xref: /linux/drivers/md/dm.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/keyslot-manager.h>
32 
33 #define DM_MSG_PREFIX "core"
34 
35 /*
36  * Cookies are numeric values sent with CHANGE and REMOVE
37  * uevents while resuming, removing or renaming the device.
38  */
39 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
40 #define DM_COOKIE_LENGTH 24
41 
42 static const char *_name = DM_NAME;
43 
44 static unsigned int major = 0;
45 static unsigned int _major = 0;
46 
47 static DEFINE_IDR(_minor_idr);
48 
49 static DEFINE_SPINLOCK(_minor_lock);
50 
51 static void do_deferred_remove(struct work_struct *w);
52 
53 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
54 
55 static struct workqueue_struct *deferred_remove_workqueue;
56 
57 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
58 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
59 
60 void dm_issue_global_event(void)
61 {
62 	atomic_inc(&dm_global_event_nr);
63 	wake_up(&dm_global_eventq);
64 }
65 
66 /*
67  * One of these is allocated (on-stack) per original bio.
68  */
69 struct clone_info {
70 	struct dm_table *map;
71 	struct bio *bio;
72 	struct dm_io *io;
73 	sector_t sector;
74 	unsigned sector_count;
75 };
76 
77 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
78 #define DM_IO_BIO_OFFSET \
79 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
80 
81 void *dm_per_bio_data(struct bio *bio, size_t data_size)
82 {
83 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
84 	if (!tio->inside_dm_io)
85 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
86 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
87 }
88 EXPORT_SYMBOL_GPL(dm_per_bio_data);
89 
90 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
91 {
92 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
93 	if (io->magic == DM_IO_MAGIC)
94 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
95 	BUG_ON(io->magic != DM_TIO_MAGIC);
96 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
97 }
98 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
99 
100 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
101 {
102 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
103 }
104 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
105 
106 #define MINOR_ALLOCED ((void *)-1)
107 
108 #define DM_NUMA_NODE NUMA_NO_NODE
109 static int dm_numa_node = DM_NUMA_NODE;
110 
111 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
112 static int swap_bios = DEFAULT_SWAP_BIOS;
113 static int get_swap_bios(void)
114 {
115 	int latch = READ_ONCE(swap_bios);
116 	if (unlikely(latch <= 0))
117 		latch = DEFAULT_SWAP_BIOS;
118 	return latch;
119 }
120 
121 /*
122  * For mempools pre-allocation at the table loading time.
123  */
124 struct dm_md_mempools {
125 	struct bio_set bs;
126 	struct bio_set io_bs;
127 };
128 
129 struct table_device {
130 	struct list_head list;
131 	refcount_t count;
132 	struct dm_dev dm_dev;
133 };
134 
135 /*
136  * Bio-based DM's mempools' reserved IOs set by the user.
137  */
138 #define RESERVED_BIO_BASED_IOS		16
139 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
140 
141 static int __dm_get_module_param_int(int *module_param, int min, int max)
142 {
143 	int param = READ_ONCE(*module_param);
144 	int modified_param = 0;
145 	bool modified = true;
146 
147 	if (param < min)
148 		modified_param = min;
149 	else if (param > max)
150 		modified_param = max;
151 	else
152 		modified = false;
153 
154 	if (modified) {
155 		(void)cmpxchg(module_param, param, modified_param);
156 		param = modified_param;
157 	}
158 
159 	return param;
160 }
161 
162 unsigned __dm_get_module_param(unsigned *module_param,
163 			       unsigned def, unsigned max)
164 {
165 	unsigned param = READ_ONCE(*module_param);
166 	unsigned modified_param = 0;
167 
168 	if (!param)
169 		modified_param = def;
170 	else if (param > max)
171 		modified_param = max;
172 
173 	if (modified_param) {
174 		(void)cmpxchg(module_param, param, modified_param);
175 		param = modified_param;
176 	}
177 
178 	return param;
179 }
180 
181 unsigned dm_get_reserved_bio_based_ios(void)
182 {
183 	return __dm_get_module_param(&reserved_bio_based_ios,
184 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
185 }
186 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
187 
188 static unsigned dm_get_numa_node(void)
189 {
190 	return __dm_get_module_param_int(&dm_numa_node,
191 					 DM_NUMA_NODE, num_online_nodes() - 1);
192 }
193 
194 static int __init local_init(void)
195 {
196 	int r;
197 
198 	r = dm_uevent_init();
199 	if (r)
200 		return r;
201 
202 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
203 	if (!deferred_remove_workqueue) {
204 		r = -ENOMEM;
205 		goto out_uevent_exit;
206 	}
207 
208 	_major = major;
209 	r = register_blkdev(_major, _name);
210 	if (r < 0)
211 		goto out_free_workqueue;
212 
213 	if (!_major)
214 		_major = r;
215 
216 	return 0;
217 
218 out_free_workqueue:
219 	destroy_workqueue(deferred_remove_workqueue);
220 out_uevent_exit:
221 	dm_uevent_exit();
222 
223 	return r;
224 }
225 
226 static void local_exit(void)
227 {
228 	flush_scheduled_work();
229 	destroy_workqueue(deferred_remove_workqueue);
230 
231 	unregister_blkdev(_major, _name);
232 	dm_uevent_exit();
233 
234 	_major = 0;
235 
236 	DMINFO("cleaned up");
237 }
238 
239 static int (*_inits[])(void) __initdata = {
240 	local_init,
241 	dm_target_init,
242 	dm_linear_init,
243 	dm_stripe_init,
244 	dm_io_init,
245 	dm_kcopyd_init,
246 	dm_interface_init,
247 	dm_statistics_init,
248 };
249 
250 static void (*_exits[])(void) = {
251 	local_exit,
252 	dm_target_exit,
253 	dm_linear_exit,
254 	dm_stripe_exit,
255 	dm_io_exit,
256 	dm_kcopyd_exit,
257 	dm_interface_exit,
258 	dm_statistics_exit,
259 };
260 
261 static int __init dm_init(void)
262 {
263 	const int count = ARRAY_SIZE(_inits);
264 
265 	int r, i;
266 
267 	for (i = 0; i < count; i++) {
268 		r = _inits[i]();
269 		if (r)
270 			goto bad;
271 	}
272 
273 	return 0;
274 
275       bad:
276 	while (i--)
277 		_exits[i]();
278 
279 	return r;
280 }
281 
282 static void __exit dm_exit(void)
283 {
284 	int i = ARRAY_SIZE(_exits);
285 
286 	while (i--)
287 		_exits[i]();
288 
289 	/*
290 	 * Should be empty by this point.
291 	 */
292 	idr_destroy(&_minor_idr);
293 }
294 
295 /*
296  * Block device functions
297  */
298 int dm_deleting_md(struct mapped_device *md)
299 {
300 	return test_bit(DMF_DELETING, &md->flags);
301 }
302 
303 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
304 {
305 	struct mapped_device *md;
306 
307 	spin_lock(&_minor_lock);
308 
309 	md = bdev->bd_disk->private_data;
310 	if (!md)
311 		goto out;
312 
313 	if (test_bit(DMF_FREEING, &md->flags) ||
314 	    dm_deleting_md(md)) {
315 		md = NULL;
316 		goto out;
317 	}
318 
319 	dm_get(md);
320 	atomic_inc(&md->open_count);
321 out:
322 	spin_unlock(&_minor_lock);
323 
324 	return md ? 0 : -ENXIO;
325 }
326 
327 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
328 {
329 	struct mapped_device *md;
330 
331 	spin_lock(&_minor_lock);
332 
333 	md = disk->private_data;
334 	if (WARN_ON(!md))
335 		goto out;
336 
337 	if (atomic_dec_and_test(&md->open_count) &&
338 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
339 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
340 
341 	dm_put(md);
342 out:
343 	spin_unlock(&_minor_lock);
344 }
345 
346 int dm_open_count(struct mapped_device *md)
347 {
348 	return atomic_read(&md->open_count);
349 }
350 
351 /*
352  * Guarantees nothing is using the device before it's deleted.
353  */
354 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
355 {
356 	int r = 0;
357 
358 	spin_lock(&_minor_lock);
359 
360 	if (dm_open_count(md)) {
361 		r = -EBUSY;
362 		if (mark_deferred)
363 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
364 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
365 		r = -EEXIST;
366 	else
367 		set_bit(DMF_DELETING, &md->flags);
368 
369 	spin_unlock(&_minor_lock);
370 
371 	return r;
372 }
373 
374 int dm_cancel_deferred_remove(struct mapped_device *md)
375 {
376 	int r = 0;
377 
378 	spin_lock(&_minor_lock);
379 
380 	if (test_bit(DMF_DELETING, &md->flags))
381 		r = -EBUSY;
382 	else
383 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
384 
385 	spin_unlock(&_minor_lock);
386 
387 	return r;
388 }
389 
390 static void do_deferred_remove(struct work_struct *w)
391 {
392 	dm_deferred_remove();
393 }
394 
395 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
396 {
397 	struct mapped_device *md = bdev->bd_disk->private_data;
398 
399 	return dm_get_geometry(md, geo);
400 }
401 
402 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
403 			    struct block_device **bdev)
404 {
405 	struct dm_target *tgt;
406 	struct dm_table *map;
407 	int r;
408 
409 retry:
410 	r = -ENOTTY;
411 	map = dm_get_live_table(md, srcu_idx);
412 	if (!map || !dm_table_get_size(map))
413 		return r;
414 
415 	/* We only support devices that have a single target */
416 	if (dm_table_get_num_targets(map) != 1)
417 		return r;
418 
419 	tgt = dm_table_get_target(map, 0);
420 	if (!tgt->type->prepare_ioctl)
421 		return r;
422 
423 	if (dm_suspended_md(md))
424 		return -EAGAIN;
425 
426 	r = tgt->type->prepare_ioctl(tgt, bdev);
427 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
428 		dm_put_live_table(md, *srcu_idx);
429 		msleep(10);
430 		goto retry;
431 	}
432 
433 	return r;
434 }
435 
436 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
437 {
438 	dm_put_live_table(md, srcu_idx);
439 }
440 
441 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
442 			unsigned int cmd, unsigned long arg)
443 {
444 	struct mapped_device *md = bdev->bd_disk->private_data;
445 	int r, srcu_idx;
446 
447 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
448 	if (r < 0)
449 		goto out;
450 
451 	if (r > 0) {
452 		/*
453 		 * Target determined this ioctl is being issued against a
454 		 * subset of the parent bdev; require extra privileges.
455 		 */
456 		if (!capable(CAP_SYS_RAWIO)) {
457 			DMDEBUG_LIMIT(
458 	"%s: sending ioctl %x to DM device without required privilege.",
459 				current->comm, cmd);
460 			r = -ENOIOCTLCMD;
461 			goto out;
462 		}
463 	}
464 
465 	if (!bdev->bd_disk->fops->ioctl)
466 		r = -ENOTTY;
467 	else
468 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
469 out:
470 	dm_unprepare_ioctl(md, srcu_idx);
471 	return r;
472 }
473 
474 u64 dm_start_time_ns_from_clone(struct bio *bio)
475 {
476 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
477 	struct dm_io *io = tio->io;
478 
479 	return jiffies_to_nsecs(io->start_time);
480 }
481 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
482 
483 static void start_io_acct(struct dm_io *io)
484 {
485 	struct mapped_device *md = io->md;
486 	struct bio *bio = io->orig_bio;
487 
488 	io->start_time = bio_start_io_acct(bio);
489 	if (unlikely(dm_stats_used(&md->stats)))
490 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
491 				    bio->bi_iter.bi_sector, bio_sectors(bio),
492 				    false, 0, &io->stats_aux);
493 }
494 
495 static void end_io_acct(struct dm_io *io)
496 {
497 	struct mapped_device *md = io->md;
498 	struct bio *bio = io->orig_bio;
499 	unsigned long duration = jiffies - io->start_time;
500 
501 	bio_end_io_acct(bio, io->start_time);
502 
503 	if (unlikely(dm_stats_used(&md->stats)))
504 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
505 				    bio->bi_iter.bi_sector, bio_sectors(bio),
506 				    true, duration, &io->stats_aux);
507 
508 	/* nudge anyone waiting on suspend queue */
509 	if (unlikely(wq_has_sleeper(&md->wait)))
510 		wake_up(&md->wait);
511 }
512 
513 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
514 {
515 	struct dm_io *io;
516 	struct dm_target_io *tio;
517 	struct bio *clone;
518 
519 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
520 	if (!clone)
521 		return NULL;
522 
523 	tio = container_of(clone, struct dm_target_io, clone);
524 	tio->inside_dm_io = true;
525 	tio->io = NULL;
526 
527 	io = container_of(tio, struct dm_io, tio);
528 	io->magic = DM_IO_MAGIC;
529 	io->status = 0;
530 	atomic_set(&io->io_count, 1);
531 	io->orig_bio = bio;
532 	io->md = md;
533 	spin_lock_init(&io->endio_lock);
534 
535 	start_io_acct(io);
536 
537 	return io;
538 }
539 
540 static void free_io(struct mapped_device *md, struct dm_io *io)
541 {
542 	bio_put(&io->tio.clone);
543 }
544 
545 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
546 				      unsigned target_bio_nr, gfp_t gfp_mask)
547 {
548 	struct dm_target_io *tio;
549 
550 	if (!ci->io->tio.io) {
551 		/* the dm_target_io embedded in ci->io is available */
552 		tio = &ci->io->tio;
553 	} else {
554 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
555 		if (!clone)
556 			return NULL;
557 
558 		tio = container_of(clone, struct dm_target_io, clone);
559 		tio->inside_dm_io = false;
560 	}
561 
562 	tio->magic = DM_TIO_MAGIC;
563 	tio->io = ci->io;
564 	tio->ti = ti;
565 	tio->target_bio_nr = target_bio_nr;
566 
567 	return tio;
568 }
569 
570 static void free_tio(struct dm_target_io *tio)
571 {
572 	if (tio->inside_dm_io)
573 		return;
574 	bio_put(&tio->clone);
575 }
576 
577 /*
578  * Add the bio to the list of deferred io.
579  */
580 static void queue_io(struct mapped_device *md, struct bio *bio)
581 {
582 	unsigned long flags;
583 
584 	spin_lock_irqsave(&md->deferred_lock, flags);
585 	bio_list_add(&md->deferred, bio);
586 	spin_unlock_irqrestore(&md->deferred_lock, flags);
587 	queue_work(md->wq, &md->work);
588 }
589 
590 /*
591  * Everyone (including functions in this file), should use this
592  * function to access the md->map field, and make sure they call
593  * dm_put_live_table() when finished.
594  */
595 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
596 {
597 	*srcu_idx = srcu_read_lock(&md->io_barrier);
598 
599 	return srcu_dereference(md->map, &md->io_barrier);
600 }
601 
602 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
603 {
604 	srcu_read_unlock(&md->io_barrier, srcu_idx);
605 }
606 
607 void dm_sync_table(struct mapped_device *md)
608 {
609 	synchronize_srcu(&md->io_barrier);
610 	synchronize_rcu_expedited();
611 }
612 
613 /*
614  * A fast alternative to dm_get_live_table/dm_put_live_table.
615  * The caller must not block between these two functions.
616  */
617 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
618 {
619 	rcu_read_lock();
620 	return rcu_dereference(md->map);
621 }
622 
623 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
624 {
625 	rcu_read_unlock();
626 }
627 
628 static char *_dm_claim_ptr = "I belong to device-mapper";
629 
630 /*
631  * Open a table device so we can use it as a map destination.
632  */
633 static int open_table_device(struct table_device *td, dev_t dev,
634 			     struct mapped_device *md)
635 {
636 	struct block_device *bdev;
637 
638 	int r;
639 
640 	BUG_ON(td->dm_dev.bdev);
641 
642 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
643 	if (IS_ERR(bdev))
644 		return PTR_ERR(bdev);
645 
646 	r = bd_link_disk_holder(bdev, dm_disk(md));
647 	if (r) {
648 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
649 		return r;
650 	}
651 
652 	td->dm_dev.bdev = bdev;
653 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
654 	return 0;
655 }
656 
657 /*
658  * Close a table device that we've been using.
659  */
660 static void close_table_device(struct table_device *td, struct mapped_device *md)
661 {
662 	if (!td->dm_dev.bdev)
663 		return;
664 
665 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
666 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
667 	put_dax(td->dm_dev.dax_dev);
668 	td->dm_dev.bdev = NULL;
669 	td->dm_dev.dax_dev = NULL;
670 }
671 
672 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
673 					      fmode_t mode)
674 {
675 	struct table_device *td;
676 
677 	list_for_each_entry(td, l, list)
678 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
679 			return td;
680 
681 	return NULL;
682 }
683 
684 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
685 			struct dm_dev **result)
686 {
687 	int r;
688 	struct table_device *td;
689 
690 	mutex_lock(&md->table_devices_lock);
691 	td = find_table_device(&md->table_devices, dev, mode);
692 	if (!td) {
693 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
694 		if (!td) {
695 			mutex_unlock(&md->table_devices_lock);
696 			return -ENOMEM;
697 		}
698 
699 		td->dm_dev.mode = mode;
700 		td->dm_dev.bdev = NULL;
701 
702 		if ((r = open_table_device(td, dev, md))) {
703 			mutex_unlock(&md->table_devices_lock);
704 			kfree(td);
705 			return r;
706 		}
707 
708 		format_dev_t(td->dm_dev.name, dev);
709 
710 		refcount_set(&td->count, 1);
711 		list_add(&td->list, &md->table_devices);
712 	} else {
713 		refcount_inc(&td->count);
714 	}
715 	mutex_unlock(&md->table_devices_lock);
716 
717 	*result = &td->dm_dev;
718 	return 0;
719 }
720 
721 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
722 {
723 	struct table_device *td = container_of(d, struct table_device, dm_dev);
724 
725 	mutex_lock(&md->table_devices_lock);
726 	if (refcount_dec_and_test(&td->count)) {
727 		close_table_device(td, md);
728 		list_del(&td->list);
729 		kfree(td);
730 	}
731 	mutex_unlock(&md->table_devices_lock);
732 }
733 
734 static void free_table_devices(struct list_head *devices)
735 {
736 	struct list_head *tmp, *next;
737 
738 	list_for_each_safe(tmp, next, devices) {
739 		struct table_device *td = list_entry(tmp, struct table_device, list);
740 
741 		DMWARN("dm_destroy: %s still exists with %d references",
742 		       td->dm_dev.name, refcount_read(&td->count));
743 		kfree(td);
744 	}
745 }
746 
747 /*
748  * Get the geometry associated with a dm device
749  */
750 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
751 {
752 	*geo = md->geometry;
753 
754 	return 0;
755 }
756 
757 /*
758  * Set the geometry of a device.
759  */
760 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
761 {
762 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
763 
764 	if (geo->start > sz) {
765 		DMWARN("Start sector is beyond the geometry limits.");
766 		return -EINVAL;
767 	}
768 
769 	md->geometry = *geo;
770 
771 	return 0;
772 }
773 
774 static int __noflush_suspending(struct mapped_device *md)
775 {
776 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
777 }
778 
779 /*
780  * Decrements the number of outstanding ios that a bio has been
781  * cloned into, completing the original io if necc.
782  */
783 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
784 {
785 	unsigned long flags;
786 	blk_status_t io_error;
787 	struct bio *bio;
788 	struct mapped_device *md = io->md;
789 
790 	/* Push-back supersedes any I/O errors */
791 	if (unlikely(error)) {
792 		spin_lock_irqsave(&io->endio_lock, flags);
793 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
794 			io->status = error;
795 		spin_unlock_irqrestore(&io->endio_lock, flags);
796 	}
797 
798 	if (atomic_dec_and_test(&io->io_count)) {
799 		bio = io->orig_bio;
800 		if (io->status == BLK_STS_DM_REQUEUE) {
801 			/*
802 			 * Target requested pushing back the I/O.
803 			 */
804 			spin_lock_irqsave(&md->deferred_lock, flags);
805 			if (__noflush_suspending(md) &&
806 			    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
807 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
808 				bio_list_add_head(&md->deferred, bio);
809 			} else {
810 				/*
811 				 * noflush suspend was interrupted or this is
812 				 * a write to a zoned target.
813 				 */
814 				io->status = BLK_STS_IOERR;
815 			}
816 			spin_unlock_irqrestore(&md->deferred_lock, flags);
817 		}
818 
819 		io_error = io->status;
820 		end_io_acct(io);
821 		free_io(md, io);
822 
823 		if (io_error == BLK_STS_DM_REQUEUE)
824 			return;
825 
826 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
827 			/*
828 			 * Preflush done for flush with data, reissue
829 			 * without REQ_PREFLUSH.
830 			 */
831 			bio->bi_opf &= ~REQ_PREFLUSH;
832 			queue_io(md, bio);
833 		} else {
834 			/* done with normal IO or empty flush */
835 			if (io_error)
836 				bio->bi_status = io_error;
837 			bio_endio(bio);
838 		}
839 	}
840 }
841 
842 void disable_discard(struct mapped_device *md)
843 {
844 	struct queue_limits *limits = dm_get_queue_limits(md);
845 
846 	/* device doesn't really support DISCARD, disable it */
847 	limits->max_discard_sectors = 0;
848 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
849 }
850 
851 void disable_write_same(struct mapped_device *md)
852 {
853 	struct queue_limits *limits = dm_get_queue_limits(md);
854 
855 	/* device doesn't really support WRITE SAME, disable it */
856 	limits->max_write_same_sectors = 0;
857 }
858 
859 void disable_write_zeroes(struct mapped_device *md)
860 {
861 	struct queue_limits *limits = dm_get_queue_limits(md);
862 
863 	/* device doesn't really support WRITE ZEROES, disable it */
864 	limits->max_write_zeroes_sectors = 0;
865 }
866 
867 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
868 {
869 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
870 }
871 
872 static void clone_endio(struct bio *bio)
873 {
874 	blk_status_t error = bio->bi_status;
875 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
876 	struct dm_io *io = tio->io;
877 	struct mapped_device *md = tio->io->md;
878 	dm_endio_fn endio = tio->ti->type->end_io;
879 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
880 
881 	if (unlikely(error == BLK_STS_TARGET)) {
882 		if (bio_op(bio) == REQ_OP_DISCARD &&
883 		    !q->limits.max_discard_sectors)
884 			disable_discard(md);
885 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
886 			 !q->limits.max_write_same_sectors)
887 			disable_write_same(md);
888 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
889 			 !q->limits.max_write_zeroes_sectors)
890 			disable_write_zeroes(md);
891 	}
892 
893 	if (blk_queue_is_zoned(q))
894 		dm_zone_endio(io, bio);
895 
896 	if (endio) {
897 		int r = endio(tio->ti, bio, &error);
898 		switch (r) {
899 		case DM_ENDIO_REQUEUE:
900 			/*
901 			 * Requeuing writes to a sequential zone of a zoned
902 			 * target will break the sequential write pattern:
903 			 * fail such IO.
904 			 */
905 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
906 				error = BLK_STS_IOERR;
907 			else
908 				error = BLK_STS_DM_REQUEUE;
909 			fallthrough;
910 		case DM_ENDIO_DONE:
911 			break;
912 		case DM_ENDIO_INCOMPLETE:
913 			/* The target will handle the io */
914 			return;
915 		default:
916 			DMWARN("unimplemented target endio return value: %d", r);
917 			BUG();
918 		}
919 	}
920 
921 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
922 		struct mapped_device *md = io->md;
923 		up(&md->swap_bios_semaphore);
924 	}
925 
926 	free_tio(tio);
927 	dm_io_dec_pending(io, error);
928 }
929 
930 /*
931  * Return maximum size of I/O possible at the supplied sector up to the current
932  * target boundary.
933  */
934 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
935 						  sector_t target_offset)
936 {
937 	return ti->len - target_offset;
938 }
939 
940 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
941 {
942 	sector_t target_offset = dm_target_offset(ti, sector);
943 	sector_t len = max_io_len_target_boundary(ti, target_offset);
944 	sector_t max_len;
945 
946 	/*
947 	 * Does the target need to split IO even further?
948 	 * - varied (per target) IO splitting is a tenet of DM; this
949 	 *   explains why stacked chunk_sectors based splitting via
950 	 *   blk_max_size_offset() isn't possible here. So pass in
951 	 *   ti->max_io_len to override stacked chunk_sectors.
952 	 */
953 	if (ti->max_io_len) {
954 		max_len = blk_max_size_offset(ti->table->md->queue,
955 					      target_offset, ti->max_io_len);
956 		if (len > max_len)
957 			len = max_len;
958 	}
959 
960 	return len;
961 }
962 
963 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
964 {
965 	if (len > UINT_MAX) {
966 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
967 		      (unsigned long long)len, UINT_MAX);
968 		ti->error = "Maximum size of target IO is too large";
969 		return -EINVAL;
970 	}
971 
972 	ti->max_io_len = (uint32_t) len;
973 
974 	return 0;
975 }
976 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
977 
978 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
979 						sector_t sector, int *srcu_idx)
980 	__acquires(md->io_barrier)
981 {
982 	struct dm_table *map;
983 	struct dm_target *ti;
984 
985 	map = dm_get_live_table(md, srcu_idx);
986 	if (!map)
987 		return NULL;
988 
989 	ti = dm_table_find_target(map, sector);
990 	if (!ti)
991 		return NULL;
992 
993 	return ti;
994 }
995 
996 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
997 				 long nr_pages, void **kaddr, pfn_t *pfn)
998 {
999 	struct mapped_device *md = dax_get_private(dax_dev);
1000 	sector_t sector = pgoff * PAGE_SECTORS;
1001 	struct dm_target *ti;
1002 	long len, ret = -EIO;
1003 	int srcu_idx;
1004 
1005 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1006 
1007 	if (!ti)
1008 		goto out;
1009 	if (!ti->type->direct_access)
1010 		goto out;
1011 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1012 	if (len < 1)
1013 		goto out;
1014 	nr_pages = min(len, nr_pages);
1015 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1016 
1017  out:
1018 	dm_put_live_table(md, srcu_idx);
1019 
1020 	return ret;
1021 }
1022 
1023 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1024 		int blocksize, sector_t start, sector_t len)
1025 {
1026 	struct mapped_device *md = dax_get_private(dax_dev);
1027 	struct dm_table *map;
1028 	bool ret = false;
1029 	int srcu_idx;
1030 
1031 	map = dm_get_live_table(md, &srcu_idx);
1032 	if (!map)
1033 		goto out;
1034 
1035 	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1036 
1037 out:
1038 	dm_put_live_table(md, srcu_idx);
1039 
1040 	return ret;
1041 }
1042 
1043 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1044 				    void *addr, size_t bytes, struct iov_iter *i)
1045 {
1046 	struct mapped_device *md = dax_get_private(dax_dev);
1047 	sector_t sector = pgoff * PAGE_SECTORS;
1048 	struct dm_target *ti;
1049 	long ret = 0;
1050 	int srcu_idx;
1051 
1052 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1053 
1054 	if (!ti)
1055 		goto out;
1056 	if (!ti->type->dax_copy_from_iter) {
1057 		ret = copy_from_iter(addr, bytes, i);
1058 		goto out;
1059 	}
1060 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1061  out:
1062 	dm_put_live_table(md, srcu_idx);
1063 
1064 	return ret;
1065 }
1066 
1067 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1068 		void *addr, size_t bytes, struct iov_iter *i)
1069 {
1070 	struct mapped_device *md = dax_get_private(dax_dev);
1071 	sector_t sector = pgoff * PAGE_SECTORS;
1072 	struct dm_target *ti;
1073 	long ret = 0;
1074 	int srcu_idx;
1075 
1076 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1077 
1078 	if (!ti)
1079 		goto out;
1080 	if (!ti->type->dax_copy_to_iter) {
1081 		ret = copy_to_iter(addr, bytes, i);
1082 		goto out;
1083 	}
1084 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1085  out:
1086 	dm_put_live_table(md, srcu_idx);
1087 
1088 	return ret;
1089 }
1090 
1091 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1092 				  size_t nr_pages)
1093 {
1094 	struct mapped_device *md = dax_get_private(dax_dev);
1095 	sector_t sector = pgoff * PAGE_SECTORS;
1096 	struct dm_target *ti;
1097 	int ret = -EIO;
1098 	int srcu_idx;
1099 
1100 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1101 
1102 	if (!ti)
1103 		goto out;
1104 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1105 		/*
1106 		 * ->zero_page_range() is mandatory dax operation. If we are
1107 		 *  here, something is wrong.
1108 		 */
1109 		goto out;
1110 	}
1111 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1112  out:
1113 	dm_put_live_table(md, srcu_idx);
1114 
1115 	return ret;
1116 }
1117 
1118 /*
1119  * A target may call dm_accept_partial_bio only from the map routine.  It is
1120  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1121  * operations and REQ_OP_ZONE_APPEND (zone append writes).
1122  *
1123  * dm_accept_partial_bio informs the dm that the target only wants to process
1124  * additional n_sectors sectors of the bio and the rest of the data should be
1125  * sent in a next bio.
1126  *
1127  * A diagram that explains the arithmetics:
1128  * +--------------------+---------------+-------+
1129  * |         1          |       2       |   3   |
1130  * +--------------------+---------------+-------+
1131  *
1132  * <-------------- *tio->len_ptr --------------->
1133  *                      <------- bi_size ------->
1134  *                      <-- n_sectors -->
1135  *
1136  * Region 1 was already iterated over with bio_advance or similar function.
1137  *	(it may be empty if the target doesn't use bio_advance)
1138  * Region 2 is the remaining bio size that the target wants to process.
1139  *	(it may be empty if region 1 is non-empty, although there is no reason
1140  *	 to make it empty)
1141  * The target requires that region 3 is to be sent in the next bio.
1142  *
1143  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1144  * the partially processed part (the sum of regions 1+2) must be the same for all
1145  * copies of the bio.
1146  */
1147 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1148 {
1149 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1150 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1151 
1152 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1153 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1154 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1155 	BUG_ON(bi_size > *tio->len_ptr);
1156 	BUG_ON(n_sectors > bi_size);
1157 
1158 	*tio->len_ptr -= bi_size - n_sectors;
1159 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1160 }
1161 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1162 
1163 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1164 {
1165 	mutex_lock(&md->swap_bios_lock);
1166 	while (latch < md->swap_bios) {
1167 		cond_resched();
1168 		down(&md->swap_bios_semaphore);
1169 		md->swap_bios--;
1170 	}
1171 	while (latch > md->swap_bios) {
1172 		cond_resched();
1173 		up(&md->swap_bios_semaphore);
1174 		md->swap_bios++;
1175 	}
1176 	mutex_unlock(&md->swap_bios_lock);
1177 }
1178 
1179 static blk_qc_t __map_bio(struct dm_target_io *tio)
1180 {
1181 	int r;
1182 	sector_t sector;
1183 	struct bio *clone = &tio->clone;
1184 	struct dm_io *io = tio->io;
1185 	struct dm_target *ti = tio->ti;
1186 	blk_qc_t ret = BLK_QC_T_NONE;
1187 
1188 	clone->bi_end_io = clone_endio;
1189 
1190 	/*
1191 	 * Map the clone.  If r == 0 we don't need to do
1192 	 * anything, the target has assumed ownership of
1193 	 * this io.
1194 	 */
1195 	dm_io_inc_pending(io);
1196 	sector = clone->bi_iter.bi_sector;
1197 
1198 	if (unlikely(swap_bios_limit(ti, clone))) {
1199 		struct mapped_device *md = io->md;
1200 		int latch = get_swap_bios();
1201 		if (unlikely(latch != md->swap_bios))
1202 			__set_swap_bios_limit(md, latch);
1203 		down(&md->swap_bios_semaphore);
1204 	}
1205 
1206 	/*
1207 	 * Check if the IO needs a special mapping due to zone append emulation
1208 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1209 	 * map operation.
1210 	 */
1211 	if (dm_emulate_zone_append(io->md))
1212 		r = dm_zone_map_bio(tio);
1213 	else
1214 		r = ti->type->map(ti, clone);
1215 
1216 	switch (r) {
1217 	case DM_MAPIO_SUBMITTED:
1218 		break;
1219 	case DM_MAPIO_REMAPPED:
1220 		/* the bio has been remapped so dispatch it */
1221 		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1222 		ret = submit_bio_noacct(clone);
1223 		break;
1224 	case DM_MAPIO_KILL:
1225 		if (unlikely(swap_bios_limit(ti, clone))) {
1226 			struct mapped_device *md = io->md;
1227 			up(&md->swap_bios_semaphore);
1228 		}
1229 		free_tio(tio);
1230 		dm_io_dec_pending(io, BLK_STS_IOERR);
1231 		break;
1232 	case DM_MAPIO_REQUEUE:
1233 		if (unlikely(swap_bios_limit(ti, clone))) {
1234 			struct mapped_device *md = io->md;
1235 			up(&md->swap_bios_semaphore);
1236 		}
1237 		free_tio(tio);
1238 		dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1239 		break;
1240 	default:
1241 		DMWARN("unimplemented target map return value: %d", r);
1242 		BUG();
1243 	}
1244 
1245 	return ret;
1246 }
1247 
1248 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1249 {
1250 	bio->bi_iter.bi_sector = sector;
1251 	bio->bi_iter.bi_size = to_bytes(len);
1252 }
1253 
1254 /*
1255  * Creates a bio that consists of range of complete bvecs.
1256  */
1257 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1258 		     sector_t sector, unsigned len)
1259 {
1260 	struct bio *clone = &tio->clone;
1261 	int r;
1262 
1263 	__bio_clone_fast(clone, bio);
1264 
1265 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1266 	if (r < 0)
1267 		return r;
1268 
1269 	if (bio_integrity(bio)) {
1270 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1271 			     !dm_target_passes_integrity(tio->ti->type))) {
1272 			DMWARN("%s: the target %s doesn't support integrity data.",
1273 				dm_device_name(tio->io->md),
1274 				tio->ti->type->name);
1275 			return -EIO;
1276 		}
1277 
1278 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1279 		if (r < 0)
1280 			return r;
1281 	}
1282 
1283 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1284 	clone->bi_iter.bi_size = to_bytes(len);
1285 
1286 	if (bio_integrity(bio))
1287 		bio_integrity_trim(clone);
1288 
1289 	return 0;
1290 }
1291 
1292 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1293 				struct dm_target *ti, unsigned num_bios)
1294 {
1295 	struct dm_target_io *tio;
1296 	int try;
1297 
1298 	if (!num_bios)
1299 		return;
1300 
1301 	if (num_bios == 1) {
1302 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1303 		bio_list_add(blist, &tio->clone);
1304 		return;
1305 	}
1306 
1307 	for (try = 0; try < 2; try++) {
1308 		int bio_nr;
1309 		struct bio *bio;
1310 
1311 		if (try)
1312 			mutex_lock(&ci->io->md->table_devices_lock);
1313 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1314 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1315 			if (!tio)
1316 				break;
1317 
1318 			bio_list_add(blist, &tio->clone);
1319 		}
1320 		if (try)
1321 			mutex_unlock(&ci->io->md->table_devices_lock);
1322 		if (bio_nr == num_bios)
1323 			return;
1324 
1325 		while ((bio = bio_list_pop(blist))) {
1326 			tio = container_of(bio, struct dm_target_io, clone);
1327 			free_tio(tio);
1328 		}
1329 	}
1330 }
1331 
1332 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1333 					   struct dm_target_io *tio, unsigned *len)
1334 {
1335 	struct bio *clone = &tio->clone;
1336 
1337 	tio->len_ptr = len;
1338 
1339 	__bio_clone_fast(clone, ci->bio);
1340 	if (len)
1341 		bio_setup_sector(clone, ci->sector, *len);
1342 
1343 	return __map_bio(tio);
1344 }
1345 
1346 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1347 				  unsigned num_bios, unsigned *len)
1348 {
1349 	struct bio_list blist = BIO_EMPTY_LIST;
1350 	struct bio *bio;
1351 	struct dm_target_io *tio;
1352 
1353 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1354 
1355 	while ((bio = bio_list_pop(&blist))) {
1356 		tio = container_of(bio, struct dm_target_io, clone);
1357 		(void) __clone_and_map_simple_bio(ci, tio, len);
1358 	}
1359 }
1360 
1361 static int __send_empty_flush(struct clone_info *ci)
1362 {
1363 	unsigned target_nr = 0;
1364 	struct dm_target *ti;
1365 	struct bio flush_bio;
1366 
1367 	/*
1368 	 * Use an on-stack bio for this, it's safe since we don't
1369 	 * need to reference it after submit. It's just used as
1370 	 * the basis for the clone(s).
1371 	 */
1372 	bio_init(&flush_bio, NULL, 0);
1373 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1374 	bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1375 
1376 	ci->bio = &flush_bio;
1377 	ci->sector_count = 0;
1378 
1379 	BUG_ON(bio_has_data(ci->bio));
1380 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1381 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1382 
1383 	bio_uninit(ci->bio);
1384 	return 0;
1385 }
1386 
1387 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1388 				    sector_t sector, unsigned *len)
1389 {
1390 	struct bio *bio = ci->bio;
1391 	struct dm_target_io *tio;
1392 	int r;
1393 
1394 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1395 	tio->len_ptr = len;
1396 	r = clone_bio(tio, bio, sector, *len);
1397 	if (r < 0) {
1398 		free_tio(tio);
1399 		return r;
1400 	}
1401 	(void) __map_bio(tio);
1402 
1403 	return 0;
1404 }
1405 
1406 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1407 				       unsigned num_bios)
1408 {
1409 	unsigned len;
1410 
1411 	/*
1412 	 * Even though the device advertised support for this type of
1413 	 * request, that does not mean every target supports it, and
1414 	 * reconfiguration might also have changed that since the
1415 	 * check was performed.
1416 	 */
1417 	if (!num_bios)
1418 		return -EOPNOTSUPP;
1419 
1420 	len = min_t(sector_t, ci->sector_count,
1421 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1422 
1423 	__send_duplicate_bios(ci, ti, num_bios, &len);
1424 
1425 	ci->sector += len;
1426 	ci->sector_count -= len;
1427 
1428 	return 0;
1429 }
1430 
1431 static bool is_abnormal_io(struct bio *bio)
1432 {
1433 	bool r = false;
1434 
1435 	switch (bio_op(bio)) {
1436 	case REQ_OP_DISCARD:
1437 	case REQ_OP_SECURE_ERASE:
1438 	case REQ_OP_WRITE_SAME:
1439 	case REQ_OP_WRITE_ZEROES:
1440 		r = true;
1441 		break;
1442 	}
1443 
1444 	return r;
1445 }
1446 
1447 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1448 				  int *result)
1449 {
1450 	struct bio *bio = ci->bio;
1451 	unsigned num_bios = 0;
1452 
1453 	switch (bio_op(bio)) {
1454 	case REQ_OP_DISCARD:
1455 		num_bios = ti->num_discard_bios;
1456 		break;
1457 	case REQ_OP_SECURE_ERASE:
1458 		num_bios = ti->num_secure_erase_bios;
1459 		break;
1460 	case REQ_OP_WRITE_SAME:
1461 		num_bios = ti->num_write_same_bios;
1462 		break;
1463 	case REQ_OP_WRITE_ZEROES:
1464 		num_bios = ti->num_write_zeroes_bios;
1465 		break;
1466 	default:
1467 		return false;
1468 	}
1469 
1470 	*result = __send_changing_extent_only(ci, ti, num_bios);
1471 	return true;
1472 }
1473 
1474 /*
1475  * Select the correct strategy for processing a non-flush bio.
1476  */
1477 static int __split_and_process_non_flush(struct clone_info *ci)
1478 {
1479 	struct dm_target *ti;
1480 	unsigned len;
1481 	int r;
1482 
1483 	ti = dm_table_find_target(ci->map, ci->sector);
1484 	if (!ti)
1485 		return -EIO;
1486 
1487 	if (__process_abnormal_io(ci, ti, &r))
1488 		return r;
1489 
1490 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1491 
1492 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1493 	if (r < 0)
1494 		return r;
1495 
1496 	ci->sector += len;
1497 	ci->sector_count -= len;
1498 
1499 	return 0;
1500 }
1501 
1502 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1503 			    struct dm_table *map, struct bio *bio)
1504 {
1505 	ci->map = map;
1506 	ci->io = alloc_io(md, bio);
1507 	ci->sector = bio->bi_iter.bi_sector;
1508 }
1509 
1510 #define __dm_part_stat_sub(part, field, subnd)	\
1511 	(part_stat_get(part, field) -= (subnd))
1512 
1513 /*
1514  * Entry point to split a bio into clones and submit them to the targets.
1515  */
1516 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1517 					struct dm_table *map, struct bio *bio)
1518 {
1519 	struct clone_info ci;
1520 	blk_qc_t ret = BLK_QC_T_NONE;
1521 	int error = 0;
1522 
1523 	init_clone_info(&ci, md, map, bio);
1524 
1525 	if (bio->bi_opf & REQ_PREFLUSH) {
1526 		error = __send_empty_flush(&ci);
1527 		/* dm_io_dec_pending submits any data associated with flush */
1528 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1529 		ci.bio = bio;
1530 		ci.sector_count = 0;
1531 		error = __split_and_process_non_flush(&ci);
1532 	} else {
1533 		ci.bio = bio;
1534 		ci.sector_count = bio_sectors(bio);
1535 		error = __split_and_process_non_flush(&ci);
1536 		if (ci.sector_count && !error) {
1537 			/*
1538 			 * Remainder must be passed to submit_bio_noacct()
1539 			 * so that it gets handled *after* bios already submitted
1540 			 * have been completely processed.
1541 			 * We take a clone of the original to store in
1542 			 * ci.io->orig_bio to be used by end_io_acct() and
1543 			 * for dec_pending to use for completion handling.
1544 			 */
1545 			struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1546 						  GFP_NOIO, &md->queue->bio_split);
1547 			ci.io->orig_bio = b;
1548 
1549 			/*
1550 			 * Adjust IO stats for each split, otherwise upon queue
1551 			 * reentry there will be redundant IO accounting.
1552 			 * NOTE: this is a stop-gap fix, a proper fix involves
1553 			 * significant refactoring of DM core's bio splitting
1554 			 * (by eliminating DM's splitting and just using bio_split)
1555 			 */
1556 			part_stat_lock();
1557 			__dm_part_stat_sub(dm_disk(md)->part0,
1558 					   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1559 			part_stat_unlock();
1560 
1561 			bio_chain(b, bio);
1562 			trace_block_split(b, bio->bi_iter.bi_sector);
1563 			ret = submit_bio_noacct(bio);
1564 		}
1565 	}
1566 
1567 	/* drop the extra reference count */
1568 	dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1569 	return ret;
1570 }
1571 
1572 static blk_qc_t dm_submit_bio(struct bio *bio)
1573 {
1574 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1575 	blk_qc_t ret = BLK_QC_T_NONE;
1576 	int srcu_idx;
1577 	struct dm_table *map;
1578 
1579 	map = dm_get_live_table(md, &srcu_idx);
1580 	if (unlikely(!map)) {
1581 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1582 			    dm_device_name(md));
1583 		bio_io_error(bio);
1584 		goto out;
1585 	}
1586 
1587 	/* If suspended, queue this IO for later */
1588 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1589 		if (bio->bi_opf & REQ_NOWAIT)
1590 			bio_wouldblock_error(bio);
1591 		else if (bio->bi_opf & REQ_RAHEAD)
1592 			bio_io_error(bio);
1593 		else
1594 			queue_io(md, bio);
1595 		goto out;
1596 	}
1597 
1598 	/*
1599 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1600 	 * otherwise associated queue_limits won't be imposed.
1601 	 */
1602 	if (is_abnormal_io(bio))
1603 		blk_queue_split(&bio);
1604 
1605 	ret = __split_and_process_bio(md, map, bio);
1606 out:
1607 	dm_put_live_table(md, srcu_idx);
1608 	return ret;
1609 }
1610 
1611 /*-----------------------------------------------------------------
1612  * An IDR is used to keep track of allocated minor numbers.
1613  *---------------------------------------------------------------*/
1614 static void free_minor(int minor)
1615 {
1616 	spin_lock(&_minor_lock);
1617 	idr_remove(&_minor_idr, minor);
1618 	spin_unlock(&_minor_lock);
1619 }
1620 
1621 /*
1622  * See if the device with a specific minor # is free.
1623  */
1624 static int specific_minor(int minor)
1625 {
1626 	int r;
1627 
1628 	if (minor >= (1 << MINORBITS))
1629 		return -EINVAL;
1630 
1631 	idr_preload(GFP_KERNEL);
1632 	spin_lock(&_minor_lock);
1633 
1634 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1635 
1636 	spin_unlock(&_minor_lock);
1637 	idr_preload_end();
1638 	if (r < 0)
1639 		return r == -ENOSPC ? -EBUSY : r;
1640 	return 0;
1641 }
1642 
1643 static int next_free_minor(int *minor)
1644 {
1645 	int r;
1646 
1647 	idr_preload(GFP_KERNEL);
1648 	spin_lock(&_minor_lock);
1649 
1650 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1651 
1652 	spin_unlock(&_minor_lock);
1653 	idr_preload_end();
1654 	if (r < 0)
1655 		return r;
1656 	*minor = r;
1657 	return 0;
1658 }
1659 
1660 static const struct block_device_operations dm_blk_dops;
1661 static const struct block_device_operations dm_rq_blk_dops;
1662 static const struct dax_operations dm_dax_ops;
1663 
1664 static void dm_wq_work(struct work_struct *work);
1665 
1666 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1667 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1668 {
1669 	dm_destroy_keyslot_manager(q->ksm);
1670 }
1671 
1672 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1673 
1674 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1675 {
1676 }
1677 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1678 
1679 static void cleanup_mapped_device(struct mapped_device *md)
1680 {
1681 	if (md->wq)
1682 		destroy_workqueue(md->wq);
1683 	bioset_exit(&md->bs);
1684 	bioset_exit(&md->io_bs);
1685 
1686 	if (md->dax_dev) {
1687 		kill_dax(md->dax_dev);
1688 		put_dax(md->dax_dev);
1689 		md->dax_dev = NULL;
1690 	}
1691 
1692 	if (md->disk) {
1693 		spin_lock(&_minor_lock);
1694 		md->disk->private_data = NULL;
1695 		spin_unlock(&_minor_lock);
1696 		del_gendisk(md->disk);
1697 	}
1698 
1699 	if (md->queue)
1700 		dm_queue_destroy_keyslot_manager(md->queue);
1701 
1702 	if (md->disk)
1703 		blk_cleanup_disk(md->disk);
1704 
1705 	cleanup_srcu_struct(&md->io_barrier);
1706 
1707 	mutex_destroy(&md->suspend_lock);
1708 	mutex_destroy(&md->type_lock);
1709 	mutex_destroy(&md->table_devices_lock);
1710 	mutex_destroy(&md->swap_bios_lock);
1711 
1712 	dm_mq_cleanup_mapped_device(md);
1713 	dm_cleanup_zoned_dev(md);
1714 }
1715 
1716 /*
1717  * Allocate and initialise a blank device with a given minor.
1718  */
1719 static struct mapped_device *alloc_dev(int minor)
1720 {
1721 	int r, numa_node_id = dm_get_numa_node();
1722 	struct mapped_device *md;
1723 	void *old_md;
1724 
1725 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1726 	if (!md) {
1727 		DMWARN("unable to allocate device, out of memory.");
1728 		return NULL;
1729 	}
1730 
1731 	if (!try_module_get(THIS_MODULE))
1732 		goto bad_module_get;
1733 
1734 	/* get a minor number for the dev */
1735 	if (minor == DM_ANY_MINOR)
1736 		r = next_free_minor(&minor);
1737 	else
1738 		r = specific_minor(minor);
1739 	if (r < 0)
1740 		goto bad_minor;
1741 
1742 	r = init_srcu_struct(&md->io_barrier);
1743 	if (r < 0)
1744 		goto bad_io_barrier;
1745 
1746 	md->numa_node_id = numa_node_id;
1747 	md->init_tio_pdu = false;
1748 	md->type = DM_TYPE_NONE;
1749 	mutex_init(&md->suspend_lock);
1750 	mutex_init(&md->type_lock);
1751 	mutex_init(&md->table_devices_lock);
1752 	spin_lock_init(&md->deferred_lock);
1753 	atomic_set(&md->holders, 1);
1754 	atomic_set(&md->open_count, 0);
1755 	atomic_set(&md->event_nr, 0);
1756 	atomic_set(&md->uevent_seq, 0);
1757 	INIT_LIST_HEAD(&md->uevent_list);
1758 	INIT_LIST_HEAD(&md->table_devices);
1759 	spin_lock_init(&md->uevent_lock);
1760 
1761 	/*
1762 	 * default to bio-based until DM table is loaded and md->type
1763 	 * established. If request-based table is loaded: blk-mq will
1764 	 * override accordingly.
1765 	 */
1766 	md->disk = blk_alloc_disk(md->numa_node_id);
1767 	if (!md->disk)
1768 		goto bad;
1769 	md->queue = md->disk->queue;
1770 
1771 	init_waitqueue_head(&md->wait);
1772 	INIT_WORK(&md->work, dm_wq_work);
1773 	init_waitqueue_head(&md->eventq);
1774 	init_completion(&md->kobj_holder.completion);
1775 
1776 	md->swap_bios = get_swap_bios();
1777 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1778 	mutex_init(&md->swap_bios_lock);
1779 
1780 	md->disk->major = _major;
1781 	md->disk->first_minor = minor;
1782 	md->disk->minors = 1;
1783 	md->disk->fops = &dm_blk_dops;
1784 	md->disk->queue = md->queue;
1785 	md->disk->private_data = md;
1786 	sprintf(md->disk->disk_name, "dm-%d", minor);
1787 
1788 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1789 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1790 					&dm_dax_ops, 0);
1791 		if (IS_ERR(md->dax_dev))
1792 			goto bad;
1793 	}
1794 
1795 	add_disk_no_queue_reg(md->disk);
1796 	format_dev_t(md->name, MKDEV(_major, minor));
1797 
1798 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1799 	if (!md->wq)
1800 		goto bad;
1801 
1802 	dm_stats_init(&md->stats);
1803 
1804 	/* Populate the mapping, nobody knows we exist yet */
1805 	spin_lock(&_minor_lock);
1806 	old_md = idr_replace(&_minor_idr, md, minor);
1807 	spin_unlock(&_minor_lock);
1808 
1809 	BUG_ON(old_md != MINOR_ALLOCED);
1810 
1811 	return md;
1812 
1813 bad:
1814 	cleanup_mapped_device(md);
1815 bad_io_barrier:
1816 	free_minor(minor);
1817 bad_minor:
1818 	module_put(THIS_MODULE);
1819 bad_module_get:
1820 	kvfree(md);
1821 	return NULL;
1822 }
1823 
1824 static void unlock_fs(struct mapped_device *md);
1825 
1826 static void free_dev(struct mapped_device *md)
1827 {
1828 	int minor = MINOR(disk_devt(md->disk));
1829 
1830 	unlock_fs(md);
1831 
1832 	cleanup_mapped_device(md);
1833 
1834 	free_table_devices(&md->table_devices);
1835 	dm_stats_cleanup(&md->stats);
1836 	free_minor(minor);
1837 
1838 	module_put(THIS_MODULE);
1839 	kvfree(md);
1840 }
1841 
1842 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1843 {
1844 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1845 	int ret = 0;
1846 
1847 	if (dm_table_bio_based(t)) {
1848 		/*
1849 		 * The md may already have mempools that need changing.
1850 		 * If so, reload bioset because front_pad may have changed
1851 		 * because a different table was loaded.
1852 		 */
1853 		bioset_exit(&md->bs);
1854 		bioset_exit(&md->io_bs);
1855 
1856 	} else if (bioset_initialized(&md->bs)) {
1857 		/*
1858 		 * There's no need to reload with request-based dm
1859 		 * because the size of front_pad doesn't change.
1860 		 * Note for future: If you are to reload bioset,
1861 		 * prep-ed requests in the queue may refer
1862 		 * to bio from the old bioset, so you must walk
1863 		 * through the queue to unprep.
1864 		 */
1865 		goto out;
1866 	}
1867 
1868 	BUG_ON(!p ||
1869 	       bioset_initialized(&md->bs) ||
1870 	       bioset_initialized(&md->io_bs));
1871 
1872 	ret = bioset_init_from_src(&md->bs, &p->bs);
1873 	if (ret)
1874 		goto out;
1875 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1876 	if (ret)
1877 		bioset_exit(&md->bs);
1878 out:
1879 	/* mempool bind completed, no longer need any mempools in the table */
1880 	dm_table_free_md_mempools(t);
1881 	return ret;
1882 }
1883 
1884 /*
1885  * Bind a table to the device.
1886  */
1887 static void event_callback(void *context)
1888 {
1889 	unsigned long flags;
1890 	LIST_HEAD(uevents);
1891 	struct mapped_device *md = (struct mapped_device *) context;
1892 
1893 	spin_lock_irqsave(&md->uevent_lock, flags);
1894 	list_splice_init(&md->uevent_list, &uevents);
1895 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1896 
1897 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1898 
1899 	atomic_inc(&md->event_nr);
1900 	wake_up(&md->eventq);
1901 	dm_issue_global_event();
1902 }
1903 
1904 /*
1905  * Returns old map, which caller must destroy.
1906  */
1907 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1908 			       struct queue_limits *limits)
1909 {
1910 	struct dm_table *old_map;
1911 	struct request_queue *q = md->queue;
1912 	bool request_based = dm_table_request_based(t);
1913 	sector_t size;
1914 	int ret;
1915 
1916 	lockdep_assert_held(&md->suspend_lock);
1917 
1918 	size = dm_table_get_size(t);
1919 
1920 	/*
1921 	 * Wipe any geometry if the size of the table changed.
1922 	 */
1923 	if (size != dm_get_size(md))
1924 		memset(&md->geometry, 0, sizeof(md->geometry));
1925 
1926 	if (!get_capacity(md->disk))
1927 		set_capacity(md->disk, size);
1928 	else
1929 		set_capacity_and_notify(md->disk, size);
1930 
1931 	dm_table_event_callback(t, event_callback, md);
1932 
1933 	/*
1934 	 * The queue hasn't been stopped yet, if the old table type wasn't
1935 	 * for request-based during suspension.  So stop it to prevent
1936 	 * I/O mapping before resume.
1937 	 * This must be done before setting the queue restrictions,
1938 	 * because request-based dm may be run just after the setting.
1939 	 */
1940 	if (request_based)
1941 		dm_stop_queue(q);
1942 
1943 	if (request_based) {
1944 		/*
1945 		 * Leverage the fact that request-based DM targets are
1946 		 * immutable singletons - used to optimize dm_mq_queue_rq.
1947 		 */
1948 		md->immutable_target = dm_table_get_immutable_target(t);
1949 	}
1950 
1951 	ret = __bind_mempools(md, t);
1952 	if (ret) {
1953 		old_map = ERR_PTR(ret);
1954 		goto out;
1955 	}
1956 
1957 	ret = dm_table_set_restrictions(t, q, limits);
1958 	if (ret) {
1959 		old_map = ERR_PTR(ret);
1960 		goto out;
1961 	}
1962 
1963 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1964 	rcu_assign_pointer(md->map, (void *)t);
1965 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1966 
1967 	if (old_map)
1968 		dm_sync_table(md);
1969 
1970 out:
1971 	return old_map;
1972 }
1973 
1974 /*
1975  * Returns unbound table for the caller to free.
1976  */
1977 static struct dm_table *__unbind(struct mapped_device *md)
1978 {
1979 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1980 
1981 	if (!map)
1982 		return NULL;
1983 
1984 	dm_table_event_callback(map, NULL, NULL);
1985 	RCU_INIT_POINTER(md->map, NULL);
1986 	dm_sync_table(md);
1987 
1988 	return map;
1989 }
1990 
1991 /*
1992  * Constructor for a new device.
1993  */
1994 int dm_create(int minor, struct mapped_device **result)
1995 {
1996 	int r;
1997 	struct mapped_device *md;
1998 
1999 	md = alloc_dev(minor);
2000 	if (!md)
2001 		return -ENXIO;
2002 
2003 	r = dm_sysfs_init(md);
2004 	if (r) {
2005 		free_dev(md);
2006 		return r;
2007 	}
2008 
2009 	*result = md;
2010 	return 0;
2011 }
2012 
2013 /*
2014  * Functions to manage md->type.
2015  * All are required to hold md->type_lock.
2016  */
2017 void dm_lock_md_type(struct mapped_device *md)
2018 {
2019 	mutex_lock(&md->type_lock);
2020 }
2021 
2022 void dm_unlock_md_type(struct mapped_device *md)
2023 {
2024 	mutex_unlock(&md->type_lock);
2025 }
2026 
2027 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2028 {
2029 	BUG_ON(!mutex_is_locked(&md->type_lock));
2030 	md->type = type;
2031 }
2032 
2033 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2034 {
2035 	return md->type;
2036 }
2037 
2038 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2039 {
2040 	return md->immutable_target_type;
2041 }
2042 
2043 /*
2044  * The queue_limits are only valid as long as you have a reference
2045  * count on 'md'.
2046  */
2047 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2048 {
2049 	BUG_ON(!atomic_read(&md->holders));
2050 	return &md->queue->limits;
2051 }
2052 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2053 
2054 /*
2055  * Setup the DM device's queue based on md's type
2056  */
2057 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2058 {
2059 	int r;
2060 	struct queue_limits limits;
2061 	enum dm_queue_mode type = dm_get_md_type(md);
2062 
2063 	switch (type) {
2064 	case DM_TYPE_REQUEST_BASED:
2065 		md->disk->fops = &dm_rq_blk_dops;
2066 		r = dm_mq_init_request_queue(md, t);
2067 		if (r) {
2068 			DMERR("Cannot initialize queue for request-based dm mapped device");
2069 			return r;
2070 		}
2071 		break;
2072 	case DM_TYPE_BIO_BASED:
2073 	case DM_TYPE_DAX_BIO_BASED:
2074 		break;
2075 	case DM_TYPE_NONE:
2076 		WARN_ON_ONCE(true);
2077 		break;
2078 	}
2079 
2080 	r = dm_calculate_queue_limits(t, &limits);
2081 	if (r) {
2082 		DMERR("Cannot calculate initial queue limits");
2083 		return r;
2084 	}
2085 	r = dm_table_set_restrictions(t, md->queue, &limits);
2086 	if (r)
2087 		return r;
2088 
2089 	blk_register_queue(md->disk);
2090 
2091 	return 0;
2092 }
2093 
2094 struct mapped_device *dm_get_md(dev_t dev)
2095 {
2096 	struct mapped_device *md;
2097 	unsigned minor = MINOR(dev);
2098 
2099 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2100 		return NULL;
2101 
2102 	spin_lock(&_minor_lock);
2103 
2104 	md = idr_find(&_minor_idr, minor);
2105 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2106 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2107 		md = NULL;
2108 		goto out;
2109 	}
2110 	dm_get(md);
2111 out:
2112 	spin_unlock(&_minor_lock);
2113 
2114 	return md;
2115 }
2116 EXPORT_SYMBOL_GPL(dm_get_md);
2117 
2118 void *dm_get_mdptr(struct mapped_device *md)
2119 {
2120 	return md->interface_ptr;
2121 }
2122 
2123 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2124 {
2125 	md->interface_ptr = ptr;
2126 }
2127 
2128 void dm_get(struct mapped_device *md)
2129 {
2130 	atomic_inc(&md->holders);
2131 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2132 }
2133 
2134 int dm_hold(struct mapped_device *md)
2135 {
2136 	spin_lock(&_minor_lock);
2137 	if (test_bit(DMF_FREEING, &md->flags)) {
2138 		spin_unlock(&_minor_lock);
2139 		return -EBUSY;
2140 	}
2141 	dm_get(md);
2142 	spin_unlock(&_minor_lock);
2143 	return 0;
2144 }
2145 EXPORT_SYMBOL_GPL(dm_hold);
2146 
2147 const char *dm_device_name(struct mapped_device *md)
2148 {
2149 	return md->name;
2150 }
2151 EXPORT_SYMBOL_GPL(dm_device_name);
2152 
2153 static void __dm_destroy(struct mapped_device *md, bool wait)
2154 {
2155 	struct dm_table *map;
2156 	int srcu_idx;
2157 
2158 	might_sleep();
2159 
2160 	spin_lock(&_minor_lock);
2161 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2162 	set_bit(DMF_FREEING, &md->flags);
2163 	spin_unlock(&_minor_lock);
2164 
2165 	blk_set_queue_dying(md->queue);
2166 
2167 	/*
2168 	 * Take suspend_lock so that presuspend and postsuspend methods
2169 	 * do not race with internal suspend.
2170 	 */
2171 	mutex_lock(&md->suspend_lock);
2172 	map = dm_get_live_table(md, &srcu_idx);
2173 	if (!dm_suspended_md(md)) {
2174 		dm_table_presuspend_targets(map);
2175 		set_bit(DMF_SUSPENDED, &md->flags);
2176 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2177 		dm_table_postsuspend_targets(map);
2178 	}
2179 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2180 	dm_put_live_table(md, srcu_idx);
2181 	mutex_unlock(&md->suspend_lock);
2182 
2183 	/*
2184 	 * Rare, but there may be I/O requests still going to complete,
2185 	 * for example.  Wait for all references to disappear.
2186 	 * No one should increment the reference count of the mapped_device,
2187 	 * after the mapped_device state becomes DMF_FREEING.
2188 	 */
2189 	if (wait)
2190 		while (atomic_read(&md->holders))
2191 			msleep(1);
2192 	else if (atomic_read(&md->holders))
2193 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2194 		       dm_device_name(md), atomic_read(&md->holders));
2195 
2196 	dm_sysfs_exit(md);
2197 	dm_table_destroy(__unbind(md));
2198 	free_dev(md);
2199 }
2200 
2201 void dm_destroy(struct mapped_device *md)
2202 {
2203 	__dm_destroy(md, true);
2204 }
2205 
2206 void dm_destroy_immediate(struct mapped_device *md)
2207 {
2208 	__dm_destroy(md, false);
2209 }
2210 
2211 void dm_put(struct mapped_device *md)
2212 {
2213 	atomic_dec(&md->holders);
2214 }
2215 EXPORT_SYMBOL_GPL(dm_put);
2216 
2217 static bool md_in_flight_bios(struct mapped_device *md)
2218 {
2219 	int cpu;
2220 	struct block_device *part = dm_disk(md)->part0;
2221 	long sum = 0;
2222 
2223 	for_each_possible_cpu(cpu) {
2224 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2225 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2226 	}
2227 
2228 	return sum != 0;
2229 }
2230 
2231 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2232 {
2233 	int r = 0;
2234 	DEFINE_WAIT(wait);
2235 
2236 	while (true) {
2237 		prepare_to_wait(&md->wait, &wait, task_state);
2238 
2239 		if (!md_in_flight_bios(md))
2240 			break;
2241 
2242 		if (signal_pending_state(task_state, current)) {
2243 			r = -EINTR;
2244 			break;
2245 		}
2246 
2247 		io_schedule();
2248 	}
2249 	finish_wait(&md->wait, &wait);
2250 
2251 	return r;
2252 }
2253 
2254 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2255 {
2256 	int r = 0;
2257 
2258 	if (!queue_is_mq(md->queue))
2259 		return dm_wait_for_bios_completion(md, task_state);
2260 
2261 	while (true) {
2262 		if (!blk_mq_queue_inflight(md->queue))
2263 			break;
2264 
2265 		if (signal_pending_state(task_state, current)) {
2266 			r = -EINTR;
2267 			break;
2268 		}
2269 
2270 		msleep(5);
2271 	}
2272 
2273 	return r;
2274 }
2275 
2276 /*
2277  * Process the deferred bios
2278  */
2279 static void dm_wq_work(struct work_struct *work)
2280 {
2281 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2282 	struct bio *bio;
2283 
2284 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2285 		spin_lock_irq(&md->deferred_lock);
2286 		bio = bio_list_pop(&md->deferred);
2287 		spin_unlock_irq(&md->deferred_lock);
2288 
2289 		if (!bio)
2290 			break;
2291 
2292 		submit_bio_noacct(bio);
2293 	}
2294 }
2295 
2296 static void dm_queue_flush(struct mapped_device *md)
2297 {
2298 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2299 	smp_mb__after_atomic();
2300 	queue_work(md->wq, &md->work);
2301 }
2302 
2303 /*
2304  * Swap in a new table, returning the old one for the caller to destroy.
2305  */
2306 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2307 {
2308 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2309 	struct queue_limits limits;
2310 	int r;
2311 
2312 	mutex_lock(&md->suspend_lock);
2313 
2314 	/* device must be suspended */
2315 	if (!dm_suspended_md(md))
2316 		goto out;
2317 
2318 	/*
2319 	 * If the new table has no data devices, retain the existing limits.
2320 	 * This helps multipath with queue_if_no_path if all paths disappear,
2321 	 * then new I/O is queued based on these limits, and then some paths
2322 	 * reappear.
2323 	 */
2324 	if (dm_table_has_no_data_devices(table)) {
2325 		live_map = dm_get_live_table_fast(md);
2326 		if (live_map)
2327 			limits = md->queue->limits;
2328 		dm_put_live_table_fast(md);
2329 	}
2330 
2331 	if (!live_map) {
2332 		r = dm_calculate_queue_limits(table, &limits);
2333 		if (r) {
2334 			map = ERR_PTR(r);
2335 			goto out;
2336 		}
2337 	}
2338 
2339 	map = __bind(md, table, &limits);
2340 	dm_issue_global_event();
2341 
2342 out:
2343 	mutex_unlock(&md->suspend_lock);
2344 	return map;
2345 }
2346 
2347 /*
2348  * Functions to lock and unlock any filesystem running on the
2349  * device.
2350  */
2351 static int lock_fs(struct mapped_device *md)
2352 {
2353 	int r;
2354 
2355 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2356 
2357 	r = freeze_bdev(md->disk->part0);
2358 	if (!r)
2359 		set_bit(DMF_FROZEN, &md->flags);
2360 	return r;
2361 }
2362 
2363 static void unlock_fs(struct mapped_device *md)
2364 {
2365 	if (!test_bit(DMF_FROZEN, &md->flags))
2366 		return;
2367 	thaw_bdev(md->disk->part0);
2368 	clear_bit(DMF_FROZEN, &md->flags);
2369 }
2370 
2371 /*
2372  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2373  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2374  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2375  *
2376  * If __dm_suspend returns 0, the device is completely quiescent
2377  * now. There is no request-processing activity. All new requests
2378  * are being added to md->deferred list.
2379  */
2380 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2381 			unsigned suspend_flags, unsigned int task_state,
2382 			int dmf_suspended_flag)
2383 {
2384 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2385 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2386 	int r;
2387 
2388 	lockdep_assert_held(&md->suspend_lock);
2389 
2390 	/*
2391 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2392 	 * This flag is cleared before dm_suspend returns.
2393 	 */
2394 	if (noflush)
2395 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2396 	else
2397 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2398 
2399 	/*
2400 	 * This gets reverted if there's an error later and the targets
2401 	 * provide the .presuspend_undo hook.
2402 	 */
2403 	dm_table_presuspend_targets(map);
2404 
2405 	/*
2406 	 * Flush I/O to the device.
2407 	 * Any I/O submitted after lock_fs() may not be flushed.
2408 	 * noflush takes precedence over do_lockfs.
2409 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2410 	 */
2411 	if (!noflush && do_lockfs) {
2412 		r = lock_fs(md);
2413 		if (r) {
2414 			dm_table_presuspend_undo_targets(map);
2415 			return r;
2416 		}
2417 	}
2418 
2419 	/*
2420 	 * Here we must make sure that no processes are submitting requests
2421 	 * to target drivers i.e. no one may be executing
2422 	 * __split_and_process_bio from dm_submit_bio.
2423 	 *
2424 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2425 	 * we take the write lock. To prevent any process from reentering
2426 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2427 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2428 	 * flush_workqueue(md->wq).
2429 	 */
2430 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2431 	if (map)
2432 		synchronize_srcu(&md->io_barrier);
2433 
2434 	/*
2435 	 * Stop md->queue before flushing md->wq in case request-based
2436 	 * dm defers requests to md->wq from md->queue.
2437 	 */
2438 	if (dm_request_based(md))
2439 		dm_stop_queue(md->queue);
2440 
2441 	flush_workqueue(md->wq);
2442 
2443 	/*
2444 	 * At this point no more requests are entering target request routines.
2445 	 * We call dm_wait_for_completion to wait for all existing requests
2446 	 * to finish.
2447 	 */
2448 	r = dm_wait_for_completion(md, task_state);
2449 	if (!r)
2450 		set_bit(dmf_suspended_flag, &md->flags);
2451 
2452 	if (noflush)
2453 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2454 	if (map)
2455 		synchronize_srcu(&md->io_barrier);
2456 
2457 	/* were we interrupted ? */
2458 	if (r < 0) {
2459 		dm_queue_flush(md);
2460 
2461 		if (dm_request_based(md))
2462 			dm_start_queue(md->queue);
2463 
2464 		unlock_fs(md);
2465 		dm_table_presuspend_undo_targets(map);
2466 		/* pushback list is already flushed, so skip flush */
2467 	}
2468 
2469 	return r;
2470 }
2471 
2472 /*
2473  * We need to be able to change a mapping table under a mounted
2474  * filesystem.  For example we might want to move some data in
2475  * the background.  Before the table can be swapped with
2476  * dm_bind_table, dm_suspend must be called to flush any in
2477  * flight bios and ensure that any further io gets deferred.
2478  */
2479 /*
2480  * Suspend mechanism in request-based dm.
2481  *
2482  * 1. Flush all I/Os by lock_fs() if needed.
2483  * 2. Stop dispatching any I/O by stopping the request_queue.
2484  * 3. Wait for all in-flight I/Os to be completed or requeued.
2485  *
2486  * To abort suspend, start the request_queue.
2487  */
2488 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2489 {
2490 	struct dm_table *map = NULL;
2491 	int r = 0;
2492 
2493 retry:
2494 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2495 
2496 	if (dm_suspended_md(md)) {
2497 		r = -EINVAL;
2498 		goto out_unlock;
2499 	}
2500 
2501 	if (dm_suspended_internally_md(md)) {
2502 		/* already internally suspended, wait for internal resume */
2503 		mutex_unlock(&md->suspend_lock);
2504 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2505 		if (r)
2506 			return r;
2507 		goto retry;
2508 	}
2509 
2510 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2511 
2512 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2513 	if (r)
2514 		goto out_unlock;
2515 
2516 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2517 	dm_table_postsuspend_targets(map);
2518 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2519 
2520 out_unlock:
2521 	mutex_unlock(&md->suspend_lock);
2522 	return r;
2523 }
2524 
2525 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2526 {
2527 	if (map) {
2528 		int r = dm_table_resume_targets(map);
2529 		if (r)
2530 			return r;
2531 	}
2532 
2533 	dm_queue_flush(md);
2534 
2535 	/*
2536 	 * Flushing deferred I/Os must be done after targets are resumed
2537 	 * so that mapping of targets can work correctly.
2538 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2539 	 */
2540 	if (dm_request_based(md))
2541 		dm_start_queue(md->queue);
2542 
2543 	unlock_fs(md);
2544 
2545 	return 0;
2546 }
2547 
2548 int dm_resume(struct mapped_device *md)
2549 {
2550 	int r;
2551 	struct dm_table *map = NULL;
2552 
2553 retry:
2554 	r = -EINVAL;
2555 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2556 
2557 	if (!dm_suspended_md(md))
2558 		goto out;
2559 
2560 	if (dm_suspended_internally_md(md)) {
2561 		/* already internally suspended, wait for internal resume */
2562 		mutex_unlock(&md->suspend_lock);
2563 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2564 		if (r)
2565 			return r;
2566 		goto retry;
2567 	}
2568 
2569 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2570 	if (!map || !dm_table_get_size(map))
2571 		goto out;
2572 
2573 	r = __dm_resume(md, map);
2574 	if (r)
2575 		goto out;
2576 
2577 	clear_bit(DMF_SUSPENDED, &md->flags);
2578 out:
2579 	mutex_unlock(&md->suspend_lock);
2580 
2581 	return r;
2582 }
2583 
2584 /*
2585  * Internal suspend/resume works like userspace-driven suspend. It waits
2586  * until all bios finish and prevents issuing new bios to the target drivers.
2587  * It may be used only from the kernel.
2588  */
2589 
2590 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2591 {
2592 	struct dm_table *map = NULL;
2593 
2594 	lockdep_assert_held(&md->suspend_lock);
2595 
2596 	if (md->internal_suspend_count++)
2597 		return; /* nested internal suspend */
2598 
2599 	if (dm_suspended_md(md)) {
2600 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2601 		return; /* nest suspend */
2602 	}
2603 
2604 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2605 
2606 	/*
2607 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2608 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2609 	 * would require changing .presuspend to return an error -- avoid this
2610 	 * until there is a need for more elaborate variants of internal suspend.
2611 	 */
2612 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2613 			    DMF_SUSPENDED_INTERNALLY);
2614 
2615 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2616 	dm_table_postsuspend_targets(map);
2617 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2618 }
2619 
2620 static void __dm_internal_resume(struct mapped_device *md)
2621 {
2622 	BUG_ON(!md->internal_suspend_count);
2623 
2624 	if (--md->internal_suspend_count)
2625 		return; /* resume from nested internal suspend */
2626 
2627 	if (dm_suspended_md(md))
2628 		goto done; /* resume from nested suspend */
2629 
2630 	/*
2631 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2632 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2633 	 */
2634 	(void) __dm_resume(md, NULL);
2635 
2636 done:
2637 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2638 	smp_mb__after_atomic();
2639 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2640 }
2641 
2642 void dm_internal_suspend_noflush(struct mapped_device *md)
2643 {
2644 	mutex_lock(&md->suspend_lock);
2645 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2646 	mutex_unlock(&md->suspend_lock);
2647 }
2648 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2649 
2650 void dm_internal_resume(struct mapped_device *md)
2651 {
2652 	mutex_lock(&md->suspend_lock);
2653 	__dm_internal_resume(md);
2654 	mutex_unlock(&md->suspend_lock);
2655 }
2656 EXPORT_SYMBOL_GPL(dm_internal_resume);
2657 
2658 /*
2659  * Fast variants of internal suspend/resume hold md->suspend_lock,
2660  * which prevents interaction with userspace-driven suspend.
2661  */
2662 
2663 void dm_internal_suspend_fast(struct mapped_device *md)
2664 {
2665 	mutex_lock(&md->suspend_lock);
2666 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2667 		return;
2668 
2669 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2670 	synchronize_srcu(&md->io_barrier);
2671 	flush_workqueue(md->wq);
2672 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2673 }
2674 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2675 
2676 void dm_internal_resume_fast(struct mapped_device *md)
2677 {
2678 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2679 		goto done;
2680 
2681 	dm_queue_flush(md);
2682 
2683 done:
2684 	mutex_unlock(&md->suspend_lock);
2685 }
2686 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2687 
2688 /*-----------------------------------------------------------------
2689  * Event notification.
2690  *---------------------------------------------------------------*/
2691 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2692 		       unsigned cookie)
2693 {
2694 	int r;
2695 	unsigned noio_flag;
2696 	char udev_cookie[DM_COOKIE_LENGTH];
2697 	char *envp[] = { udev_cookie, NULL };
2698 
2699 	noio_flag = memalloc_noio_save();
2700 
2701 	if (!cookie)
2702 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2703 	else {
2704 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2705 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2706 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2707 				       action, envp);
2708 	}
2709 
2710 	memalloc_noio_restore(noio_flag);
2711 
2712 	return r;
2713 }
2714 
2715 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2716 {
2717 	return atomic_add_return(1, &md->uevent_seq);
2718 }
2719 
2720 uint32_t dm_get_event_nr(struct mapped_device *md)
2721 {
2722 	return atomic_read(&md->event_nr);
2723 }
2724 
2725 int dm_wait_event(struct mapped_device *md, int event_nr)
2726 {
2727 	return wait_event_interruptible(md->eventq,
2728 			(event_nr != atomic_read(&md->event_nr)));
2729 }
2730 
2731 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2732 {
2733 	unsigned long flags;
2734 
2735 	spin_lock_irqsave(&md->uevent_lock, flags);
2736 	list_add(elist, &md->uevent_list);
2737 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2738 }
2739 
2740 /*
2741  * The gendisk is only valid as long as you have a reference
2742  * count on 'md'.
2743  */
2744 struct gendisk *dm_disk(struct mapped_device *md)
2745 {
2746 	return md->disk;
2747 }
2748 EXPORT_SYMBOL_GPL(dm_disk);
2749 
2750 struct kobject *dm_kobject(struct mapped_device *md)
2751 {
2752 	return &md->kobj_holder.kobj;
2753 }
2754 
2755 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2756 {
2757 	struct mapped_device *md;
2758 
2759 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2760 
2761 	spin_lock(&_minor_lock);
2762 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2763 		md = NULL;
2764 		goto out;
2765 	}
2766 	dm_get(md);
2767 out:
2768 	spin_unlock(&_minor_lock);
2769 
2770 	return md;
2771 }
2772 
2773 int dm_suspended_md(struct mapped_device *md)
2774 {
2775 	return test_bit(DMF_SUSPENDED, &md->flags);
2776 }
2777 
2778 static int dm_post_suspending_md(struct mapped_device *md)
2779 {
2780 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2781 }
2782 
2783 int dm_suspended_internally_md(struct mapped_device *md)
2784 {
2785 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2786 }
2787 
2788 int dm_test_deferred_remove_flag(struct mapped_device *md)
2789 {
2790 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2791 }
2792 
2793 int dm_suspended(struct dm_target *ti)
2794 {
2795 	return dm_suspended_md(ti->table->md);
2796 }
2797 EXPORT_SYMBOL_GPL(dm_suspended);
2798 
2799 int dm_post_suspending(struct dm_target *ti)
2800 {
2801 	return dm_post_suspending_md(ti->table->md);
2802 }
2803 EXPORT_SYMBOL_GPL(dm_post_suspending);
2804 
2805 int dm_noflush_suspending(struct dm_target *ti)
2806 {
2807 	return __noflush_suspending(ti->table->md);
2808 }
2809 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2810 
2811 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2812 					    unsigned integrity, unsigned per_io_data_size,
2813 					    unsigned min_pool_size)
2814 {
2815 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2816 	unsigned int pool_size = 0;
2817 	unsigned int front_pad, io_front_pad;
2818 	int ret;
2819 
2820 	if (!pools)
2821 		return NULL;
2822 
2823 	switch (type) {
2824 	case DM_TYPE_BIO_BASED:
2825 	case DM_TYPE_DAX_BIO_BASED:
2826 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2827 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2828 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2829 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2830 		if (ret)
2831 			goto out;
2832 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2833 			goto out;
2834 		break;
2835 	case DM_TYPE_REQUEST_BASED:
2836 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2837 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2838 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2839 		break;
2840 	default:
2841 		BUG();
2842 	}
2843 
2844 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2845 	if (ret)
2846 		goto out;
2847 
2848 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2849 		goto out;
2850 
2851 	return pools;
2852 
2853 out:
2854 	dm_free_md_mempools(pools);
2855 
2856 	return NULL;
2857 }
2858 
2859 void dm_free_md_mempools(struct dm_md_mempools *pools)
2860 {
2861 	if (!pools)
2862 		return;
2863 
2864 	bioset_exit(&pools->bs);
2865 	bioset_exit(&pools->io_bs);
2866 
2867 	kfree(pools);
2868 }
2869 
2870 struct dm_pr {
2871 	u64	old_key;
2872 	u64	new_key;
2873 	u32	flags;
2874 	bool	fail_early;
2875 };
2876 
2877 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2878 		      void *data)
2879 {
2880 	struct mapped_device *md = bdev->bd_disk->private_data;
2881 	struct dm_table *table;
2882 	struct dm_target *ti;
2883 	int ret = -ENOTTY, srcu_idx;
2884 
2885 	table = dm_get_live_table(md, &srcu_idx);
2886 	if (!table || !dm_table_get_size(table))
2887 		goto out;
2888 
2889 	/* We only support devices that have a single target */
2890 	if (dm_table_get_num_targets(table) != 1)
2891 		goto out;
2892 	ti = dm_table_get_target(table, 0);
2893 
2894 	ret = -EINVAL;
2895 	if (!ti->type->iterate_devices)
2896 		goto out;
2897 
2898 	ret = ti->type->iterate_devices(ti, fn, data);
2899 out:
2900 	dm_put_live_table(md, srcu_idx);
2901 	return ret;
2902 }
2903 
2904 /*
2905  * For register / unregister we need to manually call out to every path.
2906  */
2907 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2908 			    sector_t start, sector_t len, void *data)
2909 {
2910 	struct dm_pr *pr = data;
2911 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2912 
2913 	if (!ops || !ops->pr_register)
2914 		return -EOPNOTSUPP;
2915 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2916 }
2917 
2918 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2919 			  u32 flags)
2920 {
2921 	struct dm_pr pr = {
2922 		.old_key	= old_key,
2923 		.new_key	= new_key,
2924 		.flags		= flags,
2925 		.fail_early	= true,
2926 	};
2927 	int ret;
2928 
2929 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2930 	if (ret && new_key) {
2931 		/* unregister all paths if we failed to register any path */
2932 		pr.old_key = new_key;
2933 		pr.new_key = 0;
2934 		pr.flags = 0;
2935 		pr.fail_early = false;
2936 		dm_call_pr(bdev, __dm_pr_register, &pr);
2937 	}
2938 
2939 	return ret;
2940 }
2941 
2942 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2943 			 u32 flags)
2944 {
2945 	struct mapped_device *md = bdev->bd_disk->private_data;
2946 	const struct pr_ops *ops;
2947 	int r, srcu_idx;
2948 
2949 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2950 	if (r < 0)
2951 		goto out;
2952 
2953 	ops = bdev->bd_disk->fops->pr_ops;
2954 	if (ops && ops->pr_reserve)
2955 		r = ops->pr_reserve(bdev, key, type, flags);
2956 	else
2957 		r = -EOPNOTSUPP;
2958 out:
2959 	dm_unprepare_ioctl(md, srcu_idx);
2960 	return r;
2961 }
2962 
2963 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2964 {
2965 	struct mapped_device *md = bdev->bd_disk->private_data;
2966 	const struct pr_ops *ops;
2967 	int r, srcu_idx;
2968 
2969 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2970 	if (r < 0)
2971 		goto out;
2972 
2973 	ops = bdev->bd_disk->fops->pr_ops;
2974 	if (ops && ops->pr_release)
2975 		r = ops->pr_release(bdev, key, type);
2976 	else
2977 		r = -EOPNOTSUPP;
2978 out:
2979 	dm_unprepare_ioctl(md, srcu_idx);
2980 	return r;
2981 }
2982 
2983 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2984 			 enum pr_type type, bool abort)
2985 {
2986 	struct mapped_device *md = bdev->bd_disk->private_data;
2987 	const struct pr_ops *ops;
2988 	int r, srcu_idx;
2989 
2990 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2991 	if (r < 0)
2992 		goto out;
2993 
2994 	ops = bdev->bd_disk->fops->pr_ops;
2995 	if (ops && ops->pr_preempt)
2996 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2997 	else
2998 		r = -EOPNOTSUPP;
2999 out:
3000 	dm_unprepare_ioctl(md, srcu_idx);
3001 	return r;
3002 }
3003 
3004 static int dm_pr_clear(struct block_device *bdev, u64 key)
3005 {
3006 	struct mapped_device *md = bdev->bd_disk->private_data;
3007 	const struct pr_ops *ops;
3008 	int r, srcu_idx;
3009 
3010 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3011 	if (r < 0)
3012 		goto out;
3013 
3014 	ops = bdev->bd_disk->fops->pr_ops;
3015 	if (ops && ops->pr_clear)
3016 		r = ops->pr_clear(bdev, key);
3017 	else
3018 		r = -EOPNOTSUPP;
3019 out:
3020 	dm_unprepare_ioctl(md, srcu_idx);
3021 	return r;
3022 }
3023 
3024 static const struct pr_ops dm_pr_ops = {
3025 	.pr_register	= dm_pr_register,
3026 	.pr_reserve	= dm_pr_reserve,
3027 	.pr_release	= dm_pr_release,
3028 	.pr_preempt	= dm_pr_preempt,
3029 	.pr_clear	= dm_pr_clear,
3030 };
3031 
3032 static const struct block_device_operations dm_blk_dops = {
3033 	.submit_bio = dm_submit_bio,
3034 	.open = dm_blk_open,
3035 	.release = dm_blk_close,
3036 	.ioctl = dm_blk_ioctl,
3037 	.getgeo = dm_blk_getgeo,
3038 	.report_zones = dm_blk_report_zones,
3039 	.pr_ops = &dm_pr_ops,
3040 	.owner = THIS_MODULE
3041 };
3042 
3043 static const struct block_device_operations dm_rq_blk_dops = {
3044 	.open = dm_blk_open,
3045 	.release = dm_blk_close,
3046 	.ioctl = dm_blk_ioctl,
3047 	.getgeo = dm_blk_getgeo,
3048 	.pr_ops = &dm_pr_ops,
3049 	.owner = THIS_MODULE
3050 };
3051 
3052 static const struct dax_operations dm_dax_ops = {
3053 	.direct_access = dm_dax_direct_access,
3054 	.dax_supported = dm_dax_supported,
3055 	.copy_from_iter = dm_dax_copy_from_iter,
3056 	.copy_to_iter = dm_dax_copy_to_iter,
3057 	.zero_page_range = dm_dax_zero_page_range,
3058 };
3059 
3060 /*
3061  * module hooks
3062  */
3063 module_init(dm_init);
3064 module_exit(dm_exit);
3065 
3066 module_param(major, uint, 0);
3067 MODULE_PARM_DESC(major, "The major number of the device mapper");
3068 
3069 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3070 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3071 
3072 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3073 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3074 
3075 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3076 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3077 
3078 MODULE_DESCRIPTION(DM_NAME " driver");
3079 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3080 MODULE_LICENSE("GPL");
3081