xref: /linux/drivers/md/dm.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 
53 static void do_deferred_remove(struct work_struct *w);
54 
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
56 
57 /*
58  * For bio-based dm.
59  * One of these is allocated per bio.
60  */
61 struct dm_io {
62 	struct mapped_device *md;
63 	int error;
64 	atomic_t io_count;
65 	struct bio *bio;
66 	unsigned long start_time;
67 	spinlock_t endio_lock;
68 	struct dm_stats_aux stats_aux;
69 };
70 
71 /*
72  * For request-based dm.
73  * One of these is allocated per request.
74  */
75 struct dm_rq_target_io {
76 	struct mapped_device *md;
77 	struct dm_target *ti;
78 	struct request *orig, clone;
79 	int error;
80 	union map_info info;
81 };
82 
83 /*
84  * For request-based dm - the bio clones we allocate are embedded in these
85  * structs.
86  *
87  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
88  * the bioset is created - this means the bio has to come at the end of the
89  * struct.
90  */
91 struct dm_rq_clone_bio_info {
92 	struct bio *orig;
93 	struct dm_rq_target_io *tio;
94 	struct bio clone;
95 };
96 
97 union map_info *dm_get_mapinfo(struct bio *bio)
98 {
99 	if (bio && bio->bi_private)
100 		return &((struct dm_target_io *)bio->bi_private)->info;
101 	return NULL;
102 }
103 
104 union map_info *dm_get_rq_mapinfo(struct request *rq)
105 {
106 	if (rq && rq->end_io_data)
107 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 	return NULL;
109 }
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
111 
112 #define MINOR_ALLOCED ((void *)-1)
113 
114 /*
115  * Bits for the md->flags field.
116  */
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
119 #define DMF_FROZEN 2
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
124 #define DMF_DEFERRED_REMOVE 7
125 
126 /*
127  * A dummy definition to make RCU happy.
128  * struct dm_table should never be dereferenced in this file.
129  */
130 struct dm_table {
131 	int undefined__;
132 };
133 
134 /*
135  * Work processed by per-device workqueue.
136  */
137 struct mapped_device {
138 	struct srcu_struct io_barrier;
139 	struct mutex suspend_lock;
140 	atomic_t holders;
141 	atomic_t open_count;
142 
143 	/*
144 	 * The current mapping.
145 	 * Use dm_get_live_table{_fast} or take suspend_lock for
146 	 * dereference.
147 	 */
148 	struct dm_table *map;
149 
150 	unsigned long flags;
151 
152 	struct request_queue *queue;
153 	unsigned type;
154 	/* Protect queue and type against concurrent access. */
155 	struct mutex type_lock;
156 
157 	struct target_type *immutable_target_type;
158 
159 	struct gendisk *disk;
160 	char name[16];
161 
162 	void *interface_ptr;
163 
164 	/*
165 	 * A list of ios that arrived while we were suspended.
166 	 */
167 	atomic_t pending[2];
168 	wait_queue_head_t wait;
169 	struct work_struct work;
170 	struct bio_list deferred;
171 	spinlock_t deferred_lock;
172 
173 	/*
174 	 * Processing queue (flush)
175 	 */
176 	struct workqueue_struct *wq;
177 
178 	/*
179 	 * io objects are allocated from here.
180 	 */
181 	mempool_t *io_pool;
182 
183 	struct bio_set *bs;
184 
185 	/*
186 	 * Event handling.
187 	 */
188 	atomic_t event_nr;
189 	wait_queue_head_t eventq;
190 	atomic_t uevent_seq;
191 	struct list_head uevent_list;
192 	spinlock_t uevent_lock; /* Protect access to uevent_list */
193 
194 	/*
195 	 * freeze/thaw support require holding onto a super block
196 	 */
197 	struct super_block *frozen_sb;
198 	struct block_device *bdev;
199 
200 	/* forced geometry settings */
201 	struct hd_geometry geometry;
202 
203 	/* sysfs handle */
204 	struct kobject kobj;
205 
206 	/* zero-length flush that will be cloned and submitted to targets */
207 	struct bio flush_bio;
208 
209 	struct dm_stats stats;
210 };
211 
212 /*
213  * For mempools pre-allocation at the table loading time.
214  */
215 struct dm_md_mempools {
216 	mempool_t *io_pool;
217 	struct bio_set *bs;
218 };
219 
220 #define RESERVED_BIO_BASED_IOS		16
221 #define RESERVED_REQUEST_BASED_IOS	256
222 #define RESERVED_MAX_IOS		1024
223 static struct kmem_cache *_io_cache;
224 static struct kmem_cache *_rq_tio_cache;
225 
226 /*
227  * Bio-based DM's mempools' reserved IOs set by the user.
228  */
229 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
230 
231 /*
232  * Request-based DM's mempools' reserved IOs set by the user.
233  */
234 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
235 
236 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
237 				      unsigned def, unsigned max)
238 {
239 	unsigned ios = ACCESS_ONCE(*reserved_ios);
240 	unsigned modified_ios = 0;
241 
242 	if (!ios)
243 		modified_ios = def;
244 	else if (ios > max)
245 		modified_ios = max;
246 
247 	if (modified_ios) {
248 		(void)cmpxchg(reserved_ios, ios, modified_ios);
249 		ios = modified_ios;
250 	}
251 
252 	return ios;
253 }
254 
255 unsigned dm_get_reserved_bio_based_ios(void)
256 {
257 	return __dm_get_reserved_ios(&reserved_bio_based_ios,
258 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
259 }
260 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
261 
262 unsigned dm_get_reserved_rq_based_ios(void)
263 {
264 	return __dm_get_reserved_ios(&reserved_rq_based_ios,
265 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
266 }
267 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
268 
269 static int __init local_init(void)
270 {
271 	int r = -ENOMEM;
272 
273 	/* allocate a slab for the dm_ios */
274 	_io_cache = KMEM_CACHE(dm_io, 0);
275 	if (!_io_cache)
276 		return r;
277 
278 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
279 	if (!_rq_tio_cache)
280 		goto out_free_io_cache;
281 
282 	r = dm_uevent_init();
283 	if (r)
284 		goto out_free_rq_tio_cache;
285 
286 	_major = major;
287 	r = register_blkdev(_major, _name);
288 	if (r < 0)
289 		goto out_uevent_exit;
290 
291 	if (!_major)
292 		_major = r;
293 
294 	return 0;
295 
296 out_uevent_exit:
297 	dm_uevent_exit();
298 out_free_rq_tio_cache:
299 	kmem_cache_destroy(_rq_tio_cache);
300 out_free_io_cache:
301 	kmem_cache_destroy(_io_cache);
302 
303 	return r;
304 }
305 
306 static void local_exit(void)
307 {
308 	flush_scheduled_work();
309 
310 	kmem_cache_destroy(_rq_tio_cache);
311 	kmem_cache_destroy(_io_cache);
312 	unregister_blkdev(_major, _name);
313 	dm_uevent_exit();
314 
315 	_major = 0;
316 
317 	DMINFO("cleaned up");
318 }
319 
320 static int (*_inits[])(void) __initdata = {
321 	local_init,
322 	dm_target_init,
323 	dm_linear_init,
324 	dm_stripe_init,
325 	dm_io_init,
326 	dm_kcopyd_init,
327 	dm_interface_init,
328 	dm_statistics_init,
329 };
330 
331 static void (*_exits[])(void) = {
332 	local_exit,
333 	dm_target_exit,
334 	dm_linear_exit,
335 	dm_stripe_exit,
336 	dm_io_exit,
337 	dm_kcopyd_exit,
338 	dm_interface_exit,
339 	dm_statistics_exit,
340 };
341 
342 static int __init dm_init(void)
343 {
344 	const int count = ARRAY_SIZE(_inits);
345 
346 	int r, i;
347 
348 	for (i = 0; i < count; i++) {
349 		r = _inits[i]();
350 		if (r)
351 			goto bad;
352 	}
353 
354 	return 0;
355 
356       bad:
357 	while (i--)
358 		_exits[i]();
359 
360 	return r;
361 }
362 
363 static void __exit dm_exit(void)
364 {
365 	int i = ARRAY_SIZE(_exits);
366 
367 	while (i--)
368 		_exits[i]();
369 
370 	/*
371 	 * Should be empty by this point.
372 	 */
373 	idr_destroy(&_minor_idr);
374 }
375 
376 /*
377  * Block device functions
378  */
379 int dm_deleting_md(struct mapped_device *md)
380 {
381 	return test_bit(DMF_DELETING, &md->flags);
382 }
383 
384 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
385 {
386 	struct mapped_device *md;
387 
388 	spin_lock(&_minor_lock);
389 
390 	md = bdev->bd_disk->private_data;
391 	if (!md)
392 		goto out;
393 
394 	if (test_bit(DMF_FREEING, &md->flags) ||
395 	    dm_deleting_md(md)) {
396 		md = NULL;
397 		goto out;
398 	}
399 
400 	dm_get(md);
401 	atomic_inc(&md->open_count);
402 
403 out:
404 	spin_unlock(&_minor_lock);
405 
406 	return md ? 0 : -ENXIO;
407 }
408 
409 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
410 {
411 	struct mapped_device *md = disk->private_data;
412 
413 	spin_lock(&_minor_lock);
414 
415 	if (atomic_dec_and_test(&md->open_count) &&
416 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
417 		schedule_work(&deferred_remove_work);
418 
419 	dm_put(md);
420 
421 	spin_unlock(&_minor_lock);
422 }
423 
424 int dm_open_count(struct mapped_device *md)
425 {
426 	return atomic_read(&md->open_count);
427 }
428 
429 /*
430  * Guarantees nothing is using the device before it's deleted.
431  */
432 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
433 {
434 	int r = 0;
435 
436 	spin_lock(&_minor_lock);
437 
438 	if (dm_open_count(md)) {
439 		r = -EBUSY;
440 		if (mark_deferred)
441 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
442 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
443 		r = -EEXIST;
444 	else
445 		set_bit(DMF_DELETING, &md->flags);
446 
447 	spin_unlock(&_minor_lock);
448 
449 	return r;
450 }
451 
452 int dm_cancel_deferred_remove(struct mapped_device *md)
453 {
454 	int r = 0;
455 
456 	spin_lock(&_minor_lock);
457 
458 	if (test_bit(DMF_DELETING, &md->flags))
459 		r = -EBUSY;
460 	else
461 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
462 
463 	spin_unlock(&_minor_lock);
464 
465 	return r;
466 }
467 
468 static void do_deferred_remove(struct work_struct *w)
469 {
470 	dm_deferred_remove();
471 }
472 
473 sector_t dm_get_size(struct mapped_device *md)
474 {
475 	return get_capacity(md->disk);
476 }
477 
478 struct dm_stats *dm_get_stats(struct mapped_device *md)
479 {
480 	return &md->stats;
481 }
482 
483 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
484 {
485 	struct mapped_device *md = bdev->bd_disk->private_data;
486 
487 	return dm_get_geometry(md, geo);
488 }
489 
490 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
491 			unsigned int cmd, unsigned long arg)
492 {
493 	struct mapped_device *md = bdev->bd_disk->private_data;
494 	int srcu_idx;
495 	struct dm_table *map;
496 	struct dm_target *tgt;
497 	int r = -ENOTTY;
498 
499 retry:
500 	map = dm_get_live_table(md, &srcu_idx);
501 
502 	if (!map || !dm_table_get_size(map))
503 		goto out;
504 
505 	/* We only support devices that have a single target */
506 	if (dm_table_get_num_targets(map) != 1)
507 		goto out;
508 
509 	tgt = dm_table_get_target(map, 0);
510 
511 	if (dm_suspended_md(md)) {
512 		r = -EAGAIN;
513 		goto out;
514 	}
515 
516 	if (tgt->type->ioctl)
517 		r = tgt->type->ioctl(tgt, cmd, arg);
518 
519 out:
520 	dm_put_live_table(md, srcu_idx);
521 
522 	if (r == -ENOTCONN) {
523 		msleep(10);
524 		goto retry;
525 	}
526 
527 	return r;
528 }
529 
530 static struct dm_io *alloc_io(struct mapped_device *md)
531 {
532 	return mempool_alloc(md->io_pool, GFP_NOIO);
533 }
534 
535 static void free_io(struct mapped_device *md, struct dm_io *io)
536 {
537 	mempool_free(io, md->io_pool);
538 }
539 
540 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
541 {
542 	bio_put(&tio->clone);
543 }
544 
545 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
546 					    gfp_t gfp_mask)
547 {
548 	return mempool_alloc(md->io_pool, gfp_mask);
549 }
550 
551 static void free_rq_tio(struct dm_rq_target_io *tio)
552 {
553 	mempool_free(tio, tio->md->io_pool);
554 }
555 
556 static int md_in_flight(struct mapped_device *md)
557 {
558 	return atomic_read(&md->pending[READ]) +
559 	       atomic_read(&md->pending[WRITE]);
560 }
561 
562 static void start_io_acct(struct dm_io *io)
563 {
564 	struct mapped_device *md = io->md;
565 	struct bio *bio = io->bio;
566 	int cpu;
567 	int rw = bio_data_dir(bio);
568 
569 	io->start_time = jiffies;
570 
571 	cpu = part_stat_lock();
572 	part_round_stats(cpu, &dm_disk(md)->part0);
573 	part_stat_unlock();
574 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
575 		atomic_inc_return(&md->pending[rw]));
576 
577 	if (unlikely(dm_stats_used(&md->stats)))
578 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_sector,
579 				    bio_sectors(bio), false, 0, &io->stats_aux);
580 }
581 
582 static void end_io_acct(struct dm_io *io)
583 {
584 	struct mapped_device *md = io->md;
585 	struct bio *bio = io->bio;
586 	unsigned long duration = jiffies - io->start_time;
587 	int pending, cpu;
588 	int rw = bio_data_dir(bio);
589 
590 	cpu = part_stat_lock();
591 	part_round_stats(cpu, &dm_disk(md)->part0);
592 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
593 	part_stat_unlock();
594 
595 	if (unlikely(dm_stats_used(&md->stats)))
596 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_sector,
597 				    bio_sectors(bio), true, duration, &io->stats_aux);
598 
599 	/*
600 	 * After this is decremented the bio must not be touched if it is
601 	 * a flush.
602 	 */
603 	pending = atomic_dec_return(&md->pending[rw]);
604 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
605 	pending += atomic_read(&md->pending[rw^0x1]);
606 
607 	/* nudge anyone waiting on suspend queue */
608 	if (!pending)
609 		wake_up(&md->wait);
610 }
611 
612 /*
613  * Add the bio to the list of deferred io.
614  */
615 static void queue_io(struct mapped_device *md, struct bio *bio)
616 {
617 	unsigned long flags;
618 
619 	spin_lock_irqsave(&md->deferred_lock, flags);
620 	bio_list_add(&md->deferred, bio);
621 	spin_unlock_irqrestore(&md->deferred_lock, flags);
622 	queue_work(md->wq, &md->work);
623 }
624 
625 /*
626  * Everyone (including functions in this file), should use this
627  * function to access the md->map field, and make sure they call
628  * dm_put_live_table() when finished.
629  */
630 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
631 {
632 	*srcu_idx = srcu_read_lock(&md->io_barrier);
633 
634 	return srcu_dereference(md->map, &md->io_barrier);
635 }
636 
637 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
638 {
639 	srcu_read_unlock(&md->io_barrier, srcu_idx);
640 }
641 
642 void dm_sync_table(struct mapped_device *md)
643 {
644 	synchronize_srcu(&md->io_barrier);
645 	synchronize_rcu_expedited();
646 }
647 
648 /*
649  * A fast alternative to dm_get_live_table/dm_put_live_table.
650  * The caller must not block between these two functions.
651  */
652 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
653 {
654 	rcu_read_lock();
655 	return rcu_dereference(md->map);
656 }
657 
658 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
659 {
660 	rcu_read_unlock();
661 }
662 
663 /*
664  * Get the geometry associated with a dm device
665  */
666 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
667 {
668 	*geo = md->geometry;
669 
670 	return 0;
671 }
672 
673 /*
674  * Set the geometry of a device.
675  */
676 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
677 {
678 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
679 
680 	if (geo->start > sz) {
681 		DMWARN("Start sector is beyond the geometry limits.");
682 		return -EINVAL;
683 	}
684 
685 	md->geometry = *geo;
686 
687 	return 0;
688 }
689 
690 /*-----------------------------------------------------------------
691  * CRUD START:
692  *   A more elegant soln is in the works that uses the queue
693  *   merge fn, unfortunately there are a couple of changes to
694  *   the block layer that I want to make for this.  So in the
695  *   interests of getting something for people to use I give
696  *   you this clearly demarcated crap.
697  *---------------------------------------------------------------*/
698 
699 static int __noflush_suspending(struct mapped_device *md)
700 {
701 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
702 }
703 
704 /*
705  * Decrements the number of outstanding ios that a bio has been
706  * cloned into, completing the original io if necc.
707  */
708 static void dec_pending(struct dm_io *io, int error)
709 {
710 	unsigned long flags;
711 	int io_error;
712 	struct bio *bio;
713 	struct mapped_device *md = io->md;
714 
715 	/* Push-back supersedes any I/O errors */
716 	if (unlikely(error)) {
717 		spin_lock_irqsave(&io->endio_lock, flags);
718 		if (!(io->error > 0 && __noflush_suspending(md)))
719 			io->error = error;
720 		spin_unlock_irqrestore(&io->endio_lock, flags);
721 	}
722 
723 	if (atomic_dec_and_test(&io->io_count)) {
724 		if (io->error == DM_ENDIO_REQUEUE) {
725 			/*
726 			 * Target requested pushing back the I/O.
727 			 */
728 			spin_lock_irqsave(&md->deferred_lock, flags);
729 			if (__noflush_suspending(md))
730 				bio_list_add_head(&md->deferred, io->bio);
731 			else
732 				/* noflush suspend was interrupted. */
733 				io->error = -EIO;
734 			spin_unlock_irqrestore(&md->deferred_lock, flags);
735 		}
736 
737 		io_error = io->error;
738 		bio = io->bio;
739 		end_io_acct(io);
740 		free_io(md, io);
741 
742 		if (io_error == DM_ENDIO_REQUEUE)
743 			return;
744 
745 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
746 			/*
747 			 * Preflush done for flush with data, reissue
748 			 * without REQ_FLUSH.
749 			 */
750 			bio->bi_rw &= ~REQ_FLUSH;
751 			queue_io(md, bio);
752 		} else {
753 			/* done with normal IO or empty flush */
754 			trace_block_bio_complete(md->queue, bio, io_error);
755 			bio_endio(bio, io_error);
756 		}
757 	}
758 }
759 
760 static void clone_endio(struct bio *bio, int error)
761 {
762 	int r = 0;
763 	struct dm_target_io *tio = bio->bi_private;
764 	struct dm_io *io = tio->io;
765 	struct mapped_device *md = tio->io->md;
766 	dm_endio_fn endio = tio->ti->type->end_io;
767 
768 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
769 		error = -EIO;
770 
771 	if (endio) {
772 		r = endio(tio->ti, bio, error);
773 		if (r < 0 || r == DM_ENDIO_REQUEUE)
774 			/*
775 			 * error and requeue request are handled
776 			 * in dec_pending().
777 			 */
778 			error = r;
779 		else if (r == DM_ENDIO_INCOMPLETE)
780 			/* The target will handle the io */
781 			return;
782 		else if (r) {
783 			DMWARN("unimplemented target endio return value: %d", r);
784 			BUG();
785 		}
786 	}
787 
788 	free_tio(md, tio);
789 	dec_pending(io, error);
790 }
791 
792 /*
793  * Partial completion handling for request-based dm
794  */
795 static void end_clone_bio(struct bio *clone, int error)
796 {
797 	struct dm_rq_clone_bio_info *info = clone->bi_private;
798 	struct dm_rq_target_io *tio = info->tio;
799 	struct bio *bio = info->orig;
800 	unsigned int nr_bytes = info->orig->bi_size;
801 
802 	bio_put(clone);
803 
804 	if (tio->error)
805 		/*
806 		 * An error has already been detected on the request.
807 		 * Once error occurred, just let clone->end_io() handle
808 		 * the remainder.
809 		 */
810 		return;
811 	else if (error) {
812 		/*
813 		 * Don't notice the error to the upper layer yet.
814 		 * The error handling decision is made by the target driver,
815 		 * when the request is completed.
816 		 */
817 		tio->error = error;
818 		return;
819 	}
820 
821 	/*
822 	 * I/O for the bio successfully completed.
823 	 * Notice the data completion to the upper layer.
824 	 */
825 
826 	/*
827 	 * bios are processed from the head of the list.
828 	 * So the completing bio should always be rq->bio.
829 	 * If it's not, something wrong is happening.
830 	 */
831 	if (tio->orig->bio != bio)
832 		DMERR("bio completion is going in the middle of the request");
833 
834 	/*
835 	 * Update the original request.
836 	 * Do not use blk_end_request() here, because it may complete
837 	 * the original request before the clone, and break the ordering.
838 	 */
839 	blk_update_request(tio->orig, 0, nr_bytes);
840 }
841 
842 /*
843  * Don't touch any member of the md after calling this function because
844  * the md may be freed in dm_put() at the end of this function.
845  * Or do dm_get() before calling this function and dm_put() later.
846  */
847 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
848 {
849 	atomic_dec(&md->pending[rw]);
850 
851 	/* nudge anyone waiting on suspend queue */
852 	if (!md_in_flight(md))
853 		wake_up(&md->wait);
854 
855 	/*
856 	 * Run this off this callpath, as drivers could invoke end_io while
857 	 * inside their request_fn (and holding the queue lock). Calling
858 	 * back into ->request_fn() could deadlock attempting to grab the
859 	 * queue lock again.
860 	 */
861 	if (run_queue)
862 		blk_run_queue_async(md->queue);
863 
864 	/*
865 	 * dm_put() must be at the end of this function. See the comment above
866 	 */
867 	dm_put(md);
868 }
869 
870 static void free_rq_clone(struct request *clone)
871 {
872 	struct dm_rq_target_io *tio = clone->end_io_data;
873 
874 	blk_rq_unprep_clone(clone);
875 	free_rq_tio(tio);
876 }
877 
878 /*
879  * Complete the clone and the original request.
880  * Must be called without queue lock.
881  */
882 static void dm_end_request(struct request *clone, int error)
883 {
884 	int rw = rq_data_dir(clone);
885 	struct dm_rq_target_io *tio = clone->end_io_data;
886 	struct mapped_device *md = tio->md;
887 	struct request *rq = tio->orig;
888 
889 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
890 		rq->errors = clone->errors;
891 		rq->resid_len = clone->resid_len;
892 
893 		if (rq->sense)
894 			/*
895 			 * We are using the sense buffer of the original
896 			 * request.
897 			 * So setting the length of the sense data is enough.
898 			 */
899 			rq->sense_len = clone->sense_len;
900 	}
901 
902 	free_rq_clone(clone);
903 	blk_end_request_all(rq, error);
904 	rq_completed(md, rw, true);
905 }
906 
907 static void dm_unprep_request(struct request *rq)
908 {
909 	struct request *clone = rq->special;
910 
911 	rq->special = NULL;
912 	rq->cmd_flags &= ~REQ_DONTPREP;
913 
914 	free_rq_clone(clone);
915 }
916 
917 /*
918  * Requeue the original request of a clone.
919  */
920 void dm_requeue_unmapped_request(struct request *clone)
921 {
922 	int rw = rq_data_dir(clone);
923 	struct dm_rq_target_io *tio = clone->end_io_data;
924 	struct mapped_device *md = tio->md;
925 	struct request *rq = tio->orig;
926 	struct request_queue *q = rq->q;
927 	unsigned long flags;
928 
929 	dm_unprep_request(rq);
930 
931 	spin_lock_irqsave(q->queue_lock, flags);
932 	blk_requeue_request(q, rq);
933 	spin_unlock_irqrestore(q->queue_lock, flags);
934 
935 	rq_completed(md, rw, 0);
936 }
937 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
938 
939 static void __stop_queue(struct request_queue *q)
940 {
941 	blk_stop_queue(q);
942 }
943 
944 static void stop_queue(struct request_queue *q)
945 {
946 	unsigned long flags;
947 
948 	spin_lock_irqsave(q->queue_lock, flags);
949 	__stop_queue(q);
950 	spin_unlock_irqrestore(q->queue_lock, flags);
951 }
952 
953 static void __start_queue(struct request_queue *q)
954 {
955 	if (blk_queue_stopped(q))
956 		blk_start_queue(q);
957 }
958 
959 static void start_queue(struct request_queue *q)
960 {
961 	unsigned long flags;
962 
963 	spin_lock_irqsave(q->queue_lock, flags);
964 	__start_queue(q);
965 	spin_unlock_irqrestore(q->queue_lock, flags);
966 }
967 
968 static void dm_done(struct request *clone, int error, bool mapped)
969 {
970 	int r = error;
971 	struct dm_rq_target_io *tio = clone->end_io_data;
972 	dm_request_endio_fn rq_end_io = NULL;
973 
974 	if (tio->ti) {
975 		rq_end_io = tio->ti->type->rq_end_io;
976 
977 		if (mapped && rq_end_io)
978 			r = rq_end_io(tio->ti, clone, error, &tio->info);
979 	}
980 
981 	if (r <= 0)
982 		/* The target wants to complete the I/O */
983 		dm_end_request(clone, r);
984 	else if (r == DM_ENDIO_INCOMPLETE)
985 		/* The target will handle the I/O */
986 		return;
987 	else if (r == DM_ENDIO_REQUEUE)
988 		/* The target wants to requeue the I/O */
989 		dm_requeue_unmapped_request(clone);
990 	else {
991 		DMWARN("unimplemented target endio return value: %d", r);
992 		BUG();
993 	}
994 }
995 
996 /*
997  * Request completion handler for request-based dm
998  */
999 static void dm_softirq_done(struct request *rq)
1000 {
1001 	bool mapped = true;
1002 	struct request *clone = rq->completion_data;
1003 	struct dm_rq_target_io *tio = clone->end_io_data;
1004 
1005 	if (rq->cmd_flags & REQ_FAILED)
1006 		mapped = false;
1007 
1008 	dm_done(clone, tio->error, mapped);
1009 }
1010 
1011 /*
1012  * Complete the clone and the original request with the error status
1013  * through softirq context.
1014  */
1015 static void dm_complete_request(struct request *clone, int error)
1016 {
1017 	struct dm_rq_target_io *tio = clone->end_io_data;
1018 	struct request *rq = tio->orig;
1019 
1020 	tio->error = error;
1021 	rq->completion_data = clone;
1022 	blk_complete_request(rq);
1023 }
1024 
1025 /*
1026  * Complete the not-mapped clone and the original request with the error status
1027  * through softirq context.
1028  * Target's rq_end_io() function isn't called.
1029  * This may be used when the target's map_rq() function fails.
1030  */
1031 void dm_kill_unmapped_request(struct request *clone, int error)
1032 {
1033 	struct dm_rq_target_io *tio = clone->end_io_data;
1034 	struct request *rq = tio->orig;
1035 
1036 	rq->cmd_flags |= REQ_FAILED;
1037 	dm_complete_request(clone, error);
1038 }
1039 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1040 
1041 /*
1042  * Called with the queue lock held
1043  */
1044 static void end_clone_request(struct request *clone, int error)
1045 {
1046 	/*
1047 	 * For just cleaning up the information of the queue in which
1048 	 * the clone was dispatched.
1049 	 * The clone is *NOT* freed actually here because it is alloced from
1050 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1051 	 */
1052 	__blk_put_request(clone->q, clone);
1053 
1054 	/*
1055 	 * Actual request completion is done in a softirq context which doesn't
1056 	 * hold the queue lock.  Otherwise, deadlock could occur because:
1057 	 *     - another request may be submitted by the upper level driver
1058 	 *       of the stacking during the completion
1059 	 *     - the submission which requires queue lock may be done
1060 	 *       against this queue
1061 	 */
1062 	dm_complete_request(clone, error);
1063 }
1064 
1065 /*
1066  * Return maximum size of I/O possible at the supplied sector up to the current
1067  * target boundary.
1068  */
1069 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1070 {
1071 	sector_t target_offset = dm_target_offset(ti, sector);
1072 
1073 	return ti->len - target_offset;
1074 }
1075 
1076 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1077 {
1078 	sector_t len = max_io_len_target_boundary(sector, ti);
1079 	sector_t offset, max_len;
1080 
1081 	/*
1082 	 * Does the target need to split even further?
1083 	 */
1084 	if (ti->max_io_len) {
1085 		offset = dm_target_offset(ti, sector);
1086 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1087 			max_len = sector_div(offset, ti->max_io_len);
1088 		else
1089 			max_len = offset & (ti->max_io_len - 1);
1090 		max_len = ti->max_io_len - max_len;
1091 
1092 		if (len > max_len)
1093 			len = max_len;
1094 	}
1095 
1096 	return len;
1097 }
1098 
1099 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1100 {
1101 	if (len > UINT_MAX) {
1102 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1103 		      (unsigned long long)len, UINT_MAX);
1104 		ti->error = "Maximum size of target IO is too large";
1105 		return -EINVAL;
1106 	}
1107 
1108 	ti->max_io_len = (uint32_t) len;
1109 
1110 	return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1113 
1114 static void __map_bio(struct dm_target_io *tio)
1115 {
1116 	int r;
1117 	sector_t sector;
1118 	struct mapped_device *md;
1119 	struct bio *clone = &tio->clone;
1120 	struct dm_target *ti = tio->ti;
1121 
1122 	clone->bi_end_io = clone_endio;
1123 	clone->bi_private = tio;
1124 
1125 	/*
1126 	 * Map the clone.  If r == 0 we don't need to do
1127 	 * anything, the target has assumed ownership of
1128 	 * this io.
1129 	 */
1130 	atomic_inc(&tio->io->io_count);
1131 	sector = clone->bi_sector;
1132 	r = ti->type->map(ti, clone);
1133 	if (r == DM_MAPIO_REMAPPED) {
1134 		/* the bio has been remapped so dispatch it */
1135 
1136 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1137 				      tio->io->bio->bi_bdev->bd_dev, sector);
1138 
1139 		generic_make_request(clone);
1140 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1141 		/* error the io and bail out, or requeue it if needed */
1142 		md = tio->io->md;
1143 		dec_pending(tio->io, r);
1144 		free_tio(md, tio);
1145 	} else if (r) {
1146 		DMWARN("unimplemented target map return value: %d", r);
1147 		BUG();
1148 	}
1149 }
1150 
1151 struct clone_info {
1152 	struct mapped_device *md;
1153 	struct dm_table *map;
1154 	struct bio *bio;
1155 	struct dm_io *io;
1156 	sector_t sector;
1157 	sector_t sector_count;
1158 	unsigned short idx;
1159 };
1160 
1161 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1162 {
1163 	bio->bi_sector = sector;
1164 	bio->bi_size = to_bytes(len);
1165 }
1166 
1167 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1168 {
1169 	bio->bi_idx = idx;
1170 	bio->bi_vcnt = idx + bv_count;
1171 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1172 }
1173 
1174 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1175 				unsigned short idx, unsigned len, unsigned offset,
1176 				unsigned trim)
1177 {
1178 	if (!bio_integrity(bio))
1179 		return;
1180 
1181 	bio_integrity_clone(clone, bio, GFP_NOIO);
1182 
1183 	if (trim)
1184 		bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1185 }
1186 
1187 /*
1188  * Creates a little bio that just does part of a bvec.
1189  */
1190 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1191 			    sector_t sector, unsigned short idx,
1192 			    unsigned offset, unsigned len)
1193 {
1194 	struct bio *clone = &tio->clone;
1195 	struct bio_vec *bv = bio->bi_io_vec + idx;
1196 
1197 	*clone->bi_io_vec = *bv;
1198 
1199 	bio_setup_sector(clone, sector, len);
1200 
1201 	clone->bi_bdev = bio->bi_bdev;
1202 	clone->bi_rw = bio->bi_rw;
1203 	clone->bi_vcnt = 1;
1204 	clone->bi_io_vec->bv_offset = offset;
1205 	clone->bi_io_vec->bv_len = clone->bi_size;
1206 	clone->bi_flags |= 1 << BIO_CLONED;
1207 
1208 	clone_bio_integrity(bio, clone, idx, len, offset, 1);
1209 }
1210 
1211 /*
1212  * Creates a bio that consists of range of complete bvecs.
1213  */
1214 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1215 		      sector_t sector, unsigned short idx,
1216 		      unsigned short bv_count, unsigned len)
1217 {
1218 	struct bio *clone = &tio->clone;
1219 	unsigned trim = 0;
1220 
1221 	__bio_clone(clone, bio);
1222 	bio_setup_sector(clone, sector, len);
1223 	bio_setup_bv(clone, idx, bv_count);
1224 
1225 	if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1226 		trim = 1;
1227 	clone_bio_integrity(bio, clone, idx, len, 0, trim);
1228 }
1229 
1230 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1231 				      struct dm_target *ti, int nr_iovecs,
1232 				      unsigned target_bio_nr)
1233 {
1234 	struct dm_target_io *tio;
1235 	struct bio *clone;
1236 
1237 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1238 	tio = container_of(clone, struct dm_target_io, clone);
1239 
1240 	tio->io = ci->io;
1241 	tio->ti = ti;
1242 	memset(&tio->info, 0, sizeof(tio->info));
1243 	tio->target_bio_nr = target_bio_nr;
1244 
1245 	return tio;
1246 }
1247 
1248 static void __clone_and_map_simple_bio(struct clone_info *ci,
1249 				       struct dm_target *ti,
1250 				       unsigned target_bio_nr, sector_t len)
1251 {
1252 	struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1253 	struct bio *clone = &tio->clone;
1254 
1255 	/*
1256 	 * Discard requests require the bio's inline iovecs be initialized.
1257 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1258 	 * and discard, so no need for concern about wasted bvec allocations.
1259 	 */
1260 	 __bio_clone(clone, ci->bio);
1261 	if (len)
1262 		bio_setup_sector(clone, ci->sector, len);
1263 
1264 	__map_bio(tio);
1265 }
1266 
1267 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1268 				  unsigned num_bios, sector_t len)
1269 {
1270 	unsigned target_bio_nr;
1271 
1272 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1273 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1274 }
1275 
1276 static int __send_empty_flush(struct clone_info *ci)
1277 {
1278 	unsigned target_nr = 0;
1279 	struct dm_target *ti;
1280 
1281 	BUG_ON(bio_has_data(ci->bio));
1282 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1283 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1284 
1285 	return 0;
1286 }
1287 
1288 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1289 				     sector_t sector, int nr_iovecs,
1290 				     unsigned short idx, unsigned short bv_count,
1291 				     unsigned offset, unsigned len,
1292 				     unsigned split_bvec)
1293 {
1294 	struct bio *bio = ci->bio;
1295 	struct dm_target_io *tio;
1296 	unsigned target_bio_nr;
1297 	unsigned num_target_bios = 1;
1298 
1299 	/*
1300 	 * Does the target want to receive duplicate copies of the bio?
1301 	 */
1302 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1303 		num_target_bios = ti->num_write_bios(ti, bio);
1304 
1305 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1306 		tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1307 		if (split_bvec)
1308 			clone_split_bio(tio, bio, sector, idx, offset, len);
1309 		else
1310 			clone_bio(tio, bio, sector, idx, bv_count, len);
1311 		__map_bio(tio);
1312 	}
1313 }
1314 
1315 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1316 
1317 static unsigned get_num_discard_bios(struct dm_target *ti)
1318 {
1319 	return ti->num_discard_bios;
1320 }
1321 
1322 static unsigned get_num_write_same_bios(struct dm_target *ti)
1323 {
1324 	return ti->num_write_same_bios;
1325 }
1326 
1327 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1328 
1329 static bool is_split_required_for_discard(struct dm_target *ti)
1330 {
1331 	return ti->split_discard_bios;
1332 }
1333 
1334 static int __send_changing_extent_only(struct clone_info *ci,
1335 				       get_num_bios_fn get_num_bios,
1336 				       is_split_required_fn is_split_required)
1337 {
1338 	struct dm_target *ti;
1339 	sector_t len;
1340 	unsigned num_bios;
1341 
1342 	do {
1343 		ti = dm_table_find_target(ci->map, ci->sector);
1344 		if (!dm_target_is_valid(ti))
1345 			return -EIO;
1346 
1347 		/*
1348 		 * Even though the device advertised support for this type of
1349 		 * request, that does not mean every target supports it, and
1350 		 * reconfiguration might also have changed that since the
1351 		 * check was performed.
1352 		 */
1353 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1354 		if (!num_bios)
1355 			return -EOPNOTSUPP;
1356 
1357 		if (is_split_required && !is_split_required(ti))
1358 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1359 		else
1360 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1361 
1362 		__send_duplicate_bios(ci, ti, num_bios, len);
1363 
1364 		ci->sector += len;
1365 	} while (ci->sector_count -= len);
1366 
1367 	return 0;
1368 }
1369 
1370 static int __send_discard(struct clone_info *ci)
1371 {
1372 	return __send_changing_extent_only(ci, get_num_discard_bios,
1373 					   is_split_required_for_discard);
1374 }
1375 
1376 static int __send_write_same(struct clone_info *ci)
1377 {
1378 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1379 }
1380 
1381 /*
1382  * Find maximum number of sectors / bvecs we can process with a single bio.
1383  */
1384 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1385 {
1386 	struct bio *bio = ci->bio;
1387 	sector_t bv_len, total_len = 0;
1388 
1389 	for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1390 		bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1391 
1392 		if (bv_len > max)
1393 			break;
1394 
1395 		max -= bv_len;
1396 		total_len += bv_len;
1397 	}
1398 
1399 	return total_len;
1400 }
1401 
1402 static int __split_bvec_across_targets(struct clone_info *ci,
1403 				       struct dm_target *ti, sector_t max)
1404 {
1405 	struct bio *bio = ci->bio;
1406 	struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1407 	sector_t remaining = to_sector(bv->bv_len);
1408 	unsigned offset = 0;
1409 	sector_t len;
1410 
1411 	do {
1412 		if (offset) {
1413 			ti = dm_table_find_target(ci->map, ci->sector);
1414 			if (!dm_target_is_valid(ti))
1415 				return -EIO;
1416 
1417 			max = max_io_len(ci->sector, ti);
1418 		}
1419 
1420 		len = min(remaining, max);
1421 
1422 		__clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1423 					 bv->bv_offset + offset, len, 1);
1424 
1425 		ci->sector += len;
1426 		ci->sector_count -= len;
1427 		offset += to_bytes(len);
1428 	} while (remaining -= len);
1429 
1430 	ci->idx++;
1431 
1432 	return 0;
1433 }
1434 
1435 /*
1436  * Select the correct strategy for processing a non-flush bio.
1437  */
1438 static int __split_and_process_non_flush(struct clone_info *ci)
1439 {
1440 	struct bio *bio = ci->bio;
1441 	struct dm_target *ti;
1442 	sector_t len, max;
1443 	int idx;
1444 
1445 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1446 		return __send_discard(ci);
1447 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1448 		return __send_write_same(ci);
1449 
1450 	ti = dm_table_find_target(ci->map, ci->sector);
1451 	if (!dm_target_is_valid(ti))
1452 		return -EIO;
1453 
1454 	max = max_io_len(ci->sector, ti);
1455 
1456 	/*
1457 	 * Optimise for the simple case where we can do all of
1458 	 * the remaining io with a single clone.
1459 	 */
1460 	if (ci->sector_count <= max) {
1461 		__clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1462 					 ci->idx, bio->bi_vcnt - ci->idx, 0,
1463 					 ci->sector_count, 0);
1464 		ci->sector_count = 0;
1465 		return 0;
1466 	}
1467 
1468 	/*
1469 	 * There are some bvecs that don't span targets.
1470 	 * Do as many of these as possible.
1471 	 */
1472 	if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1473 		len = __len_within_target(ci, max, &idx);
1474 
1475 		__clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1476 					 ci->idx, idx - ci->idx, 0, len, 0);
1477 
1478 		ci->sector += len;
1479 		ci->sector_count -= len;
1480 		ci->idx = idx;
1481 
1482 		return 0;
1483 	}
1484 
1485 	/*
1486 	 * Handle a bvec that must be split between two or more targets.
1487 	 */
1488 	return __split_bvec_across_targets(ci, ti, max);
1489 }
1490 
1491 /*
1492  * Entry point to split a bio into clones and submit them to the targets.
1493  */
1494 static void __split_and_process_bio(struct mapped_device *md,
1495 				    struct dm_table *map, struct bio *bio)
1496 {
1497 	struct clone_info ci;
1498 	int error = 0;
1499 
1500 	if (unlikely(!map)) {
1501 		bio_io_error(bio);
1502 		return;
1503 	}
1504 
1505 	ci.map = map;
1506 	ci.md = md;
1507 	ci.io = alloc_io(md);
1508 	ci.io->error = 0;
1509 	atomic_set(&ci.io->io_count, 1);
1510 	ci.io->bio = bio;
1511 	ci.io->md = md;
1512 	spin_lock_init(&ci.io->endio_lock);
1513 	ci.sector = bio->bi_sector;
1514 	ci.idx = bio->bi_idx;
1515 
1516 	start_io_acct(ci.io);
1517 
1518 	if (bio->bi_rw & REQ_FLUSH) {
1519 		ci.bio = &ci.md->flush_bio;
1520 		ci.sector_count = 0;
1521 		error = __send_empty_flush(&ci);
1522 		/* dec_pending submits any data associated with flush */
1523 	} else {
1524 		ci.bio = bio;
1525 		ci.sector_count = bio_sectors(bio);
1526 		while (ci.sector_count && !error)
1527 			error = __split_and_process_non_flush(&ci);
1528 	}
1529 
1530 	/* drop the extra reference count */
1531 	dec_pending(ci.io, error);
1532 }
1533 /*-----------------------------------------------------------------
1534  * CRUD END
1535  *---------------------------------------------------------------*/
1536 
1537 static int dm_merge_bvec(struct request_queue *q,
1538 			 struct bvec_merge_data *bvm,
1539 			 struct bio_vec *biovec)
1540 {
1541 	struct mapped_device *md = q->queuedata;
1542 	struct dm_table *map = dm_get_live_table_fast(md);
1543 	struct dm_target *ti;
1544 	sector_t max_sectors;
1545 	int max_size = 0;
1546 
1547 	if (unlikely(!map))
1548 		goto out;
1549 
1550 	ti = dm_table_find_target(map, bvm->bi_sector);
1551 	if (!dm_target_is_valid(ti))
1552 		goto out;
1553 
1554 	/*
1555 	 * Find maximum amount of I/O that won't need splitting
1556 	 */
1557 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1558 			  (sector_t) BIO_MAX_SECTORS);
1559 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1560 	if (max_size < 0)
1561 		max_size = 0;
1562 
1563 	/*
1564 	 * merge_bvec_fn() returns number of bytes
1565 	 * it can accept at this offset
1566 	 * max is precomputed maximal io size
1567 	 */
1568 	if (max_size && ti->type->merge)
1569 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1570 	/*
1571 	 * If the target doesn't support merge method and some of the devices
1572 	 * provided their merge_bvec method (we know this by looking at
1573 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1574 	 * entries.  So always set max_size to 0, and the code below allows
1575 	 * just one page.
1576 	 */
1577 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1578 
1579 		max_size = 0;
1580 
1581 out:
1582 	dm_put_live_table_fast(md);
1583 	/*
1584 	 * Always allow an entire first page
1585 	 */
1586 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1587 		max_size = biovec->bv_len;
1588 
1589 	return max_size;
1590 }
1591 
1592 /*
1593  * The request function that just remaps the bio built up by
1594  * dm_merge_bvec.
1595  */
1596 static void _dm_request(struct request_queue *q, struct bio *bio)
1597 {
1598 	int rw = bio_data_dir(bio);
1599 	struct mapped_device *md = q->queuedata;
1600 	int cpu;
1601 	int srcu_idx;
1602 	struct dm_table *map;
1603 
1604 	map = dm_get_live_table(md, &srcu_idx);
1605 
1606 	cpu = part_stat_lock();
1607 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1608 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1609 	part_stat_unlock();
1610 
1611 	/* if we're suspended, we have to queue this io for later */
1612 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1613 		dm_put_live_table(md, srcu_idx);
1614 
1615 		if (bio_rw(bio) != READA)
1616 			queue_io(md, bio);
1617 		else
1618 			bio_io_error(bio);
1619 		return;
1620 	}
1621 
1622 	__split_and_process_bio(md, map, bio);
1623 	dm_put_live_table(md, srcu_idx);
1624 	return;
1625 }
1626 
1627 int dm_request_based(struct mapped_device *md)
1628 {
1629 	return blk_queue_stackable(md->queue);
1630 }
1631 
1632 static void dm_request(struct request_queue *q, struct bio *bio)
1633 {
1634 	struct mapped_device *md = q->queuedata;
1635 
1636 	if (dm_request_based(md))
1637 		blk_queue_bio(q, bio);
1638 	else
1639 		_dm_request(q, bio);
1640 }
1641 
1642 void dm_dispatch_request(struct request *rq)
1643 {
1644 	int r;
1645 
1646 	if (blk_queue_io_stat(rq->q))
1647 		rq->cmd_flags |= REQ_IO_STAT;
1648 
1649 	rq->start_time = jiffies;
1650 	r = blk_insert_cloned_request(rq->q, rq);
1651 	if (r)
1652 		dm_complete_request(rq, r);
1653 }
1654 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1655 
1656 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1657 				 void *data)
1658 {
1659 	struct dm_rq_target_io *tio = data;
1660 	struct dm_rq_clone_bio_info *info =
1661 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1662 
1663 	info->orig = bio_orig;
1664 	info->tio = tio;
1665 	bio->bi_end_io = end_clone_bio;
1666 	bio->bi_private = info;
1667 
1668 	return 0;
1669 }
1670 
1671 static int setup_clone(struct request *clone, struct request *rq,
1672 		       struct dm_rq_target_io *tio)
1673 {
1674 	int r;
1675 
1676 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1677 			      dm_rq_bio_constructor, tio);
1678 	if (r)
1679 		return r;
1680 
1681 	clone->cmd = rq->cmd;
1682 	clone->cmd_len = rq->cmd_len;
1683 	clone->sense = rq->sense;
1684 	clone->buffer = rq->buffer;
1685 	clone->end_io = end_clone_request;
1686 	clone->end_io_data = tio;
1687 
1688 	return 0;
1689 }
1690 
1691 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1692 				gfp_t gfp_mask)
1693 {
1694 	struct request *clone;
1695 	struct dm_rq_target_io *tio;
1696 
1697 	tio = alloc_rq_tio(md, gfp_mask);
1698 	if (!tio)
1699 		return NULL;
1700 
1701 	tio->md = md;
1702 	tio->ti = NULL;
1703 	tio->orig = rq;
1704 	tio->error = 0;
1705 	memset(&tio->info, 0, sizeof(tio->info));
1706 
1707 	clone = &tio->clone;
1708 	if (setup_clone(clone, rq, tio)) {
1709 		/* -ENOMEM */
1710 		free_rq_tio(tio);
1711 		return NULL;
1712 	}
1713 
1714 	return clone;
1715 }
1716 
1717 /*
1718  * Called with the queue lock held.
1719  */
1720 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1721 {
1722 	struct mapped_device *md = q->queuedata;
1723 	struct request *clone;
1724 
1725 	if (unlikely(rq->special)) {
1726 		DMWARN("Already has something in rq->special.");
1727 		return BLKPREP_KILL;
1728 	}
1729 
1730 	clone = clone_rq(rq, md, GFP_ATOMIC);
1731 	if (!clone)
1732 		return BLKPREP_DEFER;
1733 
1734 	rq->special = clone;
1735 	rq->cmd_flags |= REQ_DONTPREP;
1736 
1737 	return BLKPREP_OK;
1738 }
1739 
1740 /*
1741  * Returns:
1742  * 0  : the request has been processed (not requeued)
1743  * !0 : the request has been requeued
1744  */
1745 static int map_request(struct dm_target *ti, struct request *clone,
1746 		       struct mapped_device *md)
1747 {
1748 	int r, requeued = 0;
1749 	struct dm_rq_target_io *tio = clone->end_io_data;
1750 
1751 	tio->ti = ti;
1752 	r = ti->type->map_rq(ti, clone, &tio->info);
1753 	switch (r) {
1754 	case DM_MAPIO_SUBMITTED:
1755 		/* The target has taken the I/O to submit by itself later */
1756 		break;
1757 	case DM_MAPIO_REMAPPED:
1758 		/* The target has remapped the I/O so dispatch it */
1759 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1760 				     blk_rq_pos(tio->orig));
1761 		dm_dispatch_request(clone);
1762 		break;
1763 	case DM_MAPIO_REQUEUE:
1764 		/* The target wants to requeue the I/O */
1765 		dm_requeue_unmapped_request(clone);
1766 		requeued = 1;
1767 		break;
1768 	default:
1769 		if (r > 0) {
1770 			DMWARN("unimplemented target map return value: %d", r);
1771 			BUG();
1772 		}
1773 
1774 		/* The target wants to complete the I/O */
1775 		dm_kill_unmapped_request(clone, r);
1776 		break;
1777 	}
1778 
1779 	return requeued;
1780 }
1781 
1782 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1783 {
1784 	struct request *clone;
1785 
1786 	blk_start_request(orig);
1787 	clone = orig->special;
1788 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1789 
1790 	/*
1791 	 * Hold the md reference here for the in-flight I/O.
1792 	 * We can't rely on the reference count by device opener,
1793 	 * because the device may be closed during the request completion
1794 	 * when all bios are completed.
1795 	 * See the comment in rq_completed() too.
1796 	 */
1797 	dm_get(md);
1798 
1799 	return clone;
1800 }
1801 
1802 /*
1803  * q->request_fn for request-based dm.
1804  * Called with the queue lock held.
1805  */
1806 static void dm_request_fn(struct request_queue *q)
1807 {
1808 	struct mapped_device *md = q->queuedata;
1809 	int srcu_idx;
1810 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1811 	struct dm_target *ti;
1812 	struct request *rq, *clone;
1813 	sector_t pos;
1814 
1815 	/*
1816 	 * For suspend, check blk_queue_stopped() and increment
1817 	 * ->pending within a single queue_lock not to increment the
1818 	 * number of in-flight I/Os after the queue is stopped in
1819 	 * dm_suspend().
1820 	 */
1821 	while (!blk_queue_stopped(q)) {
1822 		rq = blk_peek_request(q);
1823 		if (!rq)
1824 			goto delay_and_out;
1825 
1826 		/* always use block 0 to find the target for flushes for now */
1827 		pos = 0;
1828 		if (!(rq->cmd_flags & REQ_FLUSH))
1829 			pos = blk_rq_pos(rq);
1830 
1831 		ti = dm_table_find_target(map, pos);
1832 		if (!dm_target_is_valid(ti)) {
1833 			/*
1834 			 * Must perform setup, that dm_done() requires,
1835 			 * before calling dm_kill_unmapped_request
1836 			 */
1837 			DMERR_LIMIT("request attempted access beyond the end of device");
1838 			clone = dm_start_request(md, rq);
1839 			dm_kill_unmapped_request(clone, -EIO);
1840 			continue;
1841 		}
1842 
1843 		if (ti->type->busy && ti->type->busy(ti))
1844 			goto delay_and_out;
1845 
1846 		clone = dm_start_request(md, rq);
1847 
1848 		spin_unlock(q->queue_lock);
1849 		if (map_request(ti, clone, md))
1850 			goto requeued;
1851 
1852 		BUG_ON(!irqs_disabled());
1853 		spin_lock(q->queue_lock);
1854 	}
1855 
1856 	goto out;
1857 
1858 requeued:
1859 	BUG_ON(!irqs_disabled());
1860 	spin_lock(q->queue_lock);
1861 
1862 delay_and_out:
1863 	blk_delay_queue(q, HZ / 10);
1864 out:
1865 	dm_put_live_table(md, srcu_idx);
1866 }
1867 
1868 int dm_underlying_device_busy(struct request_queue *q)
1869 {
1870 	return blk_lld_busy(q);
1871 }
1872 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1873 
1874 static int dm_lld_busy(struct request_queue *q)
1875 {
1876 	int r;
1877 	struct mapped_device *md = q->queuedata;
1878 	struct dm_table *map = dm_get_live_table_fast(md);
1879 
1880 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1881 		r = 1;
1882 	else
1883 		r = dm_table_any_busy_target(map);
1884 
1885 	dm_put_live_table_fast(md);
1886 
1887 	return r;
1888 }
1889 
1890 static int dm_any_congested(void *congested_data, int bdi_bits)
1891 {
1892 	int r = bdi_bits;
1893 	struct mapped_device *md = congested_data;
1894 	struct dm_table *map;
1895 
1896 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1897 		map = dm_get_live_table_fast(md);
1898 		if (map) {
1899 			/*
1900 			 * Request-based dm cares about only own queue for
1901 			 * the query about congestion status of request_queue
1902 			 */
1903 			if (dm_request_based(md))
1904 				r = md->queue->backing_dev_info.state &
1905 				    bdi_bits;
1906 			else
1907 				r = dm_table_any_congested(map, bdi_bits);
1908 		}
1909 		dm_put_live_table_fast(md);
1910 	}
1911 
1912 	return r;
1913 }
1914 
1915 /*-----------------------------------------------------------------
1916  * An IDR is used to keep track of allocated minor numbers.
1917  *---------------------------------------------------------------*/
1918 static void free_minor(int minor)
1919 {
1920 	spin_lock(&_minor_lock);
1921 	idr_remove(&_minor_idr, minor);
1922 	spin_unlock(&_minor_lock);
1923 }
1924 
1925 /*
1926  * See if the device with a specific minor # is free.
1927  */
1928 static int specific_minor(int minor)
1929 {
1930 	int r;
1931 
1932 	if (minor >= (1 << MINORBITS))
1933 		return -EINVAL;
1934 
1935 	idr_preload(GFP_KERNEL);
1936 	spin_lock(&_minor_lock);
1937 
1938 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1939 
1940 	spin_unlock(&_minor_lock);
1941 	idr_preload_end();
1942 	if (r < 0)
1943 		return r == -ENOSPC ? -EBUSY : r;
1944 	return 0;
1945 }
1946 
1947 static int next_free_minor(int *minor)
1948 {
1949 	int r;
1950 
1951 	idr_preload(GFP_KERNEL);
1952 	spin_lock(&_minor_lock);
1953 
1954 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1955 
1956 	spin_unlock(&_minor_lock);
1957 	idr_preload_end();
1958 	if (r < 0)
1959 		return r;
1960 	*minor = r;
1961 	return 0;
1962 }
1963 
1964 static const struct block_device_operations dm_blk_dops;
1965 
1966 static void dm_wq_work(struct work_struct *work);
1967 
1968 static void dm_init_md_queue(struct mapped_device *md)
1969 {
1970 	/*
1971 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1972 	 * devices.  The type of this dm device has not been decided yet.
1973 	 * The type is decided at the first table loading time.
1974 	 * To prevent problematic device stacking, clear the queue flag
1975 	 * for request stacking support until then.
1976 	 *
1977 	 * This queue is new, so no concurrency on the queue_flags.
1978 	 */
1979 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1980 
1981 	md->queue->queuedata = md;
1982 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1983 	md->queue->backing_dev_info.congested_data = md;
1984 	blk_queue_make_request(md->queue, dm_request);
1985 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1986 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1987 }
1988 
1989 /*
1990  * Allocate and initialise a blank device with a given minor.
1991  */
1992 static struct mapped_device *alloc_dev(int minor)
1993 {
1994 	int r;
1995 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1996 	void *old_md;
1997 
1998 	if (!md) {
1999 		DMWARN("unable to allocate device, out of memory.");
2000 		return NULL;
2001 	}
2002 
2003 	if (!try_module_get(THIS_MODULE))
2004 		goto bad_module_get;
2005 
2006 	/* get a minor number for the dev */
2007 	if (minor == DM_ANY_MINOR)
2008 		r = next_free_minor(&minor);
2009 	else
2010 		r = specific_minor(minor);
2011 	if (r < 0)
2012 		goto bad_minor;
2013 
2014 	r = init_srcu_struct(&md->io_barrier);
2015 	if (r < 0)
2016 		goto bad_io_barrier;
2017 
2018 	md->type = DM_TYPE_NONE;
2019 	mutex_init(&md->suspend_lock);
2020 	mutex_init(&md->type_lock);
2021 	spin_lock_init(&md->deferred_lock);
2022 	atomic_set(&md->holders, 1);
2023 	atomic_set(&md->open_count, 0);
2024 	atomic_set(&md->event_nr, 0);
2025 	atomic_set(&md->uevent_seq, 0);
2026 	INIT_LIST_HEAD(&md->uevent_list);
2027 	spin_lock_init(&md->uevent_lock);
2028 
2029 	md->queue = blk_alloc_queue(GFP_KERNEL);
2030 	if (!md->queue)
2031 		goto bad_queue;
2032 
2033 	dm_init_md_queue(md);
2034 
2035 	md->disk = alloc_disk(1);
2036 	if (!md->disk)
2037 		goto bad_disk;
2038 
2039 	atomic_set(&md->pending[0], 0);
2040 	atomic_set(&md->pending[1], 0);
2041 	init_waitqueue_head(&md->wait);
2042 	INIT_WORK(&md->work, dm_wq_work);
2043 	init_waitqueue_head(&md->eventq);
2044 
2045 	md->disk->major = _major;
2046 	md->disk->first_minor = minor;
2047 	md->disk->fops = &dm_blk_dops;
2048 	md->disk->queue = md->queue;
2049 	md->disk->private_data = md;
2050 	sprintf(md->disk->disk_name, "dm-%d", minor);
2051 	add_disk(md->disk);
2052 	format_dev_t(md->name, MKDEV(_major, minor));
2053 
2054 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2055 	if (!md->wq)
2056 		goto bad_thread;
2057 
2058 	md->bdev = bdget_disk(md->disk, 0);
2059 	if (!md->bdev)
2060 		goto bad_bdev;
2061 
2062 	bio_init(&md->flush_bio);
2063 	md->flush_bio.bi_bdev = md->bdev;
2064 	md->flush_bio.bi_rw = WRITE_FLUSH;
2065 
2066 	dm_stats_init(&md->stats);
2067 
2068 	/* Populate the mapping, nobody knows we exist yet */
2069 	spin_lock(&_minor_lock);
2070 	old_md = idr_replace(&_minor_idr, md, minor);
2071 	spin_unlock(&_minor_lock);
2072 
2073 	BUG_ON(old_md != MINOR_ALLOCED);
2074 
2075 	return md;
2076 
2077 bad_bdev:
2078 	destroy_workqueue(md->wq);
2079 bad_thread:
2080 	del_gendisk(md->disk);
2081 	put_disk(md->disk);
2082 bad_disk:
2083 	blk_cleanup_queue(md->queue);
2084 bad_queue:
2085 	cleanup_srcu_struct(&md->io_barrier);
2086 bad_io_barrier:
2087 	free_minor(minor);
2088 bad_minor:
2089 	module_put(THIS_MODULE);
2090 bad_module_get:
2091 	kfree(md);
2092 	return NULL;
2093 }
2094 
2095 static void unlock_fs(struct mapped_device *md);
2096 
2097 static void free_dev(struct mapped_device *md)
2098 {
2099 	int minor = MINOR(disk_devt(md->disk));
2100 
2101 	unlock_fs(md);
2102 	bdput(md->bdev);
2103 	destroy_workqueue(md->wq);
2104 	if (md->io_pool)
2105 		mempool_destroy(md->io_pool);
2106 	if (md->bs)
2107 		bioset_free(md->bs);
2108 	blk_integrity_unregister(md->disk);
2109 	del_gendisk(md->disk);
2110 	cleanup_srcu_struct(&md->io_barrier);
2111 	free_minor(minor);
2112 
2113 	spin_lock(&_minor_lock);
2114 	md->disk->private_data = NULL;
2115 	spin_unlock(&_minor_lock);
2116 
2117 	put_disk(md->disk);
2118 	blk_cleanup_queue(md->queue);
2119 	dm_stats_cleanup(&md->stats);
2120 	module_put(THIS_MODULE);
2121 	kfree(md);
2122 }
2123 
2124 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2125 {
2126 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2127 
2128 	if (md->io_pool && md->bs) {
2129 		/* The md already has necessary mempools. */
2130 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2131 			/*
2132 			 * Reload bioset because front_pad may have changed
2133 			 * because a different table was loaded.
2134 			 */
2135 			bioset_free(md->bs);
2136 			md->bs = p->bs;
2137 			p->bs = NULL;
2138 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2139 			/*
2140 			 * There's no need to reload with request-based dm
2141 			 * because the size of front_pad doesn't change.
2142 			 * Note for future: If you are to reload bioset,
2143 			 * prep-ed requests in the queue may refer
2144 			 * to bio from the old bioset, so you must walk
2145 			 * through the queue to unprep.
2146 			 */
2147 		}
2148 		goto out;
2149 	}
2150 
2151 	BUG_ON(!p || md->io_pool || md->bs);
2152 
2153 	md->io_pool = p->io_pool;
2154 	p->io_pool = NULL;
2155 	md->bs = p->bs;
2156 	p->bs = NULL;
2157 
2158 out:
2159 	/* mempool bind completed, now no need any mempools in the table */
2160 	dm_table_free_md_mempools(t);
2161 }
2162 
2163 /*
2164  * Bind a table to the device.
2165  */
2166 static void event_callback(void *context)
2167 {
2168 	unsigned long flags;
2169 	LIST_HEAD(uevents);
2170 	struct mapped_device *md = (struct mapped_device *) context;
2171 
2172 	spin_lock_irqsave(&md->uevent_lock, flags);
2173 	list_splice_init(&md->uevent_list, &uevents);
2174 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2175 
2176 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2177 
2178 	atomic_inc(&md->event_nr);
2179 	wake_up(&md->eventq);
2180 }
2181 
2182 /*
2183  * Protected by md->suspend_lock obtained by dm_swap_table().
2184  */
2185 static void __set_size(struct mapped_device *md, sector_t size)
2186 {
2187 	set_capacity(md->disk, size);
2188 
2189 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2190 }
2191 
2192 /*
2193  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2194  *
2195  * If this function returns 0, then the device is either a non-dm
2196  * device without a merge_bvec_fn, or it is a dm device that is
2197  * able to split any bios it receives that are too big.
2198  */
2199 int dm_queue_merge_is_compulsory(struct request_queue *q)
2200 {
2201 	struct mapped_device *dev_md;
2202 
2203 	if (!q->merge_bvec_fn)
2204 		return 0;
2205 
2206 	if (q->make_request_fn == dm_request) {
2207 		dev_md = q->queuedata;
2208 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2209 			return 0;
2210 	}
2211 
2212 	return 1;
2213 }
2214 
2215 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2216 					 struct dm_dev *dev, sector_t start,
2217 					 sector_t len, void *data)
2218 {
2219 	struct block_device *bdev = dev->bdev;
2220 	struct request_queue *q = bdev_get_queue(bdev);
2221 
2222 	return dm_queue_merge_is_compulsory(q);
2223 }
2224 
2225 /*
2226  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2227  * on the properties of the underlying devices.
2228  */
2229 static int dm_table_merge_is_optional(struct dm_table *table)
2230 {
2231 	unsigned i = 0;
2232 	struct dm_target *ti;
2233 
2234 	while (i < dm_table_get_num_targets(table)) {
2235 		ti = dm_table_get_target(table, i++);
2236 
2237 		if (ti->type->iterate_devices &&
2238 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2239 			return 0;
2240 	}
2241 
2242 	return 1;
2243 }
2244 
2245 /*
2246  * Returns old map, which caller must destroy.
2247  */
2248 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2249 			       struct queue_limits *limits)
2250 {
2251 	struct dm_table *old_map;
2252 	struct request_queue *q = md->queue;
2253 	sector_t size;
2254 	int merge_is_optional;
2255 
2256 	size = dm_table_get_size(t);
2257 
2258 	/*
2259 	 * Wipe any geometry if the size of the table changed.
2260 	 */
2261 	if (size != dm_get_size(md))
2262 		memset(&md->geometry, 0, sizeof(md->geometry));
2263 
2264 	__set_size(md, size);
2265 
2266 	dm_table_event_callback(t, event_callback, md);
2267 
2268 	/*
2269 	 * The queue hasn't been stopped yet, if the old table type wasn't
2270 	 * for request-based during suspension.  So stop it to prevent
2271 	 * I/O mapping before resume.
2272 	 * This must be done before setting the queue restrictions,
2273 	 * because request-based dm may be run just after the setting.
2274 	 */
2275 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2276 		stop_queue(q);
2277 
2278 	__bind_mempools(md, t);
2279 
2280 	merge_is_optional = dm_table_merge_is_optional(t);
2281 
2282 	old_map = md->map;
2283 	rcu_assign_pointer(md->map, t);
2284 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2285 
2286 	dm_table_set_restrictions(t, q, limits);
2287 	if (merge_is_optional)
2288 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2289 	else
2290 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2291 	dm_sync_table(md);
2292 
2293 	return old_map;
2294 }
2295 
2296 /*
2297  * Returns unbound table for the caller to free.
2298  */
2299 static struct dm_table *__unbind(struct mapped_device *md)
2300 {
2301 	struct dm_table *map = md->map;
2302 
2303 	if (!map)
2304 		return NULL;
2305 
2306 	dm_table_event_callback(map, NULL, NULL);
2307 	rcu_assign_pointer(md->map, NULL);
2308 	dm_sync_table(md);
2309 
2310 	return map;
2311 }
2312 
2313 /*
2314  * Constructor for a new device.
2315  */
2316 int dm_create(int minor, struct mapped_device **result)
2317 {
2318 	struct mapped_device *md;
2319 
2320 	md = alloc_dev(minor);
2321 	if (!md)
2322 		return -ENXIO;
2323 
2324 	dm_sysfs_init(md);
2325 
2326 	*result = md;
2327 	return 0;
2328 }
2329 
2330 /*
2331  * Functions to manage md->type.
2332  * All are required to hold md->type_lock.
2333  */
2334 void dm_lock_md_type(struct mapped_device *md)
2335 {
2336 	mutex_lock(&md->type_lock);
2337 }
2338 
2339 void dm_unlock_md_type(struct mapped_device *md)
2340 {
2341 	mutex_unlock(&md->type_lock);
2342 }
2343 
2344 void dm_set_md_type(struct mapped_device *md, unsigned type)
2345 {
2346 	BUG_ON(!mutex_is_locked(&md->type_lock));
2347 	md->type = type;
2348 }
2349 
2350 unsigned dm_get_md_type(struct mapped_device *md)
2351 {
2352 	BUG_ON(!mutex_is_locked(&md->type_lock));
2353 	return md->type;
2354 }
2355 
2356 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2357 {
2358 	return md->immutable_target_type;
2359 }
2360 
2361 /*
2362  * The queue_limits are only valid as long as you have a reference
2363  * count on 'md'.
2364  */
2365 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2366 {
2367 	BUG_ON(!atomic_read(&md->holders));
2368 	return &md->queue->limits;
2369 }
2370 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2371 
2372 /*
2373  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2374  */
2375 static int dm_init_request_based_queue(struct mapped_device *md)
2376 {
2377 	struct request_queue *q = NULL;
2378 
2379 	if (md->queue->elevator)
2380 		return 1;
2381 
2382 	/* Fully initialize the queue */
2383 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2384 	if (!q)
2385 		return 0;
2386 
2387 	md->queue = q;
2388 	dm_init_md_queue(md);
2389 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2390 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2391 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2392 
2393 	elv_register_queue(md->queue);
2394 
2395 	return 1;
2396 }
2397 
2398 /*
2399  * Setup the DM device's queue based on md's type
2400  */
2401 int dm_setup_md_queue(struct mapped_device *md)
2402 {
2403 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2404 	    !dm_init_request_based_queue(md)) {
2405 		DMWARN("Cannot initialize queue for request-based mapped device");
2406 		return -EINVAL;
2407 	}
2408 
2409 	return 0;
2410 }
2411 
2412 static struct mapped_device *dm_find_md(dev_t dev)
2413 {
2414 	struct mapped_device *md;
2415 	unsigned minor = MINOR(dev);
2416 
2417 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2418 		return NULL;
2419 
2420 	spin_lock(&_minor_lock);
2421 
2422 	md = idr_find(&_minor_idr, minor);
2423 	if (md && (md == MINOR_ALLOCED ||
2424 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2425 		   dm_deleting_md(md) ||
2426 		   test_bit(DMF_FREEING, &md->flags))) {
2427 		md = NULL;
2428 		goto out;
2429 	}
2430 
2431 out:
2432 	spin_unlock(&_minor_lock);
2433 
2434 	return md;
2435 }
2436 
2437 struct mapped_device *dm_get_md(dev_t dev)
2438 {
2439 	struct mapped_device *md = dm_find_md(dev);
2440 
2441 	if (md)
2442 		dm_get(md);
2443 
2444 	return md;
2445 }
2446 EXPORT_SYMBOL_GPL(dm_get_md);
2447 
2448 void *dm_get_mdptr(struct mapped_device *md)
2449 {
2450 	return md->interface_ptr;
2451 }
2452 
2453 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2454 {
2455 	md->interface_ptr = ptr;
2456 }
2457 
2458 void dm_get(struct mapped_device *md)
2459 {
2460 	atomic_inc(&md->holders);
2461 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2462 }
2463 
2464 const char *dm_device_name(struct mapped_device *md)
2465 {
2466 	return md->name;
2467 }
2468 EXPORT_SYMBOL_GPL(dm_device_name);
2469 
2470 static void __dm_destroy(struct mapped_device *md, bool wait)
2471 {
2472 	struct dm_table *map;
2473 	int srcu_idx;
2474 
2475 	might_sleep();
2476 
2477 	spin_lock(&_minor_lock);
2478 	map = dm_get_live_table(md, &srcu_idx);
2479 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2480 	set_bit(DMF_FREEING, &md->flags);
2481 	spin_unlock(&_minor_lock);
2482 
2483 	if (!dm_suspended_md(md)) {
2484 		dm_table_presuspend_targets(map);
2485 		dm_table_postsuspend_targets(map);
2486 	}
2487 
2488 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2489 	dm_put_live_table(md, srcu_idx);
2490 
2491 	/*
2492 	 * Rare, but there may be I/O requests still going to complete,
2493 	 * for example.  Wait for all references to disappear.
2494 	 * No one should increment the reference count of the mapped_device,
2495 	 * after the mapped_device state becomes DMF_FREEING.
2496 	 */
2497 	if (wait)
2498 		while (atomic_read(&md->holders))
2499 			msleep(1);
2500 	else if (atomic_read(&md->holders))
2501 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2502 		       dm_device_name(md), atomic_read(&md->holders));
2503 
2504 	dm_sysfs_exit(md);
2505 	dm_table_destroy(__unbind(md));
2506 	free_dev(md);
2507 }
2508 
2509 void dm_destroy(struct mapped_device *md)
2510 {
2511 	__dm_destroy(md, true);
2512 }
2513 
2514 void dm_destroy_immediate(struct mapped_device *md)
2515 {
2516 	__dm_destroy(md, false);
2517 }
2518 
2519 void dm_put(struct mapped_device *md)
2520 {
2521 	atomic_dec(&md->holders);
2522 }
2523 EXPORT_SYMBOL_GPL(dm_put);
2524 
2525 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2526 {
2527 	int r = 0;
2528 	DECLARE_WAITQUEUE(wait, current);
2529 
2530 	add_wait_queue(&md->wait, &wait);
2531 
2532 	while (1) {
2533 		set_current_state(interruptible);
2534 
2535 		if (!md_in_flight(md))
2536 			break;
2537 
2538 		if (interruptible == TASK_INTERRUPTIBLE &&
2539 		    signal_pending(current)) {
2540 			r = -EINTR;
2541 			break;
2542 		}
2543 
2544 		io_schedule();
2545 	}
2546 	set_current_state(TASK_RUNNING);
2547 
2548 	remove_wait_queue(&md->wait, &wait);
2549 
2550 	return r;
2551 }
2552 
2553 /*
2554  * Process the deferred bios
2555  */
2556 static void dm_wq_work(struct work_struct *work)
2557 {
2558 	struct mapped_device *md = container_of(work, struct mapped_device,
2559 						work);
2560 	struct bio *c;
2561 	int srcu_idx;
2562 	struct dm_table *map;
2563 
2564 	map = dm_get_live_table(md, &srcu_idx);
2565 
2566 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2567 		spin_lock_irq(&md->deferred_lock);
2568 		c = bio_list_pop(&md->deferred);
2569 		spin_unlock_irq(&md->deferred_lock);
2570 
2571 		if (!c)
2572 			break;
2573 
2574 		if (dm_request_based(md))
2575 			generic_make_request(c);
2576 		else
2577 			__split_and_process_bio(md, map, c);
2578 	}
2579 
2580 	dm_put_live_table(md, srcu_idx);
2581 }
2582 
2583 static void dm_queue_flush(struct mapped_device *md)
2584 {
2585 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2586 	smp_mb__after_clear_bit();
2587 	queue_work(md->wq, &md->work);
2588 }
2589 
2590 /*
2591  * Swap in a new table, returning the old one for the caller to destroy.
2592  */
2593 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2594 {
2595 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2596 	struct queue_limits limits;
2597 	int r;
2598 
2599 	mutex_lock(&md->suspend_lock);
2600 
2601 	/* device must be suspended */
2602 	if (!dm_suspended_md(md))
2603 		goto out;
2604 
2605 	/*
2606 	 * If the new table has no data devices, retain the existing limits.
2607 	 * This helps multipath with queue_if_no_path if all paths disappear,
2608 	 * then new I/O is queued based on these limits, and then some paths
2609 	 * reappear.
2610 	 */
2611 	if (dm_table_has_no_data_devices(table)) {
2612 		live_map = dm_get_live_table_fast(md);
2613 		if (live_map)
2614 			limits = md->queue->limits;
2615 		dm_put_live_table_fast(md);
2616 	}
2617 
2618 	if (!live_map) {
2619 		r = dm_calculate_queue_limits(table, &limits);
2620 		if (r) {
2621 			map = ERR_PTR(r);
2622 			goto out;
2623 		}
2624 	}
2625 
2626 	map = __bind(md, table, &limits);
2627 
2628 out:
2629 	mutex_unlock(&md->suspend_lock);
2630 	return map;
2631 }
2632 
2633 /*
2634  * Functions to lock and unlock any filesystem running on the
2635  * device.
2636  */
2637 static int lock_fs(struct mapped_device *md)
2638 {
2639 	int r;
2640 
2641 	WARN_ON(md->frozen_sb);
2642 
2643 	md->frozen_sb = freeze_bdev(md->bdev);
2644 	if (IS_ERR(md->frozen_sb)) {
2645 		r = PTR_ERR(md->frozen_sb);
2646 		md->frozen_sb = NULL;
2647 		return r;
2648 	}
2649 
2650 	set_bit(DMF_FROZEN, &md->flags);
2651 
2652 	return 0;
2653 }
2654 
2655 static void unlock_fs(struct mapped_device *md)
2656 {
2657 	if (!test_bit(DMF_FROZEN, &md->flags))
2658 		return;
2659 
2660 	thaw_bdev(md->bdev, md->frozen_sb);
2661 	md->frozen_sb = NULL;
2662 	clear_bit(DMF_FROZEN, &md->flags);
2663 }
2664 
2665 /*
2666  * We need to be able to change a mapping table under a mounted
2667  * filesystem.  For example we might want to move some data in
2668  * the background.  Before the table can be swapped with
2669  * dm_bind_table, dm_suspend must be called to flush any in
2670  * flight bios and ensure that any further io gets deferred.
2671  */
2672 /*
2673  * Suspend mechanism in request-based dm.
2674  *
2675  * 1. Flush all I/Os by lock_fs() if needed.
2676  * 2. Stop dispatching any I/O by stopping the request_queue.
2677  * 3. Wait for all in-flight I/Os to be completed or requeued.
2678  *
2679  * To abort suspend, start the request_queue.
2680  */
2681 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2682 {
2683 	struct dm_table *map = NULL;
2684 	int r = 0;
2685 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2686 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2687 
2688 	mutex_lock(&md->suspend_lock);
2689 
2690 	if (dm_suspended_md(md)) {
2691 		r = -EINVAL;
2692 		goto out_unlock;
2693 	}
2694 
2695 	map = md->map;
2696 
2697 	/*
2698 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2699 	 * This flag is cleared before dm_suspend returns.
2700 	 */
2701 	if (noflush)
2702 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2703 
2704 	/* This does not get reverted if there's an error later. */
2705 	dm_table_presuspend_targets(map);
2706 
2707 	/*
2708 	 * Flush I/O to the device.
2709 	 * Any I/O submitted after lock_fs() may not be flushed.
2710 	 * noflush takes precedence over do_lockfs.
2711 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2712 	 */
2713 	if (!noflush && do_lockfs) {
2714 		r = lock_fs(md);
2715 		if (r)
2716 			goto out_unlock;
2717 	}
2718 
2719 	/*
2720 	 * Here we must make sure that no processes are submitting requests
2721 	 * to target drivers i.e. no one may be executing
2722 	 * __split_and_process_bio. This is called from dm_request and
2723 	 * dm_wq_work.
2724 	 *
2725 	 * To get all processes out of __split_and_process_bio in dm_request,
2726 	 * we take the write lock. To prevent any process from reentering
2727 	 * __split_and_process_bio from dm_request and quiesce the thread
2728 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2729 	 * flush_workqueue(md->wq).
2730 	 */
2731 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2732 	synchronize_srcu(&md->io_barrier);
2733 
2734 	/*
2735 	 * Stop md->queue before flushing md->wq in case request-based
2736 	 * dm defers requests to md->wq from md->queue.
2737 	 */
2738 	if (dm_request_based(md))
2739 		stop_queue(md->queue);
2740 
2741 	flush_workqueue(md->wq);
2742 
2743 	/*
2744 	 * At this point no more requests are entering target request routines.
2745 	 * We call dm_wait_for_completion to wait for all existing requests
2746 	 * to finish.
2747 	 */
2748 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2749 
2750 	if (noflush)
2751 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2752 	synchronize_srcu(&md->io_barrier);
2753 
2754 	/* were we interrupted ? */
2755 	if (r < 0) {
2756 		dm_queue_flush(md);
2757 
2758 		if (dm_request_based(md))
2759 			start_queue(md->queue);
2760 
2761 		unlock_fs(md);
2762 		goto out_unlock; /* pushback list is already flushed, so skip flush */
2763 	}
2764 
2765 	/*
2766 	 * If dm_wait_for_completion returned 0, the device is completely
2767 	 * quiescent now. There is no request-processing activity. All new
2768 	 * requests are being added to md->deferred list.
2769 	 */
2770 
2771 	set_bit(DMF_SUSPENDED, &md->flags);
2772 
2773 	dm_table_postsuspend_targets(map);
2774 
2775 out_unlock:
2776 	mutex_unlock(&md->suspend_lock);
2777 	return r;
2778 }
2779 
2780 int dm_resume(struct mapped_device *md)
2781 {
2782 	int r = -EINVAL;
2783 	struct dm_table *map = NULL;
2784 
2785 	mutex_lock(&md->suspend_lock);
2786 	if (!dm_suspended_md(md))
2787 		goto out;
2788 
2789 	map = md->map;
2790 	if (!map || !dm_table_get_size(map))
2791 		goto out;
2792 
2793 	r = dm_table_resume_targets(map);
2794 	if (r)
2795 		goto out;
2796 
2797 	dm_queue_flush(md);
2798 
2799 	/*
2800 	 * Flushing deferred I/Os must be done after targets are resumed
2801 	 * so that mapping of targets can work correctly.
2802 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2803 	 */
2804 	if (dm_request_based(md))
2805 		start_queue(md->queue);
2806 
2807 	unlock_fs(md);
2808 
2809 	clear_bit(DMF_SUSPENDED, &md->flags);
2810 
2811 	r = 0;
2812 out:
2813 	mutex_unlock(&md->suspend_lock);
2814 
2815 	return r;
2816 }
2817 
2818 /*
2819  * Internal suspend/resume works like userspace-driven suspend. It waits
2820  * until all bios finish and prevents issuing new bios to the target drivers.
2821  * It may be used only from the kernel.
2822  *
2823  * Internal suspend holds md->suspend_lock, which prevents interaction with
2824  * userspace-driven suspend.
2825  */
2826 
2827 void dm_internal_suspend(struct mapped_device *md)
2828 {
2829 	mutex_lock(&md->suspend_lock);
2830 	if (dm_suspended_md(md))
2831 		return;
2832 
2833 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2834 	synchronize_srcu(&md->io_barrier);
2835 	flush_workqueue(md->wq);
2836 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2837 }
2838 
2839 void dm_internal_resume(struct mapped_device *md)
2840 {
2841 	if (dm_suspended_md(md))
2842 		goto done;
2843 
2844 	dm_queue_flush(md);
2845 
2846 done:
2847 	mutex_unlock(&md->suspend_lock);
2848 }
2849 
2850 /*-----------------------------------------------------------------
2851  * Event notification.
2852  *---------------------------------------------------------------*/
2853 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2854 		       unsigned cookie)
2855 {
2856 	char udev_cookie[DM_COOKIE_LENGTH];
2857 	char *envp[] = { udev_cookie, NULL };
2858 
2859 	if (!cookie)
2860 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2861 	else {
2862 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2863 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2864 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2865 					  action, envp);
2866 	}
2867 }
2868 
2869 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2870 {
2871 	return atomic_add_return(1, &md->uevent_seq);
2872 }
2873 
2874 uint32_t dm_get_event_nr(struct mapped_device *md)
2875 {
2876 	return atomic_read(&md->event_nr);
2877 }
2878 
2879 int dm_wait_event(struct mapped_device *md, int event_nr)
2880 {
2881 	return wait_event_interruptible(md->eventq,
2882 			(event_nr != atomic_read(&md->event_nr)));
2883 }
2884 
2885 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2886 {
2887 	unsigned long flags;
2888 
2889 	spin_lock_irqsave(&md->uevent_lock, flags);
2890 	list_add(elist, &md->uevent_list);
2891 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2892 }
2893 
2894 /*
2895  * The gendisk is only valid as long as you have a reference
2896  * count on 'md'.
2897  */
2898 struct gendisk *dm_disk(struct mapped_device *md)
2899 {
2900 	return md->disk;
2901 }
2902 
2903 struct kobject *dm_kobject(struct mapped_device *md)
2904 {
2905 	return &md->kobj;
2906 }
2907 
2908 /*
2909  * struct mapped_device should not be exported outside of dm.c
2910  * so use this check to verify that kobj is part of md structure
2911  */
2912 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2913 {
2914 	struct mapped_device *md;
2915 
2916 	md = container_of(kobj, struct mapped_device, kobj);
2917 	if (&md->kobj != kobj)
2918 		return NULL;
2919 
2920 	if (test_bit(DMF_FREEING, &md->flags) ||
2921 	    dm_deleting_md(md))
2922 		return NULL;
2923 
2924 	dm_get(md);
2925 	return md;
2926 }
2927 
2928 int dm_suspended_md(struct mapped_device *md)
2929 {
2930 	return test_bit(DMF_SUSPENDED, &md->flags);
2931 }
2932 
2933 int dm_test_deferred_remove_flag(struct mapped_device *md)
2934 {
2935 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2936 }
2937 
2938 int dm_suspended(struct dm_target *ti)
2939 {
2940 	return dm_suspended_md(dm_table_get_md(ti->table));
2941 }
2942 EXPORT_SYMBOL_GPL(dm_suspended);
2943 
2944 int dm_noflush_suspending(struct dm_target *ti)
2945 {
2946 	return __noflush_suspending(dm_table_get_md(ti->table));
2947 }
2948 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2949 
2950 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2951 {
2952 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2953 	struct kmem_cache *cachep;
2954 	unsigned int pool_size;
2955 	unsigned int front_pad;
2956 
2957 	if (!pools)
2958 		return NULL;
2959 
2960 	if (type == DM_TYPE_BIO_BASED) {
2961 		cachep = _io_cache;
2962 		pool_size = dm_get_reserved_bio_based_ios();
2963 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2964 	} else if (type == DM_TYPE_REQUEST_BASED) {
2965 		cachep = _rq_tio_cache;
2966 		pool_size = dm_get_reserved_rq_based_ios();
2967 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2968 		/* per_bio_data_size is not used. See __bind_mempools(). */
2969 		WARN_ON(per_bio_data_size != 0);
2970 	} else
2971 		goto out;
2972 
2973 	pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2974 	if (!pools->io_pool)
2975 		goto out;
2976 
2977 	pools->bs = bioset_create(pool_size, front_pad);
2978 	if (!pools->bs)
2979 		goto out;
2980 
2981 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2982 		goto out;
2983 
2984 	return pools;
2985 
2986 out:
2987 	dm_free_md_mempools(pools);
2988 
2989 	return NULL;
2990 }
2991 
2992 void dm_free_md_mempools(struct dm_md_mempools *pools)
2993 {
2994 	if (!pools)
2995 		return;
2996 
2997 	if (pools->io_pool)
2998 		mempool_destroy(pools->io_pool);
2999 
3000 	if (pools->bs)
3001 		bioset_free(pools->bs);
3002 
3003 	kfree(pools);
3004 }
3005 
3006 static const struct block_device_operations dm_blk_dops = {
3007 	.open = dm_blk_open,
3008 	.release = dm_blk_close,
3009 	.ioctl = dm_blk_ioctl,
3010 	.getgeo = dm_blk_getgeo,
3011 	.owner = THIS_MODULE
3012 };
3013 
3014 EXPORT_SYMBOL(dm_get_mapinfo);
3015 
3016 /*
3017  * module hooks
3018  */
3019 module_init(dm_init);
3020 module_exit(dm_exit);
3021 
3022 module_param(major, uint, 0);
3023 MODULE_PARM_DESC(major, "The major number of the device mapper");
3024 
3025 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3026 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3027 
3028 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3029 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3030 
3031 MODULE_DESCRIPTION(DM_NAME " driver");
3032 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3033 MODULE_LICENSE("GPL");
3034