xref: /linux/drivers/md/dm.c (revision bcefe12eff5dca6fdfa94ed85e5bee66380d5cd9)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 /*
28  * Cookies are numeric values sent with CHANGE and REMOVE
29  * uevents while resuming, removing or renaming the device.
30  */
31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32 #define DM_COOKIE_LENGTH 24
33 
34 static const char *_name = DM_NAME;
35 
36 static unsigned int major = 0;
37 static unsigned int _major = 0;
38 
39 static DEFINE_SPINLOCK(_minor_lock);
40 /*
41  * For bio-based dm.
42  * One of these is allocated per bio.
43  */
44 struct dm_io {
45 	struct mapped_device *md;
46 	int error;
47 	atomic_t io_count;
48 	struct bio *bio;
49 	unsigned long start_time;
50 	spinlock_t endio_lock;
51 };
52 
53 /*
54  * For bio-based dm.
55  * One of these is allocated per target within a bio.  Hopefully
56  * this will be simplified out one day.
57  */
58 struct dm_target_io {
59 	struct dm_io *io;
60 	struct dm_target *ti;
61 	union map_info info;
62 };
63 
64 /*
65  * For request-based dm.
66  * One of these is allocated per request.
67  */
68 struct dm_rq_target_io {
69 	struct mapped_device *md;
70 	struct dm_target *ti;
71 	struct request *orig, clone;
72 	int error;
73 	union map_info info;
74 };
75 
76 /*
77  * For request-based dm.
78  * One of these is allocated per bio.
79  */
80 struct dm_rq_clone_bio_info {
81 	struct bio *orig;
82 	struct dm_rq_target_io *tio;
83 };
84 
85 union map_info *dm_get_mapinfo(struct bio *bio)
86 {
87 	if (bio && bio->bi_private)
88 		return &((struct dm_target_io *)bio->bi_private)->info;
89 	return NULL;
90 }
91 
92 union map_info *dm_get_rq_mapinfo(struct request *rq)
93 {
94 	if (rq && rq->end_io_data)
95 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
96 	return NULL;
97 }
98 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
99 
100 #define MINOR_ALLOCED ((void *)-1)
101 
102 /*
103  * Bits for the md->flags field.
104  */
105 #define DMF_BLOCK_IO_FOR_SUSPEND 0
106 #define DMF_SUSPENDED 1
107 #define DMF_FROZEN 2
108 #define DMF_FREEING 3
109 #define DMF_DELETING 4
110 #define DMF_NOFLUSH_SUSPENDING 5
111 #define DMF_QUEUE_IO_TO_THREAD 6
112 
113 /*
114  * Work processed by per-device workqueue.
115  */
116 struct mapped_device {
117 	struct rw_semaphore io_lock;
118 	struct mutex suspend_lock;
119 	rwlock_t map_lock;
120 	atomic_t holders;
121 	atomic_t open_count;
122 
123 	unsigned long flags;
124 
125 	struct request_queue *queue;
126 	struct gendisk *disk;
127 	char name[16];
128 
129 	void *interface_ptr;
130 
131 	/*
132 	 * A list of ios that arrived while we were suspended.
133 	 */
134 	atomic_t pending[2];
135 	wait_queue_head_t wait;
136 	struct work_struct work;
137 	struct bio_list deferred;
138 	spinlock_t deferred_lock;
139 
140 	/*
141 	 * An error from the barrier request currently being processed.
142 	 */
143 	int barrier_error;
144 
145 	/*
146 	 * Processing queue (flush/barriers)
147 	 */
148 	struct workqueue_struct *wq;
149 
150 	/*
151 	 * The current mapping.
152 	 */
153 	struct dm_table *map;
154 
155 	/*
156 	 * io objects are allocated from here.
157 	 */
158 	mempool_t *io_pool;
159 	mempool_t *tio_pool;
160 
161 	struct bio_set *bs;
162 
163 	/*
164 	 * Event handling.
165 	 */
166 	atomic_t event_nr;
167 	wait_queue_head_t eventq;
168 	atomic_t uevent_seq;
169 	struct list_head uevent_list;
170 	spinlock_t uevent_lock; /* Protect access to uevent_list */
171 
172 	/*
173 	 * freeze/thaw support require holding onto a super block
174 	 */
175 	struct super_block *frozen_sb;
176 	struct block_device *bdev;
177 
178 	/* forced geometry settings */
179 	struct hd_geometry geometry;
180 
181 	/* marker of flush suspend for request-based dm */
182 	struct request suspend_rq;
183 
184 	/* For saving the address of __make_request for request based dm */
185 	make_request_fn *saved_make_request_fn;
186 
187 	/* sysfs handle */
188 	struct kobject kobj;
189 
190 	/* zero-length barrier that will be cloned and submitted to targets */
191 	struct bio barrier_bio;
192 };
193 
194 /*
195  * For mempools pre-allocation at the table loading time.
196  */
197 struct dm_md_mempools {
198 	mempool_t *io_pool;
199 	mempool_t *tio_pool;
200 	struct bio_set *bs;
201 };
202 
203 #define MIN_IOS 256
204 static struct kmem_cache *_io_cache;
205 static struct kmem_cache *_tio_cache;
206 static struct kmem_cache *_rq_tio_cache;
207 static struct kmem_cache *_rq_bio_info_cache;
208 
209 static int __init local_init(void)
210 {
211 	int r = -ENOMEM;
212 
213 	/* allocate a slab for the dm_ios */
214 	_io_cache = KMEM_CACHE(dm_io, 0);
215 	if (!_io_cache)
216 		return r;
217 
218 	/* allocate a slab for the target ios */
219 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
220 	if (!_tio_cache)
221 		goto out_free_io_cache;
222 
223 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
224 	if (!_rq_tio_cache)
225 		goto out_free_tio_cache;
226 
227 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
228 	if (!_rq_bio_info_cache)
229 		goto out_free_rq_tio_cache;
230 
231 	r = dm_uevent_init();
232 	if (r)
233 		goto out_free_rq_bio_info_cache;
234 
235 	_major = major;
236 	r = register_blkdev(_major, _name);
237 	if (r < 0)
238 		goto out_uevent_exit;
239 
240 	if (!_major)
241 		_major = r;
242 
243 	return 0;
244 
245 out_uevent_exit:
246 	dm_uevent_exit();
247 out_free_rq_bio_info_cache:
248 	kmem_cache_destroy(_rq_bio_info_cache);
249 out_free_rq_tio_cache:
250 	kmem_cache_destroy(_rq_tio_cache);
251 out_free_tio_cache:
252 	kmem_cache_destroy(_tio_cache);
253 out_free_io_cache:
254 	kmem_cache_destroy(_io_cache);
255 
256 	return r;
257 }
258 
259 static void local_exit(void)
260 {
261 	kmem_cache_destroy(_rq_bio_info_cache);
262 	kmem_cache_destroy(_rq_tio_cache);
263 	kmem_cache_destroy(_tio_cache);
264 	kmem_cache_destroy(_io_cache);
265 	unregister_blkdev(_major, _name);
266 	dm_uevent_exit();
267 
268 	_major = 0;
269 
270 	DMINFO("cleaned up");
271 }
272 
273 static int (*_inits[])(void) __initdata = {
274 	local_init,
275 	dm_target_init,
276 	dm_linear_init,
277 	dm_stripe_init,
278 	dm_kcopyd_init,
279 	dm_interface_init,
280 };
281 
282 static void (*_exits[])(void) = {
283 	local_exit,
284 	dm_target_exit,
285 	dm_linear_exit,
286 	dm_stripe_exit,
287 	dm_kcopyd_exit,
288 	dm_interface_exit,
289 };
290 
291 static int __init dm_init(void)
292 {
293 	const int count = ARRAY_SIZE(_inits);
294 
295 	int r, i;
296 
297 	for (i = 0; i < count; i++) {
298 		r = _inits[i]();
299 		if (r)
300 			goto bad;
301 	}
302 
303 	return 0;
304 
305       bad:
306 	while (i--)
307 		_exits[i]();
308 
309 	return r;
310 }
311 
312 static void __exit dm_exit(void)
313 {
314 	int i = ARRAY_SIZE(_exits);
315 
316 	while (i--)
317 		_exits[i]();
318 }
319 
320 /*
321  * Block device functions
322  */
323 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
324 {
325 	struct mapped_device *md;
326 
327 	spin_lock(&_minor_lock);
328 
329 	md = bdev->bd_disk->private_data;
330 	if (!md)
331 		goto out;
332 
333 	if (test_bit(DMF_FREEING, &md->flags) ||
334 	    test_bit(DMF_DELETING, &md->flags)) {
335 		md = NULL;
336 		goto out;
337 	}
338 
339 	dm_get(md);
340 	atomic_inc(&md->open_count);
341 
342 out:
343 	spin_unlock(&_minor_lock);
344 
345 	return md ? 0 : -ENXIO;
346 }
347 
348 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
349 {
350 	struct mapped_device *md = disk->private_data;
351 	atomic_dec(&md->open_count);
352 	dm_put(md);
353 	return 0;
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md))
371 		r = -EBUSY;
372 	else
373 		set_bit(DMF_DELETING, &md->flags);
374 
375 	spin_unlock(&_minor_lock);
376 
377 	return r;
378 }
379 
380 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
381 {
382 	struct mapped_device *md = bdev->bd_disk->private_data;
383 
384 	return dm_get_geometry(md, geo);
385 }
386 
387 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
388 			unsigned int cmd, unsigned long arg)
389 {
390 	struct mapped_device *md = bdev->bd_disk->private_data;
391 	struct dm_table *map = dm_get_table(md);
392 	struct dm_target *tgt;
393 	int r = -ENOTTY;
394 
395 	if (!map || !dm_table_get_size(map))
396 		goto out;
397 
398 	/* We only support devices that have a single target */
399 	if (dm_table_get_num_targets(map) != 1)
400 		goto out;
401 
402 	tgt = dm_table_get_target(map, 0);
403 
404 	if (dm_suspended(md)) {
405 		r = -EAGAIN;
406 		goto out;
407 	}
408 
409 	if (tgt->type->ioctl)
410 		r = tgt->type->ioctl(tgt, cmd, arg);
411 
412 out:
413 	dm_table_put(map);
414 
415 	return r;
416 }
417 
418 static struct dm_io *alloc_io(struct mapped_device *md)
419 {
420 	return mempool_alloc(md->io_pool, GFP_NOIO);
421 }
422 
423 static void free_io(struct mapped_device *md, struct dm_io *io)
424 {
425 	mempool_free(io, md->io_pool);
426 }
427 
428 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
429 {
430 	mempool_free(tio, md->tio_pool);
431 }
432 
433 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md)
434 {
435 	return mempool_alloc(md->tio_pool, GFP_ATOMIC);
436 }
437 
438 static void free_rq_tio(struct dm_rq_target_io *tio)
439 {
440 	mempool_free(tio, tio->md->tio_pool);
441 }
442 
443 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
444 {
445 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
446 }
447 
448 static void free_bio_info(struct dm_rq_clone_bio_info *info)
449 {
450 	mempool_free(info, info->tio->md->io_pool);
451 }
452 
453 static void start_io_acct(struct dm_io *io)
454 {
455 	struct mapped_device *md = io->md;
456 	int cpu;
457 	int rw = bio_data_dir(io->bio);
458 
459 	io->start_time = jiffies;
460 
461 	cpu = part_stat_lock();
462 	part_round_stats(cpu, &dm_disk(md)->part0);
463 	part_stat_unlock();
464 	dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
465 }
466 
467 static void end_io_acct(struct dm_io *io)
468 {
469 	struct mapped_device *md = io->md;
470 	struct bio *bio = io->bio;
471 	unsigned long duration = jiffies - io->start_time;
472 	int pending, cpu;
473 	int rw = bio_data_dir(bio);
474 
475 	cpu = part_stat_lock();
476 	part_round_stats(cpu, &dm_disk(md)->part0);
477 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
478 	part_stat_unlock();
479 
480 	/*
481 	 * After this is decremented the bio must not be touched if it is
482 	 * a barrier.
483 	 */
484 	dm_disk(md)->part0.in_flight[rw] = pending =
485 		atomic_dec_return(&md->pending[rw]);
486 	pending += atomic_read(&md->pending[rw^0x1]);
487 
488 	/* nudge anyone waiting on suspend queue */
489 	if (!pending)
490 		wake_up(&md->wait);
491 }
492 
493 /*
494  * Add the bio to the list of deferred io.
495  */
496 static void queue_io(struct mapped_device *md, struct bio *bio)
497 {
498 	down_write(&md->io_lock);
499 
500 	spin_lock_irq(&md->deferred_lock);
501 	bio_list_add(&md->deferred, bio);
502 	spin_unlock_irq(&md->deferred_lock);
503 
504 	if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
505 		queue_work(md->wq, &md->work);
506 
507 	up_write(&md->io_lock);
508 }
509 
510 /*
511  * Everyone (including functions in this file), should use this
512  * function to access the md->map field, and make sure they call
513  * dm_table_put() when finished.
514  */
515 struct dm_table *dm_get_table(struct mapped_device *md)
516 {
517 	struct dm_table *t;
518 	unsigned long flags;
519 
520 	read_lock_irqsave(&md->map_lock, flags);
521 	t = md->map;
522 	if (t)
523 		dm_table_get(t);
524 	read_unlock_irqrestore(&md->map_lock, flags);
525 
526 	return t;
527 }
528 
529 /*
530  * Get the geometry associated with a dm device
531  */
532 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
533 {
534 	*geo = md->geometry;
535 
536 	return 0;
537 }
538 
539 /*
540  * Set the geometry of a device.
541  */
542 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
543 {
544 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
545 
546 	if (geo->start > sz) {
547 		DMWARN("Start sector is beyond the geometry limits.");
548 		return -EINVAL;
549 	}
550 
551 	md->geometry = *geo;
552 
553 	return 0;
554 }
555 
556 /*-----------------------------------------------------------------
557  * CRUD START:
558  *   A more elegant soln is in the works that uses the queue
559  *   merge fn, unfortunately there are a couple of changes to
560  *   the block layer that I want to make for this.  So in the
561  *   interests of getting something for people to use I give
562  *   you this clearly demarcated crap.
563  *---------------------------------------------------------------*/
564 
565 static int __noflush_suspending(struct mapped_device *md)
566 {
567 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
568 }
569 
570 /*
571  * Decrements the number of outstanding ios that a bio has been
572  * cloned into, completing the original io if necc.
573  */
574 static void dec_pending(struct dm_io *io, int error)
575 {
576 	unsigned long flags;
577 	int io_error;
578 	struct bio *bio;
579 	struct mapped_device *md = io->md;
580 
581 	/* Push-back supersedes any I/O errors */
582 	if (unlikely(error)) {
583 		spin_lock_irqsave(&io->endio_lock, flags);
584 		if (!(io->error > 0 && __noflush_suspending(md)))
585 			io->error = error;
586 		spin_unlock_irqrestore(&io->endio_lock, flags);
587 	}
588 
589 	if (atomic_dec_and_test(&io->io_count)) {
590 		if (io->error == DM_ENDIO_REQUEUE) {
591 			/*
592 			 * Target requested pushing back the I/O.
593 			 */
594 			spin_lock_irqsave(&md->deferred_lock, flags);
595 			if (__noflush_suspending(md)) {
596 				if (!bio_rw_flagged(io->bio, BIO_RW_BARRIER))
597 					bio_list_add_head(&md->deferred,
598 							  io->bio);
599 			} else
600 				/* noflush suspend was interrupted. */
601 				io->error = -EIO;
602 			spin_unlock_irqrestore(&md->deferred_lock, flags);
603 		}
604 
605 		io_error = io->error;
606 		bio = io->bio;
607 
608 		if (bio_rw_flagged(bio, BIO_RW_BARRIER)) {
609 			/*
610 			 * There can be just one barrier request so we use
611 			 * a per-device variable for error reporting.
612 			 * Note that you can't touch the bio after end_io_acct
613 			 */
614 			if (!md->barrier_error && io_error != -EOPNOTSUPP)
615 				md->barrier_error = io_error;
616 			end_io_acct(io);
617 		} else {
618 			end_io_acct(io);
619 
620 			if (io_error != DM_ENDIO_REQUEUE) {
621 				trace_block_bio_complete(md->queue, bio);
622 
623 				bio_endio(bio, io_error);
624 			}
625 		}
626 
627 		free_io(md, io);
628 	}
629 }
630 
631 static void clone_endio(struct bio *bio, int error)
632 {
633 	int r = 0;
634 	struct dm_target_io *tio = bio->bi_private;
635 	struct dm_io *io = tio->io;
636 	struct mapped_device *md = tio->io->md;
637 	dm_endio_fn endio = tio->ti->type->end_io;
638 
639 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
640 		error = -EIO;
641 
642 	if (endio) {
643 		r = endio(tio->ti, bio, error, &tio->info);
644 		if (r < 0 || r == DM_ENDIO_REQUEUE)
645 			/*
646 			 * error and requeue request are handled
647 			 * in dec_pending().
648 			 */
649 			error = r;
650 		else if (r == DM_ENDIO_INCOMPLETE)
651 			/* The target will handle the io */
652 			return;
653 		else if (r) {
654 			DMWARN("unimplemented target endio return value: %d", r);
655 			BUG();
656 		}
657 	}
658 
659 	/*
660 	 * Store md for cleanup instead of tio which is about to get freed.
661 	 */
662 	bio->bi_private = md->bs;
663 
664 	free_tio(md, tio);
665 	bio_put(bio);
666 	dec_pending(io, error);
667 }
668 
669 /*
670  * Partial completion handling for request-based dm
671  */
672 static void end_clone_bio(struct bio *clone, int error)
673 {
674 	struct dm_rq_clone_bio_info *info = clone->bi_private;
675 	struct dm_rq_target_io *tio = info->tio;
676 	struct bio *bio = info->orig;
677 	unsigned int nr_bytes = info->orig->bi_size;
678 
679 	bio_put(clone);
680 
681 	if (tio->error)
682 		/*
683 		 * An error has already been detected on the request.
684 		 * Once error occurred, just let clone->end_io() handle
685 		 * the remainder.
686 		 */
687 		return;
688 	else if (error) {
689 		/*
690 		 * Don't notice the error to the upper layer yet.
691 		 * The error handling decision is made by the target driver,
692 		 * when the request is completed.
693 		 */
694 		tio->error = error;
695 		return;
696 	}
697 
698 	/*
699 	 * I/O for the bio successfully completed.
700 	 * Notice the data completion to the upper layer.
701 	 */
702 
703 	/*
704 	 * bios are processed from the head of the list.
705 	 * So the completing bio should always be rq->bio.
706 	 * If it's not, something wrong is happening.
707 	 */
708 	if (tio->orig->bio != bio)
709 		DMERR("bio completion is going in the middle of the request");
710 
711 	/*
712 	 * Update the original request.
713 	 * Do not use blk_end_request() here, because it may complete
714 	 * the original request before the clone, and break the ordering.
715 	 */
716 	blk_update_request(tio->orig, 0, nr_bytes);
717 }
718 
719 /*
720  * Don't touch any member of the md after calling this function because
721  * the md may be freed in dm_put() at the end of this function.
722  * Or do dm_get() before calling this function and dm_put() later.
723  */
724 static void rq_completed(struct mapped_device *md, int run_queue)
725 {
726 	int wakeup_waiters = 0;
727 	struct request_queue *q = md->queue;
728 	unsigned long flags;
729 
730 	spin_lock_irqsave(q->queue_lock, flags);
731 	if (!queue_in_flight(q))
732 		wakeup_waiters = 1;
733 	spin_unlock_irqrestore(q->queue_lock, flags);
734 
735 	/* nudge anyone waiting on suspend queue */
736 	if (wakeup_waiters)
737 		wake_up(&md->wait);
738 
739 	if (run_queue)
740 		blk_run_queue(q);
741 
742 	/*
743 	 * dm_put() must be at the end of this function. See the comment above
744 	 */
745 	dm_put(md);
746 }
747 
748 static void free_rq_clone(struct request *clone)
749 {
750 	struct dm_rq_target_io *tio = clone->end_io_data;
751 
752 	blk_rq_unprep_clone(clone);
753 	free_rq_tio(tio);
754 }
755 
756 static void dm_unprep_request(struct request *rq)
757 {
758 	struct request *clone = rq->special;
759 
760 	rq->special = NULL;
761 	rq->cmd_flags &= ~REQ_DONTPREP;
762 
763 	free_rq_clone(clone);
764 }
765 
766 /*
767  * Requeue the original request of a clone.
768  */
769 void dm_requeue_unmapped_request(struct request *clone)
770 {
771 	struct dm_rq_target_io *tio = clone->end_io_data;
772 	struct mapped_device *md = tio->md;
773 	struct request *rq = tio->orig;
774 	struct request_queue *q = rq->q;
775 	unsigned long flags;
776 
777 	dm_unprep_request(rq);
778 
779 	spin_lock_irqsave(q->queue_lock, flags);
780 	if (elv_queue_empty(q))
781 		blk_plug_device(q);
782 	blk_requeue_request(q, rq);
783 	spin_unlock_irqrestore(q->queue_lock, flags);
784 
785 	rq_completed(md, 0);
786 }
787 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
788 
789 static void __stop_queue(struct request_queue *q)
790 {
791 	blk_stop_queue(q);
792 }
793 
794 static void stop_queue(struct request_queue *q)
795 {
796 	unsigned long flags;
797 
798 	spin_lock_irqsave(q->queue_lock, flags);
799 	__stop_queue(q);
800 	spin_unlock_irqrestore(q->queue_lock, flags);
801 }
802 
803 static void __start_queue(struct request_queue *q)
804 {
805 	if (blk_queue_stopped(q))
806 		blk_start_queue(q);
807 }
808 
809 static void start_queue(struct request_queue *q)
810 {
811 	unsigned long flags;
812 
813 	spin_lock_irqsave(q->queue_lock, flags);
814 	__start_queue(q);
815 	spin_unlock_irqrestore(q->queue_lock, flags);
816 }
817 
818 /*
819  * Complete the clone and the original request.
820  * Must be called without queue lock.
821  */
822 static void dm_end_request(struct request *clone, int error)
823 {
824 	struct dm_rq_target_io *tio = clone->end_io_data;
825 	struct mapped_device *md = tio->md;
826 	struct request *rq = tio->orig;
827 
828 	if (blk_pc_request(rq)) {
829 		rq->errors = clone->errors;
830 		rq->resid_len = clone->resid_len;
831 
832 		if (rq->sense)
833 			/*
834 			 * We are using the sense buffer of the original
835 			 * request.
836 			 * So setting the length of the sense data is enough.
837 			 */
838 			rq->sense_len = clone->sense_len;
839 	}
840 
841 	free_rq_clone(clone);
842 
843 	blk_end_request_all(rq, error);
844 
845 	rq_completed(md, 1);
846 }
847 
848 /*
849  * Request completion handler for request-based dm
850  */
851 static void dm_softirq_done(struct request *rq)
852 {
853 	struct request *clone = rq->completion_data;
854 	struct dm_rq_target_io *tio = clone->end_io_data;
855 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
856 	int error = tio->error;
857 
858 	if (!(rq->cmd_flags & REQ_FAILED) && rq_end_io)
859 		error = rq_end_io(tio->ti, clone, error, &tio->info);
860 
861 	if (error <= 0)
862 		/* The target wants to complete the I/O */
863 		dm_end_request(clone, error);
864 	else if (error == DM_ENDIO_INCOMPLETE)
865 		/* The target will handle the I/O */
866 		return;
867 	else if (error == DM_ENDIO_REQUEUE)
868 		/* The target wants to requeue the I/O */
869 		dm_requeue_unmapped_request(clone);
870 	else {
871 		DMWARN("unimplemented target endio return value: %d", error);
872 		BUG();
873 	}
874 }
875 
876 /*
877  * Complete the clone and the original request with the error status
878  * through softirq context.
879  */
880 static void dm_complete_request(struct request *clone, int error)
881 {
882 	struct dm_rq_target_io *tio = clone->end_io_data;
883 	struct request *rq = tio->orig;
884 
885 	tio->error = error;
886 	rq->completion_data = clone;
887 	blk_complete_request(rq);
888 }
889 
890 /*
891  * Complete the not-mapped clone and the original request with the error status
892  * through softirq context.
893  * Target's rq_end_io() function isn't called.
894  * This may be used when the target's map_rq() function fails.
895  */
896 void dm_kill_unmapped_request(struct request *clone, int error)
897 {
898 	struct dm_rq_target_io *tio = clone->end_io_data;
899 	struct request *rq = tio->orig;
900 
901 	rq->cmd_flags |= REQ_FAILED;
902 	dm_complete_request(clone, error);
903 }
904 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
905 
906 /*
907  * Called with the queue lock held
908  */
909 static void end_clone_request(struct request *clone, int error)
910 {
911 	/*
912 	 * For just cleaning up the information of the queue in which
913 	 * the clone was dispatched.
914 	 * The clone is *NOT* freed actually here because it is alloced from
915 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
916 	 */
917 	__blk_put_request(clone->q, clone);
918 
919 	/*
920 	 * Actual request completion is done in a softirq context which doesn't
921 	 * hold the queue lock.  Otherwise, deadlock could occur because:
922 	 *     - another request may be submitted by the upper level driver
923 	 *       of the stacking during the completion
924 	 *     - the submission which requires queue lock may be done
925 	 *       against this queue
926 	 */
927 	dm_complete_request(clone, error);
928 }
929 
930 static sector_t max_io_len(struct mapped_device *md,
931 			   sector_t sector, struct dm_target *ti)
932 {
933 	sector_t offset = sector - ti->begin;
934 	sector_t len = ti->len - offset;
935 
936 	/*
937 	 * Does the target need to split even further ?
938 	 */
939 	if (ti->split_io) {
940 		sector_t boundary;
941 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
942 			   - offset;
943 		if (len > boundary)
944 			len = boundary;
945 	}
946 
947 	return len;
948 }
949 
950 static void __map_bio(struct dm_target *ti, struct bio *clone,
951 		      struct dm_target_io *tio)
952 {
953 	int r;
954 	sector_t sector;
955 	struct mapped_device *md;
956 
957 	clone->bi_end_io = clone_endio;
958 	clone->bi_private = tio;
959 
960 	/*
961 	 * Map the clone.  If r == 0 we don't need to do
962 	 * anything, the target has assumed ownership of
963 	 * this io.
964 	 */
965 	atomic_inc(&tio->io->io_count);
966 	sector = clone->bi_sector;
967 	r = ti->type->map(ti, clone, &tio->info);
968 	if (r == DM_MAPIO_REMAPPED) {
969 		/* the bio has been remapped so dispatch it */
970 
971 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
972 				    tio->io->bio->bi_bdev->bd_dev, sector);
973 
974 		generic_make_request(clone);
975 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
976 		/* error the io and bail out, or requeue it if needed */
977 		md = tio->io->md;
978 		dec_pending(tio->io, r);
979 		/*
980 		 * Store bio_set for cleanup.
981 		 */
982 		clone->bi_private = md->bs;
983 		bio_put(clone);
984 		free_tio(md, tio);
985 	} else if (r) {
986 		DMWARN("unimplemented target map return value: %d", r);
987 		BUG();
988 	}
989 }
990 
991 struct clone_info {
992 	struct mapped_device *md;
993 	struct dm_table *map;
994 	struct bio *bio;
995 	struct dm_io *io;
996 	sector_t sector;
997 	sector_t sector_count;
998 	unsigned short idx;
999 };
1000 
1001 static void dm_bio_destructor(struct bio *bio)
1002 {
1003 	struct bio_set *bs = bio->bi_private;
1004 
1005 	bio_free(bio, bs);
1006 }
1007 
1008 /*
1009  * Creates a little bio that is just does part of a bvec.
1010  */
1011 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1012 			      unsigned short idx, unsigned int offset,
1013 			      unsigned int len, struct bio_set *bs)
1014 {
1015 	struct bio *clone;
1016 	struct bio_vec *bv = bio->bi_io_vec + idx;
1017 
1018 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1019 	clone->bi_destructor = dm_bio_destructor;
1020 	*clone->bi_io_vec = *bv;
1021 
1022 	clone->bi_sector = sector;
1023 	clone->bi_bdev = bio->bi_bdev;
1024 	clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
1025 	clone->bi_vcnt = 1;
1026 	clone->bi_size = to_bytes(len);
1027 	clone->bi_io_vec->bv_offset = offset;
1028 	clone->bi_io_vec->bv_len = clone->bi_size;
1029 	clone->bi_flags |= 1 << BIO_CLONED;
1030 
1031 	if (bio_integrity(bio)) {
1032 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1033 		bio_integrity_trim(clone,
1034 				   bio_sector_offset(bio, idx, offset), len);
1035 	}
1036 
1037 	return clone;
1038 }
1039 
1040 /*
1041  * Creates a bio that consists of range of complete bvecs.
1042  */
1043 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1044 			     unsigned short idx, unsigned short bv_count,
1045 			     unsigned int len, struct bio_set *bs)
1046 {
1047 	struct bio *clone;
1048 
1049 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1050 	__bio_clone(clone, bio);
1051 	clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
1052 	clone->bi_destructor = dm_bio_destructor;
1053 	clone->bi_sector = sector;
1054 	clone->bi_idx = idx;
1055 	clone->bi_vcnt = idx + bv_count;
1056 	clone->bi_size = to_bytes(len);
1057 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1058 
1059 	if (bio_integrity(bio)) {
1060 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1061 
1062 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1063 			bio_integrity_trim(clone,
1064 					   bio_sector_offset(bio, idx, 0), len);
1065 	}
1066 
1067 	return clone;
1068 }
1069 
1070 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1071 				      struct dm_target *ti)
1072 {
1073 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1074 
1075 	tio->io = ci->io;
1076 	tio->ti = ti;
1077 	memset(&tio->info, 0, sizeof(tio->info));
1078 
1079 	return tio;
1080 }
1081 
1082 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
1083 			  unsigned flush_nr)
1084 {
1085 	struct dm_target_io *tio = alloc_tio(ci, ti);
1086 	struct bio *clone;
1087 
1088 	tio->info.flush_request = flush_nr;
1089 
1090 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1091 	__bio_clone(clone, ci->bio);
1092 	clone->bi_destructor = dm_bio_destructor;
1093 
1094 	__map_bio(ti, clone, tio);
1095 }
1096 
1097 static int __clone_and_map_empty_barrier(struct clone_info *ci)
1098 {
1099 	unsigned target_nr = 0, flush_nr;
1100 	struct dm_target *ti;
1101 
1102 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1103 		for (flush_nr = 0; flush_nr < ti->num_flush_requests;
1104 		     flush_nr++)
1105 			__flush_target(ci, ti, flush_nr);
1106 
1107 	ci->sector_count = 0;
1108 
1109 	return 0;
1110 }
1111 
1112 static int __clone_and_map(struct clone_info *ci)
1113 {
1114 	struct bio *clone, *bio = ci->bio;
1115 	struct dm_target *ti;
1116 	sector_t len = 0, max;
1117 	struct dm_target_io *tio;
1118 
1119 	if (unlikely(bio_empty_barrier(bio)))
1120 		return __clone_and_map_empty_barrier(ci);
1121 
1122 	ti = dm_table_find_target(ci->map, ci->sector);
1123 	if (!dm_target_is_valid(ti))
1124 		return -EIO;
1125 
1126 	max = max_io_len(ci->md, ci->sector, ti);
1127 
1128 	/*
1129 	 * Allocate a target io object.
1130 	 */
1131 	tio = alloc_tio(ci, ti);
1132 
1133 	if (ci->sector_count <= max) {
1134 		/*
1135 		 * Optimise for the simple case where we can do all of
1136 		 * the remaining io with a single clone.
1137 		 */
1138 		clone = clone_bio(bio, ci->sector, ci->idx,
1139 				  bio->bi_vcnt - ci->idx, ci->sector_count,
1140 				  ci->md->bs);
1141 		__map_bio(ti, clone, tio);
1142 		ci->sector_count = 0;
1143 
1144 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1145 		/*
1146 		 * There are some bvecs that don't span targets.
1147 		 * Do as many of these as possible.
1148 		 */
1149 		int i;
1150 		sector_t remaining = max;
1151 		sector_t bv_len;
1152 
1153 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1154 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1155 
1156 			if (bv_len > remaining)
1157 				break;
1158 
1159 			remaining -= bv_len;
1160 			len += bv_len;
1161 		}
1162 
1163 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1164 				  ci->md->bs);
1165 		__map_bio(ti, clone, tio);
1166 
1167 		ci->sector += len;
1168 		ci->sector_count -= len;
1169 		ci->idx = i;
1170 
1171 	} else {
1172 		/*
1173 		 * Handle a bvec that must be split between two or more targets.
1174 		 */
1175 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1176 		sector_t remaining = to_sector(bv->bv_len);
1177 		unsigned int offset = 0;
1178 
1179 		do {
1180 			if (offset) {
1181 				ti = dm_table_find_target(ci->map, ci->sector);
1182 				if (!dm_target_is_valid(ti))
1183 					return -EIO;
1184 
1185 				max = max_io_len(ci->md, ci->sector, ti);
1186 
1187 				tio = alloc_tio(ci, ti);
1188 			}
1189 
1190 			len = min(remaining, max);
1191 
1192 			clone = split_bvec(bio, ci->sector, ci->idx,
1193 					   bv->bv_offset + offset, len,
1194 					   ci->md->bs);
1195 
1196 			__map_bio(ti, clone, tio);
1197 
1198 			ci->sector += len;
1199 			ci->sector_count -= len;
1200 			offset += to_bytes(len);
1201 		} while (remaining -= len);
1202 
1203 		ci->idx++;
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 /*
1210  * Split the bio into several clones and submit it to targets.
1211  */
1212 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1213 {
1214 	struct clone_info ci;
1215 	int error = 0;
1216 
1217 	ci.map = dm_get_table(md);
1218 	if (unlikely(!ci.map)) {
1219 		if (!bio_rw_flagged(bio, BIO_RW_BARRIER))
1220 			bio_io_error(bio);
1221 		else
1222 			if (!md->barrier_error)
1223 				md->barrier_error = -EIO;
1224 		return;
1225 	}
1226 
1227 	ci.md = md;
1228 	ci.bio = bio;
1229 	ci.io = alloc_io(md);
1230 	ci.io->error = 0;
1231 	atomic_set(&ci.io->io_count, 1);
1232 	ci.io->bio = bio;
1233 	ci.io->md = md;
1234 	spin_lock_init(&ci.io->endio_lock);
1235 	ci.sector = bio->bi_sector;
1236 	ci.sector_count = bio_sectors(bio);
1237 	if (unlikely(bio_empty_barrier(bio)))
1238 		ci.sector_count = 1;
1239 	ci.idx = bio->bi_idx;
1240 
1241 	start_io_acct(ci.io);
1242 	while (ci.sector_count && !error)
1243 		error = __clone_and_map(&ci);
1244 
1245 	/* drop the extra reference count */
1246 	dec_pending(ci.io, error);
1247 	dm_table_put(ci.map);
1248 }
1249 /*-----------------------------------------------------------------
1250  * CRUD END
1251  *---------------------------------------------------------------*/
1252 
1253 static int dm_merge_bvec(struct request_queue *q,
1254 			 struct bvec_merge_data *bvm,
1255 			 struct bio_vec *biovec)
1256 {
1257 	struct mapped_device *md = q->queuedata;
1258 	struct dm_table *map = dm_get_table(md);
1259 	struct dm_target *ti;
1260 	sector_t max_sectors;
1261 	int max_size = 0;
1262 
1263 	if (unlikely(!map))
1264 		goto out;
1265 
1266 	ti = dm_table_find_target(map, bvm->bi_sector);
1267 	if (!dm_target_is_valid(ti))
1268 		goto out_table;
1269 
1270 	/*
1271 	 * Find maximum amount of I/O that won't need splitting
1272 	 */
1273 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
1274 			  (sector_t) BIO_MAX_SECTORS);
1275 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1276 	if (max_size < 0)
1277 		max_size = 0;
1278 
1279 	/*
1280 	 * merge_bvec_fn() returns number of bytes
1281 	 * it can accept at this offset
1282 	 * max is precomputed maximal io size
1283 	 */
1284 	if (max_size && ti->type->merge)
1285 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1286 	/*
1287 	 * If the target doesn't support merge method and some of the devices
1288 	 * provided their merge_bvec method (we know this by looking at
1289 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1290 	 * entries.  So always set max_size to 0, and the code below allows
1291 	 * just one page.
1292 	 */
1293 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1294 
1295 		max_size = 0;
1296 
1297 out_table:
1298 	dm_table_put(map);
1299 
1300 out:
1301 	/*
1302 	 * Always allow an entire first page
1303 	 */
1304 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1305 		max_size = biovec->bv_len;
1306 
1307 	return max_size;
1308 }
1309 
1310 /*
1311  * The request function that just remaps the bio built up by
1312  * dm_merge_bvec.
1313  */
1314 static int _dm_request(struct request_queue *q, struct bio *bio)
1315 {
1316 	int rw = bio_data_dir(bio);
1317 	struct mapped_device *md = q->queuedata;
1318 	int cpu;
1319 
1320 	down_read(&md->io_lock);
1321 
1322 	cpu = part_stat_lock();
1323 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1324 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1325 	part_stat_unlock();
1326 
1327 	/*
1328 	 * If we're suspended or the thread is processing barriers
1329 	 * we have to queue this io for later.
1330 	 */
1331 	if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1332 	    unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
1333 		up_read(&md->io_lock);
1334 
1335 		if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1336 		    bio_rw(bio) == READA) {
1337 			bio_io_error(bio);
1338 			return 0;
1339 		}
1340 
1341 		queue_io(md, bio);
1342 
1343 		return 0;
1344 	}
1345 
1346 	__split_and_process_bio(md, bio);
1347 	up_read(&md->io_lock);
1348 	return 0;
1349 }
1350 
1351 static int dm_make_request(struct request_queue *q, struct bio *bio)
1352 {
1353 	struct mapped_device *md = q->queuedata;
1354 
1355 	if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
1356 		bio_endio(bio, -EOPNOTSUPP);
1357 		return 0;
1358 	}
1359 
1360 	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1361 }
1362 
1363 static int dm_request_based(struct mapped_device *md)
1364 {
1365 	return blk_queue_stackable(md->queue);
1366 }
1367 
1368 static int dm_request(struct request_queue *q, struct bio *bio)
1369 {
1370 	struct mapped_device *md = q->queuedata;
1371 
1372 	if (dm_request_based(md))
1373 		return dm_make_request(q, bio);
1374 
1375 	return _dm_request(q, bio);
1376 }
1377 
1378 void dm_dispatch_request(struct request *rq)
1379 {
1380 	int r;
1381 
1382 	if (blk_queue_io_stat(rq->q))
1383 		rq->cmd_flags |= REQ_IO_STAT;
1384 
1385 	rq->start_time = jiffies;
1386 	r = blk_insert_cloned_request(rq->q, rq);
1387 	if (r)
1388 		dm_complete_request(rq, r);
1389 }
1390 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1391 
1392 static void dm_rq_bio_destructor(struct bio *bio)
1393 {
1394 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1395 	struct mapped_device *md = info->tio->md;
1396 
1397 	free_bio_info(info);
1398 	bio_free(bio, md->bs);
1399 }
1400 
1401 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1402 				 void *data)
1403 {
1404 	struct dm_rq_target_io *tio = data;
1405 	struct mapped_device *md = tio->md;
1406 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1407 
1408 	if (!info)
1409 		return -ENOMEM;
1410 
1411 	info->orig = bio_orig;
1412 	info->tio = tio;
1413 	bio->bi_end_io = end_clone_bio;
1414 	bio->bi_private = info;
1415 	bio->bi_destructor = dm_rq_bio_destructor;
1416 
1417 	return 0;
1418 }
1419 
1420 static int setup_clone(struct request *clone, struct request *rq,
1421 		       struct dm_rq_target_io *tio)
1422 {
1423 	int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1424 				  dm_rq_bio_constructor, tio);
1425 
1426 	if (r)
1427 		return r;
1428 
1429 	clone->cmd = rq->cmd;
1430 	clone->cmd_len = rq->cmd_len;
1431 	clone->sense = rq->sense;
1432 	clone->buffer = rq->buffer;
1433 	clone->end_io = end_clone_request;
1434 	clone->end_io_data = tio;
1435 
1436 	return 0;
1437 }
1438 
1439 static int dm_rq_flush_suspending(struct mapped_device *md)
1440 {
1441 	return !md->suspend_rq.special;
1442 }
1443 
1444 /*
1445  * Called with the queue lock held.
1446  */
1447 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1448 {
1449 	struct mapped_device *md = q->queuedata;
1450 	struct dm_rq_target_io *tio;
1451 	struct request *clone;
1452 
1453 	if (unlikely(rq == &md->suspend_rq)) {
1454 		if (dm_rq_flush_suspending(md))
1455 			return BLKPREP_OK;
1456 		else
1457 			/* The flush suspend was interrupted */
1458 			return BLKPREP_KILL;
1459 	}
1460 
1461 	if (unlikely(rq->special)) {
1462 		DMWARN("Already has something in rq->special.");
1463 		return BLKPREP_KILL;
1464 	}
1465 
1466 	tio = alloc_rq_tio(md); /* Only one for each original request */
1467 	if (!tio)
1468 		/* -ENOMEM */
1469 		return BLKPREP_DEFER;
1470 
1471 	tio->md = md;
1472 	tio->ti = NULL;
1473 	tio->orig = rq;
1474 	tio->error = 0;
1475 	memset(&tio->info, 0, sizeof(tio->info));
1476 
1477 	clone = &tio->clone;
1478 	if (setup_clone(clone, rq, tio)) {
1479 		/* -ENOMEM */
1480 		free_rq_tio(tio);
1481 		return BLKPREP_DEFER;
1482 	}
1483 
1484 	rq->special = clone;
1485 	rq->cmd_flags |= REQ_DONTPREP;
1486 
1487 	return BLKPREP_OK;
1488 }
1489 
1490 static void map_request(struct dm_target *ti, struct request *rq,
1491 			struct mapped_device *md)
1492 {
1493 	int r;
1494 	struct request *clone = rq->special;
1495 	struct dm_rq_target_io *tio = clone->end_io_data;
1496 
1497 	/*
1498 	 * Hold the md reference here for the in-flight I/O.
1499 	 * We can't rely on the reference count by device opener,
1500 	 * because the device may be closed during the request completion
1501 	 * when all bios are completed.
1502 	 * See the comment in rq_completed() too.
1503 	 */
1504 	dm_get(md);
1505 
1506 	tio->ti = ti;
1507 	r = ti->type->map_rq(ti, clone, &tio->info);
1508 	switch (r) {
1509 	case DM_MAPIO_SUBMITTED:
1510 		/* The target has taken the I/O to submit by itself later */
1511 		break;
1512 	case DM_MAPIO_REMAPPED:
1513 		/* The target has remapped the I/O so dispatch it */
1514 		dm_dispatch_request(clone);
1515 		break;
1516 	case DM_MAPIO_REQUEUE:
1517 		/* The target wants to requeue the I/O */
1518 		dm_requeue_unmapped_request(clone);
1519 		break;
1520 	default:
1521 		if (r > 0) {
1522 			DMWARN("unimplemented target map return value: %d", r);
1523 			BUG();
1524 		}
1525 
1526 		/* The target wants to complete the I/O */
1527 		dm_kill_unmapped_request(clone, r);
1528 		break;
1529 	}
1530 }
1531 
1532 /*
1533  * q->request_fn for request-based dm.
1534  * Called with the queue lock held.
1535  */
1536 static void dm_request_fn(struct request_queue *q)
1537 {
1538 	struct mapped_device *md = q->queuedata;
1539 	struct dm_table *map = dm_get_table(md);
1540 	struct dm_target *ti;
1541 	struct request *rq;
1542 
1543 	/*
1544 	 * For noflush suspend, check blk_queue_stopped() to immediately
1545 	 * quit I/O dispatching.
1546 	 */
1547 	while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1548 		rq = blk_peek_request(q);
1549 		if (!rq)
1550 			goto plug_and_out;
1551 
1552 		if (unlikely(rq == &md->suspend_rq)) { /* Flush suspend maker */
1553 			if (queue_in_flight(q))
1554 				/* Not quiet yet.  Wait more */
1555 				goto plug_and_out;
1556 
1557 			/* This device should be quiet now */
1558 			__stop_queue(q);
1559 			blk_start_request(rq);
1560 			__blk_end_request_all(rq, 0);
1561 			wake_up(&md->wait);
1562 			goto out;
1563 		}
1564 
1565 		ti = dm_table_find_target(map, blk_rq_pos(rq));
1566 		if (ti->type->busy && ti->type->busy(ti))
1567 			goto plug_and_out;
1568 
1569 		blk_start_request(rq);
1570 		spin_unlock(q->queue_lock);
1571 		map_request(ti, rq, md);
1572 		spin_lock_irq(q->queue_lock);
1573 	}
1574 
1575 	goto out;
1576 
1577 plug_and_out:
1578 	if (!elv_queue_empty(q))
1579 		/* Some requests still remain, retry later */
1580 		blk_plug_device(q);
1581 
1582 out:
1583 	dm_table_put(map);
1584 
1585 	return;
1586 }
1587 
1588 int dm_underlying_device_busy(struct request_queue *q)
1589 {
1590 	return blk_lld_busy(q);
1591 }
1592 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1593 
1594 static int dm_lld_busy(struct request_queue *q)
1595 {
1596 	int r;
1597 	struct mapped_device *md = q->queuedata;
1598 	struct dm_table *map = dm_get_table(md);
1599 
1600 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1601 		r = 1;
1602 	else
1603 		r = dm_table_any_busy_target(map);
1604 
1605 	dm_table_put(map);
1606 
1607 	return r;
1608 }
1609 
1610 static void dm_unplug_all(struct request_queue *q)
1611 {
1612 	struct mapped_device *md = q->queuedata;
1613 	struct dm_table *map = dm_get_table(md);
1614 
1615 	if (map) {
1616 		if (dm_request_based(md))
1617 			generic_unplug_device(q);
1618 
1619 		dm_table_unplug_all(map);
1620 		dm_table_put(map);
1621 	}
1622 }
1623 
1624 static int dm_any_congested(void *congested_data, int bdi_bits)
1625 {
1626 	int r = bdi_bits;
1627 	struct mapped_device *md = congested_data;
1628 	struct dm_table *map;
1629 
1630 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1631 		map = dm_get_table(md);
1632 		if (map) {
1633 			/*
1634 			 * Request-based dm cares about only own queue for
1635 			 * the query about congestion status of request_queue
1636 			 */
1637 			if (dm_request_based(md))
1638 				r = md->queue->backing_dev_info.state &
1639 				    bdi_bits;
1640 			else
1641 				r = dm_table_any_congested(map, bdi_bits);
1642 
1643 			dm_table_put(map);
1644 		}
1645 	}
1646 
1647 	return r;
1648 }
1649 
1650 /*-----------------------------------------------------------------
1651  * An IDR is used to keep track of allocated minor numbers.
1652  *---------------------------------------------------------------*/
1653 static DEFINE_IDR(_minor_idr);
1654 
1655 static void free_minor(int minor)
1656 {
1657 	spin_lock(&_minor_lock);
1658 	idr_remove(&_minor_idr, minor);
1659 	spin_unlock(&_minor_lock);
1660 }
1661 
1662 /*
1663  * See if the device with a specific minor # is free.
1664  */
1665 static int specific_minor(int minor)
1666 {
1667 	int r, m;
1668 
1669 	if (minor >= (1 << MINORBITS))
1670 		return -EINVAL;
1671 
1672 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1673 	if (!r)
1674 		return -ENOMEM;
1675 
1676 	spin_lock(&_minor_lock);
1677 
1678 	if (idr_find(&_minor_idr, minor)) {
1679 		r = -EBUSY;
1680 		goto out;
1681 	}
1682 
1683 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1684 	if (r)
1685 		goto out;
1686 
1687 	if (m != minor) {
1688 		idr_remove(&_minor_idr, m);
1689 		r = -EBUSY;
1690 		goto out;
1691 	}
1692 
1693 out:
1694 	spin_unlock(&_minor_lock);
1695 	return r;
1696 }
1697 
1698 static int next_free_minor(int *minor)
1699 {
1700 	int r, m;
1701 
1702 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1703 	if (!r)
1704 		return -ENOMEM;
1705 
1706 	spin_lock(&_minor_lock);
1707 
1708 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1709 	if (r)
1710 		goto out;
1711 
1712 	if (m >= (1 << MINORBITS)) {
1713 		idr_remove(&_minor_idr, m);
1714 		r = -ENOSPC;
1715 		goto out;
1716 	}
1717 
1718 	*minor = m;
1719 
1720 out:
1721 	spin_unlock(&_minor_lock);
1722 	return r;
1723 }
1724 
1725 static const struct block_device_operations dm_blk_dops;
1726 
1727 static void dm_wq_work(struct work_struct *work);
1728 
1729 /*
1730  * Allocate and initialise a blank device with a given minor.
1731  */
1732 static struct mapped_device *alloc_dev(int minor)
1733 {
1734 	int r;
1735 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1736 	void *old_md;
1737 
1738 	if (!md) {
1739 		DMWARN("unable to allocate device, out of memory.");
1740 		return NULL;
1741 	}
1742 
1743 	if (!try_module_get(THIS_MODULE))
1744 		goto bad_module_get;
1745 
1746 	/* get a minor number for the dev */
1747 	if (minor == DM_ANY_MINOR)
1748 		r = next_free_minor(&minor);
1749 	else
1750 		r = specific_minor(minor);
1751 	if (r < 0)
1752 		goto bad_minor;
1753 
1754 	init_rwsem(&md->io_lock);
1755 	mutex_init(&md->suspend_lock);
1756 	spin_lock_init(&md->deferred_lock);
1757 	rwlock_init(&md->map_lock);
1758 	atomic_set(&md->holders, 1);
1759 	atomic_set(&md->open_count, 0);
1760 	atomic_set(&md->event_nr, 0);
1761 	atomic_set(&md->uevent_seq, 0);
1762 	INIT_LIST_HEAD(&md->uevent_list);
1763 	spin_lock_init(&md->uevent_lock);
1764 
1765 	md->queue = blk_init_queue(dm_request_fn, NULL);
1766 	if (!md->queue)
1767 		goto bad_queue;
1768 
1769 	/*
1770 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1771 	 * devices.  The type of this dm device has not been decided yet,
1772 	 * although we initialized the queue using blk_init_queue().
1773 	 * The type is decided at the first table loading time.
1774 	 * To prevent problematic device stacking, clear the queue flag
1775 	 * for request stacking support until then.
1776 	 *
1777 	 * This queue is new, so no concurrency on the queue_flags.
1778 	 */
1779 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1780 	md->saved_make_request_fn = md->queue->make_request_fn;
1781 	md->queue->queuedata = md;
1782 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1783 	md->queue->backing_dev_info.congested_data = md;
1784 	blk_queue_make_request(md->queue, dm_request);
1785 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1786 	md->queue->unplug_fn = dm_unplug_all;
1787 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1788 	blk_queue_softirq_done(md->queue, dm_softirq_done);
1789 	blk_queue_prep_rq(md->queue, dm_prep_fn);
1790 	blk_queue_lld_busy(md->queue, dm_lld_busy);
1791 
1792 	md->disk = alloc_disk(1);
1793 	if (!md->disk)
1794 		goto bad_disk;
1795 
1796 	atomic_set(&md->pending[0], 0);
1797 	atomic_set(&md->pending[1], 0);
1798 	init_waitqueue_head(&md->wait);
1799 	INIT_WORK(&md->work, dm_wq_work);
1800 	init_waitqueue_head(&md->eventq);
1801 
1802 	md->disk->major = _major;
1803 	md->disk->first_minor = minor;
1804 	md->disk->fops = &dm_blk_dops;
1805 	md->disk->queue = md->queue;
1806 	md->disk->private_data = md;
1807 	sprintf(md->disk->disk_name, "dm-%d", minor);
1808 	add_disk(md->disk);
1809 	format_dev_t(md->name, MKDEV(_major, minor));
1810 
1811 	md->wq = create_singlethread_workqueue("kdmflush");
1812 	if (!md->wq)
1813 		goto bad_thread;
1814 
1815 	md->bdev = bdget_disk(md->disk, 0);
1816 	if (!md->bdev)
1817 		goto bad_bdev;
1818 
1819 	/* Populate the mapping, nobody knows we exist yet */
1820 	spin_lock(&_minor_lock);
1821 	old_md = idr_replace(&_minor_idr, md, minor);
1822 	spin_unlock(&_minor_lock);
1823 
1824 	BUG_ON(old_md != MINOR_ALLOCED);
1825 
1826 	return md;
1827 
1828 bad_bdev:
1829 	destroy_workqueue(md->wq);
1830 bad_thread:
1831 	del_gendisk(md->disk);
1832 	put_disk(md->disk);
1833 bad_disk:
1834 	blk_cleanup_queue(md->queue);
1835 bad_queue:
1836 	free_minor(minor);
1837 bad_minor:
1838 	module_put(THIS_MODULE);
1839 bad_module_get:
1840 	kfree(md);
1841 	return NULL;
1842 }
1843 
1844 static void unlock_fs(struct mapped_device *md);
1845 
1846 static void free_dev(struct mapped_device *md)
1847 {
1848 	int minor = MINOR(disk_devt(md->disk));
1849 
1850 	unlock_fs(md);
1851 	bdput(md->bdev);
1852 	destroy_workqueue(md->wq);
1853 	if (md->tio_pool)
1854 		mempool_destroy(md->tio_pool);
1855 	if (md->io_pool)
1856 		mempool_destroy(md->io_pool);
1857 	if (md->bs)
1858 		bioset_free(md->bs);
1859 	blk_integrity_unregister(md->disk);
1860 	del_gendisk(md->disk);
1861 	free_minor(minor);
1862 
1863 	spin_lock(&_minor_lock);
1864 	md->disk->private_data = NULL;
1865 	spin_unlock(&_minor_lock);
1866 
1867 	put_disk(md->disk);
1868 	blk_cleanup_queue(md->queue);
1869 	module_put(THIS_MODULE);
1870 	kfree(md);
1871 }
1872 
1873 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1874 {
1875 	struct dm_md_mempools *p;
1876 
1877 	if (md->io_pool && md->tio_pool && md->bs)
1878 		/* the md already has necessary mempools */
1879 		goto out;
1880 
1881 	p = dm_table_get_md_mempools(t);
1882 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1883 
1884 	md->io_pool = p->io_pool;
1885 	p->io_pool = NULL;
1886 	md->tio_pool = p->tio_pool;
1887 	p->tio_pool = NULL;
1888 	md->bs = p->bs;
1889 	p->bs = NULL;
1890 
1891 out:
1892 	/* mempool bind completed, now no need any mempools in the table */
1893 	dm_table_free_md_mempools(t);
1894 }
1895 
1896 /*
1897  * Bind a table to the device.
1898  */
1899 static void event_callback(void *context)
1900 {
1901 	unsigned long flags;
1902 	LIST_HEAD(uevents);
1903 	struct mapped_device *md = (struct mapped_device *) context;
1904 
1905 	spin_lock_irqsave(&md->uevent_lock, flags);
1906 	list_splice_init(&md->uevent_list, &uevents);
1907 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1908 
1909 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1910 
1911 	atomic_inc(&md->event_nr);
1912 	wake_up(&md->eventq);
1913 }
1914 
1915 static void __set_size(struct mapped_device *md, sector_t size)
1916 {
1917 	set_capacity(md->disk, size);
1918 
1919 	mutex_lock(&md->bdev->bd_inode->i_mutex);
1920 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1921 	mutex_unlock(&md->bdev->bd_inode->i_mutex);
1922 }
1923 
1924 static int __bind(struct mapped_device *md, struct dm_table *t,
1925 		  struct queue_limits *limits)
1926 {
1927 	struct request_queue *q = md->queue;
1928 	sector_t size;
1929 	unsigned long flags;
1930 
1931 	size = dm_table_get_size(t);
1932 
1933 	/*
1934 	 * Wipe any geometry if the size of the table changed.
1935 	 */
1936 	if (size != get_capacity(md->disk))
1937 		memset(&md->geometry, 0, sizeof(md->geometry));
1938 
1939 	__set_size(md, size);
1940 
1941 	if (!size) {
1942 		dm_table_destroy(t);
1943 		return 0;
1944 	}
1945 
1946 	dm_table_event_callback(t, event_callback, md);
1947 
1948 	/*
1949 	 * The queue hasn't been stopped yet, if the old table type wasn't
1950 	 * for request-based during suspension.  So stop it to prevent
1951 	 * I/O mapping before resume.
1952 	 * This must be done before setting the queue restrictions,
1953 	 * because request-based dm may be run just after the setting.
1954 	 */
1955 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
1956 		stop_queue(q);
1957 
1958 	__bind_mempools(md, t);
1959 
1960 	write_lock_irqsave(&md->map_lock, flags);
1961 	md->map = t;
1962 	dm_table_set_restrictions(t, q, limits);
1963 	write_unlock_irqrestore(&md->map_lock, flags);
1964 
1965 	return 0;
1966 }
1967 
1968 static void __unbind(struct mapped_device *md)
1969 {
1970 	struct dm_table *map = md->map;
1971 	unsigned long flags;
1972 
1973 	if (!map)
1974 		return;
1975 
1976 	dm_table_event_callback(map, NULL, NULL);
1977 	write_lock_irqsave(&md->map_lock, flags);
1978 	md->map = NULL;
1979 	write_unlock_irqrestore(&md->map_lock, flags);
1980 	dm_table_destroy(map);
1981 }
1982 
1983 /*
1984  * Constructor for a new device.
1985  */
1986 int dm_create(int minor, struct mapped_device **result)
1987 {
1988 	struct mapped_device *md;
1989 
1990 	md = alloc_dev(minor);
1991 	if (!md)
1992 		return -ENXIO;
1993 
1994 	dm_sysfs_init(md);
1995 
1996 	*result = md;
1997 	return 0;
1998 }
1999 
2000 static struct mapped_device *dm_find_md(dev_t dev)
2001 {
2002 	struct mapped_device *md;
2003 	unsigned minor = MINOR(dev);
2004 
2005 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2006 		return NULL;
2007 
2008 	spin_lock(&_minor_lock);
2009 
2010 	md = idr_find(&_minor_idr, minor);
2011 	if (md && (md == MINOR_ALLOCED ||
2012 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2013 		   test_bit(DMF_FREEING, &md->flags))) {
2014 		md = NULL;
2015 		goto out;
2016 	}
2017 
2018 out:
2019 	spin_unlock(&_minor_lock);
2020 
2021 	return md;
2022 }
2023 
2024 struct mapped_device *dm_get_md(dev_t dev)
2025 {
2026 	struct mapped_device *md = dm_find_md(dev);
2027 
2028 	if (md)
2029 		dm_get(md);
2030 
2031 	return md;
2032 }
2033 
2034 void *dm_get_mdptr(struct mapped_device *md)
2035 {
2036 	return md->interface_ptr;
2037 }
2038 
2039 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2040 {
2041 	md->interface_ptr = ptr;
2042 }
2043 
2044 void dm_get(struct mapped_device *md)
2045 {
2046 	atomic_inc(&md->holders);
2047 }
2048 
2049 const char *dm_device_name(struct mapped_device *md)
2050 {
2051 	return md->name;
2052 }
2053 EXPORT_SYMBOL_GPL(dm_device_name);
2054 
2055 void dm_put(struct mapped_device *md)
2056 {
2057 	struct dm_table *map;
2058 
2059 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2060 
2061 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
2062 		map = dm_get_table(md);
2063 		idr_replace(&_minor_idr, MINOR_ALLOCED,
2064 			    MINOR(disk_devt(dm_disk(md))));
2065 		set_bit(DMF_FREEING, &md->flags);
2066 		spin_unlock(&_minor_lock);
2067 		if (!dm_suspended(md)) {
2068 			dm_table_presuspend_targets(map);
2069 			dm_table_postsuspend_targets(map);
2070 		}
2071 		dm_sysfs_exit(md);
2072 		dm_table_put(map);
2073 		__unbind(md);
2074 		free_dev(md);
2075 	}
2076 }
2077 EXPORT_SYMBOL_GPL(dm_put);
2078 
2079 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2080 {
2081 	int r = 0;
2082 	DECLARE_WAITQUEUE(wait, current);
2083 	struct request_queue *q = md->queue;
2084 	unsigned long flags;
2085 
2086 	dm_unplug_all(md->queue);
2087 
2088 	add_wait_queue(&md->wait, &wait);
2089 
2090 	while (1) {
2091 		set_current_state(interruptible);
2092 
2093 		smp_mb();
2094 		if (dm_request_based(md)) {
2095 			spin_lock_irqsave(q->queue_lock, flags);
2096 			if (!queue_in_flight(q) && blk_queue_stopped(q)) {
2097 				spin_unlock_irqrestore(q->queue_lock, flags);
2098 				break;
2099 			}
2100 			spin_unlock_irqrestore(q->queue_lock, flags);
2101 		} else if (!atomic_read(&md->pending[0]) &&
2102 					!atomic_read(&md->pending[1]))
2103 			break;
2104 
2105 		if (interruptible == TASK_INTERRUPTIBLE &&
2106 		    signal_pending(current)) {
2107 			r = -EINTR;
2108 			break;
2109 		}
2110 
2111 		io_schedule();
2112 	}
2113 	set_current_state(TASK_RUNNING);
2114 
2115 	remove_wait_queue(&md->wait, &wait);
2116 
2117 	return r;
2118 }
2119 
2120 static void dm_flush(struct mapped_device *md)
2121 {
2122 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2123 
2124 	bio_init(&md->barrier_bio);
2125 	md->barrier_bio.bi_bdev = md->bdev;
2126 	md->barrier_bio.bi_rw = WRITE_BARRIER;
2127 	__split_and_process_bio(md, &md->barrier_bio);
2128 
2129 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2130 }
2131 
2132 static void process_barrier(struct mapped_device *md, struct bio *bio)
2133 {
2134 	md->barrier_error = 0;
2135 
2136 	dm_flush(md);
2137 
2138 	if (!bio_empty_barrier(bio)) {
2139 		__split_and_process_bio(md, bio);
2140 		dm_flush(md);
2141 	}
2142 
2143 	if (md->barrier_error != DM_ENDIO_REQUEUE)
2144 		bio_endio(bio, md->barrier_error);
2145 	else {
2146 		spin_lock_irq(&md->deferred_lock);
2147 		bio_list_add_head(&md->deferred, bio);
2148 		spin_unlock_irq(&md->deferred_lock);
2149 	}
2150 }
2151 
2152 /*
2153  * Process the deferred bios
2154  */
2155 static void dm_wq_work(struct work_struct *work)
2156 {
2157 	struct mapped_device *md = container_of(work, struct mapped_device,
2158 						work);
2159 	struct bio *c;
2160 
2161 	down_write(&md->io_lock);
2162 
2163 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2164 		spin_lock_irq(&md->deferred_lock);
2165 		c = bio_list_pop(&md->deferred);
2166 		spin_unlock_irq(&md->deferred_lock);
2167 
2168 		if (!c) {
2169 			clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2170 			break;
2171 		}
2172 
2173 		up_write(&md->io_lock);
2174 
2175 		if (dm_request_based(md))
2176 			generic_make_request(c);
2177 		else {
2178 			if (bio_rw_flagged(c, BIO_RW_BARRIER))
2179 				process_barrier(md, c);
2180 			else
2181 				__split_and_process_bio(md, c);
2182 		}
2183 
2184 		down_write(&md->io_lock);
2185 	}
2186 
2187 	up_write(&md->io_lock);
2188 }
2189 
2190 static void dm_queue_flush(struct mapped_device *md)
2191 {
2192 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2193 	smp_mb__after_clear_bit();
2194 	queue_work(md->wq, &md->work);
2195 }
2196 
2197 /*
2198  * Swap in a new table (destroying old one).
2199  */
2200 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
2201 {
2202 	struct queue_limits limits;
2203 	int r = -EINVAL;
2204 
2205 	mutex_lock(&md->suspend_lock);
2206 
2207 	/* device must be suspended */
2208 	if (!dm_suspended(md))
2209 		goto out;
2210 
2211 	r = dm_calculate_queue_limits(table, &limits);
2212 	if (r)
2213 		goto out;
2214 
2215 	/* cannot change the device type, once a table is bound */
2216 	if (md->map &&
2217 	    (dm_table_get_type(md->map) != dm_table_get_type(table))) {
2218 		DMWARN("can't change the device type after a table is bound");
2219 		goto out;
2220 	}
2221 
2222 	__unbind(md);
2223 	r = __bind(md, table, &limits);
2224 
2225 out:
2226 	mutex_unlock(&md->suspend_lock);
2227 	return r;
2228 }
2229 
2230 static void dm_rq_invalidate_suspend_marker(struct mapped_device *md)
2231 {
2232 	md->suspend_rq.special = (void *)0x1;
2233 }
2234 
2235 static void dm_rq_abort_suspend(struct mapped_device *md, int noflush)
2236 {
2237 	struct request_queue *q = md->queue;
2238 	unsigned long flags;
2239 
2240 	spin_lock_irqsave(q->queue_lock, flags);
2241 	if (!noflush)
2242 		dm_rq_invalidate_suspend_marker(md);
2243 	__start_queue(q);
2244 	spin_unlock_irqrestore(q->queue_lock, flags);
2245 }
2246 
2247 static void dm_rq_start_suspend(struct mapped_device *md, int noflush)
2248 {
2249 	struct request *rq = &md->suspend_rq;
2250 	struct request_queue *q = md->queue;
2251 
2252 	if (noflush)
2253 		stop_queue(q);
2254 	else {
2255 		blk_rq_init(q, rq);
2256 		blk_insert_request(q, rq, 0, NULL);
2257 	}
2258 }
2259 
2260 static int dm_rq_suspend_available(struct mapped_device *md, int noflush)
2261 {
2262 	int r = 1;
2263 	struct request *rq = &md->suspend_rq;
2264 	struct request_queue *q = md->queue;
2265 	unsigned long flags;
2266 
2267 	if (noflush)
2268 		return r;
2269 
2270 	/* The marker must be protected by queue lock if it is in use */
2271 	spin_lock_irqsave(q->queue_lock, flags);
2272 	if (unlikely(rq->ref_count)) {
2273 		/*
2274 		 * This can happen, when the previous flush suspend was
2275 		 * interrupted, the marker is still in the queue and
2276 		 * this flush suspend has been invoked, because we don't
2277 		 * remove the marker at the time of suspend interruption.
2278 		 * We have only one marker per mapped_device, so we can't
2279 		 * start another flush suspend while it is in use.
2280 		 */
2281 		BUG_ON(!rq->special); /* The marker should be invalidated */
2282 		DMWARN("Invalidating the previous flush suspend is still in"
2283 		       " progress.  Please retry later.");
2284 		r = 0;
2285 	}
2286 	spin_unlock_irqrestore(q->queue_lock, flags);
2287 
2288 	return r;
2289 }
2290 
2291 /*
2292  * Functions to lock and unlock any filesystem running on the
2293  * device.
2294  */
2295 static int lock_fs(struct mapped_device *md)
2296 {
2297 	int r;
2298 
2299 	WARN_ON(md->frozen_sb);
2300 
2301 	md->frozen_sb = freeze_bdev(md->bdev);
2302 	if (IS_ERR(md->frozen_sb)) {
2303 		r = PTR_ERR(md->frozen_sb);
2304 		md->frozen_sb = NULL;
2305 		return r;
2306 	}
2307 
2308 	set_bit(DMF_FROZEN, &md->flags);
2309 
2310 	return 0;
2311 }
2312 
2313 static void unlock_fs(struct mapped_device *md)
2314 {
2315 	if (!test_bit(DMF_FROZEN, &md->flags))
2316 		return;
2317 
2318 	thaw_bdev(md->bdev, md->frozen_sb);
2319 	md->frozen_sb = NULL;
2320 	clear_bit(DMF_FROZEN, &md->flags);
2321 }
2322 
2323 /*
2324  * We need to be able to change a mapping table under a mounted
2325  * filesystem.  For example we might want to move some data in
2326  * the background.  Before the table can be swapped with
2327  * dm_bind_table, dm_suspend must be called to flush any in
2328  * flight bios and ensure that any further io gets deferred.
2329  */
2330 /*
2331  * Suspend mechanism in request-based dm.
2332  *
2333  * After the suspend starts, further incoming requests are kept in
2334  * the request_queue and deferred.
2335  * Remaining requests in the request_queue at the start of suspend are flushed
2336  * if it is flush suspend.
2337  * The suspend completes when the following conditions have been satisfied,
2338  * so wait for it:
2339  *    1. q->in_flight is 0 (which means no in_flight request)
2340  *    2. queue has been stopped (which means no request dispatching)
2341  *
2342  *
2343  * Noflush suspend
2344  * ---------------
2345  * Noflush suspend doesn't need to dispatch remaining requests.
2346  * So stop the queue immediately.  Then, wait for all in_flight requests
2347  * to be completed or requeued.
2348  *
2349  * To abort noflush suspend, start the queue.
2350  *
2351  *
2352  * Flush suspend
2353  * -------------
2354  * Flush suspend needs to dispatch remaining requests.  So stop the queue
2355  * after the remaining requests are completed. (Requeued request must be also
2356  * re-dispatched and completed.  Until then, we can't stop the queue.)
2357  *
2358  * During flushing the remaining requests, further incoming requests are also
2359  * inserted to the same queue.  To distinguish which requests are to be
2360  * flushed, we insert a marker request to the queue at the time of starting
2361  * flush suspend, like a barrier.
2362  * The dispatching is blocked when the marker is found on the top of the queue.
2363  * And the queue is stopped when all in_flight requests are completed, since
2364  * that means the remaining requests are completely flushed.
2365  * Then, the marker is removed from the queue.
2366  *
2367  * To abort flush suspend, we also need to take care of the marker, not only
2368  * starting the queue.
2369  * We don't remove the marker forcibly from the queue since it's against
2370  * the block-layer manner.  Instead, we put a invalidated mark on the marker.
2371  * When the invalidated marker is found on the top of the queue, it is
2372  * immediately removed from the queue, so it doesn't block dispatching.
2373  * Because we have only one marker per mapped_device, we can't start another
2374  * flush suspend until the invalidated marker is removed from the queue.
2375  * So fail and return with -EBUSY in such a case.
2376  */
2377 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2378 {
2379 	struct dm_table *map = NULL;
2380 	int r = 0;
2381 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2382 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2383 
2384 	mutex_lock(&md->suspend_lock);
2385 
2386 	if (dm_suspended(md)) {
2387 		r = -EINVAL;
2388 		goto out_unlock;
2389 	}
2390 
2391 	if (dm_request_based(md) && !dm_rq_suspend_available(md, noflush)) {
2392 		r = -EBUSY;
2393 		goto out_unlock;
2394 	}
2395 
2396 	map = dm_get_table(md);
2397 
2398 	/*
2399 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2400 	 * This flag is cleared before dm_suspend returns.
2401 	 */
2402 	if (noflush)
2403 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2404 
2405 	/* This does not get reverted if there's an error later. */
2406 	dm_table_presuspend_targets(map);
2407 
2408 	/*
2409 	 * Flush I/O to the device. noflush supersedes do_lockfs,
2410 	 * because lock_fs() needs to flush I/Os.
2411 	 */
2412 	if (!noflush && do_lockfs) {
2413 		r = lock_fs(md);
2414 		if (r)
2415 			goto out;
2416 	}
2417 
2418 	/*
2419 	 * Here we must make sure that no processes are submitting requests
2420 	 * to target drivers i.e. no one may be executing
2421 	 * __split_and_process_bio. This is called from dm_request and
2422 	 * dm_wq_work.
2423 	 *
2424 	 * To get all processes out of __split_and_process_bio in dm_request,
2425 	 * we take the write lock. To prevent any process from reentering
2426 	 * __split_and_process_bio from dm_request, we set
2427 	 * DMF_QUEUE_IO_TO_THREAD.
2428 	 *
2429 	 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2430 	 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2431 	 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2432 	 * further calls to __split_and_process_bio from dm_wq_work.
2433 	 */
2434 	down_write(&md->io_lock);
2435 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2436 	set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2437 	up_write(&md->io_lock);
2438 
2439 	flush_workqueue(md->wq);
2440 
2441 	if (dm_request_based(md))
2442 		dm_rq_start_suspend(md, noflush);
2443 
2444 	/*
2445 	 * At this point no more requests are entering target request routines.
2446 	 * We call dm_wait_for_completion to wait for all existing requests
2447 	 * to finish.
2448 	 */
2449 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2450 
2451 	down_write(&md->io_lock);
2452 	if (noflush)
2453 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2454 	up_write(&md->io_lock);
2455 
2456 	/* were we interrupted ? */
2457 	if (r < 0) {
2458 		dm_queue_flush(md);
2459 
2460 		if (dm_request_based(md))
2461 			dm_rq_abort_suspend(md, noflush);
2462 
2463 		unlock_fs(md);
2464 		goto out; /* pushback list is already flushed, so skip flush */
2465 	}
2466 
2467 	/*
2468 	 * If dm_wait_for_completion returned 0, the device is completely
2469 	 * quiescent now. There is no request-processing activity. All new
2470 	 * requests are being added to md->deferred list.
2471 	 */
2472 
2473 	dm_table_postsuspend_targets(map);
2474 
2475 	set_bit(DMF_SUSPENDED, &md->flags);
2476 
2477 out:
2478 	dm_table_put(map);
2479 
2480 out_unlock:
2481 	mutex_unlock(&md->suspend_lock);
2482 	return r;
2483 }
2484 
2485 int dm_resume(struct mapped_device *md)
2486 {
2487 	int r = -EINVAL;
2488 	struct dm_table *map = NULL;
2489 
2490 	mutex_lock(&md->suspend_lock);
2491 	if (!dm_suspended(md))
2492 		goto out;
2493 
2494 	map = dm_get_table(md);
2495 	if (!map || !dm_table_get_size(map))
2496 		goto out;
2497 
2498 	r = dm_table_resume_targets(map);
2499 	if (r)
2500 		goto out;
2501 
2502 	dm_queue_flush(md);
2503 
2504 	/*
2505 	 * Flushing deferred I/Os must be done after targets are resumed
2506 	 * so that mapping of targets can work correctly.
2507 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2508 	 */
2509 	if (dm_request_based(md))
2510 		start_queue(md->queue);
2511 
2512 	unlock_fs(md);
2513 
2514 	clear_bit(DMF_SUSPENDED, &md->flags);
2515 
2516 	dm_table_unplug_all(map);
2517 	r = 0;
2518 out:
2519 	dm_table_put(map);
2520 	mutex_unlock(&md->suspend_lock);
2521 
2522 	return r;
2523 }
2524 
2525 /*-----------------------------------------------------------------
2526  * Event notification.
2527  *---------------------------------------------------------------*/
2528 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2529 		       unsigned cookie)
2530 {
2531 	char udev_cookie[DM_COOKIE_LENGTH];
2532 	char *envp[] = { udev_cookie, NULL };
2533 
2534 	if (!cookie)
2535 		kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2536 	else {
2537 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2538 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2539 		kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2540 	}
2541 }
2542 
2543 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2544 {
2545 	return atomic_add_return(1, &md->uevent_seq);
2546 }
2547 
2548 uint32_t dm_get_event_nr(struct mapped_device *md)
2549 {
2550 	return atomic_read(&md->event_nr);
2551 }
2552 
2553 int dm_wait_event(struct mapped_device *md, int event_nr)
2554 {
2555 	return wait_event_interruptible(md->eventq,
2556 			(event_nr != atomic_read(&md->event_nr)));
2557 }
2558 
2559 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2560 {
2561 	unsigned long flags;
2562 
2563 	spin_lock_irqsave(&md->uevent_lock, flags);
2564 	list_add(elist, &md->uevent_list);
2565 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2566 }
2567 
2568 /*
2569  * The gendisk is only valid as long as you have a reference
2570  * count on 'md'.
2571  */
2572 struct gendisk *dm_disk(struct mapped_device *md)
2573 {
2574 	return md->disk;
2575 }
2576 
2577 struct kobject *dm_kobject(struct mapped_device *md)
2578 {
2579 	return &md->kobj;
2580 }
2581 
2582 /*
2583  * struct mapped_device should not be exported outside of dm.c
2584  * so use this check to verify that kobj is part of md structure
2585  */
2586 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2587 {
2588 	struct mapped_device *md;
2589 
2590 	md = container_of(kobj, struct mapped_device, kobj);
2591 	if (&md->kobj != kobj)
2592 		return NULL;
2593 
2594 	if (test_bit(DMF_FREEING, &md->flags) ||
2595 	    test_bit(DMF_DELETING, &md->flags))
2596 		return NULL;
2597 
2598 	dm_get(md);
2599 	return md;
2600 }
2601 
2602 int dm_suspended(struct mapped_device *md)
2603 {
2604 	return test_bit(DMF_SUSPENDED, &md->flags);
2605 }
2606 
2607 int dm_noflush_suspending(struct dm_target *ti)
2608 {
2609 	struct mapped_device *md = dm_table_get_md(ti->table);
2610 	int r = __noflush_suspending(md);
2611 
2612 	dm_put(md);
2613 
2614 	return r;
2615 }
2616 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2617 
2618 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2619 {
2620 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2621 
2622 	if (!pools)
2623 		return NULL;
2624 
2625 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2626 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2627 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2628 	if (!pools->io_pool)
2629 		goto free_pools_and_out;
2630 
2631 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2632 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2633 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2634 	if (!pools->tio_pool)
2635 		goto free_io_pool_and_out;
2636 
2637 	pools->bs = (type == DM_TYPE_BIO_BASED) ?
2638 		    bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2639 	if (!pools->bs)
2640 		goto free_tio_pool_and_out;
2641 
2642 	return pools;
2643 
2644 free_tio_pool_and_out:
2645 	mempool_destroy(pools->tio_pool);
2646 
2647 free_io_pool_and_out:
2648 	mempool_destroy(pools->io_pool);
2649 
2650 free_pools_and_out:
2651 	kfree(pools);
2652 
2653 	return NULL;
2654 }
2655 
2656 void dm_free_md_mempools(struct dm_md_mempools *pools)
2657 {
2658 	if (!pools)
2659 		return;
2660 
2661 	if (pools->io_pool)
2662 		mempool_destroy(pools->io_pool);
2663 
2664 	if (pools->tio_pool)
2665 		mempool_destroy(pools->tio_pool);
2666 
2667 	if (pools->bs)
2668 		bioset_free(pools->bs);
2669 
2670 	kfree(pools);
2671 }
2672 
2673 static const struct block_device_operations dm_blk_dops = {
2674 	.open = dm_blk_open,
2675 	.release = dm_blk_close,
2676 	.ioctl = dm_blk_ioctl,
2677 	.getgeo = dm_blk_getgeo,
2678 	.owner = THIS_MODULE
2679 };
2680 
2681 EXPORT_SYMBOL(dm_get_mapinfo);
2682 
2683 /*
2684  * module hooks
2685  */
2686 module_init(dm_init);
2687 module_exit(dm_exit);
2688 
2689 module_param(major, uint, 0);
2690 MODULE_PARM_DESC(major, "The major number of the device mapper");
2691 MODULE_DESCRIPTION(DM_NAME " driver");
2692 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2693 MODULE_LICENSE("GPL");
2694