target_offset = dm_target_offset(ti, sector);
1270 
1271 	return ti->len - target_offset;
1272 }
1273 
1274 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1275 {
1276 	sector_t len = max_io_len_target_boundary(sector, ti);
1277 	sector_t offset, max_len;
1278 
1279 	/*
1280 	 * Does the target need to split even further?
1281 	 */
1282 	if (ti->max_io_len) {
1283 		offset = dm_target_offset(ti, sector);
1284 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1285 			max_len = sector_div(offset, ti->max_io_len);
1286 		else
1287 			max_len = offset & (ti->max_io_len - 1);
1288 		max_len = ti->max_io_len - max_len;
1289 
1290 		if (len > max_len)
1291 			len = max_len;
1292 	}
1293 
1294 	return len;
1295 }
1296 
1297 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1298 {
1299 	if (len > UINT_MAX) {
1300 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1301 		      (unsigned long long)len, UINT_MAX);
1302 		ti->error = "Maximum size of target IO is too large";
1303 		return -EINVAL;
1304 	}
1305 
1306 	ti->max_io_len = (uint32_t) len;
1307 
1308 	return 0;
1309 }
1310 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1311 
1312 /*
1313  * A target may call dm_accept_partial_bio only from the map routine.  It is
1314  * allowed for all bio types except REQ_FLUSH.
1315  *
1316  * dm_accept_partial_bio informs the dm that the target only wants to process
1317  * additional n_sectors sectors of the bio and the rest of the data should be
1318  * sent in a next bio.
1319  *
1320  * A diagram that explains the arithmetics:
1321  * +--------------------+---------------+-------+
1322  * |         1          |       2       |   3   |
1323  * +--------------------+---------------+-------+
1324  *
1325  * <-------------- *tio->len_ptr --------------->
1326  *                      <------- bi_size ------->
1327  *                      <-- n_sectors -->
1328  *
1329  * Region 1 was already iterated over with bio_advance or similar function.
1330  *	(it may be empty if the target doesn't use bio_advance)
1331  * Region 2 is the remaining bio size that the target wants to process.
1332  *	(it may be empty if region 1 is non-empty, although there is no reason
1333  *	 to make it empty)
1334  * The target requires that region 3 is to be sent in the next bio.
1335  *
1336  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1337  * the partially processed part (the sum of regions 1+2) must be the same for all
1338  * copies of the bio.
1339  */
1340 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1341 {
1342 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1343 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1344 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1345 	BUG_ON(bi_size > *tio->len_ptr);
1346 	BUG_ON(n_sectors > bi_size);
1347 	*tio->len_ptr -= bi_size - n_sectors;
1348 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1349 }
1350 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1351 
1352 static void __map_bio(struct dm_target_io *tio)
1353 {
1354 	int r;
1355 	sector_t sector;
1356 	struct mapped_device *md;
1357 	struct bio *clone = &tio->clone;
1358 	struct dm_target *ti = tio->ti;
1359 
1360 	clone->bi_end_io = clone_endio;
1361 
1362 	/*
1363 	 * Map the clone.  If r == 0 we don't need to do
1364 	 * anything, the target has assumed ownership of
1365 	 * this io.
1366 	 */
1367 	atomic_inc(&tio->io->io_count);
1368 	sector = clone->bi_iter.bi_sector;
1369 	r = ti->type->map(ti, clone);
1370 	if (r == DM_MAPIO_REMAPPED) {
1371 		/* the bio has been remapped so dispatch it */
1372 
1373 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1374 				      tio->io->bio->bi_bdev->bd_dev, sector);
1375 
1376 		generic_make_request(clone);
1377 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1378 		/* error the io and bail out, or requeue it if needed */
1379 		md = tio->io->md;
1380 		dec_pending(tio->io, r);
1381 		free_tio(md, tio);
1382 	} else if (r) {
1383 		DMWARN("unimplemented target map return value: %d", r);
1384 		BUG();
1385 	}
1386 }
1387 
1388 struct clone_info {
1389 	struct mapped_device *md;
1390 	struct dm_table *map;
1391 	struct bio *bio;
1392 	struct dm_io *io;
1393 	sector_t sector;
1394 	unsigned sector_count;
1395 };
1396 
1397 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1398 {
1399 	bio->bi_iter.bi_sector = sector;
1400 	bio->bi_iter.bi_size = to_bytes(len);
1401 }
1402 
1403 /*
1404  * Creates a bio that consists of range of complete bvecs.
1405  */
1406 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1407 		      sector_t sector, unsigned len)
1408 {
1409 	struct bio *clone = &tio->clone;
1410 
1411 	__bio_clone_fast(clone, bio);
1412 
1413 	if (bio_integrity(bio))
1414 		bio_integrity_clone(clone, bio, GFP_NOIO);
1415 
1416 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1417 	clone->bi_iter.bi_size = to_bytes(len);
1418 
1419 	if (bio_integrity(bio))
1420 		bio_integrity_trim(clone, 0, len);
1421 }
1422 
1423 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1424 				      struct dm_target *ti,
1425 				      unsigned target_bio_nr)
1426 {
1427 	struct dm_target_io *tio;
1428 	struct bio *clone;
1429 
1430 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1431 	tio = container_of(clone, struct dm_target_io, clone);
1432 
1433 	tio->io = ci->io;
1434 	tio->ti = ti;
1435 	tio->target_bio_nr = target_bio_nr;
1436 
1437 	return tio;
1438 }
1439 
1440 static void __clone_and_map_simple_bio(struct clone_info *ci,
1441 				       struct dm_target *ti,
1442 				       unsigned target_bio_nr, unsigned *len)
1443 {
1444 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1445 	struct bio *clone = &tio->clone;
1446 
1447 	tio->len_ptr = len;
1448 
1449 	__bio_clone_fast(clone, ci->bio);
1450 	if (len)
1451 		bio_setup_sector(clone, ci->sector, *len);
1452 
1453 	__map_bio(tio);
1454 }
1455 
1456 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1457 				  unsigned num_bios, unsigned *len)
1458 {
1459 	unsigned target_bio_nr;
1460 
1461 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1462 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1463 }
1464 
1465 static int __send_empty_flush(struct clone_info *ci)
1466 {
1467 	unsigned target_nr = 0;
1468 	struct dm_target *ti;
1469 
1470 	BUG_ON(bio_has_data(ci->bio));
1471 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1472 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1473 
1474 	return 0;
1475 }
1476 
1477 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1478 				     sector_t sector, unsigned *len)
1479 {
1480 	struct bio *bio = ci->bio;
1481 	struct dm_target_io *tio;
1482 	unsigned target_bio_nr;
1483 	unsigned num_target_bios = 1;
1484 
1485 	/*
1486 	 * Does the target want to receive duplicate copies of the bio?
1487 	 */
1488 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1489 		num_target_bios = ti->num_write_bios(ti, bio);
1490 
1491 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1492 		tio = alloc_tio(ci, ti, target_bio_nr);
1493 		tio->len_ptr = len;
1494 		clone_bio(tio, bio, sector, *len);
1495 		__map_bio(tio);
1496 	}
1497 }
1498 
1499 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1500 
1501 static unsigned get_num_discard_bios(struct dm_target *ti)
1502 {
1503 	return ti->num_discard_bios;
1504 }
1505 
1506 static unsigned get_num_write_same_bios(struct dm_target *ti)
1507 {
1508 	return ti->num_write_same_bios;
1509 }
1510 
1511 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1512 
1513 static bool is_split_required_for_discard(struct dm_target *ti)
1514 {
1515 	return ti->split_discard_bios;
1516 }
1517 
1518 static int __send_changing_extent_only(struct clone_info *ci,
1519 				       get_num_bios_fn get_num_bios,
1520 				       is_split_required_fn is_split_required)
1521 {
1522 	struct dm_target *ti;
1523 	unsigned len;
1524 	unsigned num_bios;
1525 
1526 	do {
1527 		ti = dm_table_find_target(ci->map, ci->sector);
1528 		if (!dm_target_is_valid(ti))
1529 			return -EIO;
1530 
1531 		/*
1532 		 * Even though the device advertised support for this type of
1533 		 * request, that does not mean every target supports it, and
1534 		 * reconfiguration might also have changed that since the
1535 		 * check was performed.
1536 		 */
1537 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1538 		if (!num_bios)
1539 			return -EOPNOTSUPP;
1540 
1541 		if (is_split_required && !is_split_required(ti))
1542 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1543 		else
1544 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1545 
1546 		__send_duplicate_bios(ci, ti, num_bios, &len);
1547 
1548 		ci->sector += len;
1549 	} while (ci->sector_count -= len);
1550 
1551 	return 0;
1552 }
1553 
1554 static int __send_discard(struct clone_info *ci)
1555 {
1556 	return __send_changing_extent_only(ci, get_num_discard_bios,
1557 					   is_split_required_for_discard);
1558 }
1559 
1560 static int __send_write_same(struct clone_info *ci)
1561 {
1562 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1563 }
1564 
1565 /*
1566  * Select the correct strategy for processing a non-flush bio.
1567  */
1568 static int __split_and_process_non_flush(struct clone_info *ci)
1569 {
1570 	struct bio *bio = ci->bio;
1571 	struct dm_target *ti;
1572 	unsigned len;
1573 
1574 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1575 		return __send_discard(ci);
1576 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1577 		return __send_write_same(ci);
1578 
1579 	ti = dm_table_find_target(ci->map, ci->sector);
1580 	if (!dm_target_is_valid(ti))
1581 		return -EIO;
1582 
1583 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1584 
1585 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1586 
1587 	ci->sector += len;
1588 	ci->sector_count -= len;
1589 
1590 	return 0;
1591 }
1592 
1593 /*
1594  * Entry point to split a bio into clones and submit them to the targets.
1595  */
1596 static void __split_and_process_bio(struct mapped_device *md,
1597 				    struct dm_table *map, struct bio *bio)
1598 {
1599 	struct clone_info ci;
1600 	int error = 0;
1601 
1602 	if (unlikely(!map)) {
1603 		bio_io_error(bio);
1604 		return;
1605 	}
1606 
1607 	ci.map = map;
1608 	ci.md = md;
1609 	ci.io = alloc_io(md);
1610 	ci.io->error = 0;
1611 	atomic_set(&ci.io->io_count, 1);
1612 	ci.io->bio = bio;
1613 	ci.io->md = md;
1614 	spin_lock_init(&ci.io->endio_lock);
1615 	ci.sector = bio->bi_iter.bi_sector;
1616 
1617 	start_io_acct(ci.io);
1618 
1619 	if (bio->bi_rw & REQ_FLUSH) {
1620 		ci.bio = &ci.md->flush_bio;
1621 		ci.sector_count = 0;
1622 		error = __send_empty_flush(&ci);
1623 		/* dec_pending submits any data associated with flush */
1624 	} else {
1625 		ci.bio = bio;
1626 		ci.sector_count = bio_sectors(bio);
1627 		while (ci.sector_count && !error)
1628 			error = __split_and_process_non_flush(&ci);
1629 	}
1630 
1631 	/* drop the extra reference count */
1632 	dec_pending(ci.io, error);
1633 }
1634 /*-----------------------------------------------------------------
1635  * CRUD END
1636  *---------------------------------------------------------------*/
1637 
1638 static int dm_merge_bvec(struct request_queue *q,
1639 			 struct bvec_merge_data *bvm,
1640 			 struct bio_vec *biovec)
1641 {
1642 	struct mapped_device *md = q->queuedata;
1643 	struct dm_table *map = dm_get_live_table_fast(md);
1644 	struct dm_target *ti;
1645 	sector_t max_sectors;
1646 	int max_size = 0;
1647 
1648 	if (unlikely(!map))
1649 		goto out;
1650 
1651 	ti = dm_table_find_target(map, bvm->bi_sector);
1652 	if (!dm_target_is_valid(ti))
1653 		goto out;
1654 
1655 	/*
1656 	 * Find maximum amount of I/O that won't need splitting
1657 	 */
1658 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1659 			  (sector_t) queue_max_sectors(q));
1660 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1661 	if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1662 		max_size = 0;
1663 
1664 	/*
1665 	 * merge_bvec_fn() returns number of bytes
1666 	 * it can accept at this offset
1667 	 * max is precomputed maximal io size
1668 	 */
1669 	if (max_size && ti->type->merge)
1670 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1671 	/*
1672 	 * If the target doesn't support merge method and some of the devices
1673 	 * provided their merge_bvec method (we know this by looking for the
1674 	 * max_hw_sectors that dm_set_device_limits may set), then we can't
1675 	 * allow bios with multiple vector entries.  So always set max_size
1676 	 * to 0, and the code below allows just one page.
1677 	 */
1678 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1679 		max_size = 0;
1680 
1681 out:
1682 	dm_put_live_table_fast(md);
1683 	/*
1684 	 * Always allow an entire first page
1685 	 */
1686 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1687 		max_size = biovec->bv_len;
1688 
1689 	return max_size;
1690 }
1691 
1692 /*
1693  * The request function that just remaps the bio built up by
1694  * dm_merge_bvec.
1695  */
1696 static void _dm_request(struct request_queue *q, struct bio *bio)
1697 {
1698 	int rw = bio_data_dir(bio);
1699 	struct mapped_device *md = q->queuedata;
1700 	int srcu_idx;
1701 	struct dm_table *map;
1702 
1703 	map = dm_get_live_table(md, &srcu_idx);
1704 
1705 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1706 
1707 	/* if we're suspended, we have to queue this io for later */
1708 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1709 		dm_put_live_table(md, srcu_idx);
1710 
1711 		if (bio_rw(bio) != READA)
1712 			queue_io(md, bio);
1713 		else
1714 			bio_io_error(bio);
1715 		return;
1716 	}
1717 
1718 	__split_and_process_bio(md, map, bio);
1719 	dm_put_live_table(md, srcu_idx);
1720 	return;
1721 }
1722 
1723 int dm_request_based(struct mapped_device *md)
1724 {
1725 	return blk_queue_stackable(md->queue);
1726 }
1727 
1728 static void dm_request(struct request_queue *q, struct bio *bio)
1729 {
1730 	struct mapped_device *md = q->queuedata;
1731 
1732 	if (dm_request_based(md))
1733 		blk_queue_bio(q, bio);
1734 	else
1735 		_dm_request(q, bio);
1736 }
1737 
1738 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1739 {
1740 	int r;
1741 
1742 	if (blk_queue_io_stat(clone->q))
1743 		clone->cmd_flags |= REQ_IO_STAT;
1744 
1745 	clone->start_time = jiffies;
1746 	r = blk_insert_cloned_request(clone->q, clone);
1747 	if (r)
1748 		/* must complete clone in terms of original request */
1749 		dm_complete_request(rq, r);
1750 }
1751 
1752 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1753 				 void *data)
1754 {
1755 	struct dm_rq_target_io *tio = data;
1756 	struct dm_rq_clone_bio_info *info =
1757 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1758 
1759 	info->orig = bio_orig;
1760 	info->tio = tio;
1761 	bio->bi_end_io = end_clone_bio;
1762 
1763 	return 0;
1764 }
1765 
1766 static int setup_clone(struct request *clone, struct request *rq,
1767 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1768 {
1769 	int r;
1770 
1771 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1772 			      dm_rq_bio_constructor, tio);
1773 	if (r)
1774 		return r;
1775 
1776 	clone->cmd = rq->cmd;
1777 	clone->cmd_len = rq->cmd_len;
1778 	clone->sense = rq->sense;
1779 	clone->end_io = end_clone_request;
1780 	clone->end_io_data = tio;
1781 
1782 	tio->clone = clone;
1783 
1784 	return 0;
1785 }
1786 
1787 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1788 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1789 {
1790 	struct request *clone = alloc_clone_request(md, gfp_mask);
1791 
1792 	if (!clone)
1793 		return NULL;
1794 
1795 	blk_rq_init(NULL, clone);
1796 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1797 		/* -ENOMEM */
1798 		free_clone_request(md, clone);
1799 		return NULL;
1800 	}
1801 
1802 	return clone;
1803 }
1804 
1805 static void map_tio_request(struct kthread_work *work);
1806 
1807 static struct dm_rq_target_io *prep_tio(struct request *rq,
1808 					struct mapped_device *md, gfp_t gfp_mask)
1809 {
1810 	struct dm_rq_target_io *tio;
1811 	int srcu_idx;
1812 	struct dm_table *table;
1813 
1814 	tio = alloc_rq_tio(md, gfp_mask);
1815 	if (!tio)
1816 		return NULL;
1817 
1818 	tio->md = md;
1819 	tio->ti = NULL;
1820 	tio->clone = NULL;
1821 	tio->orig = rq;
1822 	tio->error = 0;
1823 	memset(&tio->info, 0, sizeof(tio->info));
1824 	init_kthread_work(&tio->work, map_tio_request);
1825 
1826 	table = dm_get_live_table(md, &srcu_idx);
1827 	if (!dm_table_mq_request_based(table)) {
1828 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1829 			dm_put_live_table(md, srcu_idx);
1830 			free_rq_tio(tio);
1831 			return NULL;
1832 		}
1833 	}
1834 	dm_put_live_table(md, srcu_idx);
1835 
1836 	return tio;
1837 }
1838 
1839 /*
1840  * Called with the queue lock held.
1841  */
1842 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1843 {
1844 	struct mapped_device *md = q->queuedata;
1845 	struct dm_rq_target_io *tio;
1846 
1847 	if (unlikely(rq->special)) {
1848 		DMWARN("Already has something in rq->special.");
1849 		return BLKPREP_KILL;
1850 	}
1851 
1852 	tio = prep_tio(rq, md, GFP_ATOMIC);
1853 	if (!tio)
1854 		return BLKPREP_DEFER;
1855 
1856 	rq->special = tio;
1857 	rq->cmd_flags |= REQ_DONTPREP;
1858 
1859 	return BLKPREP_OK;
1860 }
1861 
1862 /*
1863  * Returns:
1864  * 0                : the request has been processed
1865  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1866  * < 0              : the request was completed due to failure
1867  */
1868 static int map_request(struct dm_target *ti, struct request *rq,
1869 		       struct mapped_device *md)
1870 {
1871 	int r;
1872 	struct dm_rq_target_io *tio = rq->special;
1873 	struct request *clone = NULL;
1874 
1875 	if (tio->clone) {
1876 		clone = tio->clone;
1877 		r = ti->type->map_rq(ti, clone, &tio->info);
1878 	} else {
1879 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1880 		if (r < 0) {
1881 			/* The target wants to complete the I/O */
1882 			dm_kill_unmapped_request(rq, r);
1883 			return r;
1884 		}
1885 		if (IS_ERR(clone))
1886 			return DM_MAPIO_REQUEUE;
1887 		if (setup_clone(clone, rq, tio, GFP_KERNEL)) {
1888 			/* -ENOMEM */
1889 			ti->type->release_clone_rq(clone);
1890 			return DM_MAPIO_REQUEUE;
1891 		}
1892 	}
1893 
1894 	switch (r) {
1895 	case DM_MAPIO_SUBMITTED:
1896 		/* The target has taken the I/O to submit by itself later */
1897 		break;
1898 	case DM_MAPIO_REMAPPED:
1899 		/* The target has remapped the I/O so dispatch it */
1900 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1901 				     blk_rq_pos(rq));
1902 		dm_dispatch_clone_request(clone, rq);
1903 		break;
1904 	case DM_MAPIO_REQUEUE:
1905 		/* The target wants to requeue the I/O */
1906 		dm_requeue_unmapped_request(clone);
1907 		break;
1908 	default:
1909 		if (r > 0) {
1910 			DMWARN("unimplemented target map return value: %d", r);
1911 			BUG();
1912 		}
1913 
1914 		/* The target wants to complete the I/O */
1915 		dm_kill_unmapped_request(rq, r);
1916 		return r;
1917 	}
1918 
1919 	return 0;
1920 }
1921 
1922 static void map_tio_request(struct kthread_work *work)
1923 {
1924 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1925 	struct request *rq = tio->orig;
1926 	struct mapped_device *md = tio->md;
1927 
1928 	if (map_request(tio->ti, rq, md) == DM_MAPIO_REQUEUE)
1929 		dm_requeue_unmapped_original_request(md, rq);
1930 }
1931 
1932 static void dm_start_request(struct mapped_device *md, struct request *orig)
1933 {
1934 	blk_start_request(orig);
1935 	atomic_inc(&md->pending[rq_data_dir(orig)]);
1936 
1937 	/*
1938 	 * Hold the md reference here for the in-flight I/O.
1939 	 * We can't rely on the reference count by device opener,
1940 	 * because the device may be closed during the request completion
1941 	 * when all bios are completed.
1942 	 * See the comment in rq_completed() too.
1943 	 */
1944 	dm_get(md);
1945 }
1946 
1947 /*
1948  * q->request_fn for request-based dm.
1949  * Called with the queue lock held.
1950  */
1951 static void dm_request_fn(struct request_queue *q)
1952 {
1953 	struct mapped_device *md = q->queuedata;
1954 	int srcu_idx;
1955 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1956 	struct dm_target *ti;
1957 	struct request *rq;
1958 	struct dm_rq_target_io *tio;
1959 	sector_t pos;
1960 
1961 	/*
1962 	 * For suspend, check blk_queue_stopped() and increment
1963 	 * ->pending within a single queue_lock not to increment the
1964 	 * number of in-flight I/Os after the queue is stopped in
1965 	 * dm_suspend().
1966 	 */
1967 	while (!blk_queue_stopped(q)) {
1968 		rq = blk_peek_request(q);
1969 		if (!rq)
1970 			goto delay_and_out;
1971 
1972 		/* always use block 0 to find the target for flushes for now */
1973 		pos = 0;
1974 		if (!(rq->cmd_flags & REQ_FLUSH))
1975 			pos = blk_rq_pos(rq);
1976 
1977 		ti = dm_table_find_target(map, pos);
1978 		if (!dm_target_is_valid(ti)) {
1979 			/*
1980 			 * Must perform setup, that rq_completed() requires,
1981 			 * before calling dm_kill_unmapped_request
1982 			 */
1983 			DMERR_LIMIT("request attempted access beyond the end of device");
1984 			dm_start_request(md, rq);
1985 			dm_kill_unmapped_request(rq, -EIO);
1986 			continue;
1987 		}
1988 
1989 		if (ti->type->busy && ti->type->busy(ti))
1990 			goto delay_and_out;
1991 
1992 		dm_start_request(md, rq);
1993 
1994 		tio = rq->special;
1995 		/* Establish tio->ti before queuing work (map_tio_request) */
1996 		tio->ti = ti;
1997 		queue_kthread_work(&md->kworker, &tio->work);
1998 		BUG_ON(!irqs_disabled());
1999 	}
2000 
2001 	goto out;
2002 
2003 delay_and_out:
2004 	blk_delay_queue(q, HZ / 10);
2005 out:
2006 	dm_put_live_table(md, srcu_idx);
2007 }
2008 
2009 int dm_underlying_device_busy(struct request_queue *q)
2010 {
2011 	return blk_lld_busy(q);
2012 }
2013 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
2014 
2015 static int dm_lld_busy(struct request_queue *q)
2016 {
2017 	int r;
2018 	struct mapped_device *md = q->queuedata;
2019 	struct dm_table *map = dm_get_live_table_fast(md);
2020 
2021 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
2022 		r = 1;
2023 	else
2024 		r = dm_table_any_busy_target(map);
2025 
2026 	dm_put_live_table_fast(md);
2027 
2028 	return r;
2029 }
2030 
2031 static int dm_any_congested(void *congested_data, int bdi_bits)
2032 {
2033 	int r = bdi_bits;
2034 	struct mapped_device *md = congested_data;
2035 	struct dm_table *map;
2036 
2037 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2038 		map = dm_get_live_table_fast(md);
2039 		if (map) {
2040 			/*
2041 			 * Request-based dm cares about only own queue for
2042 			 * the query about congestion status of request_queue
2043 			 */
2044 			if (dm_request_based(md))
2045 				r = md->queue->backing_dev_info.state &
2046 				    bdi_bits;
2047 			else
2048 				r = dm_table_any_congested(map, bdi_bits);
2049 		}
2050 		dm_put_live_table_fast(md);
2051 	}
2052 
2053 	return r;
2054 }
2055 
2056 /*-----------------------------------------------------------------
2057  * An IDR is used to keep track of allocated minor numbers.
2058  *---------------------------------------------------------------*/
2059 static void free_minor(int minor)
2060 {
2061 	spin_lock(&_minor_lock);
2062 	idr_remove(&_minor_idr, minor);
2063 	spin_unlock(&_minor_lock);
2064 }
2065 
2066 /*
2067  * See if the device with a specific minor # is free.
2068  */
2069 static int specific_minor(int minor)
2070 {
2071 	int r;
2072 
2073 	if (minor >= (1 << MINORBITS))
2074 		return -EINVAL;
2075 
2076 	idr_preload(GFP_KERNEL);
2077 	spin_lock(&_minor_lock);
2078 
2079 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2080 
2081 	spin_unlock(&_minor_lock);
2082 	idr_preload_end();
2083 	if (r < 0)
2084 		return r == -ENOSPC ? -EBUSY : r;
2085 	return 0;
2086 }
2087 
2088 static int next_free_minor(int *minor)
2089 {
2090 	int r;
2091 
2092 	idr_preload(GFP_KERNEL);
2093 	spin_lock(&_minor_lock);
2094 
2095 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2096 
2097 	spin_unlock(&_minor_lock);
2098 	idr_preload_end();
2099 	if (r < 0)
2100 		return r;
2101 	*minor = r;
2102 	return 0;
2103 }
2104 
2105 static const struct block_device_operations dm_blk_dops;
2106 
2107 static void dm_wq_work(struct work_struct *work);
2108 
2109 static void dm_init_md_queue(struct mapped_device *md)
2110 {
2111 	/*
2112 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2113 	 * devices.  The type of this dm device has not been decided yet.
2114 	 * The type is decided at the first table loading time.
2115 	 * To prevent problematic device stacking, clear the queue flag
2116 	 * for request stacking support until then.
2117 	 *
2118 	 * This queue is new, so no concurrency on the queue_flags.
2119 	 */
2120 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2121 
2122 	md->queue->queuedata = md;
2123 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2124 	md->queue->backing_dev_info.congested_data = md;
2125 	blk_queue_make_request(md->queue, dm_request);
2126 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2127 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2128 }
2129 
2130 /*
2131  * Allocate and initialise a blank device with a given minor.
2132  */
2133 static struct mapped_device *alloc_dev(int minor)
2134 {
2135 	int r;
2136 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2137 	void *old_md;
2138 
2139 	if (!md) {
2140 		DMWARN("unable to allocate device, out of memory.");
2141 		return NULL;
2142 	}
2143 
2144 	if (!try_module_get(THIS_MODULE))
2145 		goto bad_module_get;
2146 
2147 	/* get a minor number for the dev */
2148 	if (minor == DM_ANY_MINOR)
2149 		r = next_free_minor(&minor);
2150 	else
2151 		r = specific_minor(minor);
2152 	if (r < 0)
2153 		goto bad_minor;
2154 
2155 	r = init_srcu_struct(&md->io_barrier);
2156 	if (r < 0)
2157 		goto bad_io_barrier;
2158 
2159 	md->type = DM_TYPE_NONE;
2160 	mutex_init(&md->suspend_lock);
2161 	mutex_init(&md->type_lock);
2162 	mutex_init(&md->table_devices_lock);
2163 	spin_lock_init(&md->deferred_lock);
2164 	atomic_set(&md->holders, 1);
2165 	atomic_set(&md->open_count, 0);
2166 	atomic_set(&md->event_nr, 0);
2167 	atomic_set(&md->uevent_seq, 0);
2168 	INIT_LIST_HEAD(&md->uevent_list);
2169 	INIT_LIST_HEAD(&md->table_devices);
2170 	spin_lock_init(&md->uevent_lock);
2171 
2172 	md->queue = blk_alloc_queue(GFP_KERNEL);
2173 	if (!md->queue)
2174 		goto bad_queue;
2175 
2176 	dm_init_md_queue(md);
2177 
2178 	md->disk = alloc_disk(1);
2179 	if (!md->disk)
2180 		goto bad_disk;
2181 
2182 	atomic_set(&md->pending[0], 0);
2183 	atomic_set(&md->pending[1], 0);
2184 	init_waitqueue_head(&md->wait);
2185 	INIT_WORK(&md->work, dm_wq_work);
2186 	init_waitqueue_head(&md->eventq);
2187 	init_completion(&md->kobj_holder.completion);
2188 	md->kworker_task = NULL;
2189 
2190 	md->disk->major = _major;
2191 	md->disk->first_minor = minor;
2192 	md->disk->fops = &dm_blk_dops;
2193 	md->disk->queue = md->queue;
2194 	md->disk->private_data = md;
2195 	sprintf(md->disk->disk_name, "dm-%d", minor);
2196 	add_disk(md->disk);
2197 	format_dev_t(md->name, MKDEV(_major, minor));
2198 
2199 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2200 	if (!md->wq)
2201 		goto bad_thread;
2202 
2203 	md->bdev = bdget_disk(md->disk, 0);
2204 	if (!md->bdev)
2205 		goto bad_bdev;
2206 
2207 	bio_init(&md->flush_bio);
2208 	md->flush_bio.bi_bdev = md->bdev;
2209 	md->flush_bio.bi_rw = WRITE_FLUSH;
2210 
2211 	dm_stats_init(&md->stats);
2212 
2213 	/* Populate the mapping, nobody knows we exist yet */
2214 	spin_lock(&_minor_lock);
2215 	old_md = idr_replace(&_minor_idr, md, minor);
2216 	spin_unlock(&_minor_lock);
2217 
2218 	BUG_ON(old_md != MINOR_ALLOCED);
2219 
2220 	return md;
2221 
2222 bad_bdev:
2223 	destroy_workqueue(md->wq);
2224 bad_thread:
2225 	del_gendisk(md->disk);
2226 	put_disk(md->disk);
2227 bad_disk:
2228 	blk_cleanup_queue(md->queue);
2229 bad_queue:
2230 	cleanup_srcu_struct(&md->io_barrier);
2231 bad_io_barrier:
2232 	free_minor(minor);
2233 bad_minor:
2234 	module_put(THIS_MODULE);
2235 bad_module_get:
2236 	kfree(md);
2237 	return NULL;
2238 }
2239 
2240 static void unlock_fs(struct mapped_device *md);
2241 
2242 static void free_dev(struct mapped_device *md)
2243 {
2244 	int minor = MINOR(disk_devt(md->disk));
2245 
2246 	unlock_fs(md);
2247 	destroy_workqueue(md->wq);
2248 
2249 	if (md->kworker_task)
2250 		kthread_stop(md->kworker_task);
2251 	if (md->io_pool)
2252 		mempool_destroy(md->io_pool);
2253 	if (md->rq_pool)
2254 		mempool_destroy(md->rq_pool);
2255 	if (md->bs)
2256 		bioset_free(md->bs);
2257 
2258 	cleanup_srcu_struct(&md->io_barrier);
2259 	free_table_devices(&md->table_devices);
2260 	dm_stats_cleanup(&md->stats);
2261 
2262 	spin_lock(&_minor_lock);
2263 	md->disk->private_data = NULL;
2264 	spin_unlock(&_minor_lock);
2265 	if (blk_get_integrity(md->disk))
2266 		blk_integrity_unregister(md->disk);
2267 	del_gendisk(md->disk);
2268 	put_disk(md->disk);
2269 	blk_cleanup_queue(md->queue);
2270 	bdput(md->bdev);
2271 	free_minor(minor);
2272 
2273 	module_put(THIS_MODULE);
2274 	kfree(md);
2275 }
2276 
2277 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2278 {
2279 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2280 
2281 	if (md->io_pool && md->bs) {
2282 		/* The md already has necessary mempools. */
2283 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2284 			/*
2285 			 * Reload bioset because front_pad may have changed
2286 			 * because a different table was loaded.
2287 			 */
2288 			bioset_free(md->bs);
2289 			md->bs = p->bs;
2290 			p->bs = NULL;
2291 		}
2292 		/*
2293 		 * There's no need to reload with request-based dm
2294 		 * because the size of front_pad doesn't change.
2295 		 * Note for future: If you are to reload bioset,
2296 		 * prep-ed requests in the queue may refer
2297 		 * to bio from the old bioset, so you must walk
2298 		 * through the queue to unprep.
2299 		 */
2300 		goto out;
2301 	}
2302 
2303 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2304 
2305 	md->io_pool = p->io_pool;
2306 	p->io_pool = NULL;
2307 	md->rq_pool = p->rq_pool;
2308 	p->rq_pool = NULL;
2309 	md->bs = p->bs;
2310 	p->bs = NULL;
2311 
2312 out:
2313 	/* mempool bind completed, now no need any mempools in the table */
2314 	dm_table_free_md_mempools(t);
2315 }
2316 
2317 /*
2318  * Bind a table to the device.
2319  */
2320 static void event_callback(void *context)
2321 {
2322 	unsigned long flags;
2323 	LIST_HEAD(uevents);
2324 	struct mapped_device *md = (struct mapped_device *) context;
2325 
2326 	spin_lock_irqsave(&md->uevent_lock, flags);
2327 	list_splice_init(&md->uevent_list, &uevents);
2328 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2329 
2330 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2331 
2332 	atomic_inc(&md->event_nr);
2333 	wake_up(&md->eventq);
2334 }
2335 
2336 /*
2337  * Protected by md->suspend_lock obtained by dm_swap_table().
2338  */
2339 static void __set_size(struct mapped_device *md, sector_t size)
2340 {
2341 	set_capacity(md->disk, size);
2342 
2343 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2344 }
2345 
2346 /*
2347  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2348  *
2349  * If this function returns 0, then the device is either a non-dm
2350  * device without a merge_bvec_fn, or it is a dm device that is
2351  * able to split any bios it receives that are too big.
2352  */
2353 int dm_queue_merge_is_compulsory(struct request_queue *q)
2354 {
2355 	struct mapped_device *dev_md;
2356 
2357 	if (!q->merge_bvec_fn)
2358 		return 0;
2359 
2360 	if (q->make_request_fn == dm_request) {
2361 		dev_md = q->queuedata;
2362 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2363 			return 0;
2364 	}
2365 
2366 	return 1;
2367 }
2368 
2369 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2370 					 struct dm_dev *dev, sector_t start,
2371 					 sector_t len, void *data)
2372 {
2373 	struct block_device *bdev = dev->bdev;
2374 	struct request_queue *q = bdev_get_queue(bdev);
2375 
2376 	return dm_queue_merge_is_compulsory(q);
2377 }
2378 
2379 /*
2380  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2381  * on the properties of the underlying devices.
2382  */
2383 static int dm_table_merge_is_optional(struct dm_table *table)
2384 {
2385 	unsigned i = 0;
2386 	struct dm_target *ti;
2387 
2388 	while (i < dm_table_get_num_targets(table)) {
2389 		ti = dm_table_get_target(table, i++);
2390 
2391 		if (ti->type->iterate_devices &&
2392 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2393 			return 0;
2394 	}
2395 
2396 	return 1;
2397 }
2398 
2399 /*
2400  * Returns old map, which caller must destroy.
2401  */
2402 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2403 			       struct queue_limits *limits)
2404 {
2405 	struct dm_table *old_map;
2406 	struct request_queue *q = md->queue;
2407 	sector_t size;
2408 	int merge_is_optional;
2409 
2410 	size = dm_table_get_size(t);
2411 
2412 	/*
2413 	 * Wipe any geometry if the size of the table changed.
2414 	 */
2415 	if (size != dm_get_size(md))
2416 		memset(&md->geometry, 0, sizeof(md->geometry));
2417 
2418 	__set_size(md, size);
2419 
2420 	dm_table_event_callback(t, event_callback, md);
2421 
2422 	/*
2423 	 * The queue hasn't been stopped yet, if the old table type wasn't
2424 	 * for request-based during suspension.  So stop it to prevent
2425 	 * I/O mapping before resume.
2426 	 * This must be done before setting the queue restrictions,
2427 	 * because request-based dm may be run just after the setting.
2428 	 */
2429 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2430 		stop_queue(q);
2431 
2432 	__bind_mempools(md, t);
2433 
2434 	merge_is_optional = dm_table_merge_is_optional(t);
2435 
2436 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2437 	rcu_assign_pointer(md->map, t);
2438 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2439 
2440 	dm_table_set_restrictions(t, q, limits);
2441 	if (merge_is_optional)
2442 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2443 	else
2444 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2445 	if (old_map)
2446 		dm_sync_table(md);
2447 
2448 	return old_map;
2449 }
2450 
2451 /*
2452  * Returns unbound table for the caller to free.
2453  */
2454 static struct dm_table *__unbind(struct mapped_device *md)
2455 {
2456 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2457 
2458 	if (!map)
2459 		return NULL;
2460 
2461 	dm_table_event_callback(map, NULL, NULL);
2462 	RCU_INIT_POINTER(md->map, NULL);
2463 	dm_sync_table(md);
2464 
2465 	return map;
2466 }
2467 
2468 /*
2469  * Constructor for a new device.
2470  */
2471 int dm_create(int minor, struct mapped_device **result)
2472 {
2473 	struct mapped_device *md;
2474 
2475 	md = alloc_dev(minor);
2476 	if (!md)
2477 		return -ENXIO;
2478 
2479 	dm_sysfs_init(md);
2480 
2481 	*result = md;
2482 	return 0;
2483 }
2484 
2485 /*
2486  * Functions to manage md->type.
2487  * All are required to hold md->type_lock.
2488  */
2489 void dm_lock_md_type(struct mapped_device *md)
2490 {
2491 	mutex_lock(&md->type_lock);
2492 }
2493 
2494 void dm_unlock_md_type(struct mapped_device *md)
2495 {
2496 	mutex_unlock(&md->type_lock);
2497 }
2498 
2499 void dm_set_md_type(struct mapped_device *md, unsigned type)
2500 {
2501 	BUG_ON(!mutex_is_locked(&md->type_lock));
2502 	md->type = type;
2503 }
2504 
2505 unsigned dm_get_md_type(struct mapped_device *md)
2506 {
2507 	BUG_ON(!mutex_is_locked(&md->type_lock));
2508 	return md->type;
2509 }
2510 
2511 static bool dm_md_type_request_based(struct mapped_device *md)
2512 {
2513 	unsigned table_type = dm_get_md_type(md);
2514 
2515 	return (table_type == DM_TYPE_REQUEST_BASED ||
2516 		table_type == DM_TYPE_MQ_REQUEST_BASED);
2517 }
2518 
2519 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2520 {
2521 	return md->immutable_target_type;
2522 }
2523 
2524 /*
2525  * The queue_limits are only valid as long as you have a reference
2526  * count on 'md'.
2527  */
2528 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2529 {
2530 	BUG_ON(!atomic_read(&md->holders));
2531 	return &md->queue->limits;
2532 }
2533 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2534 
2535 /*
2536  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2537  */
2538 static int dm_init_request_based_queue(struct mapped_device *md)
2539 {
2540 	struct request_queue *q = NULL;
2541 
2542 	if (md->queue->elevator)
2543 		return 1;
2544 
2545 	/* Fully initialize the queue */
2546 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2547 	if (!q)
2548 		return 0;
2549 
2550 	md->queue = q;
2551 	dm_init_md_queue(md);
2552 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2553 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2554 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2555 
2556 	/* Also initialize the request-based DM worker thread */
2557 	init_kthread_worker(&md->kworker);
2558 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2559 				       "kdmwork-%s", dm_device_name(md));
2560 
2561 	elv_register_queue(md->queue);
2562 
2563 	return 1;
2564 }
2565 
2566 /*
2567  * Setup the DM device's queue based on md's type
2568  */
2569 int dm_setup_md_queue(struct mapped_device *md)
2570 {
2571 	if (dm_md_type_request_based(md) && !dm_init_request_based_queue(md)) {
2572 		DMWARN("Cannot initialize queue for request-based mapped device");
2573 		return -EINVAL;
2574 	}
2575 
2576 	return 0;
2577 }
2578 
2579 struct mapped_device *dm_get_md(dev_t dev)
2580 {
2581 	struct mapped_device *md;
2582 	unsigned minor = MINOR(dev);
2583 
2584 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2585 		return NULL;
2586 
2587 	spin_lock(&_minor_lock);
2588 
2589 	md = idr_find(&_minor_idr, minor);
2590 	if (md) {
2591 		if ((md == MINOR_ALLOCED ||
2592 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2593 		     dm_deleting_md(md) ||
2594 		     test_bit(DMF_FREEING, &md->flags))) {
2595 			md = NULL;
2596 			goto out;
2597 		}
2598 		dm_get(md);
2599 	}
2600 
2601 out:
2602 	spin_unlock(&_minor_lock);
2603 
2604 	return md;
2605 }
2606 EXPORT_SYMBOL_GPL(dm_get_md);
2607 
2608 void *dm_get_mdptr(struct mapped_device *md)
2609 {
2610 	return md->interface_ptr;
2611 }
2612 
2613 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2614 {
2615 	md->interface_ptr = ptr;
2616 }
2617 
2618 void dm_get(struct mapped_device *md)
2619 {
2620 	atomic_inc(&md->holders);
2621 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2622 }
2623 
2624 int dm_hold(struct mapped_device *md)
2625 {
2626 	spin_lock(&_minor_lock);
2627 	if (test_bit(DMF_FREEING, &md->flags)) {
2628 		spin_unlock(&_minor_lock);
2629 		return -EBUSY;
2630 	}
2631 	dm_get(md);
2632 	spin_unlock(&_minor_lock);
2633 	return 0;
2634 }
2635 EXPORT_SYMBOL_GPL(dm_hold);
2636 
2637 const char *dm_device_name(struct mapped_device *md)
2638 {
2639 	return md->name;
2640 }
2641 EXPORT_SYMBOL_GPL(dm_device_name);
2642 
2643 static void __dm_destroy(struct mapped_device *md, bool wait)
2644 {
2645 	struct dm_table *map;
2646 	int srcu_idx;
2647 
2648 	might_sleep();
2649 
2650 	map = dm_get_live_table(md, &srcu_idx);
2651 
2652 	spin_lock(&_minor_lock);
2653 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2654 	set_bit(DMF_FREEING, &md->flags);
2655 	spin_unlock(&_minor_lock);
2656 
2657 	if (dm_request_based(md))
2658 		flush_kthread_worker(&md->kworker);
2659 
2660 	/*
2661 	 * Take suspend_lock so that presuspend and postsuspend methods
2662 	 * do not race with internal suspend.
2663 	 */
2664 	mutex_lock(&md->suspend_lock);
2665 	if (!dm_suspended_md(md)) {
2666 		dm_table_presuspend_targets(map);
2667 		dm_table_postsuspend_targets(map);
2668 	}
2669 	mutex_unlock(&md->suspend_lock);
2670 
2671 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2672 	dm_put_live_table(md, srcu_idx);
2673 
2674 	/*
2675 	 * Rare, but there may be I/O requests still going to complete,
2676 	 * for example.  Wait for all references to disappear.
2677 	 * No one should increment the reference count of the mapped_device,
2678 	 * after the mapped_device state becomes DMF_FREEING.
2679 	 */
2680 	if (wait)
2681 		while (atomic_read(&md->holders))
2682 			msleep(1);
2683 	else if (atomic_read(&md->holders))
2684 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2685 		       dm_device_name(md), atomic_read(&md->holders));
2686 
2687 	dm_sysfs_exit(md);
2688 	dm_table_destroy(__unbind(md));
2689 	free_dev(md);
2690 }
2691 
2692 void dm_destroy(struct mapped_device *md)
2693 {
2694 	__dm_destroy(md, true);
2695 }
2696 
2697 void dm_destroy_immediate(struct mapped_device *md)
2698 {
2699 	__dm_destroy(md, false);
2700 }
2701 
2702 void dm_put(struct mapped_device *md)
2703 {
2704 	atomic_dec(&md->holders);
2705 }
2706 EXPORT_SYMBOL_GPL(dm_put);
2707 
2708 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2709 {
2710 	int r = 0;
2711 	DECLARE_WAITQUEUE(wait, current);
2712 
2713 	add_wait_queue(&md->wait, &wait);
2714 
2715 	while (1) {
2716 		set_current_state(interruptible);
2717 
2718 		if (!md_in_flight(md))
2719 			break;
2720 
2721 		if (interruptible == TASK_INTERRUPTIBLE &&
2722 		    signal_pending(current)) {
2723 			r = -EINTR;
2724 			break;
2725 		}
2726 
2727 		io_schedule();
2728 	}
2729 	set_current_state(TASK_RUNNING);
2730 
2731 	remove_wait_queue(&md->wait, &wait);
2732 
2733 	return r;
2734 }
2735 
2736 /*
2737  * Process the deferred bios
2738  */
2739 static void dm_wq_work(struct work_struct *work)
2740 {
2741 	struct mapped_device *md = container_of(work, struct mapped_device,
2742 						work);
2743 	struct bio *c;
2744 	int srcu_idx;
2745 	struct dm_table *map;
2746 
2747 	map = dm_get_live_table(md, &srcu_idx);
2748 
2749 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2750 		spin_lock_irq(&md->deferred_lock);
2751 		c = bio_list_pop(&md->deferred);
2752 		spin_unlock_irq(&md->deferred_lock);
2753 
2754 		if (!c)
2755 			break;
2756 
2757 		if (dm_request_based(md))
2758 			generic_make_request(c);
2759 		else
2760 			__split_and_process_bio(md, map, c);
2761 	}
2762 
2763 	dm_put_live_table(md, srcu_idx);
2764 }
2765 
2766 static void dm_queue_flush(struct mapped_device *md)
2767 {
2768 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2769 	smp_mb__after_atomic();
2770 	queue_work(md->wq, &md->work);
2771 }
2772 
2773 /*
2774  * Swap in a new table, returning the old one for the caller to destroy.
2775  */
2776 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2777 {
2778 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2779 	struct queue_limits limits;
2780 	int r;
2781 
2782 	mutex_lock(&md->suspend_lock);
2783 
2784 	/* device must be suspended */
2785 	if (!dm_suspended_md(md))
2786 		goto out;
2787 
2788 	/*
2789 	 * If the new table has no data devices, retain the existing limits.
2790 	 * This helps multipath with queue_if_no_path if all paths disappear,
2791 	 * then new I/O is queued based on these limits, and then some paths
2792 	 * reappear.
2793 	 */
2794 	if (dm_table_has_no_data_devices(table)) {
2795 		live_map = dm_get_live_table_fast(md);
2796 		if (live_map)
2797 			limits = md->queue->limits;
2798 		dm_put_live_table_fast(md);
2799 	}
2800 
2801 	if (!live_map) {
2802 		r = dm_calculate_queue_limits(table, &limits);
2803 		if (r) {
2804 			map = ERR_PTR(r);
2805 			goto out;
2806 		}
2807 	}
2808 
2809 	map = __bind(md, table, &limits);
2810 
2811 out:
2812 	mutex_unlock(&md->suspend_lock);
2813 	return map;
2814 }
2815 
2816 /*
2817  * Functions to lock and unlock any filesystem running on the
2818  * device.
2819  */
2820 static int lock_fs(struct mapped_device *md)
2821 {
2822 	int r;
2823 
2824 	WARN_ON(md->frozen_sb);
2825 
2826 	md->frozen_sb = freeze_bdev(md->bdev);
2827 	if (IS_ERR(md->frozen_sb)) {
2828 		r = PTR_ERR(md->frozen_sb);
2829 		md->frozen_sb = NULL;
2830 		return r;
2831 	}
2832 
2833 	set_bit(DMF_FROZEN, &md->flags);
2834 
2835 	return 0;
2836 }
2837 
2838 static void unlock_fs(struct mapped_device *md)
2839 {
2840 	if (!test_bit(DMF_FROZEN, &md->flags))
2841 		return;
2842 
2843 	thaw_bdev(md->bdev, md->frozen_sb);
2844 	md->frozen_sb = NULL;
2845 	clear_bit(DMF_FROZEN, &md->flags);
2846 }
2847 
2848 /*
2849  * If __dm_suspend returns 0, the device is completely quiescent
2850  * now. There is no request-processing activity. All new requests
2851  * are being added to md->deferred list.
2852  *
2853  * Caller must hold md->suspend_lock
2854  */
2855 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2856 			unsigned suspend_flags, int interruptible)
2857 {
2858 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2859 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2860 	int r;
2861 
2862 	/*
2863 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2864 	 * This flag is cleared before dm_suspend returns.
2865 	 */
2866 	if (noflush)
2867 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2868 
2869 	/*
2870 	 * This gets reverted if there's an error later and the targets
2871 	 * provide the .presuspend_undo hook.
2872 	 */
2873 	dm_table_presuspend_targets(map);
2874 
2875 	/*
2876 	 * Flush I/O to the device.
2877 	 * Any I/O submitted after lock_fs() may not be flushed.
2878 	 * noflush takes precedence over do_lockfs.
2879 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2880 	 */
2881 	if (!noflush && do_lockfs) {
2882 		r = lock_fs(md);
2883 		if (r) {
2884 			dm_table_presuspend_undo_targets(map);
2885 			return r;
2886 		}
2887 	}
2888 
2889 	/*
2890 	 * Here we must make sure that no processes are submitting requests
2891 	 * to target drivers i.e. no one may be executing
2892 	 * __split_and_process_bio. This is called from dm_request and
2893 	 * dm_wq_work.
2894 	 *
2895 	 * To get all processes out of __split_and_process_bio in dm_request,
2896 	 * we take the write lock. To prevent any process from reentering
2897 	 * __split_and_process_bio from dm_request and quiesce the thread
2898 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2899 	 * flush_workqueue(md->wq).
2900 	 */
2901 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2902 	if (map)
2903 		synchronize_srcu(&md->io_barrier);
2904 
2905 	/*
2906 	 * Stop md->queue before flushing md->wq in case request-based
2907 	 * dm defers requests to md->wq from md->queue.
2908 	 */
2909 	if (dm_request_based(md)) {
2910 		stop_queue(md->queue);
2911 		flush_kthread_worker(&md->kworker);
2912 	}
2913 
2914 	flush_workqueue(md->wq);
2915 
2916 	/*
2917 	 * At this point no more requests are entering target request routines.
2918 	 * We call dm_wait_for_completion to wait for all existing requests
2919 	 * to finish.
2920 	 */
2921 	r = dm_wait_for_completion(md, interruptible);
2922 
2923 	if (noflush)
2924 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2925 	if (map)
2926 		synchronize_srcu(&md->io_barrier);
2927 
2928 	/* were we interrupted ? */
2929 	if (r < 0) {
2930 		dm_queue_flush(md);
2931 
2932 		if (dm_request_based(md))
2933 			start_queue(md->queue);
2934 
2935 		unlock_fs(md);
2936 		dm_table_presuspend_undo_targets(map);
2937 		/* pushback list is already flushed, so skip flush */
2938 	}
2939 
2940 	return r;
2941 }
2942 
2943 /*
2944  * We need to be able to change a mapping table under a mounted
2945  * filesystem.  For example we might want to move some data in
2946  * the background.  Before the table can be swapped with
2947  * dm_bind_table, dm_suspend must be called to flush any in
2948  * flight bios and ensure that any further io gets deferred.
2949  */
2950 /*
2951  * Suspend mechanism in request-based dm.
2952  *
2953  * 1. Flush all I/Os by lock_fs() if needed.
2954  * 2. Stop dispatching any I/O by stopping the request_queue.
2955  * 3. Wait for all in-flight I/Os to be completed or requeued.
2956  *
2957  * To abort suspend, start the request_queue.
2958  */
2959 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2960 {
2961 	struct dm_table *map = NULL;
2962 	int r = 0;
2963 
2964 retry:
2965 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2966 
2967 	if (dm_suspended_md(md)) {
2968 		r = -EINVAL;
2969 		goto out_unlock;
2970 	}
2971 
2972 	if (dm_suspended_internally_md(md)) {
2973 		/* already internally suspended, wait for internal resume */
2974 		mutex_unlock(&md->suspend_lock);
2975 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2976 		if (r)
2977 			return r;
2978 		goto retry;
2979 	}
2980 
2981 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2982 
2983 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
2984 	if (r)
2985 		goto out_unlock;
2986 
2987 	set_bit(DMF_SUSPENDED, &md->flags);
2988 
2989 	dm_table_postsuspend_targets(map);
2990 
2991 out_unlock:
2992 	mutex_unlock(&md->suspend_lock);
2993 	return r;
2994 }
2995 
2996 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2997 {
2998 	if (map) {
2999 		int r = dm_table_resume_targets(map);
3000 		if (r)
3001 			return r;
3002 	}
3003 
3004 	dm_queue_flush(md);
3005 
3006 	/*
3007 	 * Flushing deferred I/Os must be done after targets are resumed
3008 	 * so that mapping of targets can work correctly.
3009 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3010 	 */
3011 	if (dm_request_based(md))
3012 		start_queue(md->queue);
3013 
3014 	unlock_fs(md);
3015 
3016 	return 0;
3017 }
3018 
3019 int dm_resume(struct mapped_device *md)
3020 {
3021 	int r = -EINVAL;
3022 	struct dm_table *map = NULL;
3023 
3024 retry:
3025 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3026 
3027 	if (!dm_suspended_md(md))
3028 		goto out;
3029 
3030 	if (dm_suspended_internally_md(md)) {
3031 		/* already internally suspended, wait for internal resume */
3032 		mutex_unlock(&md->suspend_lock);
3033 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3034 		if (r)
3035 			return r;
3036 		goto retry;
3037 	}
3038 
3039 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3040 	if (!map || !dm_table_get_size(map))
3041 		goto out;
3042 
3043 	r = __dm_resume(md, map);
3044 	if (r)
3045 		goto out;
3046 
3047 	clear_bit(DMF_SUSPENDED, &md->flags);
3048 
3049 	r = 0;
3050 out:
3051 	mutex_unlock(&md->suspend_lock);
3052 
3053 	return r;
3054 }
3055 
3056 /*
3057  * Internal suspend/resume works like userspace-driven suspend. It waits
3058  * until all bios finish and prevents issuing new bios to the target drivers.
3059  * It may be used only from the kernel.
3060  */
3061 
3062 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3063 {
3064 	struct dm_table *map = NULL;
3065 
3066 	if (md->internal_suspend_count++)
3067 		return; /* nested internal suspend */
3068 
3069 	if (dm_suspended_md(md)) {
3070 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3071 		return; /* nest suspend */
3072 	}
3073 
3074 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3075 
3076 	/*
3077 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3078 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3079 	 * would require changing .presuspend to return an error -- avoid this
3080 	 * until there is a need for more elaborate variants of internal suspend.
3081 	 */
3082 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3083 
3084 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3085 
3086 	dm_table_postsuspend_targets(map);
3087 }
3088 
3089 static void __dm_internal_resume(struct mapped_device *md)
3090 {
3091 	BUG_ON(!md->internal_suspend_count);
3092 
3093 	if (--md->internal_suspend_count)
3094 		return; /* resume from nested internal suspend */
3095 
3096 	if (dm_suspended_md(md))
3097 		goto done; /* resume from nested suspend */
3098 
3099 	/*
3100 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3101 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3102 	 */
3103 	(void) __dm_resume(md, NULL);
3104 
3105 done:
3106 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3107 	smp_mb__after_atomic();
3108 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3109 }
3110 
3111 void dm_internal_suspend_noflush(struct mapped_device *md)
3112 {
3113 	mutex_lock(&md->suspend_lock);
3114 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3115 	mutex_unlock(&md->suspend_lock);
3116 }
3117 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3118 
3119 void dm_internal_resume(struct mapped_device *md)
3120 {
3121 	mutex_lock(&md->suspend_lock);
3122 	__dm_internal_resume(md);
3123 	mutex_unlock(&md->suspend_lock);
3124 }
3125 EXPORT_SYMBOL_GPL(dm_internal_resume);
3126 
3127 /*
3128  * Fast variants of internal suspend/resume hold md->suspend_lock,
3129  * which prevents interaction with userspace-driven suspend.
3130  */
3131 
3132 void dm_internal_suspend_fast(struct mapped_device *md)
3133 {
3134 	mutex_lock(&md->suspend_lock);
3135 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3136 		return;
3137 
3138 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3139 	synchronize_srcu(&md->io_barrier);
3140 	flush_workqueue(md->wq);
3141 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3142 }
3143 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3144 
3145 void dm_internal_resume_fast(struct mapped_device *md)
3146 {
3147 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3148 		goto done;
3149 
3150 	dm_queue_flush(md);
3151 
3152 done:
3153 	mutex_unlock(&md->suspend_lock);
3154 }
3155 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3156 
3157 /*-----------------------------------------------------------------
3158  * Event notification.
3159  *---------------------------------------------------------------*/
3160 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3161 		       unsigned cookie)
3162 {
3163 	char udev_cookie[DM_COOKIE_LENGTH];
3164 	char *envp[] = { udev_cookie, NULL };
3165 
3166 	if (!cookie)
3167 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3168 	else {
3169 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3170 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3171 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3172 					  action, envp);
3173 	}
3174 }
3175 
3176 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3177 {
3178 	return atomic_add_return(1, &md->uevent_seq);
3179 }
3180 
3181 uint32_t dm_get_event_nr(struct mapped_device *md)
3182 {
3183 	return atomic_read(&md->event_nr);
3184 }
3185 
3186 int dm_wait_event(struct mapped_device *md, int event_nr)
3187 {
3188 	return wait_event_interruptible(md->eventq,
3189 			(event_nr != atomic_read(&md->event_nr)));
3190 }
3191 
3192 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3193 {
3194 	unsigned long flags;
3195 
3196 	spin_lock_irqsave(&md->uevent_lock, flags);
3197 	list_add(elist, &md->uevent_list);
3198 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3199 }
3200 
3201 /*
3202  * The gendisk is only valid as long as you have a reference
3203  * count on 'md'.
3204  */
3205 struct gendisk *dm_disk(struct mapped_device *md)
3206 {
3207 	return md->disk;
3208 }
3209 
3210 struct kobject *dm_kobject(struct mapped_device *md)
3211 {
3212 	return &md->kobj_holder.kobj;
3213 }
3214 
3215 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3216 {
3217 	struct mapped_device *md;
3218 
3219 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3220 
3221 	if (test_bit(DMF_FREEING, &md->flags) ||
3222 	    dm_deleting_md(md))
3223 		return NULL;
3224 
3225 	dm_get(md);
3226 	return md;
3227 }
3228 
3229 int dm_suspended_md(struct mapped_device *md)
3230 {
3231 	return test_bit(DMF_SUSPENDED, &md->flags);
3232 }
3233 
3234 int dm_suspended_internally_md(struct mapped_device *md)
3235 {
3236 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3237 }
3238 
3239 int dm_test_deferred_remove_flag(struct mapped_device *md)
3240 {
3241 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3242 }
3243 
3244 int dm_suspended(struct dm_target *ti)
3245 {
3246 	return dm_suspended_md(dm_table_get_md(ti->table));
3247 }
3248 EXPORT_SYMBOL_GPL(dm_suspended);
3249 
3250 int dm_noflush_suspending(struct dm_target *ti)
3251 {
3252 	return __noflush_suspending(dm_table_get_md(ti->table));
3253 }
3254 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3255 
3256 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3257 {
3258 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3259 	struct kmem_cache *cachep;
3260 	unsigned int pool_size = 0;
3261 	unsigned int front_pad;
3262 
3263 	if (!pools)
3264 		return NULL;
3265 
3266 	switch (type) {
3267 	case DM_TYPE_BIO_BASED:
3268 		cachep = _io_cache;
3269 		pool_size = dm_get_reserved_bio_based_ios();
3270 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3271 		break;
3272 	case DM_TYPE_REQUEST_BASED:
3273 		pool_size = dm_get_reserved_rq_based_ios();
3274 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3275 		if (!pools->rq_pool)
3276 			goto out;
3277 		/* fall through to setup remaining rq-based pools */
3278 	case DM_TYPE_MQ_REQUEST_BASED:
3279 		cachep = _rq_tio_cache;
3280 		if (!pool_size)
3281 			pool_size = dm_get_reserved_rq_based_ios();
3282 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3283 		/* per_bio_data_size is not used. See __bind_mempools(). */
3284 		WARN_ON(per_bio_data_size != 0);
3285 		break;
3286 	default:
3287 		goto out;
3288 	}
3289 
3290 	pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3291 	if (!pools->io_pool)
3292 		goto out;
3293 
3294 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3295 	if (!pools->bs)
3296 		goto out;
3297 
3298 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3299 		goto out;
3300 
3301 	return pools;
3302 
3303 out:
3304 	dm_free_md_mempools(pools);
3305 
3306 	return NULL;
3307 }
3308 
3309 void dm_free_md_mempools(struct dm_md_mempools *pools)
3310 {
3311 	if (!pools)
3312 		return;
3313 
3314 	if (pools->io_pool)
3315 		mempool_destroy(pools->io_pool);
3316 
3317 	if (pools->rq_pool)
3318 		mempool_destroy(pools->rq_pool);
3319 
3320 	if (pools->bs)
3321 		bioset_free(pools->bs);
3322 
3323 	kfree(pools);
3324 }
3325 
3326 static const struct block_device_operations dm_blk_dops = {
3327 	.open = dm_blk_open,
3328 	.release = dm_blk_close,
3329 	.ioctl = dm_blk_ioctl,
3330 	.getgeo = dm_blk_getgeo,
3331 	.owner = THIS_MODULE
3332 };
3333 
3334 /*
3335  * module hooks
3336  */
3337 module_init(dm_init);
3338 module_exit(dm_exit);
3339 
3340 module_param(major, uint, 0);
3341 MODULE_PARM_DESC(major, "The major number of the device mapper");
3342 
3343 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3344 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3345 
3346 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3347 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3348 
3349 MODULE_DESCRIPTION(DM_NAME " driver");
3350 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3351 MODULE_LICENSE("GPL");
3352