xref: /linux/drivers/md/dm.c (revision c1f3caff2450048ab6c053e5b23698b58f286159)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 static const char *_name = DM_NAME;
44 
45 static unsigned int major = 0;
46 static unsigned int _major = 0;
47 
48 static DEFINE_IDR(_minor_idr);
49 
50 static DEFINE_SPINLOCK(_minor_lock);
51 
52 static void do_deferred_remove(struct work_struct *w);
53 
54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
55 
56 static struct workqueue_struct *deferred_remove_workqueue;
57 
58 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
60 
61 void dm_issue_global_event(void)
62 {
63 	atomic_inc(&dm_global_event_nr);
64 	wake_up(&dm_global_eventq);
65 }
66 
67 /*
68  * One of these is allocated (on-stack) per original bio.
69  */
70 struct clone_info {
71 	struct dm_table *map;
72 	struct bio *bio;
73 	struct dm_io *io;
74 	sector_t sector;
75 	unsigned sector_count;
76 };
77 
78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
79 #define DM_IO_BIO_OFFSET \
80 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
81 
82 void *dm_per_bio_data(struct bio *bio, size_t data_size)
83 {
84 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
85 	if (!tio->inside_dm_io)
86 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
87 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
88 }
89 EXPORT_SYMBOL_GPL(dm_per_bio_data);
90 
91 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
92 {
93 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
94 	if (io->magic == DM_IO_MAGIC)
95 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
96 	BUG_ON(io->magic != DM_TIO_MAGIC);
97 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
98 }
99 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
100 
101 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
102 {
103 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
104 }
105 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
106 
107 #define MINOR_ALLOCED ((void *)-1)
108 
109 #define DM_NUMA_NODE NUMA_NO_NODE
110 static int dm_numa_node = DM_NUMA_NODE;
111 
112 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
113 static int swap_bios = DEFAULT_SWAP_BIOS;
114 static int get_swap_bios(void)
115 {
116 	int latch = READ_ONCE(swap_bios);
117 	if (unlikely(latch <= 0))
118 		latch = DEFAULT_SWAP_BIOS;
119 	return latch;
120 }
121 
122 /*
123  * For mempools pre-allocation at the table loading time.
124  */
125 struct dm_md_mempools {
126 	struct bio_set bs;
127 	struct bio_set io_bs;
128 };
129 
130 struct table_device {
131 	struct list_head list;
132 	refcount_t count;
133 	struct dm_dev dm_dev;
134 };
135 
136 /*
137  * Bio-based DM's mempools' reserved IOs set by the user.
138  */
139 #define RESERVED_BIO_BASED_IOS		16
140 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
141 
142 static int __dm_get_module_param_int(int *module_param, int min, int max)
143 {
144 	int param = READ_ONCE(*module_param);
145 	int modified_param = 0;
146 	bool modified = true;
147 
148 	if (param < min)
149 		modified_param = min;
150 	else if (param > max)
151 		modified_param = max;
152 	else
153 		modified = false;
154 
155 	if (modified) {
156 		(void)cmpxchg(module_param, param, modified_param);
157 		param = modified_param;
158 	}
159 
160 	return param;
161 }
162 
163 unsigned __dm_get_module_param(unsigned *module_param,
164 			       unsigned def, unsigned max)
165 {
166 	unsigned param = READ_ONCE(*module_param);
167 	unsigned modified_param = 0;
168 
169 	if (!param)
170 		modified_param = def;
171 	else if (param > max)
172 		modified_param = max;
173 
174 	if (modified_param) {
175 		(void)cmpxchg(module_param, param, modified_param);
176 		param = modified_param;
177 	}
178 
179 	return param;
180 }
181 
182 unsigned dm_get_reserved_bio_based_ios(void)
183 {
184 	return __dm_get_module_param(&reserved_bio_based_ios,
185 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
186 }
187 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
188 
189 static unsigned dm_get_numa_node(void)
190 {
191 	return __dm_get_module_param_int(&dm_numa_node,
192 					 DM_NUMA_NODE, num_online_nodes() - 1);
193 }
194 
195 static int __init local_init(void)
196 {
197 	int r;
198 
199 	r = dm_uevent_init();
200 	if (r)
201 		return r;
202 
203 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
204 	if (!deferred_remove_workqueue) {
205 		r = -ENOMEM;
206 		goto out_uevent_exit;
207 	}
208 
209 	_major = major;
210 	r = register_blkdev(_major, _name);
211 	if (r < 0)
212 		goto out_free_workqueue;
213 
214 	if (!_major)
215 		_major = r;
216 
217 	return 0;
218 
219 out_free_workqueue:
220 	destroy_workqueue(deferred_remove_workqueue);
221 out_uevent_exit:
222 	dm_uevent_exit();
223 
224 	return r;
225 }
226 
227 static void local_exit(void)
228 {
229 	flush_scheduled_work();
230 	destroy_workqueue(deferred_remove_workqueue);
231 
232 	unregister_blkdev(_major, _name);
233 	dm_uevent_exit();
234 
235 	_major = 0;
236 
237 	DMINFO("cleaned up");
238 }
239 
240 static int (*_inits[])(void) __initdata = {
241 	local_init,
242 	dm_target_init,
243 	dm_linear_init,
244 	dm_stripe_init,
245 	dm_io_init,
246 	dm_kcopyd_init,
247 	dm_interface_init,
248 	dm_statistics_init,
249 };
250 
251 static void (*_exits[])(void) = {
252 	local_exit,
253 	dm_target_exit,
254 	dm_linear_exit,
255 	dm_stripe_exit,
256 	dm_io_exit,
257 	dm_kcopyd_exit,
258 	dm_interface_exit,
259 	dm_statistics_exit,
260 };
261 
262 static int __init dm_init(void)
263 {
264 	const int count = ARRAY_SIZE(_inits);
265 	int r, i;
266 
267 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
268 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
269 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
270 #endif
271 
272 	for (i = 0; i < count; i++) {
273 		r = _inits[i]();
274 		if (r)
275 			goto bad;
276 	}
277 
278 	return 0;
279 bad:
280 	while (i--)
281 		_exits[i]();
282 
283 	return r;
284 }
285 
286 static void __exit dm_exit(void)
287 {
288 	int i = ARRAY_SIZE(_exits);
289 
290 	while (i--)
291 		_exits[i]();
292 
293 	/*
294 	 * Should be empty by this point.
295 	 */
296 	idr_destroy(&_minor_idr);
297 }
298 
299 /*
300  * Block device functions
301  */
302 int dm_deleting_md(struct mapped_device *md)
303 {
304 	return test_bit(DMF_DELETING, &md->flags);
305 }
306 
307 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
308 {
309 	struct mapped_device *md;
310 
311 	spin_lock(&_minor_lock);
312 
313 	md = bdev->bd_disk->private_data;
314 	if (!md)
315 		goto out;
316 
317 	if (test_bit(DMF_FREEING, &md->flags) ||
318 	    dm_deleting_md(md)) {
319 		md = NULL;
320 		goto out;
321 	}
322 
323 	dm_get(md);
324 	atomic_inc(&md->open_count);
325 out:
326 	spin_unlock(&_minor_lock);
327 
328 	return md ? 0 : -ENXIO;
329 }
330 
331 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
332 {
333 	struct mapped_device *md;
334 
335 	spin_lock(&_minor_lock);
336 
337 	md = disk->private_data;
338 	if (WARN_ON(!md))
339 		goto out;
340 
341 	if (atomic_dec_and_test(&md->open_count) &&
342 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
343 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
344 
345 	dm_put(md);
346 out:
347 	spin_unlock(&_minor_lock);
348 }
349 
350 int dm_open_count(struct mapped_device *md)
351 {
352 	return atomic_read(&md->open_count);
353 }
354 
355 /*
356  * Guarantees nothing is using the device before it's deleted.
357  */
358 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
359 {
360 	int r = 0;
361 
362 	spin_lock(&_minor_lock);
363 
364 	if (dm_open_count(md)) {
365 		r = -EBUSY;
366 		if (mark_deferred)
367 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
368 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
369 		r = -EEXIST;
370 	else
371 		set_bit(DMF_DELETING, &md->flags);
372 
373 	spin_unlock(&_minor_lock);
374 
375 	return r;
376 }
377 
378 int dm_cancel_deferred_remove(struct mapped_device *md)
379 {
380 	int r = 0;
381 
382 	spin_lock(&_minor_lock);
383 
384 	if (test_bit(DMF_DELETING, &md->flags))
385 		r = -EBUSY;
386 	else
387 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
388 
389 	spin_unlock(&_minor_lock);
390 
391 	return r;
392 }
393 
394 static void do_deferred_remove(struct work_struct *w)
395 {
396 	dm_deferred_remove();
397 }
398 
399 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
400 {
401 	struct mapped_device *md = bdev->bd_disk->private_data;
402 
403 	return dm_get_geometry(md, geo);
404 }
405 
406 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
407 			    struct block_device **bdev)
408 {
409 	struct dm_target *tgt;
410 	struct dm_table *map;
411 	int r;
412 
413 retry:
414 	r = -ENOTTY;
415 	map = dm_get_live_table(md, srcu_idx);
416 	if (!map || !dm_table_get_size(map))
417 		return r;
418 
419 	/* We only support devices that have a single target */
420 	if (dm_table_get_num_targets(map) != 1)
421 		return r;
422 
423 	tgt = dm_table_get_target(map, 0);
424 	if (!tgt->type->prepare_ioctl)
425 		return r;
426 
427 	if (dm_suspended_md(md))
428 		return -EAGAIN;
429 
430 	r = tgt->type->prepare_ioctl(tgt, bdev);
431 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
432 		dm_put_live_table(md, *srcu_idx);
433 		msleep(10);
434 		goto retry;
435 	}
436 
437 	return r;
438 }
439 
440 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
441 {
442 	dm_put_live_table(md, srcu_idx);
443 }
444 
445 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
446 			unsigned int cmd, unsigned long arg)
447 {
448 	struct mapped_device *md = bdev->bd_disk->private_data;
449 	int r, srcu_idx;
450 
451 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
452 	if (r < 0)
453 		goto out;
454 
455 	if (r > 0) {
456 		/*
457 		 * Target determined this ioctl is being issued against a
458 		 * subset of the parent bdev; require extra privileges.
459 		 */
460 		if (!capable(CAP_SYS_RAWIO)) {
461 			DMDEBUG_LIMIT(
462 	"%s: sending ioctl %x to DM device without required privilege.",
463 				current->comm, cmd);
464 			r = -ENOIOCTLCMD;
465 			goto out;
466 		}
467 	}
468 
469 	if (!bdev->bd_disk->fops->ioctl)
470 		r = -ENOTTY;
471 	else
472 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
473 out:
474 	dm_unprepare_ioctl(md, srcu_idx);
475 	return r;
476 }
477 
478 u64 dm_start_time_ns_from_clone(struct bio *bio)
479 {
480 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
481 	struct dm_io *io = tio->io;
482 
483 	return jiffies_to_nsecs(io->start_time);
484 }
485 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
486 
487 static void start_io_acct(struct dm_io *io)
488 {
489 	struct mapped_device *md = io->md;
490 	struct bio *bio = io->orig_bio;
491 
492 	io->start_time = bio_start_io_acct(bio);
493 	if (unlikely(dm_stats_used(&md->stats)))
494 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
495 				    bio->bi_iter.bi_sector, bio_sectors(bio),
496 				    false, 0, &io->stats_aux);
497 }
498 
499 static void end_io_acct(struct mapped_device *md, struct bio *bio,
500 			unsigned long start_time, struct dm_stats_aux *stats_aux)
501 {
502 	unsigned long duration = jiffies - start_time;
503 
504 	bio_end_io_acct(bio, start_time);
505 
506 	if (unlikely(dm_stats_used(&md->stats)))
507 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
508 				    bio->bi_iter.bi_sector, bio_sectors(bio),
509 				    true, duration, stats_aux);
510 
511 	/* nudge anyone waiting on suspend queue */
512 	if (unlikely(wq_has_sleeper(&md->wait)))
513 		wake_up(&md->wait);
514 }
515 
516 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
517 {
518 	struct dm_io *io;
519 	struct dm_target_io *tio;
520 	struct bio *clone;
521 
522 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
523 	if (!clone)
524 		return NULL;
525 
526 	tio = container_of(clone, struct dm_target_io, clone);
527 	tio->inside_dm_io = true;
528 	tio->io = NULL;
529 
530 	io = container_of(tio, struct dm_io, tio);
531 	io->magic = DM_IO_MAGIC;
532 	io->status = 0;
533 	atomic_set(&io->io_count, 1);
534 	io->orig_bio = bio;
535 	io->md = md;
536 	spin_lock_init(&io->endio_lock);
537 
538 	start_io_acct(io);
539 
540 	return io;
541 }
542 
543 static void free_io(struct mapped_device *md, struct dm_io *io)
544 {
545 	bio_put(&io->tio.clone);
546 }
547 
548 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
549 				      unsigned target_bio_nr, gfp_t gfp_mask)
550 {
551 	struct dm_target_io *tio;
552 
553 	if (!ci->io->tio.io) {
554 		/* the dm_target_io embedded in ci->io is available */
555 		tio = &ci->io->tio;
556 	} else {
557 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
558 		if (!clone)
559 			return NULL;
560 
561 		tio = container_of(clone, struct dm_target_io, clone);
562 		tio->inside_dm_io = false;
563 	}
564 
565 	tio->magic = DM_TIO_MAGIC;
566 	tio->io = ci->io;
567 	tio->ti = ti;
568 	tio->target_bio_nr = target_bio_nr;
569 
570 	return tio;
571 }
572 
573 static void free_tio(struct dm_target_io *tio)
574 {
575 	if (tio->inside_dm_io)
576 		return;
577 	bio_put(&tio->clone);
578 }
579 
580 /*
581  * Add the bio to the list of deferred io.
582  */
583 static void queue_io(struct mapped_device *md, struct bio *bio)
584 {
585 	unsigned long flags;
586 
587 	spin_lock_irqsave(&md->deferred_lock, flags);
588 	bio_list_add(&md->deferred, bio);
589 	spin_unlock_irqrestore(&md->deferred_lock, flags);
590 	queue_work(md->wq, &md->work);
591 }
592 
593 /*
594  * Everyone (including functions in this file), should use this
595  * function to access the md->map field, and make sure they call
596  * dm_put_live_table() when finished.
597  */
598 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
599 {
600 	*srcu_idx = srcu_read_lock(&md->io_barrier);
601 
602 	return srcu_dereference(md->map, &md->io_barrier);
603 }
604 
605 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
606 {
607 	srcu_read_unlock(&md->io_barrier, srcu_idx);
608 }
609 
610 void dm_sync_table(struct mapped_device *md)
611 {
612 	synchronize_srcu(&md->io_barrier);
613 	synchronize_rcu_expedited();
614 }
615 
616 /*
617  * A fast alternative to dm_get_live_table/dm_put_live_table.
618  * The caller must not block between these two functions.
619  */
620 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
621 {
622 	rcu_read_lock();
623 	return rcu_dereference(md->map);
624 }
625 
626 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
627 {
628 	rcu_read_unlock();
629 }
630 
631 static char *_dm_claim_ptr = "I belong to device-mapper";
632 
633 /*
634  * Open a table device so we can use it as a map destination.
635  */
636 static int open_table_device(struct table_device *td, dev_t dev,
637 			     struct mapped_device *md)
638 {
639 	struct block_device *bdev;
640 	u64 part_off;
641 	int r;
642 
643 	BUG_ON(td->dm_dev.bdev);
644 
645 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
646 	if (IS_ERR(bdev))
647 		return PTR_ERR(bdev);
648 
649 	r = bd_link_disk_holder(bdev, dm_disk(md));
650 	if (r) {
651 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
652 		return r;
653 	}
654 
655 	td->dm_dev.bdev = bdev;
656 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
657 	return 0;
658 }
659 
660 /*
661  * Close a table device that we've been using.
662  */
663 static void close_table_device(struct table_device *td, struct mapped_device *md)
664 {
665 	if (!td->dm_dev.bdev)
666 		return;
667 
668 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
669 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
670 	put_dax(td->dm_dev.dax_dev);
671 	td->dm_dev.bdev = NULL;
672 	td->dm_dev.dax_dev = NULL;
673 }
674 
675 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
676 					      fmode_t mode)
677 {
678 	struct table_device *td;
679 
680 	list_for_each_entry(td, l, list)
681 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
682 			return td;
683 
684 	return NULL;
685 }
686 
687 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
688 			struct dm_dev **result)
689 {
690 	int r;
691 	struct table_device *td;
692 
693 	mutex_lock(&md->table_devices_lock);
694 	td = find_table_device(&md->table_devices, dev, mode);
695 	if (!td) {
696 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
697 		if (!td) {
698 			mutex_unlock(&md->table_devices_lock);
699 			return -ENOMEM;
700 		}
701 
702 		td->dm_dev.mode = mode;
703 		td->dm_dev.bdev = NULL;
704 
705 		if ((r = open_table_device(td, dev, md))) {
706 			mutex_unlock(&md->table_devices_lock);
707 			kfree(td);
708 			return r;
709 		}
710 
711 		format_dev_t(td->dm_dev.name, dev);
712 
713 		refcount_set(&td->count, 1);
714 		list_add(&td->list, &md->table_devices);
715 	} else {
716 		refcount_inc(&td->count);
717 	}
718 	mutex_unlock(&md->table_devices_lock);
719 
720 	*result = &td->dm_dev;
721 	return 0;
722 }
723 
724 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
725 {
726 	struct table_device *td = container_of(d, struct table_device, dm_dev);
727 
728 	mutex_lock(&md->table_devices_lock);
729 	if (refcount_dec_and_test(&td->count)) {
730 		close_table_device(td, md);
731 		list_del(&td->list);
732 		kfree(td);
733 	}
734 	mutex_unlock(&md->table_devices_lock);
735 }
736 
737 static void free_table_devices(struct list_head *devices)
738 {
739 	struct list_head *tmp, *next;
740 
741 	list_for_each_safe(tmp, next, devices) {
742 		struct table_device *td = list_entry(tmp, struct table_device, list);
743 
744 		DMWARN("dm_destroy: %s still exists with %d references",
745 		       td->dm_dev.name, refcount_read(&td->count));
746 		kfree(td);
747 	}
748 }
749 
750 /*
751  * Get the geometry associated with a dm device
752  */
753 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
754 {
755 	*geo = md->geometry;
756 
757 	return 0;
758 }
759 
760 /*
761  * Set the geometry of a device.
762  */
763 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
764 {
765 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
766 
767 	if (geo->start > sz) {
768 		DMWARN("Start sector is beyond the geometry limits.");
769 		return -EINVAL;
770 	}
771 
772 	md->geometry = *geo;
773 
774 	return 0;
775 }
776 
777 static int __noflush_suspending(struct mapped_device *md)
778 {
779 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
780 }
781 
782 /*
783  * Decrements the number of outstanding ios that a bio has been
784  * cloned into, completing the original io if necc.
785  */
786 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
787 {
788 	unsigned long flags;
789 	blk_status_t io_error;
790 	struct bio *bio;
791 	struct mapped_device *md = io->md;
792 	unsigned long start_time = 0;
793 	struct dm_stats_aux stats_aux;
794 
795 	/* Push-back supersedes any I/O errors */
796 	if (unlikely(error)) {
797 		spin_lock_irqsave(&io->endio_lock, flags);
798 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
799 			io->status = error;
800 		spin_unlock_irqrestore(&io->endio_lock, flags);
801 	}
802 
803 	if (atomic_dec_and_test(&io->io_count)) {
804 		bio = io->orig_bio;
805 		if (io->status == BLK_STS_DM_REQUEUE) {
806 			/*
807 			 * Target requested pushing back the I/O.
808 			 */
809 			spin_lock_irqsave(&md->deferred_lock, flags);
810 			if (__noflush_suspending(md) &&
811 			    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
812 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
813 				bio_list_add_head(&md->deferred, bio);
814 			} else {
815 				/*
816 				 * noflush suspend was interrupted or this is
817 				 * a write to a zoned target.
818 				 */
819 				io->status = BLK_STS_IOERR;
820 			}
821 			spin_unlock_irqrestore(&md->deferred_lock, flags);
822 		}
823 
824 		io_error = io->status;
825 		start_time = io->start_time;
826 		stats_aux = io->stats_aux;
827 		free_io(md, io);
828 		end_io_acct(md, bio, start_time, &stats_aux);
829 
830 		if (io_error == BLK_STS_DM_REQUEUE)
831 			return;
832 
833 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
834 			/*
835 			 * Preflush done for flush with data, reissue
836 			 * without REQ_PREFLUSH.
837 			 */
838 			bio->bi_opf &= ~REQ_PREFLUSH;
839 			queue_io(md, bio);
840 		} else {
841 			/* done with normal IO or empty flush */
842 			if (io_error)
843 				bio->bi_status = io_error;
844 			bio_endio(bio);
845 		}
846 	}
847 }
848 
849 void disable_discard(struct mapped_device *md)
850 {
851 	struct queue_limits *limits = dm_get_queue_limits(md);
852 
853 	/* device doesn't really support DISCARD, disable it */
854 	limits->max_discard_sectors = 0;
855 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
856 }
857 
858 void disable_write_same(struct mapped_device *md)
859 {
860 	struct queue_limits *limits = dm_get_queue_limits(md);
861 
862 	/* device doesn't really support WRITE SAME, disable it */
863 	limits->max_write_same_sectors = 0;
864 }
865 
866 void disable_write_zeroes(struct mapped_device *md)
867 {
868 	struct queue_limits *limits = dm_get_queue_limits(md);
869 
870 	/* device doesn't really support WRITE ZEROES, disable it */
871 	limits->max_write_zeroes_sectors = 0;
872 }
873 
874 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
875 {
876 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
877 }
878 
879 static void clone_endio(struct bio *bio)
880 {
881 	blk_status_t error = bio->bi_status;
882 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
883 	struct dm_io *io = tio->io;
884 	struct mapped_device *md = tio->io->md;
885 	dm_endio_fn endio = tio->ti->type->end_io;
886 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
887 
888 	if (unlikely(error == BLK_STS_TARGET)) {
889 		if (bio_op(bio) == REQ_OP_DISCARD &&
890 		    !q->limits.max_discard_sectors)
891 			disable_discard(md);
892 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
893 			 !q->limits.max_write_same_sectors)
894 			disable_write_same(md);
895 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
896 			 !q->limits.max_write_zeroes_sectors)
897 			disable_write_zeroes(md);
898 	}
899 
900 	if (blk_queue_is_zoned(q))
901 		dm_zone_endio(io, bio);
902 
903 	if (endio) {
904 		int r = endio(tio->ti, bio, &error);
905 		switch (r) {
906 		case DM_ENDIO_REQUEUE:
907 			/*
908 			 * Requeuing writes to a sequential zone of a zoned
909 			 * target will break the sequential write pattern:
910 			 * fail such IO.
911 			 */
912 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
913 				error = BLK_STS_IOERR;
914 			else
915 				error = BLK_STS_DM_REQUEUE;
916 			fallthrough;
917 		case DM_ENDIO_DONE:
918 			break;
919 		case DM_ENDIO_INCOMPLETE:
920 			/* The target will handle the io */
921 			return;
922 		default:
923 			DMWARN("unimplemented target endio return value: %d", r);
924 			BUG();
925 		}
926 	}
927 
928 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
929 		struct mapped_device *md = io->md;
930 		up(&md->swap_bios_semaphore);
931 	}
932 
933 	free_tio(tio);
934 	dm_io_dec_pending(io, error);
935 }
936 
937 /*
938  * Return maximum size of I/O possible at the supplied sector up to the current
939  * target boundary.
940  */
941 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
942 						  sector_t target_offset)
943 {
944 	return ti->len - target_offset;
945 }
946 
947 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
948 {
949 	sector_t target_offset = dm_target_offset(ti, sector);
950 	sector_t len = max_io_len_target_boundary(ti, target_offset);
951 	sector_t max_len;
952 
953 	/*
954 	 * Does the target need to split IO even further?
955 	 * - varied (per target) IO splitting is a tenet of DM; this
956 	 *   explains why stacked chunk_sectors based splitting via
957 	 *   blk_max_size_offset() isn't possible here. So pass in
958 	 *   ti->max_io_len to override stacked chunk_sectors.
959 	 */
960 	if (ti->max_io_len) {
961 		max_len = blk_max_size_offset(ti->table->md->queue,
962 					      target_offset, ti->max_io_len);
963 		if (len > max_len)
964 			len = max_len;
965 	}
966 
967 	return len;
968 }
969 
970 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
971 {
972 	if (len > UINT_MAX) {
973 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
974 		      (unsigned long long)len, UINT_MAX);
975 		ti->error = "Maximum size of target IO is too large";
976 		return -EINVAL;
977 	}
978 
979 	ti->max_io_len = (uint32_t) len;
980 
981 	return 0;
982 }
983 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
984 
985 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
986 						sector_t sector, int *srcu_idx)
987 	__acquires(md->io_barrier)
988 {
989 	struct dm_table *map;
990 	struct dm_target *ti;
991 
992 	map = dm_get_live_table(md, srcu_idx);
993 	if (!map)
994 		return NULL;
995 
996 	ti = dm_table_find_target(map, sector);
997 	if (!ti)
998 		return NULL;
999 
1000 	return ti;
1001 }
1002 
1003 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1004 				 long nr_pages, void **kaddr, pfn_t *pfn)
1005 {
1006 	struct mapped_device *md = dax_get_private(dax_dev);
1007 	sector_t sector = pgoff * PAGE_SECTORS;
1008 	struct dm_target *ti;
1009 	long len, ret = -EIO;
1010 	int srcu_idx;
1011 
1012 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1013 
1014 	if (!ti)
1015 		goto out;
1016 	if (!ti->type->direct_access)
1017 		goto out;
1018 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1019 	if (len < 1)
1020 		goto out;
1021 	nr_pages = min(len, nr_pages);
1022 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1023 
1024  out:
1025 	dm_put_live_table(md, srcu_idx);
1026 
1027 	return ret;
1028 }
1029 
1030 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1031 				  size_t nr_pages)
1032 {
1033 	struct mapped_device *md = dax_get_private(dax_dev);
1034 	sector_t sector = pgoff * PAGE_SECTORS;
1035 	struct dm_target *ti;
1036 	int ret = -EIO;
1037 	int srcu_idx;
1038 
1039 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1040 
1041 	if (!ti)
1042 		goto out;
1043 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1044 		/*
1045 		 * ->zero_page_range() is mandatory dax operation. If we are
1046 		 *  here, something is wrong.
1047 		 */
1048 		goto out;
1049 	}
1050 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1051  out:
1052 	dm_put_live_table(md, srcu_idx);
1053 
1054 	return ret;
1055 }
1056 
1057 /*
1058  * A target may call dm_accept_partial_bio only from the map routine.  It is
1059  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1060  * operations and REQ_OP_ZONE_APPEND (zone append writes).
1061  *
1062  * dm_accept_partial_bio informs the dm that the target only wants to process
1063  * additional n_sectors sectors of the bio and the rest of the data should be
1064  * sent in a next bio.
1065  *
1066  * A diagram that explains the arithmetics:
1067  * +--------------------+---------------+-------+
1068  * |         1          |       2       |   3   |
1069  * +--------------------+---------------+-------+
1070  *
1071  * <-------------- *tio->len_ptr --------------->
1072  *                      <------- bi_size ------->
1073  *                      <-- n_sectors -->
1074  *
1075  * Region 1 was already iterated over with bio_advance or similar function.
1076  *	(it may be empty if the target doesn't use bio_advance)
1077  * Region 2 is the remaining bio size that the target wants to process.
1078  *	(it may be empty if region 1 is non-empty, although there is no reason
1079  *	 to make it empty)
1080  * The target requires that region 3 is to be sent in the next bio.
1081  *
1082  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1083  * the partially processed part (the sum of regions 1+2) must be the same for all
1084  * copies of the bio.
1085  */
1086 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1087 {
1088 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1089 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1090 
1091 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1092 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1093 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1094 	BUG_ON(bi_size > *tio->len_ptr);
1095 	BUG_ON(n_sectors > bi_size);
1096 
1097 	*tio->len_ptr -= bi_size - n_sectors;
1098 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1099 }
1100 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1101 
1102 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1103 {
1104 	mutex_lock(&md->swap_bios_lock);
1105 	while (latch < md->swap_bios) {
1106 		cond_resched();
1107 		down(&md->swap_bios_semaphore);
1108 		md->swap_bios--;
1109 	}
1110 	while (latch > md->swap_bios) {
1111 		cond_resched();
1112 		up(&md->swap_bios_semaphore);
1113 		md->swap_bios++;
1114 	}
1115 	mutex_unlock(&md->swap_bios_lock);
1116 }
1117 
1118 static void __map_bio(struct dm_target_io *tio)
1119 {
1120 	int r;
1121 	sector_t sector;
1122 	struct bio *clone = &tio->clone;
1123 	struct dm_io *io = tio->io;
1124 	struct dm_target *ti = tio->ti;
1125 
1126 	clone->bi_end_io = clone_endio;
1127 
1128 	/*
1129 	 * Map the clone.  If r == 0 we don't need to do
1130 	 * anything, the target has assumed ownership of
1131 	 * this io.
1132 	 */
1133 	dm_io_inc_pending(io);
1134 	sector = clone->bi_iter.bi_sector;
1135 
1136 	if (unlikely(swap_bios_limit(ti, clone))) {
1137 		struct mapped_device *md = io->md;
1138 		int latch = get_swap_bios();
1139 		if (unlikely(latch != md->swap_bios))
1140 			__set_swap_bios_limit(md, latch);
1141 		down(&md->swap_bios_semaphore);
1142 	}
1143 
1144 	/*
1145 	 * Check if the IO needs a special mapping due to zone append emulation
1146 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1147 	 * map operation.
1148 	 */
1149 	if (dm_emulate_zone_append(io->md))
1150 		r = dm_zone_map_bio(tio);
1151 	else
1152 		r = ti->type->map(ti, clone);
1153 
1154 	switch (r) {
1155 	case DM_MAPIO_SUBMITTED:
1156 		break;
1157 	case DM_MAPIO_REMAPPED:
1158 		/* the bio has been remapped so dispatch it */
1159 		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1160 		submit_bio_noacct(clone);
1161 		break;
1162 	case DM_MAPIO_KILL:
1163 		if (unlikely(swap_bios_limit(ti, clone))) {
1164 			struct mapped_device *md = io->md;
1165 			up(&md->swap_bios_semaphore);
1166 		}
1167 		free_tio(tio);
1168 		dm_io_dec_pending(io, BLK_STS_IOERR);
1169 		break;
1170 	case DM_MAPIO_REQUEUE:
1171 		if (unlikely(swap_bios_limit(ti, clone))) {
1172 			struct mapped_device *md = io->md;
1173 			up(&md->swap_bios_semaphore);
1174 		}
1175 		free_tio(tio);
1176 		dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1177 		break;
1178 	default:
1179 		DMWARN("unimplemented target map return value: %d", r);
1180 		BUG();
1181 	}
1182 }
1183 
1184 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1185 {
1186 	bio->bi_iter.bi_sector = sector;
1187 	bio->bi_iter.bi_size = to_bytes(len);
1188 }
1189 
1190 /*
1191  * Creates a bio that consists of range of complete bvecs.
1192  */
1193 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1194 		     sector_t sector, unsigned len)
1195 {
1196 	struct bio *clone = &tio->clone;
1197 	int r;
1198 
1199 	__bio_clone_fast(clone, bio);
1200 
1201 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1202 	if (r < 0)
1203 		return r;
1204 
1205 	if (bio_integrity(bio)) {
1206 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1207 			     !dm_target_passes_integrity(tio->ti->type))) {
1208 			DMWARN("%s: the target %s doesn't support integrity data.",
1209 				dm_device_name(tio->io->md),
1210 				tio->ti->type->name);
1211 			return -EIO;
1212 		}
1213 
1214 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1215 		if (r < 0)
1216 			return r;
1217 	}
1218 
1219 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1220 	clone->bi_iter.bi_size = to_bytes(len);
1221 
1222 	if (bio_integrity(bio))
1223 		bio_integrity_trim(clone);
1224 
1225 	return 0;
1226 }
1227 
1228 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1229 				struct dm_target *ti, unsigned num_bios)
1230 {
1231 	struct dm_target_io *tio;
1232 	int try;
1233 
1234 	if (!num_bios)
1235 		return;
1236 
1237 	if (num_bios == 1) {
1238 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1239 		bio_list_add(blist, &tio->clone);
1240 		return;
1241 	}
1242 
1243 	for (try = 0; try < 2; try++) {
1244 		int bio_nr;
1245 		struct bio *bio;
1246 
1247 		if (try)
1248 			mutex_lock(&ci->io->md->table_devices_lock);
1249 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1250 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1251 			if (!tio)
1252 				break;
1253 
1254 			bio_list_add(blist, &tio->clone);
1255 		}
1256 		if (try)
1257 			mutex_unlock(&ci->io->md->table_devices_lock);
1258 		if (bio_nr == num_bios)
1259 			return;
1260 
1261 		while ((bio = bio_list_pop(blist))) {
1262 			tio = container_of(bio, struct dm_target_io, clone);
1263 			free_tio(tio);
1264 		}
1265 	}
1266 }
1267 
1268 static void __clone_and_map_simple_bio(struct clone_info *ci,
1269 					   struct dm_target_io *tio, unsigned *len)
1270 {
1271 	struct bio *clone = &tio->clone;
1272 
1273 	tio->len_ptr = len;
1274 
1275 	__bio_clone_fast(clone, ci->bio);
1276 	if (len)
1277 		bio_setup_sector(clone, ci->sector, *len);
1278 	__map_bio(tio);
1279 }
1280 
1281 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1282 				  unsigned num_bios, unsigned *len)
1283 {
1284 	struct bio_list blist = BIO_EMPTY_LIST;
1285 	struct bio *bio;
1286 	struct dm_target_io *tio;
1287 
1288 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1289 
1290 	while ((bio = bio_list_pop(&blist))) {
1291 		tio = container_of(bio, struct dm_target_io, clone);
1292 		__clone_and_map_simple_bio(ci, tio, len);
1293 	}
1294 }
1295 
1296 static int __send_empty_flush(struct clone_info *ci)
1297 {
1298 	unsigned target_nr = 0;
1299 	struct dm_target *ti;
1300 	struct bio flush_bio;
1301 
1302 	/*
1303 	 * Use an on-stack bio for this, it's safe since we don't
1304 	 * need to reference it after submit. It's just used as
1305 	 * the basis for the clone(s).
1306 	 */
1307 	bio_init(&flush_bio, NULL, 0);
1308 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1309 	bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1310 
1311 	ci->bio = &flush_bio;
1312 	ci->sector_count = 0;
1313 
1314 	BUG_ON(bio_has_data(ci->bio));
1315 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1316 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1317 
1318 	bio_uninit(ci->bio);
1319 	return 0;
1320 }
1321 
1322 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1323 				    sector_t sector, unsigned *len)
1324 {
1325 	struct bio *bio = ci->bio;
1326 	struct dm_target_io *tio;
1327 	int r;
1328 
1329 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1330 	tio->len_ptr = len;
1331 	r = clone_bio(tio, bio, sector, *len);
1332 	if (r < 0) {
1333 		free_tio(tio);
1334 		return r;
1335 	}
1336 	__map_bio(tio);
1337 
1338 	return 0;
1339 }
1340 
1341 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1342 				       unsigned num_bios)
1343 {
1344 	unsigned len;
1345 
1346 	/*
1347 	 * Even though the device advertised support for this type of
1348 	 * request, that does not mean every target supports it, and
1349 	 * reconfiguration might also have changed that since the
1350 	 * check was performed.
1351 	 */
1352 	if (!num_bios)
1353 		return -EOPNOTSUPP;
1354 
1355 	len = min_t(sector_t, ci->sector_count,
1356 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1357 
1358 	__send_duplicate_bios(ci, ti, num_bios, &len);
1359 
1360 	ci->sector += len;
1361 	ci->sector_count -= len;
1362 
1363 	return 0;
1364 }
1365 
1366 static bool is_abnormal_io(struct bio *bio)
1367 {
1368 	bool r = false;
1369 
1370 	switch (bio_op(bio)) {
1371 	case REQ_OP_DISCARD:
1372 	case REQ_OP_SECURE_ERASE:
1373 	case REQ_OP_WRITE_SAME:
1374 	case REQ_OP_WRITE_ZEROES:
1375 		r = true;
1376 		break;
1377 	}
1378 
1379 	return r;
1380 }
1381 
1382 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1383 				  int *result)
1384 {
1385 	struct bio *bio = ci->bio;
1386 	unsigned num_bios = 0;
1387 
1388 	switch (bio_op(bio)) {
1389 	case REQ_OP_DISCARD:
1390 		num_bios = ti->num_discard_bios;
1391 		break;
1392 	case REQ_OP_SECURE_ERASE:
1393 		num_bios = ti->num_secure_erase_bios;
1394 		break;
1395 	case REQ_OP_WRITE_SAME:
1396 		num_bios = ti->num_write_same_bios;
1397 		break;
1398 	case REQ_OP_WRITE_ZEROES:
1399 		num_bios = ti->num_write_zeroes_bios;
1400 		break;
1401 	default:
1402 		return false;
1403 	}
1404 
1405 	*result = __send_changing_extent_only(ci, ti, num_bios);
1406 	return true;
1407 }
1408 
1409 /*
1410  * Select the correct strategy for processing a non-flush bio.
1411  */
1412 static int __split_and_process_non_flush(struct clone_info *ci)
1413 {
1414 	struct dm_target *ti;
1415 	unsigned len;
1416 	int r;
1417 
1418 	ti = dm_table_find_target(ci->map, ci->sector);
1419 	if (!ti)
1420 		return -EIO;
1421 
1422 	if (__process_abnormal_io(ci, ti, &r))
1423 		return r;
1424 
1425 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1426 
1427 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1428 	if (r < 0)
1429 		return r;
1430 
1431 	ci->sector += len;
1432 	ci->sector_count -= len;
1433 
1434 	return 0;
1435 }
1436 
1437 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1438 			    struct dm_table *map, struct bio *bio)
1439 {
1440 	ci->map = map;
1441 	ci->io = alloc_io(md, bio);
1442 	ci->sector = bio->bi_iter.bi_sector;
1443 }
1444 
1445 #define __dm_part_stat_sub(part, field, subnd)	\
1446 	(part_stat_get(part, field) -= (subnd))
1447 
1448 /*
1449  * Entry point to split a bio into clones and submit them to the targets.
1450  */
1451 static void __split_and_process_bio(struct mapped_device *md,
1452 					struct dm_table *map, struct bio *bio)
1453 {
1454 	struct clone_info ci;
1455 	int error = 0;
1456 
1457 	init_clone_info(&ci, md, map, bio);
1458 
1459 	if (bio->bi_opf & REQ_PREFLUSH) {
1460 		error = __send_empty_flush(&ci);
1461 		/* dm_io_dec_pending submits any data associated with flush */
1462 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1463 		ci.bio = bio;
1464 		ci.sector_count = 0;
1465 		error = __split_and_process_non_flush(&ci);
1466 	} else {
1467 		ci.bio = bio;
1468 		ci.sector_count = bio_sectors(bio);
1469 		error = __split_and_process_non_flush(&ci);
1470 		if (ci.sector_count && !error) {
1471 			/*
1472 			 * Remainder must be passed to submit_bio_noacct()
1473 			 * so that it gets handled *after* bios already submitted
1474 			 * have been completely processed.
1475 			 * We take a clone of the original to store in
1476 			 * ci.io->orig_bio to be used by end_io_acct() and
1477 			 * for dec_pending to use for completion handling.
1478 			 */
1479 			struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1480 						  GFP_NOIO, &md->queue->bio_split);
1481 			ci.io->orig_bio = b;
1482 
1483 			/*
1484 			 * Adjust IO stats for each split, otherwise upon queue
1485 			 * reentry there will be redundant IO accounting.
1486 			 * NOTE: this is a stop-gap fix, a proper fix involves
1487 			 * significant refactoring of DM core's bio splitting
1488 			 * (by eliminating DM's splitting and just using bio_split)
1489 			 */
1490 			part_stat_lock();
1491 			__dm_part_stat_sub(dm_disk(md)->part0,
1492 					   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1493 			part_stat_unlock();
1494 
1495 			bio_chain(b, bio);
1496 			trace_block_split(b, bio->bi_iter.bi_sector);
1497 			submit_bio_noacct(bio);
1498 		}
1499 	}
1500 
1501 	/* drop the extra reference count */
1502 	dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1503 }
1504 
1505 static void dm_submit_bio(struct bio *bio)
1506 {
1507 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1508 	int srcu_idx;
1509 	struct dm_table *map;
1510 
1511 	map = dm_get_live_table(md, &srcu_idx);
1512 	if (unlikely(!map)) {
1513 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1514 			    dm_device_name(md));
1515 		bio_io_error(bio);
1516 		goto out;
1517 	}
1518 
1519 	/* If suspended, queue this IO for later */
1520 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1521 		if (bio->bi_opf & REQ_NOWAIT)
1522 			bio_wouldblock_error(bio);
1523 		else if (bio->bi_opf & REQ_RAHEAD)
1524 			bio_io_error(bio);
1525 		else
1526 			queue_io(md, bio);
1527 		goto out;
1528 	}
1529 
1530 	/*
1531 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1532 	 * otherwise associated queue_limits won't be imposed.
1533 	 */
1534 	if (is_abnormal_io(bio))
1535 		blk_queue_split(&bio);
1536 
1537 	__split_and_process_bio(md, map, bio);
1538 out:
1539 	dm_put_live_table(md, srcu_idx);
1540 }
1541 
1542 /*-----------------------------------------------------------------
1543  * An IDR is used to keep track of allocated minor numbers.
1544  *---------------------------------------------------------------*/
1545 static void free_minor(int minor)
1546 {
1547 	spin_lock(&_minor_lock);
1548 	idr_remove(&_minor_idr, minor);
1549 	spin_unlock(&_minor_lock);
1550 }
1551 
1552 /*
1553  * See if the device with a specific minor # is free.
1554  */
1555 static int specific_minor(int minor)
1556 {
1557 	int r;
1558 
1559 	if (minor >= (1 << MINORBITS))
1560 		return -EINVAL;
1561 
1562 	idr_preload(GFP_KERNEL);
1563 	spin_lock(&_minor_lock);
1564 
1565 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1566 
1567 	spin_unlock(&_minor_lock);
1568 	idr_preload_end();
1569 	if (r < 0)
1570 		return r == -ENOSPC ? -EBUSY : r;
1571 	return 0;
1572 }
1573 
1574 static int next_free_minor(int *minor)
1575 {
1576 	int r;
1577 
1578 	idr_preload(GFP_KERNEL);
1579 	spin_lock(&_minor_lock);
1580 
1581 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1582 
1583 	spin_unlock(&_minor_lock);
1584 	idr_preload_end();
1585 	if (r < 0)
1586 		return r;
1587 	*minor = r;
1588 	return 0;
1589 }
1590 
1591 static const struct block_device_operations dm_blk_dops;
1592 static const struct block_device_operations dm_rq_blk_dops;
1593 static const struct dax_operations dm_dax_ops;
1594 
1595 static void dm_wq_work(struct work_struct *work);
1596 
1597 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1598 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1599 {
1600 	dm_destroy_crypto_profile(q->crypto_profile);
1601 }
1602 
1603 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1604 
1605 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1606 {
1607 }
1608 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1609 
1610 static void cleanup_mapped_device(struct mapped_device *md)
1611 {
1612 	if (md->wq)
1613 		destroy_workqueue(md->wq);
1614 	bioset_exit(&md->bs);
1615 	bioset_exit(&md->io_bs);
1616 
1617 	if (md->dax_dev) {
1618 		dax_remove_host(md->disk);
1619 		kill_dax(md->dax_dev);
1620 		put_dax(md->dax_dev);
1621 		md->dax_dev = NULL;
1622 	}
1623 
1624 	if (md->disk) {
1625 		spin_lock(&_minor_lock);
1626 		md->disk->private_data = NULL;
1627 		spin_unlock(&_minor_lock);
1628 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1629 			dm_sysfs_exit(md);
1630 			del_gendisk(md->disk);
1631 		}
1632 		dm_queue_destroy_crypto_profile(md->queue);
1633 		blk_cleanup_disk(md->disk);
1634 	}
1635 
1636 	cleanup_srcu_struct(&md->io_barrier);
1637 
1638 	mutex_destroy(&md->suspend_lock);
1639 	mutex_destroy(&md->type_lock);
1640 	mutex_destroy(&md->table_devices_lock);
1641 	mutex_destroy(&md->swap_bios_lock);
1642 
1643 	dm_mq_cleanup_mapped_device(md);
1644 	dm_cleanup_zoned_dev(md);
1645 }
1646 
1647 /*
1648  * Allocate and initialise a blank device with a given minor.
1649  */
1650 static struct mapped_device *alloc_dev(int minor)
1651 {
1652 	int r, numa_node_id = dm_get_numa_node();
1653 	struct mapped_device *md;
1654 	void *old_md;
1655 
1656 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1657 	if (!md) {
1658 		DMWARN("unable to allocate device, out of memory.");
1659 		return NULL;
1660 	}
1661 
1662 	if (!try_module_get(THIS_MODULE))
1663 		goto bad_module_get;
1664 
1665 	/* get a minor number for the dev */
1666 	if (minor == DM_ANY_MINOR)
1667 		r = next_free_minor(&minor);
1668 	else
1669 		r = specific_minor(minor);
1670 	if (r < 0)
1671 		goto bad_minor;
1672 
1673 	r = init_srcu_struct(&md->io_barrier);
1674 	if (r < 0)
1675 		goto bad_io_barrier;
1676 
1677 	md->numa_node_id = numa_node_id;
1678 	md->init_tio_pdu = false;
1679 	md->type = DM_TYPE_NONE;
1680 	mutex_init(&md->suspend_lock);
1681 	mutex_init(&md->type_lock);
1682 	mutex_init(&md->table_devices_lock);
1683 	spin_lock_init(&md->deferred_lock);
1684 	atomic_set(&md->holders, 1);
1685 	atomic_set(&md->open_count, 0);
1686 	atomic_set(&md->event_nr, 0);
1687 	atomic_set(&md->uevent_seq, 0);
1688 	INIT_LIST_HEAD(&md->uevent_list);
1689 	INIT_LIST_HEAD(&md->table_devices);
1690 	spin_lock_init(&md->uevent_lock);
1691 
1692 	/*
1693 	 * default to bio-based until DM table is loaded and md->type
1694 	 * established. If request-based table is loaded: blk-mq will
1695 	 * override accordingly.
1696 	 */
1697 	md->disk = blk_alloc_disk(md->numa_node_id);
1698 	if (!md->disk)
1699 		goto bad;
1700 	md->queue = md->disk->queue;
1701 
1702 	init_waitqueue_head(&md->wait);
1703 	INIT_WORK(&md->work, dm_wq_work);
1704 	init_waitqueue_head(&md->eventq);
1705 	init_completion(&md->kobj_holder.completion);
1706 
1707 	md->swap_bios = get_swap_bios();
1708 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1709 	mutex_init(&md->swap_bios_lock);
1710 
1711 	md->disk->major = _major;
1712 	md->disk->first_minor = minor;
1713 	md->disk->minors = 1;
1714 	md->disk->flags |= GENHD_FL_NO_PART;
1715 	md->disk->fops = &dm_blk_dops;
1716 	md->disk->queue = md->queue;
1717 	md->disk->private_data = md;
1718 	sprintf(md->disk->disk_name, "dm-%d", minor);
1719 
1720 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1721 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1722 		if (IS_ERR(md->dax_dev)) {
1723 			md->dax_dev = NULL;
1724 			goto bad;
1725 		}
1726 		set_dax_nocache(md->dax_dev);
1727 		set_dax_nomc(md->dax_dev);
1728 		if (dax_add_host(md->dax_dev, md->disk))
1729 			goto bad;
1730 	}
1731 
1732 	format_dev_t(md->name, MKDEV(_major, minor));
1733 
1734 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1735 	if (!md->wq)
1736 		goto bad;
1737 
1738 	dm_stats_init(&md->stats);
1739 
1740 	/* Populate the mapping, nobody knows we exist yet */
1741 	spin_lock(&_minor_lock);
1742 	old_md = idr_replace(&_minor_idr, md, minor);
1743 	spin_unlock(&_minor_lock);
1744 
1745 	BUG_ON(old_md != MINOR_ALLOCED);
1746 
1747 	return md;
1748 
1749 bad:
1750 	cleanup_mapped_device(md);
1751 bad_io_barrier:
1752 	free_minor(minor);
1753 bad_minor:
1754 	module_put(THIS_MODULE);
1755 bad_module_get:
1756 	kvfree(md);
1757 	return NULL;
1758 }
1759 
1760 static void unlock_fs(struct mapped_device *md);
1761 
1762 static void free_dev(struct mapped_device *md)
1763 {
1764 	int minor = MINOR(disk_devt(md->disk));
1765 
1766 	unlock_fs(md);
1767 
1768 	cleanup_mapped_device(md);
1769 
1770 	free_table_devices(&md->table_devices);
1771 	dm_stats_cleanup(&md->stats);
1772 	free_minor(minor);
1773 
1774 	module_put(THIS_MODULE);
1775 	kvfree(md);
1776 }
1777 
1778 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1779 {
1780 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1781 	int ret = 0;
1782 
1783 	if (dm_table_bio_based(t)) {
1784 		/*
1785 		 * The md may already have mempools that need changing.
1786 		 * If so, reload bioset because front_pad may have changed
1787 		 * because a different table was loaded.
1788 		 */
1789 		bioset_exit(&md->bs);
1790 		bioset_exit(&md->io_bs);
1791 
1792 	} else if (bioset_initialized(&md->bs)) {
1793 		/*
1794 		 * There's no need to reload with request-based dm
1795 		 * because the size of front_pad doesn't change.
1796 		 * Note for future: If you are to reload bioset,
1797 		 * prep-ed requests in the queue may refer
1798 		 * to bio from the old bioset, so you must walk
1799 		 * through the queue to unprep.
1800 		 */
1801 		goto out;
1802 	}
1803 
1804 	BUG_ON(!p ||
1805 	       bioset_initialized(&md->bs) ||
1806 	       bioset_initialized(&md->io_bs));
1807 
1808 	ret = bioset_init_from_src(&md->bs, &p->bs);
1809 	if (ret)
1810 		goto out;
1811 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1812 	if (ret)
1813 		bioset_exit(&md->bs);
1814 out:
1815 	/* mempool bind completed, no longer need any mempools in the table */
1816 	dm_table_free_md_mempools(t);
1817 	return ret;
1818 }
1819 
1820 /*
1821  * Bind a table to the device.
1822  */
1823 static void event_callback(void *context)
1824 {
1825 	unsigned long flags;
1826 	LIST_HEAD(uevents);
1827 	struct mapped_device *md = (struct mapped_device *) context;
1828 
1829 	spin_lock_irqsave(&md->uevent_lock, flags);
1830 	list_splice_init(&md->uevent_list, &uevents);
1831 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1832 
1833 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1834 
1835 	atomic_inc(&md->event_nr);
1836 	wake_up(&md->eventq);
1837 	dm_issue_global_event();
1838 }
1839 
1840 /*
1841  * Returns old map, which caller must destroy.
1842  */
1843 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1844 			       struct queue_limits *limits)
1845 {
1846 	struct dm_table *old_map;
1847 	struct request_queue *q = md->queue;
1848 	bool request_based = dm_table_request_based(t);
1849 	sector_t size;
1850 	int ret;
1851 
1852 	lockdep_assert_held(&md->suspend_lock);
1853 
1854 	size = dm_table_get_size(t);
1855 
1856 	/*
1857 	 * Wipe any geometry if the size of the table changed.
1858 	 */
1859 	if (size != dm_get_size(md))
1860 		memset(&md->geometry, 0, sizeof(md->geometry));
1861 
1862 	if (!get_capacity(md->disk))
1863 		set_capacity(md->disk, size);
1864 	else
1865 		set_capacity_and_notify(md->disk, size);
1866 
1867 	dm_table_event_callback(t, event_callback, md);
1868 
1869 	if (request_based) {
1870 		/*
1871 		 * Leverage the fact that request-based DM targets are
1872 		 * immutable singletons - used to optimize dm_mq_queue_rq.
1873 		 */
1874 		md->immutable_target = dm_table_get_immutable_target(t);
1875 	}
1876 
1877 	ret = __bind_mempools(md, t);
1878 	if (ret) {
1879 		old_map = ERR_PTR(ret);
1880 		goto out;
1881 	}
1882 
1883 	ret = dm_table_set_restrictions(t, q, limits);
1884 	if (ret) {
1885 		old_map = ERR_PTR(ret);
1886 		goto out;
1887 	}
1888 
1889 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1890 	rcu_assign_pointer(md->map, (void *)t);
1891 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1892 
1893 	if (old_map)
1894 		dm_sync_table(md);
1895 
1896 out:
1897 	return old_map;
1898 }
1899 
1900 /*
1901  * Returns unbound table for the caller to free.
1902  */
1903 static struct dm_table *__unbind(struct mapped_device *md)
1904 {
1905 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1906 
1907 	if (!map)
1908 		return NULL;
1909 
1910 	dm_table_event_callback(map, NULL, NULL);
1911 	RCU_INIT_POINTER(md->map, NULL);
1912 	dm_sync_table(md);
1913 
1914 	return map;
1915 }
1916 
1917 /*
1918  * Constructor for a new device.
1919  */
1920 int dm_create(int minor, struct mapped_device **result)
1921 {
1922 	struct mapped_device *md;
1923 
1924 	md = alloc_dev(minor);
1925 	if (!md)
1926 		return -ENXIO;
1927 
1928 	dm_ima_reset_data(md);
1929 
1930 	*result = md;
1931 	return 0;
1932 }
1933 
1934 /*
1935  * Functions to manage md->type.
1936  * All are required to hold md->type_lock.
1937  */
1938 void dm_lock_md_type(struct mapped_device *md)
1939 {
1940 	mutex_lock(&md->type_lock);
1941 }
1942 
1943 void dm_unlock_md_type(struct mapped_device *md)
1944 {
1945 	mutex_unlock(&md->type_lock);
1946 }
1947 
1948 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1949 {
1950 	BUG_ON(!mutex_is_locked(&md->type_lock));
1951 	md->type = type;
1952 }
1953 
1954 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1955 {
1956 	return md->type;
1957 }
1958 
1959 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1960 {
1961 	return md->immutable_target_type;
1962 }
1963 
1964 /*
1965  * The queue_limits are only valid as long as you have a reference
1966  * count on 'md'.
1967  */
1968 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1969 {
1970 	BUG_ON(!atomic_read(&md->holders));
1971 	return &md->queue->limits;
1972 }
1973 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1974 
1975 /*
1976  * Setup the DM device's queue based on md's type
1977  */
1978 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1979 {
1980 	enum dm_queue_mode type = dm_table_get_type(t);
1981 	struct queue_limits limits;
1982 	int r;
1983 
1984 	switch (type) {
1985 	case DM_TYPE_REQUEST_BASED:
1986 		md->disk->fops = &dm_rq_blk_dops;
1987 		r = dm_mq_init_request_queue(md, t);
1988 		if (r) {
1989 			DMERR("Cannot initialize queue for request-based dm mapped device");
1990 			return r;
1991 		}
1992 		break;
1993 	case DM_TYPE_BIO_BASED:
1994 	case DM_TYPE_DAX_BIO_BASED:
1995 		break;
1996 	case DM_TYPE_NONE:
1997 		WARN_ON_ONCE(true);
1998 		break;
1999 	}
2000 
2001 	r = dm_calculate_queue_limits(t, &limits);
2002 	if (r) {
2003 		DMERR("Cannot calculate initial queue limits");
2004 		return r;
2005 	}
2006 	r = dm_table_set_restrictions(t, md->queue, &limits);
2007 	if (r)
2008 		return r;
2009 
2010 	r = add_disk(md->disk);
2011 	if (r)
2012 		return r;
2013 
2014 	r = dm_sysfs_init(md);
2015 	if (r) {
2016 		del_gendisk(md->disk);
2017 		return r;
2018 	}
2019 	md->type = type;
2020 	return 0;
2021 }
2022 
2023 struct mapped_device *dm_get_md(dev_t dev)
2024 {
2025 	struct mapped_device *md;
2026 	unsigned minor = MINOR(dev);
2027 
2028 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2029 		return NULL;
2030 
2031 	spin_lock(&_minor_lock);
2032 
2033 	md = idr_find(&_minor_idr, minor);
2034 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2035 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2036 		md = NULL;
2037 		goto out;
2038 	}
2039 	dm_get(md);
2040 out:
2041 	spin_unlock(&_minor_lock);
2042 
2043 	return md;
2044 }
2045 EXPORT_SYMBOL_GPL(dm_get_md);
2046 
2047 void *dm_get_mdptr(struct mapped_device *md)
2048 {
2049 	return md->interface_ptr;
2050 }
2051 
2052 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2053 {
2054 	md->interface_ptr = ptr;
2055 }
2056 
2057 void dm_get(struct mapped_device *md)
2058 {
2059 	atomic_inc(&md->holders);
2060 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2061 }
2062 
2063 int dm_hold(struct mapped_device *md)
2064 {
2065 	spin_lock(&_minor_lock);
2066 	if (test_bit(DMF_FREEING, &md->flags)) {
2067 		spin_unlock(&_minor_lock);
2068 		return -EBUSY;
2069 	}
2070 	dm_get(md);
2071 	spin_unlock(&_minor_lock);
2072 	return 0;
2073 }
2074 EXPORT_SYMBOL_GPL(dm_hold);
2075 
2076 const char *dm_device_name(struct mapped_device *md)
2077 {
2078 	return md->name;
2079 }
2080 EXPORT_SYMBOL_GPL(dm_device_name);
2081 
2082 static void __dm_destroy(struct mapped_device *md, bool wait)
2083 {
2084 	struct dm_table *map;
2085 	int srcu_idx;
2086 
2087 	might_sleep();
2088 
2089 	spin_lock(&_minor_lock);
2090 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2091 	set_bit(DMF_FREEING, &md->flags);
2092 	spin_unlock(&_minor_lock);
2093 
2094 	blk_set_queue_dying(md->queue);
2095 
2096 	/*
2097 	 * Take suspend_lock so that presuspend and postsuspend methods
2098 	 * do not race with internal suspend.
2099 	 */
2100 	mutex_lock(&md->suspend_lock);
2101 	map = dm_get_live_table(md, &srcu_idx);
2102 	if (!dm_suspended_md(md)) {
2103 		dm_table_presuspend_targets(map);
2104 		set_bit(DMF_SUSPENDED, &md->flags);
2105 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2106 		dm_table_postsuspend_targets(map);
2107 	}
2108 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2109 	dm_put_live_table(md, srcu_idx);
2110 	mutex_unlock(&md->suspend_lock);
2111 
2112 	/*
2113 	 * Rare, but there may be I/O requests still going to complete,
2114 	 * for example.  Wait for all references to disappear.
2115 	 * No one should increment the reference count of the mapped_device,
2116 	 * after the mapped_device state becomes DMF_FREEING.
2117 	 */
2118 	if (wait)
2119 		while (atomic_read(&md->holders))
2120 			msleep(1);
2121 	else if (atomic_read(&md->holders))
2122 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2123 		       dm_device_name(md), atomic_read(&md->holders));
2124 
2125 	dm_table_destroy(__unbind(md));
2126 	free_dev(md);
2127 }
2128 
2129 void dm_destroy(struct mapped_device *md)
2130 {
2131 	__dm_destroy(md, true);
2132 }
2133 
2134 void dm_destroy_immediate(struct mapped_device *md)
2135 {
2136 	__dm_destroy(md, false);
2137 }
2138 
2139 void dm_put(struct mapped_device *md)
2140 {
2141 	atomic_dec(&md->holders);
2142 }
2143 EXPORT_SYMBOL_GPL(dm_put);
2144 
2145 static bool md_in_flight_bios(struct mapped_device *md)
2146 {
2147 	int cpu;
2148 	struct block_device *part = dm_disk(md)->part0;
2149 	long sum = 0;
2150 
2151 	for_each_possible_cpu(cpu) {
2152 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2153 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2154 	}
2155 
2156 	return sum != 0;
2157 }
2158 
2159 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2160 {
2161 	int r = 0;
2162 	DEFINE_WAIT(wait);
2163 
2164 	while (true) {
2165 		prepare_to_wait(&md->wait, &wait, task_state);
2166 
2167 		if (!md_in_flight_bios(md))
2168 			break;
2169 
2170 		if (signal_pending_state(task_state, current)) {
2171 			r = -EINTR;
2172 			break;
2173 		}
2174 
2175 		io_schedule();
2176 	}
2177 	finish_wait(&md->wait, &wait);
2178 
2179 	return r;
2180 }
2181 
2182 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2183 {
2184 	int r = 0;
2185 
2186 	if (!queue_is_mq(md->queue))
2187 		return dm_wait_for_bios_completion(md, task_state);
2188 
2189 	while (true) {
2190 		if (!blk_mq_queue_inflight(md->queue))
2191 			break;
2192 
2193 		if (signal_pending_state(task_state, current)) {
2194 			r = -EINTR;
2195 			break;
2196 		}
2197 
2198 		msleep(5);
2199 	}
2200 
2201 	return r;
2202 }
2203 
2204 /*
2205  * Process the deferred bios
2206  */
2207 static void dm_wq_work(struct work_struct *work)
2208 {
2209 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2210 	struct bio *bio;
2211 
2212 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2213 		spin_lock_irq(&md->deferred_lock);
2214 		bio = bio_list_pop(&md->deferred);
2215 		spin_unlock_irq(&md->deferred_lock);
2216 
2217 		if (!bio)
2218 			break;
2219 
2220 		submit_bio_noacct(bio);
2221 	}
2222 }
2223 
2224 static void dm_queue_flush(struct mapped_device *md)
2225 {
2226 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2227 	smp_mb__after_atomic();
2228 	queue_work(md->wq, &md->work);
2229 }
2230 
2231 /*
2232  * Swap in a new table, returning the old one for the caller to destroy.
2233  */
2234 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2235 {
2236 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2237 	struct queue_limits limits;
2238 	int r;
2239 
2240 	mutex_lock(&md->suspend_lock);
2241 
2242 	/* device must be suspended */
2243 	if (!dm_suspended_md(md))
2244 		goto out;
2245 
2246 	/*
2247 	 * If the new table has no data devices, retain the existing limits.
2248 	 * This helps multipath with queue_if_no_path if all paths disappear,
2249 	 * then new I/O is queued based on these limits, and then some paths
2250 	 * reappear.
2251 	 */
2252 	if (dm_table_has_no_data_devices(table)) {
2253 		live_map = dm_get_live_table_fast(md);
2254 		if (live_map)
2255 			limits = md->queue->limits;
2256 		dm_put_live_table_fast(md);
2257 	}
2258 
2259 	if (!live_map) {
2260 		r = dm_calculate_queue_limits(table, &limits);
2261 		if (r) {
2262 			map = ERR_PTR(r);
2263 			goto out;
2264 		}
2265 	}
2266 
2267 	map = __bind(md, table, &limits);
2268 	dm_issue_global_event();
2269 
2270 out:
2271 	mutex_unlock(&md->suspend_lock);
2272 	return map;
2273 }
2274 
2275 /*
2276  * Functions to lock and unlock any filesystem running on the
2277  * device.
2278  */
2279 static int lock_fs(struct mapped_device *md)
2280 {
2281 	int r;
2282 
2283 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2284 
2285 	r = freeze_bdev(md->disk->part0);
2286 	if (!r)
2287 		set_bit(DMF_FROZEN, &md->flags);
2288 	return r;
2289 }
2290 
2291 static void unlock_fs(struct mapped_device *md)
2292 {
2293 	if (!test_bit(DMF_FROZEN, &md->flags))
2294 		return;
2295 	thaw_bdev(md->disk->part0);
2296 	clear_bit(DMF_FROZEN, &md->flags);
2297 }
2298 
2299 /*
2300  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2301  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2302  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2303  *
2304  * If __dm_suspend returns 0, the device is completely quiescent
2305  * now. There is no request-processing activity. All new requests
2306  * are being added to md->deferred list.
2307  */
2308 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2309 			unsigned suspend_flags, unsigned int task_state,
2310 			int dmf_suspended_flag)
2311 {
2312 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2313 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2314 	int r;
2315 
2316 	lockdep_assert_held(&md->suspend_lock);
2317 
2318 	/*
2319 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2320 	 * This flag is cleared before dm_suspend returns.
2321 	 */
2322 	if (noflush)
2323 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2324 	else
2325 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2326 
2327 	/*
2328 	 * This gets reverted if there's an error later and the targets
2329 	 * provide the .presuspend_undo hook.
2330 	 */
2331 	dm_table_presuspend_targets(map);
2332 
2333 	/*
2334 	 * Flush I/O to the device.
2335 	 * Any I/O submitted after lock_fs() may not be flushed.
2336 	 * noflush takes precedence over do_lockfs.
2337 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2338 	 */
2339 	if (!noflush && do_lockfs) {
2340 		r = lock_fs(md);
2341 		if (r) {
2342 			dm_table_presuspend_undo_targets(map);
2343 			return r;
2344 		}
2345 	}
2346 
2347 	/*
2348 	 * Here we must make sure that no processes are submitting requests
2349 	 * to target drivers i.e. no one may be executing
2350 	 * __split_and_process_bio from dm_submit_bio.
2351 	 *
2352 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2353 	 * we take the write lock. To prevent any process from reentering
2354 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2355 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2356 	 * flush_workqueue(md->wq).
2357 	 */
2358 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2359 	if (map)
2360 		synchronize_srcu(&md->io_barrier);
2361 
2362 	/*
2363 	 * Stop md->queue before flushing md->wq in case request-based
2364 	 * dm defers requests to md->wq from md->queue.
2365 	 */
2366 	if (dm_request_based(md))
2367 		dm_stop_queue(md->queue);
2368 
2369 	flush_workqueue(md->wq);
2370 
2371 	/*
2372 	 * At this point no more requests are entering target request routines.
2373 	 * We call dm_wait_for_completion to wait for all existing requests
2374 	 * to finish.
2375 	 */
2376 	r = dm_wait_for_completion(md, task_state);
2377 	if (!r)
2378 		set_bit(dmf_suspended_flag, &md->flags);
2379 
2380 	if (noflush)
2381 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2382 	if (map)
2383 		synchronize_srcu(&md->io_barrier);
2384 
2385 	/* were we interrupted ? */
2386 	if (r < 0) {
2387 		dm_queue_flush(md);
2388 
2389 		if (dm_request_based(md))
2390 			dm_start_queue(md->queue);
2391 
2392 		unlock_fs(md);
2393 		dm_table_presuspend_undo_targets(map);
2394 		/* pushback list is already flushed, so skip flush */
2395 	}
2396 
2397 	return r;
2398 }
2399 
2400 /*
2401  * We need to be able to change a mapping table under a mounted
2402  * filesystem.  For example we might want to move some data in
2403  * the background.  Before the table can be swapped with
2404  * dm_bind_table, dm_suspend must be called to flush any in
2405  * flight bios and ensure that any further io gets deferred.
2406  */
2407 /*
2408  * Suspend mechanism in request-based dm.
2409  *
2410  * 1. Flush all I/Os by lock_fs() if needed.
2411  * 2. Stop dispatching any I/O by stopping the request_queue.
2412  * 3. Wait for all in-flight I/Os to be completed or requeued.
2413  *
2414  * To abort suspend, start the request_queue.
2415  */
2416 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2417 {
2418 	struct dm_table *map = NULL;
2419 	int r = 0;
2420 
2421 retry:
2422 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2423 
2424 	if (dm_suspended_md(md)) {
2425 		r = -EINVAL;
2426 		goto out_unlock;
2427 	}
2428 
2429 	if (dm_suspended_internally_md(md)) {
2430 		/* already internally suspended, wait for internal resume */
2431 		mutex_unlock(&md->suspend_lock);
2432 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2433 		if (r)
2434 			return r;
2435 		goto retry;
2436 	}
2437 
2438 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2439 
2440 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2441 	if (r)
2442 		goto out_unlock;
2443 
2444 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2445 	dm_table_postsuspend_targets(map);
2446 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2447 
2448 out_unlock:
2449 	mutex_unlock(&md->suspend_lock);
2450 	return r;
2451 }
2452 
2453 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2454 {
2455 	if (map) {
2456 		int r = dm_table_resume_targets(map);
2457 		if (r)
2458 			return r;
2459 	}
2460 
2461 	dm_queue_flush(md);
2462 
2463 	/*
2464 	 * Flushing deferred I/Os must be done after targets are resumed
2465 	 * so that mapping of targets can work correctly.
2466 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2467 	 */
2468 	if (dm_request_based(md))
2469 		dm_start_queue(md->queue);
2470 
2471 	unlock_fs(md);
2472 
2473 	return 0;
2474 }
2475 
2476 int dm_resume(struct mapped_device *md)
2477 {
2478 	int r;
2479 	struct dm_table *map = NULL;
2480 
2481 retry:
2482 	r = -EINVAL;
2483 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2484 
2485 	if (!dm_suspended_md(md))
2486 		goto out;
2487 
2488 	if (dm_suspended_internally_md(md)) {
2489 		/* already internally suspended, wait for internal resume */
2490 		mutex_unlock(&md->suspend_lock);
2491 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2492 		if (r)
2493 			return r;
2494 		goto retry;
2495 	}
2496 
2497 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2498 	if (!map || !dm_table_get_size(map))
2499 		goto out;
2500 
2501 	r = __dm_resume(md, map);
2502 	if (r)
2503 		goto out;
2504 
2505 	clear_bit(DMF_SUSPENDED, &md->flags);
2506 out:
2507 	mutex_unlock(&md->suspend_lock);
2508 
2509 	return r;
2510 }
2511 
2512 /*
2513  * Internal suspend/resume works like userspace-driven suspend. It waits
2514  * until all bios finish and prevents issuing new bios to the target drivers.
2515  * It may be used only from the kernel.
2516  */
2517 
2518 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2519 {
2520 	struct dm_table *map = NULL;
2521 
2522 	lockdep_assert_held(&md->suspend_lock);
2523 
2524 	if (md->internal_suspend_count++)
2525 		return; /* nested internal suspend */
2526 
2527 	if (dm_suspended_md(md)) {
2528 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2529 		return; /* nest suspend */
2530 	}
2531 
2532 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2533 
2534 	/*
2535 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2536 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2537 	 * would require changing .presuspend to return an error -- avoid this
2538 	 * until there is a need for more elaborate variants of internal suspend.
2539 	 */
2540 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2541 			    DMF_SUSPENDED_INTERNALLY);
2542 
2543 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2544 	dm_table_postsuspend_targets(map);
2545 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2546 }
2547 
2548 static void __dm_internal_resume(struct mapped_device *md)
2549 {
2550 	BUG_ON(!md->internal_suspend_count);
2551 
2552 	if (--md->internal_suspend_count)
2553 		return; /* resume from nested internal suspend */
2554 
2555 	if (dm_suspended_md(md))
2556 		goto done; /* resume from nested suspend */
2557 
2558 	/*
2559 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2560 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2561 	 */
2562 	(void) __dm_resume(md, NULL);
2563 
2564 done:
2565 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2566 	smp_mb__after_atomic();
2567 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2568 }
2569 
2570 void dm_internal_suspend_noflush(struct mapped_device *md)
2571 {
2572 	mutex_lock(&md->suspend_lock);
2573 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2574 	mutex_unlock(&md->suspend_lock);
2575 }
2576 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2577 
2578 void dm_internal_resume(struct mapped_device *md)
2579 {
2580 	mutex_lock(&md->suspend_lock);
2581 	__dm_internal_resume(md);
2582 	mutex_unlock(&md->suspend_lock);
2583 }
2584 EXPORT_SYMBOL_GPL(dm_internal_resume);
2585 
2586 /*
2587  * Fast variants of internal suspend/resume hold md->suspend_lock,
2588  * which prevents interaction with userspace-driven suspend.
2589  */
2590 
2591 void dm_internal_suspend_fast(struct mapped_device *md)
2592 {
2593 	mutex_lock(&md->suspend_lock);
2594 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2595 		return;
2596 
2597 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2598 	synchronize_srcu(&md->io_barrier);
2599 	flush_workqueue(md->wq);
2600 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2601 }
2602 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2603 
2604 void dm_internal_resume_fast(struct mapped_device *md)
2605 {
2606 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2607 		goto done;
2608 
2609 	dm_queue_flush(md);
2610 
2611 done:
2612 	mutex_unlock(&md->suspend_lock);
2613 }
2614 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2615 
2616 /*-----------------------------------------------------------------
2617  * Event notification.
2618  *---------------------------------------------------------------*/
2619 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2620 		       unsigned cookie)
2621 {
2622 	int r;
2623 	unsigned noio_flag;
2624 	char udev_cookie[DM_COOKIE_LENGTH];
2625 	char *envp[] = { udev_cookie, NULL };
2626 
2627 	noio_flag = memalloc_noio_save();
2628 
2629 	if (!cookie)
2630 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2631 	else {
2632 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2633 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2634 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2635 				       action, envp);
2636 	}
2637 
2638 	memalloc_noio_restore(noio_flag);
2639 
2640 	return r;
2641 }
2642 
2643 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2644 {
2645 	return atomic_add_return(1, &md->uevent_seq);
2646 }
2647 
2648 uint32_t dm_get_event_nr(struct mapped_device *md)
2649 {
2650 	return atomic_read(&md->event_nr);
2651 }
2652 
2653 int dm_wait_event(struct mapped_device *md, int event_nr)
2654 {
2655 	return wait_event_interruptible(md->eventq,
2656 			(event_nr != atomic_read(&md->event_nr)));
2657 }
2658 
2659 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2660 {
2661 	unsigned long flags;
2662 
2663 	spin_lock_irqsave(&md->uevent_lock, flags);
2664 	list_add(elist, &md->uevent_list);
2665 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2666 }
2667 
2668 /*
2669  * The gendisk is only valid as long as you have a reference
2670  * count on 'md'.
2671  */
2672 struct gendisk *dm_disk(struct mapped_device *md)
2673 {
2674 	return md->disk;
2675 }
2676 EXPORT_SYMBOL_GPL(dm_disk);
2677 
2678 struct kobject *dm_kobject(struct mapped_device *md)
2679 {
2680 	return &md->kobj_holder.kobj;
2681 }
2682 
2683 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2684 {
2685 	struct mapped_device *md;
2686 
2687 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2688 
2689 	spin_lock(&_minor_lock);
2690 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2691 		md = NULL;
2692 		goto out;
2693 	}
2694 	dm_get(md);
2695 out:
2696 	spin_unlock(&_minor_lock);
2697 
2698 	return md;
2699 }
2700 
2701 int dm_suspended_md(struct mapped_device *md)
2702 {
2703 	return test_bit(DMF_SUSPENDED, &md->flags);
2704 }
2705 
2706 static int dm_post_suspending_md(struct mapped_device *md)
2707 {
2708 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2709 }
2710 
2711 int dm_suspended_internally_md(struct mapped_device *md)
2712 {
2713 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2714 }
2715 
2716 int dm_test_deferred_remove_flag(struct mapped_device *md)
2717 {
2718 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2719 }
2720 
2721 int dm_suspended(struct dm_target *ti)
2722 {
2723 	return dm_suspended_md(ti->table->md);
2724 }
2725 EXPORT_SYMBOL_GPL(dm_suspended);
2726 
2727 int dm_post_suspending(struct dm_target *ti)
2728 {
2729 	return dm_post_suspending_md(ti->table->md);
2730 }
2731 EXPORT_SYMBOL_GPL(dm_post_suspending);
2732 
2733 int dm_noflush_suspending(struct dm_target *ti)
2734 {
2735 	return __noflush_suspending(ti->table->md);
2736 }
2737 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2738 
2739 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2740 					    unsigned integrity, unsigned per_io_data_size,
2741 					    unsigned min_pool_size)
2742 {
2743 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2744 	unsigned int pool_size = 0;
2745 	unsigned int front_pad, io_front_pad;
2746 	int ret;
2747 
2748 	if (!pools)
2749 		return NULL;
2750 
2751 	switch (type) {
2752 	case DM_TYPE_BIO_BASED:
2753 	case DM_TYPE_DAX_BIO_BASED:
2754 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2755 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2756 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2757 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2758 		if (ret)
2759 			goto out;
2760 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2761 			goto out;
2762 		break;
2763 	case DM_TYPE_REQUEST_BASED:
2764 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2765 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2766 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2767 		break;
2768 	default:
2769 		BUG();
2770 	}
2771 
2772 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2773 	if (ret)
2774 		goto out;
2775 
2776 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2777 		goto out;
2778 
2779 	return pools;
2780 
2781 out:
2782 	dm_free_md_mempools(pools);
2783 
2784 	return NULL;
2785 }
2786 
2787 void dm_free_md_mempools(struct dm_md_mempools *pools)
2788 {
2789 	if (!pools)
2790 		return;
2791 
2792 	bioset_exit(&pools->bs);
2793 	bioset_exit(&pools->io_bs);
2794 
2795 	kfree(pools);
2796 }
2797 
2798 struct dm_pr {
2799 	u64	old_key;
2800 	u64	new_key;
2801 	u32	flags;
2802 	bool	fail_early;
2803 };
2804 
2805 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2806 		      void *data)
2807 {
2808 	struct mapped_device *md = bdev->bd_disk->private_data;
2809 	struct dm_table *table;
2810 	struct dm_target *ti;
2811 	int ret = -ENOTTY, srcu_idx;
2812 
2813 	table = dm_get_live_table(md, &srcu_idx);
2814 	if (!table || !dm_table_get_size(table))
2815 		goto out;
2816 
2817 	/* We only support devices that have a single target */
2818 	if (dm_table_get_num_targets(table) != 1)
2819 		goto out;
2820 	ti = dm_table_get_target(table, 0);
2821 
2822 	ret = -EINVAL;
2823 	if (!ti->type->iterate_devices)
2824 		goto out;
2825 
2826 	ret = ti->type->iterate_devices(ti, fn, data);
2827 out:
2828 	dm_put_live_table(md, srcu_idx);
2829 	return ret;
2830 }
2831 
2832 /*
2833  * For register / unregister we need to manually call out to every path.
2834  */
2835 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2836 			    sector_t start, sector_t len, void *data)
2837 {
2838 	struct dm_pr *pr = data;
2839 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2840 
2841 	if (!ops || !ops->pr_register)
2842 		return -EOPNOTSUPP;
2843 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2844 }
2845 
2846 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2847 			  u32 flags)
2848 {
2849 	struct dm_pr pr = {
2850 		.old_key	= old_key,
2851 		.new_key	= new_key,
2852 		.flags		= flags,
2853 		.fail_early	= true,
2854 	};
2855 	int ret;
2856 
2857 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2858 	if (ret && new_key) {
2859 		/* unregister all paths if we failed to register any path */
2860 		pr.old_key = new_key;
2861 		pr.new_key = 0;
2862 		pr.flags = 0;
2863 		pr.fail_early = false;
2864 		dm_call_pr(bdev, __dm_pr_register, &pr);
2865 	}
2866 
2867 	return ret;
2868 }
2869 
2870 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2871 			 u32 flags)
2872 {
2873 	struct mapped_device *md = bdev->bd_disk->private_data;
2874 	const struct pr_ops *ops;
2875 	int r, srcu_idx;
2876 
2877 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2878 	if (r < 0)
2879 		goto out;
2880 
2881 	ops = bdev->bd_disk->fops->pr_ops;
2882 	if (ops && ops->pr_reserve)
2883 		r = ops->pr_reserve(bdev, key, type, flags);
2884 	else
2885 		r = -EOPNOTSUPP;
2886 out:
2887 	dm_unprepare_ioctl(md, srcu_idx);
2888 	return r;
2889 }
2890 
2891 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2892 {
2893 	struct mapped_device *md = bdev->bd_disk->private_data;
2894 	const struct pr_ops *ops;
2895 	int r, srcu_idx;
2896 
2897 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2898 	if (r < 0)
2899 		goto out;
2900 
2901 	ops = bdev->bd_disk->fops->pr_ops;
2902 	if (ops && ops->pr_release)
2903 		r = ops->pr_release(bdev, key, type);
2904 	else
2905 		r = -EOPNOTSUPP;
2906 out:
2907 	dm_unprepare_ioctl(md, srcu_idx);
2908 	return r;
2909 }
2910 
2911 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2912 			 enum pr_type type, bool abort)
2913 {
2914 	struct mapped_device *md = bdev->bd_disk->private_data;
2915 	const struct pr_ops *ops;
2916 	int r, srcu_idx;
2917 
2918 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2919 	if (r < 0)
2920 		goto out;
2921 
2922 	ops = bdev->bd_disk->fops->pr_ops;
2923 	if (ops && ops->pr_preempt)
2924 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2925 	else
2926 		r = -EOPNOTSUPP;
2927 out:
2928 	dm_unprepare_ioctl(md, srcu_idx);
2929 	return r;
2930 }
2931 
2932 static int dm_pr_clear(struct block_device *bdev, u64 key)
2933 {
2934 	struct mapped_device *md = bdev->bd_disk->private_data;
2935 	const struct pr_ops *ops;
2936 	int r, srcu_idx;
2937 
2938 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2939 	if (r < 0)
2940 		goto out;
2941 
2942 	ops = bdev->bd_disk->fops->pr_ops;
2943 	if (ops && ops->pr_clear)
2944 		r = ops->pr_clear(bdev, key);
2945 	else
2946 		r = -EOPNOTSUPP;
2947 out:
2948 	dm_unprepare_ioctl(md, srcu_idx);
2949 	return r;
2950 }
2951 
2952 static const struct pr_ops dm_pr_ops = {
2953 	.pr_register	= dm_pr_register,
2954 	.pr_reserve	= dm_pr_reserve,
2955 	.pr_release	= dm_pr_release,
2956 	.pr_preempt	= dm_pr_preempt,
2957 	.pr_clear	= dm_pr_clear,
2958 };
2959 
2960 static const struct block_device_operations dm_blk_dops = {
2961 	.submit_bio = dm_submit_bio,
2962 	.open = dm_blk_open,
2963 	.release = dm_blk_close,
2964 	.ioctl = dm_blk_ioctl,
2965 	.getgeo = dm_blk_getgeo,
2966 	.report_zones = dm_blk_report_zones,
2967 	.pr_ops = &dm_pr_ops,
2968 	.owner = THIS_MODULE
2969 };
2970 
2971 static const struct block_device_operations dm_rq_blk_dops = {
2972 	.open = dm_blk_open,
2973 	.release = dm_blk_close,
2974 	.ioctl = dm_blk_ioctl,
2975 	.getgeo = dm_blk_getgeo,
2976 	.pr_ops = &dm_pr_ops,
2977 	.owner = THIS_MODULE
2978 };
2979 
2980 static const struct dax_operations dm_dax_ops = {
2981 	.direct_access = dm_dax_direct_access,
2982 	.zero_page_range = dm_dax_zero_page_range,
2983 };
2984 
2985 /*
2986  * module hooks
2987  */
2988 module_init(dm_init);
2989 module_exit(dm_exit);
2990 
2991 module_param(major, uint, 0);
2992 MODULE_PARM_DESC(major, "The major number of the device mapper");
2993 
2994 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2995 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2996 
2997 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2998 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2999 
3000 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3001 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3002 
3003 MODULE_DESCRIPTION(DM_NAME " driver");
3004 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3005 MODULE_LICENSE("GPL");
3006