1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 #include <linux/part_stat.h> 29 #include <linux/blk-crypto.h> 30 31 #define DM_MSG_PREFIX "core" 32 33 /* 34 * Cookies are numeric values sent with CHANGE and REMOVE 35 * uevents while resuming, removing or renaming the device. 36 */ 37 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 38 #define DM_COOKIE_LENGTH 24 39 40 static const char *_name = DM_NAME; 41 42 static unsigned int major = 0; 43 static unsigned int _major = 0; 44 45 static DEFINE_IDR(_minor_idr); 46 47 static DEFINE_SPINLOCK(_minor_lock); 48 49 static void do_deferred_remove(struct work_struct *w); 50 51 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 52 53 static struct workqueue_struct *deferred_remove_workqueue; 54 55 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 56 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 57 58 void dm_issue_global_event(void) 59 { 60 atomic_inc(&dm_global_event_nr); 61 wake_up(&dm_global_eventq); 62 } 63 64 /* 65 * One of these is allocated (on-stack) per original bio. 66 */ 67 struct clone_info { 68 struct dm_table *map; 69 struct bio *bio; 70 struct dm_io *io; 71 sector_t sector; 72 unsigned sector_count; 73 }; 74 75 /* 76 * One of these is allocated per clone bio. 77 */ 78 #define DM_TIO_MAGIC 7282014 79 struct dm_target_io { 80 unsigned magic; 81 struct dm_io *io; 82 struct dm_target *ti; 83 unsigned target_bio_nr; 84 unsigned *len_ptr; 85 bool inside_dm_io; 86 struct bio clone; 87 }; 88 89 /* 90 * One of these is allocated per original bio. 91 * It contains the first clone used for that original. 92 */ 93 #define DM_IO_MAGIC 5191977 94 struct dm_io { 95 unsigned magic; 96 struct mapped_device *md; 97 blk_status_t status; 98 atomic_t io_count; 99 struct bio *orig_bio; 100 unsigned long start_time; 101 spinlock_t endio_lock; 102 struct dm_stats_aux stats_aux; 103 /* last member of dm_target_io is 'struct bio' */ 104 struct dm_target_io tio; 105 }; 106 107 void *dm_per_bio_data(struct bio *bio, size_t data_size) 108 { 109 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 110 if (!tio->inside_dm_io) 111 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 112 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 113 } 114 EXPORT_SYMBOL_GPL(dm_per_bio_data); 115 116 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 117 { 118 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 119 if (io->magic == DM_IO_MAGIC) 120 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 121 BUG_ON(io->magic != DM_TIO_MAGIC); 122 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 123 } 124 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 125 126 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 127 { 128 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 129 } 130 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 131 132 #define MINOR_ALLOCED ((void *)-1) 133 134 /* 135 * Bits for the md->flags field. 136 */ 137 #define DMF_BLOCK_IO_FOR_SUSPEND 0 138 #define DMF_SUSPENDED 1 139 #define DMF_FROZEN 2 140 #define DMF_FREEING 3 141 #define DMF_DELETING 4 142 #define DMF_NOFLUSH_SUSPENDING 5 143 #define DMF_DEFERRED_REMOVE 6 144 #define DMF_SUSPENDED_INTERNALLY 7 145 146 #define DM_NUMA_NODE NUMA_NO_NODE 147 static int dm_numa_node = DM_NUMA_NODE; 148 149 /* 150 * For mempools pre-allocation at the table loading time. 151 */ 152 struct dm_md_mempools { 153 struct bio_set bs; 154 struct bio_set io_bs; 155 }; 156 157 struct table_device { 158 struct list_head list; 159 refcount_t count; 160 struct dm_dev dm_dev; 161 }; 162 163 /* 164 * Bio-based DM's mempools' reserved IOs set by the user. 165 */ 166 #define RESERVED_BIO_BASED_IOS 16 167 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 168 169 static int __dm_get_module_param_int(int *module_param, int min, int max) 170 { 171 int param = READ_ONCE(*module_param); 172 int modified_param = 0; 173 bool modified = true; 174 175 if (param < min) 176 modified_param = min; 177 else if (param > max) 178 modified_param = max; 179 else 180 modified = false; 181 182 if (modified) { 183 (void)cmpxchg(module_param, param, modified_param); 184 param = modified_param; 185 } 186 187 return param; 188 } 189 190 unsigned __dm_get_module_param(unsigned *module_param, 191 unsigned def, unsigned max) 192 { 193 unsigned param = READ_ONCE(*module_param); 194 unsigned modified_param = 0; 195 196 if (!param) 197 modified_param = def; 198 else if (param > max) 199 modified_param = max; 200 201 if (modified_param) { 202 (void)cmpxchg(module_param, param, modified_param); 203 param = modified_param; 204 } 205 206 return param; 207 } 208 209 unsigned dm_get_reserved_bio_based_ios(void) 210 { 211 return __dm_get_module_param(&reserved_bio_based_ios, 212 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 213 } 214 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 215 216 static unsigned dm_get_numa_node(void) 217 { 218 return __dm_get_module_param_int(&dm_numa_node, 219 DM_NUMA_NODE, num_online_nodes() - 1); 220 } 221 222 static int __init local_init(void) 223 { 224 int r; 225 226 r = dm_uevent_init(); 227 if (r) 228 return r; 229 230 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 231 if (!deferred_remove_workqueue) { 232 r = -ENOMEM; 233 goto out_uevent_exit; 234 } 235 236 _major = major; 237 r = register_blkdev(_major, _name); 238 if (r < 0) 239 goto out_free_workqueue; 240 241 if (!_major) 242 _major = r; 243 244 return 0; 245 246 out_free_workqueue: 247 destroy_workqueue(deferred_remove_workqueue); 248 out_uevent_exit: 249 dm_uevent_exit(); 250 251 return r; 252 } 253 254 static void local_exit(void) 255 { 256 flush_scheduled_work(); 257 destroy_workqueue(deferred_remove_workqueue); 258 259 unregister_blkdev(_major, _name); 260 dm_uevent_exit(); 261 262 _major = 0; 263 264 DMINFO("cleaned up"); 265 } 266 267 static int (*_inits[])(void) __initdata = { 268 local_init, 269 dm_target_init, 270 dm_linear_init, 271 dm_stripe_init, 272 dm_io_init, 273 dm_kcopyd_init, 274 dm_interface_init, 275 dm_statistics_init, 276 }; 277 278 static void (*_exits[])(void) = { 279 local_exit, 280 dm_target_exit, 281 dm_linear_exit, 282 dm_stripe_exit, 283 dm_io_exit, 284 dm_kcopyd_exit, 285 dm_interface_exit, 286 dm_statistics_exit, 287 }; 288 289 static int __init dm_init(void) 290 { 291 const int count = ARRAY_SIZE(_inits); 292 293 int r, i; 294 295 for (i = 0; i < count; i++) { 296 r = _inits[i](); 297 if (r) 298 goto bad; 299 } 300 301 return 0; 302 303 bad: 304 while (i--) 305 _exits[i](); 306 307 return r; 308 } 309 310 static void __exit dm_exit(void) 311 { 312 int i = ARRAY_SIZE(_exits); 313 314 while (i--) 315 _exits[i](); 316 317 /* 318 * Should be empty by this point. 319 */ 320 idr_destroy(&_minor_idr); 321 } 322 323 /* 324 * Block device functions 325 */ 326 int dm_deleting_md(struct mapped_device *md) 327 { 328 return test_bit(DMF_DELETING, &md->flags); 329 } 330 331 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 332 { 333 struct mapped_device *md; 334 335 spin_lock(&_minor_lock); 336 337 md = bdev->bd_disk->private_data; 338 if (!md) 339 goto out; 340 341 if (test_bit(DMF_FREEING, &md->flags) || 342 dm_deleting_md(md)) { 343 md = NULL; 344 goto out; 345 } 346 347 dm_get(md); 348 atomic_inc(&md->open_count); 349 out: 350 spin_unlock(&_minor_lock); 351 352 return md ? 0 : -ENXIO; 353 } 354 355 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 356 { 357 struct mapped_device *md; 358 359 spin_lock(&_minor_lock); 360 361 md = disk->private_data; 362 if (WARN_ON(!md)) 363 goto out; 364 365 if (atomic_dec_and_test(&md->open_count) && 366 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 367 queue_work(deferred_remove_workqueue, &deferred_remove_work); 368 369 dm_put(md); 370 out: 371 spin_unlock(&_minor_lock); 372 } 373 374 int dm_open_count(struct mapped_device *md) 375 { 376 return atomic_read(&md->open_count); 377 } 378 379 /* 380 * Guarantees nothing is using the device before it's deleted. 381 */ 382 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 383 { 384 int r = 0; 385 386 spin_lock(&_minor_lock); 387 388 if (dm_open_count(md)) { 389 r = -EBUSY; 390 if (mark_deferred) 391 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 392 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 393 r = -EEXIST; 394 else 395 set_bit(DMF_DELETING, &md->flags); 396 397 spin_unlock(&_minor_lock); 398 399 return r; 400 } 401 402 int dm_cancel_deferred_remove(struct mapped_device *md) 403 { 404 int r = 0; 405 406 spin_lock(&_minor_lock); 407 408 if (test_bit(DMF_DELETING, &md->flags)) 409 r = -EBUSY; 410 else 411 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 static void do_deferred_remove(struct work_struct *w) 419 { 420 dm_deferred_remove(); 421 } 422 423 sector_t dm_get_size(struct mapped_device *md) 424 { 425 return get_capacity(md->disk); 426 } 427 428 struct request_queue *dm_get_md_queue(struct mapped_device *md) 429 { 430 return md->queue; 431 } 432 433 struct dm_stats *dm_get_stats(struct mapped_device *md) 434 { 435 return &md->stats; 436 } 437 438 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 439 { 440 struct mapped_device *md = bdev->bd_disk->private_data; 441 442 return dm_get_geometry(md, geo); 443 } 444 445 #ifdef CONFIG_BLK_DEV_ZONED 446 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data) 447 { 448 struct dm_report_zones_args *args = data; 449 sector_t sector_diff = args->tgt->begin - args->start; 450 451 /* 452 * Ignore zones beyond the target range. 453 */ 454 if (zone->start >= args->start + args->tgt->len) 455 return 0; 456 457 /* 458 * Remap the start sector and write pointer position of the zone 459 * to match its position in the target range. 460 */ 461 zone->start += sector_diff; 462 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 463 if (zone->cond == BLK_ZONE_COND_FULL) 464 zone->wp = zone->start + zone->len; 465 else if (zone->cond == BLK_ZONE_COND_EMPTY) 466 zone->wp = zone->start; 467 else 468 zone->wp += sector_diff; 469 } 470 471 args->next_sector = zone->start + zone->len; 472 return args->orig_cb(zone, args->zone_idx++, args->orig_data); 473 } 474 EXPORT_SYMBOL_GPL(dm_report_zones_cb); 475 476 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 477 unsigned int nr_zones, report_zones_cb cb, void *data) 478 { 479 struct mapped_device *md = disk->private_data; 480 struct dm_table *map; 481 int srcu_idx, ret; 482 struct dm_report_zones_args args = { 483 .next_sector = sector, 484 .orig_data = data, 485 .orig_cb = cb, 486 }; 487 488 if (dm_suspended_md(md)) 489 return -EAGAIN; 490 491 map = dm_get_live_table(md, &srcu_idx); 492 if (!map) 493 return -EIO; 494 495 do { 496 struct dm_target *tgt; 497 498 tgt = dm_table_find_target(map, args.next_sector); 499 if (WARN_ON_ONCE(!tgt->type->report_zones)) { 500 ret = -EIO; 501 goto out; 502 } 503 504 args.tgt = tgt; 505 ret = tgt->type->report_zones(tgt, &args, nr_zones); 506 if (ret < 0) 507 goto out; 508 } while (args.zone_idx < nr_zones && 509 args.next_sector < get_capacity(disk)); 510 511 ret = args.zone_idx; 512 out: 513 dm_put_live_table(md, srcu_idx); 514 return ret; 515 } 516 #else 517 #define dm_blk_report_zones NULL 518 #endif /* CONFIG_BLK_DEV_ZONED */ 519 520 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 521 struct block_device **bdev) 522 __acquires(md->io_barrier) 523 { 524 struct dm_target *tgt; 525 struct dm_table *map; 526 int r; 527 528 retry: 529 r = -ENOTTY; 530 map = dm_get_live_table(md, srcu_idx); 531 if (!map || !dm_table_get_size(map)) 532 return r; 533 534 /* We only support devices that have a single target */ 535 if (dm_table_get_num_targets(map) != 1) 536 return r; 537 538 tgt = dm_table_get_target(map, 0); 539 if (!tgt->type->prepare_ioctl) 540 return r; 541 542 if (dm_suspended_md(md)) 543 return -EAGAIN; 544 545 r = tgt->type->prepare_ioctl(tgt, bdev); 546 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 547 dm_put_live_table(md, *srcu_idx); 548 msleep(10); 549 goto retry; 550 } 551 552 return r; 553 } 554 555 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 556 __releases(md->io_barrier) 557 { 558 dm_put_live_table(md, srcu_idx); 559 } 560 561 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 562 unsigned int cmd, unsigned long arg) 563 { 564 struct mapped_device *md = bdev->bd_disk->private_data; 565 int r, srcu_idx; 566 567 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 568 if (r < 0) 569 goto out; 570 571 if (r > 0) { 572 /* 573 * Target determined this ioctl is being issued against a 574 * subset of the parent bdev; require extra privileges. 575 */ 576 if (!capable(CAP_SYS_RAWIO)) { 577 DMWARN_LIMIT( 578 "%s: sending ioctl %x to DM device without required privilege.", 579 current->comm, cmd); 580 r = -ENOIOCTLCMD; 581 goto out; 582 } 583 } 584 585 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 586 out: 587 dm_unprepare_ioctl(md, srcu_idx); 588 return r; 589 } 590 591 static void start_io_acct(struct dm_io *io); 592 593 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 594 { 595 struct dm_io *io; 596 struct dm_target_io *tio; 597 struct bio *clone; 598 599 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 600 if (!clone) 601 return NULL; 602 603 tio = container_of(clone, struct dm_target_io, clone); 604 tio->inside_dm_io = true; 605 tio->io = NULL; 606 607 io = container_of(tio, struct dm_io, tio); 608 io->magic = DM_IO_MAGIC; 609 io->status = 0; 610 atomic_set(&io->io_count, 1); 611 io->orig_bio = bio; 612 io->md = md; 613 spin_lock_init(&io->endio_lock); 614 615 start_io_acct(io); 616 617 return io; 618 } 619 620 static void free_io(struct mapped_device *md, struct dm_io *io) 621 { 622 bio_put(&io->tio.clone); 623 } 624 625 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 626 unsigned target_bio_nr, gfp_t gfp_mask) 627 { 628 struct dm_target_io *tio; 629 630 if (!ci->io->tio.io) { 631 /* the dm_target_io embedded in ci->io is available */ 632 tio = &ci->io->tio; 633 } else { 634 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 635 if (!clone) 636 return NULL; 637 638 tio = container_of(clone, struct dm_target_io, clone); 639 tio->inside_dm_io = false; 640 } 641 642 tio->magic = DM_TIO_MAGIC; 643 tio->io = ci->io; 644 tio->ti = ti; 645 tio->target_bio_nr = target_bio_nr; 646 647 return tio; 648 } 649 650 static void free_tio(struct dm_target_io *tio) 651 { 652 if (tio->inside_dm_io) 653 return; 654 bio_put(&tio->clone); 655 } 656 657 static bool md_in_flight_bios(struct mapped_device *md) 658 { 659 int cpu; 660 struct hd_struct *part = &dm_disk(md)->part0; 661 long sum = 0; 662 663 for_each_possible_cpu(cpu) { 664 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 665 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 666 } 667 668 return sum != 0; 669 } 670 671 static bool md_in_flight(struct mapped_device *md) 672 { 673 if (queue_is_mq(md->queue)) 674 return blk_mq_queue_inflight(md->queue); 675 else 676 return md_in_flight_bios(md); 677 } 678 679 static void start_io_acct(struct dm_io *io) 680 { 681 struct mapped_device *md = io->md; 682 struct bio *bio = io->orig_bio; 683 684 io->start_time = bio_start_io_acct(bio); 685 if (unlikely(dm_stats_used(&md->stats))) 686 dm_stats_account_io(&md->stats, bio_data_dir(bio), 687 bio->bi_iter.bi_sector, bio_sectors(bio), 688 false, 0, &io->stats_aux); 689 } 690 691 static void end_io_acct(struct dm_io *io) 692 { 693 struct mapped_device *md = io->md; 694 struct bio *bio = io->orig_bio; 695 unsigned long duration = jiffies - io->start_time; 696 697 bio_end_io_acct(bio, io->start_time); 698 699 if (unlikely(dm_stats_used(&md->stats))) 700 dm_stats_account_io(&md->stats, bio_data_dir(bio), 701 bio->bi_iter.bi_sector, bio_sectors(bio), 702 true, duration, &io->stats_aux); 703 704 /* nudge anyone waiting on suspend queue */ 705 if (unlikely(wq_has_sleeper(&md->wait))) 706 wake_up(&md->wait); 707 } 708 709 /* 710 * Add the bio to the list of deferred io. 711 */ 712 static void queue_io(struct mapped_device *md, struct bio *bio) 713 { 714 unsigned long flags; 715 716 spin_lock_irqsave(&md->deferred_lock, flags); 717 bio_list_add(&md->deferred, bio); 718 spin_unlock_irqrestore(&md->deferred_lock, flags); 719 queue_work(md->wq, &md->work); 720 } 721 722 /* 723 * Everyone (including functions in this file), should use this 724 * function to access the md->map field, and make sure they call 725 * dm_put_live_table() when finished. 726 */ 727 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 728 { 729 *srcu_idx = srcu_read_lock(&md->io_barrier); 730 731 return srcu_dereference(md->map, &md->io_barrier); 732 } 733 734 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 735 { 736 srcu_read_unlock(&md->io_barrier, srcu_idx); 737 } 738 739 void dm_sync_table(struct mapped_device *md) 740 { 741 synchronize_srcu(&md->io_barrier); 742 synchronize_rcu_expedited(); 743 } 744 745 /* 746 * A fast alternative to dm_get_live_table/dm_put_live_table. 747 * The caller must not block between these two functions. 748 */ 749 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 750 { 751 rcu_read_lock(); 752 return rcu_dereference(md->map); 753 } 754 755 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 756 { 757 rcu_read_unlock(); 758 } 759 760 static char *_dm_claim_ptr = "I belong to device-mapper"; 761 762 /* 763 * Open a table device so we can use it as a map destination. 764 */ 765 static int open_table_device(struct table_device *td, dev_t dev, 766 struct mapped_device *md) 767 { 768 struct block_device *bdev; 769 770 int r; 771 772 BUG_ON(td->dm_dev.bdev); 773 774 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 775 if (IS_ERR(bdev)) 776 return PTR_ERR(bdev); 777 778 r = bd_link_disk_holder(bdev, dm_disk(md)); 779 if (r) { 780 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 781 return r; 782 } 783 784 td->dm_dev.bdev = bdev; 785 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 786 return 0; 787 } 788 789 /* 790 * Close a table device that we've been using. 791 */ 792 static void close_table_device(struct table_device *td, struct mapped_device *md) 793 { 794 if (!td->dm_dev.bdev) 795 return; 796 797 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 798 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 799 put_dax(td->dm_dev.dax_dev); 800 td->dm_dev.bdev = NULL; 801 td->dm_dev.dax_dev = NULL; 802 } 803 804 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 805 fmode_t mode) 806 { 807 struct table_device *td; 808 809 list_for_each_entry(td, l, list) 810 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 811 return td; 812 813 return NULL; 814 } 815 816 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 817 struct dm_dev **result) 818 { 819 int r; 820 struct table_device *td; 821 822 mutex_lock(&md->table_devices_lock); 823 td = find_table_device(&md->table_devices, dev, mode); 824 if (!td) { 825 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 826 if (!td) { 827 mutex_unlock(&md->table_devices_lock); 828 return -ENOMEM; 829 } 830 831 td->dm_dev.mode = mode; 832 td->dm_dev.bdev = NULL; 833 834 if ((r = open_table_device(td, dev, md))) { 835 mutex_unlock(&md->table_devices_lock); 836 kfree(td); 837 return r; 838 } 839 840 format_dev_t(td->dm_dev.name, dev); 841 842 refcount_set(&td->count, 1); 843 list_add(&td->list, &md->table_devices); 844 } else { 845 refcount_inc(&td->count); 846 } 847 mutex_unlock(&md->table_devices_lock); 848 849 *result = &td->dm_dev; 850 return 0; 851 } 852 EXPORT_SYMBOL_GPL(dm_get_table_device); 853 854 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 855 { 856 struct table_device *td = container_of(d, struct table_device, dm_dev); 857 858 mutex_lock(&md->table_devices_lock); 859 if (refcount_dec_and_test(&td->count)) { 860 close_table_device(td, md); 861 list_del(&td->list); 862 kfree(td); 863 } 864 mutex_unlock(&md->table_devices_lock); 865 } 866 EXPORT_SYMBOL(dm_put_table_device); 867 868 static void free_table_devices(struct list_head *devices) 869 { 870 struct list_head *tmp, *next; 871 872 list_for_each_safe(tmp, next, devices) { 873 struct table_device *td = list_entry(tmp, struct table_device, list); 874 875 DMWARN("dm_destroy: %s still exists with %d references", 876 td->dm_dev.name, refcount_read(&td->count)); 877 kfree(td); 878 } 879 } 880 881 /* 882 * Get the geometry associated with a dm device 883 */ 884 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 885 { 886 *geo = md->geometry; 887 888 return 0; 889 } 890 891 /* 892 * Set the geometry of a device. 893 */ 894 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 895 { 896 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 897 898 if (geo->start > sz) { 899 DMWARN("Start sector is beyond the geometry limits."); 900 return -EINVAL; 901 } 902 903 md->geometry = *geo; 904 905 return 0; 906 } 907 908 static int __noflush_suspending(struct mapped_device *md) 909 { 910 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 911 } 912 913 /* 914 * Decrements the number of outstanding ios that a bio has been 915 * cloned into, completing the original io if necc. 916 */ 917 static void dec_pending(struct dm_io *io, blk_status_t error) 918 { 919 unsigned long flags; 920 blk_status_t io_error; 921 struct bio *bio; 922 struct mapped_device *md = io->md; 923 924 /* Push-back supersedes any I/O errors */ 925 if (unlikely(error)) { 926 spin_lock_irqsave(&io->endio_lock, flags); 927 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 928 io->status = error; 929 spin_unlock_irqrestore(&io->endio_lock, flags); 930 } 931 932 if (atomic_dec_and_test(&io->io_count)) { 933 if (io->status == BLK_STS_DM_REQUEUE) { 934 /* 935 * Target requested pushing back the I/O. 936 */ 937 spin_lock_irqsave(&md->deferred_lock, flags); 938 if (__noflush_suspending(md)) 939 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 940 bio_list_add_head(&md->deferred, io->orig_bio); 941 else 942 /* noflush suspend was interrupted. */ 943 io->status = BLK_STS_IOERR; 944 spin_unlock_irqrestore(&md->deferred_lock, flags); 945 } 946 947 io_error = io->status; 948 bio = io->orig_bio; 949 end_io_acct(io); 950 free_io(md, io); 951 952 if (io_error == BLK_STS_DM_REQUEUE) 953 return; 954 955 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 956 /* 957 * Preflush done for flush with data, reissue 958 * without REQ_PREFLUSH. 959 */ 960 bio->bi_opf &= ~REQ_PREFLUSH; 961 queue_io(md, bio); 962 } else { 963 /* done with normal IO or empty flush */ 964 if (io_error) 965 bio->bi_status = io_error; 966 bio_endio(bio); 967 } 968 } 969 } 970 971 void disable_discard(struct mapped_device *md) 972 { 973 struct queue_limits *limits = dm_get_queue_limits(md); 974 975 /* device doesn't really support DISCARD, disable it */ 976 limits->max_discard_sectors = 0; 977 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 978 } 979 980 void disable_write_same(struct mapped_device *md) 981 { 982 struct queue_limits *limits = dm_get_queue_limits(md); 983 984 /* device doesn't really support WRITE SAME, disable it */ 985 limits->max_write_same_sectors = 0; 986 } 987 988 void disable_write_zeroes(struct mapped_device *md) 989 { 990 struct queue_limits *limits = dm_get_queue_limits(md); 991 992 /* device doesn't really support WRITE ZEROES, disable it */ 993 limits->max_write_zeroes_sectors = 0; 994 } 995 996 static void clone_endio(struct bio *bio) 997 { 998 blk_status_t error = bio->bi_status; 999 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1000 struct dm_io *io = tio->io; 1001 struct mapped_device *md = tio->io->md; 1002 dm_endio_fn endio = tio->ti->type->end_io; 1003 1004 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 1005 if (bio_op(bio) == REQ_OP_DISCARD && 1006 !bio->bi_disk->queue->limits.max_discard_sectors) 1007 disable_discard(md); 1008 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 1009 !bio->bi_disk->queue->limits.max_write_same_sectors) 1010 disable_write_same(md); 1011 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1012 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 1013 disable_write_zeroes(md); 1014 } 1015 1016 if (endio) { 1017 int r = endio(tio->ti, bio, &error); 1018 switch (r) { 1019 case DM_ENDIO_REQUEUE: 1020 error = BLK_STS_DM_REQUEUE; 1021 /*FALLTHRU*/ 1022 case DM_ENDIO_DONE: 1023 break; 1024 case DM_ENDIO_INCOMPLETE: 1025 /* The target will handle the io */ 1026 return; 1027 default: 1028 DMWARN("unimplemented target endio return value: %d", r); 1029 BUG(); 1030 } 1031 } 1032 1033 free_tio(tio); 1034 dec_pending(io, error); 1035 } 1036 1037 /* 1038 * Return maximum size of I/O possible at the supplied sector up to the current 1039 * target boundary. 1040 */ 1041 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1042 { 1043 sector_t target_offset = dm_target_offset(ti, sector); 1044 1045 return ti->len - target_offset; 1046 } 1047 1048 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1049 { 1050 sector_t len = max_io_len_target_boundary(sector, ti); 1051 sector_t offset, max_len; 1052 1053 /* 1054 * Does the target need to split even further? 1055 */ 1056 if (ti->max_io_len) { 1057 offset = dm_target_offset(ti, sector); 1058 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1059 max_len = sector_div(offset, ti->max_io_len); 1060 else 1061 max_len = offset & (ti->max_io_len - 1); 1062 max_len = ti->max_io_len - max_len; 1063 1064 if (len > max_len) 1065 len = max_len; 1066 } 1067 1068 return len; 1069 } 1070 1071 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1072 { 1073 if (len > UINT_MAX) { 1074 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1075 (unsigned long long)len, UINT_MAX); 1076 ti->error = "Maximum size of target IO is too large"; 1077 return -EINVAL; 1078 } 1079 1080 ti->max_io_len = (uint32_t) len; 1081 1082 return 0; 1083 } 1084 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1085 1086 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1087 sector_t sector, int *srcu_idx) 1088 __acquires(md->io_barrier) 1089 { 1090 struct dm_table *map; 1091 struct dm_target *ti; 1092 1093 map = dm_get_live_table(md, srcu_idx); 1094 if (!map) 1095 return NULL; 1096 1097 ti = dm_table_find_target(map, sector); 1098 if (!ti) 1099 return NULL; 1100 1101 return ti; 1102 } 1103 1104 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1105 long nr_pages, void **kaddr, pfn_t *pfn) 1106 { 1107 struct mapped_device *md = dax_get_private(dax_dev); 1108 sector_t sector = pgoff * PAGE_SECTORS; 1109 struct dm_target *ti; 1110 long len, ret = -EIO; 1111 int srcu_idx; 1112 1113 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1114 1115 if (!ti) 1116 goto out; 1117 if (!ti->type->direct_access) 1118 goto out; 1119 len = max_io_len(sector, ti) / PAGE_SECTORS; 1120 if (len < 1) 1121 goto out; 1122 nr_pages = min(len, nr_pages); 1123 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1124 1125 out: 1126 dm_put_live_table(md, srcu_idx); 1127 1128 return ret; 1129 } 1130 1131 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1132 int blocksize, sector_t start, sector_t len) 1133 { 1134 struct mapped_device *md = dax_get_private(dax_dev); 1135 struct dm_table *map; 1136 int srcu_idx; 1137 bool ret; 1138 1139 map = dm_get_live_table(md, &srcu_idx); 1140 if (!map) 1141 return false; 1142 1143 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1144 1145 dm_put_live_table(md, srcu_idx); 1146 1147 return ret; 1148 } 1149 1150 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1151 void *addr, size_t bytes, struct iov_iter *i) 1152 { 1153 struct mapped_device *md = dax_get_private(dax_dev); 1154 sector_t sector = pgoff * PAGE_SECTORS; 1155 struct dm_target *ti; 1156 long ret = 0; 1157 int srcu_idx; 1158 1159 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1160 1161 if (!ti) 1162 goto out; 1163 if (!ti->type->dax_copy_from_iter) { 1164 ret = copy_from_iter(addr, bytes, i); 1165 goto out; 1166 } 1167 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1168 out: 1169 dm_put_live_table(md, srcu_idx); 1170 1171 return ret; 1172 } 1173 1174 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1175 void *addr, size_t bytes, struct iov_iter *i) 1176 { 1177 struct mapped_device *md = dax_get_private(dax_dev); 1178 sector_t sector = pgoff * PAGE_SECTORS; 1179 struct dm_target *ti; 1180 long ret = 0; 1181 int srcu_idx; 1182 1183 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1184 1185 if (!ti) 1186 goto out; 1187 if (!ti->type->dax_copy_to_iter) { 1188 ret = copy_to_iter(addr, bytes, i); 1189 goto out; 1190 } 1191 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1192 out: 1193 dm_put_live_table(md, srcu_idx); 1194 1195 return ret; 1196 } 1197 1198 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1199 size_t nr_pages) 1200 { 1201 struct mapped_device *md = dax_get_private(dax_dev); 1202 sector_t sector = pgoff * PAGE_SECTORS; 1203 struct dm_target *ti; 1204 int ret = -EIO; 1205 int srcu_idx; 1206 1207 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1208 1209 if (!ti) 1210 goto out; 1211 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1212 /* 1213 * ->zero_page_range() is mandatory dax operation. If we are 1214 * here, something is wrong. 1215 */ 1216 dm_put_live_table(md, srcu_idx); 1217 goto out; 1218 } 1219 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1220 1221 out: 1222 dm_put_live_table(md, srcu_idx); 1223 1224 return ret; 1225 } 1226 1227 /* 1228 * A target may call dm_accept_partial_bio only from the map routine. It is 1229 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1230 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1231 * 1232 * dm_accept_partial_bio informs the dm that the target only wants to process 1233 * additional n_sectors sectors of the bio and the rest of the data should be 1234 * sent in a next bio. 1235 * 1236 * A diagram that explains the arithmetics: 1237 * +--------------------+---------------+-------+ 1238 * | 1 | 2 | 3 | 1239 * +--------------------+---------------+-------+ 1240 * 1241 * <-------------- *tio->len_ptr ---------------> 1242 * <------- bi_size -------> 1243 * <-- n_sectors --> 1244 * 1245 * Region 1 was already iterated over with bio_advance or similar function. 1246 * (it may be empty if the target doesn't use bio_advance) 1247 * Region 2 is the remaining bio size that the target wants to process. 1248 * (it may be empty if region 1 is non-empty, although there is no reason 1249 * to make it empty) 1250 * The target requires that region 3 is to be sent in the next bio. 1251 * 1252 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1253 * the partially processed part (the sum of regions 1+2) must be the same for all 1254 * copies of the bio. 1255 */ 1256 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1257 { 1258 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1259 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1260 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1261 BUG_ON(bi_size > *tio->len_ptr); 1262 BUG_ON(n_sectors > bi_size); 1263 *tio->len_ptr -= bi_size - n_sectors; 1264 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1265 } 1266 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1267 1268 static blk_qc_t __map_bio(struct dm_target_io *tio) 1269 { 1270 int r; 1271 sector_t sector; 1272 struct bio *clone = &tio->clone; 1273 struct dm_io *io = tio->io; 1274 struct mapped_device *md = io->md; 1275 struct dm_target *ti = tio->ti; 1276 blk_qc_t ret = BLK_QC_T_NONE; 1277 1278 clone->bi_end_io = clone_endio; 1279 1280 /* 1281 * Map the clone. If r == 0 we don't need to do 1282 * anything, the target has assumed ownership of 1283 * this io. 1284 */ 1285 atomic_inc(&io->io_count); 1286 sector = clone->bi_iter.bi_sector; 1287 1288 r = ti->type->map(ti, clone); 1289 switch (r) { 1290 case DM_MAPIO_SUBMITTED: 1291 break; 1292 case DM_MAPIO_REMAPPED: 1293 /* the bio has been remapped so dispatch it */ 1294 trace_block_bio_remap(clone->bi_disk->queue, clone, 1295 bio_dev(io->orig_bio), sector); 1296 if (md->type == DM_TYPE_NVME_BIO_BASED) 1297 ret = direct_make_request(clone); 1298 else 1299 ret = generic_make_request(clone); 1300 break; 1301 case DM_MAPIO_KILL: 1302 free_tio(tio); 1303 dec_pending(io, BLK_STS_IOERR); 1304 break; 1305 case DM_MAPIO_REQUEUE: 1306 free_tio(tio); 1307 dec_pending(io, BLK_STS_DM_REQUEUE); 1308 break; 1309 default: 1310 DMWARN("unimplemented target map return value: %d", r); 1311 BUG(); 1312 } 1313 1314 return ret; 1315 } 1316 1317 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1318 { 1319 bio->bi_iter.bi_sector = sector; 1320 bio->bi_iter.bi_size = to_bytes(len); 1321 } 1322 1323 /* 1324 * Creates a bio that consists of range of complete bvecs. 1325 */ 1326 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1327 sector_t sector, unsigned len) 1328 { 1329 struct bio *clone = &tio->clone; 1330 1331 __bio_clone_fast(clone, bio); 1332 1333 bio_crypt_clone(clone, bio, GFP_NOIO); 1334 1335 if (bio_integrity(bio)) { 1336 int r; 1337 1338 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1339 !dm_target_passes_integrity(tio->ti->type))) { 1340 DMWARN("%s: the target %s doesn't support integrity data.", 1341 dm_device_name(tio->io->md), 1342 tio->ti->type->name); 1343 return -EIO; 1344 } 1345 1346 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1347 if (r < 0) 1348 return r; 1349 } 1350 1351 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1352 clone->bi_iter.bi_size = to_bytes(len); 1353 1354 if (bio_integrity(bio)) 1355 bio_integrity_trim(clone); 1356 1357 return 0; 1358 } 1359 1360 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1361 struct dm_target *ti, unsigned num_bios) 1362 { 1363 struct dm_target_io *tio; 1364 int try; 1365 1366 if (!num_bios) 1367 return; 1368 1369 if (num_bios == 1) { 1370 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1371 bio_list_add(blist, &tio->clone); 1372 return; 1373 } 1374 1375 for (try = 0; try < 2; try++) { 1376 int bio_nr; 1377 struct bio *bio; 1378 1379 if (try) 1380 mutex_lock(&ci->io->md->table_devices_lock); 1381 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1382 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1383 if (!tio) 1384 break; 1385 1386 bio_list_add(blist, &tio->clone); 1387 } 1388 if (try) 1389 mutex_unlock(&ci->io->md->table_devices_lock); 1390 if (bio_nr == num_bios) 1391 return; 1392 1393 while ((bio = bio_list_pop(blist))) { 1394 tio = container_of(bio, struct dm_target_io, clone); 1395 free_tio(tio); 1396 } 1397 } 1398 } 1399 1400 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1401 struct dm_target_io *tio, unsigned *len) 1402 { 1403 struct bio *clone = &tio->clone; 1404 1405 tio->len_ptr = len; 1406 1407 __bio_clone_fast(clone, ci->bio); 1408 if (len) 1409 bio_setup_sector(clone, ci->sector, *len); 1410 1411 return __map_bio(tio); 1412 } 1413 1414 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1415 unsigned num_bios, unsigned *len) 1416 { 1417 struct bio_list blist = BIO_EMPTY_LIST; 1418 struct bio *bio; 1419 struct dm_target_io *tio; 1420 1421 alloc_multiple_bios(&blist, ci, ti, num_bios); 1422 1423 while ((bio = bio_list_pop(&blist))) { 1424 tio = container_of(bio, struct dm_target_io, clone); 1425 (void) __clone_and_map_simple_bio(ci, tio, len); 1426 } 1427 } 1428 1429 static int __send_empty_flush(struct clone_info *ci) 1430 { 1431 unsigned target_nr = 0; 1432 struct dm_target *ti; 1433 1434 /* 1435 * Empty flush uses a statically initialized bio, as the base for 1436 * cloning. However, blkg association requires that a bdev is 1437 * associated with a gendisk, which doesn't happen until the bdev is 1438 * opened. So, blkg association is done at issue time of the flush 1439 * rather than when the device is created in alloc_dev(). 1440 */ 1441 bio_set_dev(ci->bio, ci->io->md->bdev); 1442 1443 BUG_ON(bio_has_data(ci->bio)); 1444 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1445 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1446 1447 bio_disassociate_blkg(ci->bio); 1448 1449 return 0; 1450 } 1451 1452 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1453 sector_t sector, unsigned *len) 1454 { 1455 struct bio *bio = ci->bio; 1456 struct dm_target_io *tio; 1457 int r; 1458 1459 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1460 tio->len_ptr = len; 1461 r = clone_bio(tio, bio, sector, *len); 1462 if (r < 0) { 1463 free_tio(tio); 1464 return r; 1465 } 1466 (void) __map_bio(tio); 1467 1468 return 0; 1469 } 1470 1471 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1472 1473 static unsigned get_num_discard_bios(struct dm_target *ti) 1474 { 1475 return ti->num_discard_bios; 1476 } 1477 1478 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1479 { 1480 return ti->num_secure_erase_bios; 1481 } 1482 1483 static unsigned get_num_write_same_bios(struct dm_target *ti) 1484 { 1485 return ti->num_write_same_bios; 1486 } 1487 1488 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1489 { 1490 return ti->num_write_zeroes_bios; 1491 } 1492 1493 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1494 unsigned num_bios) 1495 { 1496 unsigned len; 1497 1498 /* 1499 * Even though the device advertised support for this type of 1500 * request, that does not mean every target supports it, and 1501 * reconfiguration might also have changed that since the 1502 * check was performed. 1503 */ 1504 if (!num_bios) 1505 return -EOPNOTSUPP; 1506 1507 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1508 1509 __send_duplicate_bios(ci, ti, num_bios, &len); 1510 1511 ci->sector += len; 1512 ci->sector_count -= len; 1513 1514 return 0; 1515 } 1516 1517 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1518 { 1519 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1520 } 1521 1522 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1523 { 1524 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1525 } 1526 1527 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1528 { 1529 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1530 } 1531 1532 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1533 { 1534 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1535 } 1536 1537 static bool is_abnormal_io(struct bio *bio) 1538 { 1539 bool r = false; 1540 1541 switch (bio_op(bio)) { 1542 case REQ_OP_DISCARD: 1543 case REQ_OP_SECURE_ERASE: 1544 case REQ_OP_WRITE_SAME: 1545 case REQ_OP_WRITE_ZEROES: 1546 r = true; 1547 break; 1548 } 1549 1550 return r; 1551 } 1552 1553 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1554 int *result) 1555 { 1556 struct bio *bio = ci->bio; 1557 1558 if (bio_op(bio) == REQ_OP_DISCARD) 1559 *result = __send_discard(ci, ti); 1560 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1561 *result = __send_secure_erase(ci, ti); 1562 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1563 *result = __send_write_same(ci, ti); 1564 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1565 *result = __send_write_zeroes(ci, ti); 1566 else 1567 return false; 1568 1569 return true; 1570 } 1571 1572 /* 1573 * Select the correct strategy for processing a non-flush bio. 1574 */ 1575 static int __split_and_process_non_flush(struct clone_info *ci) 1576 { 1577 struct dm_target *ti; 1578 unsigned len; 1579 int r; 1580 1581 ti = dm_table_find_target(ci->map, ci->sector); 1582 if (!ti) 1583 return -EIO; 1584 1585 if (__process_abnormal_io(ci, ti, &r)) 1586 return r; 1587 1588 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1589 1590 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1591 if (r < 0) 1592 return r; 1593 1594 ci->sector += len; 1595 ci->sector_count -= len; 1596 1597 return 0; 1598 } 1599 1600 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1601 struct dm_table *map, struct bio *bio) 1602 { 1603 ci->map = map; 1604 ci->io = alloc_io(md, bio); 1605 ci->sector = bio->bi_iter.bi_sector; 1606 } 1607 1608 #define __dm_part_stat_sub(part, field, subnd) \ 1609 (part_stat_get(part, field) -= (subnd)) 1610 1611 /* 1612 * Entry point to split a bio into clones and submit them to the targets. 1613 */ 1614 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1615 struct dm_table *map, struct bio *bio) 1616 { 1617 struct clone_info ci; 1618 blk_qc_t ret = BLK_QC_T_NONE; 1619 int error = 0; 1620 1621 init_clone_info(&ci, md, map, bio); 1622 1623 if (bio->bi_opf & REQ_PREFLUSH) { 1624 struct bio flush_bio; 1625 1626 /* 1627 * Use an on-stack bio for this, it's safe since we don't 1628 * need to reference it after submit. It's just used as 1629 * the basis for the clone(s). 1630 */ 1631 bio_init(&flush_bio, NULL, 0); 1632 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1633 ci.bio = &flush_bio; 1634 ci.sector_count = 0; 1635 error = __send_empty_flush(&ci); 1636 /* dec_pending submits any data associated with flush */ 1637 } else if (op_is_zone_mgmt(bio_op(bio))) { 1638 ci.bio = bio; 1639 ci.sector_count = 0; 1640 error = __split_and_process_non_flush(&ci); 1641 } else { 1642 ci.bio = bio; 1643 ci.sector_count = bio_sectors(bio); 1644 while (ci.sector_count && !error) { 1645 error = __split_and_process_non_flush(&ci); 1646 if (current->bio_list && ci.sector_count && !error) { 1647 /* 1648 * Remainder must be passed to generic_make_request() 1649 * so that it gets handled *after* bios already submitted 1650 * have been completely processed. 1651 * We take a clone of the original to store in 1652 * ci.io->orig_bio to be used by end_io_acct() and 1653 * for dec_pending to use for completion handling. 1654 */ 1655 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1656 GFP_NOIO, &md->queue->bio_split); 1657 ci.io->orig_bio = b; 1658 1659 /* 1660 * Adjust IO stats for each split, otherwise upon queue 1661 * reentry there will be redundant IO accounting. 1662 * NOTE: this is a stop-gap fix, a proper fix involves 1663 * significant refactoring of DM core's bio splitting 1664 * (by eliminating DM's splitting and just using bio_split) 1665 */ 1666 part_stat_lock(); 1667 __dm_part_stat_sub(&dm_disk(md)->part0, 1668 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1669 part_stat_unlock(); 1670 1671 bio_chain(b, bio); 1672 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1673 ret = generic_make_request(bio); 1674 break; 1675 } 1676 } 1677 } 1678 1679 /* drop the extra reference count */ 1680 dec_pending(ci.io, errno_to_blk_status(error)); 1681 return ret; 1682 } 1683 1684 /* 1685 * Optimized variant of __split_and_process_bio that leverages the 1686 * fact that targets that use it do _not_ have a need to split bios. 1687 */ 1688 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1689 struct bio *bio, struct dm_target *ti) 1690 { 1691 struct clone_info ci; 1692 blk_qc_t ret = BLK_QC_T_NONE; 1693 int error = 0; 1694 1695 init_clone_info(&ci, md, map, bio); 1696 1697 if (bio->bi_opf & REQ_PREFLUSH) { 1698 struct bio flush_bio; 1699 1700 /* 1701 * Use an on-stack bio for this, it's safe since we don't 1702 * need to reference it after submit. It's just used as 1703 * the basis for the clone(s). 1704 */ 1705 bio_init(&flush_bio, NULL, 0); 1706 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1707 ci.bio = &flush_bio; 1708 ci.sector_count = 0; 1709 error = __send_empty_flush(&ci); 1710 /* dec_pending submits any data associated with flush */ 1711 } else { 1712 struct dm_target_io *tio; 1713 1714 ci.bio = bio; 1715 ci.sector_count = bio_sectors(bio); 1716 if (__process_abnormal_io(&ci, ti, &error)) 1717 goto out; 1718 1719 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1720 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1721 } 1722 out: 1723 /* drop the extra reference count */ 1724 dec_pending(ci.io, errno_to_blk_status(error)); 1725 return ret; 1726 } 1727 1728 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1729 { 1730 unsigned len, sector_count; 1731 1732 sector_count = bio_sectors(*bio); 1733 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1734 1735 if (sector_count > len) { 1736 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1737 1738 bio_chain(split, *bio); 1739 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1740 generic_make_request(*bio); 1741 *bio = split; 1742 } 1743 } 1744 1745 static blk_qc_t dm_process_bio(struct mapped_device *md, 1746 struct dm_table *map, struct bio *bio) 1747 { 1748 blk_qc_t ret = BLK_QC_T_NONE; 1749 struct dm_target *ti = md->immutable_target; 1750 1751 if (unlikely(!map)) { 1752 bio_io_error(bio); 1753 return ret; 1754 } 1755 1756 if (!ti) { 1757 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1758 if (unlikely(!ti)) { 1759 bio_io_error(bio); 1760 return ret; 1761 } 1762 } 1763 1764 /* 1765 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1766 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1767 * won't be imposed. 1768 */ 1769 if (current->bio_list) { 1770 if (is_abnormal_io(bio)) 1771 blk_queue_split(md->queue, &bio); 1772 else 1773 dm_queue_split(md, ti, &bio); 1774 } 1775 1776 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1777 return __process_bio(md, map, bio, ti); 1778 else 1779 return __split_and_process_bio(md, map, bio); 1780 } 1781 1782 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1783 { 1784 struct mapped_device *md = q->queuedata; 1785 blk_qc_t ret = BLK_QC_T_NONE; 1786 int srcu_idx; 1787 struct dm_table *map; 1788 1789 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) { 1790 /* 1791 * We are called with a live reference on q_usage_counter, but 1792 * that one will be released as soon as we return. Grab an 1793 * extra one as blk_mq_make_request expects to be able to 1794 * consume a reference (which lives until the request is freed 1795 * in case a request is allocated). 1796 */ 1797 percpu_ref_get(&q->q_usage_counter); 1798 return blk_mq_make_request(q, bio); 1799 } 1800 1801 map = dm_get_live_table(md, &srcu_idx); 1802 1803 /* if we're suspended, we have to queue this io for later */ 1804 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1805 dm_put_live_table(md, srcu_idx); 1806 1807 if (!(bio->bi_opf & REQ_RAHEAD)) 1808 queue_io(md, bio); 1809 else 1810 bio_io_error(bio); 1811 return ret; 1812 } 1813 1814 ret = dm_process_bio(md, map, bio); 1815 1816 dm_put_live_table(md, srcu_idx); 1817 return ret; 1818 } 1819 1820 static int dm_any_congested(void *congested_data, int bdi_bits) 1821 { 1822 int r = bdi_bits; 1823 struct mapped_device *md = congested_data; 1824 struct dm_table *map; 1825 1826 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1827 if (dm_request_based(md)) { 1828 /* 1829 * With request-based DM we only need to check the 1830 * top-level queue for congestion. 1831 */ 1832 struct backing_dev_info *bdi = md->queue->backing_dev_info; 1833 r = bdi->wb.congested->state & bdi_bits; 1834 } else { 1835 map = dm_get_live_table_fast(md); 1836 if (map) 1837 r = dm_table_any_congested(map, bdi_bits); 1838 dm_put_live_table_fast(md); 1839 } 1840 } 1841 1842 return r; 1843 } 1844 1845 /*----------------------------------------------------------------- 1846 * An IDR is used to keep track of allocated minor numbers. 1847 *---------------------------------------------------------------*/ 1848 static void free_minor(int minor) 1849 { 1850 spin_lock(&_minor_lock); 1851 idr_remove(&_minor_idr, minor); 1852 spin_unlock(&_minor_lock); 1853 } 1854 1855 /* 1856 * See if the device with a specific minor # is free. 1857 */ 1858 static int specific_minor(int minor) 1859 { 1860 int r; 1861 1862 if (minor >= (1 << MINORBITS)) 1863 return -EINVAL; 1864 1865 idr_preload(GFP_KERNEL); 1866 spin_lock(&_minor_lock); 1867 1868 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1869 1870 spin_unlock(&_minor_lock); 1871 idr_preload_end(); 1872 if (r < 0) 1873 return r == -ENOSPC ? -EBUSY : r; 1874 return 0; 1875 } 1876 1877 static int next_free_minor(int *minor) 1878 { 1879 int r; 1880 1881 idr_preload(GFP_KERNEL); 1882 spin_lock(&_minor_lock); 1883 1884 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1885 1886 spin_unlock(&_minor_lock); 1887 idr_preload_end(); 1888 if (r < 0) 1889 return r; 1890 *minor = r; 1891 return 0; 1892 } 1893 1894 static const struct block_device_operations dm_blk_dops; 1895 static const struct dax_operations dm_dax_ops; 1896 1897 static void dm_wq_work(struct work_struct *work); 1898 1899 static void cleanup_mapped_device(struct mapped_device *md) 1900 { 1901 if (md->wq) 1902 destroy_workqueue(md->wq); 1903 bioset_exit(&md->bs); 1904 bioset_exit(&md->io_bs); 1905 1906 if (md->dax_dev) { 1907 kill_dax(md->dax_dev); 1908 put_dax(md->dax_dev); 1909 md->dax_dev = NULL; 1910 } 1911 1912 if (md->disk) { 1913 spin_lock(&_minor_lock); 1914 md->disk->private_data = NULL; 1915 spin_unlock(&_minor_lock); 1916 del_gendisk(md->disk); 1917 put_disk(md->disk); 1918 } 1919 1920 if (md->queue) 1921 blk_cleanup_queue(md->queue); 1922 1923 cleanup_srcu_struct(&md->io_barrier); 1924 1925 if (md->bdev) { 1926 bdput(md->bdev); 1927 md->bdev = NULL; 1928 } 1929 1930 mutex_destroy(&md->suspend_lock); 1931 mutex_destroy(&md->type_lock); 1932 mutex_destroy(&md->table_devices_lock); 1933 1934 dm_mq_cleanup_mapped_device(md); 1935 } 1936 1937 /* 1938 * Allocate and initialise a blank device with a given minor. 1939 */ 1940 static struct mapped_device *alloc_dev(int minor) 1941 { 1942 int r, numa_node_id = dm_get_numa_node(); 1943 struct mapped_device *md; 1944 void *old_md; 1945 1946 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1947 if (!md) { 1948 DMWARN("unable to allocate device, out of memory."); 1949 return NULL; 1950 } 1951 1952 if (!try_module_get(THIS_MODULE)) 1953 goto bad_module_get; 1954 1955 /* get a minor number for the dev */ 1956 if (minor == DM_ANY_MINOR) 1957 r = next_free_minor(&minor); 1958 else 1959 r = specific_minor(minor); 1960 if (r < 0) 1961 goto bad_minor; 1962 1963 r = init_srcu_struct(&md->io_barrier); 1964 if (r < 0) 1965 goto bad_io_barrier; 1966 1967 md->numa_node_id = numa_node_id; 1968 md->init_tio_pdu = false; 1969 md->type = DM_TYPE_NONE; 1970 mutex_init(&md->suspend_lock); 1971 mutex_init(&md->type_lock); 1972 mutex_init(&md->table_devices_lock); 1973 spin_lock_init(&md->deferred_lock); 1974 atomic_set(&md->holders, 1); 1975 atomic_set(&md->open_count, 0); 1976 atomic_set(&md->event_nr, 0); 1977 atomic_set(&md->uevent_seq, 0); 1978 INIT_LIST_HEAD(&md->uevent_list); 1979 INIT_LIST_HEAD(&md->table_devices); 1980 spin_lock_init(&md->uevent_lock); 1981 1982 /* 1983 * default to bio-based required ->make_request_fn until DM 1984 * table is loaded and md->type established. If request-based 1985 * table is loaded: blk-mq will override accordingly. 1986 */ 1987 md->queue = blk_alloc_queue(dm_make_request, numa_node_id); 1988 if (!md->queue) 1989 goto bad; 1990 md->queue->queuedata = md; 1991 1992 md->disk = alloc_disk_node(1, md->numa_node_id); 1993 if (!md->disk) 1994 goto bad; 1995 1996 init_waitqueue_head(&md->wait); 1997 INIT_WORK(&md->work, dm_wq_work); 1998 init_waitqueue_head(&md->eventq); 1999 init_completion(&md->kobj_holder.completion); 2000 2001 md->disk->major = _major; 2002 md->disk->first_minor = minor; 2003 md->disk->fops = &dm_blk_dops; 2004 md->disk->queue = md->queue; 2005 md->disk->private_data = md; 2006 sprintf(md->disk->disk_name, "dm-%d", minor); 2007 2008 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 2009 md->dax_dev = alloc_dax(md, md->disk->disk_name, 2010 &dm_dax_ops, 0); 2011 if (IS_ERR(md->dax_dev)) 2012 goto bad; 2013 } 2014 2015 add_disk_no_queue_reg(md->disk); 2016 format_dev_t(md->name, MKDEV(_major, minor)); 2017 2018 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2019 if (!md->wq) 2020 goto bad; 2021 2022 md->bdev = bdget_disk(md->disk, 0); 2023 if (!md->bdev) 2024 goto bad; 2025 2026 dm_stats_init(&md->stats); 2027 2028 /* Populate the mapping, nobody knows we exist yet */ 2029 spin_lock(&_minor_lock); 2030 old_md = idr_replace(&_minor_idr, md, minor); 2031 spin_unlock(&_minor_lock); 2032 2033 BUG_ON(old_md != MINOR_ALLOCED); 2034 2035 return md; 2036 2037 bad: 2038 cleanup_mapped_device(md); 2039 bad_io_barrier: 2040 free_minor(minor); 2041 bad_minor: 2042 module_put(THIS_MODULE); 2043 bad_module_get: 2044 kvfree(md); 2045 return NULL; 2046 } 2047 2048 static void unlock_fs(struct mapped_device *md); 2049 2050 static void free_dev(struct mapped_device *md) 2051 { 2052 int minor = MINOR(disk_devt(md->disk)); 2053 2054 unlock_fs(md); 2055 2056 cleanup_mapped_device(md); 2057 2058 free_table_devices(&md->table_devices); 2059 dm_stats_cleanup(&md->stats); 2060 free_minor(minor); 2061 2062 module_put(THIS_MODULE); 2063 kvfree(md); 2064 } 2065 2066 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2067 { 2068 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2069 int ret = 0; 2070 2071 if (dm_table_bio_based(t)) { 2072 /* 2073 * The md may already have mempools that need changing. 2074 * If so, reload bioset because front_pad may have changed 2075 * because a different table was loaded. 2076 */ 2077 bioset_exit(&md->bs); 2078 bioset_exit(&md->io_bs); 2079 2080 } else if (bioset_initialized(&md->bs)) { 2081 /* 2082 * There's no need to reload with request-based dm 2083 * because the size of front_pad doesn't change. 2084 * Note for future: If you are to reload bioset, 2085 * prep-ed requests in the queue may refer 2086 * to bio from the old bioset, so you must walk 2087 * through the queue to unprep. 2088 */ 2089 goto out; 2090 } 2091 2092 BUG_ON(!p || 2093 bioset_initialized(&md->bs) || 2094 bioset_initialized(&md->io_bs)); 2095 2096 ret = bioset_init_from_src(&md->bs, &p->bs); 2097 if (ret) 2098 goto out; 2099 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2100 if (ret) 2101 bioset_exit(&md->bs); 2102 out: 2103 /* mempool bind completed, no longer need any mempools in the table */ 2104 dm_table_free_md_mempools(t); 2105 return ret; 2106 } 2107 2108 /* 2109 * Bind a table to the device. 2110 */ 2111 static void event_callback(void *context) 2112 { 2113 unsigned long flags; 2114 LIST_HEAD(uevents); 2115 struct mapped_device *md = (struct mapped_device *) context; 2116 2117 spin_lock_irqsave(&md->uevent_lock, flags); 2118 list_splice_init(&md->uevent_list, &uevents); 2119 spin_unlock_irqrestore(&md->uevent_lock, flags); 2120 2121 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2122 2123 atomic_inc(&md->event_nr); 2124 wake_up(&md->eventq); 2125 dm_issue_global_event(); 2126 } 2127 2128 /* 2129 * Protected by md->suspend_lock obtained by dm_swap_table(). 2130 */ 2131 static void __set_size(struct mapped_device *md, sector_t size) 2132 { 2133 lockdep_assert_held(&md->suspend_lock); 2134 2135 set_capacity(md->disk, size); 2136 2137 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2138 } 2139 2140 /* 2141 * Returns old map, which caller must destroy. 2142 */ 2143 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2144 struct queue_limits *limits) 2145 { 2146 struct dm_table *old_map; 2147 struct request_queue *q = md->queue; 2148 bool request_based = dm_table_request_based(t); 2149 sector_t size; 2150 int ret; 2151 2152 lockdep_assert_held(&md->suspend_lock); 2153 2154 size = dm_table_get_size(t); 2155 2156 /* 2157 * Wipe any geometry if the size of the table changed. 2158 */ 2159 if (size != dm_get_size(md)) 2160 memset(&md->geometry, 0, sizeof(md->geometry)); 2161 2162 __set_size(md, size); 2163 2164 dm_table_event_callback(t, event_callback, md); 2165 2166 /* 2167 * The queue hasn't been stopped yet, if the old table type wasn't 2168 * for request-based during suspension. So stop it to prevent 2169 * I/O mapping before resume. 2170 * This must be done before setting the queue restrictions, 2171 * because request-based dm may be run just after the setting. 2172 */ 2173 if (request_based) 2174 dm_stop_queue(q); 2175 2176 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2177 /* 2178 * Leverage the fact that request-based DM targets and 2179 * NVMe bio based targets are immutable singletons 2180 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2181 * and __process_bio. 2182 */ 2183 md->immutable_target = dm_table_get_immutable_target(t); 2184 } 2185 2186 ret = __bind_mempools(md, t); 2187 if (ret) { 2188 old_map = ERR_PTR(ret); 2189 goto out; 2190 } 2191 2192 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2193 rcu_assign_pointer(md->map, (void *)t); 2194 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2195 2196 dm_table_set_restrictions(t, q, limits); 2197 if (old_map) 2198 dm_sync_table(md); 2199 2200 out: 2201 return old_map; 2202 } 2203 2204 /* 2205 * Returns unbound table for the caller to free. 2206 */ 2207 static struct dm_table *__unbind(struct mapped_device *md) 2208 { 2209 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2210 2211 if (!map) 2212 return NULL; 2213 2214 dm_table_event_callback(map, NULL, NULL); 2215 RCU_INIT_POINTER(md->map, NULL); 2216 dm_sync_table(md); 2217 2218 return map; 2219 } 2220 2221 /* 2222 * Constructor for a new device. 2223 */ 2224 int dm_create(int minor, struct mapped_device **result) 2225 { 2226 int r; 2227 struct mapped_device *md; 2228 2229 md = alloc_dev(minor); 2230 if (!md) 2231 return -ENXIO; 2232 2233 r = dm_sysfs_init(md); 2234 if (r) { 2235 free_dev(md); 2236 return r; 2237 } 2238 2239 *result = md; 2240 return 0; 2241 } 2242 2243 /* 2244 * Functions to manage md->type. 2245 * All are required to hold md->type_lock. 2246 */ 2247 void dm_lock_md_type(struct mapped_device *md) 2248 { 2249 mutex_lock(&md->type_lock); 2250 } 2251 2252 void dm_unlock_md_type(struct mapped_device *md) 2253 { 2254 mutex_unlock(&md->type_lock); 2255 } 2256 2257 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2258 { 2259 BUG_ON(!mutex_is_locked(&md->type_lock)); 2260 md->type = type; 2261 } 2262 2263 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2264 { 2265 return md->type; 2266 } 2267 2268 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2269 { 2270 return md->immutable_target_type; 2271 } 2272 2273 /* 2274 * The queue_limits are only valid as long as you have a reference 2275 * count on 'md'. 2276 */ 2277 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2278 { 2279 BUG_ON(!atomic_read(&md->holders)); 2280 return &md->queue->limits; 2281 } 2282 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2283 2284 static void dm_init_congested_fn(struct mapped_device *md) 2285 { 2286 md->queue->backing_dev_info->congested_data = md; 2287 md->queue->backing_dev_info->congested_fn = dm_any_congested; 2288 } 2289 2290 /* 2291 * Setup the DM device's queue based on md's type 2292 */ 2293 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2294 { 2295 int r; 2296 struct queue_limits limits; 2297 enum dm_queue_mode type = dm_get_md_type(md); 2298 2299 switch (type) { 2300 case DM_TYPE_REQUEST_BASED: 2301 r = dm_mq_init_request_queue(md, t); 2302 if (r) { 2303 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2304 return r; 2305 } 2306 dm_init_congested_fn(md); 2307 break; 2308 case DM_TYPE_BIO_BASED: 2309 case DM_TYPE_DAX_BIO_BASED: 2310 case DM_TYPE_NVME_BIO_BASED: 2311 dm_init_congested_fn(md); 2312 break; 2313 case DM_TYPE_NONE: 2314 WARN_ON_ONCE(true); 2315 break; 2316 } 2317 2318 r = dm_calculate_queue_limits(t, &limits); 2319 if (r) { 2320 DMERR("Cannot calculate initial queue limits"); 2321 return r; 2322 } 2323 dm_table_set_restrictions(t, md->queue, &limits); 2324 blk_register_queue(md->disk); 2325 2326 return 0; 2327 } 2328 2329 struct mapped_device *dm_get_md(dev_t dev) 2330 { 2331 struct mapped_device *md; 2332 unsigned minor = MINOR(dev); 2333 2334 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2335 return NULL; 2336 2337 spin_lock(&_minor_lock); 2338 2339 md = idr_find(&_minor_idr, minor); 2340 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2341 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2342 md = NULL; 2343 goto out; 2344 } 2345 dm_get(md); 2346 out: 2347 spin_unlock(&_minor_lock); 2348 2349 return md; 2350 } 2351 EXPORT_SYMBOL_GPL(dm_get_md); 2352 2353 void *dm_get_mdptr(struct mapped_device *md) 2354 { 2355 return md->interface_ptr; 2356 } 2357 2358 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2359 { 2360 md->interface_ptr = ptr; 2361 } 2362 2363 void dm_get(struct mapped_device *md) 2364 { 2365 atomic_inc(&md->holders); 2366 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2367 } 2368 2369 int dm_hold(struct mapped_device *md) 2370 { 2371 spin_lock(&_minor_lock); 2372 if (test_bit(DMF_FREEING, &md->flags)) { 2373 spin_unlock(&_minor_lock); 2374 return -EBUSY; 2375 } 2376 dm_get(md); 2377 spin_unlock(&_minor_lock); 2378 return 0; 2379 } 2380 EXPORT_SYMBOL_GPL(dm_hold); 2381 2382 const char *dm_device_name(struct mapped_device *md) 2383 { 2384 return md->name; 2385 } 2386 EXPORT_SYMBOL_GPL(dm_device_name); 2387 2388 static void __dm_destroy(struct mapped_device *md, bool wait) 2389 { 2390 struct dm_table *map; 2391 int srcu_idx; 2392 2393 might_sleep(); 2394 2395 spin_lock(&_minor_lock); 2396 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2397 set_bit(DMF_FREEING, &md->flags); 2398 spin_unlock(&_minor_lock); 2399 2400 blk_set_queue_dying(md->queue); 2401 2402 /* 2403 * Take suspend_lock so that presuspend and postsuspend methods 2404 * do not race with internal suspend. 2405 */ 2406 mutex_lock(&md->suspend_lock); 2407 map = dm_get_live_table(md, &srcu_idx); 2408 if (!dm_suspended_md(md)) { 2409 dm_table_presuspend_targets(map); 2410 set_bit(DMF_SUSPENDED, &md->flags); 2411 dm_table_postsuspend_targets(map); 2412 } 2413 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2414 dm_put_live_table(md, srcu_idx); 2415 mutex_unlock(&md->suspend_lock); 2416 2417 /* 2418 * Rare, but there may be I/O requests still going to complete, 2419 * for example. Wait for all references to disappear. 2420 * No one should increment the reference count of the mapped_device, 2421 * after the mapped_device state becomes DMF_FREEING. 2422 */ 2423 if (wait) 2424 while (atomic_read(&md->holders)) 2425 msleep(1); 2426 else if (atomic_read(&md->holders)) 2427 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2428 dm_device_name(md), atomic_read(&md->holders)); 2429 2430 dm_sysfs_exit(md); 2431 dm_table_destroy(__unbind(md)); 2432 free_dev(md); 2433 } 2434 2435 void dm_destroy(struct mapped_device *md) 2436 { 2437 __dm_destroy(md, true); 2438 } 2439 2440 void dm_destroy_immediate(struct mapped_device *md) 2441 { 2442 __dm_destroy(md, false); 2443 } 2444 2445 void dm_put(struct mapped_device *md) 2446 { 2447 atomic_dec(&md->holders); 2448 } 2449 EXPORT_SYMBOL_GPL(dm_put); 2450 2451 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2452 { 2453 int r = 0; 2454 DEFINE_WAIT(wait); 2455 2456 while (1) { 2457 prepare_to_wait(&md->wait, &wait, task_state); 2458 2459 if (!md_in_flight(md)) 2460 break; 2461 2462 if (signal_pending_state(task_state, current)) { 2463 r = -EINTR; 2464 break; 2465 } 2466 2467 io_schedule(); 2468 } 2469 finish_wait(&md->wait, &wait); 2470 2471 return r; 2472 } 2473 2474 /* 2475 * Process the deferred bios 2476 */ 2477 static void dm_wq_work(struct work_struct *work) 2478 { 2479 struct mapped_device *md = container_of(work, struct mapped_device, 2480 work); 2481 struct bio *c; 2482 int srcu_idx; 2483 struct dm_table *map; 2484 2485 map = dm_get_live_table(md, &srcu_idx); 2486 2487 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2488 spin_lock_irq(&md->deferred_lock); 2489 c = bio_list_pop(&md->deferred); 2490 spin_unlock_irq(&md->deferred_lock); 2491 2492 if (!c) 2493 break; 2494 2495 if (dm_request_based(md)) 2496 (void) generic_make_request(c); 2497 else 2498 (void) dm_process_bio(md, map, c); 2499 } 2500 2501 dm_put_live_table(md, srcu_idx); 2502 } 2503 2504 static void dm_queue_flush(struct mapped_device *md) 2505 { 2506 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2507 smp_mb__after_atomic(); 2508 queue_work(md->wq, &md->work); 2509 } 2510 2511 /* 2512 * Swap in a new table, returning the old one for the caller to destroy. 2513 */ 2514 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2515 { 2516 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2517 struct queue_limits limits; 2518 int r; 2519 2520 mutex_lock(&md->suspend_lock); 2521 2522 /* device must be suspended */ 2523 if (!dm_suspended_md(md)) 2524 goto out; 2525 2526 /* 2527 * If the new table has no data devices, retain the existing limits. 2528 * This helps multipath with queue_if_no_path if all paths disappear, 2529 * then new I/O is queued based on these limits, and then some paths 2530 * reappear. 2531 */ 2532 if (dm_table_has_no_data_devices(table)) { 2533 live_map = dm_get_live_table_fast(md); 2534 if (live_map) 2535 limits = md->queue->limits; 2536 dm_put_live_table_fast(md); 2537 } 2538 2539 if (!live_map) { 2540 r = dm_calculate_queue_limits(table, &limits); 2541 if (r) { 2542 map = ERR_PTR(r); 2543 goto out; 2544 } 2545 } 2546 2547 map = __bind(md, table, &limits); 2548 dm_issue_global_event(); 2549 2550 out: 2551 mutex_unlock(&md->suspend_lock); 2552 return map; 2553 } 2554 2555 /* 2556 * Functions to lock and unlock any filesystem running on the 2557 * device. 2558 */ 2559 static int lock_fs(struct mapped_device *md) 2560 { 2561 int r; 2562 2563 WARN_ON(md->frozen_sb); 2564 2565 md->frozen_sb = freeze_bdev(md->bdev); 2566 if (IS_ERR(md->frozen_sb)) { 2567 r = PTR_ERR(md->frozen_sb); 2568 md->frozen_sb = NULL; 2569 return r; 2570 } 2571 2572 set_bit(DMF_FROZEN, &md->flags); 2573 2574 return 0; 2575 } 2576 2577 static void unlock_fs(struct mapped_device *md) 2578 { 2579 if (!test_bit(DMF_FROZEN, &md->flags)) 2580 return; 2581 2582 thaw_bdev(md->bdev, md->frozen_sb); 2583 md->frozen_sb = NULL; 2584 clear_bit(DMF_FROZEN, &md->flags); 2585 } 2586 2587 /* 2588 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2589 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2590 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2591 * 2592 * If __dm_suspend returns 0, the device is completely quiescent 2593 * now. There is no request-processing activity. All new requests 2594 * are being added to md->deferred list. 2595 */ 2596 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2597 unsigned suspend_flags, long task_state, 2598 int dmf_suspended_flag) 2599 { 2600 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2601 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2602 int r; 2603 2604 lockdep_assert_held(&md->suspend_lock); 2605 2606 /* 2607 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2608 * This flag is cleared before dm_suspend returns. 2609 */ 2610 if (noflush) 2611 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2612 else 2613 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2614 2615 /* 2616 * This gets reverted if there's an error later and the targets 2617 * provide the .presuspend_undo hook. 2618 */ 2619 dm_table_presuspend_targets(map); 2620 2621 /* 2622 * Flush I/O to the device. 2623 * Any I/O submitted after lock_fs() may not be flushed. 2624 * noflush takes precedence over do_lockfs. 2625 * (lock_fs() flushes I/Os and waits for them to complete.) 2626 */ 2627 if (!noflush && do_lockfs) { 2628 r = lock_fs(md); 2629 if (r) { 2630 dm_table_presuspend_undo_targets(map); 2631 return r; 2632 } 2633 } 2634 2635 /* 2636 * Here we must make sure that no processes are submitting requests 2637 * to target drivers i.e. no one may be executing 2638 * __split_and_process_bio. This is called from dm_request and 2639 * dm_wq_work. 2640 * 2641 * To get all processes out of __split_and_process_bio in dm_request, 2642 * we take the write lock. To prevent any process from reentering 2643 * __split_and_process_bio from dm_request and quiesce the thread 2644 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2645 * flush_workqueue(md->wq). 2646 */ 2647 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2648 if (map) 2649 synchronize_srcu(&md->io_barrier); 2650 2651 /* 2652 * Stop md->queue before flushing md->wq in case request-based 2653 * dm defers requests to md->wq from md->queue. 2654 */ 2655 if (dm_request_based(md)) 2656 dm_stop_queue(md->queue); 2657 2658 flush_workqueue(md->wq); 2659 2660 /* 2661 * At this point no more requests are entering target request routines. 2662 * We call dm_wait_for_completion to wait for all existing requests 2663 * to finish. 2664 */ 2665 r = dm_wait_for_completion(md, task_state); 2666 if (!r) 2667 set_bit(dmf_suspended_flag, &md->flags); 2668 2669 if (noflush) 2670 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2671 if (map) 2672 synchronize_srcu(&md->io_barrier); 2673 2674 /* were we interrupted ? */ 2675 if (r < 0) { 2676 dm_queue_flush(md); 2677 2678 if (dm_request_based(md)) 2679 dm_start_queue(md->queue); 2680 2681 unlock_fs(md); 2682 dm_table_presuspend_undo_targets(map); 2683 /* pushback list is already flushed, so skip flush */ 2684 } 2685 2686 return r; 2687 } 2688 2689 /* 2690 * We need to be able to change a mapping table under a mounted 2691 * filesystem. For example we might want to move some data in 2692 * the background. Before the table can be swapped with 2693 * dm_bind_table, dm_suspend must be called to flush any in 2694 * flight bios and ensure that any further io gets deferred. 2695 */ 2696 /* 2697 * Suspend mechanism in request-based dm. 2698 * 2699 * 1. Flush all I/Os by lock_fs() if needed. 2700 * 2. Stop dispatching any I/O by stopping the request_queue. 2701 * 3. Wait for all in-flight I/Os to be completed or requeued. 2702 * 2703 * To abort suspend, start the request_queue. 2704 */ 2705 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2706 { 2707 struct dm_table *map = NULL; 2708 int r = 0; 2709 2710 retry: 2711 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2712 2713 if (dm_suspended_md(md)) { 2714 r = -EINVAL; 2715 goto out_unlock; 2716 } 2717 2718 if (dm_suspended_internally_md(md)) { 2719 /* already internally suspended, wait for internal resume */ 2720 mutex_unlock(&md->suspend_lock); 2721 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2722 if (r) 2723 return r; 2724 goto retry; 2725 } 2726 2727 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2728 2729 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2730 if (r) 2731 goto out_unlock; 2732 2733 dm_table_postsuspend_targets(map); 2734 2735 out_unlock: 2736 mutex_unlock(&md->suspend_lock); 2737 return r; 2738 } 2739 2740 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2741 { 2742 if (map) { 2743 int r = dm_table_resume_targets(map); 2744 if (r) 2745 return r; 2746 } 2747 2748 dm_queue_flush(md); 2749 2750 /* 2751 * Flushing deferred I/Os must be done after targets are resumed 2752 * so that mapping of targets can work correctly. 2753 * Request-based dm is queueing the deferred I/Os in its request_queue. 2754 */ 2755 if (dm_request_based(md)) 2756 dm_start_queue(md->queue); 2757 2758 unlock_fs(md); 2759 2760 return 0; 2761 } 2762 2763 int dm_resume(struct mapped_device *md) 2764 { 2765 int r; 2766 struct dm_table *map = NULL; 2767 2768 retry: 2769 r = -EINVAL; 2770 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2771 2772 if (!dm_suspended_md(md)) 2773 goto out; 2774 2775 if (dm_suspended_internally_md(md)) { 2776 /* already internally suspended, wait for internal resume */ 2777 mutex_unlock(&md->suspend_lock); 2778 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2779 if (r) 2780 return r; 2781 goto retry; 2782 } 2783 2784 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2785 if (!map || !dm_table_get_size(map)) 2786 goto out; 2787 2788 r = __dm_resume(md, map); 2789 if (r) 2790 goto out; 2791 2792 clear_bit(DMF_SUSPENDED, &md->flags); 2793 out: 2794 mutex_unlock(&md->suspend_lock); 2795 2796 return r; 2797 } 2798 2799 /* 2800 * Internal suspend/resume works like userspace-driven suspend. It waits 2801 * until all bios finish and prevents issuing new bios to the target drivers. 2802 * It may be used only from the kernel. 2803 */ 2804 2805 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2806 { 2807 struct dm_table *map = NULL; 2808 2809 lockdep_assert_held(&md->suspend_lock); 2810 2811 if (md->internal_suspend_count++) 2812 return; /* nested internal suspend */ 2813 2814 if (dm_suspended_md(md)) { 2815 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2816 return; /* nest suspend */ 2817 } 2818 2819 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2820 2821 /* 2822 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2823 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2824 * would require changing .presuspend to return an error -- avoid this 2825 * until there is a need for more elaborate variants of internal suspend. 2826 */ 2827 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2828 DMF_SUSPENDED_INTERNALLY); 2829 2830 dm_table_postsuspend_targets(map); 2831 } 2832 2833 static void __dm_internal_resume(struct mapped_device *md) 2834 { 2835 BUG_ON(!md->internal_suspend_count); 2836 2837 if (--md->internal_suspend_count) 2838 return; /* resume from nested internal suspend */ 2839 2840 if (dm_suspended_md(md)) 2841 goto done; /* resume from nested suspend */ 2842 2843 /* 2844 * NOTE: existing callers don't need to call dm_table_resume_targets 2845 * (which may fail -- so best to avoid it for now by passing NULL map) 2846 */ 2847 (void) __dm_resume(md, NULL); 2848 2849 done: 2850 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2851 smp_mb__after_atomic(); 2852 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2853 } 2854 2855 void dm_internal_suspend_noflush(struct mapped_device *md) 2856 { 2857 mutex_lock(&md->suspend_lock); 2858 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2859 mutex_unlock(&md->suspend_lock); 2860 } 2861 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2862 2863 void dm_internal_resume(struct mapped_device *md) 2864 { 2865 mutex_lock(&md->suspend_lock); 2866 __dm_internal_resume(md); 2867 mutex_unlock(&md->suspend_lock); 2868 } 2869 EXPORT_SYMBOL_GPL(dm_internal_resume); 2870 2871 /* 2872 * Fast variants of internal suspend/resume hold md->suspend_lock, 2873 * which prevents interaction with userspace-driven suspend. 2874 */ 2875 2876 void dm_internal_suspend_fast(struct mapped_device *md) 2877 { 2878 mutex_lock(&md->suspend_lock); 2879 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2880 return; 2881 2882 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2883 synchronize_srcu(&md->io_barrier); 2884 flush_workqueue(md->wq); 2885 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2886 } 2887 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2888 2889 void dm_internal_resume_fast(struct mapped_device *md) 2890 { 2891 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2892 goto done; 2893 2894 dm_queue_flush(md); 2895 2896 done: 2897 mutex_unlock(&md->suspend_lock); 2898 } 2899 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2900 2901 /*----------------------------------------------------------------- 2902 * Event notification. 2903 *---------------------------------------------------------------*/ 2904 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2905 unsigned cookie) 2906 { 2907 char udev_cookie[DM_COOKIE_LENGTH]; 2908 char *envp[] = { udev_cookie, NULL }; 2909 2910 if (!cookie) 2911 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2912 else { 2913 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2914 DM_COOKIE_ENV_VAR_NAME, cookie); 2915 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2916 action, envp); 2917 } 2918 } 2919 2920 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2921 { 2922 return atomic_add_return(1, &md->uevent_seq); 2923 } 2924 2925 uint32_t dm_get_event_nr(struct mapped_device *md) 2926 { 2927 return atomic_read(&md->event_nr); 2928 } 2929 2930 int dm_wait_event(struct mapped_device *md, int event_nr) 2931 { 2932 return wait_event_interruptible(md->eventq, 2933 (event_nr != atomic_read(&md->event_nr))); 2934 } 2935 2936 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2937 { 2938 unsigned long flags; 2939 2940 spin_lock_irqsave(&md->uevent_lock, flags); 2941 list_add(elist, &md->uevent_list); 2942 spin_unlock_irqrestore(&md->uevent_lock, flags); 2943 } 2944 2945 /* 2946 * The gendisk is only valid as long as you have a reference 2947 * count on 'md'. 2948 */ 2949 struct gendisk *dm_disk(struct mapped_device *md) 2950 { 2951 return md->disk; 2952 } 2953 EXPORT_SYMBOL_GPL(dm_disk); 2954 2955 struct kobject *dm_kobject(struct mapped_device *md) 2956 { 2957 return &md->kobj_holder.kobj; 2958 } 2959 2960 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2961 { 2962 struct mapped_device *md; 2963 2964 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2965 2966 spin_lock(&_minor_lock); 2967 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2968 md = NULL; 2969 goto out; 2970 } 2971 dm_get(md); 2972 out: 2973 spin_unlock(&_minor_lock); 2974 2975 return md; 2976 } 2977 2978 int dm_suspended_md(struct mapped_device *md) 2979 { 2980 return test_bit(DMF_SUSPENDED, &md->flags); 2981 } 2982 2983 int dm_suspended_internally_md(struct mapped_device *md) 2984 { 2985 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2986 } 2987 2988 int dm_test_deferred_remove_flag(struct mapped_device *md) 2989 { 2990 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2991 } 2992 2993 int dm_suspended(struct dm_target *ti) 2994 { 2995 return dm_suspended_md(dm_table_get_md(ti->table)); 2996 } 2997 EXPORT_SYMBOL_GPL(dm_suspended); 2998 2999 int dm_noflush_suspending(struct dm_target *ti) 3000 { 3001 return __noflush_suspending(dm_table_get_md(ti->table)); 3002 } 3003 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3004 3005 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 3006 unsigned integrity, unsigned per_io_data_size, 3007 unsigned min_pool_size) 3008 { 3009 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 3010 unsigned int pool_size = 0; 3011 unsigned int front_pad, io_front_pad; 3012 int ret; 3013 3014 if (!pools) 3015 return NULL; 3016 3017 switch (type) { 3018 case DM_TYPE_BIO_BASED: 3019 case DM_TYPE_DAX_BIO_BASED: 3020 case DM_TYPE_NVME_BIO_BASED: 3021 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 3022 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3023 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 3024 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 3025 if (ret) 3026 goto out; 3027 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3028 goto out; 3029 break; 3030 case DM_TYPE_REQUEST_BASED: 3031 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3032 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3033 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3034 break; 3035 default: 3036 BUG(); 3037 } 3038 3039 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3040 if (ret) 3041 goto out; 3042 3043 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3044 goto out; 3045 3046 return pools; 3047 3048 out: 3049 dm_free_md_mempools(pools); 3050 3051 return NULL; 3052 } 3053 3054 void dm_free_md_mempools(struct dm_md_mempools *pools) 3055 { 3056 if (!pools) 3057 return; 3058 3059 bioset_exit(&pools->bs); 3060 bioset_exit(&pools->io_bs); 3061 3062 kfree(pools); 3063 } 3064 3065 struct dm_pr { 3066 u64 old_key; 3067 u64 new_key; 3068 u32 flags; 3069 bool fail_early; 3070 }; 3071 3072 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3073 void *data) 3074 { 3075 struct mapped_device *md = bdev->bd_disk->private_data; 3076 struct dm_table *table; 3077 struct dm_target *ti; 3078 int ret = -ENOTTY, srcu_idx; 3079 3080 table = dm_get_live_table(md, &srcu_idx); 3081 if (!table || !dm_table_get_size(table)) 3082 goto out; 3083 3084 /* We only support devices that have a single target */ 3085 if (dm_table_get_num_targets(table) != 1) 3086 goto out; 3087 ti = dm_table_get_target(table, 0); 3088 3089 ret = -EINVAL; 3090 if (!ti->type->iterate_devices) 3091 goto out; 3092 3093 ret = ti->type->iterate_devices(ti, fn, data); 3094 out: 3095 dm_put_live_table(md, srcu_idx); 3096 return ret; 3097 } 3098 3099 /* 3100 * For register / unregister we need to manually call out to every path. 3101 */ 3102 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3103 sector_t start, sector_t len, void *data) 3104 { 3105 struct dm_pr *pr = data; 3106 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3107 3108 if (!ops || !ops->pr_register) 3109 return -EOPNOTSUPP; 3110 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3111 } 3112 3113 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3114 u32 flags) 3115 { 3116 struct dm_pr pr = { 3117 .old_key = old_key, 3118 .new_key = new_key, 3119 .flags = flags, 3120 .fail_early = true, 3121 }; 3122 int ret; 3123 3124 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3125 if (ret && new_key) { 3126 /* unregister all paths if we failed to register any path */ 3127 pr.old_key = new_key; 3128 pr.new_key = 0; 3129 pr.flags = 0; 3130 pr.fail_early = false; 3131 dm_call_pr(bdev, __dm_pr_register, &pr); 3132 } 3133 3134 return ret; 3135 } 3136 3137 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3138 u32 flags) 3139 { 3140 struct mapped_device *md = bdev->bd_disk->private_data; 3141 const struct pr_ops *ops; 3142 int r, srcu_idx; 3143 3144 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3145 if (r < 0) 3146 goto out; 3147 3148 ops = bdev->bd_disk->fops->pr_ops; 3149 if (ops && ops->pr_reserve) 3150 r = ops->pr_reserve(bdev, key, type, flags); 3151 else 3152 r = -EOPNOTSUPP; 3153 out: 3154 dm_unprepare_ioctl(md, srcu_idx); 3155 return r; 3156 } 3157 3158 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3159 { 3160 struct mapped_device *md = bdev->bd_disk->private_data; 3161 const struct pr_ops *ops; 3162 int r, srcu_idx; 3163 3164 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3165 if (r < 0) 3166 goto out; 3167 3168 ops = bdev->bd_disk->fops->pr_ops; 3169 if (ops && ops->pr_release) 3170 r = ops->pr_release(bdev, key, type); 3171 else 3172 r = -EOPNOTSUPP; 3173 out: 3174 dm_unprepare_ioctl(md, srcu_idx); 3175 return r; 3176 } 3177 3178 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3179 enum pr_type type, bool abort) 3180 { 3181 struct mapped_device *md = bdev->bd_disk->private_data; 3182 const struct pr_ops *ops; 3183 int r, srcu_idx; 3184 3185 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3186 if (r < 0) 3187 goto out; 3188 3189 ops = bdev->bd_disk->fops->pr_ops; 3190 if (ops && ops->pr_preempt) 3191 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3192 else 3193 r = -EOPNOTSUPP; 3194 out: 3195 dm_unprepare_ioctl(md, srcu_idx); 3196 return r; 3197 } 3198 3199 static int dm_pr_clear(struct block_device *bdev, u64 key) 3200 { 3201 struct mapped_device *md = bdev->bd_disk->private_data; 3202 const struct pr_ops *ops; 3203 int r, srcu_idx; 3204 3205 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3206 if (r < 0) 3207 goto out; 3208 3209 ops = bdev->bd_disk->fops->pr_ops; 3210 if (ops && ops->pr_clear) 3211 r = ops->pr_clear(bdev, key); 3212 else 3213 r = -EOPNOTSUPP; 3214 out: 3215 dm_unprepare_ioctl(md, srcu_idx); 3216 return r; 3217 } 3218 3219 static const struct pr_ops dm_pr_ops = { 3220 .pr_register = dm_pr_register, 3221 .pr_reserve = dm_pr_reserve, 3222 .pr_release = dm_pr_release, 3223 .pr_preempt = dm_pr_preempt, 3224 .pr_clear = dm_pr_clear, 3225 }; 3226 3227 static const struct block_device_operations dm_blk_dops = { 3228 .open = dm_blk_open, 3229 .release = dm_blk_close, 3230 .ioctl = dm_blk_ioctl, 3231 .getgeo = dm_blk_getgeo, 3232 .report_zones = dm_blk_report_zones, 3233 .pr_ops = &dm_pr_ops, 3234 .owner = THIS_MODULE 3235 }; 3236 3237 static const struct dax_operations dm_dax_ops = { 3238 .direct_access = dm_dax_direct_access, 3239 .dax_supported = dm_dax_supported, 3240 .copy_from_iter = dm_dax_copy_from_iter, 3241 .copy_to_iter = dm_dax_copy_to_iter, 3242 .zero_page_range = dm_dax_zero_page_range, 3243 }; 3244 3245 /* 3246 * module hooks 3247 */ 3248 module_init(dm_init); 3249 module_exit(dm_exit); 3250 3251 module_param(major, uint, 0); 3252 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3253 3254 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3255 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3256 3257 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3258 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3259 3260 MODULE_DESCRIPTION(DM_NAME " driver"); 3261 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3262 MODULE_LICENSE("GPL"); 3263