1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 static const char *_name = DM_NAME; 44 45 static unsigned int major = 0; 46 static unsigned int _major = 0; 47 48 static DEFINE_IDR(_minor_idr); 49 50 static DEFINE_SPINLOCK(_minor_lock); 51 52 static void do_deferred_remove(struct work_struct *w); 53 54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 55 56 static struct workqueue_struct *deferred_remove_workqueue; 57 58 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 60 61 void dm_issue_global_event(void) 62 { 63 atomic_inc(&dm_global_event_nr); 64 wake_up(&dm_global_eventq); 65 } 66 67 /* 68 * One of these is allocated (on-stack) per original bio. 69 */ 70 struct clone_info { 71 struct dm_table *map; 72 struct bio *bio; 73 struct dm_io *io; 74 sector_t sector; 75 unsigned sector_count; 76 }; 77 78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 79 #define DM_IO_BIO_OFFSET \ 80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 81 82 void *dm_per_bio_data(struct bio *bio, size_t data_size) 83 { 84 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 85 if (!tio->inside_dm_io) 86 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 87 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 88 } 89 EXPORT_SYMBOL_GPL(dm_per_bio_data); 90 91 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 92 { 93 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 94 if (io->magic == DM_IO_MAGIC) 95 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 96 BUG_ON(io->magic != DM_TIO_MAGIC); 97 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 98 } 99 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 100 101 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 102 { 103 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 104 } 105 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 106 107 #define MINOR_ALLOCED ((void *)-1) 108 109 #define DM_NUMA_NODE NUMA_NO_NODE 110 static int dm_numa_node = DM_NUMA_NODE; 111 112 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 113 static int swap_bios = DEFAULT_SWAP_BIOS; 114 static int get_swap_bios(void) 115 { 116 int latch = READ_ONCE(swap_bios); 117 if (unlikely(latch <= 0)) 118 latch = DEFAULT_SWAP_BIOS; 119 return latch; 120 } 121 122 /* 123 * For mempools pre-allocation at the table loading time. 124 */ 125 struct dm_md_mempools { 126 struct bio_set bs; 127 struct bio_set io_bs; 128 }; 129 130 struct table_device { 131 struct list_head list; 132 refcount_t count; 133 struct dm_dev dm_dev; 134 }; 135 136 /* 137 * Bio-based DM's mempools' reserved IOs set by the user. 138 */ 139 #define RESERVED_BIO_BASED_IOS 16 140 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 141 142 static int __dm_get_module_param_int(int *module_param, int min, int max) 143 { 144 int param = READ_ONCE(*module_param); 145 int modified_param = 0; 146 bool modified = true; 147 148 if (param < min) 149 modified_param = min; 150 else if (param > max) 151 modified_param = max; 152 else 153 modified = false; 154 155 if (modified) { 156 (void)cmpxchg(module_param, param, modified_param); 157 param = modified_param; 158 } 159 160 return param; 161 } 162 163 unsigned __dm_get_module_param(unsigned *module_param, 164 unsigned def, unsigned max) 165 { 166 unsigned param = READ_ONCE(*module_param); 167 unsigned modified_param = 0; 168 169 if (!param) 170 modified_param = def; 171 else if (param > max) 172 modified_param = max; 173 174 if (modified_param) { 175 (void)cmpxchg(module_param, param, modified_param); 176 param = modified_param; 177 } 178 179 return param; 180 } 181 182 unsigned dm_get_reserved_bio_based_ios(void) 183 { 184 return __dm_get_module_param(&reserved_bio_based_ios, 185 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 186 } 187 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 188 189 static unsigned dm_get_numa_node(void) 190 { 191 return __dm_get_module_param_int(&dm_numa_node, 192 DM_NUMA_NODE, num_online_nodes() - 1); 193 } 194 195 static int __init local_init(void) 196 { 197 int r; 198 199 r = dm_uevent_init(); 200 if (r) 201 return r; 202 203 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 204 if (!deferred_remove_workqueue) { 205 r = -ENOMEM; 206 goto out_uevent_exit; 207 } 208 209 _major = major; 210 r = register_blkdev(_major, _name); 211 if (r < 0) 212 goto out_free_workqueue; 213 214 if (!_major) 215 _major = r; 216 217 return 0; 218 219 out_free_workqueue: 220 destroy_workqueue(deferred_remove_workqueue); 221 out_uevent_exit: 222 dm_uevent_exit(); 223 224 return r; 225 } 226 227 static void local_exit(void) 228 { 229 flush_scheduled_work(); 230 destroy_workqueue(deferred_remove_workqueue); 231 232 unregister_blkdev(_major, _name); 233 dm_uevent_exit(); 234 235 _major = 0; 236 237 DMINFO("cleaned up"); 238 } 239 240 static int (*_inits[])(void) __initdata = { 241 local_init, 242 dm_target_init, 243 dm_linear_init, 244 dm_stripe_init, 245 dm_io_init, 246 dm_kcopyd_init, 247 dm_interface_init, 248 dm_statistics_init, 249 }; 250 251 static void (*_exits[])(void) = { 252 local_exit, 253 dm_target_exit, 254 dm_linear_exit, 255 dm_stripe_exit, 256 dm_io_exit, 257 dm_kcopyd_exit, 258 dm_interface_exit, 259 dm_statistics_exit, 260 }; 261 262 static int __init dm_init(void) 263 { 264 const int count = ARRAY_SIZE(_inits); 265 int r, i; 266 267 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 268 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 269 " Duplicate IMA measurements will not be recorded in the IMA log."); 270 #endif 271 272 for (i = 0; i < count; i++) { 273 r = _inits[i](); 274 if (r) 275 goto bad; 276 } 277 278 return 0; 279 bad: 280 while (i--) 281 _exits[i](); 282 283 return r; 284 } 285 286 static void __exit dm_exit(void) 287 { 288 int i = ARRAY_SIZE(_exits); 289 290 while (i--) 291 _exits[i](); 292 293 /* 294 * Should be empty by this point. 295 */ 296 idr_destroy(&_minor_idr); 297 } 298 299 /* 300 * Block device functions 301 */ 302 int dm_deleting_md(struct mapped_device *md) 303 { 304 return test_bit(DMF_DELETING, &md->flags); 305 } 306 307 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 308 { 309 struct mapped_device *md; 310 311 spin_lock(&_minor_lock); 312 313 md = bdev->bd_disk->private_data; 314 if (!md) 315 goto out; 316 317 if (test_bit(DMF_FREEING, &md->flags) || 318 dm_deleting_md(md)) { 319 md = NULL; 320 goto out; 321 } 322 323 dm_get(md); 324 atomic_inc(&md->open_count); 325 out: 326 spin_unlock(&_minor_lock); 327 328 return md ? 0 : -ENXIO; 329 } 330 331 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 332 { 333 struct mapped_device *md; 334 335 spin_lock(&_minor_lock); 336 337 md = disk->private_data; 338 if (WARN_ON(!md)) 339 goto out; 340 341 if (atomic_dec_and_test(&md->open_count) && 342 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 343 queue_work(deferred_remove_workqueue, &deferred_remove_work); 344 345 dm_put(md); 346 out: 347 spin_unlock(&_minor_lock); 348 } 349 350 int dm_open_count(struct mapped_device *md) 351 { 352 return atomic_read(&md->open_count); 353 } 354 355 /* 356 * Guarantees nothing is using the device before it's deleted. 357 */ 358 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 359 { 360 int r = 0; 361 362 spin_lock(&_minor_lock); 363 364 if (dm_open_count(md)) { 365 r = -EBUSY; 366 if (mark_deferred) 367 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 368 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 369 r = -EEXIST; 370 else 371 set_bit(DMF_DELETING, &md->flags); 372 373 spin_unlock(&_minor_lock); 374 375 return r; 376 } 377 378 int dm_cancel_deferred_remove(struct mapped_device *md) 379 { 380 int r = 0; 381 382 spin_lock(&_minor_lock); 383 384 if (test_bit(DMF_DELETING, &md->flags)) 385 r = -EBUSY; 386 else 387 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 388 389 spin_unlock(&_minor_lock); 390 391 return r; 392 } 393 394 static void do_deferred_remove(struct work_struct *w) 395 { 396 dm_deferred_remove(); 397 } 398 399 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 400 { 401 struct mapped_device *md = bdev->bd_disk->private_data; 402 403 return dm_get_geometry(md, geo); 404 } 405 406 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 407 struct block_device **bdev) 408 { 409 struct dm_target *tgt; 410 struct dm_table *map; 411 int r; 412 413 retry: 414 r = -ENOTTY; 415 map = dm_get_live_table(md, srcu_idx); 416 if (!map || !dm_table_get_size(map)) 417 return r; 418 419 /* We only support devices that have a single target */ 420 if (dm_table_get_num_targets(map) != 1) 421 return r; 422 423 tgt = dm_table_get_target(map, 0); 424 if (!tgt->type->prepare_ioctl) 425 return r; 426 427 if (dm_suspended_md(md)) 428 return -EAGAIN; 429 430 r = tgt->type->prepare_ioctl(tgt, bdev); 431 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 432 dm_put_live_table(md, *srcu_idx); 433 msleep(10); 434 goto retry; 435 } 436 437 return r; 438 } 439 440 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 441 { 442 dm_put_live_table(md, srcu_idx); 443 } 444 445 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 446 unsigned int cmd, unsigned long arg) 447 { 448 struct mapped_device *md = bdev->bd_disk->private_data; 449 int r, srcu_idx; 450 451 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 452 if (r < 0) 453 goto out; 454 455 if (r > 0) { 456 /* 457 * Target determined this ioctl is being issued against a 458 * subset of the parent bdev; require extra privileges. 459 */ 460 if (!capable(CAP_SYS_RAWIO)) { 461 DMDEBUG_LIMIT( 462 "%s: sending ioctl %x to DM device without required privilege.", 463 current->comm, cmd); 464 r = -ENOIOCTLCMD; 465 goto out; 466 } 467 } 468 469 if (!bdev->bd_disk->fops->ioctl) 470 r = -ENOTTY; 471 else 472 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 473 out: 474 dm_unprepare_ioctl(md, srcu_idx); 475 return r; 476 } 477 478 u64 dm_start_time_ns_from_clone(struct bio *bio) 479 { 480 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 481 struct dm_io *io = tio->io; 482 483 return jiffies_to_nsecs(io->start_time); 484 } 485 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 486 487 static void start_io_acct(struct dm_io *io) 488 { 489 struct mapped_device *md = io->md; 490 struct bio *bio = io->orig_bio; 491 492 io->start_time = bio_start_io_acct(bio); 493 if (unlikely(dm_stats_used(&md->stats))) 494 dm_stats_account_io(&md->stats, bio_data_dir(bio), 495 bio->bi_iter.bi_sector, bio_sectors(bio), 496 false, 0, &io->stats_aux); 497 } 498 499 static void end_io_acct(struct mapped_device *md, struct bio *bio, 500 unsigned long start_time, struct dm_stats_aux *stats_aux) 501 { 502 unsigned long duration = jiffies - start_time; 503 504 bio_end_io_acct(bio, start_time); 505 506 if (unlikely(dm_stats_used(&md->stats))) 507 dm_stats_account_io(&md->stats, bio_data_dir(bio), 508 bio->bi_iter.bi_sector, bio_sectors(bio), 509 true, duration, stats_aux); 510 511 /* nudge anyone waiting on suspend queue */ 512 if (unlikely(wq_has_sleeper(&md->wait))) 513 wake_up(&md->wait); 514 } 515 516 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 517 { 518 struct dm_io *io; 519 struct dm_target_io *tio; 520 struct bio *clone; 521 522 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 523 if (!clone) 524 return NULL; 525 526 tio = container_of(clone, struct dm_target_io, clone); 527 tio->inside_dm_io = true; 528 tio->io = NULL; 529 530 io = container_of(tio, struct dm_io, tio); 531 io->magic = DM_IO_MAGIC; 532 io->status = 0; 533 atomic_set(&io->io_count, 1); 534 io->orig_bio = bio; 535 io->md = md; 536 spin_lock_init(&io->endio_lock); 537 538 start_io_acct(io); 539 540 return io; 541 } 542 543 static void free_io(struct mapped_device *md, struct dm_io *io) 544 { 545 bio_put(&io->tio.clone); 546 } 547 548 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 549 unsigned target_bio_nr, gfp_t gfp_mask) 550 { 551 struct dm_target_io *tio; 552 553 if (!ci->io->tio.io) { 554 /* the dm_target_io embedded in ci->io is available */ 555 tio = &ci->io->tio; 556 } else { 557 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 558 if (!clone) 559 return NULL; 560 561 tio = container_of(clone, struct dm_target_io, clone); 562 tio->inside_dm_io = false; 563 } 564 565 tio->magic = DM_TIO_MAGIC; 566 tio->io = ci->io; 567 tio->ti = ti; 568 tio->target_bio_nr = target_bio_nr; 569 570 return tio; 571 } 572 573 static void free_tio(struct dm_target_io *tio) 574 { 575 if (tio->inside_dm_io) 576 return; 577 bio_put(&tio->clone); 578 } 579 580 /* 581 * Add the bio to the list of deferred io. 582 */ 583 static void queue_io(struct mapped_device *md, struct bio *bio) 584 { 585 unsigned long flags; 586 587 spin_lock_irqsave(&md->deferred_lock, flags); 588 bio_list_add(&md->deferred, bio); 589 spin_unlock_irqrestore(&md->deferred_lock, flags); 590 queue_work(md->wq, &md->work); 591 } 592 593 /* 594 * Everyone (including functions in this file), should use this 595 * function to access the md->map field, and make sure they call 596 * dm_put_live_table() when finished. 597 */ 598 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 599 { 600 *srcu_idx = srcu_read_lock(&md->io_barrier); 601 602 return srcu_dereference(md->map, &md->io_barrier); 603 } 604 605 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 606 { 607 srcu_read_unlock(&md->io_barrier, srcu_idx); 608 } 609 610 void dm_sync_table(struct mapped_device *md) 611 { 612 synchronize_srcu(&md->io_barrier); 613 synchronize_rcu_expedited(); 614 } 615 616 /* 617 * A fast alternative to dm_get_live_table/dm_put_live_table. 618 * The caller must not block between these two functions. 619 */ 620 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 621 { 622 rcu_read_lock(); 623 return rcu_dereference(md->map); 624 } 625 626 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 627 { 628 rcu_read_unlock(); 629 } 630 631 static char *_dm_claim_ptr = "I belong to device-mapper"; 632 633 /* 634 * Open a table device so we can use it as a map destination. 635 */ 636 static int open_table_device(struct table_device *td, dev_t dev, 637 struct mapped_device *md) 638 { 639 struct block_device *bdev; 640 u64 part_off; 641 int r; 642 643 BUG_ON(td->dm_dev.bdev); 644 645 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 646 if (IS_ERR(bdev)) 647 return PTR_ERR(bdev); 648 649 r = bd_link_disk_holder(bdev, dm_disk(md)); 650 if (r) { 651 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 652 return r; 653 } 654 655 td->dm_dev.bdev = bdev; 656 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 657 return 0; 658 } 659 660 /* 661 * Close a table device that we've been using. 662 */ 663 static void close_table_device(struct table_device *td, struct mapped_device *md) 664 { 665 if (!td->dm_dev.bdev) 666 return; 667 668 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 669 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 670 put_dax(td->dm_dev.dax_dev); 671 td->dm_dev.bdev = NULL; 672 td->dm_dev.dax_dev = NULL; 673 } 674 675 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 676 fmode_t mode) 677 { 678 struct table_device *td; 679 680 list_for_each_entry(td, l, list) 681 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 682 return td; 683 684 return NULL; 685 } 686 687 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 688 struct dm_dev **result) 689 { 690 int r; 691 struct table_device *td; 692 693 mutex_lock(&md->table_devices_lock); 694 td = find_table_device(&md->table_devices, dev, mode); 695 if (!td) { 696 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 697 if (!td) { 698 mutex_unlock(&md->table_devices_lock); 699 return -ENOMEM; 700 } 701 702 td->dm_dev.mode = mode; 703 td->dm_dev.bdev = NULL; 704 705 if ((r = open_table_device(td, dev, md))) { 706 mutex_unlock(&md->table_devices_lock); 707 kfree(td); 708 return r; 709 } 710 711 format_dev_t(td->dm_dev.name, dev); 712 713 refcount_set(&td->count, 1); 714 list_add(&td->list, &md->table_devices); 715 } else { 716 refcount_inc(&td->count); 717 } 718 mutex_unlock(&md->table_devices_lock); 719 720 *result = &td->dm_dev; 721 return 0; 722 } 723 724 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 725 { 726 struct table_device *td = container_of(d, struct table_device, dm_dev); 727 728 mutex_lock(&md->table_devices_lock); 729 if (refcount_dec_and_test(&td->count)) { 730 close_table_device(td, md); 731 list_del(&td->list); 732 kfree(td); 733 } 734 mutex_unlock(&md->table_devices_lock); 735 } 736 737 static void free_table_devices(struct list_head *devices) 738 { 739 struct list_head *tmp, *next; 740 741 list_for_each_safe(tmp, next, devices) { 742 struct table_device *td = list_entry(tmp, struct table_device, list); 743 744 DMWARN("dm_destroy: %s still exists with %d references", 745 td->dm_dev.name, refcount_read(&td->count)); 746 kfree(td); 747 } 748 } 749 750 /* 751 * Get the geometry associated with a dm device 752 */ 753 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 754 { 755 *geo = md->geometry; 756 757 return 0; 758 } 759 760 /* 761 * Set the geometry of a device. 762 */ 763 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 764 { 765 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 766 767 if (geo->start > sz) { 768 DMWARN("Start sector is beyond the geometry limits."); 769 return -EINVAL; 770 } 771 772 md->geometry = *geo; 773 774 return 0; 775 } 776 777 static int __noflush_suspending(struct mapped_device *md) 778 { 779 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 780 } 781 782 /* 783 * Decrements the number of outstanding ios that a bio has been 784 * cloned into, completing the original io if necc. 785 */ 786 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 787 { 788 unsigned long flags; 789 blk_status_t io_error; 790 struct bio *bio; 791 struct mapped_device *md = io->md; 792 unsigned long start_time = 0; 793 struct dm_stats_aux stats_aux; 794 795 /* Push-back supersedes any I/O errors */ 796 if (unlikely(error)) { 797 spin_lock_irqsave(&io->endio_lock, flags); 798 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 799 io->status = error; 800 spin_unlock_irqrestore(&io->endio_lock, flags); 801 } 802 803 if (atomic_dec_and_test(&io->io_count)) { 804 bio = io->orig_bio; 805 if (io->status == BLK_STS_DM_REQUEUE) { 806 /* 807 * Target requested pushing back the I/O. 808 */ 809 spin_lock_irqsave(&md->deferred_lock, flags); 810 if (__noflush_suspending(md) && 811 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 812 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 813 bio_list_add_head(&md->deferred, bio); 814 } else { 815 /* 816 * noflush suspend was interrupted or this is 817 * a write to a zoned target. 818 */ 819 io->status = BLK_STS_IOERR; 820 } 821 spin_unlock_irqrestore(&md->deferred_lock, flags); 822 } 823 824 io_error = io->status; 825 start_time = io->start_time; 826 stats_aux = io->stats_aux; 827 free_io(md, io); 828 end_io_acct(md, bio, start_time, &stats_aux); 829 830 if (io_error == BLK_STS_DM_REQUEUE) 831 return; 832 833 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 834 /* 835 * Preflush done for flush with data, reissue 836 * without REQ_PREFLUSH. 837 */ 838 bio->bi_opf &= ~REQ_PREFLUSH; 839 queue_io(md, bio); 840 } else { 841 /* done with normal IO or empty flush */ 842 if (io_error) 843 bio->bi_status = io_error; 844 bio_endio(bio); 845 } 846 } 847 } 848 849 void disable_discard(struct mapped_device *md) 850 { 851 struct queue_limits *limits = dm_get_queue_limits(md); 852 853 /* device doesn't really support DISCARD, disable it */ 854 limits->max_discard_sectors = 0; 855 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 856 } 857 858 void disable_write_same(struct mapped_device *md) 859 { 860 struct queue_limits *limits = dm_get_queue_limits(md); 861 862 /* device doesn't really support WRITE SAME, disable it */ 863 limits->max_write_same_sectors = 0; 864 } 865 866 void disable_write_zeroes(struct mapped_device *md) 867 { 868 struct queue_limits *limits = dm_get_queue_limits(md); 869 870 /* device doesn't really support WRITE ZEROES, disable it */ 871 limits->max_write_zeroes_sectors = 0; 872 } 873 874 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 875 { 876 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 877 } 878 879 static void clone_endio(struct bio *bio) 880 { 881 blk_status_t error = bio->bi_status; 882 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 883 struct dm_io *io = tio->io; 884 struct mapped_device *md = tio->io->md; 885 dm_endio_fn endio = tio->ti->type->end_io; 886 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 887 888 if (unlikely(error == BLK_STS_TARGET)) { 889 if (bio_op(bio) == REQ_OP_DISCARD && 890 !q->limits.max_discard_sectors) 891 disable_discard(md); 892 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 893 !q->limits.max_write_same_sectors) 894 disable_write_same(md); 895 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 896 !q->limits.max_write_zeroes_sectors) 897 disable_write_zeroes(md); 898 } 899 900 if (blk_queue_is_zoned(q)) 901 dm_zone_endio(io, bio); 902 903 if (endio) { 904 int r = endio(tio->ti, bio, &error); 905 switch (r) { 906 case DM_ENDIO_REQUEUE: 907 /* 908 * Requeuing writes to a sequential zone of a zoned 909 * target will break the sequential write pattern: 910 * fail such IO. 911 */ 912 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 913 error = BLK_STS_IOERR; 914 else 915 error = BLK_STS_DM_REQUEUE; 916 fallthrough; 917 case DM_ENDIO_DONE: 918 break; 919 case DM_ENDIO_INCOMPLETE: 920 /* The target will handle the io */ 921 return; 922 default: 923 DMWARN("unimplemented target endio return value: %d", r); 924 BUG(); 925 } 926 } 927 928 if (unlikely(swap_bios_limit(tio->ti, bio))) { 929 struct mapped_device *md = io->md; 930 up(&md->swap_bios_semaphore); 931 } 932 933 free_tio(tio); 934 dm_io_dec_pending(io, error); 935 } 936 937 /* 938 * Return maximum size of I/O possible at the supplied sector up to the current 939 * target boundary. 940 */ 941 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 942 sector_t target_offset) 943 { 944 return ti->len - target_offset; 945 } 946 947 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 948 { 949 sector_t target_offset = dm_target_offset(ti, sector); 950 sector_t len = max_io_len_target_boundary(ti, target_offset); 951 sector_t max_len; 952 953 /* 954 * Does the target need to split IO even further? 955 * - varied (per target) IO splitting is a tenet of DM; this 956 * explains why stacked chunk_sectors based splitting via 957 * blk_max_size_offset() isn't possible here. So pass in 958 * ti->max_io_len to override stacked chunk_sectors. 959 */ 960 if (ti->max_io_len) { 961 max_len = blk_max_size_offset(ti->table->md->queue, 962 target_offset, ti->max_io_len); 963 if (len > max_len) 964 len = max_len; 965 } 966 967 return len; 968 } 969 970 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 971 { 972 if (len > UINT_MAX) { 973 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 974 (unsigned long long)len, UINT_MAX); 975 ti->error = "Maximum size of target IO is too large"; 976 return -EINVAL; 977 } 978 979 ti->max_io_len = (uint32_t) len; 980 981 return 0; 982 } 983 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 984 985 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 986 sector_t sector, int *srcu_idx) 987 __acquires(md->io_barrier) 988 { 989 struct dm_table *map; 990 struct dm_target *ti; 991 992 map = dm_get_live_table(md, srcu_idx); 993 if (!map) 994 return NULL; 995 996 ti = dm_table_find_target(map, sector); 997 if (!ti) 998 return NULL; 999 1000 return ti; 1001 } 1002 1003 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1004 long nr_pages, void **kaddr, pfn_t *pfn) 1005 { 1006 struct mapped_device *md = dax_get_private(dax_dev); 1007 sector_t sector = pgoff * PAGE_SECTORS; 1008 struct dm_target *ti; 1009 long len, ret = -EIO; 1010 int srcu_idx; 1011 1012 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1013 1014 if (!ti) 1015 goto out; 1016 if (!ti->type->direct_access) 1017 goto out; 1018 len = max_io_len(ti, sector) / PAGE_SECTORS; 1019 if (len < 1) 1020 goto out; 1021 nr_pages = min(len, nr_pages); 1022 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1023 1024 out: 1025 dm_put_live_table(md, srcu_idx); 1026 1027 return ret; 1028 } 1029 1030 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1031 size_t nr_pages) 1032 { 1033 struct mapped_device *md = dax_get_private(dax_dev); 1034 sector_t sector = pgoff * PAGE_SECTORS; 1035 struct dm_target *ti; 1036 int ret = -EIO; 1037 int srcu_idx; 1038 1039 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1040 1041 if (!ti) 1042 goto out; 1043 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1044 /* 1045 * ->zero_page_range() is mandatory dax operation. If we are 1046 * here, something is wrong. 1047 */ 1048 goto out; 1049 } 1050 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1051 out: 1052 dm_put_live_table(md, srcu_idx); 1053 1054 return ret; 1055 } 1056 1057 /* 1058 * A target may call dm_accept_partial_bio only from the map routine. It is 1059 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1060 * operations and REQ_OP_ZONE_APPEND (zone append writes). 1061 * 1062 * dm_accept_partial_bio informs the dm that the target only wants to process 1063 * additional n_sectors sectors of the bio and the rest of the data should be 1064 * sent in a next bio. 1065 * 1066 * A diagram that explains the arithmetics: 1067 * +--------------------+---------------+-------+ 1068 * | 1 | 2 | 3 | 1069 * +--------------------+---------------+-------+ 1070 * 1071 * <-------------- *tio->len_ptr ---------------> 1072 * <------- bi_size -------> 1073 * <-- n_sectors --> 1074 * 1075 * Region 1 was already iterated over with bio_advance or similar function. 1076 * (it may be empty if the target doesn't use bio_advance) 1077 * Region 2 is the remaining bio size that the target wants to process. 1078 * (it may be empty if region 1 is non-empty, although there is no reason 1079 * to make it empty) 1080 * The target requires that region 3 is to be sent in the next bio. 1081 * 1082 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1083 * the partially processed part (the sum of regions 1+2) must be the same for all 1084 * copies of the bio. 1085 */ 1086 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1087 { 1088 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1089 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1090 1091 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1092 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1093 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1094 BUG_ON(bi_size > *tio->len_ptr); 1095 BUG_ON(n_sectors > bi_size); 1096 1097 *tio->len_ptr -= bi_size - n_sectors; 1098 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1099 } 1100 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1101 1102 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1103 { 1104 mutex_lock(&md->swap_bios_lock); 1105 while (latch < md->swap_bios) { 1106 cond_resched(); 1107 down(&md->swap_bios_semaphore); 1108 md->swap_bios--; 1109 } 1110 while (latch > md->swap_bios) { 1111 cond_resched(); 1112 up(&md->swap_bios_semaphore); 1113 md->swap_bios++; 1114 } 1115 mutex_unlock(&md->swap_bios_lock); 1116 } 1117 1118 static void __map_bio(struct dm_target_io *tio) 1119 { 1120 int r; 1121 sector_t sector; 1122 struct bio *clone = &tio->clone; 1123 struct dm_io *io = tio->io; 1124 struct dm_target *ti = tio->ti; 1125 1126 clone->bi_end_io = clone_endio; 1127 1128 /* 1129 * Map the clone. If r == 0 we don't need to do 1130 * anything, the target has assumed ownership of 1131 * this io. 1132 */ 1133 dm_io_inc_pending(io); 1134 sector = clone->bi_iter.bi_sector; 1135 1136 if (unlikely(swap_bios_limit(ti, clone))) { 1137 struct mapped_device *md = io->md; 1138 int latch = get_swap_bios(); 1139 if (unlikely(latch != md->swap_bios)) 1140 __set_swap_bios_limit(md, latch); 1141 down(&md->swap_bios_semaphore); 1142 } 1143 1144 /* 1145 * Check if the IO needs a special mapping due to zone append emulation 1146 * on zoned target. In this case, dm_zone_map_bio() calls the target 1147 * map operation. 1148 */ 1149 if (dm_emulate_zone_append(io->md)) 1150 r = dm_zone_map_bio(tio); 1151 else 1152 r = ti->type->map(ti, clone); 1153 1154 switch (r) { 1155 case DM_MAPIO_SUBMITTED: 1156 break; 1157 case DM_MAPIO_REMAPPED: 1158 /* the bio has been remapped so dispatch it */ 1159 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector); 1160 submit_bio_noacct(clone); 1161 break; 1162 case DM_MAPIO_KILL: 1163 if (unlikely(swap_bios_limit(ti, clone))) { 1164 struct mapped_device *md = io->md; 1165 up(&md->swap_bios_semaphore); 1166 } 1167 free_tio(tio); 1168 dm_io_dec_pending(io, BLK_STS_IOERR); 1169 break; 1170 case DM_MAPIO_REQUEUE: 1171 if (unlikely(swap_bios_limit(ti, clone))) { 1172 struct mapped_device *md = io->md; 1173 up(&md->swap_bios_semaphore); 1174 } 1175 free_tio(tio); 1176 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1177 break; 1178 default: 1179 DMWARN("unimplemented target map return value: %d", r); 1180 BUG(); 1181 } 1182 } 1183 1184 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1185 { 1186 bio->bi_iter.bi_sector = sector; 1187 bio->bi_iter.bi_size = to_bytes(len); 1188 } 1189 1190 /* 1191 * Creates a bio that consists of range of complete bvecs. 1192 */ 1193 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1194 sector_t sector, unsigned len) 1195 { 1196 struct bio *clone = &tio->clone; 1197 int r; 1198 1199 __bio_clone_fast(clone, bio); 1200 1201 r = bio_crypt_clone(clone, bio, GFP_NOIO); 1202 if (r < 0) 1203 return r; 1204 1205 if (bio_integrity(bio)) { 1206 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1207 !dm_target_passes_integrity(tio->ti->type))) { 1208 DMWARN("%s: the target %s doesn't support integrity data.", 1209 dm_device_name(tio->io->md), 1210 tio->ti->type->name); 1211 return -EIO; 1212 } 1213 1214 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1215 if (r < 0) 1216 return r; 1217 } 1218 1219 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1220 clone->bi_iter.bi_size = to_bytes(len); 1221 1222 if (bio_integrity(bio)) 1223 bio_integrity_trim(clone); 1224 1225 return 0; 1226 } 1227 1228 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1229 struct dm_target *ti, unsigned num_bios) 1230 { 1231 struct dm_target_io *tio; 1232 int try; 1233 1234 if (!num_bios) 1235 return; 1236 1237 if (num_bios == 1) { 1238 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1239 bio_list_add(blist, &tio->clone); 1240 return; 1241 } 1242 1243 for (try = 0; try < 2; try++) { 1244 int bio_nr; 1245 struct bio *bio; 1246 1247 if (try) 1248 mutex_lock(&ci->io->md->table_devices_lock); 1249 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1250 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1251 if (!tio) 1252 break; 1253 1254 bio_list_add(blist, &tio->clone); 1255 } 1256 if (try) 1257 mutex_unlock(&ci->io->md->table_devices_lock); 1258 if (bio_nr == num_bios) 1259 return; 1260 1261 while ((bio = bio_list_pop(blist))) { 1262 tio = container_of(bio, struct dm_target_io, clone); 1263 free_tio(tio); 1264 } 1265 } 1266 } 1267 1268 static void __clone_and_map_simple_bio(struct clone_info *ci, 1269 struct dm_target_io *tio, unsigned *len) 1270 { 1271 struct bio *clone = &tio->clone; 1272 1273 tio->len_ptr = len; 1274 1275 __bio_clone_fast(clone, ci->bio); 1276 if (len) 1277 bio_setup_sector(clone, ci->sector, *len); 1278 __map_bio(tio); 1279 } 1280 1281 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1282 unsigned num_bios, unsigned *len) 1283 { 1284 struct bio_list blist = BIO_EMPTY_LIST; 1285 struct bio *bio; 1286 struct dm_target_io *tio; 1287 1288 alloc_multiple_bios(&blist, ci, ti, num_bios); 1289 1290 while ((bio = bio_list_pop(&blist))) { 1291 tio = container_of(bio, struct dm_target_io, clone); 1292 __clone_and_map_simple_bio(ci, tio, len); 1293 } 1294 } 1295 1296 static int __send_empty_flush(struct clone_info *ci) 1297 { 1298 unsigned target_nr = 0; 1299 struct dm_target *ti; 1300 struct bio flush_bio; 1301 1302 /* 1303 * Use an on-stack bio for this, it's safe since we don't 1304 * need to reference it after submit. It's just used as 1305 * the basis for the clone(s). 1306 */ 1307 bio_init(&flush_bio, NULL, 0); 1308 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1309 bio_set_dev(&flush_bio, ci->io->md->disk->part0); 1310 1311 ci->bio = &flush_bio; 1312 ci->sector_count = 0; 1313 1314 BUG_ON(bio_has_data(ci->bio)); 1315 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1316 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1317 1318 bio_uninit(ci->bio); 1319 return 0; 1320 } 1321 1322 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1323 sector_t sector, unsigned *len) 1324 { 1325 struct bio *bio = ci->bio; 1326 struct dm_target_io *tio; 1327 int r; 1328 1329 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1330 tio->len_ptr = len; 1331 r = clone_bio(tio, bio, sector, *len); 1332 if (r < 0) { 1333 free_tio(tio); 1334 return r; 1335 } 1336 __map_bio(tio); 1337 1338 return 0; 1339 } 1340 1341 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1342 unsigned num_bios) 1343 { 1344 unsigned len; 1345 1346 /* 1347 * Even though the device advertised support for this type of 1348 * request, that does not mean every target supports it, and 1349 * reconfiguration might also have changed that since the 1350 * check was performed. 1351 */ 1352 if (!num_bios) 1353 return -EOPNOTSUPP; 1354 1355 len = min_t(sector_t, ci->sector_count, 1356 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1357 1358 __send_duplicate_bios(ci, ti, num_bios, &len); 1359 1360 ci->sector += len; 1361 ci->sector_count -= len; 1362 1363 return 0; 1364 } 1365 1366 static bool is_abnormal_io(struct bio *bio) 1367 { 1368 bool r = false; 1369 1370 switch (bio_op(bio)) { 1371 case REQ_OP_DISCARD: 1372 case REQ_OP_SECURE_ERASE: 1373 case REQ_OP_WRITE_SAME: 1374 case REQ_OP_WRITE_ZEROES: 1375 r = true; 1376 break; 1377 } 1378 1379 return r; 1380 } 1381 1382 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1383 int *result) 1384 { 1385 struct bio *bio = ci->bio; 1386 unsigned num_bios = 0; 1387 1388 switch (bio_op(bio)) { 1389 case REQ_OP_DISCARD: 1390 num_bios = ti->num_discard_bios; 1391 break; 1392 case REQ_OP_SECURE_ERASE: 1393 num_bios = ti->num_secure_erase_bios; 1394 break; 1395 case REQ_OP_WRITE_SAME: 1396 num_bios = ti->num_write_same_bios; 1397 break; 1398 case REQ_OP_WRITE_ZEROES: 1399 num_bios = ti->num_write_zeroes_bios; 1400 break; 1401 default: 1402 return false; 1403 } 1404 1405 *result = __send_changing_extent_only(ci, ti, num_bios); 1406 return true; 1407 } 1408 1409 /* 1410 * Select the correct strategy for processing a non-flush bio. 1411 */ 1412 static int __split_and_process_non_flush(struct clone_info *ci) 1413 { 1414 struct dm_target *ti; 1415 unsigned len; 1416 int r; 1417 1418 ti = dm_table_find_target(ci->map, ci->sector); 1419 if (!ti) 1420 return -EIO; 1421 1422 if (__process_abnormal_io(ci, ti, &r)) 1423 return r; 1424 1425 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1426 1427 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1428 if (r < 0) 1429 return r; 1430 1431 ci->sector += len; 1432 ci->sector_count -= len; 1433 1434 return 0; 1435 } 1436 1437 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1438 struct dm_table *map, struct bio *bio) 1439 { 1440 ci->map = map; 1441 ci->io = alloc_io(md, bio); 1442 ci->sector = bio->bi_iter.bi_sector; 1443 } 1444 1445 #define __dm_part_stat_sub(part, field, subnd) \ 1446 (part_stat_get(part, field) -= (subnd)) 1447 1448 /* 1449 * Entry point to split a bio into clones and submit them to the targets. 1450 */ 1451 static void __split_and_process_bio(struct mapped_device *md, 1452 struct dm_table *map, struct bio *bio) 1453 { 1454 struct clone_info ci; 1455 int error = 0; 1456 1457 init_clone_info(&ci, md, map, bio); 1458 1459 if (bio->bi_opf & REQ_PREFLUSH) { 1460 error = __send_empty_flush(&ci); 1461 /* dm_io_dec_pending submits any data associated with flush */ 1462 } else if (op_is_zone_mgmt(bio_op(bio))) { 1463 ci.bio = bio; 1464 ci.sector_count = 0; 1465 error = __split_and_process_non_flush(&ci); 1466 } else { 1467 ci.bio = bio; 1468 ci.sector_count = bio_sectors(bio); 1469 error = __split_and_process_non_flush(&ci); 1470 if (ci.sector_count && !error) { 1471 /* 1472 * Remainder must be passed to submit_bio_noacct() 1473 * so that it gets handled *after* bios already submitted 1474 * have been completely processed. 1475 * We take a clone of the original to store in 1476 * ci.io->orig_bio to be used by end_io_acct() and 1477 * for dec_pending to use for completion handling. 1478 */ 1479 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1480 GFP_NOIO, &md->queue->bio_split); 1481 ci.io->orig_bio = b; 1482 1483 /* 1484 * Adjust IO stats for each split, otherwise upon queue 1485 * reentry there will be redundant IO accounting. 1486 * NOTE: this is a stop-gap fix, a proper fix involves 1487 * significant refactoring of DM core's bio splitting 1488 * (by eliminating DM's splitting and just using bio_split) 1489 */ 1490 part_stat_lock(); 1491 __dm_part_stat_sub(dm_disk(md)->part0, 1492 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1493 part_stat_unlock(); 1494 1495 bio_chain(b, bio); 1496 trace_block_split(b, bio->bi_iter.bi_sector); 1497 submit_bio_noacct(bio); 1498 } 1499 } 1500 1501 /* drop the extra reference count */ 1502 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1503 } 1504 1505 static void dm_submit_bio(struct bio *bio) 1506 { 1507 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1508 int srcu_idx; 1509 struct dm_table *map; 1510 1511 map = dm_get_live_table(md, &srcu_idx); 1512 if (unlikely(!map)) { 1513 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1514 dm_device_name(md)); 1515 bio_io_error(bio); 1516 goto out; 1517 } 1518 1519 /* If suspended, queue this IO for later */ 1520 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1521 if (bio->bi_opf & REQ_NOWAIT) 1522 bio_wouldblock_error(bio); 1523 else if (bio->bi_opf & REQ_RAHEAD) 1524 bio_io_error(bio); 1525 else 1526 queue_io(md, bio); 1527 goto out; 1528 } 1529 1530 /* 1531 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1532 * otherwise associated queue_limits won't be imposed. 1533 */ 1534 if (is_abnormal_io(bio)) 1535 blk_queue_split(&bio); 1536 1537 __split_and_process_bio(md, map, bio); 1538 out: 1539 dm_put_live_table(md, srcu_idx); 1540 } 1541 1542 /*----------------------------------------------------------------- 1543 * An IDR is used to keep track of allocated minor numbers. 1544 *---------------------------------------------------------------*/ 1545 static void free_minor(int minor) 1546 { 1547 spin_lock(&_minor_lock); 1548 idr_remove(&_minor_idr, minor); 1549 spin_unlock(&_minor_lock); 1550 } 1551 1552 /* 1553 * See if the device with a specific minor # is free. 1554 */ 1555 static int specific_minor(int minor) 1556 { 1557 int r; 1558 1559 if (minor >= (1 << MINORBITS)) 1560 return -EINVAL; 1561 1562 idr_preload(GFP_KERNEL); 1563 spin_lock(&_minor_lock); 1564 1565 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1566 1567 spin_unlock(&_minor_lock); 1568 idr_preload_end(); 1569 if (r < 0) 1570 return r == -ENOSPC ? -EBUSY : r; 1571 return 0; 1572 } 1573 1574 static int next_free_minor(int *minor) 1575 { 1576 int r; 1577 1578 idr_preload(GFP_KERNEL); 1579 spin_lock(&_minor_lock); 1580 1581 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1582 1583 spin_unlock(&_minor_lock); 1584 idr_preload_end(); 1585 if (r < 0) 1586 return r; 1587 *minor = r; 1588 return 0; 1589 } 1590 1591 static const struct block_device_operations dm_blk_dops; 1592 static const struct block_device_operations dm_rq_blk_dops; 1593 static const struct dax_operations dm_dax_ops; 1594 1595 static void dm_wq_work(struct work_struct *work); 1596 1597 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1598 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1599 { 1600 dm_destroy_crypto_profile(q->crypto_profile); 1601 } 1602 1603 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1604 1605 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1606 { 1607 } 1608 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1609 1610 static void cleanup_mapped_device(struct mapped_device *md) 1611 { 1612 if (md->wq) 1613 destroy_workqueue(md->wq); 1614 bioset_exit(&md->bs); 1615 bioset_exit(&md->io_bs); 1616 1617 if (md->dax_dev) { 1618 dax_remove_host(md->disk); 1619 kill_dax(md->dax_dev); 1620 put_dax(md->dax_dev); 1621 md->dax_dev = NULL; 1622 } 1623 1624 if (md->disk) { 1625 spin_lock(&_minor_lock); 1626 md->disk->private_data = NULL; 1627 spin_unlock(&_minor_lock); 1628 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1629 dm_sysfs_exit(md); 1630 del_gendisk(md->disk); 1631 } 1632 dm_queue_destroy_crypto_profile(md->queue); 1633 blk_cleanup_disk(md->disk); 1634 } 1635 1636 cleanup_srcu_struct(&md->io_barrier); 1637 1638 mutex_destroy(&md->suspend_lock); 1639 mutex_destroy(&md->type_lock); 1640 mutex_destroy(&md->table_devices_lock); 1641 mutex_destroy(&md->swap_bios_lock); 1642 1643 dm_mq_cleanup_mapped_device(md); 1644 dm_cleanup_zoned_dev(md); 1645 } 1646 1647 /* 1648 * Allocate and initialise a blank device with a given minor. 1649 */ 1650 static struct mapped_device *alloc_dev(int minor) 1651 { 1652 int r, numa_node_id = dm_get_numa_node(); 1653 struct mapped_device *md; 1654 void *old_md; 1655 1656 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1657 if (!md) { 1658 DMWARN("unable to allocate device, out of memory."); 1659 return NULL; 1660 } 1661 1662 if (!try_module_get(THIS_MODULE)) 1663 goto bad_module_get; 1664 1665 /* get a minor number for the dev */ 1666 if (minor == DM_ANY_MINOR) 1667 r = next_free_minor(&minor); 1668 else 1669 r = specific_minor(minor); 1670 if (r < 0) 1671 goto bad_minor; 1672 1673 r = init_srcu_struct(&md->io_barrier); 1674 if (r < 0) 1675 goto bad_io_barrier; 1676 1677 md->numa_node_id = numa_node_id; 1678 md->init_tio_pdu = false; 1679 md->type = DM_TYPE_NONE; 1680 mutex_init(&md->suspend_lock); 1681 mutex_init(&md->type_lock); 1682 mutex_init(&md->table_devices_lock); 1683 spin_lock_init(&md->deferred_lock); 1684 atomic_set(&md->holders, 1); 1685 atomic_set(&md->open_count, 0); 1686 atomic_set(&md->event_nr, 0); 1687 atomic_set(&md->uevent_seq, 0); 1688 INIT_LIST_HEAD(&md->uevent_list); 1689 INIT_LIST_HEAD(&md->table_devices); 1690 spin_lock_init(&md->uevent_lock); 1691 1692 /* 1693 * default to bio-based until DM table is loaded and md->type 1694 * established. If request-based table is loaded: blk-mq will 1695 * override accordingly. 1696 */ 1697 md->disk = blk_alloc_disk(md->numa_node_id); 1698 if (!md->disk) 1699 goto bad; 1700 md->queue = md->disk->queue; 1701 1702 init_waitqueue_head(&md->wait); 1703 INIT_WORK(&md->work, dm_wq_work); 1704 init_waitqueue_head(&md->eventq); 1705 init_completion(&md->kobj_holder.completion); 1706 1707 md->swap_bios = get_swap_bios(); 1708 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1709 mutex_init(&md->swap_bios_lock); 1710 1711 md->disk->major = _major; 1712 md->disk->first_minor = minor; 1713 md->disk->minors = 1; 1714 md->disk->flags |= GENHD_FL_NO_PART; 1715 md->disk->fops = &dm_blk_dops; 1716 md->disk->queue = md->queue; 1717 md->disk->private_data = md; 1718 sprintf(md->disk->disk_name, "dm-%d", minor); 1719 1720 if (IS_ENABLED(CONFIG_FS_DAX)) { 1721 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1722 if (IS_ERR(md->dax_dev)) { 1723 md->dax_dev = NULL; 1724 goto bad; 1725 } 1726 set_dax_nocache(md->dax_dev); 1727 set_dax_nomc(md->dax_dev); 1728 if (dax_add_host(md->dax_dev, md->disk)) 1729 goto bad; 1730 } 1731 1732 format_dev_t(md->name, MKDEV(_major, minor)); 1733 1734 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1735 if (!md->wq) 1736 goto bad; 1737 1738 dm_stats_init(&md->stats); 1739 1740 /* Populate the mapping, nobody knows we exist yet */ 1741 spin_lock(&_minor_lock); 1742 old_md = idr_replace(&_minor_idr, md, minor); 1743 spin_unlock(&_minor_lock); 1744 1745 BUG_ON(old_md != MINOR_ALLOCED); 1746 1747 return md; 1748 1749 bad: 1750 cleanup_mapped_device(md); 1751 bad_io_barrier: 1752 free_minor(minor); 1753 bad_minor: 1754 module_put(THIS_MODULE); 1755 bad_module_get: 1756 kvfree(md); 1757 return NULL; 1758 } 1759 1760 static void unlock_fs(struct mapped_device *md); 1761 1762 static void free_dev(struct mapped_device *md) 1763 { 1764 int minor = MINOR(disk_devt(md->disk)); 1765 1766 unlock_fs(md); 1767 1768 cleanup_mapped_device(md); 1769 1770 free_table_devices(&md->table_devices); 1771 dm_stats_cleanup(&md->stats); 1772 free_minor(minor); 1773 1774 module_put(THIS_MODULE); 1775 kvfree(md); 1776 } 1777 1778 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1779 { 1780 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1781 int ret = 0; 1782 1783 if (dm_table_bio_based(t)) { 1784 /* 1785 * The md may already have mempools that need changing. 1786 * If so, reload bioset because front_pad may have changed 1787 * because a different table was loaded. 1788 */ 1789 bioset_exit(&md->bs); 1790 bioset_exit(&md->io_bs); 1791 1792 } else if (bioset_initialized(&md->bs)) { 1793 /* 1794 * There's no need to reload with request-based dm 1795 * because the size of front_pad doesn't change. 1796 * Note for future: If you are to reload bioset, 1797 * prep-ed requests in the queue may refer 1798 * to bio from the old bioset, so you must walk 1799 * through the queue to unprep. 1800 */ 1801 goto out; 1802 } 1803 1804 BUG_ON(!p || 1805 bioset_initialized(&md->bs) || 1806 bioset_initialized(&md->io_bs)); 1807 1808 ret = bioset_init_from_src(&md->bs, &p->bs); 1809 if (ret) 1810 goto out; 1811 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1812 if (ret) 1813 bioset_exit(&md->bs); 1814 out: 1815 /* mempool bind completed, no longer need any mempools in the table */ 1816 dm_table_free_md_mempools(t); 1817 return ret; 1818 } 1819 1820 /* 1821 * Bind a table to the device. 1822 */ 1823 static void event_callback(void *context) 1824 { 1825 unsigned long flags; 1826 LIST_HEAD(uevents); 1827 struct mapped_device *md = (struct mapped_device *) context; 1828 1829 spin_lock_irqsave(&md->uevent_lock, flags); 1830 list_splice_init(&md->uevent_list, &uevents); 1831 spin_unlock_irqrestore(&md->uevent_lock, flags); 1832 1833 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1834 1835 atomic_inc(&md->event_nr); 1836 wake_up(&md->eventq); 1837 dm_issue_global_event(); 1838 } 1839 1840 /* 1841 * Returns old map, which caller must destroy. 1842 */ 1843 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1844 struct queue_limits *limits) 1845 { 1846 struct dm_table *old_map; 1847 struct request_queue *q = md->queue; 1848 bool request_based = dm_table_request_based(t); 1849 sector_t size; 1850 int ret; 1851 1852 lockdep_assert_held(&md->suspend_lock); 1853 1854 size = dm_table_get_size(t); 1855 1856 /* 1857 * Wipe any geometry if the size of the table changed. 1858 */ 1859 if (size != dm_get_size(md)) 1860 memset(&md->geometry, 0, sizeof(md->geometry)); 1861 1862 if (!get_capacity(md->disk)) 1863 set_capacity(md->disk, size); 1864 else 1865 set_capacity_and_notify(md->disk, size); 1866 1867 dm_table_event_callback(t, event_callback, md); 1868 1869 if (request_based) { 1870 /* 1871 * Leverage the fact that request-based DM targets are 1872 * immutable singletons - used to optimize dm_mq_queue_rq. 1873 */ 1874 md->immutable_target = dm_table_get_immutable_target(t); 1875 } 1876 1877 ret = __bind_mempools(md, t); 1878 if (ret) { 1879 old_map = ERR_PTR(ret); 1880 goto out; 1881 } 1882 1883 ret = dm_table_set_restrictions(t, q, limits); 1884 if (ret) { 1885 old_map = ERR_PTR(ret); 1886 goto out; 1887 } 1888 1889 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1890 rcu_assign_pointer(md->map, (void *)t); 1891 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1892 1893 if (old_map) 1894 dm_sync_table(md); 1895 1896 out: 1897 return old_map; 1898 } 1899 1900 /* 1901 * Returns unbound table for the caller to free. 1902 */ 1903 static struct dm_table *__unbind(struct mapped_device *md) 1904 { 1905 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1906 1907 if (!map) 1908 return NULL; 1909 1910 dm_table_event_callback(map, NULL, NULL); 1911 RCU_INIT_POINTER(md->map, NULL); 1912 dm_sync_table(md); 1913 1914 return map; 1915 } 1916 1917 /* 1918 * Constructor for a new device. 1919 */ 1920 int dm_create(int minor, struct mapped_device **result) 1921 { 1922 struct mapped_device *md; 1923 1924 md = alloc_dev(minor); 1925 if (!md) 1926 return -ENXIO; 1927 1928 dm_ima_reset_data(md); 1929 1930 *result = md; 1931 return 0; 1932 } 1933 1934 /* 1935 * Functions to manage md->type. 1936 * All are required to hold md->type_lock. 1937 */ 1938 void dm_lock_md_type(struct mapped_device *md) 1939 { 1940 mutex_lock(&md->type_lock); 1941 } 1942 1943 void dm_unlock_md_type(struct mapped_device *md) 1944 { 1945 mutex_unlock(&md->type_lock); 1946 } 1947 1948 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1949 { 1950 BUG_ON(!mutex_is_locked(&md->type_lock)); 1951 md->type = type; 1952 } 1953 1954 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1955 { 1956 return md->type; 1957 } 1958 1959 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1960 { 1961 return md->immutable_target_type; 1962 } 1963 1964 /* 1965 * The queue_limits are only valid as long as you have a reference 1966 * count on 'md'. 1967 */ 1968 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1969 { 1970 BUG_ON(!atomic_read(&md->holders)); 1971 return &md->queue->limits; 1972 } 1973 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1974 1975 /* 1976 * Setup the DM device's queue based on md's type 1977 */ 1978 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1979 { 1980 enum dm_queue_mode type = dm_table_get_type(t); 1981 struct queue_limits limits; 1982 int r; 1983 1984 switch (type) { 1985 case DM_TYPE_REQUEST_BASED: 1986 md->disk->fops = &dm_rq_blk_dops; 1987 r = dm_mq_init_request_queue(md, t); 1988 if (r) { 1989 DMERR("Cannot initialize queue for request-based dm mapped device"); 1990 return r; 1991 } 1992 break; 1993 case DM_TYPE_BIO_BASED: 1994 case DM_TYPE_DAX_BIO_BASED: 1995 break; 1996 case DM_TYPE_NONE: 1997 WARN_ON_ONCE(true); 1998 break; 1999 } 2000 2001 r = dm_calculate_queue_limits(t, &limits); 2002 if (r) { 2003 DMERR("Cannot calculate initial queue limits"); 2004 return r; 2005 } 2006 r = dm_table_set_restrictions(t, md->queue, &limits); 2007 if (r) 2008 return r; 2009 2010 r = add_disk(md->disk); 2011 if (r) 2012 return r; 2013 2014 r = dm_sysfs_init(md); 2015 if (r) { 2016 del_gendisk(md->disk); 2017 return r; 2018 } 2019 md->type = type; 2020 return 0; 2021 } 2022 2023 struct mapped_device *dm_get_md(dev_t dev) 2024 { 2025 struct mapped_device *md; 2026 unsigned minor = MINOR(dev); 2027 2028 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2029 return NULL; 2030 2031 spin_lock(&_minor_lock); 2032 2033 md = idr_find(&_minor_idr, minor); 2034 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2035 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2036 md = NULL; 2037 goto out; 2038 } 2039 dm_get(md); 2040 out: 2041 spin_unlock(&_minor_lock); 2042 2043 return md; 2044 } 2045 EXPORT_SYMBOL_GPL(dm_get_md); 2046 2047 void *dm_get_mdptr(struct mapped_device *md) 2048 { 2049 return md->interface_ptr; 2050 } 2051 2052 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2053 { 2054 md->interface_ptr = ptr; 2055 } 2056 2057 void dm_get(struct mapped_device *md) 2058 { 2059 atomic_inc(&md->holders); 2060 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2061 } 2062 2063 int dm_hold(struct mapped_device *md) 2064 { 2065 spin_lock(&_minor_lock); 2066 if (test_bit(DMF_FREEING, &md->flags)) { 2067 spin_unlock(&_minor_lock); 2068 return -EBUSY; 2069 } 2070 dm_get(md); 2071 spin_unlock(&_minor_lock); 2072 return 0; 2073 } 2074 EXPORT_SYMBOL_GPL(dm_hold); 2075 2076 const char *dm_device_name(struct mapped_device *md) 2077 { 2078 return md->name; 2079 } 2080 EXPORT_SYMBOL_GPL(dm_device_name); 2081 2082 static void __dm_destroy(struct mapped_device *md, bool wait) 2083 { 2084 struct dm_table *map; 2085 int srcu_idx; 2086 2087 might_sleep(); 2088 2089 spin_lock(&_minor_lock); 2090 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2091 set_bit(DMF_FREEING, &md->flags); 2092 spin_unlock(&_minor_lock); 2093 2094 blk_set_queue_dying(md->queue); 2095 2096 /* 2097 * Take suspend_lock so that presuspend and postsuspend methods 2098 * do not race with internal suspend. 2099 */ 2100 mutex_lock(&md->suspend_lock); 2101 map = dm_get_live_table(md, &srcu_idx); 2102 if (!dm_suspended_md(md)) { 2103 dm_table_presuspend_targets(map); 2104 set_bit(DMF_SUSPENDED, &md->flags); 2105 set_bit(DMF_POST_SUSPENDING, &md->flags); 2106 dm_table_postsuspend_targets(map); 2107 } 2108 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2109 dm_put_live_table(md, srcu_idx); 2110 mutex_unlock(&md->suspend_lock); 2111 2112 /* 2113 * Rare, but there may be I/O requests still going to complete, 2114 * for example. Wait for all references to disappear. 2115 * No one should increment the reference count of the mapped_device, 2116 * after the mapped_device state becomes DMF_FREEING. 2117 */ 2118 if (wait) 2119 while (atomic_read(&md->holders)) 2120 msleep(1); 2121 else if (atomic_read(&md->holders)) 2122 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2123 dm_device_name(md), atomic_read(&md->holders)); 2124 2125 dm_table_destroy(__unbind(md)); 2126 free_dev(md); 2127 } 2128 2129 void dm_destroy(struct mapped_device *md) 2130 { 2131 __dm_destroy(md, true); 2132 } 2133 2134 void dm_destroy_immediate(struct mapped_device *md) 2135 { 2136 __dm_destroy(md, false); 2137 } 2138 2139 void dm_put(struct mapped_device *md) 2140 { 2141 atomic_dec(&md->holders); 2142 } 2143 EXPORT_SYMBOL_GPL(dm_put); 2144 2145 static bool md_in_flight_bios(struct mapped_device *md) 2146 { 2147 int cpu; 2148 struct block_device *part = dm_disk(md)->part0; 2149 long sum = 0; 2150 2151 for_each_possible_cpu(cpu) { 2152 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2153 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2154 } 2155 2156 return sum != 0; 2157 } 2158 2159 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2160 { 2161 int r = 0; 2162 DEFINE_WAIT(wait); 2163 2164 while (true) { 2165 prepare_to_wait(&md->wait, &wait, task_state); 2166 2167 if (!md_in_flight_bios(md)) 2168 break; 2169 2170 if (signal_pending_state(task_state, current)) { 2171 r = -EINTR; 2172 break; 2173 } 2174 2175 io_schedule(); 2176 } 2177 finish_wait(&md->wait, &wait); 2178 2179 return r; 2180 } 2181 2182 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2183 { 2184 int r = 0; 2185 2186 if (!queue_is_mq(md->queue)) 2187 return dm_wait_for_bios_completion(md, task_state); 2188 2189 while (true) { 2190 if (!blk_mq_queue_inflight(md->queue)) 2191 break; 2192 2193 if (signal_pending_state(task_state, current)) { 2194 r = -EINTR; 2195 break; 2196 } 2197 2198 msleep(5); 2199 } 2200 2201 return r; 2202 } 2203 2204 /* 2205 * Process the deferred bios 2206 */ 2207 static void dm_wq_work(struct work_struct *work) 2208 { 2209 struct mapped_device *md = container_of(work, struct mapped_device, work); 2210 struct bio *bio; 2211 2212 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2213 spin_lock_irq(&md->deferred_lock); 2214 bio = bio_list_pop(&md->deferred); 2215 spin_unlock_irq(&md->deferred_lock); 2216 2217 if (!bio) 2218 break; 2219 2220 submit_bio_noacct(bio); 2221 } 2222 } 2223 2224 static void dm_queue_flush(struct mapped_device *md) 2225 { 2226 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2227 smp_mb__after_atomic(); 2228 queue_work(md->wq, &md->work); 2229 } 2230 2231 /* 2232 * Swap in a new table, returning the old one for the caller to destroy. 2233 */ 2234 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2235 { 2236 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2237 struct queue_limits limits; 2238 int r; 2239 2240 mutex_lock(&md->suspend_lock); 2241 2242 /* device must be suspended */ 2243 if (!dm_suspended_md(md)) 2244 goto out; 2245 2246 /* 2247 * If the new table has no data devices, retain the existing limits. 2248 * This helps multipath with queue_if_no_path if all paths disappear, 2249 * then new I/O is queued based on these limits, and then some paths 2250 * reappear. 2251 */ 2252 if (dm_table_has_no_data_devices(table)) { 2253 live_map = dm_get_live_table_fast(md); 2254 if (live_map) 2255 limits = md->queue->limits; 2256 dm_put_live_table_fast(md); 2257 } 2258 2259 if (!live_map) { 2260 r = dm_calculate_queue_limits(table, &limits); 2261 if (r) { 2262 map = ERR_PTR(r); 2263 goto out; 2264 } 2265 } 2266 2267 map = __bind(md, table, &limits); 2268 dm_issue_global_event(); 2269 2270 out: 2271 mutex_unlock(&md->suspend_lock); 2272 return map; 2273 } 2274 2275 /* 2276 * Functions to lock and unlock any filesystem running on the 2277 * device. 2278 */ 2279 static int lock_fs(struct mapped_device *md) 2280 { 2281 int r; 2282 2283 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2284 2285 r = freeze_bdev(md->disk->part0); 2286 if (!r) 2287 set_bit(DMF_FROZEN, &md->flags); 2288 return r; 2289 } 2290 2291 static void unlock_fs(struct mapped_device *md) 2292 { 2293 if (!test_bit(DMF_FROZEN, &md->flags)) 2294 return; 2295 thaw_bdev(md->disk->part0); 2296 clear_bit(DMF_FROZEN, &md->flags); 2297 } 2298 2299 /* 2300 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2301 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2302 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2303 * 2304 * If __dm_suspend returns 0, the device is completely quiescent 2305 * now. There is no request-processing activity. All new requests 2306 * are being added to md->deferred list. 2307 */ 2308 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2309 unsigned suspend_flags, unsigned int task_state, 2310 int dmf_suspended_flag) 2311 { 2312 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2313 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2314 int r; 2315 2316 lockdep_assert_held(&md->suspend_lock); 2317 2318 /* 2319 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2320 * This flag is cleared before dm_suspend returns. 2321 */ 2322 if (noflush) 2323 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2324 else 2325 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2326 2327 /* 2328 * This gets reverted if there's an error later and the targets 2329 * provide the .presuspend_undo hook. 2330 */ 2331 dm_table_presuspend_targets(map); 2332 2333 /* 2334 * Flush I/O to the device. 2335 * Any I/O submitted after lock_fs() may not be flushed. 2336 * noflush takes precedence over do_lockfs. 2337 * (lock_fs() flushes I/Os and waits for them to complete.) 2338 */ 2339 if (!noflush && do_lockfs) { 2340 r = lock_fs(md); 2341 if (r) { 2342 dm_table_presuspend_undo_targets(map); 2343 return r; 2344 } 2345 } 2346 2347 /* 2348 * Here we must make sure that no processes are submitting requests 2349 * to target drivers i.e. no one may be executing 2350 * __split_and_process_bio from dm_submit_bio. 2351 * 2352 * To get all processes out of __split_and_process_bio in dm_submit_bio, 2353 * we take the write lock. To prevent any process from reentering 2354 * __split_and_process_bio from dm_submit_bio and quiesce the thread 2355 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2356 * flush_workqueue(md->wq). 2357 */ 2358 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2359 if (map) 2360 synchronize_srcu(&md->io_barrier); 2361 2362 /* 2363 * Stop md->queue before flushing md->wq in case request-based 2364 * dm defers requests to md->wq from md->queue. 2365 */ 2366 if (dm_request_based(md)) 2367 dm_stop_queue(md->queue); 2368 2369 flush_workqueue(md->wq); 2370 2371 /* 2372 * At this point no more requests are entering target request routines. 2373 * We call dm_wait_for_completion to wait for all existing requests 2374 * to finish. 2375 */ 2376 r = dm_wait_for_completion(md, task_state); 2377 if (!r) 2378 set_bit(dmf_suspended_flag, &md->flags); 2379 2380 if (noflush) 2381 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2382 if (map) 2383 synchronize_srcu(&md->io_barrier); 2384 2385 /* were we interrupted ? */ 2386 if (r < 0) { 2387 dm_queue_flush(md); 2388 2389 if (dm_request_based(md)) 2390 dm_start_queue(md->queue); 2391 2392 unlock_fs(md); 2393 dm_table_presuspend_undo_targets(map); 2394 /* pushback list is already flushed, so skip flush */ 2395 } 2396 2397 return r; 2398 } 2399 2400 /* 2401 * We need to be able to change a mapping table under a mounted 2402 * filesystem. For example we might want to move some data in 2403 * the background. Before the table can be swapped with 2404 * dm_bind_table, dm_suspend must be called to flush any in 2405 * flight bios and ensure that any further io gets deferred. 2406 */ 2407 /* 2408 * Suspend mechanism in request-based dm. 2409 * 2410 * 1. Flush all I/Os by lock_fs() if needed. 2411 * 2. Stop dispatching any I/O by stopping the request_queue. 2412 * 3. Wait for all in-flight I/Os to be completed or requeued. 2413 * 2414 * To abort suspend, start the request_queue. 2415 */ 2416 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2417 { 2418 struct dm_table *map = NULL; 2419 int r = 0; 2420 2421 retry: 2422 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2423 2424 if (dm_suspended_md(md)) { 2425 r = -EINVAL; 2426 goto out_unlock; 2427 } 2428 2429 if (dm_suspended_internally_md(md)) { 2430 /* already internally suspended, wait for internal resume */ 2431 mutex_unlock(&md->suspend_lock); 2432 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2433 if (r) 2434 return r; 2435 goto retry; 2436 } 2437 2438 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2439 2440 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2441 if (r) 2442 goto out_unlock; 2443 2444 set_bit(DMF_POST_SUSPENDING, &md->flags); 2445 dm_table_postsuspend_targets(map); 2446 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2447 2448 out_unlock: 2449 mutex_unlock(&md->suspend_lock); 2450 return r; 2451 } 2452 2453 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2454 { 2455 if (map) { 2456 int r = dm_table_resume_targets(map); 2457 if (r) 2458 return r; 2459 } 2460 2461 dm_queue_flush(md); 2462 2463 /* 2464 * Flushing deferred I/Os must be done after targets are resumed 2465 * so that mapping of targets can work correctly. 2466 * Request-based dm is queueing the deferred I/Os in its request_queue. 2467 */ 2468 if (dm_request_based(md)) 2469 dm_start_queue(md->queue); 2470 2471 unlock_fs(md); 2472 2473 return 0; 2474 } 2475 2476 int dm_resume(struct mapped_device *md) 2477 { 2478 int r; 2479 struct dm_table *map = NULL; 2480 2481 retry: 2482 r = -EINVAL; 2483 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2484 2485 if (!dm_suspended_md(md)) 2486 goto out; 2487 2488 if (dm_suspended_internally_md(md)) { 2489 /* already internally suspended, wait for internal resume */ 2490 mutex_unlock(&md->suspend_lock); 2491 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2492 if (r) 2493 return r; 2494 goto retry; 2495 } 2496 2497 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2498 if (!map || !dm_table_get_size(map)) 2499 goto out; 2500 2501 r = __dm_resume(md, map); 2502 if (r) 2503 goto out; 2504 2505 clear_bit(DMF_SUSPENDED, &md->flags); 2506 out: 2507 mutex_unlock(&md->suspend_lock); 2508 2509 return r; 2510 } 2511 2512 /* 2513 * Internal suspend/resume works like userspace-driven suspend. It waits 2514 * until all bios finish and prevents issuing new bios to the target drivers. 2515 * It may be used only from the kernel. 2516 */ 2517 2518 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2519 { 2520 struct dm_table *map = NULL; 2521 2522 lockdep_assert_held(&md->suspend_lock); 2523 2524 if (md->internal_suspend_count++) 2525 return; /* nested internal suspend */ 2526 2527 if (dm_suspended_md(md)) { 2528 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2529 return; /* nest suspend */ 2530 } 2531 2532 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2533 2534 /* 2535 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2536 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2537 * would require changing .presuspend to return an error -- avoid this 2538 * until there is a need for more elaborate variants of internal suspend. 2539 */ 2540 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2541 DMF_SUSPENDED_INTERNALLY); 2542 2543 set_bit(DMF_POST_SUSPENDING, &md->flags); 2544 dm_table_postsuspend_targets(map); 2545 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2546 } 2547 2548 static void __dm_internal_resume(struct mapped_device *md) 2549 { 2550 BUG_ON(!md->internal_suspend_count); 2551 2552 if (--md->internal_suspend_count) 2553 return; /* resume from nested internal suspend */ 2554 2555 if (dm_suspended_md(md)) 2556 goto done; /* resume from nested suspend */ 2557 2558 /* 2559 * NOTE: existing callers don't need to call dm_table_resume_targets 2560 * (which may fail -- so best to avoid it for now by passing NULL map) 2561 */ 2562 (void) __dm_resume(md, NULL); 2563 2564 done: 2565 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2566 smp_mb__after_atomic(); 2567 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2568 } 2569 2570 void dm_internal_suspend_noflush(struct mapped_device *md) 2571 { 2572 mutex_lock(&md->suspend_lock); 2573 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2574 mutex_unlock(&md->suspend_lock); 2575 } 2576 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2577 2578 void dm_internal_resume(struct mapped_device *md) 2579 { 2580 mutex_lock(&md->suspend_lock); 2581 __dm_internal_resume(md); 2582 mutex_unlock(&md->suspend_lock); 2583 } 2584 EXPORT_SYMBOL_GPL(dm_internal_resume); 2585 2586 /* 2587 * Fast variants of internal suspend/resume hold md->suspend_lock, 2588 * which prevents interaction with userspace-driven suspend. 2589 */ 2590 2591 void dm_internal_suspend_fast(struct mapped_device *md) 2592 { 2593 mutex_lock(&md->suspend_lock); 2594 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2595 return; 2596 2597 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2598 synchronize_srcu(&md->io_barrier); 2599 flush_workqueue(md->wq); 2600 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2601 } 2602 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2603 2604 void dm_internal_resume_fast(struct mapped_device *md) 2605 { 2606 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2607 goto done; 2608 2609 dm_queue_flush(md); 2610 2611 done: 2612 mutex_unlock(&md->suspend_lock); 2613 } 2614 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2615 2616 /*----------------------------------------------------------------- 2617 * Event notification. 2618 *---------------------------------------------------------------*/ 2619 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2620 unsigned cookie) 2621 { 2622 int r; 2623 unsigned noio_flag; 2624 char udev_cookie[DM_COOKIE_LENGTH]; 2625 char *envp[] = { udev_cookie, NULL }; 2626 2627 noio_flag = memalloc_noio_save(); 2628 2629 if (!cookie) 2630 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2631 else { 2632 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2633 DM_COOKIE_ENV_VAR_NAME, cookie); 2634 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2635 action, envp); 2636 } 2637 2638 memalloc_noio_restore(noio_flag); 2639 2640 return r; 2641 } 2642 2643 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2644 { 2645 return atomic_add_return(1, &md->uevent_seq); 2646 } 2647 2648 uint32_t dm_get_event_nr(struct mapped_device *md) 2649 { 2650 return atomic_read(&md->event_nr); 2651 } 2652 2653 int dm_wait_event(struct mapped_device *md, int event_nr) 2654 { 2655 return wait_event_interruptible(md->eventq, 2656 (event_nr != atomic_read(&md->event_nr))); 2657 } 2658 2659 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2660 { 2661 unsigned long flags; 2662 2663 spin_lock_irqsave(&md->uevent_lock, flags); 2664 list_add(elist, &md->uevent_list); 2665 spin_unlock_irqrestore(&md->uevent_lock, flags); 2666 } 2667 2668 /* 2669 * The gendisk is only valid as long as you have a reference 2670 * count on 'md'. 2671 */ 2672 struct gendisk *dm_disk(struct mapped_device *md) 2673 { 2674 return md->disk; 2675 } 2676 EXPORT_SYMBOL_GPL(dm_disk); 2677 2678 struct kobject *dm_kobject(struct mapped_device *md) 2679 { 2680 return &md->kobj_holder.kobj; 2681 } 2682 2683 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2684 { 2685 struct mapped_device *md; 2686 2687 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2688 2689 spin_lock(&_minor_lock); 2690 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2691 md = NULL; 2692 goto out; 2693 } 2694 dm_get(md); 2695 out: 2696 spin_unlock(&_minor_lock); 2697 2698 return md; 2699 } 2700 2701 int dm_suspended_md(struct mapped_device *md) 2702 { 2703 return test_bit(DMF_SUSPENDED, &md->flags); 2704 } 2705 2706 static int dm_post_suspending_md(struct mapped_device *md) 2707 { 2708 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2709 } 2710 2711 int dm_suspended_internally_md(struct mapped_device *md) 2712 { 2713 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2714 } 2715 2716 int dm_test_deferred_remove_flag(struct mapped_device *md) 2717 { 2718 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2719 } 2720 2721 int dm_suspended(struct dm_target *ti) 2722 { 2723 return dm_suspended_md(ti->table->md); 2724 } 2725 EXPORT_SYMBOL_GPL(dm_suspended); 2726 2727 int dm_post_suspending(struct dm_target *ti) 2728 { 2729 return dm_post_suspending_md(ti->table->md); 2730 } 2731 EXPORT_SYMBOL_GPL(dm_post_suspending); 2732 2733 int dm_noflush_suspending(struct dm_target *ti) 2734 { 2735 return __noflush_suspending(ti->table->md); 2736 } 2737 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2738 2739 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2740 unsigned integrity, unsigned per_io_data_size, 2741 unsigned min_pool_size) 2742 { 2743 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2744 unsigned int pool_size = 0; 2745 unsigned int front_pad, io_front_pad; 2746 int ret; 2747 2748 if (!pools) 2749 return NULL; 2750 2751 switch (type) { 2752 case DM_TYPE_BIO_BASED: 2753 case DM_TYPE_DAX_BIO_BASED: 2754 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2755 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2756 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2757 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2758 if (ret) 2759 goto out; 2760 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2761 goto out; 2762 break; 2763 case DM_TYPE_REQUEST_BASED: 2764 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2765 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2766 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2767 break; 2768 default: 2769 BUG(); 2770 } 2771 2772 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2773 if (ret) 2774 goto out; 2775 2776 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2777 goto out; 2778 2779 return pools; 2780 2781 out: 2782 dm_free_md_mempools(pools); 2783 2784 return NULL; 2785 } 2786 2787 void dm_free_md_mempools(struct dm_md_mempools *pools) 2788 { 2789 if (!pools) 2790 return; 2791 2792 bioset_exit(&pools->bs); 2793 bioset_exit(&pools->io_bs); 2794 2795 kfree(pools); 2796 } 2797 2798 struct dm_pr { 2799 u64 old_key; 2800 u64 new_key; 2801 u32 flags; 2802 bool fail_early; 2803 }; 2804 2805 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2806 void *data) 2807 { 2808 struct mapped_device *md = bdev->bd_disk->private_data; 2809 struct dm_table *table; 2810 struct dm_target *ti; 2811 int ret = -ENOTTY, srcu_idx; 2812 2813 table = dm_get_live_table(md, &srcu_idx); 2814 if (!table || !dm_table_get_size(table)) 2815 goto out; 2816 2817 /* We only support devices that have a single target */ 2818 if (dm_table_get_num_targets(table) != 1) 2819 goto out; 2820 ti = dm_table_get_target(table, 0); 2821 2822 ret = -EINVAL; 2823 if (!ti->type->iterate_devices) 2824 goto out; 2825 2826 ret = ti->type->iterate_devices(ti, fn, data); 2827 out: 2828 dm_put_live_table(md, srcu_idx); 2829 return ret; 2830 } 2831 2832 /* 2833 * For register / unregister we need to manually call out to every path. 2834 */ 2835 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2836 sector_t start, sector_t len, void *data) 2837 { 2838 struct dm_pr *pr = data; 2839 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2840 2841 if (!ops || !ops->pr_register) 2842 return -EOPNOTSUPP; 2843 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2844 } 2845 2846 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2847 u32 flags) 2848 { 2849 struct dm_pr pr = { 2850 .old_key = old_key, 2851 .new_key = new_key, 2852 .flags = flags, 2853 .fail_early = true, 2854 }; 2855 int ret; 2856 2857 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2858 if (ret && new_key) { 2859 /* unregister all paths if we failed to register any path */ 2860 pr.old_key = new_key; 2861 pr.new_key = 0; 2862 pr.flags = 0; 2863 pr.fail_early = false; 2864 dm_call_pr(bdev, __dm_pr_register, &pr); 2865 } 2866 2867 return ret; 2868 } 2869 2870 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2871 u32 flags) 2872 { 2873 struct mapped_device *md = bdev->bd_disk->private_data; 2874 const struct pr_ops *ops; 2875 int r, srcu_idx; 2876 2877 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2878 if (r < 0) 2879 goto out; 2880 2881 ops = bdev->bd_disk->fops->pr_ops; 2882 if (ops && ops->pr_reserve) 2883 r = ops->pr_reserve(bdev, key, type, flags); 2884 else 2885 r = -EOPNOTSUPP; 2886 out: 2887 dm_unprepare_ioctl(md, srcu_idx); 2888 return r; 2889 } 2890 2891 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2892 { 2893 struct mapped_device *md = bdev->bd_disk->private_data; 2894 const struct pr_ops *ops; 2895 int r, srcu_idx; 2896 2897 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2898 if (r < 0) 2899 goto out; 2900 2901 ops = bdev->bd_disk->fops->pr_ops; 2902 if (ops && ops->pr_release) 2903 r = ops->pr_release(bdev, key, type); 2904 else 2905 r = -EOPNOTSUPP; 2906 out: 2907 dm_unprepare_ioctl(md, srcu_idx); 2908 return r; 2909 } 2910 2911 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2912 enum pr_type type, bool abort) 2913 { 2914 struct mapped_device *md = bdev->bd_disk->private_data; 2915 const struct pr_ops *ops; 2916 int r, srcu_idx; 2917 2918 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2919 if (r < 0) 2920 goto out; 2921 2922 ops = bdev->bd_disk->fops->pr_ops; 2923 if (ops && ops->pr_preempt) 2924 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2925 else 2926 r = -EOPNOTSUPP; 2927 out: 2928 dm_unprepare_ioctl(md, srcu_idx); 2929 return r; 2930 } 2931 2932 static int dm_pr_clear(struct block_device *bdev, u64 key) 2933 { 2934 struct mapped_device *md = bdev->bd_disk->private_data; 2935 const struct pr_ops *ops; 2936 int r, srcu_idx; 2937 2938 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2939 if (r < 0) 2940 goto out; 2941 2942 ops = bdev->bd_disk->fops->pr_ops; 2943 if (ops && ops->pr_clear) 2944 r = ops->pr_clear(bdev, key); 2945 else 2946 r = -EOPNOTSUPP; 2947 out: 2948 dm_unprepare_ioctl(md, srcu_idx); 2949 return r; 2950 } 2951 2952 static const struct pr_ops dm_pr_ops = { 2953 .pr_register = dm_pr_register, 2954 .pr_reserve = dm_pr_reserve, 2955 .pr_release = dm_pr_release, 2956 .pr_preempt = dm_pr_preempt, 2957 .pr_clear = dm_pr_clear, 2958 }; 2959 2960 static const struct block_device_operations dm_blk_dops = { 2961 .submit_bio = dm_submit_bio, 2962 .open = dm_blk_open, 2963 .release = dm_blk_close, 2964 .ioctl = dm_blk_ioctl, 2965 .getgeo = dm_blk_getgeo, 2966 .report_zones = dm_blk_report_zones, 2967 .pr_ops = &dm_pr_ops, 2968 .owner = THIS_MODULE 2969 }; 2970 2971 static const struct block_device_operations dm_rq_blk_dops = { 2972 .open = dm_blk_open, 2973 .release = dm_blk_close, 2974 .ioctl = dm_blk_ioctl, 2975 .getgeo = dm_blk_getgeo, 2976 .pr_ops = &dm_pr_ops, 2977 .owner = THIS_MODULE 2978 }; 2979 2980 static const struct dax_operations dm_dax_ops = { 2981 .direct_access = dm_dax_direct_access, 2982 .zero_page_range = dm_dax_zero_page_range, 2983 }; 2984 2985 /* 2986 * module hooks 2987 */ 2988 module_init(dm_init); 2989 module_exit(dm_exit); 2990 2991 module_param(major, uint, 0); 2992 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2993 2994 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2995 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2996 2997 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2998 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2999 3000 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 3001 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3002 3003 MODULE_DESCRIPTION(DM_NAME " driver"); 3004 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3005 MODULE_LICENSE("GPL"); 3006