1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 /* 53 * For bio-based dm. 54 * One of these is allocated per bio. 55 */ 56 struct dm_io { 57 struct mapped_device *md; 58 int error; 59 atomic_t io_count; 60 struct bio *bio; 61 unsigned long start_time; 62 spinlock_t endio_lock; 63 }; 64 65 /* 66 * For request-based dm. 67 * One of these is allocated per request. 68 */ 69 struct dm_rq_target_io { 70 struct mapped_device *md; 71 struct dm_target *ti; 72 struct request *orig, clone; 73 int error; 74 union map_info info; 75 }; 76 77 /* 78 * For request-based dm - the bio clones we allocate are embedded in these 79 * structs. 80 * 81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 82 * the bioset is created - this means the bio has to come at the end of the 83 * struct. 84 */ 85 struct dm_rq_clone_bio_info { 86 struct bio *orig; 87 struct dm_rq_target_io *tio; 88 struct bio clone; 89 }; 90 91 union map_info *dm_get_mapinfo(struct bio *bio) 92 { 93 if (bio && bio->bi_private) 94 return &((struct dm_target_io *)bio->bi_private)->info; 95 return NULL; 96 } 97 98 union map_info *dm_get_rq_mapinfo(struct request *rq) 99 { 100 if (rq && rq->end_io_data) 101 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 102 return NULL; 103 } 104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 105 106 #define MINOR_ALLOCED ((void *)-1) 107 108 /* 109 * Bits for the md->flags field. 110 */ 111 #define DMF_BLOCK_IO_FOR_SUSPEND 0 112 #define DMF_SUSPENDED 1 113 #define DMF_FROZEN 2 114 #define DMF_FREEING 3 115 #define DMF_DELETING 4 116 #define DMF_NOFLUSH_SUSPENDING 5 117 #define DMF_MERGE_IS_OPTIONAL 6 118 119 /* 120 * Work processed by per-device workqueue. 121 */ 122 struct mapped_device { 123 struct rw_semaphore io_lock; 124 struct mutex suspend_lock; 125 rwlock_t map_lock; 126 atomic_t holders; 127 atomic_t open_count; 128 129 unsigned long flags; 130 131 struct request_queue *queue; 132 unsigned type; 133 /* Protect queue and type against concurrent access. */ 134 struct mutex type_lock; 135 136 struct target_type *immutable_target_type; 137 138 struct gendisk *disk; 139 char name[16]; 140 141 void *interface_ptr; 142 143 /* 144 * A list of ios that arrived while we were suspended. 145 */ 146 atomic_t pending[2]; 147 wait_queue_head_t wait; 148 struct work_struct work; 149 struct bio_list deferred; 150 spinlock_t deferred_lock; 151 152 /* 153 * Processing queue (flush) 154 */ 155 struct workqueue_struct *wq; 156 157 /* 158 * The current mapping. 159 */ 160 struct dm_table *map; 161 162 /* 163 * io objects are allocated from here. 164 */ 165 mempool_t *io_pool; 166 167 struct bio_set *bs; 168 169 /* 170 * Event handling. 171 */ 172 atomic_t event_nr; 173 wait_queue_head_t eventq; 174 atomic_t uevent_seq; 175 struct list_head uevent_list; 176 spinlock_t uevent_lock; /* Protect access to uevent_list */ 177 178 /* 179 * freeze/thaw support require holding onto a super block 180 */ 181 struct super_block *frozen_sb; 182 struct block_device *bdev; 183 184 /* forced geometry settings */ 185 struct hd_geometry geometry; 186 187 /* sysfs handle */ 188 struct kobject kobj; 189 190 /* zero-length flush that will be cloned and submitted to targets */ 191 struct bio flush_bio; 192 }; 193 194 /* 195 * For mempools pre-allocation at the table loading time. 196 */ 197 struct dm_md_mempools { 198 mempool_t *io_pool; 199 struct bio_set *bs; 200 }; 201 202 #define MIN_IOS 256 203 static struct kmem_cache *_io_cache; 204 static struct kmem_cache *_rq_tio_cache; 205 206 static int __init local_init(void) 207 { 208 int r = -ENOMEM; 209 210 /* allocate a slab for the dm_ios */ 211 _io_cache = KMEM_CACHE(dm_io, 0); 212 if (!_io_cache) 213 return r; 214 215 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 216 if (!_rq_tio_cache) 217 goto out_free_io_cache; 218 219 r = dm_uevent_init(); 220 if (r) 221 goto out_free_rq_tio_cache; 222 223 _major = major; 224 r = register_blkdev(_major, _name); 225 if (r < 0) 226 goto out_uevent_exit; 227 228 if (!_major) 229 _major = r; 230 231 return 0; 232 233 out_uevent_exit: 234 dm_uevent_exit(); 235 out_free_rq_tio_cache: 236 kmem_cache_destroy(_rq_tio_cache); 237 out_free_io_cache: 238 kmem_cache_destroy(_io_cache); 239 240 return r; 241 } 242 243 static void local_exit(void) 244 { 245 kmem_cache_destroy(_rq_tio_cache); 246 kmem_cache_destroy(_io_cache); 247 unregister_blkdev(_major, _name); 248 dm_uevent_exit(); 249 250 _major = 0; 251 252 DMINFO("cleaned up"); 253 } 254 255 static int (*_inits[])(void) __initdata = { 256 local_init, 257 dm_target_init, 258 dm_linear_init, 259 dm_stripe_init, 260 dm_io_init, 261 dm_kcopyd_init, 262 dm_interface_init, 263 }; 264 265 static void (*_exits[])(void) = { 266 local_exit, 267 dm_target_exit, 268 dm_linear_exit, 269 dm_stripe_exit, 270 dm_io_exit, 271 dm_kcopyd_exit, 272 dm_interface_exit, 273 }; 274 275 static int __init dm_init(void) 276 { 277 const int count = ARRAY_SIZE(_inits); 278 279 int r, i; 280 281 for (i = 0; i < count; i++) { 282 r = _inits[i](); 283 if (r) 284 goto bad; 285 } 286 287 return 0; 288 289 bad: 290 while (i--) 291 _exits[i](); 292 293 return r; 294 } 295 296 static void __exit dm_exit(void) 297 { 298 int i = ARRAY_SIZE(_exits); 299 300 while (i--) 301 _exits[i](); 302 303 /* 304 * Should be empty by this point. 305 */ 306 idr_destroy(&_minor_idr); 307 } 308 309 /* 310 * Block device functions 311 */ 312 int dm_deleting_md(struct mapped_device *md) 313 { 314 return test_bit(DMF_DELETING, &md->flags); 315 } 316 317 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 318 { 319 struct mapped_device *md; 320 321 spin_lock(&_minor_lock); 322 323 md = bdev->bd_disk->private_data; 324 if (!md) 325 goto out; 326 327 if (test_bit(DMF_FREEING, &md->flags) || 328 dm_deleting_md(md)) { 329 md = NULL; 330 goto out; 331 } 332 333 dm_get(md); 334 atomic_inc(&md->open_count); 335 336 out: 337 spin_unlock(&_minor_lock); 338 339 return md ? 0 : -ENXIO; 340 } 341 342 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 343 { 344 struct mapped_device *md = disk->private_data; 345 346 spin_lock(&_minor_lock); 347 348 atomic_dec(&md->open_count); 349 dm_put(md); 350 351 spin_unlock(&_minor_lock); 352 353 return 0; 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) 371 r = -EBUSY; 372 else 373 set_bit(DMF_DELETING, &md->flags); 374 375 spin_unlock(&_minor_lock); 376 377 return r; 378 } 379 380 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 381 { 382 struct mapped_device *md = bdev->bd_disk->private_data; 383 384 return dm_get_geometry(md, geo); 385 } 386 387 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 388 unsigned int cmd, unsigned long arg) 389 { 390 struct mapped_device *md = bdev->bd_disk->private_data; 391 struct dm_table *map = dm_get_live_table(md); 392 struct dm_target *tgt; 393 int r = -ENOTTY; 394 395 if (!map || !dm_table_get_size(map)) 396 goto out; 397 398 /* We only support devices that have a single target */ 399 if (dm_table_get_num_targets(map) != 1) 400 goto out; 401 402 tgt = dm_table_get_target(map, 0); 403 404 if (dm_suspended_md(md)) { 405 r = -EAGAIN; 406 goto out; 407 } 408 409 if (tgt->type->ioctl) 410 r = tgt->type->ioctl(tgt, cmd, arg); 411 412 out: 413 dm_table_put(map); 414 415 return r; 416 } 417 418 static struct dm_io *alloc_io(struct mapped_device *md) 419 { 420 return mempool_alloc(md->io_pool, GFP_NOIO); 421 } 422 423 static void free_io(struct mapped_device *md, struct dm_io *io) 424 { 425 mempool_free(io, md->io_pool); 426 } 427 428 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 429 { 430 bio_put(&tio->clone); 431 } 432 433 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 434 gfp_t gfp_mask) 435 { 436 return mempool_alloc(md->io_pool, gfp_mask); 437 } 438 439 static void free_rq_tio(struct dm_rq_target_io *tio) 440 { 441 mempool_free(tio, tio->md->io_pool); 442 } 443 444 static int md_in_flight(struct mapped_device *md) 445 { 446 return atomic_read(&md->pending[READ]) + 447 atomic_read(&md->pending[WRITE]); 448 } 449 450 static void start_io_acct(struct dm_io *io) 451 { 452 struct mapped_device *md = io->md; 453 int cpu; 454 int rw = bio_data_dir(io->bio); 455 456 io->start_time = jiffies; 457 458 cpu = part_stat_lock(); 459 part_round_stats(cpu, &dm_disk(md)->part0); 460 part_stat_unlock(); 461 atomic_set(&dm_disk(md)->part0.in_flight[rw], 462 atomic_inc_return(&md->pending[rw])); 463 } 464 465 static void end_io_acct(struct dm_io *io) 466 { 467 struct mapped_device *md = io->md; 468 struct bio *bio = io->bio; 469 unsigned long duration = jiffies - io->start_time; 470 int pending, cpu; 471 int rw = bio_data_dir(bio); 472 473 cpu = part_stat_lock(); 474 part_round_stats(cpu, &dm_disk(md)->part0); 475 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 476 part_stat_unlock(); 477 478 /* 479 * After this is decremented the bio must not be touched if it is 480 * a flush. 481 */ 482 pending = atomic_dec_return(&md->pending[rw]); 483 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 484 pending += atomic_read(&md->pending[rw^0x1]); 485 486 /* nudge anyone waiting on suspend queue */ 487 if (!pending) 488 wake_up(&md->wait); 489 } 490 491 /* 492 * Add the bio to the list of deferred io. 493 */ 494 static void queue_io(struct mapped_device *md, struct bio *bio) 495 { 496 unsigned long flags; 497 498 spin_lock_irqsave(&md->deferred_lock, flags); 499 bio_list_add(&md->deferred, bio); 500 spin_unlock_irqrestore(&md->deferred_lock, flags); 501 queue_work(md->wq, &md->work); 502 } 503 504 /* 505 * Everyone (including functions in this file), should use this 506 * function to access the md->map field, and make sure they call 507 * dm_table_put() when finished. 508 */ 509 struct dm_table *dm_get_live_table(struct mapped_device *md) 510 { 511 struct dm_table *t; 512 unsigned long flags; 513 514 read_lock_irqsave(&md->map_lock, flags); 515 t = md->map; 516 if (t) 517 dm_table_get(t); 518 read_unlock_irqrestore(&md->map_lock, flags); 519 520 return t; 521 } 522 523 /* 524 * Get the geometry associated with a dm device 525 */ 526 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 527 { 528 *geo = md->geometry; 529 530 return 0; 531 } 532 533 /* 534 * Set the geometry of a device. 535 */ 536 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 537 { 538 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 539 540 if (geo->start > sz) { 541 DMWARN("Start sector is beyond the geometry limits."); 542 return -EINVAL; 543 } 544 545 md->geometry = *geo; 546 547 return 0; 548 } 549 550 /*----------------------------------------------------------------- 551 * CRUD START: 552 * A more elegant soln is in the works that uses the queue 553 * merge fn, unfortunately there are a couple of changes to 554 * the block layer that I want to make for this. So in the 555 * interests of getting something for people to use I give 556 * you this clearly demarcated crap. 557 *---------------------------------------------------------------*/ 558 559 static int __noflush_suspending(struct mapped_device *md) 560 { 561 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 562 } 563 564 /* 565 * Decrements the number of outstanding ios that a bio has been 566 * cloned into, completing the original io if necc. 567 */ 568 static void dec_pending(struct dm_io *io, int error) 569 { 570 unsigned long flags; 571 int io_error; 572 struct bio *bio; 573 struct mapped_device *md = io->md; 574 575 /* Push-back supersedes any I/O errors */ 576 if (unlikely(error)) { 577 spin_lock_irqsave(&io->endio_lock, flags); 578 if (!(io->error > 0 && __noflush_suspending(md))) 579 io->error = error; 580 spin_unlock_irqrestore(&io->endio_lock, flags); 581 } 582 583 if (atomic_dec_and_test(&io->io_count)) { 584 if (io->error == DM_ENDIO_REQUEUE) { 585 /* 586 * Target requested pushing back the I/O. 587 */ 588 spin_lock_irqsave(&md->deferred_lock, flags); 589 if (__noflush_suspending(md)) 590 bio_list_add_head(&md->deferred, io->bio); 591 else 592 /* noflush suspend was interrupted. */ 593 io->error = -EIO; 594 spin_unlock_irqrestore(&md->deferred_lock, flags); 595 } 596 597 io_error = io->error; 598 bio = io->bio; 599 end_io_acct(io); 600 free_io(md, io); 601 602 if (io_error == DM_ENDIO_REQUEUE) 603 return; 604 605 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 606 /* 607 * Preflush done for flush with data, reissue 608 * without REQ_FLUSH. 609 */ 610 bio->bi_rw &= ~REQ_FLUSH; 611 queue_io(md, bio); 612 } else { 613 /* done with normal IO or empty flush */ 614 trace_block_bio_complete(md->queue, bio, io_error); 615 bio_endio(bio, io_error); 616 } 617 } 618 } 619 620 static void clone_endio(struct bio *bio, int error) 621 { 622 int r = 0; 623 struct dm_target_io *tio = bio->bi_private; 624 struct dm_io *io = tio->io; 625 struct mapped_device *md = tio->io->md; 626 dm_endio_fn endio = tio->ti->type->end_io; 627 628 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 629 error = -EIO; 630 631 if (endio) { 632 r = endio(tio->ti, bio, error); 633 if (r < 0 || r == DM_ENDIO_REQUEUE) 634 /* 635 * error and requeue request are handled 636 * in dec_pending(). 637 */ 638 error = r; 639 else if (r == DM_ENDIO_INCOMPLETE) 640 /* The target will handle the io */ 641 return; 642 else if (r) { 643 DMWARN("unimplemented target endio return value: %d", r); 644 BUG(); 645 } 646 } 647 648 free_tio(md, tio); 649 dec_pending(io, error); 650 } 651 652 /* 653 * Partial completion handling for request-based dm 654 */ 655 static void end_clone_bio(struct bio *clone, int error) 656 { 657 struct dm_rq_clone_bio_info *info = clone->bi_private; 658 struct dm_rq_target_io *tio = info->tio; 659 struct bio *bio = info->orig; 660 unsigned int nr_bytes = info->orig->bi_size; 661 662 bio_put(clone); 663 664 if (tio->error) 665 /* 666 * An error has already been detected on the request. 667 * Once error occurred, just let clone->end_io() handle 668 * the remainder. 669 */ 670 return; 671 else if (error) { 672 /* 673 * Don't notice the error to the upper layer yet. 674 * The error handling decision is made by the target driver, 675 * when the request is completed. 676 */ 677 tio->error = error; 678 return; 679 } 680 681 /* 682 * I/O for the bio successfully completed. 683 * Notice the data completion to the upper layer. 684 */ 685 686 /* 687 * bios are processed from the head of the list. 688 * So the completing bio should always be rq->bio. 689 * If it's not, something wrong is happening. 690 */ 691 if (tio->orig->bio != bio) 692 DMERR("bio completion is going in the middle of the request"); 693 694 /* 695 * Update the original request. 696 * Do not use blk_end_request() here, because it may complete 697 * the original request before the clone, and break the ordering. 698 */ 699 blk_update_request(tio->orig, 0, nr_bytes); 700 } 701 702 /* 703 * Don't touch any member of the md after calling this function because 704 * the md may be freed in dm_put() at the end of this function. 705 * Or do dm_get() before calling this function and dm_put() later. 706 */ 707 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 708 { 709 atomic_dec(&md->pending[rw]); 710 711 /* nudge anyone waiting on suspend queue */ 712 if (!md_in_flight(md)) 713 wake_up(&md->wait); 714 715 /* 716 * Run this off this callpath, as drivers could invoke end_io while 717 * inside their request_fn (and holding the queue lock). Calling 718 * back into ->request_fn() could deadlock attempting to grab the 719 * queue lock again. 720 */ 721 if (run_queue) 722 blk_run_queue_async(md->queue); 723 724 /* 725 * dm_put() must be at the end of this function. See the comment above 726 */ 727 dm_put(md); 728 } 729 730 static void free_rq_clone(struct request *clone) 731 { 732 struct dm_rq_target_io *tio = clone->end_io_data; 733 734 blk_rq_unprep_clone(clone); 735 free_rq_tio(tio); 736 } 737 738 /* 739 * Complete the clone and the original request. 740 * Must be called without queue lock. 741 */ 742 static void dm_end_request(struct request *clone, int error) 743 { 744 int rw = rq_data_dir(clone); 745 struct dm_rq_target_io *tio = clone->end_io_data; 746 struct mapped_device *md = tio->md; 747 struct request *rq = tio->orig; 748 749 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 750 rq->errors = clone->errors; 751 rq->resid_len = clone->resid_len; 752 753 if (rq->sense) 754 /* 755 * We are using the sense buffer of the original 756 * request. 757 * So setting the length of the sense data is enough. 758 */ 759 rq->sense_len = clone->sense_len; 760 } 761 762 free_rq_clone(clone); 763 blk_end_request_all(rq, error); 764 rq_completed(md, rw, true); 765 } 766 767 static void dm_unprep_request(struct request *rq) 768 { 769 struct request *clone = rq->special; 770 771 rq->special = NULL; 772 rq->cmd_flags &= ~REQ_DONTPREP; 773 774 free_rq_clone(clone); 775 } 776 777 /* 778 * Requeue the original request of a clone. 779 */ 780 void dm_requeue_unmapped_request(struct request *clone) 781 { 782 int rw = rq_data_dir(clone); 783 struct dm_rq_target_io *tio = clone->end_io_data; 784 struct mapped_device *md = tio->md; 785 struct request *rq = tio->orig; 786 struct request_queue *q = rq->q; 787 unsigned long flags; 788 789 dm_unprep_request(rq); 790 791 spin_lock_irqsave(q->queue_lock, flags); 792 blk_requeue_request(q, rq); 793 spin_unlock_irqrestore(q->queue_lock, flags); 794 795 rq_completed(md, rw, 0); 796 } 797 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 798 799 static void __stop_queue(struct request_queue *q) 800 { 801 blk_stop_queue(q); 802 } 803 804 static void stop_queue(struct request_queue *q) 805 { 806 unsigned long flags; 807 808 spin_lock_irqsave(q->queue_lock, flags); 809 __stop_queue(q); 810 spin_unlock_irqrestore(q->queue_lock, flags); 811 } 812 813 static void __start_queue(struct request_queue *q) 814 { 815 if (blk_queue_stopped(q)) 816 blk_start_queue(q); 817 } 818 819 static void start_queue(struct request_queue *q) 820 { 821 unsigned long flags; 822 823 spin_lock_irqsave(q->queue_lock, flags); 824 __start_queue(q); 825 spin_unlock_irqrestore(q->queue_lock, flags); 826 } 827 828 static void dm_done(struct request *clone, int error, bool mapped) 829 { 830 int r = error; 831 struct dm_rq_target_io *tio = clone->end_io_data; 832 dm_request_endio_fn rq_end_io = NULL; 833 834 if (tio->ti) { 835 rq_end_io = tio->ti->type->rq_end_io; 836 837 if (mapped && rq_end_io) 838 r = rq_end_io(tio->ti, clone, error, &tio->info); 839 } 840 841 if (r <= 0) 842 /* The target wants to complete the I/O */ 843 dm_end_request(clone, r); 844 else if (r == DM_ENDIO_INCOMPLETE) 845 /* The target will handle the I/O */ 846 return; 847 else if (r == DM_ENDIO_REQUEUE) 848 /* The target wants to requeue the I/O */ 849 dm_requeue_unmapped_request(clone); 850 else { 851 DMWARN("unimplemented target endio return value: %d", r); 852 BUG(); 853 } 854 } 855 856 /* 857 * Request completion handler for request-based dm 858 */ 859 static void dm_softirq_done(struct request *rq) 860 { 861 bool mapped = true; 862 struct request *clone = rq->completion_data; 863 struct dm_rq_target_io *tio = clone->end_io_data; 864 865 if (rq->cmd_flags & REQ_FAILED) 866 mapped = false; 867 868 dm_done(clone, tio->error, mapped); 869 } 870 871 /* 872 * Complete the clone and the original request with the error status 873 * through softirq context. 874 */ 875 static void dm_complete_request(struct request *clone, int error) 876 { 877 struct dm_rq_target_io *tio = clone->end_io_data; 878 struct request *rq = tio->orig; 879 880 tio->error = error; 881 rq->completion_data = clone; 882 blk_complete_request(rq); 883 } 884 885 /* 886 * Complete the not-mapped clone and the original request with the error status 887 * through softirq context. 888 * Target's rq_end_io() function isn't called. 889 * This may be used when the target's map_rq() function fails. 890 */ 891 void dm_kill_unmapped_request(struct request *clone, int error) 892 { 893 struct dm_rq_target_io *tio = clone->end_io_data; 894 struct request *rq = tio->orig; 895 896 rq->cmd_flags |= REQ_FAILED; 897 dm_complete_request(clone, error); 898 } 899 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 900 901 /* 902 * Called with the queue lock held 903 */ 904 static void end_clone_request(struct request *clone, int error) 905 { 906 /* 907 * For just cleaning up the information of the queue in which 908 * the clone was dispatched. 909 * The clone is *NOT* freed actually here because it is alloced from 910 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 911 */ 912 __blk_put_request(clone->q, clone); 913 914 /* 915 * Actual request completion is done in a softirq context which doesn't 916 * hold the queue lock. Otherwise, deadlock could occur because: 917 * - another request may be submitted by the upper level driver 918 * of the stacking during the completion 919 * - the submission which requires queue lock may be done 920 * against this queue 921 */ 922 dm_complete_request(clone, error); 923 } 924 925 /* 926 * Return maximum size of I/O possible at the supplied sector up to the current 927 * target boundary. 928 */ 929 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 930 { 931 sector_t target_offset = dm_target_offset(ti, sector); 932 933 return ti->len - target_offset; 934 } 935 936 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 937 { 938 sector_t len = max_io_len_target_boundary(sector, ti); 939 sector_t offset, max_len; 940 941 /* 942 * Does the target need to split even further? 943 */ 944 if (ti->max_io_len) { 945 offset = dm_target_offset(ti, sector); 946 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 947 max_len = sector_div(offset, ti->max_io_len); 948 else 949 max_len = offset & (ti->max_io_len - 1); 950 max_len = ti->max_io_len - max_len; 951 952 if (len > max_len) 953 len = max_len; 954 } 955 956 return len; 957 } 958 959 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 960 { 961 if (len > UINT_MAX) { 962 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 963 (unsigned long long)len, UINT_MAX); 964 ti->error = "Maximum size of target IO is too large"; 965 return -EINVAL; 966 } 967 968 ti->max_io_len = (uint32_t) len; 969 970 return 0; 971 } 972 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 973 974 static void __map_bio(struct dm_target_io *tio) 975 { 976 int r; 977 sector_t sector; 978 struct mapped_device *md; 979 struct bio *clone = &tio->clone; 980 struct dm_target *ti = tio->ti; 981 982 clone->bi_end_io = clone_endio; 983 clone->bi_private = tio; 984 985 /* 986 * Map the clone. If r == 0 we don't need to do 987 * anything, the target has assumed ownership of 988 * this io. 989 */ 990 atomic_inc(&tio->io->io_count); 991 sector = clone->bi_sector; 992 r = ti->type->map(ti, clone); 993 if (r == DM_MAPIO_REMAPPED) { 994 /* the bio has been remapped so dispatch it */ 995 996 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 997 tio->io->bio->bi_bdev->bd_dev, sector); 998 999 generic_make_request(clone); 1000 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1001 /* error the io and bail out, or requeue it if needed */ 1002 md = tio->io->md; 1003 dec_pending(tio->io, r); 1004 free_tio(md, tio); 1005 } else if (r) { 1006 DMWARN("unimplemented target map return value: %d", r); 1007 BUG(); 1008 } 1009 } 1010 1011 struct clone_info { 1012 struct mapped_device *md; 1013 struct dm_table *map; 1014 struct bio *bio; 1015 struct dm_io *io; 1016 sector_t sector; 1017 sector_t sector_count; 1018 unsigned short idx; 1019 }; 1020 1021 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len) 1022 { 1023 bio->bi_sector = sector; 1024 bio->bi_size = to_bytes(len); 1025 } 1026 1027 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count) 1028 { 1029 bio->bi_idx = idx; 1030 bio->bi_vcnt = idx + bv_count; 1031 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 1032 } 1033 1034 static void clone_bio_integrity(struct bio *bio, struct bio *clone, 1035 unsigned short idx, unsigned len, unsigned offset, 1036 unsigned trim) 1037 { 1038 if (!bio_integrity(bio)) 1039 return; 1040 1041 bio_integrity_clone(clone, bio, GFP_NOIO); 1042 1043 if (trim) 1044 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len); 1045 } 1046 1047 /* 1048 * Creates a little bio that just does part of a bvec. 1049 */ 1050 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio, 1051 sector_t sector, unsigned short idx, 1052 unsigned offset, unsigned len) 1053 { 1054 struct bio *clone = &tio->clone; 1055 struct bio_vec *bv = bio->bi_io_vec + idx; 1056 1057 *clone->bi_io_vec = *bv; 1058 1059 bio_setup_sector(clone, sector, len); 1060 1061 clone->bi_bdev = bio->bi_bdev; 1062 clone->bi_rw = bio->bi_rw; 1063 clone->bi_vcnt = 1; 1064 clone->bi_io_vec->bv_offset = offset; 1065 clone->bi_io_vec->bv_len = clone->bi_size; 1066 clone->bi_flags |= 1 << BIO_CLONED; 1067 1068 clone_bio_integrity(bio, clone, idx, len, offset, 1); 1069 } 1070 1071 /* 1072 * Creates a bio that consists of range of complete bvecs. 1073 */ 1074 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1075 sector_t sector, unsigned short idx, 1076 unsigned short bv_count, unsigned len) 1077 { 1078 struct bio *clone = &tio->clone; 1079 unsigned trim = 0; 1080 1081 __bio_clone(clone, bio); 1082 bio_setup_sector(clone, sector, len); 1083 bio_setup_bv(clone, idx, bv_count); 1084 1085 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1086 trim = 1; 1087 clone_bio_integrity(bio, clone, idx, len, 0, trim); 1088 } 1089 1090 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1091 struct dm_target *ti, int nr_iovecs, 1092 unsigned target_bio_nr) 1093 { 1094 struct dm_target_io *tio; 1095 struct bio *clone; 1096 1097 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs); 1098 tio = container_of(clone, struct dm_target_io, clone); 1099 1100 tio->io = ci->io; 1101 tio->ti = ti; 1102 memset(&tio->info, 0, sizeof(tio->info)); 1103 tio->target_bio_nr = target_bio_nr; 1104 1105 return tio; 1106 } 1107 1108 static void __clone_and_map_simple_bio(struct clone_info *ci, 1109 struct dm_target *ti, 1110 unsigned target_bio_nr, sector_t len) 1111 { 1112 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr); 1113 struct bio *clone = &tio->clone; 1114 1115 /* 1116 * Discard requests require the bio's inline iovecs be initialized. 1117 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1118 * and discard, so no need for concern about wasted bvec allocations. 1119 */ 1120 __bio_clone(clone, ci->bio); 1121 if (len) 1122 bio_setup_sector(clone, ci->sector, len); 1123 1124 __map_bio(tio); 1125 } 1126 1127 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1128 unsigned num_bios, sector_t len) 1129 { 1130 unsigned target_bio_nr; 1131 1132 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1133 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1134 } 1135 1136 static int __send_empty_flush(struct clone_info *ci) 1137 { 1138 unsigned target_nr = 0; 1139 struct dm_target *ti; 1140 1141 BUG_ON(bio_has_data(ci->bio)); 1142 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1143 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0); 1144 1145 return 0; 1146 } 1147 1148 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1149 sector_t sector, int nr_iovecs, 1150 unsigned short idx, unsigned short bv_count, 1151 unsigned offset, unsigned len, 1152 unsigned split_bvec) 1153 { 1154 struct bio *bio = ci->bio; 1155 struct dm_target_io *tio; 1156 unsigned target_bio_nr; 1157 unsigned num_target_bios = 1; 1158 1159 /* 1160 * Does the target want to receive duplicate copies of the bio? 1161 */ 1162 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1163 num_target_bios = ti->num_write_bios(ti, bio); 1164 1165 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1166 tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr); 1167 if (split_bvec) 1168 clone_split_bio(tio, bio, sector, idx, offset, len); 1169 else 1170 clone_bio(tio, bio, sector, idx, bv_count, len); 1171 __map_bio(tio); 1172 } 1173 } 1174 1175 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1176 1177 static unsigned get_num_discard_bios(struct dm_target *ti) 1178 { 1179 return ti->num_discard_bios; 1180 } 1181 1182 static unsigned get_num_write_same_bios(struct dm_target *ti) 1183 { 1184 return ti->num_write_same_bios; 1185 } 1186 1187 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1188 1189 static bool is_split_required_for_discard(struct dm_target *ti) 1190 { 1191 return ti->split_discard_bios; 1192 } 1193 1194 static int __send_changing_extent_only(struct clone_info *ci, 1195 get_num_bios_fn get_num_bios, 1196 is_split_required_fn is_split_required) 1197 { 1198 struct dm_target *ti; 1199 sector_t len; 1200 unsigned num_bios; 1201 1202 do { 1203 ti = dm_table_find_target(ci->map, ci->sector); 1204 if (!dm_target_is_valid(ti)) 1205 return -EIO; 1206 1207 /* 1208 * Even though the device advertised support for this type of 1209 * request, that does not mean every target supports it, and 1210 * reconfiguration might also have changed that since the 1211 * check was performed. 1212 */ 1213 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1214 if (!num_bios) 1215 return -EOPNOTSUPP; 1216 1217 if (is_split_required && !is_split_required(ti)) 1218 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1219 else 1220 len = min(ci->sector_count, max_io_len(ci->sector, ti)); 1221 1222 __send_duplicate_bios(ci, ti, num_bios, len); 1223 1224 ci->sector += len; 1225 } while (ci->sector_count -= len); 1226 1227 return 0; 1228 } 1229 1230 static int __send_discard(struct clone_info *ci) 1231 { 1232 return __send_changing_extent_only(ci, get_num_discard_bios, 1233 is_split_required_for_discard); 1234 } 1235 1236 static int __send_write_same(struct clone_info *ci) 1237 { 1238 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1239 } 1240 1241 /* 1242 * Find maximum number of sectors / bvecs we can process with a single bio. 1243 */ 1244 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx) 1245 { 1246 struct bio *bio = ci->bio; 1247 sector_t bv_len, total_len = 0; 1248 1249 for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) { 1250 bv_len = to_sector(bio->bi_io_vec[*idx].bv_len); 1251 1252 if (bv_len > max) 1253 break; 1254 1255 max -= bv_len; 1256 total_len += bv_len; 1257 } 1258 1259 return total_len; 1260 } 1261 1262 static int __split_bvec_across_targets(struct clone_info *ci, 1263 struct dm_target *ti, sector_t max) 1264 { 1265 struct bio *bio = ci->bio; 1266 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1267 sector_t remaining = to_sector(bv->bv_len); 1268 unsigned offset = 0; 1269 sector_t len; 1270 1271 do { 1272 if (offset) { 1273 ti = dm_table_find_target(ci->map, ci->sector); 1274 if (!dm_target_is_valid(ti)) 1275 return -EIO; 1276 1277 max = max_io_len(ci->sector, ti); 1278 } 1279 1280 len = min(remaining, max); 1281 1282 __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0, 1283 bv->bv_offset + offset, len, 1); 1284 1285 ci->sector += len; 1286 ci->sector_count -= len; 1287 offset += to_bytes(len); 1288 } while (remaining -= len); 1289 1290 ci->idx++; 1291 1292 return 0; 1293 } 1294 1295 /* 1296 * Select the correct strategy for processing a non-flush bio. 1297 */ 1298 static int __split_and_process_non_flush(struct clone_info *ci) 1299 { 1300 struct bio *bio = ci->bio; 1301 struct dm_target *ti; 1302 sector_t len, max; 1303 int idx; 1304 1305 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1306 return __send_discard(ci); 1307 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1308 return __send_write_same(ci); 1309 1310 ti = dm_table_find_target(ci->map, ci->sector); 1311 if (!dm_target_is_valid(ti)) 1312 return -EIO; 1313 1314 max = max_io_len(ci->sector, ti); 1315 1316 /* 1317 * Optimise for the simple case where we can do all of 1318 * the remaining io with a single clone. 1319 */ 1320 if (ci->sector_count <= max) { 1321 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs, 1322 ci->idx, bio->bi_vcnt - ci->idx, 0, 1323 ci->sector_count, 0); 1324 ci->sector_count = 0; 1325 return 0; 1326 } 1327 1328 /* 1329 * There are some bvecs that don't span targets. 1330 * Do as many of these as possible. 1331 */ 1332 if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1333 len = __len_within_target(ci, max, &idx); 1334 1335 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs, 1336 ci->idx, idx - ci->idx, 0, len, 0); 1337 1338 ci->sector += len; 1339 ci->sector_count -= len; 1340 ci->idx = idx; 1341 1342 return 0; 1343 } 1344 1345 /* 1346 * Handle a bvec that must be split between two or more targets. 1347 */ 1348 return __split_bvec_across_targets(ci, ti, max); 1349 } 1350 1351 /* 1352 * Entry point to split a bio into clones and submit them to the targets. 1353 */ 1354 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1355 { 1356 struct clone_info ci; 1357 int error = 0; 1358 1359 ci.map = dm_get_live_table(md); 1360 if (unlikely(!ci.map)) { 1361 bio_io_error(bio); 1362 return; 1363 } 1364 1365 ci.md = md; 1366 ci.io = alloc_io(md); 1367 ci.io->error = 0; 1368 atomic_set(&ci.io->io_count, 1); 1369 ci.io->bio = bio; 1370 ci.io->md = md; 1371 spin_lock_init(&ci.io->endio_lock); 1372 ci.sector = bio->bi_sector; 1373 ci.idx = bio->bi_idx; 1374 1375 start_io_acct(ci.io); 1376 1377 if (bio->bi_rw & REQ_FLUSH) { 1378 ci.bio = &ci.md->flush_bio; 1379 ci.sector_count = 0; 1380 error = __send_empty_flush(&ci); 1381 /* dec_pending submits any data associated with flush */ 1382 } else { 1383 ci.bio = bio; 1384 ci.sector_count = bio_sectors(bio); 1385 while (ci.sector_count && !error) 1386 error = __split_and_process_non_flush(&ci); 1387 } 1388 1389 /* drop the extra reference count */ 1390 dec_pending(ci.io, error); 1391 dm_table_put(ci.map); 1392 } 1393 /*----------------------------------------------------------------- 1394 * CRUD END 1395 *---------------------------------------------------------------*/ 1396 1397 static int dm_merge_bvec(struct request_queue *q, 1398 struct bvec_merge_data *bvm, 1399 struct bio_vec *biovec) 1400 { 1401 struct mapped_device *md = q->queuedata; 1402 struct dm_table *map = dm_get_live_table(md); 1403 struct dm_target *ti; 1404 sector_t max_sectors; 1405 int max_size = 0; 1406 1407 if (unlikely(!map)) 1408 goto out; 1409 1410 ti = dm_table_find_target(map, bvm->bi_sector); 1411 if (!dm_target_is_valid(ti)) 1412 goto out_table; 1413 1414 /* 1415 * Find maximum amount of I/O that won't need splitting 1416 */ 1417 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1418 (sector_t) BIO_MAX_SECTORS); 1419 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1420 if (max_size < 0) 1421 max_size = 0; 1422 1423 /* 1424 * merge_bvec_fn() returns number of bytes 1425 * it can accept at this offset 1426 * max is precomputed maximal io size 1427 */ 1428 if (max_size && ti->type->merge) 1429 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1430 /* 1431 * If the target doesn't support merge method and some of the devices 1432 * provided their merge_bvec method (we know this by looking at 1433 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1434 * entries. So always set max_size to 0, and the code below allows 1435 * just one page. 1436 */ 1437 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1438 1439 max_size = 0; 1440 1441 out_table: 1442 dm_table_put(map); 1443 1444 out: 1445 /* 1446 * Always allow an entire first page 1447 */ 1448 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1449 max_size = biovec->bv_len; 1450 1451 return max_size; 1452 } 1453 1454 /* 1455 * The request function that just remaps the bio built up by 1456 * dm_merge_bvec. 1457 */ 1458 static void _dm_request(struct request_queue *q, struct bio *bio) 1459 { 1460 int rw = bio_data_dir(bio); 1461 struct mapped_device *md = q->queuedata; 1462 int cpu; 1463 1464 down_read(&md->io_lock); 1465 1466 cpu = part_stat_lock(); 1467 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1468 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1469 part_stat_unlock(); 1470 1471 /* if we're suspended, we have to queue this io for later */ 1472 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1473 up_read(&md->io_lock); 1474 1475 if (bio_rw(bio) != READA) 1476 queue_io(md, bio); 1477 else 1478 bio_io_error(bio); 1479 return; 1480 } 1481 1482 __split_and_process_bio(md, bio); 1483 up_read(&md->io_lock); 1484 return; 1485 } 1486 1487 static int dm_request_based(struct mapped_device *md) 1488 { 1489 return blk_queue_stackable(md->queue); 1490 } 1491 1492 static void dm_request(struct request_queue *q, struct bio *bio) 1493 { 1494 struct mapped_device *md = q->queuedata; 1495 1496 if (dm_request_based(md)) 1497 blk_queue_bio(q, bio); 1498 else 1499 _dm_request(q, bio); 1500 } 1501 1502 void dm_dispatch_request(struct request *rq) 1503 { 1504 int r; 1505 1506 if (blk_queue_io_stat(rq->q)) 1507 rq->cmd_flags |= REQ_IO_STAT; 1508 1509 rq->start_time = jiffies; 1510 r = blk_insert_cloned_request(rq->q, rq); 1511 if (r) 1512 dm_complete_request(rq, r); 1513 } 1514 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1515 1516 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1517 void *data) 1518 { 1519 struct dm_rq_target_io *tio = data; 1520 struct dm_rq_clone_bio_info *info = 1521 container_of(bio, struct dm_rq_clone_bio_info, clone); 1522 1523 info->orig = bio_orig; 1524 info->tio = tio; 1525 bio->bi_end_io = end_clone_bio; 1526 bio->bi_private = info; 1527 1528 return 0; 1529 } 1530 1531 static int setup_clone(struct request *clone, struct request *rq, 1532 struct dm_rq_target_io *tio) 1533 { 1534 int r; 1535 1536 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1537 dm_rq_bio_constructor, tio); 1538 if (r) 1539 return r; 1540 1541 clone->cmd = rq->cmd; 1542 clone->cmd_len = rq->cmd_len; 1543 clone->sense = rq->sense; 1544 clone->buffer = rq->buffer; 1545 clone->end_io = end_clone_request; 1546 clone->end_io_data = tio; 1547 1548 return 0; 1549 } 1550 1551 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1552 gfp_t gfp_mask) 1553 { 1554 struct request *clone; 1555 struct dm_rq_target_io *tio; 1556 1557 tio = alloc_rq_tio(md, gfp_mask); 1558 if (!tio) 1559 return NULL; 1560 1561 tio->md = md; 1562 tio->ti = NULL; 1563 tio->orig = rq; 1564 tio->error = 0; 1565 memset(&tio->info, 0, sizeof(tio->info)); 1566 1567 clone = &tio->clone; 1568 if (setup_clone(clone, rq, tio)) { 1569 /* -ENOMEM */ 1570 free_rq_tio(tio); 1571 return NULL; 1572 } 1573 1574 return clone; 1575 } 1576 1577 /* 1578 * Called with the queue lock held. 1579 */ 1580 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1581 { 1582 struct mapped_device *md = q->queuedata; 1583 struct request *clone; 1584 1585 if (unlikely(rq->special)) { 1586 DMWARN("Already has something in rq->special."); 1587 return BLKPREP_KILL; 1588 } 1589 1590 clone = clone_rq(rq, md, GFP_ATOMIC); 1591 if (!clone) 1592 return BLKPREP_DEFER; 1593 1594 rq->special = clone; 1595 rq->cmd_flags |= REQ_DONTPREP; 1596 1597 return BLKPREP_OK; 1598 } 1599 1600 /* 1601 * Returns: 1602 * 0 : the request has been processed (not requeued) 1603 * !0 : the request has been requeued 1604 */ 1605 static int map_request(struct dm_target *ti, struct request *clone, 1606 struct mapped_device *md) 1607 { 1608 int r, requeued = 0; 1609 struct dm_rq_target_io *tio = clone->end_io_data; 1610 1611 tio->ti = ti; 1612 r = ti->type->map_rq(ti, clone, &tio->info); 1613 switch (r) { 1614 case DM_MAPIO_SUBMITTED: 1615 /* The target has taken the I/O to submit by itself later */ 1616 break; 1617 case DM_MAPIO_REMAPPED: 1618 /* The target has remapped the I/O so dispatch it */ 1619 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1620 blk_rq_pos(tio->orig)); 1621 dm_dispatch_request(clone); 1622 break; 1623 case DM_MAPIO_REQUEUE: 1624 /* The target wants to requeue the I/O */ 1625 dm_requeue_unmapped_request(clone); 1626 requeued = 1; 1627 break; 1628 default: 1629 if (r > 0) { 1630 DMWARN("unimplemented target map return value: %d", r); 1631 BUG(); 1632 } 1633 1634 /* The target wants to complete the I/O */ 1635 dm_kill_unmapped_request(clone, r); 1636 break; 1637 } 1638 1639 return requeued; 1640 } 1641 1642 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1643 { 1644 struct request *clone; 1645 1646 blk_start_request(orig); 1647 clone = orig->special; 1648 atomic_inc(&md->pending[rq_data_dir(clone)]); 1649 1650 /* 1651 * Hold the md reference here for the in-flight I/O. 1652 * We can't rely on the reference count by device opener, 1653 * because the device may be closed during the request completion 1654 * when all bios are completed. 1655 * See the comment in rq_completed() too. 1656 */ 1657 dm_get(md); 1658 1659 return clone; 1660 } 1661 1662 /* 1663 * q->request_fn for request-based dm. 1664 * Called with the queue lock held. 1665 */ 1666 static void dm_request_fn(struct request_queue *q) 1667 { 1668 struct mapped_device *md = q->queuedata; 1669 struct dm_table *map = dm_get_live_table(md); 1670 struct dm_target *ti; 1671 struct request *rq, *clone; 1672 sector_t pos; 1673 1674 /* 1675 * For suspend, check blk_queue_stopped() and increment 1676 * ->pending within a single queue_lock not to increment the 1677 * number of in-flight I/Os after the queue is stopped in 1678 * dm_suspend(). 1679 */ 1680 while (!blk_queue_stopped(q)) { 1681 rq = blk_peek_request(q); 1682 if (!rq) 1683 goto delay_and_out; 1684 1685 /* always use block 0 to find the target for flushes for now */ 1686 pos = 0; 1687 if (!(rq->cmd_flags & REQ_FLUSH)) 1688 pos = blk_rq_pos(rq); 1689 1690 ti = dm_table_find_target(map, pos); 1691 if (!dm_target_is_valid(ti)) { 1692 /* 1693 * Must perform setup, that dm_done() requires, 1694 * before calling dm_kill_unmapped_request 1695 */ 1696 DMERR_LIMIT("request attempted access beyond the end of device"); 1697 clone = dm_start_request(md, rq); 1698 dm_kill_unmapped_request(clone, -EIO); 1699 continue; 1700 } 1701 1702 if (ti->type->busy && ti->type->busy(ti)) 1703 goto delay_and_out; 1704 1705 clone = dm_start_request(md, rq); 1706 1707 spin_unlock(q->queue_lock); 1708 if (map_request(ti, clone, md)) 1709 goto requeued; 1710 1711 BUG_ON(!irqs_disabled()); 1712 spin_lock(q->queue_lock); 1713 } 1714 1715 goto out; 1716 1717 requeued: 1718 BUG_ON(!irqs_disabled()); 1719 spin_lock(q->queue_lock); 1720 1721 delay_and_out: 1722 blk_delay_queue(q, HZ / 10); 1723 out: 1724 dm_table_put(map); 1725 } 1726 1727 int dm_underlying_device_busy(struct request_queue *q) 1728 { 1729 return blk_lld_busy(q); 1730 } 1731 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1732 1733 static int dm_lld_busy(struct request_queue *q) 1734 { 1735 int r; 1736 struct mapped_device *md = q->queuedata; 1737 struct dm_table *map = dm_get_live_table(md); 1738 1739 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1740 r = 1; 1741 else 1742 r = dm_table_any_busy_target(map); 1743 1744 dm_table_put(map); 1745 1746 return r; 1747 } 1748 1749 static int dm_any_congested(void *congested_data, int bdi_bits) 1750 { 1751 int r = bdi_bits; 1752 struct mapped_device *md = congested_data; 1753 struct dm_table *map; 1754 1755 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1756 map = dm_get_live_table(md); 1757 if (map) { 1758 /* 1759 * Request-based dm cares about only own queue for 1760 * the query about congestion status of request_queue 1761 */ 1762 if (dm_request_based(md)) 1763 r = md->queue->backing_dev_info.state & 1764 bdi_bits; 1765 else 1766 r = dm_table_any_congested(map, bdi_bits); 1767 1768 dm_table_put(map); 1769 } 1770 } 1771 1772 return r; 1773 } 1774 1775 /*----------------------------------------------------------------- 1776 * An IDR is used to keep track of allocated minor numbers. 1777 *---------------------------------------------------------------*/ 1778 static void free_minor(int minor) 1779 { 1780 spin_lock(&_minor_lock); 1781 idr_remove(&_minor_idr, minor); 1782 spin_unlock(&_minor_lock); 1783 } 1784 1785 /* 1786 * See if the device with a specific minor # is free. 1787 */ 1788 static int specific_minor(int minor) 1789 { 1790 int r; 1791 1792 if (minor >= (1 << MINORBITS)) 1793 return -EINVAL; 1794 1795 idr_preload(GFP_KERNEL); 1796 spin_lock(&_minor_lock); 1797 1798 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1799 1800 spin_unlock(&_minor_lock); 1801 idr_preload_end(); 1802 if (r < 0) 1803 return r == -ENOSPC ? -EBUSY : r; 1804 return 0; 1805 } 1806 1807 static int next_free_minor(int *minor) 1808 { 1809 int r; 1810 1811 idr_preload(GFP_KERNEL); 1812 spin_lock(&_minor_lock); 1813 1814 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1815 1816 spin_unlock(&_minor_lock); 1817 idr_preload_end(); 1818 if (r < 0) 1819 return r; 1820 *minor = r; 1821 return 0; 1822 } 1823 1824 static const struct block_device_operations dm_blk_dops; 1825 1826 static void dm_wq_work(struct work_struct *work); 1827 1828 static void dm_init_md_queue(struct mapped_device *md) 1829 { 1830 /* 1831 * Request-based dm devices cannot be stacked on top of bio-based dm 1832 * devices. The type of this dm device has not been decided yet. 1833 * The type is decided at the first table loading time. 1834 * To prevent problematic device stacking, clear the queue flag 1835 * for request stacking support until then. 1836 * 1837 * This queue is new, so no concurrency on the queue_flags. 1838 */ 1839 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1840 1841 md->queue->queuedata = md; 1842 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1843 md->queue->backing_dev_info.congested_data = md; 1844 blk_queue_make_request(md->queue, dm_request); 1845 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1846 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1847 } 1848 1849 /* 1850 * Allocate and initialise a blank device with a given minor. 1851 */ 1852 static struct mapped_device *alloc_dev(int minor) 1853 { 1854 int r; 1855 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1856 void *old_md; 1857 1858 if (!md) { 1859 DMWARN("unable to allocate device, out of memory."); 1860 return NULL; 1861 } 1862 1863 if (!try_module_get(THIS_MODULE)) 1864 goto bad_module_get; 1865 1866 /* get a minor number for the dev */ 1867 if (minor == DM_ANY_MINOR) 1868 r = next_free_minor(&minor); 1869 else 1870 r = specific_minor(minor); 1871 if (r < 0) 1872 goto bad_minor; 1873 1874 md->type = DM_TYPE_NONE; 1875 init_rwsem(&md->io_lock); 1876 mutex_init(&md->suspend_lock); 1877 mutex_init(&md->type_lock); 1878 spin_lock_init(&md->deferred_lock); 1879 rwlock_init(&md->map_lock); 1880 atomic_set(&md->holders, 1); 1881 atomic_set(&md->open_count, 0); 1882 atomic_set(&md->event_nr, 0); 1883 atomic_set(&md->uevent_seq, 0); 1884 INIT_LIST_HEAD(&md->uevent_list); 1885 spin_lock_init(&md->uevent_lock); 1886 1887 md->queue = blk_alloc_queue(GFP_KERNEL); 1888 if (!md->queue) 1889 goto bad_queue; 1890 1891 dm_init_md_queue(md); 1892 1893 md->disk = alloc_disk(1); 1894 if (!md->disk) 1895 goto bad_disk; 1896 1897 atomic_set(&md->pending[0], 0); 1898 atomic_set(&md->pending[1], 0); 1899 init_waitqueue_head(&md->wait); 1900 INIT_WORK(&md->work, dm_wq_work); 1901 init_waitqueue_head(&md->eventq); 1902 1903 md->disk->major = _major; 1904 md->disk->first_minor = minor; 1905 md->disk->fops = &dm_blk_dops; 1906 md->disk->queue = md->queue; 1907 md->disk->private_data = md; 1908 sprintf(md->disk->disk_name, "dm-%d", minor); 1909 add_disk(md->disk); 1910 format_dev_t(md->name, MKDEV(_major, minor)); 1911 1912 md->wq = alloc_workqueue("kdmflush", 1913 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1914 if (!md->wq) 1915 goto bad_thread; 1916 1917 md->bdev = bdget_disk(md->disk, 0); 1918 if (!md->bdev) 1919 goto bad_bdev; 1920 1921 bio_init(&md->flush_bio); 1922 md->flush_bio.bi_bdev = md->bdev; 1923 md->flush_bio.bi_rw = WRITE_FLUSH; 1924 1925 /* Populate the mapping, nobody knows we exist yet */ 1926 spin_lock(&_minor_lock); 1927 old_md = idr_replace(&_minor_idr, md, minor); 1928 spin_unlock(&_minor_lock); 1929 1930 BUG_ON(old_md != MINOR_ALLOCED); 1931 1932 return md; 1933 1934 bad_bdev: 1935 destroy_workqueue(md->wq); 1936 bad_thread: 1937 del_gendisk(md->disk); 1938 put_disk(md->disk); 1939 bad_disk: 1940 blk_cleanup_queue(md->queue); 1941 bad_queue: 1942 free_minor(minor); 1943 bad_minor: 1944 module_put(THIS_MODULE); 1945 bad_module_get: 1946 kfree(md); 1947 return NULL; 1948 } 1949 1950 static void unlock_fs(struct mapped_device *md); 1951 1952 static void free_dev(struct mapped_device *md) 1953 { 1954 int minor = MINOR(disk_devt(md->disk)); 1955 1956 unlock_fs(md); 1957 bdput(md->bdev); 1958 destroy_workqueue(md->wq); 1959 if (md->io_pool) 1960 mempool_destroy(md->io_pool); 1961 if (md->bs) 1962 bioset_free(md->bs); 1963 blk_integrity_unregister(md->disk); 1964 del_gendisk(md->disk); 1965 free_minor(minor); 1966 1967 spin_lock(&_minor_lock); 1968 md->disk->private_data = NULL; 1969 spin_unlock(&_minor_lock); 1970 1971 put_disk(md->disk); 1972 blk_cleanup_queue(md->queue); 1973 module_put(THIS_MODULE); 1974 kfree(md); 1975 } 1976 1977 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1978 { 1979 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1980 1981 if (md->io_pool && md->bs) { 1982 /* The md already has necessary mempools. */ 1983 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 1984 /* 1985 * Reload bioset because front_pad may have changed 1986 * because a different table was loaded. 1987 */ 1988 bioset_free(md->bs); 1989 md->bs = p->bs; 1990 p->bs = NULL; 1991 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { 1992 /* 1993 * There's no need to reload with request-based dm 1994 * because the size of front_pad doesn't change. 1995 * Note for future: If you are to reload bioset, 1996 * prep-ed requests in the queue may refer 1997 * to bio from the old bioset, so you must walk 1998 * through the queue to unprep. 1999 */ 2000 } 2001 goto out; 2002 } 2003 2004 BUG_ON(!p || md->io_pool || md->bs); 2005 2006 md->io_pool = p->io_pool; 2007 p->io_pool = NULL; 2008 md->bs = p->bs; 2009 p->bs = NULL; 2010 2011 out: 2012 /* mempool bind completed, now no need any mempools in the table */ 2013 dm_table_free_md_mempools(t); 2014 } 2015 2016 /* 2017 * Bind a table to the device. 2018 */ 2019 static void event_callback(void *context) 2020 { 2021 unsigned long flags; 2022 LIST_HEAD(uevents); 2023 struct mapped_device *md = (struct mapped_device *) context; 2024 2025 spin_lock_irqsave(&md->uevent_lock, flags); 2026 list_splice_init(&md->uevent_list, &uevents); 2027 spin_unlock_irqrestore(&md->uevent_lock, flags); 2028 2029 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2030 2031 atomic_inc(&md->event_nr); 2032 wake_up(&md->eventq); 2033 } 2034 2035 /* 2036 * Protected by md->suspend_lock obtained by dm_swap_table(). 2037 */ 2038 static void __set_size(struct mapped_device *md, sector_t size) 2039 { 2040 set_capacity(md->disk, size); 2041 2042 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2043 } 2044 2045 /* 2046 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2047 * 2048 * If this function returns 0, then the device is either a non-dm 2049 * device without a merge_bvec_fn, or it is a dm device that is 2050 * able to split any bios it receives that are too big. 2051 */ 2052 int dm_queue_merge_is_compulsory(struct request_queue *q) 2053 { 2054 struct mapped_device *dev_md; 2055 2056 if (!q->merge_bvec_fn) 2057 return 0; 2058 2059 if (q->make_request_fn == dm_request) { 2060 dev_md = q->queuedata; 2061 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2062 return 0; 2063 } 2064 2065 return 1; 2066 } 2067 2068 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2069 struct dm_dev *dev, sector_t start, 2070 sector_t len, void *data) 2071 { 2072 struct block_device *bdev = dev->bdev; 2073 struct request_queue *q = bdev_get_queue(bdev); 2074 2075 return dm_queue_merge_is_compulsory(q); 2076 } 2077 2078 /* 2079 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2080 * on the properties of the underlying devices. 2081 */ 2082 static int dm_table_merge_is_optional(struct dm_table *table) 2083 { 2084 unsigned i = 0; 2085 struct dm_target *ti; 2086 2087 while (i < dm_table_get_num_targets(table)) { 2088 ti = dm_table_get_target(table, i++); 2089 2090 if (ti->type->iterate_devices && 2091 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2092 return 0; 2093 } 2094 2095 return 1; 2096 } 2097 2098 /* 2099 * Returns old map, which caller must destroy. 2100 */ 2101 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2102 struct queue_limits *limits) 2103 { 2104 struct dm_table *old_map; 2105 struct request_queue *q = md->queue; 2106 sector_t size; 2107 unsigned long flags; 2108 int merge_is_optional; 2109 2110 size = dm_table_get_size(t); 2111 2112 /* 2113 * Wipe any geometry if the size of the table changed. 2114 */ 2115 if (size != get_capacity(md->disk)) 2116 memset(&md->geometry, 0, sizeof(md->geometry)); 2117 2118 __set_size(md, size); 2119 2120 dm_table_event_callback(t, event_callback, md); 2121 2122 /* 2123 * The queue hasn't been stopped yet, if the old table type wasn't 2124 * for request-based during suspension. So stop it to prevent 2125 * I/O mapping before resume. 2126 * This must be done before setting the queue restrictions, 2127 * because request-based dm may be run just after the setting. 2128 */ 2129 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2130 stop_queue(q); 2131 2132 __bind_mempools(md, t); 2133 2134 merge_is_optional = dm_table_merge_is_optional(t); 2135 2136 write_lock_irqsave(&md->map_lock, flags); 2137 old_map = md->map; 2138 md->map = t; 2139 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2140 2141 dm_table_set_restrictions(t, q, limits); 2142 if (merge_is_optional) 2143 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2144 else 2145 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2146 write_unlock_irqrestore(&md->map_lock, flags); 2147 2148 return old_map; 2149 } 2150 2151 /* 2152 * Returns unbound table for the caller to free. 2153 */ 2154 static struct dm_table *__unbind(struct mapped_device *md) 2155 { 2156 struct dm_table *map = md->map; 2157 unsigned long flags; 2158 2159 if (!map) 2160 return NULL; 2161 2162 dm_table_event_callback(map, NULL, NULL); 2163 write_lock_irqsave(&md->map_lock, flags); 2164 md->map = NULL; 2165 write_unlock_irqrestore(&md->map_lock, flags); 2166 2167 return map; 2168 } 2169 2170 /* 2171 * Constructor for a new device. 2172 */ 2173 int dm_create(int minor, struct mapped_device **result) 2174 { 2175 struct mapped_device *md; 2176 2177 md = alloc_dev(minor); 2178 if (!md) 2179 return -ENXIO; 2180 2181 dm_sysfs_init(md); 2182 2183 *result = md; 2184 return 0; 2185 } 2186 2187 /* 2188 * Functions to manage md->type. 2189 * All are required to hold md->type_lock. 2190 */ 2191 void dm_lock_md_type(struct mapped_device *md) 2192 { 2193 mutex_lock(&md->type_lock); 2194 } 2195 2196 void dm_unlock_md_type(struct mapped_device *md) 2197 { 2198 mutex_unlock(&md->type_lock); 2199 } 2200 2201 void dm_set_md_type(struct mapped_device *md, unsigned type) 2202 { 2203 md->type = type; 2204 } 2205 2206 unsigned dm_get_md_type(struct mapped_device *md) 2207 { 2208 return md->type; 2209 } 2210 2211 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2212 { 2213 return md->immutable_target_type; 2214 } 2215 2216 /* 2217 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2218 */ 2219 static int dm_init_request_based_queue(struct mapped_device *md) 2220 { 2221 struct request_queue *q = NULL; 2222 2223 if (md->queue->elevator) 2224 return 1; 2225 2226 /* Fully initialize the queue */ 2227 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2228 if (!q) 2229 return 0; 2230 2231 md->queue = q; 2232 dm_init_md_queue(md); 2233 blk_queue_softirq_done(md->queue, dm_softirq_done); 2234 blk_queue_prep_rq(md->queue, dm_prep_fn); 2235 blk_queue_lld_busy(md->queue, dm_lld_busy); 2236 2237 elv_register_queue(md->queue); 2238 2239 return 1; 2240 } 2241 2242 /* 2243 * Setup the DM device's queue based on md's type 2244 */ 2245 int dm_setup_md_queue(struct mapped_device *md) 2246 { 2247 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2248 !dm_init_request_based_queue(md)) { 2249 DMWARN("Cannot initialize queue for request-based mapped device"); 2250 return -EINVAL; 2251 } 2252 2253 return 0; 2254 } 2255 2256 static struct mapped_device *dm_find_md(dev_t dev) 2257 { 2258 struct mapped_device *md; 2259 unsigned minor = MINOR(dev); 2260 2261 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2262 return NULL; 2263 2264 spin_lock(&_minor_lock); 2265 2266 md = idr_find(&_minor_idr, minor); 2267 if (md && (md == MINOR_ALLOCED || 2268 (MINOR(disk_devt(dm_disk(md))) != minor) || 2269 dm_deleting_md(md) || 2270 test_bit(DMF_FREEING, &md->flags))) { 2271 md = NULL; 2272 goto out; 2273 } 2274 2275 out: 2276 spin_unlock(&_minor_lock); 2277 2278 return md; 2279 } 2280 2281 struct mapped_device *dm_get_md(dev_t dev) 2282 { 2283 struct mapped_device *md = dm_find_md(dev); 2284 2285 if (md) 2286 dm_get(md); 2287 2288 return md; 2289 } 2290 EXPORT_SYMBOL_GPL(dm_get_md); 2291 2292 void *dm_get_mdptr(struct mapped_device *md) 2293 { 2294 return md->interface_ptr; 2295 } 2296 2297 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2298 { 2299 md->interface_ptr = ptr; 2300 } 2301 2302 void dm_get(struct mapped_device *md) 2303 { 2304 atomic_inc(&md->holders); 2305 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2306 } 2307 2308 const char *dm_device_name(struct mapped_device *md) 2309 { 2310 return md->name; 2311 } 2312 EXPORT_SYMBOL_GPL(dm_device_name); 2313 2314 static void __dm_destroy(struct mapped_device *md, bool wait) 2315 { 2316 struct dm_table *map; 2317 2318 might_sleep(); 2319 2320 spin_lock(&_minor_lock); 2321 map = dm_get_live_table(md); 2322 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2323 set_bit(DMF_FREEING, &md->flags); 2324 spin_unlock(&_minor_lock); 2325 2326 if (!dm_suspended_md(md)) { 2327 dm_table_presuspend_targets(map); 2328 dm_table_postsuspend_targets(map); 2329 } 2330 2331 /* 2332 * Rare, but there may be I/O requests still going to complete, 2333 * for example. Wait for all references to disappear. 2334 * No one should increment the reference count of the mapped_device, 2335 * after the mapped_device state becomes DMF_FREEING. 2336 */ 2337 if (wait) 2338 while (atomic_read(&md->holders)) 2339 msleep(1); 2340 else if (atomic_read(&md->holders)) 2341 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2342 dm_device_name(md), atomic_read(&md->holders)); 2343 2344 dm_sysfs_exit(md); 2345 dm_table_put(map); 2346 dm_table_destroy(__unbind(md)); 2347 free_dev(md); 2348 } 2349 2350 void dm_destroy(struct mapped_device *md) 2351 { 2352 __dm_destroy(md, true); 2353 } 2354 2355 void dm_destroy_immediate(struct mapped_device *md) 2356 { 2357 __dm_destroy(md, false); 2358 } 2359 2360 void dm_put(struct mapped_device *md) 2361 { 2362 atomic_dec(&md->holders); 2363 } 2364 EXPORT_SYMBOL_GPL(dm_put); 2365 2366 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2367 { 2368 int r = 0; 2369 DECLARE_WAITQUEUE(wait, current); 2370 2371 add_wait_queue(&md->wait, &wait); 2372 2373 while (1) { 2374 set_current_state(interruptible); 2375 2376 if (!md_in_flight(md)) 2377 break; 2378 2379 if (interruptible == TASK_INTERRUPTIBLE && 2380 signal_pending(current)) { 2381 r = -EINTR; 2382 break; 2383 } 2384 2385 io_schedule(); 2386 } 2387 set_current_state(TASK_RUNNING); 2388 2389 remove_wait_queue(&md->wait, &wait); 2390 2391 return r; 2392 } 2393 2394 /* 2395 * Process the deferred bios 2396 */ 2397 static void dm_wq_work(struct work_struct *work) 2398 { 2399 struct mapped_device *md = container_of(work, struct mapped_device, 2400 work); 2401 struct bio *c; 2402 2403 down_read(&md->io_lock); 2404 2405 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2406 spin_lock_irq(&md->deferred_lock); 2407 c = bio_list_pop(&md->deferred); 2408 spin_unlock_irq(&md->deferred_lock); 2409 2410 if (!c) 2411 break; 2412 2413 up_read(&md->io_lock); 2414 2415 if (dm_request_based(md)) 2416 generic_make_request(c); 2417 else 2418 __split_and_process_bio(md, c); 2419 2420 down_read(&md->io_lock); 2421 } 2422 2423 up_read(&md->io_lock); 2424 } 2425 2426 static void dm_queue_flush(struct mapped_device *md) 2427 { 2428 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2429 smp_mb__after_clear_bit(); 2430 queue_work(md->wq, &md->work); 2431 } 2432 2433 /* 2434 * Swap in a new table, returning the old one for the caller to destroy. 2435 */ 2436 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2437 { 2438 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2439 struct queue_limits limits; 2440 int r; 2441 2442 mutex_lock(&md->suspend_lock); 2443 2444 /* device must be suspended */ 2445 if (!dm_suspended_md(md)) 2446 goto out; 2447 2448 /* 2449 * If the new table has no data devices, retain the existing limits. 2450 * This helps multipath with queue_if_no_path if all paths disappear, 2451 * then new I/O is queued based on these limits, and then some paths 2452 * reappear. 2453 */ 2454 if (dm_table_has_no_data_devices(table)) { 2455 live_map = dm_get_live_table(md); 2456 if (live_map) 2457 limits = md->queue->limits; 2458 dm_table_put(live_map); 2459 } 2460 2461 if (!live_map) { 2462 r = dm_calculate_queue_limits(table, &limits); 2463 if (r) { 2464 map = ERR_PTR(r); 2465 goto out; 2466 } 2467 } 2468 2469 map = __bind(md, table, &limits); 2470 2471 out: 2472 mutex_unlock(&md->suspend_lock); 2473 return map; 2474 } 2475 2476 /* 2477 * Functions to lock and unlock any filesystem running on the 2478 * device. 2479 */ 2480 static int lock_fs(struct mapped_device *md) 2481 { 2482 int r; 2483 2484 WARN_ON(md->frozen_sb); 2485 2486 md->frozen_sb = freeze_bdev(md->bdev); 2487 if (IS_ERR(md->frozen_sb)) { 2488 r = PTR_ERR(md->frozen_sb); 2489 md->frozen_sb = NULL; 2490 return r; 2491 } 2492 2493 set_bit(DMF_FROZEN, &md->flags); 2494 2495 return 0; 2496 } 2497 2498 static void unlock_fs(struct mapped_device *md) 2499 { 2500 if (!test_bit(DMF_FROZEN, &md->flags)) 2501 return; 2502 2503 thaw_bdev(md->bdev, md->frozen_sb); 2504 md->frozen_sb = NULL; 2505 clear_bit(DMF_FROZEN, &md->flags); 2506 } 2507 2508 /* 2509 * We need to be able to change a mapping table under a mounted 2510 * filesystem. For example we might want to move some data in 2511 * the background. Before the table can be swapped with 2512 * dm_bind_table, dm_suspend must be called to flush any in 2513 * flight bios and ensure that any further io gets deferred. 2514 */ 2515 /* 2516 * Suspend mechanism in request-based dm. 2517 * 2518 * 1. Flush all I/Os by lock_fs() if needed. 2519 * 2. Stop dispatching any I/O by stopping the request_queue. 2520 * 3. Wait for all in-flight I/Os to be completed or requeued. 2521 * 2522 * To abort suspend, start the request_queue. 2523 */ 2524 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2525 { 2526 struct dm_table *map = NULL; 2527 int r = 0; 2528 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2529 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2530 2531 mutex_lock(&md->suspend_lock); 2532 2533 if (dm_suspended_md(md)) { 2534 r = -EINVAL; 2535 goto out_unlock; 2536 } 2537 2538 map = dm_get_live_table(md); 2539 2540 /* 2541 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2542 * This flag is cleared before dm_suspend returns. 2543 */ 2544 if (noflush) 2545 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2546 2547 /* This does not get reverted if there's an error later. */ 2548 dm_table_presuspend_targets(map); 2549 2550 /* 2551 * Flush I/O to the device. 2552 * Any I/O submitted after lock_fs() may not be flushed. 2553 * noflush takes precedence over do_lockfs. 2554 * (lock_fs() flushes I/Os and waits for them to complete.) 2555 */ 2556 if (!noflush && do_lockfs) { 2557 r = lock_fs(md); 2558 if (r) 2559 goto out; 2560 } 2561 2562 /* 2563 * Here we must make sure that no processes are submitting requests 2564 * to target drivers i.e. no one may be executing 2565 * __split_and_process_bio. This is called from dm_request and 2566 * dm_wq_work. 2567 * 2568 * To get all processes out of __split_and_process_bio in dm_request, 2569 * we take the write lock. To prevent any process from reentering 2570 * __split_and_process_bio from dm_request and quiesce the thread 2571 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2572 * flush_workqueue(md->wq). 2573 */ 2574 down_write(&md->io_lock); 2575 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2576 up_write(&md->io_lock); 2577 2578 /* 2579 * Stop md->queue before flushing md->wq in case request-based 2580 * dm defers requests to md->wq from md->queue. 2581 */ 2582 if (dm_request_based(md)) 2583 stop_queue(md->queue); 2584 2585 flush_workqueue(md->wq); 2586 2587 /* 2588 * At this point no more requests are entering target request routines. 2589 * We call dm_wait_for_completion to wait for all existing requests 2590 * to finish. 2591 */ 2592 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2593 2594 down_write(&md->io_lock); 2595 if (noflush) 2596 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2597 up_write(&md->io_lock); 2598 2599 /* were we interrupted ? */ 2600 if (r < 0) { 2601 dm_queue_flush(md); 2602 2603 if (dm_request_based(md)) 2604 start_queue(md->queue); 2605 2606 unlock_fs(md); 2607 goto out; /* pushback list is already flushed, so skip flush */ 2608 } 2609 2610 /* 2611 * If dm_wait_for_completion returned 0, the device is completely 2612 * quiescent now. There is no request-processing activity. All new 2613 * requests are being added to md->deferred list. 2614 */ 2615 2616 set_bit(DMF_SUSPENDED, &md->flags); 2617 2618 dm_table_postsuspend_targets(map); 2619 2620 out: 2621 dm_table_put(map); 2622 2623 out_unlock: 2624 mutex_unlock(&md->suspend_lock); 2625 return r; 2626 } 2627 2628 int dm_resume(struct mapped_device *md) 2629 { 2630 int r = -EINVAL; 2631 struct dm_table *map = NULL; 2632 2633 mutex_lock(&md->suspend_lock); 2634 if (!dm_suspended_md(md)) 2635 goto out; 2636 2637 map = dm_get_live_table(md); 2638 if (!map || !dm_table_get_size(map)) 2639 goto out; 2640 2641 r = dm_table_resume_targets(map); 2642 if (r) 2643 goto out; 2644 2645 dm_queue_flush(md); 2646 2647 /* 2648 * Flushing deferred I/Os must be done after targets are resumed 2649 * so that mapping of targets can work correctly. 2650 * Request-based dm is queueing the deferred I/Os in its request_queue. 2651 */ 2652 if (dm_request_based(md)) 2653 start_queue(md->queue); 2654 2655 unlock_fs(md); 2656 2657 clear_bit(DMF_SUSPENDED, &md->flags); 2658 2659 r = 0; 2660 out: 2661 dm_table_put(map); 2662 mutex_unlock(&md->suspend_lock); 2663 2664 return r; 2665 } 2666 2667 /*----------------------------------------------------------------- 2668 * Event notification. 2669 *---------------------------------------------------------------*/ 2670 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2671 unsigned cookie) 2672 { 2673 char udev_cookie[DM_COOKIE_LENGTH]; 2674 char *envp[] = { udev_cookie, NULL }; 2675 2676 if (!cookie) 2677 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2678 else { 2679 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2680 DM_COOKIE_ENV_VAR_NAME, cookie); 2681 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2682 action, envp); 2683 } 2684 } 2685 2686 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2687 { 2688 return atomic_add_return(1, &md->uevent_seq); 2689 } 2690 2691 uint32_t dm_get_event_nr(struct mapped_device *md) 2692 { 2693 return atomic_read(&md->event_nr); 2694 } 2695 2696 int dm_wait_event(struct mapped_device *md, int event_nr) 2697 { 2698 return wait_event_interruptible(md->eventq, 2699 (event_nr != atomic_read(&md->event_nr))); 2700 } 2701 2702 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2703 { 2704 unsigned long flags; 2705 2706 spin_lock_irqsave(&md->uevent_lock, flags); 2707 list_add(elist, &md->uevent_list); 2708 spin_unlock_irqrestore(&md->uevent_lock, flags); 2709 } 2710 2711 /* 2712 * The gendisk is only valid as long as you have a reference 2713 * count on 'md'. 2714 */ 2715 struct gendisk *dm_disk(struct mapped_device *md) 2716 { 2717 return md->disk; 2718 } 2719 2720 struct kobject *dm_kobject(struct mapped_device *md) 2721 { 2722 return &md->kobj; 2723 } 2724 2725 /* 2726 * struct mapped_device should not be exported outside of dm.c 2727 * so use this check to verify that kobj is part of md structure 2728 */ 2729 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2730 { 2731 struct mapped_device *md; 2732 2733 md = container_of(kobj, struct mapped_device, kobj); 2734 if (&md->kobj != kobj) 2735 return NULL; 2736 2737 if (test_bit(DMF_FREEING, &md->flags) || 2738 dm_deleting_md(md)) 2739 return NULL; 2740 2741 dm_get(md); 2742 return md; 2743 } 2744 2745 int dm_suspended_md(struct mapped_device *md) 2746 { 2747 return test_bit(DMF_SUSPENDED, &md->flags); 2748 } 2749 2750 int dm_suspended(struct dm_target *ti) 2751 { 2752 return dm_suspended_md(dm_table_get_md(ti->table)); 2753 } 2754 EXPORT_SYMBOL_GPL(dm_suspended); 2755 2756 int dm_noflush_suspending(struct dm_target *ti) 2757 { 2758 return __noflush_suspending(dm_table_get_md(ti->table)); 2759 } 2760 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2761 2762 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 2763 { 2764 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 2765 struct kmem_cache *cachep; 2766 unsigned int pool_size; 2767 unsigned int front_pad; 2768 2769 if (!pools) 2770 return NULL; 2771 2772 if (type == DM_TYPE_BIO_BASED) { 2773 cachep = _io_cache; 2774 pool_size = 16; 2775 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2776 } else if (type == DM_TYPE_REQUEST_BASED) { 2777 cachep = _rq_tio_cache; 2778 pool_size = MIN_IOS; 2779 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2780 /* per_bio_data_size is not used. See __bind_mempools(). */ 2781 WARN_ON(per_bio_data_size != 0); 2782 } else 2783 goto out; 2784 2785 pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep); 2786 if (!pools->io_pool) 2787 goto out; 2788 2789 pools->bs = bioset_create(pool_size, front_pad); 2790 if (!pools->bs) 2791 goto out; 2792 2793 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2794 goto out; 2795 2796 return pools; 2797 2798 out: 2799 dm_free_md_mempools(pools); 2800 2801 return NULL; 2802 } 2803 2804 void dm_free_md_mempools(struct dm_md_mempools *pools) 2805 { 2806 if (!pools) 2807 return; 2808 2809 if (pools->io_pool) 2810 mempool_destroy(pools->io_pool); 2811 2812 if (pools->bs) 2813 bioset_free(pools->bs); 2814 2815 kfree(pools); 2816 } 2817 2818 static const struct block_device_operations dm_blk_dops = { 2819 .open = dm_blk_open, 2820 .release = dm_blk_close, 2821 .ioctl = dm_blk_ioctl, 2822 .getgeo = dm_blk_getgeo, 2823 .owner = THIS_MODULE 2824 }; 2825 2826 EXPORT_SYMBOL(dm_get_mapinfo); 2827 2828 /* 2829 * module hooks 2830 */ 2831 module_init(dm_init); 2832 module_exit(dm_exit); 2833 2834 module_param(major, uint, 0); 2835 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2836 MODULE_DESCRIPTION(DM_NAME " driver"); 2837 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2838 MODULE_LICENSE("GPL"); 2839