xref: /linux/drivers/md/dm.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For request-based dm.
67  * One of these is allocated per request.
68  */
69 struct dm_rq_target_io {
70 	struct mapped_device *md;
71 	struct dm_target *ti;
72 	struct request *orig, clone;
73 	int error;
74 	union map_info info;
75 };
76 
77 /*
78  * For request-based dm - the bio clones we allocate are embedded in these
79  * structs.
80  *
81  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82  * the bioset is created - this means the bio has to come at the end of the
83  * struct.
84  */
85 struct dm_rq_clone_bio_info {
86 	struct bio *orig;
87 	struct dm_rq_target_io *tio;
88 	struct bio clone;
89 };
90 
91 union map_info *dm_get_mapinfo(struct bio *bio)
92 {
93 	if (bio && bio->bi_private)
94 		return &((struct dm_target_io *)bio->bi_private)->info;
95 	return NULL;
96 }
97 
98 union map_info *dm_get_rq_mapinfo(struct request *rq)
99 {
100 	if (rq && rq->end_io_data)
101 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
102 	return NULL;
103 }
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
105 
106 #define MINOR_ALLOCED ((void *)-1)
107 
108 /*
109  * Bits for the md->flags field.
110  */
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
113 #define DMF_FROZEN 2
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
118 
119 /*
120  * Work processed by per-device workqueue.
121  */
122 struct mapped_device {
123 	struct rw_semaphore io_lock;
124 	struct mutex suspend_lock;
125 	rwlock_t map_lock;
126 	atomic_t holders;
127 	atomic_t open_count;
128 
129 	unsigned long flags;
130 
131 	struct request_queue *queue;
132 	unsigned type;
133 	/* Protect queue and type against concurrent access. */
134 	struct mutex type_lock;
135 
136 	struct target_type *immutable_target_type;
137 
138 	struct gendisk *disk;
139 	char name[16];
140 
141 	void *interface_ptr;
142 
143 	/*
144 	 * A list of ios that arrived while we were suspended.
145 	 */
146 	atomic_t pending[2];
147 	wait_queue_head_t wait;
148 	struct work_struct work;
149 	struct bio_list deferred;
150 	spinlock_t deferred_lock;
151 
152 	/*
153 	 * Processing queue (flush)
154 	 */
155 	struct workqueue_struct *wq;
156 
157 	/*
158 	 * The current mapping.
159 	 */
160 	struct dm_table *map;
161 
162 	/*
163 	 * io objects are allocated from here.
164 	 */
165 	mempool_t *io_pool;
166 
167 	struct bio_set *bs;
168 
169 	/*
170 	 * Event handling.
171 	 */
172 	atomic_t event_nr;
173 	wait_queue_head_t eventq;
174 	atomic_t uevent_seq;
175 	struct list_head uevent_list;
176 	spinlock_t uevent_lock; /* Protect access to uevent_list */
177 
178 	/*
179 	 * freeze/thaw support require holding onto a super block
180 	 */
181 	struct super_block *frozen_sb;
182 	struct block_device *bdev;
183 
184 	/* forced geometry settings */
185 	struct hd_geometry geometry;
186 
187 	/* sysfs handle */
188 	struct kobject kobj;
189 
190 	/* zero-length flush that will be cloned and submitted to targets */
191 	struct bio flush_bio;
192 };
193 
194 /*
195  * For mempools pre-allocation at the table loading time.
196  */
197 struct dm_md_mempools {
198 	mempool_t *io_pool;
199 	struct bio_set *bs;
200 };
201 
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_rq_tio_cache;
205 
206 static int __init local_init(void)
207 {
208 	int r = -ENOMEM;
209 
210 	/* allocate a slab for the dm_ios */
211 	_io_cache = KMEM_CACHE(dm_io, 0);
212 	if (!_io_cache)
213 		return r;
214 
215 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
216 	if (!_rq_tio_cache)
217 		goto out_free_io_cache;
218 
219 	r = dm_uevent_init();
220 	if (r)
221 		goto out_free_rq_tio_cache;
222 
223 	_major = major;
224 	r = register_blkdev(_major, _name);
225 	if (r < 0)
226 		goto out_uevent_exit;
227 
228 	if (!_major)
229 		_major = r;
230 
231 	return 0;
232 
233 out_uevent_exit:
234 	dm_uevent_exit();
235 out_free_rq_tio_cache:
236 	kmem_cache_destroy(_rq_tio_cache);
237 out_free_io_cache:
238 	kmem_cache_destroy(_io_cache);
239 
240 	return r;
241 }
242 
243 static void local_exit(void)
244 {
245 	kmem_cache_destroy(_rq_tio_cache);
246 	kmem_cache_destroy(_io_cache);
247 	unregister_blkdev(_major, _name);
248 	dm_uevent_exit();
249 
250 	_major = 0;
251 
252 	DMINFO("cleaned up");
253 }
254 
255 static int (*_inits[])(void) __initdata = {
256 	local_init,
257 	dm_target_init,
258 	dm_linear_init,
259 	dm_stripe_init,
260 	dm_io_init,
261 	dm_kcopyd_init,
262 	dm_interface_init,
263 };
264 
265 static void (*_exits[])(void) = {
266 	local_exit,
267 	dm_target_exit,
268 	dm_linear_exit,
269 	dm_stripe_exit,
270 	dm_io_exit,
271 	dm_kcopyd_exit,
272 	dm_interface_exit,
273 };
274 
275 static int __init dm_init(void)
276 {
277 	const int count = ARRAY_SIZE(_inits);
278 
279 	int r, i;
280 
281 	for (i = 0; i < count; i++) {
282 		r = _inits[i]();
283 		if (r)
284 			goto bad;
285 	}
286 
287 	return 0;
288 
289       bad:
290 	while (i--)
291 		_exits[i]();
292 
293 	return r;
294 }
295 
296 static void __exit dm_exit(void)
297 {
298 	int i = ARRAY_SIZE(_exits);
299 
300 	while (i--)
301 		_exits[i]();
302 
303 	/*
304 	 * Should be empty by this point.
305 	 */
306 	idr_destroy(&_minor_idr);
307 }
308 
309 /*
310  * Block device functions
311  */
312 int dm_deleting_md(struct mapped_device *md)
313 {
314 	return test_bit(DMF_DELETING, &md->flags);
315 }
316 
317 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
318 {
319 	struct mapped_device *md;
320 
321 	spin_lock(&_minor_lock);
322 
323 	md = bdev->bd_disk->private_data;
324 	if (!md)
325 		goto out;
326 
327 	if (test_bit(DMF_FREEING, &md->flags) ||
328 	    dm_deleting_md(md)) {
329 		md = NULL;
330 		goto out;
331 	}
332 
333 	dm_get(md);
334 	atomic_inc(&md->open_count);
335 
336 out:
337 	spin_unlock(&_minor_lock);
338 
339 	return md ? 0 : -ENXIO;
340 }
341 
342 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
343 {
344 	struct mapped_device *md = disk->private_data;
345 
346 	spin_lock(&_minor_lock);
347 
348 	atomic_dec(&md->open_count);
349 	dm_put(md);
350 
351 	spin_unlock(&_minor_lock);
352 
353 	return 0;
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md))
371 		r = -EBUSY;
372 	else
373 		set_bit(DMF_DELETING, &md->flags);
374 
375 	spin_unlock(&_minor_lock);
376 
377 	return r;
378 }
379 
380 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
381 {
382 	struct mapped_device *md = bdev->bd_disk->private_data;
383 
384 	return dm_get_geometry(md, geo);
385 }
386 
387 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
388 			unsigned int cmd, unsigned long arg)
389 {
390 	struct mapped_device *md = bdev->bd_disk->private_data;
391 	struct dm_table *map = dm_get_live_table(md);
392 	struct dm_target *tgt;
393 	int r = -ENOTTY;
394 
395 	if (!map || !dm_table_get_size(map))
396 		goto out;
397 
398 	/* We only support devices that have a single target */
399 	if (dm_table_get_num_targets(map) != 1)
400 		goto out;
401 
402 	tgt = dm_table_get_target(map, 0);
403 
404 	if (dm_suspended_md(md)) {
405 		r = -EAGAIN;
406 		goto out;
407 	}
408 
409 	if (tgt->type->ioctl)
410 		r = tgt->type->ioctl(tgt, cmd, arg);
411 
412 out:
413 	dm_table_put(map);
414 
415 	return r;
416 }
417 
418 static struct dm_io *alloc_io(struct mapped_device *md)
419 {
420 	return mempool_alloc(md->io_pool, GFP_NOIO);
421 }
422 
423 static void free_io(struct mapped_device *md, struct dm_io *io)
424 {
425 	mempool_free(io, md->io_pool);
426 }
427 
428 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
429 {
430 	bio_put(&tio->clone);
431 }
432 
433 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
434 					    gfp_t gfp_mask)
435 {
436 	return mempool_alloc(md->io_pool, gfp_mask);
437 }
438 
439 static void free_rq_tio(struct dm_rq_target_io *tio)
440 {
441 	mempool_free(tio, tio->md->io_pool);
442 }
443 
444 static int md_in_flight(struct mapped_device *md)
445 {
446 	return atomic_read(&md->pending[READ]) +
447 	       atomic_read(&md->pending[WRITE]);
448 }
449 
450 static void start_io_acct(struct dm_io *io)
451 {
452 	struct mapped_device *md = io->md;
453 	int cpu;
454 	int rw = bio_data_dir(io->bio);
455 
456 	io->start_time = jiffies;
457 
458 	cpu = part_stat_lock();
459 	part_round_stats(cpu, &dm_disk(md)->part0);
460 	part_stat_unlock();
461 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
462 		atomic_inc_return(&md->pending[rw]));
463 }
464 
465 static void end_io_acct(struct dm_io *io)
466 {
467 	struct mapped_device *md = io->md;
468 	struct bio *bio = io->bio;
469 	unsigned long duration = jiffies - io->start_time;
470 	int pending, cpu;
471 	int rw = bio_data_dir(bio);
472 
473 	cpu = part_stat_lock();
474 	part_round_stats(cpu, &dm_disk(md)->part0);
475 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
476 	part_stat_unlock();
477 
478 	/*
479 	 * After this is decremented the bio must not be touched if it is
480 	 * a flush.
481 	 */
482 	pending = atomic_dec_return(&md->pending[rw]);
483 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
484 	pending += atomic_read(&md->pending[rw^0x1]);
485 
486 	/* nudge anyone waiting on suspend queue */
487 	if (!pending)
488 		wake_up(&md->wait);
489 }
490 
491 /*
492  * Add the bio to the list of deferred io.
493  */
494 static void queue_io(struct mapped_device *md, struct bio *bio)
495 {
496 	unsigned long flags;
497 
498 	spin_lock_irqsave(&md->deferred_lock, flags);
499 	bio_list_add(&md->deferred, bio);
500 	spin_unlock_irqrestore(&md->deferred_lock, flags);
501 	queue_work(md->wq, &md->work);
502 }
503 
504 /*
505  * Everyone (including functions in this file), should use this
506  * function to access the md->map field, and make sure they call
507  * dm_table_put() when finished.
508  */
509 struct dm_table *dm_get_live_table(struct mapped_device *md)
510 {
511 	struct dm_table *t;
512 	unsigned long flags;
513 
514 	read_lock_irqsave(&md->map_lock, flags);
515 	t = md->map;
516 	if (t)
517 		dm_table_get(t);
518 	read_unlock_irqrestore(&md->map_lock, flags);
519 
520 	return t;
521 }
522 
523 /*
524  * Get the geometry associated with a dm device
525  */
526 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
527 {
528 	*geo = md->geometry;
529 
530 	return 0;
531 }
532 
533 /*
534  * Set the geometry of a device.
535  */
536 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
537 {
538 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
539 
540 	if (geo->start > sz) {
541 		DMWARN("Start sector is beyond the geometry limits.");
542 		return -EINVAL;
543 	}
544 
545 	md->geometry = *geo;
546 
547 	return 0;
548 }
549 
550 /*-----------------------------------------------------------------
551  * CRUD START:
552  *   A more elegant soln is in the works that uses the queue
553  *   merge fn, unfortunately there are a couple of changes to
554  *   the block layer that I want to make for this.  So in the
555  *   interests of getting something for people to use I give
556  *   you this clearly demarcated crap.
557  *---------------------------------------------------------------*/
558 
559 static int __noflush_suspending(struct mapped_device *md)
560 {
561 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
562 }
563 
564 /*
565  * Decrements the number of outstanding ios that a bio has been
566  * cloned into, completing the original io if necc.
567  */
568 static void dec_pending(struct dm_io *io, int error)
569 {
570 	unsigned long flags;
571 	int io_error;
572 	struct bio *bio;
573 	struct mapped_device *md = io->md;
574 
575 	/* Push-back supersedes any I/O errors */
576 	if (unlikely(error)) {
577 		spin_lock_irqsave(&io->endio_lock, flags);
578 		if (!(io->error > 0 && __noflush_suspending(md)))
579 			io->error = error;
580 		spin_unlock_irqrestore(&io->endio_lock, flags);
581 	}
582 
583 	if (atomic_dec_and_test(&io->io_count)) {
584 		if (io->error == DM_ENDIO_REQUEUE) {
585 			/*
586 			 * Target requested pushing back the I/O.
587 			 */
588 			spin_lock_irqsave(&md->deferred_lock, flags);
589 			if (__noflush_suspending(md))
590 				bio_list_add_head(&md->deferred, io->bio);
591 			else
592 				/* noflush suspend was interrupted. */
593 				io->error = -EIO;
594 			spin_unlock_irqrestore(&md->deferred_lock, flags);
595 		}
596 
597 		io_error = io->error;
598 		bio = io->bio;
599 		end_io_acct(io);
600 		free_io(md, io);
601 
602 		if (io_error == DM_ENDIO_REQUEUE)
603 			return;
604 
605 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
606 			/*
607 			 * Preflush done for flush with data, reissue
608 			 * without REQ_FLUSH.
609 			 */
610 			bio->bi_rw &= ~REQ_FLUSH;
611 			queue_io(md, bio);
612 		} else {
613 			/* done with normal IO or empty flush */
614 			trace_block_bio_complete(md->queue, bio, io_error);
615 			bio_endio(bio, io_error);
616 		}
617 	}
618 }
619 
620 static void clone_endio(struct bio *bio, int error)
621 {
622 	int r = 0;
623 	struct dm_target_io *tio = bio->bi_private;
624 	struct dm_io *io = tio->io;
625 	struct mapped_device *md = tio->io->md;
626 	dm_endio_fn endio = tio->ti->type->end_io;
627 
628 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
629 		error = -EIO;
630 
631 	if (endio) {
632 		r = endio(tio->ti, bio, error);
633 		if (r < 0 || r == DM_ENDIO_REQUEUE)
634 			/*
635 			 * error and requeue request are handled
636 			 * in dec_pending().
637 			 */
638 			error = r;
639 		else if (r == DM_ENDIO_INCOMPLETE)
640 			/* The target will handle the io */
641 			return;
642 		else if (r) {
643 			DMWARN("unimplemented target endio return value: %d", r);
644 			BUG();
645 		}
646 	}
647 
648 	free_tio(md, tio);
649 	dec_pending(io, error);
650 }
651 
652 /*
653  * Partial completion handling for request-based dm
654  */
655 static void end_clone_bio(struct bio *clone, int error)
656 {
657 	struct dm_rq_clone_bio_info *info = clone->bi_private;
658 	struct dm_rq_target_io *tio = info->tio;
659 	struct bio *bio = info->orig;
660 	unsigned int nr_bytes = info->orig->bi_size;
661 
662 	bio_put(clone);
663 
664 	if (tio->error)
665 		/*
666 		 * An error has already been detected on the request.
667 		 * Once error occurred, just let clone->end_io() handle
668 		 * the remainder.
669 		 */
670 		return;
671 	else if (error) {
672 		/*
673 		 * Don't notice the error to the upper layer yet.
674 		 * The error handling decision is made by the target driver,
675 		 * when the request is completed.
676 		 */
677 		tio->error = error;
678 		return;
679 	}
680 
681 	/*
682 	 * I/O for the bio successfully completed.
683 	 * Notice the data completion to the upper layer.
684 	 */
685 
686 	/*
687 	 * bios are processed from the head of the list.
688 	 * So the completing bio should always be rq->bio.
689 	 * If it's not, something wrong is happening.
690 	 */
691 	if (tio->orig->bio != bio)
692 		DMERR("bio completion is going in the middle of the request");
693 
694 	/*
695 	 * Update the original request.
696 	 * Do not use blk_end_request() here, because it may complete
697 	 * the original request before the clone, and break the ordering.
698 	 */
699 	blk_update_request(tio->orig, 0, nr_bytes);
700 }
701 
702 /*
703  * Don't touch any member of the md after calling this function because
704  * the md may be freed in dm_put() at the end of this function.
705  * Or do dm_get() before calling this function and dm_put() later.
706  */
707 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
708 {
709 	atomic_dec(&md->pending[rw]);
710 
711 	/* nudge anyone waiting on suspend queue */
712 	if (!md_in_flight(md))
713 		wake_up(&md->wait);
714 
715 	/*
716 	 * Run this off this callpath, as drivers could invoke end_io while
717 	 * inside their request_fn (and holding the queue lock). Calling
718 	 * back into ->request_fn() could deadlock attempting to grab the
719 	 * queue lock again.
720 	 */
721 	if (run_queue)
722 		blk_run_queue_async(md->queue);
723 
724 	/*
725 	 * dm_put() must be at the end of this function. See the comment above
726 	 */
727 	dm_put(md);
728 }
729 
730 static void free_rq_clone(struct request *clone)
731 {
732 	struct dm_rq_target_io *tio = clone->end_io_data;
733 
734 	blk_rq_unprep_clone(clone);
735 	free_rq_tio(tio);
736 }
737 
738 /*
739  * Complete the clone and the original request.
740  * Must be called without queue lock.
741  */
742 static void dm_end_request(struct request *clone, int error)
743 {
744 	int rw = rq_data_dir(clone);
745 	struct dm_rq_target_io *tio = clone->end_io_data;
746 	struct mapped_device *md = tio->md;
747 	struct request *rq = tio->orig;
748 
749 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
750 		rq->errors = clone->errors;
751 		rq->resid_len = clone->resid_len;
752 
753 		if (rq->sense)
754 			/*
755 			 * We are using the sense buffer of the original
756 			 * request.
757 			 * So setting the length of the sense data is enough.
758 			 */
759 			rq->sense_len = clone->sense_len;
760 	}
761 
762 	free_rq_clone(clone);
763 	blk_end_request_all(rq, error);
764 	rq_completed(md, rw, true);
765 }
766 
767 static void dm_unprep_request(struct request *rq)
768 {
769 	struct request *clone = rq->special;
770 
771 	rq->special = NULL;
772 	rq->cmd_flags &= ~REQ_DONTPREP;
773 
774 	free_rq_clone(clone);
775 }
776 
777 /*
778  * Requeue the original request of a clone.
779  */
780 void dm_requeue_unmapped_request(struct request *clone)
781 {
782 	int rw = rq_data_dir(clone);
783 	struct dm_rq_target_io *tio = clone->end_io_data;
784 	struct mapped_device *md = tio->md;
785 	struct request *rq = tio->orig;
786 	struct request_queue *q = rq->q;
787 	unsigned long flags;
788 
789 	dm_unprep_request(rq);
790 
791 	spin_lock_irqsave(q->queue_lock, flags);
792 	blk_requeue_request(q, rq);
793 	spin_unlock_irqrestore(q->queue_lock, flags);
794 
795 	rq_completed(md, rw, 0);
796 }
797 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
798 
799 static void __stop_queue(struct request_queue *q)
800 {
801 	blk_stop_queue(q);
802 }
803 
804 static void stop_queue(struct request_queue *q)
805 {
806 	unsigned long flags;
807 
808 	spin_lock_irqsave(q->queue_lock, flags);
809 	__stop_queue(q);
810 	spin_unlock_irqrestore(q->queue_lock, flags);
811 }
812 
813 static void __start_queue(struct request_queue *q)
814 {
815 	if (blk_queue_stopped(q))
816 		blk_start_queue(q);
817 }
818 
819 static void start_queue(struct request_queue *q)
820 {
821 	unsigned long flags;
822 
823 	spin_lock_irqsave(q->queue_lock, flags);
824 	__start_queue(q);
825 	spin_unlock_irqrestore(q->queue_lock, flags);
826 }
827 
828 static void dm_done(struct request *clone, int error, bool mapped)
829 {
830 	int r = error;
831 	struct dm_rq_target_io *tio = clone->end_io_data;
832 	dm_request_endio_fn rq_end_io = NULL;
833 
834 	if (tio->ti) {
835 		rq_end_io = tio->ti->type->rq_end_io;
836 
837 		if (mapped && rq_end_io)
838 			r = rq_end_io(tio->ti, clone, error, &tio->info);
839 	}
840 
841 	if (r <= 0)
842 		/* The target wants to complete the I/O */
843 		dm_end_request(clone, r);
844 	else if (r == DM_ENDIO_INCOMPLETE)
845 		/* The target will handle the I/O */
846 		return;
847 	else if (r == DM_ENDIO_REQUEUE)
848 		/* The target wants to requeue the I/O */
849 		dm_requeue_unmapped_request(clone);
850 	else {
851 		DMWARN("unimplemented target endio return value: %d", r);
852 		BUG();
853 	}
854 }
855 
856 /*
857  * Request completion handler for request-based dm
858  */
859 static void dm_softirq_done(struct request *rq)
860 {
861 	bool mapped = true;
862 	struct request *clone = rq->completion_data;
863 	struct dm_rq_target_io *tio = clone->end_io_data;
864 
865 	if (rq->cmd_flags & REQ_FAILED)
866 		mapped = false;
867 
868 	dm_done(clone, tio->error, mapped);
869 }
870 
871 /*
872  * Complete the clone and the original request with the error status
873  * through softirq context.
874  */
875 static void dm_complete_request(struct request *clone, int error)
876 {
877 	struct dm_rq_target_io *tio = clone->end_io_data;
878 	struct request *rq = tio->orig;
879 
880 	tio->error = error;
881 	rq->completion_data = clone;
882 	blk_complete_request(rq);
883 }
884 
885 /*
886  * Complete the not-mapped clone and the original request with the error status
887  * through softirq context.
888  * Target's rq_end_io() function isn't called.
889  * This may be used when the target's map_rq() function fails.
890  */
891 void dm_kill_unmapped_request(struct request *clone, int error)
892 {
893 	struct dm_rq_target_io *tio = clone->end_io_data;
894 	struct request *rq = tio->orig;
895 
896 	rq->cmd_flags |= REQ_FAILED;
897 	dm_complete_request(clone, error);
898 }
899 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
900 
901 /*
902  * Called with the queue lock held
903  */
904 static void end_clone_request(struct request *clone, int error)
905 {
906 	/*
907 	 * For just cleaning up the information of the queue in which
908 	 * the clone was dispatched.
909 	 * The clone is *NOT* freed actually here because it is alloced from
910 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
911 	 */
912 	__blk_put_request(clone->q, clone);
913 
914 	/*
915 	 * Actual request completion is done in a softirq context which doesn't
916 	 * hold the queue lock.  Otherwise, deadlock could occur because:
917 	 *     - another request may be submitted by the upper level driver
918 	 *       of the stacking during the completion
919 	 *     - the submission which requires queue lock may be done
920 	 *       against this queue
921 	 */
922 	dm_complete_request(clone, error);
923 }
924 
925 /*
926  * Return maximum size of I/O possible at the supplied sector up to the current
927  * target boundary.
928  */
929 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
930 {
931 	sector_t target_offset = dm_target_offset(ti, sector);
932 
933 	return ti->len - target_offset;
934 }
935 
936 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
937 {
938 	sector_t len = max_io_len_target_boundary(sector, ti);
939 	sector_t offset, max_len;
940 
941 	/*
942 	 * Does the target need to split even further?
943 	 */
944 	if (ti->max_io_len) {
945 		offset = dm_target_offset(ti, sector);
946 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
947 			max_len = sector_div(offset, ti->max_io_len);
948 		else
949 			max_len = offset & (ti->max_io_len - 1);
950 		max_len = ti->max_io_len - max_len;
951 
952 		if (len > max_len)
953 			len = max_len;
954 	}
955 
956 	return len;
957 }
958 
959 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
960 {
961 	if (len > UINT_MAX) {
962 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
963 		      (unsigned long long)len, UINT_MAX);
964 		ti->error = "Maximum size of target IO is too large";
965 		return -EINVAL;
966 	}
967 
968 	ti->max_io_len = (uint32_t) len;
969 
970 	return 0;
971 }
972 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
973 
974 static void __map_bio(struct dm_target_io *tio)
975 {
976 	int r;
977 	sector_t sector;
978 	struct mapped_device *md;
979 	struct bio *clone = &tio->clone;
980 	struct dm_target *ti = tio->ti;
981 
982 	clone->bi_end_io = clone_endio;
983 	clone->bi_private = tio;
984 
985 	/*
986 	 * Map the clone.  If r == 0 we don't need to do
987 	 * anything, the target has assumed ownership of
988 	 * this io.
989 	 */
990 	atomic_inc(&tio->io->io_count);
991 	sector = clone->bi_sector;
992 	r = ti->type->map(ti, clone);
993 	if (r == DM_MAPIO_REMAPPED) {
994 		/* the bio has been remapped so dispatch it */
995 
996 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
997 				      tio->io->bio->bi_bdev->bd_dev, sector);
998 
999 		generic_make_request(clone);
1000 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1001 		/* error the io and bail out, or requeue it if needed */
1002 		md = tio->io->md;
1003 		dec_pending(tio->io, r);
1004 		free_tio(md, tio);
1005 	} else if (r) {
1006 		DMWARN("unimplemented target map return value: %d", r);
1007 		BUG();
1008 	}
1009 }
1010 
1011 struct clone_info {
1012 	struct mapped_device *md;
1013 	struct dm_table *map;
1014 	struct bio *bio;
1015 	struct dm_io *io;
1016 	sector_t sector;
1017 	sector_t sector_count;
1018 	unsigned short idx;
1019 };
1020 
1021 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1022 {
1023 	bio->bi_sector = sector;
1024 	bio->bi_size = to_bytes(len);
1025 }
1026 
1027 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1028 {
1029 	bio->bi_idx = idx;
1030 	bio->bi_vcnt = idx + bv_count;
1031 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1032 }
1033 
1034 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1035 				unsigned short idx, unsigned len, unsigned offset,
1036 				unsigned trim)
1037 {
1038 	if (!bio_integrity(bio))
1039 		return;
1040 
1041 	bio_integrity_clone(clone, bio, GFP_NOIO);
1042 
1043 	if (trim)
1044 		bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1045 }
1046 
1047 /*
1048  * Creates a little bio that just does part of a bvec.
1049  */
1050 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1051 			    sector_t sector, unsigned short idx,
1052 			    unsigned offset, unsigned len)
1053 {
1054 	struct bio *clone = &tio->clone;
1055 	struct bio_vec *bv = bio->bi_io_vec + idx;
1056 
1057 	*clone->bi_io_vec = *bv;
1058 
1059 	bio_setup_sector(clone, sector, len);
1060 
1061 	clone->bi_bdev = bio->bi_bdev;
1062 	clone->bi_rw = bio->bi_rw;
1063 	clone->bi_vcnt = 1;
1064 	clone->bi_io_vec->bv_offset = offset;
1065 	clone->bi_io_vec->bv_len = clone->bi_size;
1066 	clone->bi_flags |= 1 << BIO_CLONED;
1067 
1068 	clone_bio_integrity(bio, clone, idx, len, offset, 1);
1069 }
1070 
1071 /*
1072  * Creates a bio that consists of range of complete bvecs.
1073  */
1074 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1075 		      sector_t sector, unsigned short idx,
1076 		      unsigned short bv_count, unsigned len)
1077 {
1078 	struct bio *clone = &tio->clone;
1079 	unsigned trim = 0;
1080 
1081 	__bio_clone(clone, bio);
1082 	bio_setup_sector(clone, sector, len);
1083 	bio_setup_bv(clone, idx, bv_count);
1084 
1085 	if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1086 		trim = 1;
1087 	clone_bio_integrity(bio, clone, idx, len, 0, trim);
1088 }
1089 
1090 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1091 				      struct dm_target *ti, int nr_iovecs,
1092 				      unsigned target_bio_nr)
1093 {
1094 	struct dm_target_io *tio;
1095 	struct bio *clone;
1096 
1097 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1098 	tio = container_of(clone, struct dm_target_io, clone);
1099 
1100 	tio->io = ci->io;
1101 	tio->ti = ti;
1102 	memset(&tio->info, 0, sizeof(tio->info));
1103 	tio->target_bio_nr = target_bio_nr;
1104 
1105 	return tio;
1106 }
1107 
1108 static void __clone_and_map_simple_bio(struct clone_info *ci,
1109 				       struct dm_target *ti,
1110 				       unsigned target_bio_nr, sector_t len)
1111 {
1112 	struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1113 	struct bio *clone = &tio->clone;
1114 
1115 	/*
1116 	 * Discard requests require the bio's inline iovecs be initialized.
1117 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1118 	 * and discard, so no need for concern about wasted bvec allocations.
1119 	 */
1120 	 __bio_clone(clone, ci->bio);
1121 	if (len)
1122 		bio_setup_sector(clone, ci->sector, len);
1123 
1124 	__map_bio(tio);
1125 }
1126 
1127 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1128 				  unsigned num_bios, sector_t len)
1129 {
1130 	unsigned target_bio_nr;
1131 
1132 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1133 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1134 }
1135 
1136 static int __send_empty_flush(struct clone_info *ci)
1137 {
1138 	unsigned target_nr = 0;
1139 	struct dm_target *ti;
1140 
1141 	BUG_ON(bio_has_data(ci->bio));
1142 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1143 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1144 
1145 	return 0;
1146 }
1147 
1148 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1149 				     sector_t sector, int nr_iovecs,
1150 				     unsigned short idx, unsigned short bv_count,
1151 				     unsigned offset, unsigned len,
1152 				     unsigned split_bvec)
1153 {
1154 	struct bio *bio = ci->bio;
1155 	struct dm_target_io *tio;
1156 	unsigned target_bio_nr;
1157 	unsigned num_target_bios = 1;
1158 
1159 	/*
1160 	 * Does the target want to receive duplicate copies of the bio?
1161 	 */
1162 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1163 		num_target_bios = ti->num_write_bios(ti, bio);
1164 
1165 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1166 		tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1167 		if (split_bvec)
1168 			clone_split_bio(tio, bio, sector, idx, offset, len);
1169 		else
1170 			clone_bio(tio, bio, sector, idx, bv_count, len);
1171 		__map_bio(tio);
1172 	}
1173 }
1174 
1175 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1176 
1177 static unsigned get_num_discard_bios(struct dm_target *ti)
1178 {
1179 	return ti->num_discard_bios;
1180 }
1181 
1182 static unsigned get_num_write_same_bios(struct dm_target *ti)
1183 {
1184 	return ti->num_write_same_bios;
1185 }
1186 
1187 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1188 
1189 static bool is_split_required_for_discard(struct dm_target *ti)
1190 {
1191 	return ti->split_discard_bios;
1192 }
1193 
1194 static int __send_changing_extent_only(struct clone_info *ci,
1195 				       get_num_bios_fn get_num_bios,
1196 				       is_split_required_fn is_split_required)
1197 {
1198 	struct dm_target *ti;
1199 	sector_t len;
1200 	unsigned num_bios;
1201 
1202 	do {
1203 		ti = dm_table_find_target(ci->map, ci->sector);
1204 		if (!dm_target_is_valid(ti))
1205 			return -EIO;
1206 
1207 		/*
1208 		 * Even though the device advertised support for this type of
1209 		 * request, that does not mean every target supports it, and
1210 		 * reconfiguration might also have changed that since the
1211 		 * check was performed.
1212 		 */
1213 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1214 		if (!num_bios)
1215 			return -EOPNOTSUPP;
1216 
1217 		if (is_split_required && !is_split_required(ti))
1218 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1219 		else
1220 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1221 
1222 		__send_duplicate_bios(ci, ti, num_bios, len);
1223 
1224 		ci->sector += len;
1225 	} while (ci->sector_count -= len);
1226 
1227 	return 0;
1228 }
1229 
1230 static int __send_discard(struct clone_info *ci)
1231 {
1232 	return __send_changing_extent_only(ci, get_num_discard_bios,
1233 					   is_split_required_for_discard);
1234 }
1235 
1236 static int __send_write_same(struct clone_info *ci)
1237 {
1238 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1239 }
1240 
1241 /*
1242  * Find maximum number of sectors / bvecs we can process with a single bio.
1243  */
1244 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1245 {
1246 	struct bio *bio = ci->bio;
1247 	sector_t bv_len, total_len = 0;
1248 
1249 	for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1250 		bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1251 
1252 		if (bv_len > max)
1253 			break;
1254 
1255 		max -= bv_len;
1256 		total_len += bv_len;
1257 	}
1258 
1259 	return total_len;
1260 }
1261 
1262 static int __split_bvec_across_targets(struct clone_info *ci,
1263 				       struct dm_target *ti, sector_t max)
1264 {
1265 	struct bio *bio = ci->bio;
1266 	struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1267 	sector_t remaining = to_sector(bv->bv_len);
1268 	unsigned offset = 0;
1269 	sector_t len;
1270 
1271 	do {
1272 		if (offset) {
1273 			ti = dm_table_find_target(ci->map, ci->sector);
1274 			if (!dm_target_is_valid(ti))
1275 				return -EIO;
1276 
1277 			max = max_io_len(ci->sector, ti);
1278 		}
1279 
1280 		len = min(remaining, max);
1281 
1282 		__clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1283 					 bv->bv_offset + offset, len, 1);
1284 
1285 		ci->sector += len;
1286 		ci->sector_count -= len;
1287 		offset += to_bytes(len);
1288 	} while (remaining -= len);
1289 
1290 	ci->idx++;
1291 
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Select the correct strategy for processing a non-flush bio.
1297  */
1298 static int __split_and_process_non_flush(struct clone_info *ci)
1299 {
1300 	struct bio *bio = ci->bio;
1301 	struct dm_target *ti;
1302 	sector_t len, max;
1303 	int idx;
1304 
1305 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1306 		return __send_discard(ci);
1307 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1308 		return __send_write_same(ci);
1309 
1310 	ti = dm_table_find_target(ci->map, ci->sector);
1311 	if (!dm_target_is_valid(ti))
1312 		return -EIO;
1313 
1314 	max = max_io_len(ci->sector, ti);
1315 
1316 	/*
1317 	 * Optimise for the simple case where we can do all of
1318 	 * the remaining io with a single clone.
1319 	 */
1320 	if (ci->sector_count <= max) {
1321 		__clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1322 					 ci->idx, bio->bi_vcnt - ci->idx, 0,
1323 					 ci->sector_count, 0);
1324 		ci->sector_count = 0;
1325 		return 0;
1326 	}
1327 
1328 	/*
1329 	 * There are some bvecs that don't span targets.
1330 	 * Do as many of these as possible.
1331 	 */
1332 	if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1333 		len = __len_within_target(ci, max, &idx);
1334 
1335 		__clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1336 					 ci->idx, idx - ci->idx, 0, len, 0);
1337 
1338 		ci->sector += len;
1339 		ci->sector_count -= len;
1340 		ci->idx = idx;
1341 
1342 		return 0;
1343 	}
1344 
1345 	/*
1346 	 * Handle a bvec that must be split between two or more targets.
1347 	 */
1348 	return __split_bvec_across_targets(ci, ti, max);
1349 }
1350 
1351 /*
1352  * Entry point to split a bio into clones and submit them to the targets.
1353  */
1354 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1355 {
1356 	struct clone_info ci;
1357 	int error = 0;
1358 
1359 	ci.map = dm_get_live_table(md);
1360 	if (unlikely(!ci.map)) {
1361 		bio_io_error(bio);
1362 		return;
1363 	}
1364 
1365 	ci.md = md;
1366 	ci.io = alloc_io(md);
1367 	ci.io->error = 0;
1368 	atomic_set(&ci.io->io_count, 1);
1369 	ci.io->bio = bio;
1370 	ci.io->md = md;
1371 	spin_lock_init(&ci.io->endio_lock);
1372 	ci.sector = bio->bi_sector;
1373 	ci.idx = bio->bi_idx;
1374 
1375 	start_io_acct(ci.io);
1376 
1377 	if (bio->bi_rw & REQ_FLUSH) {
1378 		ci.bio = &ci.md->flush_bio;
1379 		ci.sector_count = 0;
1380 		error = __send_empty_flush(&ci);
1381 		/* dec_pending submits any data associated with flush */
1382 	} else {
1383 		ci.bio = bio;
1384 		ci.sector_count = bio_sectors(bio);
1385 		while (ci.sector_count && !error)
1386 			error = __split_and_process_non_flush(&ci);
1387 	}
1388 
1389 	/* drop the extra reference count */
1390 	dec_pending(ci.io, error);
1391 	dm_table_put(ci.map);
1392 }
1393 /*-----------------------------------------------------------------
1394  * CRUD END
1395  *---------------------------------------------------------------*/
1396 
1397 static int dm_merge_bvec(struct request_queue *q,
1398 			 struct bvec_merge_data *bvm,
1399 			 struct bio_vec *biovec)
1400 {
1401 	struct mapped_device *md = q->queuedata;
1402 	struct dm_table *map = dm_get_live_table(md);
1403 	struct dm_target *ti;
1404 	sector_t max_sectors;
1405 	int max_size = 0;
1406 
1407 	if (unlikely(!map))
1408 		goto out;
1409 
1410 	ti = dm_table_find_target(map, bvm->bi_sector);
1411 	if (!dm_target_is_valid(ti))
1412 		goto out_table;
1413 
1414 	/*
1415 	 * Find maximum amount of I/O that won't need splitting
1416 	 */
1417 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1418 			  (sector_t) BIO_MAX_SECTORS);
1419 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1420 	if (max_size < 0)
1421 		max_size = 0;
1422 
1423 	/*
1424 	 * merge_bvec_fn() returns number of bytes
1425 	 * it can accept at this offset
1426 	 * max is precomputed maximal io size
1427 	 */
1428 	if (max_size && ti->type->merge)
1429 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1430 	/*
1431 	 * If the target doesn't support merge method and some of the devices
1432 	 * provided their merge_bvec method (we know this by looking at
1433 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1434 	 * entries.  So always set max_size to 0, and the code below allows
1435 	 * just one page.
1436 	 */
1437 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1438 
1439 		max_size = 0;
1440 
1441 out_table:
1442 	dm_table_put(map);
1443 
1444 out:
1445 	/*
1446 	 * Always allow an entire first page
1447 	 */
1448 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1449 		max_size = biovec->bv_len;
1450 
1451 	return max_size;
1452 }
1453 
1454 /*
1455  * The request function that just remaps the bio built up by
1456  * dm_merge_bvec.
1457  */
1458 static void _dm_request(struct request_queue *q, struct bio *bio)
1459 {
1460 	int rw = bio_data_dir(bio);
1461 	struct mapped_device *md = q->queuedata;
1462 	int cpu;
1463 
1464 	down_read(&md->io_lock);
1465 
1466 	cpu = part_stat_lock();
1467 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1468 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1469 	part_stat_unlock();
1470 
1471 	/* if we're suspended, we have to queue this io for later */
1472 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1473 		up_read(&md->io_lock);
1474 
1475 		if (bio_rw(bio) != READA)
1476 			queue_io(md, bio);
1477 		else
1478 			bio_io_error(bio);
1479 		return;
1480 	}
1481 
1482 	__split_and_process_bio(md, bio);
1483 	up_read(&md->io_lock);
1484 	return;
1485 }
1486 
1487 static int dm_request_based(struct mapped_device *md)
1488 {
1489 	return blk_queue_stackable(md->queue);
1490 }
1491 
1492 static void dm_request(struct request_queue *q, struct bio *bio)
1493 {
1494 	struct mapped_device *md = q->queuedata;
1495 
1496 	if (dm_request_based(md))
1497 		blk_queue_bio(q, bio);
1498 	else
1499 		_dm_request(q, bio);
1500 }
1501 
1502 void dm_dispatch_request(struct request *rq)
1503 {
1504 	int r;
1505 
1506 	if (blk_queue_io_stat(rq->q))
1507 		rq->cmd_flags |= REQ_IO_STAT;
1508 
1509 	rq->start_time = jiffies;
1510 	r = blk_insert_cloned_request(rq->q, rq);
1511 	if (r)
1512 		dm_complete_request(rq, r);
1513 }
1514 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1515 
1516 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1517 				 void *data)
1518 {
1519 	struct dm_rq_target_io *tio = data;
1520 	struct dm_rq_clone_bio_info *info =
1521 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1522 
1523 	info->orig = bio_orig;
1524 	info->tio = tio;
1525 	bio->bi_end_io = end_clone_bio;
1526 	bio->bi_private = info;
1527 
1528 	return 0;
1529 }
1530 
1531 static int setup_clone(struct request *clone, struct request *rq,
1532 		       struct dm_rq_target_io *tio)
1533 {
1534 	int r;
1535 
1536 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1537 			      dm_rq_bio_constructor, tio);
1538 	if (r)
1539 		return r;
1540 
1541 	clone->cmd = rq->cmd;
1542 	clone->cmd_len = rq->cmd_len;
1543 	clone->sense = rq->sense;
1544 	clone->buffer = rq->buffer;
1545 	clone->end_io = end_clone_request;
1546 	clone->end_io_data = tio;
1547 
1548 	return 0;
1549 }
1550 
1551 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1552 				gfp_t gfp_mask)
1553 {
1554 	struct request *clone;
1555 	struct dm_rq_target_io *tio;
1556 
1557 	tio = alloc_rq_tio(md, gfp_mask);
1558 	if (!tio)
1559 		return NULL;
1560 
1561 	tio->md = md;
1562 	tio->ti = NULL;
1563 	tio->orig = rq;
1564 	tio->error = 0;
1565 	memset(&tio->info, 0, sizeof(tio->info));
1566 
1567 	clone = &tio->clone;
1568 	if (setup_clone(clone, rq, tio)) {
1569 		/* -ENOMEM */
1570 		free_rq_tio(tio);
1571 		return NULL;
1572 	}
1573 
1574 	return clone;
1575 }
1576 
1577 /*
1578  * Called with the queue lock held.
1579  */
1580 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1581 {
1582 	struct mapped_device *md = q->queuedata;
1583 	struct request *clone;
1584 
1585 	if (unlikely(rq->special)) {
1586 		DMWARN("Already has something in rq->special.");
1587 		return BLKPREP_KILL;
1588 	}
1589 
1590 	clone = clone_rq(rq, md, GFP_ATOMIC);
1591 	if (!clone)
1592 		return BLKPREP_DEFER;
1593 
1594 	rq->special = clone;
1595 	rq->cmd_flags |= REQ_DONTPREP;
1596 
1597 	return BLKPREP_OK;
1598 }
1599 
1600 /*
1601  * Returns:
1602  * 0  : the request has been processed (not requeued)
1603  * !0 : the request has been requeued
1604  */
1605 static int map_request(struct dm_target *ti, struct request *clone,
1606 		       struct mapped_device *md)
1607 {
1608 	int r, requeued = 0;
1609 	struct dm_rq_target_io *tio = clone->end_io_data;
1610 
1611 	tio->ti = ti;
1612 	r = ti->type->map_rq(ti, clone, &tio->info);
1613 	switch (r) {
1614 	case DM_MAPIO_SUBMITTED:
1615 		/* The target has taken the I/O to submit by itself later */
1616 		break;
1617 	case DM_MAPIO_REMAPPED:
1618 		/* The target has remapped the I/O so dispatch it */
1619 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1620 				     blk_rq_pos(tio->orig));
1621 		dm_dispatch_request(clone);
1622 		break;
1623 	case DM_MAPIO_REQUEUE:
1624 		/* The target wants to requeue the I/O */
1625 		dm_requeue_unmapped_request(clone);
1626 		requeued = 1;
1627 		break;
1628 	default:
1629 		if (r > 0) {
1630 			DMWARN("unimplemented target map return value: %d", r);
1631 			BUG();
1632 		}
1633 
1634 		/* The target wants to complete the I/O */
1635 		dm_kill_unmapped_request(clone, r);
1636 		break;
1637 	}
1638 
1639 	return requeued;
1640 }
1641 
1642 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1643 {
1644 	struct request *clone;
1645 
1646 	blk_start_request(orig);
1647 	clone = orig->special;
1648 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1649 
1650 	/*
1651 	 * Hold the md reference here for the in-flight I/O.
1652 	 * We can't rely on the reference count by device opener,
1653 	 * because the device may be closed during the request completion
1654 	 * when all bios are completed.
1655 	 * See the comment in rq_completed() too.
1656 	 */
1657 	dm_get(md);
1658 
1659 	return clone;
1660 }
1661 
1662 /*
1663  * q->request_fn for request-based dm.
1664  * Called with the queue lock held.
1665  */
1666 static void dm_request_fn(struct request_queue *q)
1667 {
1668 	struct mapped_device *md = q->queuedata;
1669 	struct dm_table *map = dm_get_live_table(md);
1670 	struct dm_target *ti;
1671 	struct request *rq, *clone;
1672 	sector_t pos;
1673 
1674 	/*
1675 	 * For suspend, check blk_queue_stopped() and increment
1676 	 * ->pending within a single queue_lock not to increment the
1677 	 * number of in-flight I/Os after the queue is stopped in
1678 	 * dm_suspend().
1679 	 */
1680 	while (!blk_queue_stopped(q)) {
1681 		rq = blk_peek_request(q);
1682 		if (!rq)
1683 			goto delay_and_out;
1684 
1685 		/* always use block 0 to find the target for flushes for now */
1686 		pos = 0;
1687 		if (!(rq->cmd_flags & REQ_FLUSH))
1688 			pos = blk_rq_pos(rq);
1689 
1690 		ti = dm_table_find_target(map, pos);
1691 		if (!dm_target_is_valid(ti)) {
1692 			/*
1693 			 * Must perform setup, that dm_done() requires,
1694 			 * before calling dm_kill_unmapped_request
1695 			 */
1696 			DMERR_LIMIT("request attempted access beyond the end of device");
1697 			clone = dm_start_request(md, rq);
1698 			dm_kill_unmapped_request(clone, -EIO);
1699 			continue;
1700 		}
1701 
1702 		if (ti->type->busy && ti->type->busy(ti))
1703 			goto delay_and_out;
1704 
1705 		clone = dm_start_request(md, rq);
1706 
1707 		spin_unlock(q->queue_lock);
1708 		if (map_request(ti, clone, md))
1709 			goto requeued;
1710 
1711 		BUG_ON(!irqs_disabled());
1712 		spin_lock(q->queue_lock);
1713 	}
1714 
1715 	goto out;
1716 
1717 requeued:
1718 	BUG_ON(!irqs_disabled());
1719 	spin_lock(q->queue_lock);
1720 
1721 delay_and_out:
1722 	blk_delay_queue(q, HZ / 10);
1723 out:
1724 	dm_table_put(map);
1725 }
1726 
1727 int dm_underlying_device_busy(struct request_queue *q)
1728 {
1729 	return blk_lld_busy(q);
1730 }
1731 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1732 
1733 static int dm_lld_busy(struct request_queue *q)
1734 {
1735 	int r;
1736 	struct mapped_device *md = q->queuedata;
1737 	struct dm_table *map = dm_get_live_table(md);
1738 
1739 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1740 		r = 1;
1741 	else
1742 		r = dm_table_any_busy_target(map);
1743 
1744 	dm_table_put(map);
1745 
1746 	return r;
1747 }
1748 
1749 static int dm_any_congested(void *congested_data, int bdi_bits)
1750 {
1751 	int r = bdi_bits;
1752 	struct mapped_device *md = congested_data;
1753 	struct dm_table *map;
1754 
1755 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1756 		map = dm_get_live_table(md);
1757 		if (map) {
1758 			/*
1759 			 * Request-based dm cares about only own queue for
1760 			 * the query about congestion status of request_queue
1761 			 */
1762 			if (dm_request_based(md))
1763 				r = md->queue->backing_dev_info.state &
1764 				    bdi_bits;
1765 			else
1766 				r = dm_table_any_congested(map, bdi_bits);
1767 
1768 			dm_table_put(map);
1769 		}
1770 	}
1771 
1772 	return r;
1773 }
1774 
1775 /*-----------------------------------------------------------------
1776  * An IDR is used to keep track of allocated minor numbers.
1777  *---------------------------------------------------------------*/
1778 static void free_minor(int minor)
1779 {
1780 	spin_lock(&_minor_lock);
1781 	idr_remove(&_minor_idr, minor);
1782 	spin_unlock(&_minor_lock);
1783 }
1784 
1785 /*
1786  * See if the device with a specific minor # is free.
1787  */
1788 static int specific_minor(int minor)
1789 {
1790 	int r;
1791 
1792 	if (minor >= (1 << MINORBITS))
1793 		return -EINVAL;
1794 
1795 	idr_preload(GFP_KERNEL);
1796 	spin_lock(&_minor_lock);
1797 
1798 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1799 
1800 	spin_unlock(&_minor_lock);
1801 	idr_preload_end();
1802 	if (r < 0)
1803 		return r == -ENOSPC ? -EBUSY : r;
1804 	return 0;
1805 }
1806 
1807 static int next_free_minor(int *minor)
1808 {
1809 	int r;
1810 
1811 	idr_preload(GFP_KERNEL);
1812 	spin_lock(&_minor_lock);
1813 
1814 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1815 
1816 	spin_unlock(&_minor_lock);
1817 	idr_preload_end();
1818 	if (r < 0)
1819 		return r;
1820 	*minor = r;
1821 	return 0;
1822 }
1823 
1824 static const struct block_device_operations dm_blk_dops;
1825 
1826 static void dm_wq_work(struct work_struct *work);
1827 
1828 static void dm_init_md_queue(struct mapped_device *md)
1829 {
1830 	/*
1831 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1832 	 * devices.  The type of this dm device has not been decided yet.
1833 	 * The type is decided at the first table loading time.
1834 	 * To prevent problematic device stacking, clear the queue flag
1835 	 * for request stacking support until then.
1836 	 *
1837 	 * This queue is new, so no concurrency on the queue_flags.
1838 	 */
1839 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1840 
1841 	md->queue->queuedata = md;
1842 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1843 	md->queue->backing_dev_info.congested_data = md;
1844 	blk_queue_make_request(md->queue, dm_request);
1845 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1846 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1847 }
1848 
1849 /*
1850  * Allocate and initialise a blank device with a given minor.
1851  */
1852 static struct mapped_device *alloc_dev(int minor)
1853 {
1854 	int r;
1855 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1856 	void *old_md;
1857 
1858 	if (!md) {
1859 		DMWARN("unable to allocate device, out of memory.");
1860 		return NULL;
1861 	}
1862 
1863 	if (!try_module_get(THIS_MODULE))
1864 		goto bad_module_get;
1865 
1866 	/* get a minor number for the dev */
1867 	if (minor == DM_ANY_MINOR)
1868 		r = next_free_minor(&minor);
1869 	else
1870 		r = specific_minor(minor);
1871 	if (r < 0)
1872 		goto bad_minor;
1873 
1874 	md->type = DM_TYPE_NONE;
1875 	init_rwsem(&md->io_lock);
1876 	mutex_init(&md->suspend_lock);
1877 	mutex_init(&md->type_lock);
1878 	spin_lock_init(&md->deferred_lock);
1879 	rwlock_init(&md->map_lock);
1880 	atomic_set(&md->holders, 1);
1881 	atomic_set(&md->open_count, 0);
1882 	atomic_set(&md->event_nr, 0);
1883 	atomic_set(&md->uevent_seq, 0);
1884 	INIT_LIST_HEAD(&md->uevent_list);
1885 	spin_lock_init(&md->uevent_lock);
1886 
1887 	md->queue = blk_alloc_queue(GFP_KERNEL);
1888 	if (!md->queue)
1889 		goto bad_queue;
1890 
1891 	dm_init_md_queue(md);
1892 
1893 	md->disk = alloc_disk(1);
1894 	if (!md->disk)
1895 		goto bad_disk;
1896 
1897 	atomic_set(&md->pending[0], 0);
1898 	atomic_set(&md->pending[1], 0);
1899 	init_waitqueue_head(&md->wait);
1900 	INIT_WORK(&md->work, dm_wq_work);
1901 	init_waitqueue_head(&md->eventq);
1902 
1903 	md->disk->major = _major;
1904 	md->disk->first_minor = minor;
1905 	md->disk->fops = &dm_blk_dops;
1906 	md->disk->queue = md->queue;
1907 	md->disk->private_data = md;
1908 	sprintf(md->disk->disk_name, "dm-%d", minor);
1909 	add_disk(md->disk);
1910 	format_dev_t(md->name, MKDEV(_major, minor));
1911 
1912 	md->wq = alloc_workqueue("kdmflush",
1913 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1914 	if (!md->wq)
1915 		goto bad_thread;
1916 
1917 	md->bdev = bdget_disk(md->disk, 0);
1918 	if (!md->bdev)
1919 		goto bad_bdev;
1920 
1921 	bio_init(&md->flush_bio);
1922 	md->flush_bio.bi_bdev = md->bdev;
1923 	md->flush_bio.bi_rw = WRITE_FLUSH;
1924 
1925 	/* Populate the mapping, nobody knows we exist yet */
1926 	spin_lock(&_minor_lock);
1927 	old_md = idr_replace(&_minor_idr, md, minor);
1928 	spin_unlock(&_minor_lock);
1929 
1930 	BUG_ON(old_md != MINOR_ALLOCED);
1931 
1932 	return md;
1933 
1934 bad_bdev:
1935 	destroy_workqueue(md->wq);
1936 bad_thread:
1937 	del_gendisk(md->disk);
1938 	put_disk(md->disk);
1939 bad_disk:
1940 	blk_cleanup_queue(md->queue);
1941 bad_queue:
1942 	free_minor(minor);
1943 bad_minor:
1944 	module_put(THIS_MODULE);
1945 bad_module_get:
1946 	kfree(md);
1947 	return NULL;
1948 }
1949 
1950 static void unlock_fs(struct mapped_device *md);
1951 
1952 static void free_dev(struct mapped_device *md)
1953 {
1954 	int minor = MINOR(disk_devt(md->disk));
1955 
1956 	unlock_fs(md);
1957 	bdput(md->bdev);
1958 	destroy_workqueue(md->wq);
1959 	if (md->io_pool)
1960 		mempool_destroy(md->io_pool);
1961 	if (md->bs)
1962 		bioset_free(md->bs);
1963 	blk_integrity_unregister(md->disk);
1964 	del_gendisk(md->disk);
1965 	free_minor(minor);
1966 
1967 	spin_lock(&_minor_lock);
1968 	md->disk->private_data = NULL;
1969 	spin_unlock(&_minor_lock);
1970 
1971 	put_disk(md->disk);
1972 	blk_cleanup_queue(md->queue);
1973 	module_put(THIS_MODULE);
1974 	kfree(md);
1975 }
1976 
1977 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1978 {
1979 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1980 
1981 	if (md->io_pool && md->bs) {
1982 		/* The md already has necessary mempools. */
1983 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
1984 			/*
1985 			 * Reload bioset because front_pad may have changed
1986 			 * because a different table was loaded.
1987 			 */
1988 			bioset_free(md->bs);
1989 			md->bs = p->bs;
1990 			p->bs = NULL;
1991 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
1992 			/*
1993 			 * There's no need to reload with request-based dm
1994 			 * because the size of front_pad doesn't change.
1995 			 * Note for future: If you are to reload bioset,
1996 			 * prep-ed requests in the queue may refer
1997 			 * to bio from the old bioset, so you must walk
1998 			 * through the queue to unprep.
1999 			 */
2000 		}
2001 		goto out;
2002 	}
2003 
2004 	BUG_ON(!p || md->io_pool || md->bs);
2005 
2006 	md->io_pool = p->io_pool;
2007 	p->io_pool = NULL;
2008 	md->bs = p->bs;
2009 	p->bs = NULL;
2010 
2011 out:
2012 	/* mempool bind completed, now no need any mempools in the table */
2013 	dm_table_free_md_mempools(t);
2014 }
2015 
2016 /*
2017  * Bind a table to the device.
2018  */
2019 static void event_callback(void *context)
2020 {
2021 	unsigned long flags;
2022 	LIST_HEAD(uevents);
2023 	struct mapped_device *md = (struct mapped_device *) context;
2024 
2025 	spin_lock_irqsave(&md->uevent_lock, flags);
2026 	list_splice_init(&md->uevent_list, &uevents);
2027 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2028 
2029 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2030 
2031 	atomic_inc(&md->event_nr);
2032 	wake_up(&md->eventq);
2033 }
2034 
2035 /*
2036  * Protected by md->suspend_lock obtained by dm_swap_table().
2037  */
2038 static void __set_size(struct mapped_device *md, sector_t size)
2039 {
2040 	set_capacity(md->disk, size);
2041 
2042 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2043 }
2044 
2045 /*
2046  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2047  *
2048  * If this function returns 0, then the device is either a non-dm
2049  * device without a merge_bvec_fn, or it is a dm device that is
2050  * able to split any bios it receives that are too big.
2051  */
2052 int dm_queue_merge_is_compulsory(struct request_queue *q)
2053 {
2054 	struct mapped_device *dev_md;
2055 
2056 	if (!q->merge_bvec_fn)
2057 		return 0;
2058 
2059 	if (q->make_request_fn == dm_request) {
2060 		dev_md = q->queuedata;
2061 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2062 			return 0;
2063 	}
2064 
2065 	return 1;
2066 }
2067 
2068 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2069 					 struct dm_dev *dev, sector_t start,
2070 					 sector_t len, void *data)
2071 {
2072 	struct block_device *bdev = dev->bdev;
2073 	struct request_queue *q = bdev_get_queue(bdev);
2074 
2075 	return dm_queue_merge_is_compulsory(q);
2076 }
2077 
2078 /*
2079  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2080  * on the properties of the underlying devices.
2081  */
2082 static int dm_table_merge_is_optional(struct dm_table *table)
2083 {
2084 	unsigned i = 0;
2085 	struct dm_target *ti;
2086 
2087 	while (i < dm_table_get_num_targets(table)) {
2088 		ti = dm_table_get_target(table, i++);
2089 
2090 		if (ti->type->iterate_devices &&
2091 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2092 			return 0;
2093 	}
2094 
2095 	return 1;
2096 }
2097 
2098 /*
2099  * Returns old map, which caller must destroy.
2100  */
2101 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2102 			       struct queue_limits *limits)
2103 {
2104 	struct dm_table *old_map;
2105 	struct request_queue *q = md->queue;
2106 	sector_t size;
2107 	unsigned long flags;
2108 	int merge_is_optional;
2109 
2110 	size = dm_table_get_size(t);
2111 
2112 	/*
2113 	 * Wipe any geometry if the size of the table changed.
2114 	 */
2115 	if (size != get_capacity(md->disk))
2116 		memset(&md->geometry, 0, sizeof(md->geometry));
2117 
2118 	__set_size(md, size);
2119 
2120 	dm_table_event_callback(t, event_callback, md);
2121 
2122 	/*
2123 	 * The queue hasn't been stopped yet, if the old table type wasn't
2124 	 * for request-based during suspension.  So stop it to prevent
2125 	 * I/O mapping before resume.
2126 	 * This must be done before setting the queue restrictions,
2127 	 * because request-based dm may be run just after the setting.
2128 	 */
2129 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2130 		stop_queue(q);
2131 
2132 	__bind_mempools(md, t);
2133 
2134 	merge_is_optional = dm_table_merge_is_optional(t);
2135 
2136 	write_lock_irqsave(&md->map_lock, flags);
2137 	old_map = md->map;
2138 	md->map = t;
2139 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2140 
2141 	dm_table_set_restrictions(t, q, limits);
2142 	if (merge_is_optional)
2143 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2144 	else
2145 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2146 	write_unlock_irqrestore(&md->map_lock, flags);
2147 
2148 	return old_map;
2149 }
2150 
2151 /*
2152  * Returns unbound table for the caller to free.
2153  */
2154 static struct dm_table *__unbind(struct mapped_device *md)
2155 {
2156 	struct dm_table *map = md->map;
2157 	unsigned long flags;
2158 
2159 	if (!map)
2160 		return NULL;
2161 
2162 	dm_table_event_callback(map, NULL, NULL);
2163 	write_lock_irqsave(&md->map_lock, flags);
2164 	md->map = NULL;
2165 	write_unlock_irqrestore(&md->map_lock, flags);
2166 
2167 	return map;
2168 }
2169 
2170 /*
2171  * Constructor for a new device.
2172  */
2173 int dm_create(int minor, struct mapped_device **result)
2174 {
2175 	struct mapped_device *md;
2176 
2177 	md = alloc_dev(minor);
2178 	if (!md)
2179 		return -ENXIO;
2180 
2181 	dm_sysfs_init(md);
2182 
2183 	*result = md;
2184 	return 0;
2185 }
2186 
2187 /*
2188  * Functions to manage md->type.
2189  * All are required to hold md->type_lock.
2190  */
2191 void dm_lock_md_type(struct mapped_device *md)
2192 {
2193 	mutex_lock(&md->type_lock);
2194 }
2195 
2196 void dm_unlock_md_type(struct mapped_device *md)
2197 {
2198 	mutex_unlock(&md->type_lock);
2199 }
2200 
2201 void dm_set_md_type(struct mapped_device *md, unsigned type)
2202 {
2203 	md->type = type;
2204 }
2205 
2206 unsigned dm_get_md_type(struct mapped_device *md)
2207 {
2208 	return md->type;
2209 }
2210 
2211 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2212 {
2213 	return md->immutable_target_type;
2214 }
2215 
2216 /*
2217  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2218  */
2219 static int dm_init_request_based_queue(struct mapped_device *md)
2220 {
2221 	struct request_queue *q = NULL;
2222 
2223 	if (md->queue->elevator)
2224 		return 1;
2225 
2226 	/* Fully initialize the queue */
2227 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2228 	if (!q)
2229 		return 0;
2230 
2231 	md->queue = q;
2232 	dm_init_md_queue(md);
2233 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2234 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2235 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2236 
2237 	elv_register_queue(md->queue);
2238 
2239 	return 1;
2240 }
2241 
2242 /*
2243  * Setup the DM device's queue based on md's type
2244  */
2245 int dm_setup_md_queue(struct mapped_device *md)
2246 {
2247 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2248 	    !dm_init_request_based_queue(md)) {
2249 		DMWARN("Cannot initialize queue for request-based mapped device");
2250 		return -EINVAL;
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 static struct mapped_device *dm_find_md(dev_t dev)
2257 {
2258 	struct mapped_device *md;
2259 	unsigned minor = MINOR(dev);
2260 
2261 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2262 		return NULL;
2263 
2264 	spin_lock(&_minor_lock);
2265 
2266 	md = idr_find(&_minor_idr, minor);
2267 	if (md && (md == MINOR_ALLOCED ||
2268 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2269 		   dm_deleting_md(md) ||
2270 		   test_bit(DMF_FREEING, &md->flags))) {
2271 		md = NULL;
2272 		goto out;
2273 	}
2274 
2275 out:
2276 	spin_unlock(&_minor_lock);
2277 
2278 	return md;
2279 }
2280 
2281 struct mapped_device *dm_get_md(dev_t dev)
2282 {
2283 	struct mapped_device *md = dm_find_md(dev);
2284 
2285 	if (md)
2286 		dm_get(md);
2287 
2288 	return md;
2289 }
2290 EXPORT_SYMBOL_GPL(dm_get_md);
2291 
2292 void *dm_get_mdptr(struct mapped_device *md)
2293 {
2294 	return md->interface_ptr;
2295 }
2296 
2297 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2298 {
2299 	md->interface_ptr = ptr;
2300 }
2301 
2302 void dm_get(struct mapped_device *md)
2303 {
2304 	atomic_inc(&md->holders);
2305 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2306 }
2307 
2308 const char *dm_device_name(struct mapped_device *md)
2309 {
2310 	return md->name;
2311 }
2312 EXPORT_SYMBOL_GPL(dm_device_name);
2313 
2314 static void __dm_destroy(struct mapped_device *md, bool wait)
2315 {
2316 	struct dm_table *map;
2317 
2318 	might_sleep();
2319 
2320 	spin_lock(&_minor_lock);
2321 	map = dm_get_live_table(md);
2322 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2323 	set_bit(DMF_FREEING, &md->flags);
2324 	spin_unlock(&_minor_lock);
2325 
2326 	if (!dm_suspended_md(md)) {
2327 		dm_table_presuspend_targets(map);
2328 		dm_table_postsuspend_targets(map);
2329 	}
2330 
2331 	/*
2332 	 * Rare, but there may be I/O requests still going to complete,
2333 	 * for example.  Wait for all references to disappear.
2334 	 * No one should increment the reference count of the mapped_device,
2335 	 * after the mapped_device state becomes DMF_FREEING.
2336 	 */
2337 	if (wait)
2338 		while (atomic_read(&md->holders))
2339 			msleep(1);
2340 	else if (atomic_read(&md->holders))
2341 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2342 		       dm_device_name(md), atomic_read(&md->holders));
2343 
2344 	dm_sysfs_exit(md);
2345 	dm_table_put(map);
2346 	dm_table_destroy(__unbind(md));
2347 	free_dev(md);
2348 }
2349 
2350 void dm_destroy(struct mapped_device *md)
2351 {
2352 	__dm_destroy(md, true);
2353 }
2354 
2355 void dm_destroy_immediate(struct mapped_device *md)
2356 {
2357 	__dm_destroy(md, false);
2358 }
2359 
2360 void dm_put(struct mapped_device *md)
2361 {
2362 	atomic_dec(&md->holders);
2363 }
2364 EXPORT_SYMBOL_GPL(dm_put);
2365 
2366 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2367 {
2368 	int r = 0;
2369 	DECLARE_WAITQUEUE(wait, current);
2370 
2371 	add_wait_queue(&md->wait, &wait);
2372 
2373 	while (1) {
2374 		set_current_state(interruptible);
2375 
2376 		if (!md_in_flight(md))
2377 			break;
2378 
2379 		if (interruptible == TASK_INTERRUPTIBLE &&
2380 		    signal_pending(current)) {
2381 			r = -EINTR;
2382 			break;
2383 		}
2384 
2385 		io_schedule();
2386 	}
2387 	set_current_state(TASK_RUNNING);
2388 
2389 	remove_wait_queue(&md->wait, &wait);
2390 
2391 	return r;
2392 }
2393 
2394 /*
2395  * Process the deferred bios
2396  */
2397 static void dm_wq_work(struct work_struct *work)
2398 {
2399 	struct mapped_device *md = container_of(work, struct mapped_device,
2400 						work);
2401 	struct bio *c;
2402 
2403 	down_read(&md->io_lock);
2404 
2405 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2406 		spin_lock_irq(&md->deferred_lock);
2407 		c = bio_list_pop(&md->deferred);
2408 		spin_unlock_irq(&md->deferred_lock);
2409 
2410 		if (!c)
2411 			break;
2412 
2413 		up_read(&md->io_lock);
2414 
2415 		if (dm_request_based(md))
2416 			generic_make_request(c);
2417 		else
2418 			__split_and_process_bio(md, c);
2419 
2420 		down_read(&md->io_lock);
2421 	}
2422 
2423 	up_read(&md->io_lock);
2424 }
2425 
2426 static void dm_queue_flush(struct mapped_device *md)
2427 {
2428 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2429 	smp_mb__after_clear_bit();
2430 	queue_work(md->wq, &md->work);
2431 }
2432 
2433 /*
2434  * Swap in a new table, returning the old one for the caller to destroy.
2435  */
2436 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2437 {
2438 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2439 	struct queue_limits limits;
2440 	int r;
2441 
2442 	mutex_lock(&md->suspend_lock);
2443 
2444 	/* device must be suspended */
2445 	if (!dm_suspended_md(md))
2446 		goto out;
2447 
2448 	/*
2449 	 * If the new table has no data devices, retain the existing limits.
2450 	 * This helps multipath with queue_if_no_path if all paths disappear,
2451 	 * then new I/O is queued based on these limits, and then some paths
2452 	 * reappear.
2453 	 */
2454 	if (dm_table_has_no_data_devices(table)) {
2455 		live_map = dm_get_live_table(md);
2456 		if (live_map)
2457 			limits = md->queue->limits;
2458 		dm_table_put(live_map);
2459 	}
2460 
2461 	if (!live_map) {
2462 		r = dm_calculate_queue_limits(table, &limits);
2463 		if (r) {
2464 			map = ERR_PTR(r);
2465 			goto out;
2466 		}
2467 	}
2468 
2469 	map = __bind(md, table, &limits);
2470 
2471 out:
2472 	mutex_unlock(&md->suspend_lock);
2473 	return map;
2474 }
2475 
2476 /*
2477  * Functions to lock and unlock any filesystem running on the
2478  * device.
2479  */
2480 static int lock_fs(struct mapped_device *md)
2481 {
2482 	int r;
2483 
2484 	WARN_ON(md->frozen_sb);
2485 
2486 	md->frozen_sb = freeze_bdev(md->bdev);
2487 	if (IS_ERR(md->frozen_sb)) {
2488 		r = PTR_ERR(md->frozen_sb);
2489 		md->frozen_sb = NULL;
2490 		return r;
2491 	}
2492 
2493 	set_bit(DMF_FROZEN, &md->flags);
2494 
2495 	return 0;
2496 }
2497 
2498 static void unlock_fs(struct mapped_device *md)
2499 {
2500 	if (!test_bit(DMF_FROZEN, &md->flags))
2501 		return;
2502 
2503 	thaw_bdev(md->bdev, md->frozen_sb);
2504 	md->frozen_sb = NULL;
2505 	clear_bit(DMF_FROZEN, &md->flags);
2506 }
2507 
2508 /*
2509  * We need to be able to change a mapping table under a mounted
2510  * filesystem.  For example we might want to move some data in
2511  * the background.  Before the table can be swapped with
2512  * dm_bind_table, dm_suspend must be called to flush any in
2513  * flight bios and ensure that any further io gets deferred.
2514  */
2515 /*
2516  * Suspend mechanism in request-based dm.
2517  *
2518  * 1. Flush all I/Os by lock_fs() if needed.
2519  * 2. Stop dispatching any I/O by stopping the request_queue.
2520  * 3. Wait for all in-flight I/Os to be completed or requeued.
2521  *
2522  * To abort suspend, start the request_queue.
2523  */
2524 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2525 {
2526 	struct dm_table *map = NULL;
2527 	int r = 0;
2528 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2529 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2530 
2531 	mutex_lock(&md->suspend_lock);
2532 
2533 	if (dm_suspended_md(md)) {
2534 		r = -EINVAL;
2535 		goto out_unlock;
2536 	}
2537 
2538 	map = dm_get_live_table(md);
2539 
2540 	/*
2541 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2542 	 * This flag is cleared before dm_suspend returns.
2543 	 */
2544 	if (noflush)
2545 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2546 
2547 	/* This does not get reverted if there's an error later. */
2548 	dm_table_presuspend_targets(map);
2549 
2550 	/*
2551 	 * Flush I/O to the device.
2552 	 * Any I/O submitted after lock_fs() may not be flushed.
2553 	 * noflush takes precedence over do_lockfs.
2554 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2555 	 */
2556 	if (!noflush && do_lockfs) {
2557 		r = lock_fs(md);
2558 		if (r)
2559 			goto out;
2560 	}
2561 
2562 	/*
2563 	 * Here we must make sure that no processes are submitting requests
2564 	 * to target drivers i.e. no one may be executing
2565 	 * __split_and_process_bio. This is called from dm_request and
2566 	 * dm_wq_work.
2567 	 *
2568 	 * To get all processes out of __split_and_process_bio in dm_request,
2569 	 * we take the write lock. To prevent any process from reentering
2570 	 * __split_and_process_bio from dm_request and quiesce the thread
2571 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2572 	 * flush_workqueue(md->wq).
2573 	 */
2574 	down_write(&md->io_lock);
2575 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2576 	up_write(&md->io_lock);
2577 
2578 	/*
2579 	 * Stop md->queue before flushing md->wq in case request-based
2580 	 * dm defers requests to md->wq from md->queue.
2581 	 */
2582 	if (dm_request_based(md))
2583 		stop_queue(md->queue);
2584 
2585 	flush_workqueue(md->wq);
2586 
2587 	/*
2588 	 * At this point no more requests are entering target request routines.
2589 	 * We call dm_wait_for_completion to wait for all existing requests
2590 	 * to finish.
2591 	 */
2592 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2593 
2594 	down_write(&md->io_lock);
2595 	if (noflush)
2596 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2597 	up_write(&md->io_lock);
2598 
2599 	/* were we interrupted ? */
2600 	if (r < 0) {
2601 		dm_queue_flush(md);
2602 
2603 		if (dm_request_based(md))
2604 			start_queue(md->queue);
2605 
2606 		unlock_fs(md);
2607 		goto out; /* pushback list is already flushed, so skip flush */
2608 	}
2609 
2610 	/*
2611 	 * If dm_wait_for_completion returned 0, the device is completely
2612 	 * quiescent now. There is no request-processing activity. All new
2613 	 * requests are being added to md->deferred list.
2614 	 */
2615 
2616 	set_bit(DMF_SUSPENDED, &md->flags);
2617 
2618 	dm_table_postsuspend_targets(map);
2619 
2620 out:
2621 	dm_table_put(map);
2622 
2623 out_unlock:
2624 	mutex_unlock(&md->suspend_lock);
2625 	return r;
2626 }
2627 
2628 int dm_resume(struct mapped_device *md)
2629 {
2630 	int r = -EINVAL;
2631 	struct dm_table *map = NULL;
2632 
2633 	mutex_lock(&md->suspend_lock);
2634 	if (!dm_suspended_md(md))
2635 		goto out;
2636 
2637 	map = dm_get_live_table(md);
2638 	if (!map || !dm_table_get_size(map))
2639 		goto out;
2640 
2641 	r = dm_table_resume_targets(map);
2642 	if (r)
2643 		goto out;
2644 
2645 	dm_queue_flush(md);
2646 
2647 	/*
2648 	 * Flushing deferred I/Os must be done after targets are resumed
2649 	 * so that mapping of targets can work correctly.
2650 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2651 	 */
2652 	if (dm_request_based(md))
2653 		start_queue(md->queue);
2654 
2655 	unlock_fs(md);
2656 
2657 	clear_bit(DMF_SUSPENDED, &md->flags);
2658 
2659 	r = 0;
2660 out:
2661 	dm_table_put(map);
2662 	mutex_unlock(&md->suspend_lock);
2663 
2664 	return r;
2665 }
2666 
2667 /*-----------------------------------------------------------------
2668  * Event notification.
2669  *---------------------------------------------------------------*/
2670 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2671 		       unsigned cookie)
2672 {
2673 	char udev_cookie[DM_COOKIE_LENGTH];
2674 	char *envp[] = { udev_cookie, NULL };
2675 
2676 	if (!cookie)
2677 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2678 	else {
2679 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2680 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2681 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2682 					  action, envp);
2683 	}
2684 }
2685 
2686 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2687 {
2688 	return atomic_add_return(1, &md->uevent_seq);
2689 }
2690 
2691 uint32_t dm_get_event_nr(struct mapped_device *md)
2692 {
2693 	return atomic_read(&md->event_nr);
2694 }
2695 
2696 int dm_wait_event(struct mapped_device *md, int event_nr)
2697 {
2698 	return wait_event_interruptible(md->eventq,
2699 			(event_nr != atomic_read(&md->event_nr)));
2700 }
2701 
2702 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2703 {
2704 	unsigned long flags;
2705 
2706 	spin_lock_irqsave(&md->uevent_lock, flags);
2707 	list_add(elist, &md->uevent_list);
2708 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2709 }
2710 
2711 /*
2712  * The gendisk is only valid as long as you have a reference
2713  * count on 'md'.
2714  */
2715 struct gendisk *dm_disk(struct mapped_device *md)
2716 {
2717 	return md->disk;
2718 }
2719 
2720 struct kobject *dm_kobject(struct mapped_device *md)
2721 {
2722 	return &md->kobj;
2723 }
2724 
2725 /*
2726  * struct mapped_device should not be exported outside of dm.c
2727  * so use this check to verify that kobj is part of md structure
2728  */
2729 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2730 {
2731 	struct mapped_device *md;
2732 
2733 	md = container_of(kobj, struct mapped_device, kobj);
2734 	if (&md->kobj != kobj)
2735 		return NULL;
2736 
2737 	if (test_bit(DMF_FREEING, &md->flags) ||
2738 	    dm_deleting_md(md))
2739 		return NULL;
2740 
2741 	dm_get(md);
2742 	return md;
2743 }
2744 
2745 int dm_suspended_md(struct mapped_device *md)
2746 {
2747 	return test_bit(DMF_SUSPENDED, &md->flags);
2748 }
2749 
2750 int dm_suspended(struct dm_target *ti)
2751 {
2752 	return dm_suspended_md(dm_table_get_md(ti->table));
2753 }
2754 EXPORT_SYMBOL_GPL(dm_suspended);
2755 
2756 int dm_noflush_suspending(struct dm_target *ti)
2757 {
2758 	return __noflush_suspending(dm_table_get_md(ti->table));
2759 }
2760 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2761 
2762 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2763 {
2764 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2765 	struct kmem_cache *cachep;
2766 	unsigned int pool_size;
2767 	unsigned int front_pad;
2768 
2769 	if (!pools)
2770 		return NULL;
2771 
2772 	if (type == DM_TYPE_BIO_BASED) {
2773 		cachep = _io_cache;
2774 		pool_size = 16;
2775 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2776 	} else if (type == DM_TYPE_REQUEST_BASED) {
2777 		cachep = _rq_tio_cache;
2778 		pool_size = MIN_IOS;
2779 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2780 		/* per_bio_data_size is not used. See __bind_mempools(). */
2781 		WARN_ON(per_bio_data_size != 0);
2782 	} else
2783 		goto out;
2784 
2785 	pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep);
2786 	if (!pools->io_pool)
2787 		goto out;
2788 
2789 	pools->bs = bioset_create(pool_size, front_pad);
2790 	if (!pools->bs)
2791 		goto out;
2792 
2793 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2794 		goto out;
2795 
2796 	return pools;
2797 
2798 out:
2799 	dm_free_md_mempools(pools);
2800 
2801 	return NULL;
2802 }
2803 
2804 void dm_free_md_mempools(struct dm_md_mempools *pools)
2805 {
2806 	if (!pools)
2807 		return;
2808 
2809 	if (pools->io_pool)
2810 		mempool_destroy(pools->io_pool);
2811 
2812 	if (pools->bs)
2813 		bioset_free(pools->bs);
2814 
2815 	kfree(pools);
2816 }
2817 
2818 static const struct block_device_operations dm_blk_dops = {
2819 	.open = dm_blk_open,
2820 	.release = dm_blk_close,
2821 	.ioctl = dm_blk_ioctl,
2822 	.getgeo = dm_blk_getgeo,
2823 	.owner = THIS_MODULE
2824 };
2825 
2826 EXPORT_SYMBOL(dm_get_mapinfo);
2827 
2828 /*
2829  * module hooks
2830  */
2831 module_init(dm_init);
2832 module_exit(dm_exit);
2833 
2834 module_param(major, uint, 0);
2835 MODULE_PARM_DESC(major, "The major number of the device mapper");
2836 MODULE_DESCRIPTION(DM_NAME " driver");
2837 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2838 MODULE_LICENSE("GPL");
2839