1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/signal.h> 19 #include <linux/blkpg.h> 20 #include <linux/bio.h> 21 #include <linux/mempool.h> 22 #include <linux/dax.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/uio.h> 26 #include <linux/hdreg.h> 27 #include <linux/delay.h> 28 #include <linux/wait.h> 29 #include <linux/pr.h> 30 #include <linux/refcount.h> 31 #include <linux/part_stat.h> 32 #include <linux/blk-crypto.h> 33 #include <linux/blk-crypto-profile.h> 34 35 #define DM_MSG_PREFIX "core" 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 /* 45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 46 * dm_io into one list, and reuse bio->bi_private as the list head. Before 47 * ending this fs bio, we will recover its ->bi_private. 48 */ 49 #define REQ_DM_POLL_LIST REQ_DRV 50 51 static const char *_name = DM_NAME; 52 53 static unsigned int major; 54 static unsigned int _major; 55 56 static DEFINE_IDR(_minor_idr); 57 58 static DEFINE_SPINLOCK(_minor_lock); 59 60 static void do_deferred_remove(struct work_struct *w); 61 62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 63 64 static struct workqueue_struct *deferred_remove_workqueue; 65 66 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 68 69 void dm_issue_global_event(void) 70 { 71 atomic_inc(&dm_global_event_nr); 72 wake_up(&dm_global_eventq); 73 } 74 75 DEFINE_STATIC_KEY_FALSE(stats_enabled); 76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 77 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 78 79 /* 80 * One of these is allocated (on-stack) per original bio. 81 */ 82 struct clone_info { 83 struct dm_table *map; 84 struct bio *bio; 85 struct dm_io *io; 86 sector_t sector; 87 unsigned int sector_count; 88 bool is_abnormal_io:1; 89 bool submit_as_polled:1; 90 }; 91 92 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 93 { 94 return container_of(clone, struct dm_target_io, clone); 95 } 96 97 void *dm_per_bio_data(struct bio *bio, size_t data_size) 98 { 99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 101 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 102 } 103 EXPORT_SYMBOL_GPL(dm_per_bio_data); 104 105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 106 { 107 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 108 109 if (io->magic == DM_IO_MAGIC) 110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 111 BUG_ON(io->magic != DM_TIO_MAGIC); 112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 113 } 114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 115 116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 117 { 118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 119 } 120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 121 122 #define MINOR_ALLOCED ((void *)-1) 123 124 #define DM_NUMA_NODE NUMA_NO_NODE 125 static int dm_numa_node = DM_NUMA_NODE; 126 127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 128 static int swap_bios = DEFAULT_SWAP_BIOS; 129 static int get_swap_bios(void) 130 { 131 int latch = READ_ONCE(swap_bios); 132 133 if (unlikely(latch <= 0)) 134 latch = DEFAULT_SWAP_BIOS; 135 return latch; 136 } 137 138 struct table_device { 139 struct list_head list; 140 refcount_t count; 141 struct dm_dev dm_dev; 142 }; 143 144 /* 145 * Bio-based DM's mempools' reserved IOs set by the user. 146 */ 147 #define RESERVED_BIO_BASED_IOS 16 148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 149 150 static int __dm_get_module_param_int(int *module_param, int min, int max) 151 { 152 int param = READ_ONCE(*module_param); 153 int modified_param = 0; 154 bool modified = true; 155 156 if (param < min) 157 modified_param = min; 158 else if (param > max) 159 modified_param = max; 160 else 161 modified = false; 162 163 if (modified) { 164 (void)cmpxchg(module_param, param, modified_param); 165 param = modified_param; 166 } 167 168 return param; 169 } 170 171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 172 { 173 unsigned int param = READ_ONCE(*module_param); 174 unsigned int modified_param = 0; 175 176 if (!param) 177 modified_param = def; 178 else if (param > max) 179 modified_param = max; 180 181 if (modified_param) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned int dm_get_reserved_bio_based_ios(void) 190 { 191 return __dm_get_module_param(&reserved_bio_based_ios, 192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 193 } 194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 195 196 static unsigned int dm_get_numa_node(void) 197 { 198 return __dm_get_module_param_int(&dm_numa_node, 199 DM_NUMA_NODE, num_online_nodes() - 1); 200 } 201 202 static int __init local_init(void) 203 { 204 int r; 205 206 r = dm_uevent_init(); 207 if (r) 208 return r; 209 210 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); 211 if (!deferred_remove_workqueue) { 212 r = -ENOMEM; 213 goto out_uevent_exit; 214 } 215 216 _major = major; 217 r = register_blkdev(_major, _name); 218 if (r < 0) 219 goto out_free_workqueue; 220 221 if (!_major) 222 _major = r; 223 224 return 0; 225 226 out_free_workqueue: 227 destroy_workqueue(deferred_remove_workqueue); 228 out_uevent_exit: 229 dm_uevent_exit(); 230 231 return r; 232 } 233 234 static void local_exit(void) 235 { 236 destroy_workqueue(deferred_remove_workqueue); 237 238 unregister_blkdev(_major, _name); 239 dm_uevent_exit(); 240 241 _major = 0; 242 243 DMINFO("cleaned up"); 244 } 245 246 static int (*_inits[])(void) __initdata = { 247 local_init, 248 dm_target_init, 249 dm_linear_init, 250 dm_stripe_init, 251 dm_io_init, 252 dm_kcopyd_init, 253 dm_interface_init, 254 dm_statistics_init, 255 }; 256 257 static void (*_exits[])(void) = { 258 local_exit, 259 dm_target_exit, 260 dm_linear_exit, 261 dm_stripe_exit, 262 dm_io_exit, 263 dm_kcopyd_exit, 264 dm_interface_exit, 265 dm_statistics_exit, 266 }; 267 268 static int __init dm_init(void) 269 { 270 const int count = ARRAY_SIZE(_inits); 271 int r, i; 272 273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 275 " Duplicate IMA measurements will not be recorded in the IMA log."); 276 #endif 277 278 for (i = 0; i < count; i++) { 279 r = _inits[i](); 280 if (r) 281 goto bad; 282 } 283 284 return 0; 285 bad: 286 while (i--) 287 _exits[i](); 288 289 return r; 290 } 291 292 static void __exit dm_exit(void) 293 { 294 int i = ARRAY_SIZE(_exits); 295 296 while (i--) 297 _exits[i](); 298 299 /* 300 * Should be empty by this point. 301 */ 302 idr_destroy(&_minor_idr); 303 } 304 305 /* 306 * Block device functions 307 */ 308 int dm_deleting_md(struct mapped_device *md) 309 { 310 return test_bit(DMF_DELETING, &md->flags); 311 } 312 313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 314 { 315 struct mapped_device *md; 316 317 spin_lock(&_minor_lock); 318 319 md = disk->private_data; 320 if (!md) 321 goto out; 322 323 if (test_bit(DMF_FREEING, &md->flags) || 324 dm_deleting_md(md)) { 325 md = NULL; 326 goto out; 327 } 328 329 dm_get(md); 330 atomic_inc(&md->open_count); 331 out: 332 spin_unlock(&_minor_lock); 333 334 return md ? 0 : -ENXIO; 335 } 336 337 static void dm_blk_close(struct gendisk *disk) 338 { 339 struct mapped_device *md; 340 341 spin_lock(&_minor_lock); 342 343 md = disk->private_data; 344 if (WARN_ON(!md)) 345 goto out; 346 347 if (atomic_dec_and_test(&md->open_count) && 348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 349 queue_work(deferred_remove_workqueue, &deferred_remove_work); 350 351 dm_put(md); 352 out: 353 spin_unlock(&_minor_lock); 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) { 371 r = -EBUSY; 372 if (mark_deferred) 373 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 375 r = -EEXIST; 376 else 377 set_bit(DMF_DELETING, &md->flags); 378 379 spin_unlock(&_minor_lock); 380 381 return r; 382 } 383 384 int dm_cancel_deferred_remove(struct mapped_device *md) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (test_bit(DMF_DELETING, &md->flags)) 391 r = -EBUSY; 392 else 393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 static void do_deferred_remove(struct work_struct *w) 401 { 402 dm_deferred_remove(); 403 } 404 405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 406 { 407 struct mapped_device *md = bdev->bd_disk->private_data; 408 409 return dm_get_geometry(md, geo); 410 } 411 412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 413 struct block_device **bdev) 414 { 415 struct dm_target *ti; 416 struct dm_table *map; 417 int r; 418 419 retry: 420 r = -ENOTTY; 421 map = dm_get_live_table(md, srcu_idx); 422 if (!map || !dm_table_get_size(map)) 423 return r; 424 425 /* We only support devices that have a single target */ 426 if (map->num_targets != 1) 427 return r; 428 429 ti = dm_table_get_target(map, 0); 430 if (!ti->type->prepare_ioctl) 431 return r; 432 433 if (dm_suspended_md(md)) 434 return -EAGAIN; 435 436 r = ti->type->prepare_ioctl(ti, bdev); 437 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 438 dm_put_live_table(md, *srcu_idx); 439 fsleep(10000); 440 goto retry; 441 } 442 443 return r; 444 } 445 446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 447 { 448 dm_put_live_table(md, srcu_idx); 449 } 450 451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 452 unsigned int cmd, unsigned long arg) 453 { 454 struct mapped_device *md = bdev->bd_disk->private_data; 455 int r, srcu_idx; 456 457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 458 if (r < 0) 459 goto out; 460 461 if (r > 0) { 462 /* 463 * Target determined this ioctl is being issued against a 464 * subset of the parent bdev; require extra privileges. 465 */ 466 if (!capable(CAP_SYS_RAWIO)) { 467 DMDEBUG_LIMIT( 468 "%s: sending ioctl %x to DM device without required privilege.", 469 current->comm, cmd); 470 r = -ENOIOCTLCMD; 471 goto out; 472 } 473 } 474 475 if (!bdev->bd_disk->fops->ioctl) 476 r = -ENOTTY; 477 else 478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 479 out: 480 dm_unprepare_ioctl(md, srcu_idx); 481 return r; 482 } 483 484 u64 dm_start_time_ns_from_clone(struct bio *bio) 485 { 486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 487 } 488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 489 490 static inline bool bio_is_flush_with_data(struct bio *bio) 491 { 492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 493 } 494 495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) 496 { 497 /* 498 * If REQ_PREFLUSH set, don't account payload, it will be 499 * submitted (and accounted) after this flush completes. 500 */ 501 if (bio_is_flush_with_data(bio)) 502 return 0; 503 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 504 return io->sectors; 505 return bio_sectors(bio); 506 } 507 508 static void dm_io_acct(struct dm_io *io, bool end) 509 { 510 struct bio *bio = io->orig_bio; 511 512 if (dm_io_flagged(io, DM_IO_BLK_STAT)) { 513 if (!end) 514 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), 515 io->start_time); 516 else 517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), 518 dm_io_sectors(io, bio), 519 io->start_time); 520 } 521 522 if (static_branch_unlikely(&stats_enabled) && 523 unlikely(dm_stats_used(&io->md->stats))) { 524 sector_t sector; 525 526 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 527 sector = bio_end_sector(bio) - io->sector_offset; 528 else 529 sector = bio->bi_iter.bi_sector; 530 531 dm_stats_account_io(&io->md->stats, bio_data_dir(bio), 532 sector, dm_io_sectors(io, bio), 533 end, io->start_time, &io->stats_aux); 534 } 535 } 536 537 static void __dm_start_io_acct(struct dm_io *io) 538 { 539 dm_io_acct(io, false); 540 } 541 542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 543 { 544 /* 545 * Ensure IO accounting is only ever started once. 546 */ 547 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 548 return; 549 550 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 551 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 552 dm_io_set_flag(io, DM_IO_ACCOUNTED); 553 } else { 554 unsigned long flags; 555 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 556 spin_lock_irqsave(&io->lock, flags); 557 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 558 spin_unlock_irqrestore(&io->lock, flags); 559 return; 560 } 561 dm_io_set_flag(io, DM_IO_ACCOUNTED); 562 spin_unlock_irqrestore(&io->lock, flags); 563 } 564 565 __dm_start_io_acct(io); 566 } 567 568 static void dm_end_io_acct(struct dm_io *io) 569 { 570 dm_io_acct(io, true); 571 } 572 573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 574 { 575 struct dm_io *io; 576 struct dm_target_io *tio; 577 struct bio *clone; 578 579 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 580 tio = clone_to_tio(clone); 581 tio->flags = 0; 582 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 583 tio->io = NULL; 584 585 io = container_of(tio, struct dm_io, tio); 586 io->magic = DM_IO_MAGIC; 587 io->status = BLK_STS_OK; 588 589 /* one ref is for submission, the other is for completion */ 590 atomic_set(&io->io_count, 2); 591 this_cpu_inc(*md->pending_io); 592 io->orig_bio = bio; 593 io->md = md; 594 spin_lock_init(&io->lock); 595 io->start_time = jiffies; 596 io->flags = 0; 597 if (blk_queue_io_stat(md->queue)) 598 dm_io_set_flag(io, DM_IO_BLK_STAT); 599 600 if (static_branch_unlikely(&stats_enabled) && 601 unlikely(dm_stats_used(&md->stats))) 602 dm_stats_record_start(&md->stats, &io->stats_aux); 603 604 return io; 605 } 606 607 static void free_io(struct dm_io *io) 608 { 609 bio_put(&io->tio.clone); 610 } 611 612 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 613 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 614 { 615 struct mapped_device *md = ci->io->md; 616 struct dm_target_io *tio; 617 struct bio *clone; 618 619 if (!ci->io->tio.io) { 620 /* the dm_target_io embedded in ci->io is available */ 621 tio = &ci->io->tio; 622 /* alloc_io() already initialized embedded clone */ 623 clone = &tio->clone; 624 } else { 625 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 626 &md->mempools->bs); 627 if (!clone) 628 return NULL; 629 630 /* REQ_DM_POLL_LIST shouldn't be inherited */ 631 clone->bi_opf &= ~REQ_DM_POLL_LIST; 632 633 tio = clone_to_tio(clone); 634 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 635 } 636 637 tio->magic = DM_TIO_MAGIC; 638 tio->io = ci->io; 639 tio->ti = ti; 640 tio->target_bio_nr = target_bio_nr; 641 tio->len_ptr = len; 642 tio->old_sector = 0; 643 644 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 645 clone->bi_bdev = md->disk->part0; 646 if (unlikely(ti->needs_bio_set_dev)) 647 bio_set_dev(clone, md->disk->part0); 648 649 if (len) { 650 clone->bi_iter.bi_size = to_bytes(*len); 651 if (bio_integrity(clone)) 652 bio_integrity_trim(clone); 653 } 654 655 return clone; 656 } 657 658 static void free_tio(struct bio *clone) 659 { 660 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 661 return; 662 bio_put(clone); 663 } 664 665 /* 666 * Add the bio to the list of deferred io. 667 */ 668 static void queue_io(struct mapped_device *md, struct bio *bio) 669 { 670 unsigned long flags; 671 672 spin_lock_irqsave(&md->deferred_lock, flags); 673 bio_list_add(&md->deferred, bio); 674 spin_unlock_irqrestore(&md->deferred_lock, flags); 675 queue_work(md->wq, &md->work); 676 } 677 678 /* 679 * Everyone (including functions in this file), should use this 680 * function to access the md->map field, and make sure they call 681 * dm_put_live_table() when finished. 682 */ 683 struct dm_table *dm_get_live_table(struct mapped_device *md, 684 int *srcu_idx) __acquires(md->io_barrier) 685 { 686 *srcu_idx = srcu_read_lock(&md->io_barrier); 687 688 return srcu_dereference(md->map, &md->io_barrier); 689 } 690 691 void dm_put_live_table(struct mapped_device *md, 692 int srcu_idx) __releases(md->io_barrier) 693 { 694 srcu_read_unlock(&md->io_barrier, srcu_idx); 695 } 696 697 void dm_sync_table(struct mapped_device *md) 698 { 699 synchronize_srcu(&md->io_barrier); 700 synchronize_rcu_expedited(); 701 } 702 703 /* 704 * A fast alternative to dm_get_live_table/dm_put_live_table. 705 * The caller must not block between these two functions. 706 */ 707 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 708 { 709 rcu_read_lock(); 710 return rcu_dereference(md->map); 711 } 712 713 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 714 { 715 rcu_read_unlock(); 716 } 717 718 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 719 int *srcu_idx, blk_opf_t bio_opf) 720 { 721 if (bio_opf & REQ_NOWAIT) 722 return dm_get_live_table_fast(md); 723 else 724 return dm_get_live_table(md, srcu_idx); 725 } 726 727 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 728 blk_opf_t bio_opf) 729 { 730 if (bio_opf & REQ_NOWAIT) 731 dm_put_live_table_fast(md); 732 else 733 dm_put_live_table(md, srcu_idx); 734 } 735 736 static char *_dm_claim_ptr = "I belong to device-mapper"; 737 738 /* 739 * Open a table device so we can use it as a map destination. 740 */ 741 static struct table_device *open_table_device(struct mapped_device *md, 742 dev_t dev, blk_mode_t mode) 743 { 744 struct table_device *td; 745 struct block_device *bdev; 746 u64 part_off; 747 int r; 748 749 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 750 if (!td) 751 return ERR_PTR(-ENOMEM); 752 refcount_set(&td->count, 1); 753 754 bdev = blkdev_get_by_dev(dev, mode, _dm_claim_ptr, NULL); 755 if (IS_ERR(bdev)) { 756 r = PTR_ERR(bdev); 757 goto out_free_td; 758 } 759 760 /* 761 * We can be called before the dm disk is added. In that case we can't 762 * register the holder relation here. It will be done once add_disk was 763 * called. 764 */ 765 if (md->disk->slave_dir) { 766 r = bd_link_disk_holder(bdev, md->disk); 767 if (r) 768 goto out_blkdev_put; 769 } 770 771 td->dm_dev.mode = mode; 772 td->dm_dev.bdev = bdev; 773 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL); 774 format_dev_t(td->dm_dev.name, dev); 775 list_add(&td->list, &md->table_devices); 776 return td; 777 778 out_blkdev_put: 779 blkdev_put(bdev, _dm_claim_ptr); 780 out_free_td: 781 kfree(td); 782 return ERR_PTR(r); 783 } 784 785 /* 786 * Close a table device that we've been using. 787 */ 788 static void close_table_device(struct table_device *td, struct mapped_device *md) 789 { 790 if (md->disk->slave_dir) 791 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 792 blkdev_put(td->dm_dev.bdev, _dm_claim_ptr); 793 put_dax(td->dm_dev.dax_dev); 794 list_del(&td->list); 795 kfree(td); 796 } 797 798 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 799 blk_mode_t mode) 800 { 801 struct table_device *td; 802 803 list_for_each_entry(td, l, list) 804 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 805 return td; 806 807 return NULL; 808 } 809 810 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 811 struct dm_dev **result) 812 { 813 struct table_device *td; 814 815 mutex_lock(&md->table_devices_lock); 816 td = find_table_device(&md->table_devices, dev, mode); 817 if (!td) { 818 td = open_table_device(md, dev, mode); 819 if (IS_ERR(td)) { 820 mutex_unlock(&md->table_devices_lock); 821 return PTR_ERR(td); 822 } 823 } else { 824 refcount_inc(&td->count); 825 } 826 mutex_unlock(&md->table_devices_lock); 827 828 *result = &td->dm_dev; 829 return 0; 830 } 831 832 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 833 { 834 struct table_device *td = container_of(d, struct table_device, dm_dev); 835 836 mutex_lock(&md->table_devices_lock); 837 if (refcount_dec_and_test(&td->count)) 838 close_table_device(td, md); 839 mutex_unlock(&md->table_devices_lock); 840 } 841 842 /* 843 * Get the geometry associated with a dm device 844 */ 845 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 846 { 847 *geo = md->geometry; 848 849 return 0; 850 } 851 852 /* 853 * Set the geometry of a device. 854 */ 855 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 856 { 857 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 858 859 if (geo->start > sz) { 860 DMERR("Start sector is beyond the geometry limits."); 861 return -EINVAL; 862 } 863 864 md->geometry = *geo; 865 866 return 0; 867 } 868 869 static int __noflush_suspending(struct mapped_device *md) 870 { 871 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 872 } 873 874 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 875 { 876 struct mapped_device *md = io->md; 877 878 if (first_stage) { 879 struct dm_io *next = md->requeue_list; 880 881 md->requeue_list = io; 882 io->next = next; 883 } else { 884 bio_list_add_head(&md->deferred, io->orig_bio); 885 } 886 } 887 888 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 889 { 890 if (first_stage) 891 queue_work(md->wq, &md->requeue_work); 892 else 893 queue_work(md->wq, &md->work); 894 } 895 896 /* 897 * Return true if the dm_io's original bio is requeued. 898 * io->status is updated with error if requeue disallowed. 899 */ 900 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 901 { 902 struct bio *bio = io->orig_bio; 903 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 904 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 905 (bio->bi_opf & REQ_POLLED)); 906 struct mapped_device *md = io->md; 907 bool requeued = false; 908 909 if (handle_requeue || handle_polled_eagain) { 910 unsigned long flags; 911 912 if (bio->bi_opf & REQ_POLLED) { 913 /* 914 * Upper layer won't help us poll split bio 915 * (io->orig_bio may only reflect a subset of the 916 * pre-split original) so clear REQ_POLLED. 917 */ 918 bio_clear_polled(bio); 919 } 920 921 /* 922 * Target requested pushing back the I/O or 923 * polled IO hit BLK_STS_AGAIN. 924 */ 925 spin_lock_irqsave(&md->deferred_lock, flags); 926 if ((__noflush_suspending(md) && 927 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 928 handle_polled_eagain || first_stage) { 929 dm_requeue_add_io(io, first_stage); 930 requeued = true; 931 } else { 932 /* 933 * noflush suspend was interrupted or this is 934 * a write to a zoned target. 935 */ 936 io->status = BLK_STS_IOERR; 937 } 938 spin_unlock_irqrestore(&md->deferred_lock, flags); 939 } 940 941 if (requeued) 942 dm_kick_requeue(md, first_stage); 943 944 return requeued; 945 } 946 947 static void __dm_io_complete(struct dm_io *io, bool first_stage) 948 { 949 struct bio *bio = io->orig_bio; 950 struct mapped_device *md = io->md; 951 blk_status_t io_error; 952 bool requeued; 953 954 requeued = dm_handle_requeue(io, first_stage); 955 if (requeued && first_stage) 956 return; 957 958 io_error = io->status; 959 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 960 dm_end_io_acct(io); 961 else if (!io_error) { 962 /* 963 * Must handle target that DM_MAPIO_SUBMITTED only to 964 * then bio_endio() rather than dm_submit_bio_remap() 965 */ 966 __dm_start_io_acct(io); 967 dm_end_io_acct(io); 968 } 969 free_io(io); 970 smp_wmb(); 971 this_cpu_dec(*md->pending_io); 972 973 /* nudge anyone waiting on suspend queue */ 974 if (unlikely(wq_has_sleeper(&md->wait))) 975 wake_up(&md->wait); 976 977 /* Return early if the original bio was requeued */ 978 if (requeued) 979 return; 980 981 if (bio_is_flush_with_data(bio)) { 982 /* 983 * Preflush done for flush with data, reissue 984 * without REQ_PREFLUSH. 985 */ 986 bio->bi_opf &= ~REQ_PREFLUSH; 987 queue_io(md, bio); 988 } else { 989 /* done with normal IO or empty flush */ 990 if (io_error) 991 bio->bi_status = io_error; 992 bio_endio(bio); 993 } 994 } 995 996 static void dm_wq_requeue_work(struct work_struct *work) 997 { 998 struct mapped_device *md = container_of(work, struct mapped_device, 999 requeue_work); 1000 unsigned long flags; 1001 struct dm_io *io; 1002 1003 /* reuse deferred lock to simplify dm_handle_requeue */ 1004 spin_lock_irqsave(&md->deferred_lock, flags); 1005 io = md->requeue_list; 1006 md->requeue_list = NULL; 1007 spin_unlock_irqrestore(&md->deferred_lock, flags); 1008 1009 while (io) { 1010 struct dm_io *next = io->next; 1011 1012 dm_io_rewind(io, &md->disk->bio_split); 1013 1014 io->next = NULL; 1015 __dm_io_complete(io, false); 1016 io = next; 1017 cond_resched(); 1018 } 1019 } 1020 1021 /* 1022 * Two staged requeue: 1023 * 1024 * 1) io->orig_bio points to the real original bio, and the part mapped to 1025 * this io must be requeued, instead of other parts of the original bio. 1026 * 1027 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1028 */ 1029 static void dm_io_complete(struct dm_io *io) 1030 { 1031 bool first_requeue; 1032 1033 /* 1034 * Only dm_io that has been split needs two stage requeue, otherwise 1035 * we may run into long bio clone chain during suspend and OOM could 1036 * be triggered. 1037 * 1038 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1039 * also aren't handled via the first stage requeue. 1040 */ 1041 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1042 first_requeue = true; 1043 else 1044 first_requeue = false; 1045 1046 __dm_io_complete(io, first_requeue); 1047 } 1048 1049 /* 1050 * Decrements the number of outstanding ios that a bio has been 1051 * cloned into, completing the original io if necc. 1052 */ 1053 static inline void __dm_io_dec_pending(struct dm_io *io) 1054 { 1055 if (atomic_dec_and_test(&io->io_count)) 1056 dm_io_complete(io); 1057 } 1058 1059 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1060 { 1061 unsigned long flags; 1062 1063 /* Push-back supersedes any I/O errors */ 1064 spin_lock_irqsave(&io->lock, flags); 1065 if (!(io->status == BLK_STS_DM_REQUEUE && 1066 __noflush_suspending(io->md))) { 1067 io->status = error; 1068 } 1069 spin_unlock_irqrestore(&io->lock, flags); 1070 } 1071 1072 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1073 { 1074 if (unlikely(error)) 1075 dm_io_set_error(io, error); 1076 1077 __dm_io_dec_pending(io); 1078 } 1079 1080 /* 1081 * The queue_limits are only valid as long as you have a reference 1082 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1083 */ 1084 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1085 { 1086 return &md->queue->limits; 1087 } 1088 1089 void disable_discard(struct mapped_device *md) 1090 { 1091 struct queue_limits *limits = dm_get_queue_limits(md); 1092 1093 /* device doesn't really support DISCARD, disable it */ 1094 limits->max_discard_sectors = 0; 1095 } 1096 1097 void disable_write_zeroes(struct mapped_device *md) 1098 { 1099 struct queue_limits *limits = dm_get_queue_limits(md); 1100 1101 /* device doesn't really support WRITE ZEROES, disable it */ 1102 limits->max_write_zeroes_sectors = 0; 1103 } 1104 1105 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1106 { 1107 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1108 } 1109 1110 static void clone_endio(struct bio *bio) 1111 { 1112 blk_status_t error = bio->bi_status; 1113 struct dm_target_io *tio = clone_to_tio(bio); 1114 struct dm_target *ti = tio->ti; 1115 dm_endio_fn endio = ti->type->end_io; 1116 struct dm_io *io = tio->io; 1117 struct mapped_device *md = io->md; 1118 1119 if (unlikely(error == BLK_STS_TARGET)) { 1120 if (bio_op(bio) == REQ_OP_DISCARD && 1121 !bdev_max_discard_sectors(bio->bi_bdev)) 1122 disable_discard(md); 1123 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1124 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1125 disable_write_zeroes(md); 1126 } 1127 1128 if (static_branch_unlikely(&zoned_enabled) && 1129 unlikely(bdev_is_zoned(bio->bi_bdev))) 1130 dm_zone_endio(io, bio); 1131 1132 if (endio) { 1133 int r = endio(ti, bio, &error); 1134 1135 switch (r) { 1136 case DM_ENDIO_REQUEUE: 1137 if (static_branch_unlikely(&zoned_enabled)) { 1138 /* 1139 * Requeuing writes to a sequential zone of a zoned 1140 * target will break the sequential write pattern: 1141 * fail such IO. 1142 */ 1143 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1144 error = BLK_STS_IOERR; 1145 else 1146 error = BLK_STS_DM_REQUEUE; 1147 } else 1148 error = BLK_STS_DM_REQUEUE; 1149 fallthrough; 1150 case DM_ENDIO_DONE: 1151 break; 1152 case DM_ENDIO_INCOMPLETE: 1153 /* The target will handle the io */ 1154 return; 1155 default: 1156 DMCRIT("unimplemented target endio return value: %d", r); 1157 BUG(); 1158 } 1159 } 1160 1161 if (static_branch_unlikely(&swap_bios_enabled) && 1162 unlikely(swap_bios_limit(ti, bio))) 1163 up(&md->swap_bios_semaphore); 1164 1165 free_tio(bio); 1166 dm_io_dec_pending(io, error); 1167 } 1168 1169 /* 1170 * Return maximum size of I/O possible at the supplied sector up to the current 1171 * target boundary. 1172 */ 1173 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1174 sector_t target_offset) 1175 { 1176 return ti->len - target_offset; 1177 } 1178 1179 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1180 unsigned int max_granularity, 1181 unsigned int max_sectors) 1182 { 1183 sector_t target_offset = dm_target_offset(ti, sector); 1184 sector_t len = max_io_len_target_boundary(ti, target_offset); 1185 1186 /* 1187 * Does the target need to split IO even further? 1188 * - varied (per target) IO splitting is a tenet of DM; this 1189 * explains why stacked chunk_sectors based splitting via 1190 * bio_split_to_limits() isn't possible here. 1191 */ 1192 if (!max_granularity) 1193 return len; 1194 return min_t(sector_t, len, 1195 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1196 blk_chunk_sectors_left(target_offset, max_granularity))); 1197 } 1198 1199 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1200 { 1201 return __max_io_len(ti, sector, ti->max_io_len, 0); 1202 } 1203 1204 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1205 { 1206 if (len > UINT_MAX) { 1207 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1208 (unsigned long long)len, UINT_MAX); 1209 ti->error = "Maximum size of target IO is too large"; 1210 return -EINVAL; 1211 } 1212 1213 ti->max_io_len = (uint32_t) len; 1214 1215 return 0; 1216 } 1217 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1218 1219 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1220 sector_t sector, int *srcu_idx) 1221 __acquires(md->io_barrier) 1222 { 1223 struct dm_table *map; 1224 struct dm_target *ti; 1225 1226 map = dm_get_live_table(md, srcu_idx); 1227 if (!map) 1228 return NULL; 1229 1230 ti = dm_table_find_target(map, sector); 1231 if (!ti) 1232 return NULL; 1233 1234 return ti; 1235 } 1236 1237 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1238 long nr_pages, enum dax_access_mode mode, void **kaddr, 1239 pfn_t *pfn) 1240 { 1241 struct mapped_device *md = dax_get_private(dax_dev); 1242 sector_t sector = pgoff * PAGE_SECTORS; 1243 struct dm_target *ti; 1244 long len, ret = -EIO; 1245 int srcu_idx; 1246 1247 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1248 1249 if (!ti) 1250 goto out; 1251 if (!ti->type->direct_access) 1252 goto out; 1253 len = max_io_len(ti, sector) / PAGE_SECTORS; 1254 if (len < 1) 1255 goto out; 1256 nr_pages = min(len, nr_pages); 1257 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1258 1259 out: 1260 dm_put_live_table(md, srcu_idx); 1261 1262 return ret; 1263 } 1264 1265 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1266 size_t nr_pages) 1267 { 1268 struct mapped_device *md = dax_get_private(dax_dev); 1269 sector_t sector = pgoff * PAGE_SECTORS; 1270 struct dm_target *ti; 1271 int ret = -EIO; 1272 int srcu_idx; 1273 1274 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1275 1276 if (!ti) 1277 goto out; 1278 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1279 /* 1280 * ->zero_page_range() is mandatory dax operation. If we are 1281 * here, something is wrong. 1282 */ 1283 goto out; 1284 } 1285 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1286 out: 1287 dm_put_live_table(md, srcu_idx); 1288 1289 return ret; 1290 } 1291 1292 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1293 void *addr, size_t bytes, struct iov_iter *i) 1294 { 1295 struct mapped_device *md = dax_get_private(dax_dev); 1296 sector_t sector = pgoff * PAGE_SECTORS; 1297 struct dm_target *ti; 1298 int srcu_idx; 1299 long ret = 0; 1300 1301 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1302 if (!ti || !ti->type->dax_recovery_write) 1303 goto out; 1304 1305 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1306 out: 1307 dm_put_live_table(md, srcu_idx); 1308 return ret; 1309 } 1310 1311 /* 1312 * A target may call dm_accept_partial_bio only from the map routine. It is 1313 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1314 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1315 * __send_duplicate_bios(). 1316 * 1317 * dm_accept_partial_bio informs the dm that the target only wants to process 1318 * additional n_sectors sectors of the bio and the rest of the data should be 1319 * sent in a next bio. 1320 * 1321 * A diagram that explains the arithmetics: 1322 * +--------------------+---------------+-------+ 1323 * | 1 | 2 | 3 | 1324 * +--------------------+---------------+-------+ 1325 * 1326 * <-------------- *tio->len_ptr ---------------> 1327 * <----- bio_sectors -----> 1328 * <-- n_sectors --> 1329 * 1330 * Region 1 was already iterated over with bio_advance or similar function. 1331 * (it may be empty if the target doesn't use bio_advance) 1332 * Region 2 is the remaining bio size that the target wants to process. 1333 * (it may be empty if region 1 is non-empty, although there is no reason 1334 * to make it empty) 1335 * The target requires that region 3 is to be sent in the next bio. 1336 * 1337 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1338 * the partially processed part (the sum of regions 1+2) must be the same for all 1339 * copies of the bio. 1340 */ 1341 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1342 { 1343 struct dm_target_io *tio = clone_to_tio(bio); 1344 struct dm_io *io = tio->io; 1345 unsigned int bio_sectors = bio_sectors(bio); 1346 1347 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1348 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1349 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1350 BUG_ON(bio_sectors > *tio->len_ptr); 1351 BUG_ON(n_sectors > bio_sectors); 1352 1353 *tio->len_ptr -= bio_sectors - n_sectors; 1354 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1355 1356 /* 1357 * __split_and_process_bio() may have already saved mapped part 1358 * for accounting but it is being reduced so update accordingly. 1359 */ 1360 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1361 io->sectors = n_sectors; 1362 io->sector_offset = bio_sectors(io->orig_bio); 1363 } 1364 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1365 1366 /* 1367 * @clone: clone bio that DM core passed to target's .map function 1368 * @tgt_clone: clone of @clone bio that target needs submitted 1369 * 1370 * Targets should use this interface to submit bios they take 1371 * ownership of when returning DM_MAPIO_SUBMITTED. 1372 * 1373 * Target should also enable ti->accounts_remapped_io 1374 */ 1375 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1376 { 1377 struct dm_target_io *tio = clone_to_tio(clone); 1378 struct dm_io *io = tio->io; 1379 1380 /* establish bio that will get submitted */ 1381 if (!tgt_clone) 1382 tgt_clone = clone; 1383 1384 /* 1385 * Account io->origin_bio to DM dev on behalf of target 1386 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1387 */ 1388 dm_start_io_acct(io, clone); 1389 1390 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1391 tio->old_sector); 1392 submit_bio_noacct(tgt_clone); 1393 } 1394 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1395 1396 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1397 { 1398 mutex_lock(&md->swap_bios_lock); 1399 while (latch < md->swap_bios) { 1400 cond_resched(); 1401 down(&md->swap_bios_semaphore); 1402 md->swap_bios--; 1403 } 1404 while (latch > md->swap_bios) { 1405 cond_resched(); 1406 up(&md->swap_bios_semaphore); 1407 md->swap_bios++; 1408 } 1409 mutex_unlock(&md->swap_bios_lock); 1410 } 1411 1412 static void __map_bio(struct bio *clone) 1413 { 1414 struct dm_target_io *tio = clone_to_tio(clone); 1415 struct dm_target *ti = tio->ti; 1416 struct dm_io *io = tio->io; 1417 struct mapped_device *md = io->md; 1418 int r; 1419 1420 clone->bi_end_io = clone_endio; 1421 1422 /* 1423 * Map the clone. 1424 */ 1425 tio->old_sector = clone->bi_iter.bi_sector; 1426 1427 if (static_branch_unlikely(&swap_bios_enabled) && 1428 unlikely(swap_bios_limit(ti, clone))) { 1429 int latch = get_swap_bios(); 1430 1431 if (unlikely(latch != md->swap_bios)) 1432 __set_swap_bios_limit(md, latch); 1433 down(&md->swap_bios_semaphore); 1434 } 1435 1436 if (static_branch_unlikely(&zoned_enabled)) { 1437 /* 1438 * Check if the IO needs a special mapping due to zone append 1439 * emulation on zoned target. In this case, dm_zone_map_bio() 1440 * calls the target map operation. 1441 */ 1442 if (unlikely(dm_emulate_zone_append(md))) 1443 r = dm_zone_map_bio(tio); 1444 else 1445 r = ti->type->map(ti, clone); 1446 } else 1447 r = ti->type->map(ti, clone); 1448 1449 switch (r) { 1450 case DM_MAPIO_SUBMITTED: 1451 /* target has assumed ownership of this io */ 1452 if (!ti->accounts_remapped_io) 1453 dm_start_io_acct(io, clone); 1454 break; 1455 case DM_MAPIO_REMAPPED: 1456 dm_submit_bio_remap(clone, NULL); 1457 break; 1458 case DM_MAPIO_KILL: 1459 case DM_MAPIO_REQUEUE: 1460 if (static_branch_unlikely(&swap_bios_enabled) && 1461 unlikely(swap_bios_limit(ti, clone))) 1462 up(&md->swap_bios_semaphore); 1463 free_tio(clone); 1464 if (r == DM_MAPIO_KILL) 1465 dm_io_dec_pending(io, BLK_STS_IOERR); 1466 else 1467 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1468 break; 1469 default: 1470 DMCRIT("unimplemented target map return value: %d", r); 1471 BUG(); 1472 } 1473 } 1474 1475 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1476 { 1477 struct dm_io *io = ci->io; 1478 1479 if (ci->sector_count > len) { 1480 /* 1481 * Split needed, save the mapped part for accounting. 1482 * NOTE: dm_accept_partial_bio() will update accordingly. 1483 */ 1484 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1485 io->sectors = len; 1486 io->sector_offset = bio_sectors(ci->bio); 1487 } 1488 } 1489 1490 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1491 struct dm_target *ti, unsigned int num_bios, 1492 unsigned *len) 1493 { 1494 struct bio *bio; 1495 int try; 1496 1497 for (try = 0; try < 2; try++) { 1498 int bio_nr; 1499 1500 if (try) 1501 mutex_lock(&ci->io->md->table_devices_lock); 1502 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1503 bio = alloc_tio(ci, ti, bio_nr, len, 1504 try ? GFP_NOIO : GFP_NOWAIT); 1505 if (!bio) 1506 break; 1507 1508 bio_list_add(blist, bio); 1509 } 1510 if (try) 1511 mutex_unlock(&ci->io->md->table_devices_lock); 1512 if (bio_nr == num_bios) 1513 return; 1514 1515 while ((bio = bio_list_pop(blist))) 1516 free_tio(bio); 1517 } 1518 } 1519 1520 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1521 unsigned int num_bios, unsigned int *len) 1522 { 1523 struct bio_list blist = BIO_EMPTY_LIST; 1524 struct bio *clone; 1525 unsigned int ret = 0; 1526 1527 switch (num_bios) { 1528 case 0: 1529 break; 1530 case 1: 1531 if (len) 1532 setup_split_accounting(ci, *len); 1533 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1534 __map_bio(clone); 1535 ret = 1; 1536 break; 1537 default: 1538 if (len) 1539 setup_split_accounting(ci, *len); 1540 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1541 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1542 while ((clone = bio_list_pop(&blist))) { 1543 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1544 __map_bio(clone); 1545 ret += 1; 1546 } 1547 break; 1548 } 1549 1550 return ret; 1551 } 1552 1553 static void __send_empty_flush(struct clone_info *ci) 1554 { 1555 struct dm_table *t = ci->map; 1556 struct bio flush_bio; 1557 1558 /* 1559 * Use an on-stack bio for this, it's safe since we don't 1560 * need to reference it after submit. It's just used as 1561 * the basis for the clone(s). 1562 */ 1563 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1564 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1565 1566 ci->bio = &flush_bio; 1567 ci->sector_count = 0; 1568 ci->io->tio.clone.bi_iter.bi_size = 0; 1569 1570 for (unsigned int i = 0; i < t->num_targets; i++) { 1571 unsigned int bios; 1572 struct dm_target *ti = dm_table_get_target(t, i); 1573 1574 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1575 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1576 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1577 } 1578 1579 /* 1580 * alloc_io() takes one extra reference for submission, so the 1581 * reference won't reach 0 without the following subtraction 1582 */ 1583 atomic_sub(1, &ci->io->io_count); 1584 1585 bio_uninit(ci->bio); 1586 } 1587 1588 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1589 unsigned int num_bios, 1590 unsigned int max_granularity, 1591 unsigned int max_sectors) 1592 { 1593 unsigned int len, bios; 1594 1595 len = min_t(sector_t, ci->sector_count, 1596 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1597 1598 atomic_add(num_bios, &ci->io->io_count); 1599 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1600 /* 1601 * alloc_io() takes one extra reference for submission, so the 1602 * reference won't reach 0 without the following (+1) subtraction 1603 */ 1604 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1605 1606 ci->sector += len; 1607 ci->sector_count -= len; 1608 } 1609 1610 static bool is_abnormal_io(struct bio *bio) 1611 { 1612 enum req_op op = bio_op(bio); 1613 1614 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1615 switch (op) { 1616 case REQ_OP_DISCARD: 1617 case REQ_OP_SECURE_ERASE: 1618 case REQ_OP_WRITE_ZEROES: 1619 return true; 1620 default: 1621 break; 1622 } 1623 } 1624 1625 return false; 1626 } 1627 1628 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1629 struct dm_target *ti) 1630 { 1631 unsigned int num_bios = 0; 1632 unsigned int max_granularity = 0; 1633 unsigned int max_sectors = 0; 1634 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1635 1636 switch (bio_op(ci->bio)) { 1637 case REQ_OP_DISCARD: 1638 num_bios = ti->num_discard_bios; 1639 max_sectors = limits->max_discard_sectors; 1640 if (ti->max_discard_granularity) 1641 max_granularity = max_sectors; 1642 break; 1643 case REQ_OP_SECURE_ERASE: 1644 num_bios = ti->num_secure_erase_bios; 1645 max_sectors = limits->max_secure_erase_sectors; 1646 if (ti->max_secure_erase_granularity) 1647 max_granularity = max_sectors; 1648 break; 1649 case REQ_OP_WRITE_ZEROES: 1650 num_bios = ti->num_write_zeroes_bios; 1651 max_sectors = limits->max_write_zeroes_sectors; 1652 if (ti->max_write_zeroes_granularity) 1653 max_granularity = max_sectors; 1654 break; 1655 default: 1656 break; 1657 } 1658 1659 /* 1660 * Even though the device advertised support for this type of 1661 * request, that does not mean every target supports it, and 1662 * reconfiguration might also have changed that since the 1663 * check was performed. 1664 */ 1665 if (unlikely(!num_bios)) 1666 return BLK_STS_NOTSUPP; 1667 1668 __send_changing_extent_only(ci, ti, num_bios, 1669 max_granularity, max_sectors); 1670 return BLK_STS_OK; 1671 } 1672 1673 /* 1674 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1675 * associated with this bio, and this bio's bi_private needs to be 1676 * stored in dm_io->data before the reuse. 1677 * 1678 * bio->bi_private is owned by fs or upper layer, so block layer won't 1679 * touch it after splitting. Meantime it won't be changed by anyone after 1680 * bio is submitted. So this reuse is safe. 1681 */ 1682 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1683 { 1684 return (struct dm_io **)&bio->bi_private; 1685 } 1686 1687 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1688 { 1689 struct dm_io **head = dm_poll_list_head(bio); 1690 1691 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1692 bio->bi_opf |= REQ_DM_POLL_LIST; 1693 /* 1694 * Save .bi_private into dm_io, so that we can reuse 1695 * .bi_private as dm_io list head for storing dm_io list 1696 */ 1697 io->data = bio->bi_private; 1698 1699 /* tell block layer to poll for completion */ 1700 bio->bi_cookie = ~BLK_QC_T_NONE; 1701 1702 io->next = NULL; 1703 } else { 1704 /* 1705 * bio recursed due to split, reuse original poll list, 1706 * and save bio->bi_private too. 1707 */ 1708 io->data = (*head)->data; 1709 io->next = *head; 1710 } 1711 1712 *head = io; 1713 } 1714 1715 /* 1716 * Select the correct strategy for processing a non-flush bio. 1717 */ 1718 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1719 { 1720 struct bio *clone; 1721 struct dm_target *ti; 1722 unsigned int len; 1723 1724 ti = dm_table_find_target(ci->map, ci->sector); 1725 if (unlikely(!ti)) 1726 return BLK_STS_IOERR; 1727 1728 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) && 1729 unlikely(!dm_target_supports_nowait(ti->type))) 1730 return BLK_STS_NOTSUPP; 1731 1732 if (unlikely(ci->is_abnormal_io)) 1733 return __process_abnormal_io(ci, ti); 1734 1735 /* 1736 * Only support bio polling for normal IO, and the target io is 1737 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1738 */ 1739 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1740 1741 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1742 setup_split_accounting(ci, len); 1743 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1744 __map_bio(clone); 1745 1746 ci->sector += len; 1747 ci->sector_count -= len; 1748 1749 return BLK_STS_OK; 1750 } 1751 1752 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1753 struct dm_table *map, struct bio *bio, bool is_abnormal) 1754 { 1755 ci->map = map; 1756 ci->io = alloc_io(md, bio); 1757 ci->bio = bio; 1758 ci->is_abnormal_io = is_abnormal; 1759 ci->submit_as_polled = false; 1760 ci->sector = bio->bi_iter.bi_sector; 1761 ci->sector_count = bio_sectors(bio); 1762 1763 /* Shouldn't happen but sector_count was being set to 0 so... */ 1764 if (static_branch_unlikely(&zoned_enabled) && 1765 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1766 ci->sector_count = 0; 1767 } 1768 1769 /* 1770 * Entry point to split a bio into clones and submit them to the targets. 1771 */ 1772 static void dm_split_and_process_bio(struct mapped_device *md, 1773 struct dm_table *map, struct bio *bio) 1774 { 1775 struct clone_info ci; 1776 struct dm_io *io; 1777 blk_status_t error = BLK_STS_OK; 1778 bool is_abnormal; 1779 1780 is_abnormal = is_abnormal_io(bio); 1781 if (unlikely(is_abnormal)) { 1782 /* 1783 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1784 * otherwise associated queue_limits won't be imposed. 1785 */ 1786 bio = bio_split_to_limits(bio); 1787 if (!bio) 1788 return; 1789 } 1790 1791 init_clone_info(&ci, md, map, bio, is_abnormal); 1792 io = ci.io; 1793 1794 if (bio->bi_opf & REQ_PREFLUSH) { 1795 __send_empty_flush(&ci); 1796 /* dm_io_complete submits any data associated with flush */ 1797 goto out; 1798 } 1799 1800 error = __split_and_process_bio(&ci); 1801 if (error || !ci.sector_count) 1802 goto out; 1803 /* 1804 * Remainder must be passed to submit_bio_noacct() so it gets handled 1805 * *after* bios already submitted have been completely processed. 1806 */ 1807 bio_trim(bio, io->sectors, ci.sector_count); 1808 trace_block_split(bio, bio->bi_iter.bi_sector); 1809 bio_inc_remaining(bio); 1810 submit_bio_noacct(bio); 1811 out: 1812 /* 1813 * Drop the extra reference count for non-POLLED bio, and hold one 1814 * reference for POLLED bio, which will be released in dm_poll_bio 1815 * 1816 * Add every dm_io instance into the dm_io list head which is stored 1817 * in bio->bi_private, so that dm_poll_bio can poll them all. 1818 */ 1819 if (error || !ci.submit_as_polled) { 1820 /* 1821 * In case of submission failure, the extra reference for 1822 * submitting io isn't consumed yet 1823 */ 1824 if (error) 1825 atomic_dec(&io->io_count); 1826 dm_io_dec_pending(io, error); 1827 } else 1828 dm_queue_poll_io(bio, io); 1829 } 1830 1831 static void dm_submit_bio(struct bio *bio) 1832 { 1833 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1834 int srcu_idx; 1835 struct dm_table *map; 1836 blk_opf_t bio_opf = bio->bi_opf; 1837 1838 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf); 1839 1840 /* If suspended, or map not yet available, queue this IO for later */ 1841 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1842 unlikely(!map)) { 1843 if (bio->bi_opf & REQ_NOWAIT) 1844 bio_wouldblock_error(bio); 1845 else if (bio->bi_opf & REQ_RAHEAD) 1846 bio_io_error(bio); 1847 else 1848 queue_io(md, bio); 1849 goto out; 1850 } 1851 1852 dm_split_and_process_bio(md, map, bio); 1853 out: 1854 dm_put_live_table_bio(md, srcu_idx, bio_opf); 1855 } 1856 1857 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1858 unsigned int flags) 1859 { 1860 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1861 1862 /* don't poll if the mapped io is done */ 1863 if (atomic_read(&io->io_count) > 1) 1864 bio_poll(&io->tio.clone, iob, flags); 1865 1866 /* bio_poll holds the last reference */ 1867 return atomic_read(&io->io_count) == 1; 1868 } 1869 1870 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1871 unsigned int flags) 1872 { 1873 struct dm_io **head = dm_poll_list_head(bio); 1874 struct dm_io *list = *head; 1875 struct dm_io *tmp = NULL; 1876 struct dm_io *curr, *next; 1877 1878 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1879 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1880 return 0; 1881 1882 WARN_ON_ONCE(!list); 1883 1884 /* 1885 * Restore .bi_private before possibly completing dm_io. 1886 * 1887 * bio_poll() is only possible once @bio has been completely 1888 * submitted via submit_bio_noacct()'s depth-first submission. 1889 * So there is no dm_queue_poll_io() race associated with 1890 * clearing REQ_DM_POLL_LIST here. 1891 */ 1892 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1893 bio->bi_private = list->data; 1894 1895 for (curr = list, next = curr->next; curr; curr = next, next = 1896 curr ? curr->next : NULL) { 1897 if (dm_poll_dm_io(curr, iob, flags)) { 1898 /* 1899 * clone_endio() has already occurred, so no 1900 * error handling is needed here. 1901 */ 1902 __dm_io_dec_pending(curr); 1903 } else { 1904 curr->next = tmp; 1905 tmp = curr; 1906 } 1907 } 1908 1909 /* Not done? */ 1910 if (tmp) { 1911 bio->bi_opf |= REQ_DM_POLL_LIST; 1912 /* Reset bio->bi_private to dm_io list head */ 1913 *head = tmp; 1914 return 0; 1915 } 1916 return 1; 1917 } 1918 1919 /* 1920 *--------------------------------------------------------------- 1921 * An IDR is used to keep track of allocated minor numbers. 1922 *--------------------------------------------------------------- 1923 */ 1924 static void free_minor(int minor) 1925 { 1926 spin_lock(&_minor_lock); 1927 idr_remove(&_minor_idr, minor); 1928 spin_unlock(&_minor_lock); 1929 } 1930 1931 /* 1932 * See if the device with a specific minor # is free. 1933 */ 1934 static int specific_minor(int minor) 1935 { 1936 int r; 1937 1938 if (minor >= (1 << MINORBITS)) 1939 return -EINVAL; 1940 1941 idr_preload(GFP_KERNEL); 1942 spin_lock(&_minor_lock); 1943 1944 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1945 1946 spin_unlock(&_minor_lock); 1947 idr_preload_end(); 1948 if (r < 0) 1949 return r == -ENOSPC ? -EBUSY : r; 1950 return 0; 1951 } 1952 1953 static int next_free_minor(int *minor) 1954 { 1955 int r; 1956 1957 idr_preload(GFP_KERNEL); 1958 spin_lock(&_minor_lock); 1959 1960 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1961 1962 spin_unlock(&_minor_lock); 1963 idr_preload_end(); 1964 if (r < 0) 1965 return r; 1966 *minor = r; 1967 return 0; 1968 } 1969 1970 static const struct block_device_operations dm_blk_dops; 1971 static const struct block_device_operations dm_rq_blk_dops; 1972 static const struct dax_operations dm_dax_ops; 1973 1974 static void dm_wq_work(struct work_struct *work); 1975 1976 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1977 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1978 { 1979 dm_destroy_crypto_profile(q->crypto_profile); 1980 } 1981 1982 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1983 1984 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1985 { 1986 } 1987 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1988 1989 static void cleanup_mapped_device(struct mapped_device *md) 1990 { 1991 if (md->wq) 1992 destroy_workqueue(md->wq); 1993 dm_free_md_mempools(md->mempools); 1994 1995 if (md->dax_dev) { 1996 dax_remove_host(md->disk); 1997 kill_dax(md->dax_dev); 1998 put_dax(md->dax_dev); 1999 md->dax_dev = NULL; 2000 } 2001 2002 dm_cleanup_zoned_dev(md); 2003 if (md->disk) { 2004 spin_lock(&_minor_lock); 2005 md->disk->private_data = NULL; 2006 spin_unlock(&_minor_lock); 2007 if (dm_get_md_type(md) != DM_TYPE_NONE) { 2008 struct table_device *td; 2009 2010 dm_sysfs_exit(md); 2011 list_for_each_entry(td, &md->table_devices, list) { 2012 bd_unlink_disk_holder(td->dm_dev.bdev, 2013 md->disk); 2014 } 2015 2016 /* 2017 * Hold lock to make sure del_gendisk() won't concurrent 2018 * with open/close_table_device(). 2019 */ 2020 mutex_lock(&md->table_devices_lock); 2021 del_gendisk(md->disk); 2022 mutex_unlock(&md->table_devices_lock); 2023 } 2024 dm_queue_destroy_crypto_profile(md->queue); 2025 put_disk(md->disk); 2026 } 2027 2028 if (md->pending_io) { 2029 free_percpu(md->pending_io); 2030 md->pending_io = NULL; 2031 } 2032 2033 cleanup_srcu_struct(&md->io_barrier); 2034 2035 mutex_destroy(&md->suspend_lock); 2036 mutex_destroy(&md->type_lock); 2037 mutex_destroy(&md->table_devices_lock); 2038 mutex_destroy(&md->swap_bios_lock); 2039 2040 dm_mq_cleanup_mapped_device(md); 2041 } 2042 2043 /* 2044 * Allocate and initialise a blank device with a given minor. 2045 */ 2046 static struct mapped_device *alloc_dev(int minor) 2047 { 2048 int r, numa_node_id = dm_get_numa_node(); 2049 struct mapped_device *md; 2050 void *old_md; 2051 2052 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2053 if (!md) { 2054 DMERR("unable to allocate device, out of memory."); 2055 return NULL; 2056 } 2057 2058 if (!try_module_get(THIS_MODULE)) 2059 goto bad_module_get; 2060 2061 /* get a minor number for the dev */ 2062 if (minor == DM_ANY_MINOR) 2063 r = next_free_minor(&minor); 2064 else 2065 r = specific_minor(minor); 2066 if (r < 0) 2067 goto bad_minor; 2068 2069 r = init_srcu_struct(&md->io_barrier); 2070 if (r < 0) 2071 goto bad_io_barrier; 2072 2073 md->numa_node_id = numa_node_id; 2074 md->init_tio_pdu = false; 2075 md->type = DM_TYPE_NONE; 2076 mutex_init(&md->suspend_lock); 2077 mutex_init(&md->type_lock); 2078 mutex_init(&md->table_devices_lock); 2079 spin_lock_init(&md->deferred_lock); 2080 atomic_set(&md->holders, 1); 2081 atomic_set(&md->open_count, 0); 2082 atomic_set(&md->event_nr, 0); 2083 atomic_set(&md->uevent_seq, 0); 2084 INIT_LIST_HEAD(&md->uevent_list); 2085 INIT_LIST_HEAD(&md->table_devices); 2086 spin_lock_init(&md->uevent_lock); 2087 2088 /* 2089 * default to bio-based until DM table is loaded and md->type 2090 * established. If request-based table is loaded: blk-mq will 2091 * override accordingly. 2092 */ 2093 md->disk = blk_alloc_disk(md->numa_node_id); 2094 if (!md->disk) 2095 goto bad; 2096 md->queue = md->disk->queue; 2097 2098 init_waitqueue_head(&md->wait); 2099 INIT_WORK(&md->work, dm_wq_work); 2100 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2101 init_waitqueue_head(&md->eventq); 2102 init_completion(&md->kobj_holder.completion); 2103 2104 md->requeue_list = NULL; 2105 md->swap_bios = get_swap_bios(); 2106 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2107 mutex_init(&md->swap_bios_lock); 2108 2109 md->disk->major = _major; 2110 md->disk->first_minor = minor; 2111 md->disk->minors = 1; 2112 md->disk->flags |= GENHD_FL_NO_PART; 2113 md->disk->fops = &dm_blk_dops; 2114 md->disk->private_data = md; 2115 sprintf(md->disk->disk_name, "dm-%d", minor); 2116 2117 if (IS_ENABLED(CONFIG_FS_DAX)) { 2118 md->dax_dev = alloc_dax(md, &dm_dax_ops); 2119 if (IS_ERR(md->dax_dev)) { 2120 md->dax_dev = NULL; 2121 goto bad; 2122 } 2123 set_dax_nocache(md->dax_dev); 2124 set_dax_nomc(md->dax_dev); 2125 if (dax_add_host(md->dax_dev, md->disk)) 2126 goto bad; 2127 } 2128 2129 format_dev_t(md->name, MKDEV(_major, minor)); 2130 2131 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2132 if (!md->wq) 2133 goto bad; 2134 2135 md->pending_io = alloc_percpu(unsigned long); 2136 if (!md->pending_io) 2137 goto bad; 2138 2139 r = dm_stats_init(&md->stats); 2140 if (r < 0) 2141 goto bad; 2142 2143 /* Populate the mapping, nobody knows we exist yet */ 2144 spin_lock(&_minor_lock); 2145 old_md = idr_replace(&_minor_idr, md, minor); 2146 spin_unlock(&_minor_lock); 2147 2148 BUG_ON(old_md != MINOR_ALLOCED); 2149 2150 return md; 2151 2152 bad: 2153 cleanup_mapped_device(md); 2154 bad_io_barrier: 2155 free_minor(minor); 2156 bad_minor: 2157 module_put(THIS_MODULE); 2158 bad_module_get: 2159 kvfree(md); 2160 return NULL; 2161 } 2162 2163 static void unlock_fs(struct mapped_device *md); 2164 2165 static void free_dev(struct mapped_device *md) 2166 { 2167 int minor = MINOR(disk_devt(md->disk)); 2168 2169 unlock_fs(md); 2170 2171 cleanup_mapped_device(md); 2172 2173 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2174 dm_stats_cleanup(&md->stats); 2175 free_minor(minor); 2176 2177 module_put(THIS_MODULE); 2178 kvfree(md); 2179 } 2180 2181 /* 2182 * Bind a table to the device. 2183 */ 2184 static void event_callback(void *context) 2185 { 2186 unsigned long flags; 2187 LIST_HEAD(uevents); 2188 struct mapped_device *md = context; 2189 2190 spin_lock_irqsave(&md->uevent_lock, flags); 2191 list_splice_init(&md->uevent_list, &uevents); 2192 spin_unlock_irqrestore(&md->uevent_lock, flags); 2193 2194 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2195 2196 atomic_inc(&md->event_nr); 2197 wake_up(&md->eventq); 2198 dm_issue_global_event(); 2199 } 2200 2201 /* 2202 * Returns old map, which caller must destroy. 2203 */ 2204 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2205 struct queue_limits *limits) 2206 { 2207 struct dm_table *old_map; 2208 sector_t size; 2209 int ret; 2210 2211 lockdep_assert_held(&md->suspend_lock); 2212 2213 size = dm_table_get_size(t); 2214 2215 /* 2216 * Wipe any geometry if the size of the table changed. 2217 */ 2218 if (size != dm_get_size(md)) 2219 memset(&md->geometry, 0, sizeof(md->geometry)); 2220 2221 set_capacity(md->disk, size); 2222 2223 dm_table_event_callback(t, event_callback, md); 2224 2225 if (dm_table_request_based(t)) { 2226 /* 2227 * Leverage the fact that request-based DM targets are 2228 * immutable singletons - used to optimize dm_mq_queue_rq. 2229 */ 2230 md->immutable_target = dm_table_get_immutable_target(t); 2231 2232 /* 2233 * There is no need to reload with request-based dm because the 2234 * size of front_pad doesn't change. 2235 * 2236 * Note for future: If you are to reload bioset, prep-ed 2237 * requests in the queue may refer to bio from the old bioset, 2238 * so you must walk through the queue to unprep. 2239 */ 2240 if (!md->mempools) { 2241 md->mempools = t->mempools; 2242 t->mempools = NULL; 2243 } 2244 } else { 2245 /* 2246 * The md may already have mempools that need changing. 2247 * If so, reload bioset because front_pad may have changed 2248 * because a different table was loaded. 2249 */ 2250 dm_free_md_mempools(md->mempools); 2251 md->mempools = t->mempools; 2252 t->mempools = NULL; 2253 } 2254 2255 ret = dm_table_set_restrictions(t, md->queue, limits); 2256 if (ret) { 2257 old_map = ERR_PTR(ret); 2258 goto out; 2259 } 2260 2261 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2262 rcu_assign_pointer(md->map, (void *)t); 2263 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2264 2265 if (old_map) 2266 dm_sync_table(md); 2267 out: 2268 return old_map; 2269 } 2270 2271 /* 2272 * Returns unbound table for the caller to free. 2273 */ 2274 static struct dm_table *__unbind(struct mapped_device *md) 2275 { 2276 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2277 2278 if (!map) 2279 return NULL; 2280 2281 dm_table_event_callback(map, NULL, NULL); 2282 RCU_INIT_POINTER(md->map, NULL); 2283 dm_sync_table(md); 2284 2285 return map; 2286 } 2287 2288 /* 2289 * Constructor for a new device. 2290 */ 2291 int dm_create(int minor, struct mapped_device **result) 2292 { 2293 struct mapped_device *md; 2294 2295 md = alloc_dev(minor); 2296 if (!md) 2297 return -ENXIO; 2298 2299 dm_ima_reset_data(md); 2300 2301 *result = md; 2302 return 0; 2303 } 2304 2305 /* 2306 * Functions to manage md->type. 2307 * All are required to hold md->type_lock. 2308 */ 2309 void dm_lock_md_type(struct mapped_device *md) 2310 { 2311 mutex_lock(&md->type_lock); 2312 } 2313 2314 void dm_unlock_md_type(struct mapped_device *md) 2315 { 2316 mutex_unlock(&md->type_lock); 2317 } 2318 2319 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2320 { 2321 BUG_ON(!mutex_is_locked(&md->type_lock)); 2322 md->type = type; 2323 } 2324 2325 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2326 { 2327 return md->type; 2328 } 2329 2330 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2331 { 2332 return md->immutable_target_type; 2333 } 2334 2335 /* 2336 * Setup the DM device's queue based on md's type 2337 */ 2338 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2339 { 2340 enum dm_queue_mode type = dm_table_get_type(t); 2341 struct queue_limits limits; 2342 struct table_device *td; 2343 int r; 2344 2345 switch (type) { 2346 case DM_TYPE_REQUEST_BASED: 2347 md->disk->fops = &dm_rq_blk_dops; 2348 r = dm_mq_init_request_queue(md, t); 2349 if (r) { 2350 DMERR("Cannot initialize queue for request-based dm mapped device"); 2351 return r; 2352 } 2353 break; 2354 case DM_TYPE_BIO_BASED: 2355 case DM_TYPE_DAX_BIO_BASED: 2356 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue); 2357 break; 2358 case DM_TYPE_NONE: 2359 WARN_ON_ONCE(true); 2360 break; 2361 } 2362 2363 r = dm_calculate_queue_limits(t, &limits); 2364 if (r) { 2365 DMERR("Cannot calculate initial queue limits"); 2366 return r; 2367 } 2368 r = dm_table_set_restrictions(t, md->queue, &limits); 2369 if (r) 2370 return r; 2371 2372 /* 2373 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2374 * with open_table_device() and close_table_device(). 2375 */ 2376 mutex_lock(&md->table_devices_lock); 2377 r = add_disk(md->disk); 2378 mutex_unlock(&md->table_devices_lock); 2379 if (r) 2380 return r; 2381 2382 /* 2383 * Register the holder relationship for devices added before the disk 2384 * was live. 2385 */ 2386 list_for_each_entry(td, &md->table_devices, list) { 2387 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2388 if (r) 2389 goto out_undo_holders; 2390 } 2391 2392 r = dm_sysfs_init(md); 2393 if (r) 2394 goto out_undo_holders; 2395 2396 md->type = type; 2397 return 0; 2398 2399 out_undo_holders: 2400 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2401 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2402 mutex_lock(&md->table_devices_lock); 2403 del_gendisk(md->disk); 2404 mutex_unlock(&md->table_devices_lock); 2405 return r; 2406 } 2407 2408 struct mapped_device *dm_get_md(dev_t dev) 2409 { 2410 struct mapped_device *md; 2411 unsigned int minor = MINOR(dev); 2412 2413 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2414 return NULL; 2415 2416 spin_lock(&_minor_lock); 2417 2418 md = idr_find(&_minor_idr, minor); 2419 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2420 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2421 md = NULL; 2422 goto out; 2423 } 2424 dm_get(md); 2425 out: 2426 spin_unlock(&_minor_lock); 2427 2428 return md; 2429 } 2430 EXPORT_SYMBOL_GPL(dm_get_md); 2431 2432 void *dm_get_mdptr(struct mapped_device *md) 2433 { 2434 return md->interface_ptr; 2435 } 2436 2437 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2438 { 2439 md->interface_ptr = ptr; 2440 } 2441 2442 void dm_get(struct mapped_device *md) 2443 { 2444 atomic_inc(&md->holders); 2445 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2446 } 2447 2448 int dm_hold(struct mapped_device *md) 2449 { 2450 spin_lock(&_minor_lock); 2451 if (test_bit(DMF_FREEING, &md->flags)) { 2452 spin_unlock(&_minor_lock); 2453 return -EBUSY; 2454 } 2455 dm_get(md); 2456 spin_unlock(&_minor_lock); 2457 return 0; 2458 } 2459 EXPORT_SYMBOL_GPL(dm_hold); 2460 2461 const char *dm_device_name(struct mapped_device *md) 2462 { 2463 return md->name; 2464 } 2465 EXPORT_SYMBOL_GPL(dm_device_name); 2466 2467 static void __dm_destroy(struct mapped_device *md, bool wait) 2468 { 2469 struct dm_table *map; 2470 int srcu_idx; 2471 2472 might_sleep(); 2473 2474 spin_lock(&_minor_lock); 2475 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2476 set_bit(DMF_FREEING, &md->flags); 2477 spin_unlock(&_minor_lock); 2478 2479 blk_mark_disk_dead(md->disk); 2480 2481 /* 2482 * Take suspend_lock so that presuspend and postsuspend methods 2483 * do not race with internal suspend. 2484 */ 2485 mutex_lock(&md->suspend_lock); 2486 map = dm_get_live_table(md, &srcu_idx); 2487 if (!dm_suspended_md(md)) { 2488 dm_table_presuspend_targets(map); 2489 set_bit(DMF_SUSPENDED, &md->flags); 2490 set_bit(DMF_POST_SUSPENDING, &md->flags); 2491 dm_table_postsuspend_targets(map); 2492 } 2493 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2494 dm_put_live_table(md, srcu_idx); 2495 mutex_unlock(&md->suspend_lock); 2496 2497 /* 2498 * Rare, but there may be I/O requests still going to complete, 2499 * for example. Wait for all references to disappear. 2500 * No one should increment the reference count of the mapped_device, 2501 * after the mapped_device state becomes DMF_FREEING. 2502 */ 2503 if (wait) 2504 while (atomic_read(&md->holders)) 2505 fsleep(1000); 2506 else if (atomic_read(&md->holders)) 2507 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2508 dm_device_name(md), atomic_read(&md->holders)); 2509 2510 dm_table_destroy(__unbind(md)); 2511 free_dev(md); 2512 } 2513 2514 void dm_destroy(struct mapped_device *md) 2515 { 2516 __dm_destroy(md, true); 2517 } 2518 2519 void dm_destroy_immediate(struct mapped_device *md) 2520 { 2521 __dm_destroy(md, false); 2522 } 2523 2524 void dm_put(struct mapped_device *md) 2525 { 2526 atomic_dec(&md->holders); 2527 } 2528 EXPORT_SYMBOL_GPL(dm_put); 2529 2530 static bool dm_in_flight_bios(struct mapped_device *md) 2531 { 2532 int cpu; 2533 unsigned long sum = 0; 2534 2535 for_each_possible_cpu(cpu) 2536 sum += *per_cpu_ptr(md->pending_io, cpu); 2537 2538 return sum != 0; 2539 } 2540 2541 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2542 { 2543 int r = 0; 2544 DEFINE_WAIT(wait); 2545 2546 while (true) { 2547 prepare_to_wait(&md->wait, &wait, task_state); 2548 2549 if (!dm_in_flight_bios(md)) 2550 break; 2551 2552 if (signal_pending_state(task_state, current)) { 2553 r = -EINTR; 2554 break; 2555 } 2556 2557 io_schedule(); 2558 } 2559 finish_wait(&md->wait, &wait); 2560 2561 smp_rmb(); 2562 2563 return r; 2564 } 2565 2566 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2567 { 2568 int r = 0; 2569 2570 if (!queue_is_mq(md->queue)) 2571 return dm_wait_for_bios_completion(md, task_state); 2572 2573 while (true) { 2574 if (!blk_mq_queue_inflight(md->queue)) 2575 break; 2576 2577 if (signal_pending_state(task_state, current)) { 2578 r = -EINTR; 2579 break; 2580 } 2581 2582 fsleep(5000); 2583 } 2584 2585 return r; 2586 } 2587 2588 /* 2589 * Process the deferred bios 2590 */ 2591 static void dm_wq_work(struct work_struct *work) 2592 { 2593 struct mapped_device *md = container_of(work, struct mapped_device, work); 2594 struct bio *bio; 2595 2596 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2597 spin_lock_irq(&md->deferred_lock); 2598 bio = bio_list_pop(&md->deferred); 2599 spin_unlock_irq(&md->deferred_lock); 2600 2601 if (!bio) 2602 break; 2603 2604 submit_bio_noacct(bio); 2605 cond_resched(); 2606 } 2607 } 2608 2609 static void dm_queue_flush(struct mapped_device *md) 2610 { 2611 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2612 smp_mb__after_atomic(); 2613 queue_work(md->wq, &md->work); 2614 } 2615 2616 /* 2617 * Swap in a new table, returning the old one for the caller to destroy. 2618 */ 2619 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2620 { 2621 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2622 struct queue_limits limits; 2623 int r; 2624 2625 mutex_lock(&md->suspend_lock); 2626 2627 /* device must be suspended */ 2628 if (!dm_suspended_md(md)) 2629 goto out; 2630 2631 /* 2632 * If the new table has no data devices, retain the existing limits. 2633 * This helps multipath with queue_if_no_path if all paths disappear, 2634 * then new I/O is queued based on these limits, and then some paths 2635 * reappear. 2636 */ 2637 if (dm_table_has_no_data_devices(table)) { 2638 live_map = dm_get_live_table_fast(md); 2639 if (live_map) 2640 limits = md->queue->limits; 2641 dm_put_live_table_fast(md); 2642 } 2643 2644 if (!live_map) { 2645 r = dm_calculate_queue_limits(table, &limits); 2646 if (r) { 2647 map = ERR_PTR(r); 2648 goto out; 2649 } 2650 } 2651 2652 map = __bind(md, table, &limits); 2653 dm_issue_global_event(); 2654 2655 out: 2656 mutex_unlock(&md->suspend_lock); 2657 return map; 2658 } 2659 2660 /* 2661 * Functions to lock and unlock any filesystem running on the 2662 * device. 2663 */ 2664 static int lock_fs(struct mapped_device *md) 2665 { 2666 int r; 2667 2668 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2669 2670 r = freeze_bdev(md->disk->part0); 2671 if (!r) 2672 set_bit(DMF_FROZEN, &md->flags); 2673 return r; 2674 } 2675 2676 static void unlock_fs(struct mapped_device *md) 2677 { 2678 if (!test_bit(DMF_FROZEN, &md->flags)) 2679 return; 2680 thaw_bdev(md->disk->part0); 2681 clear_bit(DMF_FROZEN, &md->flags); 2682 } 2683 2684 /* 2685 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2686 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2687 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2688 * 2689 * If __dm_suspend returns 0, the device is completely quiescent 2690 * now. There is no request-processing activity. All new requests 2691 * are being added to md->deferred list. 2692 */ 2693 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2694 unsigned int suspend_flags, unsigned int task_state, 2695 int dmf_suspended_flag) 2696 { 2697 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2698 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2699 int r; 2700 2701 lockdep_assert_held(&md->suspend_lock); 2702 2703 /* 2704 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2705 * This flag is cleared before dm_suspend returns. 2706 */ 2707 if (noflush) 2708 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2709 else 2710 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2711 2712 /* 2713 * This gets reverted if there's an error later and the targets 2714 * provide the .presuspend_undo hook. 2715 */ 2716 dm_table_presuspend_targets(map); 2717 2718 /* 2719 * Flush I/O to the device. 2720 * Any I/O submitted after lock_fs() may not be flushed. 2721 * noflush takes precedence over do_lockfs. 2722 * (lock_fs() flushes I/Os and waits for them to complete.) 2723 */ 2724 if (!noflush && do_lockfs) { 2725 r = lock_fs(md); 2726 if (r) { 2727 dm_table_presuspend_undo_targets(map); 2728 return r; 2729 } 2730 } 2731 2732 /* 2733 * Here we must make sure that no processes are submitting requests 2734 * to target drivers i.e. no one may be executing 2735 * dm_split_and_process_bio from dm_submit_bio. 2736 * 2737 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2738 * we take the write lock. To prevent any process from reentering 2739 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2740 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2741 * flush_workqueue(md->wq). 2742 */ 2743 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2744 if (map) 2745 synchronize_srcu(&md->io_barrier); 2746 2747 /* 2748 * Stop md->queue before flushing md->wq in case request-based 2749 * dm defers requests to md->wq from md->queue. 2750 */ 2751 if (dm_request_based(md)) 2752 dm_stop_queue(md->queue); 2753 2754 flush_workqueue(md->wq); 2755 2756 /* 2757 * At this point no more requests are entering target request routines. 2758 * We call dm_wait_for_completion to wait for all existing requests 2759 * to finish. 2760 */ 2761 r = dm_wait_for_completion(md, task_state); 2762 if (!r) 2763 set_bit(dmf_suspended_flag, &md->flags); 2764 2765 if (noflush) 2766 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2767 if (map) 2768 synchronize_srcu(&md->io_barrier); 2769 2770 /* were we interrupted ? */ 2771 if (r < 0) { 2772 dm_queue_flush(md); 2773 2774 if (dm_request_based(md)) 2775 dm_start_queue(md->queue); 2776 2777 unlock_fs(md); 2778 dm_table_presuspend_undo_targets(map); 2779 /* pushback list is already flushed, so skip flush */ 2780 } 2781 2782 return r; 2783 } 2784 2785 /* 2786 * We need to be able to change a mapping table under a mounted 2787 * filesystem. For example we might want to move some data in 2788 * the background. Before the table can be swapped with 2789 * dm_bind_table, dm_suspend must be called to flush any in 2790 * flight bios and ensure that any further io gets deferred. 2791 */ 2792 /* 2793 * Suspend mechanism in request-based dm. 2794 * 2795 * 1. Flush all I/Os by lock_fs() if needed. 2796 * 2. Stop dispatching any I/O by stopping the request_queue. 2797 * 3. Wait for all in-flight I/Os to be completed or requeued. 2798 * 2799 * To abort suspend, start the request_queue. 2800 */ 2801 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2802 { 2803 struct dm_table *map = NULL; 2804 int r = 0; 2805 2806 retry: 2807 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2808 2809 if (dm_suspended_md(md)) { 2810 r = -EINVAL; 2811 goto out_unlock; 2812 } 2813 2814 if (dm_suspended_internally_md(md)) { 2815 /* already internally suspended, wait for internal resume */ 2816 mutex_unlock(&md->suspend_lock); 2817 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2818 if (r) 2819 return r; 2820 goto retry; 2821 } 2822 2823 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2824 if (!map) { 2825 /* avoid deadlock with fs/namespace.c:do_mount() */ 2826 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 2827 } 2828 2829 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2830 if (r) 2831 goto out_unlock; 2832 2833 set_bit(DMF_POST_SUSPENDING, &md->flags); 2834 dm_table_postsuspend_targets(map); 2835 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2836 2837 out_unlock: 2838 mutex_unlock(&md->suspend_lock); 2839 return r; 2840 } 2841 2842 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2843 { 2844 if (map) { 2845 int r = dm_table_resume_targets(map); 2846 2847 if (r) 2848 return r; 2849 } 2850 2851 dm_queue_flush(md); 2852 2853 /* 2854 * Flushing deferred I/Os must be done after targets are resumed 2855 * so that mapping of targets can work correctly. 2856 * Request-based dm is queueing the deferred I/Os in its request_queue. 2857 */ 2858 if (dm_request_based(md)) 2859 dm_start_queue(md->queue); 2860 2861 unlock_fs(md); 2862 2863 return 0; 2864 } 2865 2866 int dm_resume(struct mapped_device *md) 2867 { 2868 int r; 2869 struct dm_table *map = NULL; 2870 2871 retry: 2872 r = -EINVAL; 2873 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2874 2875 if (!dm_suspended_md(md)) 2876 goto out; 2877 2878 if (dm_suspended_internally_md(md)) { 2879 /* already internally suspended, wait for internal resume */ 2880 mutex_unlock(&md->suspend_lock); 2881 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2882 if (r) 2883 return r; 2884 goto retry; 2885 } 2886 2887 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2888 if (!map || !dm_table_get_size(map)) 2889 goto out; 2890 2891 r = __dm_resume(md, map); 2892 if (r) 2893 goto out; 2894 2895 clear_bit(DMF_SUSPENDED, &md->flags); 2896 out: 2897 mutex_unlock(&md->suspend_lock); 2898 2899 return r; 2900 } 2901 2902 /* 2903 * Internal suspend/resume works like userspace-driven suspend. It waits 2904 * until all bios finish and prevents issuing new bios to the target drivers. 2905 * It may be used only from the kernel. 2906 */ 2907 2908 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 2909 { 2910 struct dm_table *map = NULL; 2911 2912 lockdep_assert_held(&md->suspend_lock); 2913 2914 if (md->internal_suspend_count++) 2915 return; /* nested internal suspend */ 2916 2917 if (dm_suspended_md(md)) { 2918 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2919 return; /* nest suspend */ 2920 } 2921 2922 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2923 2924 /* 2925 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2926 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2927 * would require changing .presuspend to return an error -- avoid this 2928 * until there is a need for more elaborate variants of internal suspend. 2929 */ 2930 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2931 DMF_SUSPENDED_INTERNALLY); 2932 2933 set_bit(DMF_POST_SUSPENDING, &md->flags); 2934 dm_table_postsuspend_targets(map); 2935 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2936 } 2937 2938 static void __dm_internal_resume(struct mapped_device *md) 2939 { 2940 BUG_ON(!md->internal_suspend_count); 2941 2942 if (--md->internal_suspend_count) 2943 return; /* resume from nested internal suspend */ 2944 2945 if (dm_suspended_md(md)) 2946 goto done; /* resume from nested suspend */ 2947 2948 /* 2949 * NOTE: existing callers don't need to call dm_table_resume_targets 2950 * (which may fail -- so best to avoid it for now by passing NULL map) 2951 */ 2952 (void) __dm_resume(md, NULL); 2953 2954 done: 2955 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2956 smp_mb__after_atomic(); 2957 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2958 } 2959 2960 void dm_internal_suspend_noflush(struct mapped_device *md) 2961 { 2962 mutex_lock(&md->suspend_lock); 2963 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2964 mutex_unlock(&md->suspend_lock); 2965 } 2966 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2967 2968 void dm_internal_resume(struct mapped_device *md) 2969 { 2970 mutex_lock(&md->suspend_lock); 2971 __dm_internal_resume(md); 2972 mutex_unlock(&md->suspend_lock); 2973 } 2974 EXPORT_SYMBOL_GPL(dm_internal_resume); 2975 2976 /* 2977 * Fast variants of internal suspend/resume hold md->suspend_lock, 2978 * which prevents interaction with userspace-driven suspend. 2979 */ 2980 2981 void dm_internal_suspend_fast(struct mapped_device *md) 2982 { 2983 mutex_lock(&md->suspend_lock); 2984 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2985 return; 2986 2987 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2988 synchronize_srcu(&md->io_barrier); 2989 flush_workqueue(md->wq); 2990 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2991 } 2992 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2993 2994 void dm_internal_resume_fast(struct mapped_device *md) 2995 { 2996 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2997 goto done; 2998 2999 dm_queue_flush(md); 3000 3001 done: 3002 mutex_unlock(&md->suspend_lock); 3003 } 3004 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3005 3006 /* 3007 *--------------------------------------------------------------- 3008 * Event notification. 3009 *--------------------------------------------------------------- 3010 */ 3011 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3012 unsigned int cookie, bool need_resize_uevent) 3013 { 3014 int r; 3015 unsigned int noio_flag; 3016 char udev_cookie[DM_COOKIE_LENGTH]; 3017 char *envp[3] = { NULL, NULL, NULL }; 3018 char **envpp = envp; 3019 if (cookie) { 3020 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3021 DM_COOKIE_ENV_VAR_NAME, cookie); 3022 *envpp++ = udev_cookie; 3023 } 3024 if (need_resize_uevent) { 3025 *envpp++ = "RESIZE=1"; 3026 } 3027 3028 noio_flag = memalloc_noio_save(); 3029 3030 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3031 3032 memalloc_noio_restore(noio_flag); 3033 3034 return r; 3035 } 3036 3037 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3038 { 3039 return atomic_add_return(1, &md->uevent_seq); 3040 } 3041 3042 uint32_t dm_get_event_nr(struct mapped_device *md) 3043 { 3044 return atomic_read(&md->event_nr); 3045 } 3046 3047 int dm_wait_event(struct mapped_device *md, int event_nr) 3048 { 3049 return wait_event_interruptible(md->eventq, 3050 (event_nr != atomic_read(&md->event_nr))); 3051 } 3052 3053 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3054 { 3055 unsigned long flags; 3056 3057 spin_lock_irqsave(&md->uevent_lock, flags); 3058 list_add(elist, &md->uevent_list); 3059 spin_unlock_irqrestore(&md->uevent_lock, flags); 3060 } 3061 3062 /* 3063 * The gendisk is only valid as long as you have a reference 3064 * count on 'md'. 3065 */ 3066 struct gendisk *dm_disk(struct mapped_device *md) 3067 { 3068 return md->disk; 3069 } 3070 EXPORT_SYMBOL_GPL(dm_disk); 3071 3072 struct kobject *dm_kobject(struct mapped_device *md) 3073 { 3074 return &md->kobj_holder.kobj; 3075 } 3076 3077 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3078 { 3079 struct mapped_device *md; 3080 3081 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3082 3083 spin_lock(&_minor_lock); 3084 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3085 md = NULL; 3086 goto out; 3087 } 3088 dm_get(md); 3089 out: 3090 spin_unlock(&_minor_lock); 3091 3092 return md; 3093 } 3094 3095 int dm_suspended_md(struct mapped_device *md) 3096 { 3097 return test_bit(DMF_SUSPENDED, &md->flags); 3098 } 3099 3100 static int dm_post_suspending_md(struct mapped_device *md) 3101 { 3102 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3103 } 3104 3105 int dm_suspended_internally_md(struct mapped_device *md) 3106 { 3107 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3108 } 3109 3110 int dm_test_deferred_remove_flag(struct mapped_device *md) 3111 { 3112 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3113 } 3114 3115 int dm_suspended(struct dm_target *ti) 3116 { 3117 return dm_suspended_md(ti->table->md); 3118 } 3119 EXPORT_SYMBOL_GPL(dm_suspended); 3120 3121 int dm_post_suspending(struct dm_target *ti) 3122 { 3123 return dm_post_suspending_md(ti->table->md); 3124 } 3125 EXPORT_SYMBOL_GPL(dm_post_suspending); 3126 3127 int dm_noflush_suspending(struct dm_target *ti) 3128 { 3129 return __noflush_suspending(ti->table->md); 3130 } 3131 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3132 3133 void dm_free_md_mempools(struct dm_md_mempools *pools) 3134 { 3135 if (!pools) 3136 return; 3137 3138 bioset_exit(&pools->bs); 3139 bioset_exit(&pools->io_bs); 3140 3141 kfree(pools); 3142 } 3143 3144 struct dm_pr { 3145 u64 old_key; 3146 u64 new_key; 3147 u32 flags; 3148 bool abort; 3149 bool fail_early; 3150 int ret; 3151 enum pr_type type; 3152 struct pr_keys *read_keys; 3153 struct pr_held_reservation *rsv; 3154 }; 3155 3156 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3157 struct dm_pr *pr) 3158 { 3159 struct mapped_device *md = bdev->bd_disk->private_data; 3160 struct dm_table *table; 3161 struct dm_target *ti; 3162 int ret = -ENOTTY, srcu_idx; 3163 3164 table = dm_get_live_table(md, &srcu_idx); 3165 if (!table || !dm_table_get_size(table)) 3166 goto out; 3167 3168 /* We only support devices that have a single target */ 3169 if (table->num_targets != 1) 3170 goto out; 3171 ti = dm_table_get_target(table, 0); 3172 3173 if (dm_suspended_md(md)) { 3174 ret = -EAGAIN; 3175 goto out; 3176 } 3177 3178 ret = -EINVAL; 3179 if (!ti->type->iterate_devices) 3180 goto out; 3181 3182 ti->type->iterate_devices(ti, fn, pr); 3183 ret = 0; 3184 out: 3185 dm_put_live_table(md, srcu_idx); 3186 return ret; 3187 } 3188 3189 /* 3190 * For register / unregister we need to manually call out to every path. 3191 */ 3192 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3193 sector_t start, sector_t len, void *data) 3194 { 3195 struct dm_pr *pr = data; 3196 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3197 int ret; 3198 3199 if (!ops || !ops->pr_register) { 3200 pr->ret = -EOPNOTSUPP; 3201 return -1; 3202 } 3203 3204 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3205 if (!ret) 3206 return 0; 3207 3208 if (!pr->ret) 3209 pr->ret = ret; 3210 3211 if (pr->fail_early) 3212 return -1; 3213 3214 return 0; 3215 } 3216 3217 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3218 u32 flags) 3219 { 3220 struct dm_pr pr = { 3221 .old_key = old_key, 3222 .new_key = new_key, 3223 .flags = flags, 3224 .fail_early = true, 3225 .ret = 0, 3226 }; 3227 int ret; 3228 3229 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3230 if (ret) { 3231 /* Didn't even get to register a path */ 3232 return ret; 3233 } 3234 3235 if (!pr.ret) 3236 return 0; 3237 ret = pr.ret; 3238 3239 if (!new_key) 3240 return ret; 3241 3242 /* unregister all paths if we failed to register any path */ 3243 pr.old_key = new_key; 3244 pr.new_key = 0; 3245 pr.flags = 0; 3246 pr.fail_early = false; 3247 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3248 return ret; 3249 } 3250 3251 3252 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3253 sector_t start, sector_t len, void *data) 3254 { 3255 struct dm_pr *pr = data; 3256 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3257 3258 if (!ops || !ops->pr_reserve) { 3259 pr->ret = -EOPNOTSUPP; 3260 return -1; 3261 } 3262 3263 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3264 if (!pr->ret) 3265 return -1; 3266 3267 return 0; 3268 } 3269 3270 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3271 u32 flags) 3272 { 3273 struct dm_pr pr = { 3274 .old_key = key, 3275 .flags = flags, 3276 .type = type, 3277 .fail_early = false, 3278 .ret = 0, 3279 }; 3280 int ret; 3281 3282 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3283 if (ret) 3284 return ret; 3285 3286 return pr.ret; 3287 } 3288 3289 /* 3290 * If there is a non-All Registrants type of reservation, the release must be 3291 * sent down the holding path. For the cases where there is no reservation or 3292 * the path is not the holder the device will also return success, so we must 3293 * try each path to make sure we got the correct path. 3294 */ 3295 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3296 sector_t start, sector_t len, void *data) 3297 { 3298 struct dm_pr *pr = data; 3299 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3300 3301 if (!ops || !ops->pr_release) { 3302 pr->ret = -EOPNOTSUPP; 3303 return -1; 3304 } 3305 3306 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3307 if (pr->ret) 3308 return -1; 3309 3310 return 0; 3311 } 3312 3313 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3314 { 3315 struct dm_pr pr = { 3316 .old_key = key, 3317 .type = type, 3318 .fail_early = false, 3319 }; 3320 int ret; 3321 3322 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3323 if (ret) 3324 return ret; 3325 3326 return pr.ret; 3327 } 3328 3329 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3330 sector_t start, sector_t len, void *data) 3331 { 3332 struct dm_pr *pr = data; 3333 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3334 3335 if (!ops || !ops->pr_preempt) { 3336 pr->ret = -EOPNOTSUPP; 3337 return -1; 3338 } 3339 3340 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3341 pr->abort); 3342 if (!pr->ret) 3343 return -1; 3344 3345 return 0; 3346 } 3347 3348 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3349 enum pr_type type, bool abort) 3350 { 3351 struct dm_pr pr = { 3352 .new_key = new_key, 3353 .old_key = old_key, 3354 .type = type, 3355 .fail_early = false, 3356 }; 3357 int ret; 3358 3359 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3360 if (ret) 3361 return ret; 3362 3363 return pr.ret; 3364 } 3365 3366 static int dm_pr_clear(struct block_device *bdev, u64 key) 3367 { 3368 struct mapped_device *md = bdev->bd_disk->private_data; 3369 const struct pr_ops *ops; 3370 int r, srcu_idx; 3371 3372 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3373 if (r < 0) 3374 goto out; 3375 3376 ops = bdev->bd_disk->fops->pr_ops; 3377 if (ops && ops->pr_clear) 3378 r = ops->pr_clear(bdev, key); 3379 else 3380 r = -EOPNOTSUPP; 3381 out: 3382 dm_unprepare_ioctl(md, srcu_idx); 3383 return r; 3384 } 3385 3386 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, 3387 sector_t start, sector_t len, void *data) 3388 { 3389 struct dm_pr *pr = data; 3390 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3391 3392 if (!ops || !ops->pr_read_keys) { 3393 pr->ret = -EOPNOTSUPP; 3394 return -1; 3395 } 3396 3397 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); 3398 if (!pr->ret) 3399 return -1; 3400 3401 return 0; 3402 } 3403 3404 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) 3405 { 3406 struct dm_pr pr = { 3407 .read_keys = keys, 3408 }; 3409 int ret; 3410 3411 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); 3412 if (ret) 3413 return ret; 3414 3415 return pr.ret; 3416 } 3417 3418 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, 3419 sector_t start, sector_t len, void *data) 3420 { 3421 struct dm_pr *pr = data; 3422 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3423 3424 if (!ops || !ops->pr_read_reservation) { 3425 pr->ret = -EOPNOTSUPP; 3426 return -1; 3427 } 3428 3429 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); 3430 if (!pr->ret) 3431 return -1; 3432 3433 return 0; 3434 } 3435 3436 static int dm_pr_read_reservation(struct block_device *bdev, 3437 struct pr_held_reservation *rsv) 3438 { 3439 struct dm_pr pr = { 3440 .rsv = rsv, 3441 }; 3442 int ret; 3443 3444 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); 3445 if (ret) 3446 return ret; 3447 3448 return pr.ret; 3449 } 3450 3451 static const struct pr_ops dm_pr_ops = { 3452 .pr_register = dm_pr_register, 3453 .pr_reserve = dm_pr_reserve, 3454 .pr_release = dm_pr_release, 3455 .pr_preempt = dm_pr_preempt, 3456 .pr_clear = dm_pr_clear, 3457 .pr_read_keys = dm_pr_read_keys, 3458 .pr_read_reservation = dm_pr_read_reservation, 3459 }; 3460 3461 static const struct block_device_operations dm_blk_dops = { 3462 .submit_bio = dm_submit_bio, 3463 .poll_bio = dm_poll_bio, 3464 .open = dm_blk_open, 3465 .release = dm_blk_close, 3466 .ioctl = dm_blk_ioctl, 3467 .getgeo = dm_blk_getgeo, 3468 .report_zones = dm_blk_report_zones, 3469 .pr_ops = &dm_pr_ops, 3470 .owner = THIS_MODULE 3471 }; 3472 3473 static const struct block_device_operations dm_rq_blk_dops = { 3474 .open = dm_blk_open, 3475 .release = dm_blk_close, 3476 .ioctl = dm_blk_ioctl, 3477 .getgeo = dm_blk_getgeo, 3478 .pr_ops = &dm_pr_ops, 3479 .owner = THIS_MODULE 3480 }; 3481 3482 static const struct dax_operations dm_dax_ops = { 3483 .direct_access = dm_dax_direct_access, 3484 .zero_page_range = dm_dax_zero_page_range, 3485 .recovery_write = dm_dax_recovery_write, 3486 }; 3487 3488 /* 3489 * module hooks 3490 */ 3491 module_init(dm_init); 3492 module_exit(dm_exit); 3493 3494 module_param(major, uint, 0); 3495 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3496 3497 module_param(reserved_bio_based_ios, uint, 0644); 3498 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3499 3500 module_param(dm_numa_node, int, 0644); 3501 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3502 3503 module_param(swap_bios, int, 0644); 3504 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3505 3506 MODULE_DESCRIPTION(DM_NAME " driver"); 3507 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3508 MODULE_LICENSE("GPL"); 3509