1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/kthread.h> 24 #include <linux/ktime.h> 25 #include <linux/elevator.h> /* for rq_end_sector() */ 26 #include <linux/blk-mq.h> 27 28 #include <trace/events/block.h> 29 30 #define DM_MSG_PREFIX "core" 31 32 #ifdef CONFIG_PRINTK 33 /* 34 * ratelimit state to be used in DMXXX_LIMIT(). 35 */ 36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 37 DEFAULT_RATELIMIT_INTERVAL, 38 DEFAULT_RATELIMIT_BURST); 39 EXPORT_SYMBOL(dm_ratelimit_state); 40 #endif 41 42 /* 43 * Cookies are numeric values sent with CHANGE and REMOVE 44 * uevents while resuming, removing or renaming the device. 45 */ 46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 47 #define DM_COOKIE_LENGTH 24 48 49 static const char *_name = DM_NAME; 50 51 static unsigned int major = 0; 52 static unsigned int _major = 0; 53 54 static DEFINE_IDR(_minor_idr); 55 56 static DEFINE_SPINLOCK(_minor_lock); 57 58 static void do_deferred_remove(struct work_struct *w); 59 60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 61 62 static struct workqueue_struct *deferred_remove_workqueue; 63 64 /* 65 * For bio-based dm. 66 * One of these is allocated per bio. 67 */ 68 struct dm_io { 69 struct mapped_device *md; 70 int error; 71 atomic_t io_count; 72 struct bio *bio; 73 unsigned long start_time; 74 spinlock_t endio_lock; 75 struct dm_stats_aux stats_aux; 76 }; 77 78 /* 79 * For request-based dm. 80 * One of these is allocated per request. 81 */ 82 struct dm_rq_target_io { 83 struct mapped_device *md; 84 struct dm_target *ti; 85 struct request *orig, *clone; 86 struct kthread_work work; 87 int error; 88 union map_info info; 89 struct dm_stats_aux stats_aux; 90 unsigned long duration_jiffies; 91 unsigned n_sectors; 92 }; 93 94 /* 95 * For request-based dm - the bio clones we allocate are embedded in these 96 * structs. 97 * 98 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 99 * the bioset is created - this means the bio has to come at the end of the 100 * struct. 101 */ 102 struct dm_rq_clone_bio_info { 103 struct bio *orig; 104 struct dm_rq_target_io *tio; 105 struct bio clone; 106 }; 107 108 union map_info *dm_get_rq_mapinfo(struct request *rq) 109 { 110 if (rq && rq->end_io_data) 111 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 112 return NULL; 113 } 114 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 115 116 #define MINOR_ALLOCED ((void *)-1) 117 118 /* 119 * Bits for the md->flags field. 120 */ 121 #define DMF_BLOCK_IO_FOR_SUSPEND 0 122 #define DMF_SUSPENDED 1 123 #define DMF_FROZEN 2 124 #define DMF_FREEING 3 125 #define DMF_DELETING 4 126 #define DMF_NOFLUSH_SUSPENDING 5 127 #define DMF_DEFERRED_REMOVE 6 128 #define DMF_SUSPENDED_INTERNALLY 7 129 130 /* 131 * A dummy definition to make RCU happy. 132 * struct dm_table should never be dereferenced in this file. 133 */ 134 struct dm_table { 135 int undefined__; 136 }; 137 138 /* 139 * Work processed by per-device workqueue. 140 */ 141 struct mapped_device { 142 struct srcu_struct io_barrier; 143 struct mutex suspend_lock; 144 atomic_t holders; 145 atomic_t open_count; 146 147 /* 148 * The current mapping. 149 * Use dm_get_live_table{_fast} or take suspend_lock for 150 * dereference. 151 */ 152 struct dm_table __rcu *map; 153 154 struct list_head table_devices; 155 struct mutex table_devices_lock; 156 157 unsigned long flags; 158 159 struct request_queue *queue; 160 unsigned type; 161 /* Protect queue and type against concurrent access. */ 162 struct mutex type_lock; 163 164 struct target_type *immutable_target_type; 165 166 struct gendisk *disk; 167 char name[16]; 168 169 void *interface_ptr; 170 171 /* 172 * A list of ios that arrived while we were suspended. 173 */ 174 atomic_t pending[2]; 175 wait_queue_head_t wait; 176 struct work_struct work; 177 struct bio_list deferred; 178 spinlock_t deferred_lock; 179 180 /* 181 * Processing queue (flush) 182 */ 183 struct workqueue_struct *wq; 184 185 /* 186 * io objects are allocated from here. 187 */ 188 mempool_t *io_pool; 189 mempool_t *rq_pool; 190 191 struct bio_set *bs; 192 193 /* 194 * Event handling. 195 */ 196 atomic_t event_nr; 197 wait_queue_head_t eventq; 198 atomic_t uevent_seq; 199 struct list_head uevent_list; 200 spinlock_t uevent_lock; /* Protect access to uevent_list */ 201 202 /* 203 * freeze/thaw support require holding onto a super block 204 */ 205 struct super_block *frozen_sb; 206 struct block_device *bdev; 207 208 /* forced geometry settings */ 209 struct hd_geometry geometry; 210 211 /* kobject and completion */ 212 struct dm_kobject_holder kobj_holder; 213 214 /* zero-length flush that will be cloned and submitted to targets */ 215 struct bio flush_bio; 216 217 /* the number of internal suspends */ 218 unsigned internal_suspend_count; 219 220 struct dm_stats stats; 221 222 struct kthread_worker kworker; 223 struct task_struct *kworker_task; 224 225 /* for request-based merge heuristic in dm_request_fn() */ 226 unsigned seq_rq_merge_deadline_usecs; 227 int last_rq_rw; 228 sector_t last_rq_pos; 229 ktime_t last_rq_start_time; 230 231 /* for blk-mq request-based DM support */ 232 struct blk_mq_tag_set tag_set; 233 bool use_blk_mq; 234 }; 235 236 #ifdef CONFIG_DM_MQ_DEFAULT 237 static bool use_blk_mq = true; 238 #else 239 static bool use_blk_mq = false; 240 #endif 241 242 bool dm_use_blk_mq(struct mapped_device *md) 243 { 244 return md->use_blk_mq; 245 } 246 247 /* 248 * For mempools pre-allocation at the table loading time. 249 */ 250 struct dm_md_mempools { 251 mempool_t *io_pool; 252 mempool_t *rq_pool; 253 struct bio_set *bs; 254 }; 255 256 struct table_device { 257 struct list_head list; 258 atomic_t count; 259 struct dm_dev dm_dev; 260 }; 261 262 #define RESERVED_BIO_BASED_IOS 16 263 #define RESERVED_REQUEST_BASED_IOS 256 264 #define RESERVED_MAX_IOS 1024 265 static struct kmem_cache *_io_cache; 266 static struct kmem_cache *_rq_tio_cache; 267 static struct kmem_cache *_rq_cache; 268 269 /* 270 * Bio-based DM's mempools' reserved IOs set by the user. 271 */ 272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 273 274 /* 275 * Request-based DM's mempools' reserved IOs set by the user. 276 */ 277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 278 279 static unsigned __dm_get_module_param(unsigned *module_param, 280 unsigned def, unsigned max) 281 { 282 unsigned param = ACCESS_ONCE(*module_param); 283 unsigned modified_param = 0; 284 285 if (!param) 286 modified_param = def; 287 else if (param > max) 288 modified_param = max; 289 290 if (modified_param) { 291 (void)cmpxchg(module_param, param, modified_param); 292 param = modified_param; 293 } 294 295 return param; 296 } 297 298 unsigned dm_get_reserved_bio_based_ios(void) 299 { 300 return __dm_get_module_param(&reserved_bio_based_ios, 301 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 302 } 303 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 304 305 unsigned dm_get_reserved_rq_based_ios(void) 306 { 307 return __dm_get_module_param(&reserved_rq_based_ios, 308 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 309 } 310 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 311 312 static int __init local_init(void) 313 { 314 int r = -ENOMEM; 315 316 /* allocate a slab for the dm_ios */ 317 _io_cache = KMEM_CACHE(dm_io, 0); 318 if (!_io_cache) 319 return r; 320 321 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 322 if (!_rq_tio_cache) 323 goto out_free_io_cache; 324 325 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request), 326 __alignof__(struct request), 0, NULL); 327 if (!_rq_cache) 328 goto out_free_rq_tio_cache; 329 330 r = dm_uevent_init(); 331 if (r) 332 goto out_free_rq_cache; 333 334 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 335 if (!deferred_remove_workqueue) { 336 r = -ENOMEM; 337 goto out_uevent_exit; 338 } 339 340 _major = major; 341 r = register_blkdev(_major, _name); 342 if (r < 0) 343 goto out_free_workqueue; 344 345 if (!_major) 346 _major = r; 347 348 return 0; 349 350 out_free_workqueue: 351 destroy_workqueue(deferred_remove_workqueue); 352 out_uevent_exit: 353 dm_uevent_exit(); 354 out_free_rq_cache: 355 kmem_cache_destroy(_rq_cache); 356 out_free_rq_tio_cache: 357 kmem_cache_destroy(_rq_tio_cache); 358 out_free_io_cache: 359 kmem_cache_destroy(_io_cache); 360 361 return r; 362 } 363 364 static void local_exit(void) 365 { 366 flush_scheduled_work(); 367 destroy_workqueue(deferred_remove_workqueue); 368 369 kmem_cache_destroy(_rq_cache); 370 kmem_cache_destroy(_rq_tio_cache); 371 kmem_cache_destroy(_io_cache); 372 unregister_blkdev(_major, _name); 373 dm_uevent_exit(); 374 375 _major = 0; 376 377 DMINFO("cleaned up"); 378 } 379 380 static int (*_inits[])(void) __initdata = { 381 local_init, 382 dm_target_init, 383 dm_linear_init, 384 dm_stripe_init, 385 dm_io_init, 386 dm_kcopyd_init, 387 dm_interface_init, 388 dm_statistics_init, 389 }; 390 391 static void (*_exits[])(void) = { 392 local_exit, 393 dm_target_exit, 394 dm_linear_exit, 395 dm_stripe_exit, 396 dm_io_exit, 397 dm_kcopyd_exit, 398 dm_interface_exit, 399 dm_statistics_exit, 400 }; 401 402 static int __init dm_init(void) 403 { 404 const int count = ARRAY_SIZE(_inits); 405 406 int r, i; 407 408 for (i = 0; i < count; i++) { 409 r = _inits[i](); 410 if (r) 411 goto bad; 412 } 413 414 return 0; 415 416 bad: 417 while (i--) 418 _exits[i](); 419 420 return r; 421 } 422 423 static void __exit dm_exit(void) 424 { 425 int i = ARRAY_SIZE(_exits); 426 427 while (i--) 428 _exits[i](); 429 430 /* 431 * Should be empty by this point. 432 */ 433 idr_destroy(&_minor_idr); 434 } 435 436 /* 437 * Block device functions 438 */ 439 int dm_deleting_md(struct mapped_device *md) 440 { 441 return test_bit(DMF_DELETING, &md->flags); 442 } 443 444 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 445 { 446 struct mapped_device *md; 447 448 spin_lock(&_minor_lock); 449 450 md = bdev->bd_disk->private_data; 451 if (!md) 452 goto out; 453 454 if (test_bit(DMF_FREEING, &md->flags) || 455 dm_deleting_md(md)) { 456 md = NULL; 457 goto out; 458 } 459 460 dm_get(md); 461 atomic_inc(&md->open_count); 462 out: 463 spin_unlock(&_minor_lock); 464 465 return md ? 0 : -ENXIO; 466 } 467 468 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 469 { 470 struct mapped_device *md; 471 472 spin_lock(&_minor_lock); 473 474 md = disk->private_data; 475 if (WARN_ON(!md)) 476 goto out; 477 478 if (atomic_dec_and_test(&md->open_count) && 479 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 480 queue_work(deferred_remove_workqueue, &deferred_remove_work); 481 482 dm_put(md); 483 out: 484 spin_unlock(&_minor_lock); 485 } 486 487 int dm_open_count(struct mapped_device *md) 488 { 489 return atomic_read(&md->open_count); 490 } 491 492 /* 493 * Guarantees nothing is using the device before it's deleted. 494 */ 495 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 496 { 497 int r = 0; 498 499 spin_lock(&_minor_lock); 500 501 if (dm_open_count(md)) { 502 r = -EBUSY; 503 if (mark_deferred) 504 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 505 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 506 r = -EEXIST; 507 else 508 set_bit(DMF_DELETING, &md->flags); 509 510 spin_unlock(&_minor_lock); 511 512 return r; 513 } 514 515 int dm_cancel_deferred_remove(struct mapped_device *md) 516 { 517 int r = 0; 518 519 spin_lock(&_minor_lock); 520 521 if (test_bit(DMF_DELETING, &md->flags)) 522 r = -EBUSY; 523 else 524 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 525 526 spin_unlock(&_minor_lock); 527 528 return r; 529 } 530 531 static void do_deferred_remove(struct work_struct *w) 532 { 533 dm_deferred_remove(); 534 } 535 536 sector_t dm_get_size(struct mapped_device *md) 537 { 538 return get_capacity(md->disk); 539 } 540 541 struct request_queue *dm_get_md_queue(struct mapped_device *md) 542 { 543 return md->queue; 544 } 545 546 struct dm_stats *dm_get_stats(struct mapped_device *md) 547 { 548 return &md->stats; 549 } 550 551 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 552 { 553 struct mapped_device *md = bdev->bd_disk->private_data; 554 555 return dm_get_geometry(md, geo); 556 } 557 558 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 559 unsigned int cmd, unsigned long arg) 560 { 561 struct mapped_device *md = bdev->bd_disk->private_data; 562 int srcu_idx; 563 struct dm_table *map; 564 struct dm_target *tgt; 565 int r = -ENOTTY; 566 567 retry: 568 map = dm_get_live_table(md, &srcu_idx); 569 570 if (!map || !dm_table_get_size(map)) 571 goto out; 572 573 /* We only support devices that have a single target */ 574 if (dm_table_get_num_targets(map) != 1) 575 goto out; 576 577 tgt = dm_table_get_target(map, 0); 578 if (!tgt->type->ioctl) 579 goto out; 580 581 if (dm_suspended_md(md)) { 582 r = -EAGAIN; 583 goto out; 584 } 585 586 r = tgt->type->ioctl(tgt, cmd, arg); 587 588 out: 589 dm_put_live_table(md, srcu_idx); 590 591 if (r == -ENOTCONN) { 592 msleep(10); 593 goto retry; 594 } 595 596 return r; 597 } 598 599 static struct dm_io *alloc_io(struct mapped_device *md) 600 { 601 return mempool_alloc(md->io_pool, GFP_NOIO); 602 } 603 604 static void free_io(struct mapped_device *md, struct dm_io *io) 605 { 606 mempool_free(io, md->io_pool); 607 } 608 609 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 610 { 611 bio_put(&tio->clone); 612 } 613 614 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 615 gfp_t gfp_mask) 616 { 617 return mempool_alloc(md->io_pool, gfp_mask); 618 } 619 620 static void free_rq_tio(struct dm_rq_target_io *tio) 621 { 622 mempool_free(tio, tio->md->io_pool); 623 } 624 625 static struct request *alloc_clone_request(struct mapped_device *md, 626 gfp_t gfp_mask) 627 { 628 return mempool_alloc(md->rq_pool, gfp_mask); 629 } 630 631 static void free_clone_request(struct mapped_device *md, struct request *rq) 632 { 633 mempool_free(rq, md->rq_pool); 634 } 635 636 static int md_in_flight(struct mapped_device *md) 637 { 638 return atomic_read(&md->pending[READ]) + 639 atomic_read(&md->pending[WRITE]); 640 } 641 642 static void start_io_acct(struct dm_io *io) 643 { 644 struct mapped_device *md = io->md; 645 struct bio *bio = io->bio; 646 int cpu; 647 int rw = bio_data_dir(bio); 648 649 io->start_time = jiffies; 650 651 cpu = part_stat_lock(); 652 part_round_stats(cpu, &dm_disk(md)->part0); 653 part_stat_unlock(); 654 atomic_set(&dm_disk(md)->part0.in_flight[rw], 655 atomic_inc_return(&md->pending[rw])); 656 657 if (unlikely(dm_stats_used(&md->stats))) 658 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 659 bio_sectors(bio), false, 0, &io->stats_aux); 660 } 661 662 static void end_io_acct(struct dm_io *io) 663 { 664 struct mapped_device *md = io->md; 665 struct bio *bio = io->bio; 666 unsigned long duration = jiffies - io->start_time; 667 int pending; 668 int rw = bio_data_dir(bio); 669 670 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 671 672 if (unlikely(dm_stats_used(&md->stats))) 673 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 674 bio_sectors(bio), true, duration, &io->stats_aux); 675 676 /* 677 * After this is decremented the bio must not be touched if it is 678 * a flush. 679 */ 680 pending = atomic_dec_return(&md->pending[rw]); 681 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 682 pending += atomic_read(&md->pending[rw^0x1]); 683 684 /* nudge anyone waiting on suspend queue */ 685 if (!pending) 686 wake_up(&md->wait); 687 } 688 689 /* 690 * Add the bio to the list of deferred io. 691 */ 692 static void queue_io(struct mapped_device *md, struct bio *bio) 693 { 694 unsigned long flags; 695 696 spin_lock_irqsave(&md->deferred_lock, flags); 697 bio_list_add(&md->deferred, bio); 698 spin_unlock_irqrestore(&md->deferred_lock, flags); 699 queue_work(md->wq, &md->work); 700 } 701 702 /* 703 * Everyone (including functions in this file), should use this 704 * function to access the md->map field, and make sure they call 705 * dm_put_live_table() when finished. 706 */ 707 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 708 { 709 *srcu_idx = srcu_read_lock(&md->io_barrier); 710 711 return srcu_dereference(md->map, &md->io_barrier); 712 } 713 714 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 715 { 716 srcu_read_unlock(&md->io_barrier, srcu_idx); 717 } 718 719 void dm_sync_table(struct mapped_device *md) 720 { 721 synchronize_srcu(&md->io_barrier); 722 synchronize_rcu_expedited(); 723 } 724 725 /* 726 * A fast alternative to dm_get_live_table/dm_put_live_table. 727 * The caller must not block between these two functions. 728 */ 729 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 730 { 731 rcu_read_lock(); 732 return rcu_dereference(md->map); 733 } 734 735 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 736 { 737 rcu_read_unlock(); 738 } 739 740 /* 741 * Open a table device so we can use it as a map destination. 742 */ 743 static int open_table_device(struct table_device *td, dev_t dev, 744 struct mapped_device *md) 745 { 746 static char *_claim_ptr = "I belong to device-mapper"; 747 struct block_device *bdev; 748 749 int r; 750 751 BUG_ON(td->dm_dev.bdev); 752 753 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 754 if (IS_ERR(bdev)) 755 return PTR_ERR(bdev); 756 757 r = bd_link_disk_holder(bdev, dm_disk(md)); 758 if (r) { 759 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 760 return r; 761 } 762 763 td->dm_dev.bdev = bdev; 764 return 0; 765 } 766 767 /* 768 * Close a table device that we've been using. 769 */ 770 static void close_table_device(struct table_device *td, struct mapped_device *md) 771 { 772 if (!td->dm_dev.bdev) 773 return; 774 775 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 776 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 777 td->dm_dev.bdev = NULL; 778 } 779 780 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 781 fmode_t mode) { 782 struct table_device *td; 783 784 list_for_each_entry(td, l, list) 785 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 786 return td; 787 788 return NULL; 789 } 790 791 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 792 struct dm_dev **result) { 793 int r; 794 struct table_device *td; 795 796 mutex_lock(&md->table_devices_lock); 797 td = find_table_device(&md->table_devices, dev, mode); 798 if (!td) { 799 td = kmalloc(sizeof(*td), GFP_KERNEL); 800 if (!td) { 801 mutex_unlock(&md->table_devices_lock); 802 return -ENOMEM; 803 } 804 805 td->dm_dev.mode = mode; 806 td->dm_dev.bdev = NULL; 807 808 if ((r = open_table_device(td, dev, md))) { 809 mutex_unlock(&md->table_devices_lock); 810 kfree(td); 811 return r; 812 } 813 814 format_dev_t(td->dm_dev.name, dev); 815 816 atomic_set(&td->count, 0); 817 list_add(&td->list, &md->table_devices); 818 } 819 atomic_inc(&td->count); 820 mutex_unlock(&md->table_devices_lock); 821 822 *result = &td->dm_dev; 823 return 0; 824 } 825 EXPORT_SYMBOL_GPL(dm_get_table_device); 826 827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 828 { 829 struct table_device *td = container_of(d, struct table_device, dm_dev); 830 831 mutex_lock(&md->table_devices_lock); 832 if (atomic_dec_and_test(&td->count)) { 833 close_table_device(td, md); 834 list_del(&td->list); 835 kfree(td); 836 } 837 mutex_unlock(&md->table_devices_lock); 838 } 839 EXPORT_SYMBOL(dm_put_table_device); 840 841 static void free_table_devices(struct list_head *devices) 842 { 843 struct list_head *tmp, *next; 844 845 list_for_each_safe(tmp, next, devices) { 846 struct table_device *td = list_entry(tmp, struct table_device, list); 847 848 DMWARN("dm_destroy: %s still exists with %d references", 849 td->dm_dev.name, atomic_read(&td->count)); 850 kfree(td); 851 } 852 } 853 854 /* 855 * Get the geometry associated with a dm device 856 */ 857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 858 { 859 *geo = md->geometry; 860 861 return 0; 862 } 863 864 /* 865 * Set the geometry of a device. 866 */ 867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 868 { 869 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 870 871 if (geo->start > sz) { 872 DMWARN("Start sector is beyond the geometry limits."); 873 return -EINVAL; 874 } 875 876 md->geometry = *geo; 877 878 return 0; 879 } 880 881 /*----------------------------------------------------------------- 882 * CRUD START: 883 * A more elegant soln is in the works that uses the queue 884 * merge fn, unfortunately there are a couple of changes to 885 * the block layer that I want to make for this. So in the 886 * interests of getting something for people to use I give 887 * you this clearly demarcated crap. 888 *---------------------------------------------------------------*/ 889 890 static int __noflush_suspending(struct mapped_device *md) 891 { 892 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 893 } 894 895 /* 896 * Decrements the number of outstanding ios that a bio has been 897 * cloned into, completing the original io if necc. 898 */ 899 static void dec_pending(struct dm_io *io, int error) 900 { 901 unsigned long flags; 902 int io_error; 903 struct bio *bio; 904 struct mapped_device *md = io->md; 905 906 /* Push-back supersedes any I/O errors */ 907 if (unlikely(error)) { 908 spin_lock_irqsave(&io->endio_lock, flags); 909 if (!(io->error > 0 && __noflush_suspending(md))) 910 io->error = error; 911 spin_unlock_irqrestore(&io->endio_lock, flags); 912 } 913 914 if (atomic_dec_and_test(&io->io_count)) { 915 if (io->error == DM_ENDIO_REQUEUE) { 916 /* 917 * Target requested pushing back the I/O. 918 */ 919 spin_lock_irqsave(&md->deferred_lock, flags); 920 if (__noflush_suspending(md)) 921 bio_list_add_head(&md->deferred, io->bio); 922 else 923 /* noflush suspend was interrupted. */ 924 io->error = -EIO; 925 spin_unlock_irqrestore(&md->deferred_lock, flags); 926 } 927 928 io_error = io->error; 929 bio = io->bio; 930 end_io_acct(io); 931 free_io(md, io); 932 933 if (io_error == DM_ENDIO_REQUEUE) 934 return; 935 936 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 937 /* 938 * Preflush done for flush with data, reissue 939 * without REQ_FLUSH. 940 */ 941 bio->bi_rw &= ~REQ_FLUSH; 942 queue_io(md, bio); 943 } else { 944 /* done with normal IO or empty flush */ 945 trace_block_bio_complete(md->queue, bio, io_error); 946 bio->bi_error = io_error; 947 bio_endio(bio); 948 } 949 } 950 } 951 952 static void disable_write_same(struct mapped_device *md) 953 { 954 struct queue_limits *limits = dm_get_queue_limits(md); 955 956 /* device doesn't really support WRITE SAME, disable it */ 957 limits->max_write_same_sectors = 0; 958 } 959 960 static void clone_endio(struct bio *bio) 961 { 962 int error = bio->bi_error; 963 int r = error; 964 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 965 struct dm_io *io = tio->io; 966 struct mapped_device *md = tio->io->md; 967 dm_endio_fn endio = tio->ti->type->end_io; 968 969 if (endio) { 970 r = endio(tio->ti, bio, error); 971 if (r < 0 || r == DM_ENDIO_REQUEUE) 972 /* 973 * error and requeue request are handled 974 * in dec_pending(). 975 */ 976 error = r; 977 else if (r == DM_ENDIO_INCOMPLETE) 978 /* The target will handle the io */ 979 return; 980 else if (r) { 981 DMWARN("unimplemented target endio return value: %d", r); 982 BUG(); 983 } 984 } 985 986 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 987 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 988 disable_write_same(md); 989 990 free_tio(md, tio); 991 dec_pending(io, error); 992 } 993 994 /* 995 * Partial completion handling for request-based dm 996 */ 997 static void end_clone_bio(struct bio *clone) 998 { 999 struct dm_rq_clone_bio_info *info = 1000 container_of(clone, struct dm_rq_clone_bio_info, clone); 1001 struct dm_rq_target_io *tio = info->tio; 1002 struct bio *bio = info->orig; 1003 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 1004 int error = clone->bi_error; 1005 1006 bio_put(clone); 1007 1008 if (tio->error) 1009 /* 1010 * An error has already been detected on the request. 1011 * Once error occurred, just let clone->end_io() handle 1012 * the remainder. 1013 */ 1014 return; 1015 else if (error) { 1016 /* 1017 * Don't notice the error to the upper layer yet. 1018 * The error handling decision is made by the target driver, 1019 * when the request is completed. 1020 */ 1021 tio->error = error; 1022 return; 1023 } 1024 1025 /* 1026 * I/O for the bio successfully completed. 1027 * Notice the data completion to the upper layer. 1028 */ 1029 1030 /* 1031 * bios are processed from the head of the list. 1032 * So the completing bio should always be rq->bio. 1033 * If it's not, something wrong is happening. 1034 */ 1035 if (tio->orig->bio != bio) 1036 DMERR("bio completion is going in the middle of the request"); 1037 1038 /* 1039 * Update the original request. 1040 * Do not use blk_end_request() here, because it may complete 1041 * the original request before the clone, and break the ordering. 1042 */ 1043 blk_update_request(tio->orig, 0, nr_bytes); 1044 } 1045 1046 static struct dm_rq_target_io *tio_from_request(struct request *rq) 1047 { 1048 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special); 1049 } 1050 1051 static void rq_end_stats(struct mapped_device *md, struct request *orig) 1052 { 1053 if (unlikely(dm_stats_used(&md->stats))) { 1054 struct dm_rq_target_io *tio = tio_from_request(orig); 1055 tio->duration_jiffies = jiffies - tio->duration_jiffies; 1056 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 1057 tio->n_sectors, true, tio->duration_jiffies, 1058 &tio->stats_aux); 1059 } 1060 } 1061 1062 /* 1063 * Don't touch any member of the md after calling this function because 1064 * the md may be freed in dm_put() at the end of this function. 1065 * Or do dm_get() before calling this function and dm_put() later. 1066 */ 1067 static void rq_completed(struct mapped_device *md, int rw, bool run_queue) 1068 { 1069 atomic_dec(&md->pending[rw]); 1070 1071 /* nudge anyone waiting on suspend queue */ 1072 if (!md_in_flight(md)) 1073 wake_up(&md->wait); 1074 1075 /* 1076 * Run this off this callpath, as drivers could invoke end_io while 1077 * inside their request_fn (and holding the queue lock). Calling 1078 * back into ->request_fn() could deadlock attempting to grab the 1079 * queue lock again. 1080 */ 1081 if (run_queue) { 1082 if (md->queue->mq_ops) 1083 blk_mq_run_hw_queues(md->queue, true); 1084 else 1085 blk_run_queue_async(md->queue); 1086 } 1087 1088 /* 1089 * dm_put() must be at the end of this function. See the comment above 1090 */ 1091 dm_put(md); 1092 } 1093 1094 static void free_rq_clone(struct request *clone) 1095 { 1096 struct dm_rq_target_io *tio = clone->end_io_data; 1097 struct mapped_device *md = tio->md; 1098 1099 blk_rq_unprep_clone(clone); 1100 1101 if (md->type == DM_TYPE_MQ_REQUEST_BASED) 1102 /* stacked on blk-mq queue(s) */ 1103 tio->ti->type->release_clone_rq(clone); 1104 else if (!md->queue->mq_ops) 1105 /* request_fn queue stacked on request_fn queue(s) */ 1106 free_clone_request(md, clone); 1107 /* 1108 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case: 1109 * no need to call free_clone_request() because we leverage blk-mq by 1110 * allocating the clone at the end of the blk-mq pdu (see: clone_rq) 1111 */ 1112 1113 if (!md->queue->mq_ops) 1114 free_rq_tio(tio); 1115 } 1116 1117 /* 1118 * Complete the clone and the original request. 1119 * Must be called without clone's queue lock held, 1120 * see end_clone_request() for more details. 1121 */ 1122 static void dm_end_request(struct request *clone, int error) 1123 { 1124 int rw = rq_data_dir(clone); 1125 struct dm_rq_target_io *tio = clone->end_io_data; 1126 struct mapped_device *md = tio->md; 1127 struct request *rq = tio->orig; 1128 1129 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1130 rq->errors = clone->errors; 1131 rq->resid_len = clone->resid_len; 1132 1133 if (rq->sense) 1134 /* 1135 * We are using the sense buffer of the original 1136 * request. 1137 * So setting the length of the sense data is enough. 1138 */ 1139 rq->sense_len = clone->sense_len; 1140 } 1141 1142 free_rq_clone(clone); 1143 rq_end_stats(md, rq); 1144 if (!rq->q->mq_ops) 1145 blk_end_request_all(rq, error); 1146 else 1147 blk_mq_end_request(rq, error); 1148 rq_completed(md, rw, true); 1149 } 1150 1151 static void dm_unprep_request(struct request *rq) 1152 { 1153 struct dm_rq_target_io *tio = tio_from_request(rq); 1154 struct request *clone = tio->clone; 1155 1156 if (!rq->q->mq_ops) { 1157 rq->special = NULL; 1158 rq->cmd_flags &= ~REQ_DONTPREP; 1159 } 1160 1161 if (clone) 1162 free_rq_clone(clone); 1163 } 1164 1165 /* 1166 * Requeue the original request of a clone. 1167 */ 1168 static void old_requeue_request(struct request *rq) 1169 { 1170 struct request_queue *q = rq->q; 1171 unsigned long flags; 1172 1173 spin_lock_irqsave(q->queue_lock, flags); 1174 blk_requeue_request(q, rq); 1175 blk_run_queue_async(q); 1176 spin_unlock_irqrestore(q->queue_lock, flags); 1177 } 1178 1179 static void dm_requeue_original_request(struct mapped_device *md, 1180 struct request *rq) 1181 { 1182 int rw = rq_data_dir(rq); 1183 1184 dm_unprep_request(rq); 1185 1186 rq_end_stats(md, rq); 1187 if (!rq->q->mq_ops) 1188 old_requeue_request(rq); 1189 else { 1190 blk_mq_requeue_request(rq); 1191 blk_mq_kick_requeue_list(rq->q); 1192 } 1193 1194 rq_completed(md, rw, false); 1195 } 1196 1197 static void old_stop_queue(struct request_queue *q) 1198 { 1199 unsigned long flags; 1200 1201 if (blk_queue_stopped(q)) 1202 return; 1203 1204 spin_lock_irqsave(q->queue_lock, flags); 1205 blk_stop_queue(q); 1206 spin_unlock_irqrestore(q->queue_lock, flags); 1207 } 1208 1209 static void stop_queue(struct request_queue *q) 1210 { 1211 if (!q->mq_ops) 1212 old_stop_queue(q); 1213 else 1214 blk_mq_stop_hw_queues(q); 1215 } 1216 1217 static void old_start_queue(struct request_queue *q) 1218 { 1219 unsigned long flags; 1220 1221 spin_lock_irqsave(q->queue_lock, flags); 1222 if (blk_queue_stopped(q)) 1223 blk_start_queue(q); 1224 spin_unlock_irqrestore(q->queue_lock, flags); 1225 } 1226 1227 static void start_queue(struct request_queue *q) 1228 { 1229 if (!q->mq_ops) 1230 old_start_queue(q); 1231 else 1232 blk_mq_start_stopped_hw_queues(q, true); 1233 } 1234 1235 static void dm_done(struct request *clone, int error, bool mapped) 1236 { 1237 int r = error; 1238 struct dm_rq_target_io *tio = clone->end_io_data; 1239 dm_request_endio_fn rq_end_io = NULL; 1240 1241 if (tio->ti) { 1242 rq_end_io = tio->ti->type->rq_end_io; 1243 1244 if (mapped && rq_end_io) 1245 r = rq_end_io(tio->ti, clone, error, &tio->info); 1246 } 1247 1248 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1249 !clone->q->limits.max_write_same_sectors)) 1250 disable_write_same(tio->md); 1251 1252 if (r <= 0) 1253 /* The target wants to complete the I/O */ 1254 dm_end_request(clone, r); 1255 else if (r == DM_ENDIO_INCOMPLETE) 1256 /* The target will handle the I/O */ 1257 return; 1258 else if (r == DM_ENDIO_REQUEUE) 1259 /* The target wants to requeue the I/O */ 1260 dm_requeue_original_request(tio->md, tio->orig); 1261 else { 1262 DMWARN("unimplemented target endio return value: %d", r); 1263 BUG(); 1264 } 1265 } 1266 1267 /* 1268 * Request completion handler for request-based dm 1269 */ 1270 static void dm_softirq_done(struct request *rq) 1271 { 1272 bool mapped = true; 1273 struct dm_rq_target_io *tio = tio_from_request(rq); 1274 struct request *clone = tio->clone; 1275 int rw; 1276 1277 if (!clone) { 1278 rq_end_stats(tio->md, rq); 1279 rw = rq_data_dir(rq); 1280 if (!rq->q->mq_ops) { 1281 blk_end_request_all(rq, tio->error); 1282 rq_completed(tio->md, rw, false); 1283 free_rq_tio(tio); 1284 } else { 1285 blk_mq_end_request(rq, tio->error); 1286 rq_completed(tio->md, rw, false); 1287 } 1288 return; 1289 } 1290 1291 if (rq->cmd_flags & REQ_FAILED) 1292 mapped = false; 1293 1294 dm_done(clone, tio->error, mapped); 1295 } 1296 1297 /* 1298 * Complete the clone and the original request with the error status 1299 * through softirq context. 1300 */ 1301 static void dm_complete_request(struct request *rq, int error) 1302 { 1303 struct dm_rq_target_io *tio = tio_from_request(rq); 1304 1305 tio->error = error; 1306 blk_complete_request(rq); 1307 } 1308 1309 /* 1310 * Complete the not-mapped clone and the original request with the error status 1311 * through softirq context. 1312 * Target's rq_end_io() function isn't called. 1313 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail. 1314 */ 1315 static void dm_kill_unmapped_request(struct request *rq, int error) 1316 { 1317 rq->cmd_flags |= REQ_FAILED; 1318 dm_complete_request(rq, error); 1319 } 1320 1321 /* 1322 * Called with the clone's queue lock held (for non-blk-mq) 1323 */ 1324 static void end_clone_request(struct request *clone, int error) 1325 { 1326 struct dm_rq_target_io *tio = clone->end_io_data; 1327 1328 if (!clone->q->mq_ops) { 1329 /* 1330 * For just cleaning up the information of the queue in which 1331 * the clone was dispatched. 1332 * The clone is *NOT* freed actually here because it is alloced 1333 * from dm own mempool (REQ_ALLOCED isn't set). 1334 */ 1335 __blk_put_request(clone->q, clone); 1336 } 1337 1338 /* 1339 * Actual request completion is done in a softirq context which doesn't 1340 * hold the clone's queue lock. Otherwise, deadlock could occur because: 1341 * - another request may be submitted by the upper level driver 1342 * of the stacking during the completion 1343 * - the submission which requires queue lock may be done 1344 * against this clone's queue 1345 */ 1346 dm_complete_request(tio->orig, error); 1347 } 1348 1349 /* 1350 * Return maximum size of I/O possible at the supplied sector up to the current 1351 * target boundary. 1352 */ 1353 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1354 { 1355 sector_t target_offset = dm_target_offset(ti, sector); 1356 1357 return ti->len - target_offset; 1358 } 1359 1360 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1361 { 1362 sector_t len = max_io_len_target_boundary(sector, ti); 1363 sector_t offset, max_len; 1364 1365 /* 1366 * Does the target need to split even further? 1367 */ 1368 if (ti->max_io_len) { 1369 offset = dm_target_offset(ti, sector); 1370 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1371 max_len = sector_div(offset, ti->max_io_len); 1372 else 1373 max_len = offset & (ti->max_io_len - 1); 1374 max_len = ti->max_io_len - max_len; 1375 1376 if (len > max_len) 1377 len = max_len; 1378 } 1379 1380 return len; 1381 } 1382 1383 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1384 { 1385 if (len > UINT_MAX) { 1386 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1387 (unsigned long long)len, UINT_MAX); 1388 ti->error = "Maximum size of target IO is too large"; 1389 return -EINVAL; 1390 } 1391 1392 ti->max_io_len = (uint32_t) len; 1393 1394 return 0; 1395 } 1396 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1397 1398 /* 1399 * A target may call dm_accept_partial_bio only from the map routine. It is 1400 * allowed for all bio types except REQ_FLUSH. 1401 * 1402 * dm_accept_partial_bio informs the dm that the target only wants to process 1403 * additional n_sectors sectors of the bio and the rest of the data should be 1404 * sent in a next bio. 1405 * 1406 * A diagram that explains the arithmetics: 1407 * +--------------------+---------------+-------+ 1408 * | 1 | 2 | 3 | 1409 * +--------------------+---------------+-------+ 1410 * 1411 * <-------------- *tio->len_ptr ---------------> 1412 * <------- bi_size -------> 1413 * <-- n_sectors --> 1414 * 1415 * Region 1 was already iterated over with bio_advance or similar function. 1416 * (it may be empty if the target doesn't use bio_advance) 1417 * Region 2 is the remaining bio size that the target wants to process. 1418 * (it may be empty if region 1 is non-empty, although there is no reason 1419 * to make it empty) 1420 * The target requires that region 3 is to be sent in the next bio. 1421 * 1422 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1423 * the partially processed part (the sum of regions 1+2) must be the same for all 1424 * copies of the bio. 1425 */ 1426 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1427 { 1428 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1429 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1430 BUG_ON(bio->bi_rw & REQ_FLUSH); 1431 BUG_ON(bi_size > *tio->len_ptr); 1432 BUG_ON(n_sectors > bi_size); 1433 *tio->len_ptr -= bi_size - n_sectors; 1434 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1435 } 1436 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1437 1438 static void __map_bio(struct dm_target_io *tio) 1439 { 1440 int r; 1441 sector_t sector; 1442 struct mapped_device *md; 1443 struct bio *clone = &tio->clone; 1444 struct dm_target *ti = tio->ti; 1445 1446 clone->bi_end_io = clone_endio; 1447 1448 /* 1449 * Map the clone. If r == 0 we don't need to do 1450 * anything, the target has assumed ownership of 1451 * this io. 1452 */ 1453 atomic_inc(&tio->io->io_count); 1454 sector = clone->bi_iter.bi_sector; 1455 r = ti->type->map(ti, clone); 1456 if (r == DM_MAPIO_REMAPPED) { 1457 /* the bio has been remapped so dispatch it */ 1458 1459 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1460 tio->io->bio->bi_bdev->bd_dev, sector); 1461 1462 generic_make_request(clone); 1463 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1464 /* error the io and bail out, or requeue it if needed */ 1465 md = tio->io->md; 1466 dec_pending(tio->io, r); 1467 free_tio(md, tio); 1468 } else if (r != DM_MAPIO_SUBMITTED) { 1469 DMWARN("unimplemented target map return value: %d", r); 1470 BUG(); 1471 } 1472 } 1473 1474 struct clone_info { 1475 struct mapped_device *md; 1476 struct dm_table *map; 1477 struct bio *bio; 1478 struct dm_io *io; 1479 sector_t sector; 1480 unsigned sector_count; 1481 }; 1482 1483 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1484 { 1485 bio->bi_iter.bi_sector = sector; 1486 bio->bi_iter.bi_size = to_bytes(len); 1487 } 1488 1489 /* 1490 * Creates a bio that consists of range of complete bvecs. 1491 */ 1492 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1493 sector_t sector, unsigned len) 1494 { 1495 struct bio *clone = &tio->clone; 1496 1497 __bio_clone_fast(clone, bio); 1498 1499 if (bio_integrity(bio)) 1500 bio_integrity_clone(clone, bio, GFP_NOIO); 1501 1502 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1503 clone->bi_iter.bi_size = to_bytes(len); 1504 1505 if (bio_integrity(bio)) 1506 bio_integrity_trim(clone, 0, len); 1507 } 1508 1509 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1510 struct dm_target *ti, 1511 unsigned target_bio_nr) 1512 { 1513 struct dm_target_io *tio; 1514 struct bio *clone; 1515 1516 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1517 tio = container_of(clone, struct dm_target_io, clone); 1518 1519 tio->io = ci->io; 1520 tio->ti = ti; 1521 tio->target_bio_nr = target_bio_nr; 1522 1523 return tio; 1524 } 1525 1526 static void __clone_and_map_simple_bio(struct clone_info *ci, 1527 struct dm_target *ti, 1528 unsigned target_bio_nr, unsigned *len) 1529 { 1530 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1531 struct bio *clone = &tio->clone; 1532 1533 tio->len_ptr = len; 1534 1535 __bio_clone_fast(clone, ci->bio); 1536 if (len) 1537 bio_setup_sector(clone, ci->sector, *len); 1538 1539 __map_bio(tio); 1540 } 1541 1542 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1543 unsigned num_bios, unsigned *len) 1544 { 1545 unsigned target_bio_nr; 1546 1547 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1548 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1549 } 1550 1551 static int __send_empty_flush(struct clone_info *ci) 1552 { 1553 unsigned target_nr = 0; 1554 struct dm_target *ti; 1555 1556 BUG_ON(bio_has_data(ci->bio)); 1557 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1558 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1559 1560 return 0; 1561 } 1562 1563 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1564 sector_t sector, unsigned *len) 1565 { 1566 struct bio *bio = ci->bio; 1567 struct dm_target_io *tio; 1568 unsigned target_bio_nr; 1569 unsigned num_target_bios = 1; 1570 1571 /* 1572 * Does the target want to receive duplicate copies of the bio? 1573 */ 1574 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1575 num_target_bios = ti->num_write_bios(ti, bio); 1576 1577 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1578 tio = alloc_tio(ci, ti, target_bio_nr); 1579 tio->len_ptr = len; 1580 clone_bio(tio, bio, sector, *len); 1581 __map_bio(tio); 1582 } 1583 } 1584 1585 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1586 1587 static unsigned get_num_discard_bios(struct dm_target *ti) 1588 { 1589 return ti->num_discard_bios; 1590 } 1591 1592 static unsigned get_num_write_same_bios(struct dm_target *ti) 1593 { 1594 return ti->num_write_same_bios; 1595 } 1596 1597 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1598 1599 static bool is_split_required_for_discard(struct dm_target *ti) 1600 { 1601 return ti->split_discard_bios; 1602 } 1603 1604 static int __send_changing_extent_only(struct clone_info *ci, 1605 get_num_bios_fn get_num_bios, 1606 is_split_required_fn is_split_required) 1607 { 1608 struct dm_target *ti; 1609 unsigned len; 1610 unsigned num_bios; 1611 1612 do { 1613 ti = dm_table_find_target(ci->map, ci->sector); 1614 if (!dm_target_is_valid(ti)) 1615 return -EIO; 1616 1617 /* 1618 * Even though the device advertised support for this type of 1619 * request, that does not mean every target supports it, and 1620 * reconfiguration might also have changed that since the 1621 * check was performed. 1622 */ 1623 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1624 if (!num_bios) 1625 return -EOPNOTSUPP; 1626 1627 if (is_split_required && !is_split_required(ti)) 1628 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1629 else 1630 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1631 1632 __send_duplicate_bios(ci, ti, num_bios, &len); 1633 1634 ci->sector += len; 1635 } while (ci->sector_count -= len); 1636 1637 return 0; 1638 } 1639 1640 static int __send_discard(struct clone_info *ci) 1641 { 1642 return __send_changing_extent_only(ci, get_num_discard_bios, 1643 is_split_required_for_discard); 1644 } 1645 1646 static int __send_write_same(struct clone_info *ci) 1647 { 1648 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1649 } 1650 1651 /* 1652 * Select the correct strategy for processing a non-flush bio. 1653 */ 1654 static int __split_and_process_non_flush(struct clone_info *ci) 1655 { 1656 struct bio *bio = ci->bio; 1657 struct dm_target *ti; 1658 unsigned len; 1659 1660 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1661 return __send_discard(ci); 1662 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1663 return __send_write_same(ci); 1664 1665 ti = dm_table_find_target(ci->map, ci->sector); 1666 if (!dm_target_is_valid(ti)) 1667 return -EIO; 1668 1669 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1670 1671 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1672 1673 ci->sector += len; 1674 ci->sector_count -= len; 1675 1676 return 0; 1677 } 1678 1679 /* 1680 * Entry point to split a bio into clones and submit them to the targets. 1681 */ 1682 static void __split_and_process_bio(struct mapped_device *md, 1683 struct dm_table *map, struct bio *bio) 1684 { 1685 struct clone_info ci; 1686 int error = 0; 1687 1688 if (unlikely(!map)) { 1689 bio_io_error(bio); 1690 return; 1691 } 1692 1693 ci.map = map; 1694 ci.md = md; 1695 ci.io = alloc_io(md); 1696 ci.io->error = 0; 1697 atomic_set(&ci.io->io_count, 1); 1698 ci.io->bio = bio; 1699 ci.io->md = md; 1700 spin_lock_init(&ci.io->endio_lock); 1701 ci.sector = bio->bi_iter.bi_sector; 1702 1703 start_io_acct(ci.io); 1704 1705 if (bio->bi_rw & REQ_FLUSH) { 1706 ci.bio = &ci.md->flush_bio; 1707 ci.sector_count = 0; 1708 error = __send_empty_flush(&ci); 1709 /* dec_pending submits any data associated with flush */ 1710 } else { 1711 ci.bio = bio; 1712 ci.sector_count = bio_sectors(bio); 1713 while (ci.sector_count && !error) 1714 error = __split_and_process_non_flush(&ci); 1715 } 1716 1717 /* drop the extra reference count */ 1718 dec_pending(ci.io, error); 1719 } 1720 /*----------------------------------------------------------------- 1721 * CRUD END 1722 *---------------------------------------------------------------*/ 1723 1724 /* 1725 * The request function that just remaps the bio built up by 1726 * dm_merge_bvec. 1727 */ 1728 static void dm_make_request(struct request_queue *q, struct bio *bio) 1729 { 1730 int rw = bio_data_dir(bio); 1731 struct mapped_device *md = q->queuedata; 1732 int srcu_idx; 1733 struct dm_table *map; 1734 1735 map = dm_get_live_table(md, &srcu_idx); 1736 1737 blk_queue_split(q, &bio, q->bio_split); 1738 1739 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1740 1741 /* if we're suspended, we have to queue this io for later */ 1742 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1743 dm_put_live_table(md, srcu_idx); 1744 1745 if (bio_rw(bio) != READA) 1746 queue_io(md, bio); 1747 else 1748 bio_io_error(bio); 1749 return; 1750 } 1751 1752 __split_and_process_bio(md, map, bio); 1753 dm_put_live_table(md, srcu_idx); 1754 return; 1755 } 1756 1757 int dm_request_based(struct mapped_device *md) 1758 { 1759 return blk_queue_stackable(md->queue); 1760 } 1761 1762 static void dm_dispatch_clone_request(struct request *clone, struct request *rq) 1763 { 1764 int r; 1765 1766 if (blk_queue_io_stat(clone->q)) 1767 clone->cmd_flags |= REQ_IO_STAT; 1768 1769 clone->start_time = jiffies; 1770 r = blk_insert_cloned_request(clone->q, clone); 1771 if (r) 1772 /* must complete clone in terms of original request */ 1773 dm_complete_request(rq, r); 1774 } 1775 1776 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1777 void *data) 1778 { 1779 struct dm_rq_target_io *tio = data; 1780 struct dm_rq_clone_bio_info *info = 1781 container_of(bio, struct dm_rq_clone_bio_info, clone); 1782 1783 info->orig = bio_orig; 1784 info->tio = tio; 1785 bio->bi_end_io = end_clone_bio; 1786 1787 return 0; 1788 } 1789 1790 static int setup_clone(struct request *clone, struct request *rq, 1791 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1792 { 1793 int r; 1794 1795 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask, 1796 dm_rq_bio_constructor, tio); 1797 if (r) 1798 return r; 1799 1800 clone->cmd = rq->cmd; 1801 clone->cmd_len = rq->cmd_len; 1802 clone->sense = rq->sense; 1803 clone->end_io = end_clone_request; 1804 clone->end_io_data = tio; 1805 1806 tio->clone = clone; 1807 1808 return 0; 1809 } 1810 1811 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1812 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1813 { 1814 /* 1815 * Do not allocate a clone if tio->clone was already set 1816 * (see: dm_mq_queue_rq). 1817 */ 1818 bool alloc_clone = !tio->clone; 1819 struct request *clone; 1820 1821 if (alloc_clone) { 1822 clone = alloc_clone_request(md, gfp_mask); 1823 if (!clone) 1824 return NULL; 1825 } else 1826 clone = tio->clone; 1827 1828 blk_rq_init(NULL, clone); 1829 if (setup_clone(clone, rq, tio, gfp_mask)) { 1830 /* -ENOMEM */ 1831 if (alloc_clone) 1832 free_clone_request(md, clone); 1833 return NULL; 1834 } 1835 1836 return clone; 1837 } 1838 1839 static void map_tio_request(struct kthread_work *work); 1840 1841 static void init_tio(struct dm_rq_target_io *tio, struct request *rq, 1842 struct mapped_device *md) 1843 { 1844 tio->md = md; 1845 tio->ti = NULL; 1846 tio->clone = NULL; 1847 tio->orig = rq; 1848 tio->error = 0; 1849 memset(&tio->info, 0, sizeof(tio->info)); 1850 if (md->kworker_task) 1851 init_kthread_work(&tio->work, map_tio_request); 1852 } 1853 1854 static struct dm_rq_target_io *prep_tio(struct request *rq, 1855 struct mapped_device *md, gfp_t gfp_mask) 1856 { 1857 struct dm_rq_target_io *tio; 1858 int srcu_idx; 1859 struct dm_table *table; 1860 1861 tio = alloc_rq_tio(md, gfp_mask); 1862 if (!tio) 1863 return NULL; 1864 1865 init_tio(tio, rq, md); 1866 1867 table = dm_get_live_table(md, &srcu_idx); 1868 if (!dm_table_mq_request_based(table)) { 1869 if (!clone_rq(rq, md, tio, gfp_mask)) { 1870 dm_put_live_table(md, srcu_idx); 1871 free_rq_tio(tio); 1872 return NULL; 1873 } 1874 } 1875 dm_put_live_table(md, srcu_idx); 1876 1877 return tio; 1878 } 1879 1880 /* 1881 * Called with the queue lock held. 1882 */ 1883 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1884 { 1885 struct mapped_device *md = q->queuedata; 1886 struct dm_rq_target_io *tio; 1887 1888 if (unlikely(rq->special)) { 1889 DMWARN("Already has something in rq->special."); 1890 return BLKPREP_KILL; 1891 } 1892 1893 tio = prep_tio(rq, md, GFP_ATOMIC); 1894 if (!tio) 1895 return BLKPREP_DEFER; 1896 1897 rq->special = tio; 1898 rq->cmd_flags |= REQ_DONTPREP; 1899 1900 return BLKPREP_OK; 1901 } 1902 1903 /* 1904 * Returns: 1905 * 0 : the request has been processed 1906 * DM_MAPIO_REQUEUE : the original request needs to be requeued 1907 * < 0 : the request was completed due to failure 1908 */ 1909 static int map_request(struct dm_rq_target_io *tio, struct request *rq, 1910 struct mapped_device *md) 1911 { 1912 int r; 1913 struct dm_target *ti = tio->ti; 1914 struct request *clone = NULL; 1915 1916 if (tio->clone) { 1917 clone = tio->clone; 1918 r = ti->type->map_rq(ti, clone, &tio->info); 1919 } else { 1920 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone); 1921 if (r < 0) { 1922 /* The target wants to complete the I/O */ 1923 dm_kill_unmapped_request(rq, r); 1924 return r; 1925 } 1926 if (r != DM_MAPIO_REMAPPED) 1927 return r; 1928 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) { 1929 /* -ENOMEM */ 1930 ti->type->release_clone_rq(clone); 1931 return DM_MAPIO_REQUEUE; 1932 } 1933 } 1934 1935 switch (r) { 1936 case DM_MAPIO_SUBMITTED: 1937 /* The target has taken the I/O to submit by itself later */ 1938 break; 1939 case DM_MAPIO_REMAPPED: 1940 /* The target has remapped the I/O so dispatch it */ 1941 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1942 blk_rq_pos(rq)); 1943 dm_dispatch_clone_request(clone, rq); 1944 break; 1945 case DM_MAPIO_REQUEUE: 1946 /* The target wants to requeue the I/O */ 1947 dm_requeue_original_request(md, tio->orig); 1948 break; 1949 default: 1950 if (r > 0) { 1951 DMWARN("unimplemented target map return value: %d", r); 1952 BUG(); 1953 } 1954 1955 /* The target wants to complete the I/O */ 1956 dm_kill_unmapped_request(rq, r); 1957 return r; 1958 } 1959 1960 return 0; 1961 } 1962 1963 static void map_tio_request(struct kthread_work *work) 1964 { 1965 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work); 1966 struct request *rq = tio->orig; 1967 struct mapped_device *md = tio->md; 1968 1969 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) 1970 dm_requeue_original_request(md, rq); 1971 } 1972 1973 static void dm_start_request(struct mapped_device *md, struct request *orig) 1974 { 1975 if (!orig->q->mq_ops) 1976 blk_start_request(orig); 1977 else 1978 blk_mq_start_request(orig); 1979 atomic_inc(&md->pending[rq_data_dir(orig)]); 1980 1981 if (md->seq_rq_merge_deadline_usecs) { 1982 md->last_rq_pos = rq_end_sector(orig); 1983 md->last_rq_rw = rq_data_dir(orig); 1984 md->last_rq_start_time = ktime_get(); 1985 } 1986 1987 if (unlikely(dm_stats_used(&md->stats))) { 1988 struct dm_rq_target_io *tio = tio_from_request(orig); 1989 tio->duration_jiffies = jiffies; 1990 tio->n_sectors = blk_rq_sectors(orig); 1991 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 1992 tio->n_sectors, false, 0, &tio->stats_aux); 1993 } 1994 1995 /* 1996 * Hold the md reference here for the in-flight I/O. 1997 * We can't rely on the reference count by device opener, 1998 * because the device may be closed during the request completion 1999 * when all bios are completed. 2000 * See the comment in rq_completed() too. 2001 */ 2002 dm_get(md); 2003 } 2004 2005 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000 2006 2007 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf) 2008 { 2009 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs); 2010 } 2011 2012 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md, 2013 const char *buf, size_t count) 2014 { 2015 unsigned deadline; 2016 2017 if (!dm_request_based(md) || md->use_blk_mq) 2018 return count; 2019 2020 if (kstrtouint(buf, 10, &deadline)) 2021 return -EINVAL; 2022 2023 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS) 2024 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS; 2025 2026 md->seq_rq_merge_deadline_usecs = deadline; 2027 2028 return count; 2029 } 2030 2031 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md) 2032 { 2033 ktime_t kt_deadline; 2034 2035 if (!md->seq_rq_merge_deadline_usecs) 2036 return false; 2037 2038 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC); 2039 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline); 2040 2041 return !ktime_after(ktime_get(), kt_deadline); 2042 } 2043 2044 /* 2045 * q->request_fn for request-based dm. 2046 * Called with the queue lock held. 2047 */ 2048 static void dm_request_fn(struct request_queue *q) 2049 { 2050 struct mapped_device *md = q->queuedata; 2051 int srcu_idx; 2052 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2053 struct dm_target *ti; 2054 struct request *rq; 2055 struct dm_rq_target_io *tio; 2056 sector_t pos; 2057 2058 /* 2059 * For suspend, check blk_queue_stopped() and increment 2060 * ->pending within a single queue_lock not to increment the 2061 * number of in-flight I/Os after the queue is stopped in 2062 * dm_suspend(). 2063 */ 2064 while (!blk_queue_stopped(q)) { 2065 rq = blk_peek_request(q); 2066 if (!rq) 2067 goto out; 2068 2069 /* always use block 0 to find the target for flushes for now */ 2070 pos = 0; 2071 if (!(rq->cmd_flags & REQ_FLUSH)) 2072 pos = blk_rq_pos(rq); 2073 2074 ti = dm_table_find_target(map, pos); 2075 if (!dm_target_is_valid(ti)) { 2076 /* 2077 * Must perform setup, that rq_completed() requires, 2078 * before calling dm_kill_unmapped_request 2079 */ 2080 DMERR_LIMIT("request attempted access beyond the end of device"); 2081 dm_start_request(md, rq); 2082 dm_kill_unmapped_request(rq, -EIO); 2083 continue; 2084 } 2085 2086 if (dm_request_peeked_before_merge_deadline(md) && 2087 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 && 2088 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) 2089 goto delay_and_out; 2090 2091 if (ti->type->busy && ti->type->busy(ti)) 2092 goto delay_and_out; 2093 2094 dm_start_request(md, rq); 2095 2096 tio = tio_from_request(rq); 2097 /* Establish tio->ti before queuing work (map_tio_request) */ 2098 tio->ti = ti; 2099 queue_kthread_work(&md->kworker, &tio->work); 2100 BUG_ON(!irqs_disabled()); 2101 } 2102 2103 goto out; 2104 2105 delay_and_out: 2106 blk_delay_queue(q, HZ / 100); 2107 out: 2108 dm_put_live_table(md, srcu_idx); 2109 } 2110 2111 static int dm_any_congested(void *congested_data, int bdi_bits) 2112 { 2113 int r = bdi_bits; 2114 struct mapped_device *md = congested_data; 2115 struct dm_table *map; 2116 2117 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2118 map = dm_get_live_table_fast(md); 2119 if (map) { 2120 /* 2121 * Request-based dm cares about only own queue for 2122 * the query about congestion status of request_queue 2123 */ 2124 if (dm_request_based(md)) 2125 r = md->queue->backing_dev_info.wb.state & 2126 bdi_bits; 2127 else 2128 r = dm_table_any_congested(map, bdi_bits); 2129 } 2130 dm_put_live_table_fast(md); 2131 } 2132 2133 return r; 2134 } 2135 2136 /*----------------------------------------------------------------- 2137 * An IDR is used to keep track of allocated minor numbers. 2138 *---------------------------------------------------------------*/ 2139 static void free_minor(int minor) 2140 { 2141 spin_lock(&_minor_lock); 2142 idr_remove(&_minor_idr, minor); 2143 spin_unlock(&_minor_lock); 2144 } 2145 2146 /* 2147 * See if the device with a specific minor # is free. 2148 */ 2149 static int specific_minor(int minor) 2150 { 2151 int r; 2152 2153 if (minor >= (1 << MINORBITS)) 2154 return -EINVAL; 2155 2156 idr_preload(GFP_KERNEL); 2157 spin_lock(&_minor_lock); 2158 2159 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2160 2161 spin_unlock(&_minor_lock); 2162 idr_preload_end(); 2163 if (r < 0) 2164 return r == -ENOSPC ? -EBUSY : r; 2165 return 0; 2166 } 2167 2168 static int next_free_minor(int *minor) 2169 { 2170 int r; 2171 2172 idr_preload(GFP_KERNEL); 2173 spin_lock(&_minor_lock); 2174 2175 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2176 2177 spin_unlock(&_minor_lock); 2178 idr_preload_end(); 2179 if (r < 0) 2180 return r; 2181 *minor = r; 2182 return 0; 2183 } 2184 2185 static const struct block_device_operations dm_blk_dops; 2186 2187 static void dm_wq_work(struct work_struct *work); 2188 2189 static void dm_init_md_queue(struct mapped_device *md) 2190 { 2191 /* 2192 * Request-based dm devices cannot be stacked on top of bio-based dm 2193 * devices. The type of this dm device may not have been decided yet. 2194 * The type is decided at the first table loading time. 2195 * To prevent problematic device stacking, clear the queue flag 2196 * for request stacking support until then. 2197 * 2198 * This queue is new, so no concurrency on the queue_flags. 2199 */ 2200 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2201 } 2202 2203 static void dm_init_old_md_queue(struct mapped_device *md) 2204 { 2205 md->use_blk_mq = false; 2206 dm_init_md_queue(md); 2207 2208 /* 2209 * Initialize aspects of queue that aren't relevant for blk-mq 2210 */ 2211 md->queue->queuedata = md; 2212 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2213 md->queue->backing_dev_info.congested_data = md; 2214 2215 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2216 } 2217 2218 static void cleanup_mapped_device(struct mapped_device *md) 2219 { 2220 if (md->wq) 2221 destroy_workqueue(md->wq); 2222 if (md->kworker_task) 2223 kthread_stop(md->kworker_task); 2224 if (md->io_pool) 2225 mempool_destroy(md->io_pool); 2226 if (md->rq_pool) 2227 mempool_destroy(md->rq_pool); 2228 if (md->bs) 2229 bioset_free(md->bs); 2230 2231 cleanup_srcu_struct(&md->io_barrier); 2232 2233 if (md->disk) { 2234 spin_lock(&_minor_lock); 2235 md->disk->private_data = NULL; 2236 spin_unlock(&_minor_lock); 2237 if (blk_get_integrity(md->disk)) 2238 blk_integrity_unregister(md->disk); 2239 del_gendisk(md->disk); 2240 put_disk(md->disk); 2241 } 2242 2243 if (md->queue) 2244 blk_cleanup_queue(md->queue); 2245 2246 if (md->bdev) { 2247 bdput(md->bdev); 2248 md->bdev = NULL; 2249 } 2250 } 2251 2252 /* 2253 * Allocate and initialise a blank device with a given minor. 2254 */ 2255 static struct mapped_device *alloc_dev(int minor) 2256 { 2257 int r; 2258 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 2259 void *old_md; 2260 2261 if (!md) { 2262 DMWARN("unable to allocate device, out of memory."); 2263 return NULL; 2264 } 2265 2266 if (!try_module_get(THIS_MODULE)) 2267 goto bad_module_get; 2268 2269 /* get a minor number for the dev */ 2270 if (minor == DM_ANY_MINOR) 2271 r = next_free_minor(&minor); 2272 else 2273 r = specific_minor(minor); 2274 if (r < 0) 2275 goto bad_minor; 2276 2277 r = init_srcu_struct(&md->io_barrier); 2278 if (r < 0) 2279 goto bad_io_barrier; 2280 2281 md->use_blk_mq = use_blk_mq; 2282 md->type = DM_TYPE_NONE; 2283 mutex_init(&md->suspend_lock); 2284 mutex_init(&md->type_lock); 2285 mutex_init(&md->table_devices_lock); 2286 spin_lock_init(&md->deferred_lock); 2287 atomic_set(&md->holders, 1); 2288 atomic_set(&md->open_count, 0); 2289 atomic_set(&md->event_nr, 0); 2290 atomic_set(&md->uevent_seq, 0); 2291 INIT_LIST_HEAD(&md->uevent_list); 2292 INIT_LIST_HEAD(&md->table_devices); 2293 spin_lock_init(&md->uevent_lock); 2294 2295 md->queue = blk_alloc_queue(GFP_KERNEL); 2296 if (!md->queue) 2297 goto bad; 2298 2299 dm_init_md_queue(md); 2300 2301 md->disk = alloc_disk(1); 2302 if (!md->disk) 2303 goto bad; 2304 2305 atomic_set(&md->pending[0], 0); 2306 atomic_set(&md->pending[1], 0); 2307 init_waitqueue_head(&md->wait); 2308 INIT_WORK(&md->work, dm_wq_work); 2309 init_waitqueue_head(&md->eventq); 2310 init_completion(&md->kobj_holder.completion); 2311 md->kworker_task = NULL; 2312 2313 md->disk->major = _major; 2314 md->disk->first_minor = minor; 2315 md->disk->fops = &dm_blk_dops; 2316 md->disk->queue = md->queue; 2317 md->disk->private_data = md; 2318 sprintf(md->disk->disk_name, "dm-%d", minor); 2319 add_disk(md->disk); 2320 format_dev_t(md->name, MKDEV(_major, minor)); 2321 2322 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2323 if (!md->wq) 2324 goto bad; 2325 2326 md->bdev = bdget_disk(md->disk, 0); 2327 if (!md->bdev) 2328 goto bad; 2329 2330 bio_init(&md->flush_bio); 2331 md->flush_bio.bi_bdev = md->bdev; 2332 md->flush_bio.bi_rw = WRITE_FLUSH; 2333 2334 dm_stats_init(&md->stats); 2335 2336 /* Populate the mapping, nobody knows we exist yet */ 2337 spin_lock(&_minor_lock); 2338 old_md = idr_replace(&_minor_idr, md, minor); 2339 spin_unlock(&_minor_lock); 2340 2341 BUG_ON(old_md != MINOR_ALLOCED); 2342 2343 return md; 2344 2345 bad: 2346 cleanup_mapped_device(md); 2347 bad_io_barrier: 2348 free_minor(minor); 2349 bad_minor: 2350 module_put(THIS_MODULE); 2351 bad_module_get: 2352 kfree(md); 2353 return NULL; 2354 } 2355 2356 static void unlock_fs(struct mapped_device *md); 2357 2358 static void free_dev(struct mapped_device *md) 2359 { 2360 int minor = MINOR(disk_devt(md->disk)); 2361 2362 unlock_fs(md); 2363 2364 cleanup_mapped_device(md); 2365 if (md->use_blk_mq) 2366 blk_mq_free_tag_set(&md->tag_set); 2367 2368 free_table_devices(&md->table_devices); 2369 dm_stats_cleanup(&md->stats); 2370 free_minor(minor); 2371 2372 module_put(THIS_MODULE); 2373 kfree(md); 2374 } 2375 2376 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2377 { 2378 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2379 2380 if (md->bs) { 2381 /* The md already has necessary mempools. */ 2382 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2383 /* 2384 * Reload bioset because front_pad may have changed 2385 * because a different table was loaded. 2386 */ 2387 bioset_free(md->bs); 2388 md->bs = p->bs; 2389 p->bs = NULL; 2390 } 2391 /* 2392 * There's no need to reload with request-based dm 2393 * because the size of front_pad doesn't change. 2394 * Note for future: If you are to reload bioset, 2395 * prep-ed requests in the queue may refer 2396 * to bio from the old bioset, so you must walk 2397 * through the queue to unprep. 2398 */ 2399 goto out; 2400 } 2401 2402 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 2403 2404 md->io_pool = p->io_pool; 2405 p->io_pool = NULL; 2406 md->rq_pool = p->rq_pool; 2407 p->rq_pool = NULL; 2408 md->bs = p->bs; 2409 p->bs = NULL; 2410 2411 out: 2412 /* mempool bind completed, no longer need any mempools in the table */ 2413 dm_table_free_md_mempools(t); 2414 } 2415 2416 /* 2417 * Bind a table to the device. 2418 */ 2419 static void event_callback(void *context) 2420 { 2421 unsigned long flags; 2422 LIST_HEAD(uevents); 2423 struct mapped_device *md = (struct mapped_device *) context; 2424 2425 spin_lock_irqsave(&md->uevent_lock, flags); 2426 list_splice_init(&md->uevent_list, &uevents); 2427 spin_unlock_irqrestore(&md->uevent_lock, flags); 2428 2429 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2430 2431 atomic_inc(&md->event_nr); 2432 wake_up(&md->eventq); 2433 } 2434 2435 /* 2436 * Protected by md->suspend_lock obtained by dm_swap_table(). 2437 */ 2438 static void __set_size(struct mapped_device *md, sector_t size) 2439 { 2440 set_capacity(md->disk, size); 2441 2442 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2443 } 2444 2445 /* 2446 * Returns old map, which caller must destroy. 2447 */ 2448 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2449 struct queue_limits *limits) 2450 { 2451 struct dm_table *old_map; 2452 struct request_queue *q = md->queue; 2453 sector_t size; 2454 2455 size = dm_table_get_size(t); 2456 2457 /* 2458 * Wipe any geometry if the size of the table changed. 2459 */ 2460 if (size != dm_get_size(md)) 2461 memset(&md->geometry, 0, sizeof(md->geometry)); 2462 2463 __set_size(md, size); 2464 2465 dm_table_event_callback(t, event_callback, md); 2466 2467 /* 2468 * The queue hasn't been stopped yet, if the old table type wasn't 2469 * for request-based during suspension. So stop it to prevent 2470 * I/O mapping before resume. 2471 * This must be done before setting the queue restrictions, 2472 * because request-based dm may be run just after the setting. 2473 */ 2474 if (dm_table_request_based(t)) 2475 stop_queue(q); 2476 2477 __bind_mempools(md, t); 2478 2479 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2480 rcu_assign_pointer(md->map, t); 2481 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2482 2483 dm_table_set_restrictions(t, q, limits); 2484 if (old_map) 2485 dm_sync_table(md); 2486 2487 return old_map; 2488 } 2489 2490 /* 2491 * Returns unbound table for the caller to free. 2492 */ 2493 static struct dm_table *__unbind(struct mapped_device *md) 2494 { 2495 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2496 2497 if (!map) 2498 return NULL; 2499 2500 dm_table_event_callback(map, NULL, NULL); 2501 RCU_INIT_POINTER(md->map, NULL); 2502 dm_sync_table(md); 2503 2504 return map; 2505 } 2506 2507 /* 2508 * Constructor for a new device. 2509 */ 2510 int dm_create(int minor, struct mapped_device **result) 2511 { 2512 struct mapped_device *md; 2513 2514 md = alloc_dev(minor); 2515 if (!md) 2516 return -ENXIO; 2517 2518 dm_sysfs_init(md); 2519 2520 *result = md; 2521 return 0; 2522 } 2523 2524 /* 2525 * Functions to manage md->type. 2526 * All are required to hold md->type_lock. 2527 */ 2528 void dm_lock_md_type(struct mapped_device *md) 2529 { 2530 mutex_lock(&md->type_lock); 2531 } 2532 2533 void dm_unlock_md_type(struct mapped_device *md) 2534 { 2535 mutex_unlock(&md->type_lock); 2536 } 2537 2538 void dm_set_md_type(struct mapped_device *md, unsigned type) 2539 { 2540 BUG_ON(!mutex_is_locked(&md->type_lock)); 2541 md->type = type; 2542 } 2543 2544 unsigned dm_get_md_type(struct mapped_device *md) 2545 { 2546 BUG_ON(!mutex_is_locked(&md->type_lock)); 2547 return md->type; 2548 } 2549 2550 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2551 { 2552 return md->immutable_target_type; 2553 } 2554 2555 /* 2556 * The queue_limits are only valid as long as you have a reference 2557 * count on 'md'. 2558 */ 2559 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2560 { 2561 BUG_ON(!atomic_read(&md->holders)); 2562 return &md->queue->limits; 2563 } 2564 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2565 2566 static void init_rq_based_worker_thread(struct mapped_device *md) 2567 { 2568 /* Initialize the request-based DM worker thread */ 2569 init_kthread_worker(&md->kworker); 2570 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker, 2571 "kdmwork-%s", dm_device_name(md)); 2572 } 2573 2574 /* 2575 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2576 */ 2577 static int dm_init_request_based_queue(struct mapped_device *md) 2578 { 2579 struct request_queue *q = NULL; 2580 2581 /* Fully initialize the queue */ 2582 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2583 if (!q) 2584 return -EINVAL; 2585 2586 /* disable dm_request_fn's merge heuristic by default */ 2587 md->seq_rq_merge_deadline_usecs = 0; 2588 2589 md->queue = q; 2590 dm_init_old_md_queue(md); 2591 blk_queue_softirq_done(md->queue, dm_softirq_done); 2592 blk_queue_prep_rq(md->queue, dm_prep_fn); 2593 2594 init_rq_based_worker_thread(md); 2595 2596 elv_register_queue(md->queue); 2597 2598 return 0; 2599 } 2600 2601 static int dm_mq_init_request(void *data, struct request *rq, 2602 unsigned int hctx_idx, unsigned int request_idx, 2603 unsigned int numa_node) 2604 { 2605 struct mapped_device *md = data; 2606 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2607 2608 /* 2609 * Must initialize md member of tio, otherwise it won't 2610 * be available in dm_mq_queue_rq. 2611 */ 2612 tio->md = md; 2613 2614 return 0; 2615 } 2616 2617 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 2618 const struct blk_mq_queue_data *bd) 2619 { 2620 struct request *rq = bd->rq; 2621 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2622 struct mapped_device *md = tio->md; 2623 int srcu_idx; 2624 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2625 struct dm_target *ti; 2626 sector_t pos; 2627 2628 /* always use block 0 to find the target for flushes for now */ 2629 pos = 0; 2630 if (!(rq->cmd_flags & REQ_FLUSH)) 2631 pos = blk_rq_pos(rq); 2632 2633 ti = dm_table_find_target(map, pos); 2634 if (!dm_target_is_valid(ti)) { 2635 dm_put_live_table(md, srcu_idx); 2636 DMERR_LIMIT("request attempted access beyond the end of device"); 2637 /* 2638 * Must perform setup, that rq_completed() requires, 2639 * before returning BLK_MQ_RQ_QUEUE_ERROR 2640 */ 2641 dm_start_request(md, rq); 2642 return BLK_MQ_RQ_QUEUE_ERROR; 2643 } 2644 dm_put_live_table(md, srcu_idx); 2645 2646 if (ti->type->busy && ti->type->busy(ti)) 2647 return BLK_MQ_RQ_QUEUE_BUSY; 2648 2649 dm_start_request(md, rq); 2650 2651 /* Init tio using md established in .init_request */ 2652 init_tio(tio, rq, md); 2653 2654 /* 2655 * Establish tio->ti before queuing work (map_tio_request) 2656 * or making direct call to map_request(). 2657 */ 2658 tio->ti = ti; 2659 2660 /* Clone the request if underlying devices aren't blk-mq */ 2661 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) { 2662 /* clone request is allocated at the end of the pdu */ 2663 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io); 2664 (void) clone_rq(rq, md, tio, GFP_ATOMIC); 2665 queue_kthread_work(&md->kworker, &tio->work); 2666 } else { 2667 /* Direct call is fine since .queue_rq allows allocations */ 2668 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) { 2669 /* Undo dm_start_request() before requeuing */ 2670 rq_end_stats(md, rq); 2671 rq_completed(md, rq_data_dir(rq), false); 2672 return BLK_MQ_RQ_QUEUE_BUSY; 2673 } 2674 } 2675 2676 return BLK_MQ_RQ_QUEUE_OK; 2677 } 2678 2679 static struct blk_mq_ops dm_mq_ops = { 2680 .queue_rq = dm_mq_queue_rq, 2681 .map_queue = blk_mq_map_queue, 2682 .complete = dm_softirq_done, 2683 .init_request = dm_mq_init_request, 2684 }; 2685 2686 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md) 2687 { 2688 unsigned md_type = dm_get_md_type(md); 2689 struct request_queue *q; 2690 int err; 2691 2692 memset(&md->tag_set, 0, sizeof(md->tag_set)); 2693 md->tag_set.ops = &dm_mq_ops; 2694 md->tag_set.queue_depth = BLKDEV_MAX_RQ; 2695 md->tag_set.numa_node = NUMA_NO_NODE; 2696 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2697 md->tag_set.nr_hw_queues = 1; 2698 if (md_type == DM_TYPE_REQUEST_BASED) { 2699 /* make the memory for non-blk-mq clone part of the pdu */ 2700 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request); 2701 } else 2702 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io); 2703 md->tag_set.driver_data = md; 2704 2705 err = blk_mq_alloc_tag_set(&md->tag_set); 2706 if (err) 2707 return err; 2708 2709 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue); 2710 if (IS_ERR(q)) { 2711 err = PTR_ERR(q); 2712 goto out_tag_set; 2713 } 2714 md->queue = q; 2715 dm_init_md_queue(md); 2716 2717 /* backfill 'mq' sysfs registration normally done in blk_register_queue */ 2718 blk_mq_register_disk(md->disk); 2719 2720 if (md_type == DM_TYPE_REQUEST_BASED) 2721 init_rq_based_worker_thread(md); 2722 2723 return 0; 2724 2725 out_tag_set: 2726 blk_mq_free_tag_set(&md->tag_set); 2727 return err; 2728 } 2729 2730 static unsigned filter_md_type(unsigned type, struct mapped_device *md) 2731 { 2732 if (type == DM_TYPE_BIO_BASED) 2733 return type; 2734 2735 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED; 2736 } 2737 2738 /* 2739 * Setup the DM device's queue based on md's type 2740 */ 2741 int dm_setup_md_queue(struct mapped_device *md) 2742 { 2743 int r; 2744 unsigned md_type = filter_md_type(dm_get_md_type(md), md); 2745 2746 switch (md_type) { 2747 case DM_TYPE_REQUEST_BASED: 2748 r = dm_init_request_based_queue(md); 2749 if (r) { 2750 DMWARN("Cannot initialize queue for request-based mapped device"); 2751 return r; 2752 } 2753 break; 2754 case DM_TYPE_MQ_REQUEST_BASED: 2755 r = dm_init_request_based_blk_mq_queue(md); 2756 if (r) { 2757 DMWARN("Cannot initialize queue for request-based blk-mq mapped device"); 2758 return r; 2759 } 2760 break; 2761 case DM_TYPE_BIO_BASED: 2762 dm_init_old_md_queue(md); 2763 blk_queue_make_request(md->queue, dm_make_request); 2764 break; 2765 } 2766 2767 return 0; 2768 } 2769 2770 struct mapped_device *dm_get_md(dev_t dev) 2771 { 2772 struct mapped_device *md; 2773 unsigned minor = MINOR(dev); 2774 2775 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2776 return NULL; 2777 2778 spin_lock(&_minor_lock); 2779 2780 md = idr_find(&_minor_idr, minor); 2781 if (md) { 2782 if ((md == MINOR_ALLOCED || 2783 (MINOR(disk_devt(dm_disk(md))) != minor) || 2784 dm_deleting_md(md) || 2785 test_bit(DMF_FREEING, &md->flags))) { 2786 md = NULL; 2787 goto out; 2788 } 2789 dm_get(md); 2790 } 2791 2792 out: 2793 spin_unlock(&_minor_lock); 2794 2795 return md; 2796 } 2797 EXPORT_SYMBOL_GPL(dm_get_md); 2798 2799 void *dm_get_mdptr(struct mapped_device *md) 2800 { 2801 return md->interface_ptr; 2802 } 2803 2804 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2805 { 2806 md->interface_ptr = ptr; 2807 } 2808 2809 void dm_get(struct mapped_device *md) 2810 { 2811 atomic_inc(&md->holders); 2812 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2813 } 2814 2815 int dm_hold(struct mapped_device *md) 2816 { 2817 spin_lock(&_minor_lock); 2818 if (test_bit(DMF_FREEING, &md->flags)) { 2819 spin_unlock(&_minor_lock); 2820 return -EBUSY; 2821 } 2822 dm_get(md); 2823 spin_unlock(&_minor_lock); 2824 return 0; 2825 } 2826 EXPORT_SYMBOL_GPL(dm_hold); 2827 2828 const char *dm_device_name(struct mapped_device *md) 2829 { 2830 return md->name; 2831 } 2832 EXPORT_SYMBOL_GPL(dm_device_name); 2833 2834 static void __dm_destroy(struct mapped_device *md, bool wait) 2835 { 2836 struct dm_table *map; 2837 int srcu_idx; 2838 2839 might_sleep(); 2840 2841 spin_lock(&_minor_lock); 2842 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2843 set_bit(DMF_FREEING, &md->flags); 2844 spin_unlock(&_minor_lock); 2845 2846 if (dm_request_based(md) && md->kworker_task) 2847 flush_kthread_worker(&md->kworker); 2848 2849 /* 2850 * Take suspend_lock so that presuspend and postsuspend methods 2851 * do not race with internal suspend. 2852 */ 2853 mutex_lock(&md->suspend_lock); 2854 map = dm_get_live_table(md, &srcu_idx); 2855 if (!dm_suspended_md(md)) { 2856 dm_table_presuspend_targets(map); 2857 dm_table_postsuspend_targets(map); 2858 } 2859 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2860 dm_put_live_table(md, srcu_idx); 2861 mutex_unlock(&md->suspend_lock); 2862 2863 /* 2864 * Rare, but there may be I/O requests still going to complete, 2865 * for example. Wait for all references to disappear. 2866 * No one should increment the reference count of the mapped_device, 2867 * after the mapped_device state becomes DMF_FREEING. 2868 */ 2869 if (wait) 2870 while (atomic_read(&md->holders)) 2871 msleep(1); 2872 else if (atomic_read(&md->holders)) 2873 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2874 dm_device_name(md), atomic_read(&md->holders)); 2875 2876 dm_sysfs_exit(md); 2877 dm_table_destroy(__unbind(md)); 2878 free_dev(md); 2879 } 2880 2881 void dm_destroy(struct mapped_device *md) 2882 { 2883 __dm_destroy(md, true); 2884 } 2885 2886 void dm_destroy_immediate(struct mapped_device *md) 2887 { 2888 __dm_destroy(md, false); 2889 } 2890 2891 void dm_put(struct mapped_device *md) 2892 { 2893 atomic_dec(&md->holders); 2894 } 2895 EXPORT_SYMBOL_GPL(dm_put); 2896 2897 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2898 { 2899 int r = 0; 2900 DECLARE_WAITQUEUE(wait, current); 2901 2902 add_wait_queue(&md->wait, &wait); 2903 2904 while (1) { 2905 set_current_state(interruptible); 2906 2907 if (!md_in_flight(md)) 2908 break; 2909 2910 if (interruptible == TASK_INTERRUPTIBLE && 2911 signal_pending(current)) { 2912 r = -EINTR; 2913 break; 2914 } 2915 2916 io_schedule(); 2917 } 2918 set_current_state(TASK_RUNNING); 2919 2920 remove_wait_queue(&md->wait, &wait); 2921 2922 return r; 2923 } 2924 2925 /* 2926 * Process the deferred bios 2927 */ 2928 static void dm_wq_work(struct work_struct *work) 2929 { 2930 struct mapped_device *md = container_of(work, struct mapped_device, 2931 work); 2932 struct bio *c; 2933 int srcu_idx; 2934 struct dm_table *map; 2935 2936 map = dm_get_live_table(md, &srcu_idx); 2937 2938 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2939 spin_lock_irq(&md->deferred_lock); 2940 c = bio_list_pop(&md->deferred); 2941 spin_unlock_irq(&md->deferred_lock); 2942 2943 if (!c) 2944 break; 2945 2946 if (dm_request_based(md)) 2947 generic_make_request(c); 2948 else 2949 __split_and_process_bio(md, map, c); 2950 } 2951 2952 dm_put_live_table(md, srcu_idx); 2953 } 2954 2955 static void dm_queue_flush(struct mapped_device *md) 2956 { 2957 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2958 smp_mb__after_atomic(); 2959 queue_work(md->wq, &md->work); 2960 } 2961 2962 /* 2963 * Swap in a new table, returning the old one for the caller to destroy. 2964 */ 2965 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2966 { 2967 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2968 struct queue_limits limits; 2969 int r; 2970 2971 mutex_lock(&md->suspend_lock); 2972 2973 /* device must be suspended */ 2974 if (!dm_suspended_md(md)) 2975 goto out; 2976 2977 /* 2978 * If the new table has no data devices, retain the existing limits. 2979 * This helps multipath with queue_if_no_path if all paths disappear, 2980 * then new I/O is queued based on these limits, and then some paths 2981 * reappear. 2982 */ 2983 if (dm_table_has_no_data_devices(table)) { 2984 live_map = dm_get_live_table_fast(md); 2985 if (live_map) 2986 limits = md->queue->limits; 2987 dm_put_live_table_fast(md); 2988 } 2989 2990 if (!live_map) { 2991 r = dm_calculate_queue_limits(table, &limits); 2992 if (r) { 2993 map = ERR_PTR(r); 2994 goto out; 2995 } 2996 } 2997 2998 map = __bind(md, table, &limits); 2999 3000 out: 3001 mutex_unlock(&md->suspend_lock); 3002 return map; 3003 } 3004 3005 /* 3006 * Functions to lock and unlock any filesystem running on the 3007 * device. 3008 */ 3009 static int lock_fs(struct mapped_device *md) 3010 { 3011 int r; 3012 3013 WARN_ON(md->frozen_sb); 3014 3015 md->frozen_sb = freeze_bdev(md->bdev); 3016 if (IS_ERR(md->frozen_sb)) { 3017 r = PTR_ERR(md->frozen_sb); 3018 md->frozen_sb = NULL; 3019 return r; 3020 } 3021 3022 set_bit(DMF_FROZEN, &md->flags); 3023 3024 return 0; 3025 } 3026 3027 static void unlock_fs(struct mapped_device *md) 3028 { 3029 if (!test_bit(DMF_FROZEN, &md->flags)) 3030 return; 3031 3032 thaw_bdev(md->bdev, md->frozen_sb); 3033 md->frozen_sb = NULL; 3034 clear_bit(DMF_FROZEN, &md->flags); 3035 } 3036 3037 /* 3038 * If __dm_suspend returns 0, the device is completely quiescent 3039 * now. There is no request-processing activity. All new requests 3040 * are being added to md->deferred list. 3041 * 3042 * Caller must hold md->suspend_lock 3043 */ 3044 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 3045 unsigned suspend_flags, int interruptible) 3046 { 3047 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 3048 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 3049 int r; 3050 3051 /* 3052 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 3053 * This flag is cleared before dm_suspend returns. 3054 */ 3055 if (noflush) 3056 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3057 3058 /* 3059 * This gets reverted if there's an error later and the targets 3060 * provide the .presuspend_undo hook. 3061 */ 3062 dm_table_presuspend_targets(map); 3063 3064 /* 3065 * Flush I/O to the device. 3066 * Any I/O submitted after lock_fs() may not be flushed. 3067 * noflush takes precedence over do_lockfs. 3068 * (lock_fs() flushes I/Os and waits for them to complete.) 3069 */ 3070 if (!noflush && do_lockfs) { 3071 r = lock_fs(md); 3072 if (r) { 3073 dm_table_presuspend_undo_targets(map); 3074 return r; 3075 } 3076 } 3077 3078 /* 3079 * Here we must make sure that no processes are submitting requests 3080 * to target drivers i.e. no one may be executing 3081 * __split_and_process_bio. This is called from dm_request and 3082 * dm_wq_work. 3083 * 3084 * To get all processes out of __split_and_process_bio in dm_request, 3085 * we take the write lock. To prevent any process from reentering 3086 * __split_and_process_bio from dm_request and quiesce the thread 3087 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 3088 * flush_workqueue(md->wq). 3089 */ 3090 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3091 if (map) 3092 synchronize_srcu(&md->io_barrier); 3093 3094 /* 3095 * Stop md->queue before flushing md->wq in case request-based 3096 * dm defers requests to md->wq from md->queue. 3097 */ 3098 if (dm_request_based(md)) { 3099 stop_queue(md->queue); 3100 if (md->kworker_task) 3101 flush_kthread_worker(&md->kworker); 3102 } 3103 3104 flush_workqueue(md->wq); 3105 3106 /* 3107 * At this point no more requests are entering target request routines. 3108 * We call dm_wait_for_completion to wait for all existing requests 3109 * to finish. 3110 */ 3111 r = dm_wait_for_completion(md, interruptible); 3112 3113 if (noflush) 3114 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3115 if (map) 3116 synchronize_srcu(&md->io_barrier); 3117 3118 /* were we interrupted ? */ 3119 if (r < 0) { 3120 dm_queue_flush(md); 3121 3122 if (dm_request_based(md)) 3123 start_queue(md->queue); 3124 3125 unlock_fs(md); 3126 dm_table_presuspend_undo_targets(map); 3127 /* pushback list is already flushed, so skip flush */ 3128 } 3129 3130 return r; 3131 } 3132 3133 /* 3134 * We need to be able to change a mapping table under a mounted 3135 * filesystem. For example we might want to move some data in 3136 * the background. Before the table can be swapped with 3137 * dm_bind_table, dm_suspend must be called to flush any in 3138 * flight bios and ensure that any further io gets deferred. 3139 */ 3140 /* 3141 * Suspend mechanism in request-based dm. 3142 * 3143 * 1. Flush all I/Os by lock_fs() if needed. 3144 * 2. Stop dispatching any I/O by stopping the request_queue. 3145 * 3. Wait for all in-flight I/Os to be completed or requeued. 3146 * 3147 * To abort suspend, start the request_queue. 3148 */ 3149 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 3150 { 3151 struct dm_table *map = NULL; 3152 int r = 0; 3153 3154 retry: 3155 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3156 3157 if (dm_suspended_md(md)) { 3158 r = -EINVAL; 3159 goto out_unlock; 3160 } 3161 3162 if (dm_suspended_internally_md(md)) { 3163 /* already internally suspended, wait for internal resume */ 3164 mutex_unlock(&md->suspend_lock); 3165 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3166 if (r) 3167 return r; 3168 goto retry; 3169 } 3170 3171 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3172 3173 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 3174 if (r) 3175 goto out_unlock; 3176 3177 set_bit(DMF_SUSPENDED, &md->flags); 3178 3179 dm_table_postsuspend_targets(map); 3180 3181 out_unlock: 3182 mutex_unlock(&md->suspend_lock); 3183 return r; 3184 } 3185 3186 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3187 { 3188 if (map) { 3189 int r = dm_table_resume_targets(map); 3190 if (r) 3191 return r; 3192 } 3193 3194 dm_queue_flush(md); 3195 3196 /* 3197 * Flushing deferred I/Os must be done after targets are resumed 3198 * so that mapping of targets can work correctly. 3199 * Request-based dm is queueing the deferred I/Os in its request_queue. 3200 */ 3201 if (dm_request_based(md)) 3202 start_queue(md->queue); 3203 3204 unlock_fs(md); 3205 3206 return 0; 3207 } 3208 3209 int dm_resume(struct mapped_device *md) 3210 { 3211 int r = -EINVAL; 3212 struct dm_table *map = NULL; 3213 3214 retry: 3215 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3216 3217 if (!dm_suspended_md(md)) 3218 goto out; 3219 3220 if (dm_suspended_internally_md(md)) { 3221 /* already internally suspended, wait for internal resume */ 3222 mutex_unlock(&md->suspend_lock); 3223 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3224 if (r) 3225 return r; 3226 goto retry; 3227 } 3228 3229 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3230 if (!map || !dm_table_get_size(map)) 3231 goto out; 3232 3233 r = __dm_resume(md, map); 3234 if (r) 3235 goto out; 3236 3237 clear_bit(DMF_SUSPENDED, &md->flags); 3238 3239 r = 0; 3240 out: 3241 mutex_unlock(&md->suspend_lock); 3242 3243 return r; 3244 } 3245 3246 /* 3247 * Internal suspend/resume works like userspace-driven suspend. It waits 3248 * until all bios finish and prevents issuing new bios to the target drivers. 3249 * It may be used only from the kernel. 3250 */ 3251 3252 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 3253 { 3254 struct dm_table *map = NULL; 3255 3256 if (md->internal_suspend_count++) 3257 return; /* nested internal suspend */ 3258 3259 if (dm_suspended_md(md)) { 3260 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3261 return; /* nest suspend */ 3262 } 3263 3264 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3265 3266 /* 3267 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3268 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3269 * would require changing .presuspend to return an error -- avoid this 3270 * until there is a need for more elaborate variants of internal suspend. 3271 */ 3272 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 3273 3274 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3275 3276 dm_table_postsuspend_targets(map); 3277 } 3278 3279 static void __dm_internal_resume(struct mapped_device *md) 3280 { 3281 BUG_ON(!md->internal_suspend_count); 3282 3283 if (--md->internal_suspend_count) 3284 return; /* resume from nested internal suspend */ 3285 3286 if (dm_suspended_md(md)) 3287 goto done; /* resume from nested suspend */ 3288 3289 /* 3290 * NOTE: existing callers don't need to call dm_table_resume_targets 3291 * (which may fail -- so best to avoid it for now by passing NULL map) 3292 */ 3293 (void) __dm_resume(md, NULL); 3294 3295 done: 3296 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3297 smp_mb__after_atomic(); 3298 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3299 } 3300 3301 void dm_internal_suspend_noflush(struct mapped_device *md) 3302 { 3303 mutex_lock(&md->suspend_lock); 3304 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3305 mutex_unlock(&md->suspend_lock); 3306 } 3307 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3308 3309 void dm_internal_resume(struct mapped_device *md) 3310 { 3311 mutex_lock(&md->suspend_lock); 3312 __dm_internal_resume(md); 3313 mutex_unlock(&md->suspend_lock); 3314 } 3315 EXPORT_SYMBOL_GPL(dm_internal_resume); 3316 3317 /* 3318 * Fast variants of internal suspend/resume hold md->suspend_lock, 3319 * which prevents interaction with userspace-driven suspend. 3320 */ 3321 3322 void dm_internal_suspend_fast(struct mapped_device *md) 3323 { 3324 mutex_lock(&md->suspend_lock); 3325 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3326 return; 3327 3328 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3329 synchronize_srcu(&md->io_barrier); 3330 flush_workqueue(md->wq); 3331 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3332 } 3333 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3334 3335 void dm_internal_resume_fast(struct mapped_device *md) 3336 { 3337 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3338 goto done; 3339 3340 dm_queue_flush(md); 3341 3342 done: 3343 mutex_unlock(&md->suspend_lock); 3344 } 3345 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3346 3347 /*----------------------------------------------------------------- 3348 * Event notification. 3349 *---------------------------------------------------------------*/ 3350 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3351 unsigned cookie) 3352 { 3353 char udev_cookie[DM_COOKIE_LENGTH]; 3354 char *envp[] = { udev_cookie, NULL }; 3355 3356 if (!cookie) 3357 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 3358 else { 3359 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3360 DM_COOKIE_ENV_VAR_NAME, cookie); 3361 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 3362 action, envp); 3363 } 3364 } 3365 3366 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3367 { 3368 return atomic_add_return(1, &md->uevent_seq); 3369 } 3370 3371 uint32_t dm_get_event_nr(struct mapped_device *md) 3372 { 3373 return atomic_read(&md->event_nr); 3374 } 3375 3376 int dm_wait_event(struct mapped_device *md, int event_nr) 3377 { 3378 return wait_event_interruptible(md->eventq, 3379 (event_nr != atomic_read(&md->event_nr))); 3380 } 3381 3382 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3383 { 3384 unsigned long flags; 3385 3386 spin_lock_irqsave(&md->uevent_lock, flags); 3387 list_add(elist, &md->uevent_list); 3388 spin_unlock_irqrestore(&md->uevent_lock, flags); 3389 } 3390 3391 /* 3392 * The gendisk is only valid as long as you have a reference 3393 * count on 'md'. 3394 */ 3395 struct gendisk *dm_disk(struct mapped_device *md) 3396 { 3397 return md->disk; 3398 } 3399 EXPORT_SYMBOL_GPL(dm_disk); 3400 3401 struct kobject *dm_kobject(struct mapped_device *md) 3402 { 3403 return &md->kobj_holder.kobj; 3404 } 3405 3406 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3407 { 3408 struct mapped_device *md; 3409 3410 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3411 3412 if (test_bit(DMF_FREEING, &md->flags) || 3413 dm_deleting_md(md)) 3414 return NULL; 3415 3416 dm_get(md); 3417 return md; 3418 } 3419 3420 int dm_suspended_md(struct mapped_device *md) 3421 { 3422 return test_bit(DMF_SUSPENDED, &md->flags); 3423 } 3424 3425 int dm_suspended_internally_md(struct mapped_device *md) 3426 { 3427 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3428 } 3429 3430 int dm_test_deferred_remove_flag(struct mapped_device *md) 3431 { 3432 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3433 } 3434 3435 int dm_suspended(struct dm_target *ti) 3436 { 3437 return dm_suspended_md(dm_table_get_md(ti->table)); 3438 } 3439 EXPORT_SYMBOL_GPL(dm_suspended); 3440 3441 int dm_noflush_suspending(struct dm_target *ti) 3442 { 3443 return __noflush_suspending(dm_table_get_md(ti->table)); 3444 } 3445 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3446 3447 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 3448 unsigned integrity, unsigned per_bio_data_size) 3449 { 3450 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 3451 struct kmem_cache *cachep = NULL; 3452 unsigned int pool_size = 0; 3453 unsigned int front_pad; 3454 3455 if (!pools) 3456 return NULL; 3457 3458 type = filter_md_type(type, md); 3459 3460 switch (type) { 3461 case DM_TYPE_BIO_BASED: 3462 cachep = _io_cache; 3463 pool_size = dm_get_reserved_bio_based_ios(); 3464 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3465 break; 3466 case DM_TYPE_REQUEST_BASED: 3467 cachep = _rq_tio_cache; 3468 pool_size = dm_get_reserved_rq_based_ios(); 3469 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 3470 if (!pools->rq_pool) 3471 goto out; 3472 /* fall through to setup remaining rq-based pools */ 3473 case DM_TYPE_MQ_REQUEST_BASED: 3474 if (!pool_size) 3475 pool_size = dm_get_reserved_rq_based_ios(); 3476 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3477 /* per_bio_data_size is not used. See __bind_mempools(). */ 3478 WARN_ON(per_bio_data_size != 0); 3479 break; 3480 default: 3481 BUG(); 3482 } 3483 3484 if (cachep) { 3485 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3486 if (!pools->io_pool) 3487 goto out; 3488 } 3489 3490 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3491 if (!pools->bs) 3492 goto out; 3493 3494 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3495 goto out; 3496 3497 return pools; 3498 3499 out: 3500 dm_free_md_mempools(pools); 3501 3502 return NULL; 3503 } 3504 3505 void dm_free_md_mempools(struct dm_md_mempools *pools) 3506 { 3507 if (!pools) 3508 return; 3509 3510 if (pools->io_pool) 3511 mempool_destroy(pools->io_pool); 3512 3513 if (pools->rq_pool) 3514 mempool_destroy(pools->rq_pool); 3515 3516 if (pools->bs) 3517 bioset_free(pools->bs); 3518 3519 kfree(pools); 3520 } 3521 3522 static const struct block_device_operations dm_blk_dops = { 3523 .open = dm_blk_open, 3524 .release = dm_blk_close, 3525 .ioctl = dm_blk_ioctl, 3526 .getgeo = dm_blk_getgeo, 3527 .owner = THIS_MODULE 3528 }; 3529 3530 /* 3531 * module hooks 3532 */ 3533 module_init(dm_init); 3534 module_exit(dm_exit); 3535 3536 module_param(major, uint, 0); 3537 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3538 3539 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3540 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3541 3542 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3543 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3544 3545 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR); 3546 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices"); 3547 3548 MODULE_DESCRIPTION(DM_NAME " driver"); 3549 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3550 MODULE_LICENSE("GPL"); 3551