xref: /linux/drivers/md/dm.c (revision baaa68a9796ef2cadfe5caaf4c730412eda0f31c)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 static const char *_name = DM_NAME;
44 
45 static unsigned int major = 0;
46 static unsigned int _major = 0;
47 
48 static DEFINE_IDR(_minor_idr);
49 
50 static DEFINE_SPINLOCK(_minor_lock);
51 
52 static void do_deferred_remove(struct work_struct *w);
53 
54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
55 
56 static struct workqueue_struct *deferred_remove_workqueue;
57 
58 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
60 
61 void dm_issue_global_event(void)
62 {
63 	atomic_inc(&dm_global_event_nr);
64 	wake_up(&dm_global_eventq);
65 }
66 
67 /*
68  * One of these is allocated (on-stack) per original bio.
69  */
70 struct clone_info {
71 	struct dm_table *map;
72 	struct bio *bio;
73 	struct dm_io *io;
74 	sector_t sector;
75 	unsigned sector_count;
76 };
77 
78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
79 #define DM_IO_BIO_OFFSET \
80 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
81 
82 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
83 {
84 	return container_of(clone, struct dm_target_io, clone);
85 }
86 
87 void *dm_per_bio_data(struct bio *bio, size_t data_size)
88 {
89 	if (!clone_to_tio(bio)->inside_dm_io)
90 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
91 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
92 }
93 EXPORT_SYMBOL_GPL(dm_per_bio_data);
94 
95 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
96 {
97 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
98 	if (io->magic == DM_IO_MAGIC)
99 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
100 	BUG_ON(io->magic != DM_TIO_MAGIC);
101 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
102 }
103 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
104 
105 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
106 {
107 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
108 }
109 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
110 
111 #define MINOR_ALLOCED ((void *)-1)
112 
113 #define DM_NUMA_NODE NUMA_NO_NODE
114 static int dm_numa_node = DM_NUMA_NODE;
115 
116 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
117 static int swap_bios = DEFAULT_SWAP_BIOS;
118 static int get_swap_bios(void)
119 {
120 	int latch = READ_ONCE(swap_bios);
121 	if (unlikely(latch <= 0))
122 		latch = DEFAULT_SWAP_BIOS;
123 	return latch;
124 }
125 
126 /*
127  * For mempools pre-allocation at the table loading time.
128  */
129 struct dm_md_mempools {
130 	struct bio_set bs;
131 	struct bio_set io_bs;
132 };
133 
134 struct table_device {
135 	struct list_head list;
136 	refcount_t count;
137 	struct dm_dev dm_dev;
138 };
139 
140 /*
141  * Bio-based DM's mempools' reserved IOs set by the user.
142  */
143 #define RESERVED_BIO_BASED_IOS		16
144 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
145 
146 static int __dm_get_module_param_int(int *module_param, int min, int max)
147 {
148 	int param = READ_ONCE(*module_param);
149 	int modified_param = 0;
150 	bool modified = true;
151 
152 	if (param < min)
153 		modified_param = min;
154 	else if (param > max)
155 		modified_param = max;
156 	else
157 		modified = false;
158 
159 	if (modified) {
160 		(void)cmpxchg(module_param, param, modified_param);
161 		param = modified_param;
162 	}
163 
164 	return param;
165 }
166 
167 unsigned __dm_get_module_param(unsigned *module_param,
168 			       unsigned def, unsigned max)
169 {
170 	unsigned param = READ_ONCE(*module_param);
171 	unsigned modified_param = 0;
172 
173 	if (!param)
174 		modified_param = def;
175 	else if (param > max)
176 		modified_param = max;
177 
178 	if (modified_param) {
179 		(void)cmpxchg(module_param, param, modified_param);
180 		param = modified_param;
181 	}
182 
183 	return param;
184 }
185 
186 unsigned dm_get_reserved_bio_based_ios(void)
187 {
188 	return __dm_get_module_param(&reserved_bio_based_ios,
189 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
190 }
191 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
192 
193 static unsigned dm_get_numa_node(void)
194 {
195 	return __dm_get_module_param_int(&dm_numa_node,
196 					 DM_NUMA_NODE, num_online_nodes() - 1);
197 }
198 
199 static int __init local_init(void)
200 {
201 	int r;
202 
203 	r = dm_uevent_init();
204 	if (r)
205 		return r;
206 
207 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
208 	if (!deferred_remove_workqueue) {
209 		r = -ENOMEM;
210 		goto out_uevent_exit;
211 	}
212 
213 	_major = major;
214 	r = register_blkdev(_major, _name);
215 	if (r < 0)
216 		goto out_free_workqueue;
217 
218 	if (!_major)
219 		_major = r;
220 
221 	return 0;
222 
223 out_free_workqueue:
224 	destroy_workqueue(deferred_remove_workqueue);
225 out_uevent_exit:
226 	dm_uevent_exit();
227 
228 	return r;
229 }
230 
231 static void local_exit(void)
232 {
233 	flush_scheduled_work();
234 	destroy_workqueue(deferred_remove_workqueue);
235 
236 	unregister_blkdev(_major, _name);
237 	dm_uevent_exit();
238 
239 	_major = 0;
240 
241 	DMINFO("cleaned up");
242 }
243 
244 static int (*_inits[])(void) __initdata = {
245 	local_init,
246 	dm_target_init,
247 	dm_linear_init,
248 	dm_stripe_init,
249 	dm_io_init,
250 	dm_kcopyd_init,
251 	dm_interface_init,
252 	dm_statistics_init,
253 };
254 
255 static void (*_exits[])(void) = {
256 	local_exit,
257 	dm_target_exit,
258 	dm_linear_exit,
259 	dm_stripe_exit,
260 	dm_io_exit,
261 	dm_kcopyd_exit,
262 	dm_interface_exit,
263 	dm_statistics_exit,
264 };
265 
266 static int __init dm_init(void)
267 {
268 	const int count = ARRAY_SIZE(_inits);
269 	int r, i;
270 
271 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
272 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
273 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
274 #endif
275 
276 	for (i = 0; i < count; i++) {
277 		r = _inits[i]();
278 		if (r)
279 			goto bad;
280 	}
281 
282 	return 0;
283 bad:
284 	while (i--)
285 		_exits[i]();
286 
287 	return r;
288 }
289 
290 static void __exit dm_exit(void)
291 {
292 	int i = ARRAY_SIZE(_exits);
293 
294 	while (i--)
295 		_exits[i]();
296 
297 	/*
298 	 * Should be empty by this point.
299 	 */
300 	idr_destroy(&_minor_idr);
301 }
302 
303 /*
304  * Block device functions
305  */
306 int dm_deleting_md(struct mapped_device *md)
307 {
308 	return test_bit(DMF_DELETING, &md->flags);
309 }
310 
311 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
312 {
313 	struct mapped_device *md;
314 
315 	spin_lock(&_minor_lock);
316 
317 	md = bdev->bd_disk->private_data;
318 	if (!md)
319 		goto out;
320 
321 	if (test_bit(DMF_FREEING, &md->flags) ||
322 	    dm_deleting_md(md)) {
323 		md = NULL;
324 		goto out;
325 	}
326 
327 	dm_get(md);
328 	atomic_inc(&md->open_count);
329 out:
330 	spin_unlock(&_minor_lock);
331 
332 	return md ? 0 : -ENXIO;
333 }
334 
335 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
336 {
337 	struct mapped_device *md;
338 
339 	spin_lock(&_minor_lock);
340 
341 	md = disk->private_data;
342 	if (WARN_ON(!md))
343 		goto out;
344 
345 	if (atomic_dec_and_test(&md->open_count) &&
346 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
347 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
348 
349 	dm_put(md);
350 out:
351 	spin_unlock(&_minor_lock);
352 }
353 
354 int dm_open_count(struct mapped_device *md)
355 {
356 	return atomic_read(&md->open_count);
357 }
358 
359 /*
360  * Guarantees nothing is using the device before it's deleted.
361  */
362 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
363 {
364 	int r = 0;
365 
366 	spin_lock(&_minor_lock);
367 
368 	if (dm_open_count(md)) {
369 		r = -EBUSY;
370 		if (mark_deferred)
371 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
372 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
373 		r = -EEXIST;
374 	else
375 		set_bit(DMF_DELETING, &md->flags);
376 
377 	spin_unlock(&_minor_lock);
378 
379 	return r;
380 }
381 
382 int dm_cancel_deferred_remove(struct mapped_device *md)
383 {
384 	int r = 0;
385 
386 	spin_lock(&_minor_lock);
387 
388 	if (test_bit(DMF_DELETING, &md->flags))
389 		r = -EBUSY;
390 	else
391 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
392 
393 	spin_unlock(&_minor_lock);
394 
395 	return r;
396 }
397 
398 static void do_deferred_remove(struct work_struct *w)
399 {
400 	dm_deferred_remove();
401 }
402 
403 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
404 {
405 	struct mapped_device *md = bdev->bd_disk->private_data;
406 
407 	return dm_get_geometry(md, geo);
408 }
409 
410 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
411 			    struct block_device **bdev)
412 {
413 	struct dm_target *tgt;
414 	struct dm_table *map;
415 	int r;
416 
417 retry:
418 	r = -ENOTTY;
419 	map = dm_get_live_table(md, srcu_idx);
420 	if (!map || !dm_table_get_size(map))
421 		return r;
422 
423 	/* We only support devices that have a single target */
424 	if (dm_table_get_num_targets(map) != 1)
425 		return r;
426 
427 	tgt = dm_table_get_target(map, 0);
428 	if (!tgt->type->prepare_ioctl)
429 		return r;
430 
431 	if (dm_suspended_md(md))
432 		return -EAGAIN;
433 
434 	r = tgt->type->prepare_ioctl(tgt, bdev);
435 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
436 		dm_put_live_table(md, *srcu_idx);
437 		msleep(10);
438 		goto retry;
439 	}
440 
441 	return r;
442 }
443 
444 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
445 {
446 	dm_put_live_table(md, srcu_idx);
447 }
448 
449 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
450 			unsigned int cmd, unsigned long arg)
451 {
452 	struct mapped_device *md = bdev->bd_disk->private_data;
453 	int r, srcu_idx;
454 
455 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
456 	if (r < 0)
457 		goto out;
458 
459 	if (r > 0) {
460 		/*
461 		 * Target determined this ioctl is being issued against a
462 		 * subset of the parent bdev; require extra privileges.
463 		 */
464 		if (!capable(CAP_SYS_RAWIO)) {
465 			DMDEBUG_LIMIT(
466 	"%s: sending ioctl %x to DM device without required privilege.",
467 				current->comm, cmd);
468 			r = -ENOIOCTLCMD;
469 			goto out;
470 		}
471 	}
472 
473 	if (!bdev->bd_disk->fops->ioctl)
474 		r = -ENOTTY;
475 	else
476 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
477 out:
478 	dm_unprepare_ioctl(md, srcu_idx);
479 	return r;
480 }
481 
482 u64 dm_start_time_ns_from_clone(struct bio *bio)
483 {
484 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
485 }
486 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
487 
488 static void start_io_acct(struct dm_io *io)
489 {
490 	struct mapped_device *md = io->md;
491 	struct bio *bio = io->orig_bio;
492 
493 	bio_start_io_acct_time(bio, io->start_time);
494 	if (unlikely(dm_stats_used(&md->stats)))
495 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
496 				    bio->bi_iter.bi_sector, bio_sectors(bio),
497 				    false, 0, &io->stats_aux);
498 }
499 
500 static void end_io_acct(struct mapped_device *md, struct bio *bio,
501 			unsigned long start_time, struct dm_stats_aux *stats_aux)
502 {
503 	unsigned long duration = jiffies - start_time;
504 
505 	bio_end_io_acct(bio, start_time);
506 
507 	if (unlikely(dm_stats_used(&md->stats)))
508 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
509 				    bio->bi_iter.bi_sector, bio_sectors(bio),
510 				    true, duration, stats_aux);
511 
512 	/* nudge anyone waiting on suspend queue */
513 	if (unlikely(wq_has_sleeper(&md->wait)))
514 		wake_up(&md->wait);
515 }
516 
517 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
518 {
519 	struct dm_io *io;
520 	struct dm_target_io *tio;
521 	struct bio *clone;
522 
523 	clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs);
524 
525 	tio = clone_to_tio(clone);
526 	tio->inside_dm_io = true;
527 	tio->io = NULL;
528 
529 	io = container_of(tio, struct dm_io, tio);
530 	io->magic = DM_IO_MAGIC;
531 	io->status = 0;
532 	atomic_set(&io->io_count, 1);
533 	io->orig_bio = bio;
534 	io->md = md;
535 	spin_lock_init(&io->endio_lock);
536 
537 	io->start_time = jiffies;
538 
539 	return io;
540 }
541 
542 static void free_io(struct mapped_device *md, struct dm_io *io)
543 {
544 	bio_put(&io->tio.clone);
545 }
546 
547 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
548 		unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
549 {
550 	struct dm_target_io *tio;
551 
552 	if (!ci->io->tio.io) {
553 		/* the dm_target_io embedded in ci->io is available */
554 		tio = &ci->io->tio;
555 	} else {
556 		struct bio *clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio,
557 						    gfp_mask, &ci->io->md->bs);
558 		if (!clone)
559 			return NULL;
560 
561 		tio = clone_to_tio(clone);
562 		tio->inside_dm_io = false;
563 	}
564 
565 	tio->magic = DM_TIO_MAGIC;
566 	tio->io = ci->io;
567 	tio->ti = ti;
568 	tio->target_bio_nr = target_bio_nr;
569 	tio->len_ptr = len;
570 
571 	return &tio->clone;
572 }
573 
574 static void free_tio(struct bio *clone)
575 {
576 	if (clone_to_tio(clone)->inside_dm_io)
577 		return;
578 	bio_put(clone);
579 }
580 
581 /*
582  * Add the bio to the list of deferred io.
583  */
584 static void queue_io(struct mapped_device *md, struct bio *bio)
585 {
586 	unsigned long flags;
587 
588 	spin_lock_irqsave(&md->deferred_lock, flags);
589 	bio_list_add(&md->deferred, bio);
590 	spin_unlock_irqrestore(&md->deferred_lock, flags);
591 	queue_work(md->wq, &md->work);
592 }
593 
594 /*
595  * Everyone (including functions in this file), should use this
596  * function to access the md->map field, and make sure they call
597  * dm_put_live_table() when finished.
598  */
599 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
600 {
601 	*srcu_idx = srcu_read_lock(&md->io_barrier);
602 
603 	return srcu_dereference(md->map, &md->io_barrier);
604 }
605 
606 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
607 {
608 	srcu_read_unlock(&md->io_barrier, srcu_idx);
609 }
610 
611 void dm_sync_table(struct mapped_device *md)
612 {
613 	synchronize_srcu(&md->io_barrier);
614 	synchronize_rcu_expedited();
615 }
616 
617 /*
618  * A fast alternative to dm_get_live_table/dm_put_live_table.
619  * The caller must not block between these two functions.
620  */
621 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
622 {
623 	rcu_read_lock();
624 	return rcu_dereference(md->map);
625 }
626 
627 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
628 {
629 	rcu_read_unlock();
630 }
631 
632 static char *_dm_claim_ptr = "I belong to device-mapper";
633 
634 /*
635  * Open a table device so we can use it as a map destination.
636  */
637 static int open_table_device(struct table_device *td, dev_t dev,
638 			     struct mapped_device *md)
639 {
640 	struct block_device *bdev;
641 	u64 part_off;
642 	int r;
643 
644 	BUG_ON(td->dm_dev.bdev);
645 
646 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
647 	if (IS_ERR(bdev))
648 		return PTR_ERR(bdev);
649 
650 	r = bd_link_disk_holder(bdev, dm_disk(md));
651 	if (r) {
652 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
653 		return r;
654 	}
655 
656 	td->dm_dev.bdev = bdev;
657 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
658 	return 0;
659 }
660 
661 /*
662  * Close a table device that we've been using.
663  */
664 static void close_table_device(struct table_device *td, struct mapped_device *md)
665 {
666 	if (!td->dm_dev.bdev)
667 		return;
668 
669 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
670 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
671 	put_dax(td->dm_dev.dax_dev);
672 	td->dm_dev.bdev = NULL;
673 	td->dm_dev.dax_dev = NULL;
674 }
675 
676 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
677 					      fmode_t mode)
678 {
679 	struct table_device *td;
680 
681 	list_for_each_entry(td, l, list)
682 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
683 			return td;
684 
685 	return NULL;
686 }
687 
688 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
689 			struct dm_dev **result)
690 {
691 	int r;
692 	struct table_device *td;
693 
694 	mutex_lock(&md->table_devices_lock);
695 	td = find_table_device(&md->table_devices, dev, mode);
696 	if (!td) {
697 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
698 		if (!td) {
699 			mutex_unlock(&md->table_devices_lock);
700 			return -ENOMEM;
701 		}
702 
703 		td->dm_dev.mode = mode;
704 		td->dm_dev.bdev = NULL;
705 
706 		if ((r = open_table_device(td, dev, md))) {
707 			mutex_unlock(&md->table_devices_lock);
708 			kfree(td);
709 			return r;
710 		}
711 
712 		format_dev_t(td->dm_dev.name, dev);
713 
714 		refcount_set(&td->count, 1);
715 		list_add(&td->list, &md->table_devices);
716 	} else {
717 		refcount_inc(&td->count);
718 	}
719 	mutex_unlock(&md->table_devices_lock);
720 
721 	*result = &td->dm_dev;
722 	return 0;
723 }
724 
725 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
726 {
727 	struct table_device *td = container_of(d, struct table_device, dm_dev);
728 
729 	mutex_lock(&md->table_devices_lock);
730 	if (refcount_dec_and_test(&td->count)) {
731 		close_table_device(td, md);
732 		list_del(&td->list);
733 		kfree(td);
734 	}
735 	mutex_unlock(&md->table_devices_lock);
736 }
737 
738 static void free_table_devices(struct list_head *devices)
739 {
740 	struct list_head *tmp, *next;
741 
742 	list_for_each_safe(tmp, next, devices) {
743 		struct table_device *td = list_entry(tmp, struct table_device, list);
744 
745 		DMWARN("dm_destroy: %s still exists with %d references",
746 		       td->dm_dev.name, refcount_read(&td->count));
747 		kfree(td);
748 	}
749 }
750 
751 /*
752  * Get the geometry associated with a dm device
753  */
754 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
755 {
756 	*geo = md->geometry;
757 
758 	return 0;
759 }
760 
761 /*
762  * Set the geometry of a device.
763  */
764 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
765 {
766 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
767 
768 	if (geo->start > sz) {
769 		DMWARN("Start sector is beyond the geometry limits.");
770 		return -EINVAL;
771 	}
772 
773 	md->geometry = *geo;
774 
775 	return 0;
776 }
777 
778 static int __noflush_suspending(struct mapped_device *md)
779 {
780 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
781 }
782 
783 /*
784  * Decrements the number of outstanding ios that a bio has been
785  * cloned into, completing the original io if necc.
786  */
787 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
788 {
789 	unsigned long flags;
790 	blk_status_t io_error;
791 	struct bio *bio;
792 	struct mapped_device *md = io->md;
793 	unsigned long start_time = 0;
794 	struct dm_stats_aux stats_aux;
795 
796 	/* Push-back supersedes any I/O errors */
797 	if (unlikely(error)) {
798 		spin_lock_irqsave(&io->endio_lock, flags);
799 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
800 			io->status = error;
801 		spin_unlock_irqrestore(&io->endio_lock, flags);
802 	}
803 
804 	if (atomic_dec_and_test(&io->io_count)) {
805 		bio = io->orig_bio;
806 		if (io->status == BLK_STS_DM_REQUEUE) {
807 			/*
808 			 * Target requested pushing back the I/O.
809 			 */
810 			spin_lock_irqsave(&md->deferred_lock, flags);
811 			if (__noflush_suspending(md) &&
812 			    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
813 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
814 				bio_list_add_head(&md->deferred, bio);
815 			} else {
816 				/*
817 				 * noflush suspend was interrupted or this is
818 				 * a write to a zoned target.
819 				 */
820 				io->status = BLK_STS_IOERR;
821 			}
822 			spin_unlock_irqrestore(&md->deferred_lock, flags);
823 		}
824 
825 		io_error = io->status;
826 		start_time = io->start_time;
827 		stats_aux = io->stats_aux;
828 		free_io(md, io);
829 		end_io_acct(md, bio, start_time, &stats_aux);
830 
831 		if (io_error == BLK_STS_DM_REQUEUE)
832 			return;
833 
834 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
835 			/*
836 			 * Preflush done for flush with data, reissue
837 			 * without REQ_PREFLUSH.
838 			 */
839 			bio->bi_opf &= ~REQ_PREFLUSH;
840 			queue_io(md, bio);
841 		} else {
842 			/* done with normal IO or empty flush */
843 			if (io_error)
844 				bio->bi_status = io_error;
845 			bio_endio(bio);
846 		}
847 	}
848 }
849 
850 void disable_discard(struct mapped_device *md)
851 {
852 	struct queue_limits *limits = dm_get_queue_limits(md);
853 
854 	/* device doesn't really support DISCARD, disable it */
855 	limits->max_discard_sectors = 0;
856 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
857 }
858 
859 void disable_write_same(struct mapped_device *md)
860 {
861 	struct queue_limits *limits = dm_get_queue_limits(md);
862 
863 	/* device doesn't really support WRITE SAME, disable it */
864 	limits->max_write_same_sectors = 0;
865 }
866 
867 void disable_write_zeroes(struct mapped_device *md)
868 {
869 	struct queue_limits *limits = dm_get_queue_limits(md);
870 
871 	/* device doesn't really support WRITE ZEROES, disable it */
872 	limits->max_write_zeroes_sectors = 0;
873 }
874 
875 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
876 {
877 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
878 }
879 
880 static void clone_endio(struct bio *bio)
881 {
882 	blk_status_t error = bio->bi_status;
883 	struct dm_target_io *tio = clone_to_tio(bio);
884 	struct dm_io *io = tio->io;
885 	struct mapped_device *md = tio->io->md;
886 	dm_endio_fn endio = tio->ti->type->end_io;
887 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
888 
889 	if (unlikely(error == BLK_STS_TARGET)) {
890 		if (bio_op(bio) == REQ_OP_DISCARD &&
891 		    !q->limits.max_discard_sectors)
892 			disable_discard(md);
893 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
894 			 !q->limits.max_write_same_sectors)
895 			disable_write_same(md);
896 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
897 			 !q->limits.max_write_zeroes_sectors)
898 			disable_write_zeroes(md);
899 	}
900 
901 	if (blk_queue_is_zoned(q))
902 		dm_zone_endio(io, bio);
903 
904 	if (endio) {
905 		int r = endio(tio->ti, bio, &error);
906 		switch (r) {
907 		case DM_ENDIO_REQUEUE:
908 			/*
909 			 * Requeuing writes to a sequential zone of a zoned
910 			 * target will break the sequential write pattern:
911 			 * fail such IO.
912 			 */
913 			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
914 				error = BLK_STS_IOERR;
915 			else
916 				error = BLK_STS_DM_REQUEUE;
917 			fallthrough;
918 		case DM_ENDIO_DONE:
919 			break;
920 		case DM_ENDIO_INCOMPLETE:
921 			/* The target will handle the io */
922 			return;
923 		default:
924 			DMWARN("unimplemented target endio return value: %d", r);
925 			BUG();
926 		}
927 	}
928 
929 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
930 		struct mapped_device *md = io->md;
931 		up(&md->swap_bios_semaphore);
932 	}
933 
934 	free_tio(bio);
935 	dm_io_dec_pending(io, error);
936 }
937 
938 /*
939  * Return maximum size of I/O possible at the supplied sector up to the current
940  * target boundary.
941  */
942 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
943 						  sector_t target_offset)
944 {
945 	return ti->len - target_offset;
946 }
947 
948 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
949 {
950 	sector_t target_offset = dm_target_offset(ti, sector);
951 	sector_t len = max_io_len_target_boundary(ti, target_offset);
952 	sector_t max_len;
953 
954 	/*
955 	 * Does the target need to split IO even further?
956 	 * - varied (per target) IO splitting is a tenet of DM; this
957 	 *   explains why stacked chunk_sectors based splitting via
958 	 *   blk_max_size_offset() isn't possible here. So pass in
959 	 *   ti->max_io_len to override stacked chunk_sectors.
960 	 */
961 	if (ti->max_io_len) {
962 		max_len = blk_max_size_offset(ti->table->md->queue,
963 					      target_offset, ti->max_io_len);
964 		if (len > max_len)
965 			len = max_len;
966 	}
967 
968 	return len;
969 }
970 
971 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
972 {
973 	if (len > UINT_MAX) {
974 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
975 		      (unsigned long long)len, UINT_MAX);
976 		ti->error = "Maximum size of target IO is too large";
977 		return -EINVAL;
978 	}
979 
980 	ti->max_io_len = (uint32_t) len;
981 
982 	return 0;
983 }
984 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
985 
986 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
987 						sector_t sector, int *srcu_idx)
988 	__acquires(md->io_barrier)
989 {
990 	struct dm_table *map;
991 	struct dm_target *ti;
992 
993 	map = dm_get_live_table(md, srcu_idx);
994 	if (!map)
995 		return NULL;
996 
997 	ti = dm_table_find_target(map, sector);
998 	if (!ti)
999 		return NULL;
1000 
1001 	return ti;
1002 }
1003 
1004 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1005 				 long nr_pages, void **kaddr, pfn_t *pfn)
1006 {
1007 	struct mapped_device *md = dax_get_private(dax_dev);
1008 	sector_t sector = pgoff * PAGE_SECTORS;
1009 	struct dm_target *ti;
1010 	long len, ret = -EIO;
1011 	int srcu_idx;
1012 
1013 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1014 
1015 	if (!ti)
1016 		goto out;
1017 	if (!ti->type->direct_access)
1018 		goto out;
1019 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1020 	if (len < 1)
1021 		goto out;
1022 	nr_pages = min(len, nr_pages);
1023 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1024 
1025  out:
1026 	dm_put_live_table(md, srcu_idx);
1027 
1028 	return ret;
1029 }
1030 
1031 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1032 				  size_t nr_pages)
1033 {
1034 	struct mapped_device *md = dax_get_private(dax_dev);
1035 	sector_t sector = pgoff * PAGE_SECTORS;
1036 	struct dm_target *ti;
1037 	int ret = -EIO;
1038 	int srcu_idx;
1039 
1040 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1041 
1042 	if (!ti)
1043 		goto out;
1044 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1045 		/*
1046 		 * ->zero_page_range() is mandatory dax operation. If we are
1047 		 *  here, something is wrong.
1048 		 */
1049 		goto out;
1050 	}
1051 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1052  out:
1053 	dm_put_live_table(md, srcu_idx);
1054 
1055 	return ret;
1056 }
1057 
1058 /*
1059  * A target may call dm_accept_partial_bio only from the map routine.  It is
1060  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1061  * operations and REQ_OP_ZONE_APPEND (zone append writes).
1062  *
1063  * dm_accept_partial_bio informs the dm that the target only wants to process
1064  * additional n_sectors sectors of the bio and the rest of the data should be
1065  * sent in a next bio.
1066  *
1067  * A diagram that explains the arithmetics:
1068  * +--------------------+---------------+-------+
1069  * |         1          |       2       |   3   |
1070  * +--------------------+---------------+-------+
1071  *
1072  * <-------------- *tio->len_ptr --------------->
1073  *                      <------- bi_size ------->
1074  *                      <-- n_sectors -->
1075  *
1076  * Region 1 was already iterated over with bio_advance or similar function.
1077  *	(it may be empty if the target doesn't use bio_advance)
1078  * Region 2 is the remaining bio size that the target wants to process.
1079  *	(it may be empty if region 1 is non-empty, although there is no reason
1080  *	 to make it empty)
1081  * The target requires that region 3 is to be sent in the next bio.
1082  *
1083  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1084  * the partially processed part (the sum of regions 1+2) must be the same for all
1085  * copies of the bio.
1086  */
1087 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1088 {
1089 	struct dm_target_io *tio = clone_to_tio(bio);
1090 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1091 
1092 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1093 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1094 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1095 	BUG_ON(bi_size > *tio->len_ptr);
1096 	BUG_ON(n_sectors > bi_size);
1097 
1098 	*tio->len_ptr -= bi_size - n_sectors;
1099 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1100 }
1101 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1102 
1103 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1104 {
1105 	mutex_lock(&md->swap_bios_lock);
1106 	while (latch < md->swap_bios) {
1107 		cond_resched();
1108 		down(&md->swap_bios_semaphore);
1109 		md->swap_bios--;
1110 	}
1111 	while (latch > md->swap_bios) {
1112 		cond_resched();
1113 		up(&md->swap_bios_semaphore);
1114 		md->swap_bios++;
1115 	}
1116 	mutex_unlock(&md->swap_bios_lock);
1117 }
1118 
1119 static void __map_bio(struct bio *clone)
1120 {
1121 	struct dm_target_io *tio = clone_to_tio(clone);
1122 	int r;
1123 	sector_t sector;
1124 	struct dm_io *io = tio->io;
1125 	struct dm_target *ti = tio->ti;
1126 
1127 	clone->bi_end_io = clone_endio;
1128 
1129 	/*
1130 	 * Map the clone.  If r == 0 we don't need to do
1131 	 * anything, the target has assumed ownership of
1132 	 * this io.
1133 	 */
1134 	dm_io_inc_pending(io);
1135 	sector = clone->bi_iter.bi_sector;
1136 
1137 	if (unlikely(swap_bios_limit(ti, clone))) {
1138 		struct mapped_device *md = io->md;
1139 		int latch = get_swap_bios();
1140 		if (unlikely(latch != md->swap_bios))
1141 			__set_swap_bios_limit(md, latch);
1142 		down(&md->swap_bios_semaphore);
1143 	}
1144 
1145 	/*
1146 	 * Check if the IO needs a special mapping due to zone append emulation
1147 	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1148 	 * map operation.
1149 	 */
1150 	if (dm_emulate_zone_append(io->md))
1151 		r = dm_zone_map_bio(tio);
1152 	else
1153 		r = ti->type->map(ti, clone);
1154 
1155 	switch (r) {
1156 	case DM_MAPIO_SUBMITTED:
1157 		break;
1158 	case DM_MAPIO_REMAPPED:
1159 		/* the bio has been remapped so dispatch it */
1160 		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1161 		submit_bio_noacct(clone);
1162 		break;
1163 	case DM_MAPIO_KILL:
1164 		if (unlikely(swap_bios_limit(ti, clone))) {
1165 			struct mapped_device *md = io->md;
1166 			up(&md->swap_bios_semaphore);
1167 		}
1168 		free_tio(clone);
1169 		dm_io_dec_pending(io, BLK_STS_IOERR);
1170 		break;
1171 	case DM_MAPIO_REQUEUE:
1172 		if (unlikely(swap_bios_limit(ti, clone))) {
1173 			struct mapped_device *md = io->md;
1174 			up(&md->swap_bios_semaphore);
1175 		}
1176 		free_tio(clone);
1177 		dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1178 		break;
1179 	default:
1180 		DMWARN("unimplemented target map return value: %d", r);
1181 		BUG();
1182 	}
1183 }
1184 
1185 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1186 {
1187 	bio->bi_iter.bi_sector = sector;
1188 	bio->bi_iter.bi_size = to_bytes(len);
1189 }
1190 
1191 /*
1192  * Creates a bio that consists of range of complete bvecs.
1193  */
1194 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1195 				    sector_t sector, unsigned *len)
1196 {
1197 	struct bio *bio = ci->bio, *clone;
1198 
1199 	clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1200 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1201 	clone->bi_iter.bi_size = to_bytes(*len);
1202 
1203 	if (bio_integrity(bio))
1204 		bio_integrity_trim(clone);
1205 
1206 	__map_bio(clone);
1207 	return 0;
1208 }
1209 
1210 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1211 				struct dm_target *ti, unsigned num_bios,
1212 				unsigned *len)
1213 {
1214 	struct bio *bio;
1215 	int try;
1216 
1217 	for (try = 0; try < 2; try++) {
1218 		int bio_nr;
1219 
1220 		if (try)
1221 			mutex_lock(&ci->io->md->table_devices_lock);
1222 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1223 			bio = alloc_tio(ci, ti, bio_nr, len,
1224 					try ? GFP_NOIO : GFP_NOWAIT);
1225 			if (!bio)
1226 				break;
1227 
1228 			bio_list_add(blist, bio);
1229 		}
1230 		if (try)
1231 			mutex_unlock(&ci->io->md->table_devices_lock);
1232 		if (bio_nr == num_bios)
1233 			return;
1234 
1235 		while ((bio = bio_list_pop(blist)))
1236 			free_tio(bio);
1237 	}
1238 }
1239 
1240 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1241 				  unsigned num_bios, unsigned *len)
1242 {
1243 	struct bio_list blist = BIO_EMPTY_LIST;
1244 	struct bio *clone;
1245 
1246 	switch (num_bios) {
1247 	case 0:
1248 		break;
1249 	case 1:
1250 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1251 		if (len)
1252 			bio_setup_sector(clone, ci->sector, *len);
1253 		__map_bio(clone);
1254 		break;
1255 	default:
1256 		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1257 		while ((clone = bio_list_pop(&blist))) {
1258 			if (len)
1259 				bio_setup_sector(clone, ci->sector, *len);
1260 			__map_bio(clone);
1261 		}
1262 		break;
1263 	}
1264 }
1265 
1266 static int __send_empty_flush(struct clone_info *ci)
1267 {
1268 	unsigned target_nr = 0;
1269 	struct dm_target *ti;
1270 	struct bio flush_bio;
1271 
1272 	/*
1273 	 * Use an on-stack bio for this, it's safe since we don't
1274 	 * need to reference it after submit. It's just used as
1275 	 * the basis for the clone(s).
1276 	 */
1277 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1278 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1279 
1280 	ci->bio = &flush_bio;
1281 	ci->sector_count = 0;
1282 
1283 	BUG_ON(bio_has_data(ci->bio));
1284 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1285 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1286 
1287 	bio_uninit(ci->bio);
1288 	return 0;
1289 }
1290 
1291 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1292 				       unsigned num_bios)
1293 {
1294 	unsigned len;
1295 
1296 	/*
1297 	 * Even though the device advertised support for this type of
1298 	 * request, that does not mean every target supports it, and
1299 	 * reconfiguration might also have changed that since the
1300 	 * check was performed.
1301 	 */
1302 	if (!num_bios)
1303 		return -EOPNOTSUPP;
1304 
1305 	len = min_t(sector_t, ci->sector_count,
1306 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1307 
1308 	__send_duplicate_bios(ci, ti, num_bios, &len);
1309 
1310 	ci->sector += len;
1311 	ci->sector_count -= len;
1312 
1313 	return 0;
1314 }
1315 
1316 static bool is_abnormal_io(struct bio *bio)
1317 {
1318 	bool r = false;
1319 
1320 	switch (bio_op(bio)) {
1321 	case REQ_OP_DISCARD:
1322 	case REQ_OP_SECURE_ERASE:
1323 	case REQ_OP_WRITE_SAME:
1324 	case REQ_OP_WRITE_ZEROES:
1325 		r = true;
1326 		break;
1327 	}
1328 
1329 	return r;
1330 }
1331 
1332 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1333 				  int *result)
1334 {
1335 	struct bio *bio = ci->bio;
1336 	unsigned num_bios = 0;
1337 
1338 	switch (bio_op(bio)) {
1339 	case REQ_OP_DISCARD:
1340 		num_bios = ti->num_discard_bios;
1341 		break;
1342 	case REQ_OP_SECURE_ERASE:
1343 		num_bios = ti->num_secure_erase_bios;
1344 		break;
1345 	case REQ_OP_WRITE_SAME:
1346 		num_bios = ti->num_write_same_bios;
1347 		break;
1348 	case REQ_OP_WRITE_ZEROES:
1349 		num_bios = ti->num_write_zeroes_bios;
1350 		break;
1351 	default:
1352 		return false;
1353 	}
1354 
1355 	*result = __send_changing_extent_only(ci, ti, num_bios);
1356 	return true;
1357 }
1358 
1359 /*
1360  * Select the correct strategy for processing a non-flush bio.
1361  */
1362 static int __split_and_process_non_flush(struct clone_info *ci)
1363 {
1364 	struct dm_target *ti;
1365 	unsigned len;
1366 	int r;
1367 
1368 	ti = dm_table_find_target(ci->map, ci->sector);
1369 	if (!ti)
1370 		return -EIO;
1371 
1372 	if (__process_abnormal_io(ci, ti, &r))
1373 		return r;
1374 
1375 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1376 
1377 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1378 	if (r < 0)
1379 		return r;
1380 
1381 	ci->sector += len;
1382 	ci->sector_count -= len;
1383 
1384 	return 0;
1385 }
1386 
1387 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1388 			    struct dm_table *map, struct bio *bio)
1389 {
1390 	ci->map = map;
1391 	ci->io = alloc_io(md, bio);
1392 	ci->sector = bio->bi_iter.bi_sector;
1393 }
1394 
1395 /*
1396  * Entry point to split a bio into clones and submit them to the targets.
1397  */
1398 static void __split_and_process_bio(struct mapped_device *md,
1399 					struct dm_table *map, struct bio *bio)
1400 {
1401 	struct clone_info ci;
1402 	int error = 0;
1403 
1404 	init_clone_info(&ci, md, map, bio);
1405 
1406 	if (bio->bi_opf & REQ_PREFLUSH) {
1407 		error = __send_empty_flush(&ci);
1408 		/* dm_io_dec_pending submits any data associated with flush */
1409 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1410 		ci.bio = bio;
1411 		ci.sector_count = 0;
1412 		error = __split_and_process_non_flush(&ci);
1413 	} else {
1414 		ci.bio = bio;
1415 		ci.sector_count = bio_sectors(bio);
1416 		error = __split_and_process_non_flush(&ci);
1417 		if (ci.sector_count && !error) {
1418 			/*
1419 			 * Remainder must be passed to submit_bio_noacct()
1420 			 * so that it gets handled *after* bios already submitted
1421 			 * have been completely processed.
1422 			 * We take a clone of the original to store in
1423 			 * ci.io->orig_bio to be used by end_io_acct() and
1424 			 * for dec_pending to use for completion handling.
1425 			 */
1426 			struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1427 						  GFP_NOIO, &md->queue->bio_split);
1428 			ci.io->orig_bio = b;
1429 
1430 			bio_chain(b, bio);
1431 			trace_block_split(b, bio->bi_iter.bi_sector);
1432 			submit_bio_noacct(bio);
1433 		}
1434 	}
1435 	start_io_acct(ci.io);
1436 
1437 	/* drop the extra reference count */
1438 	dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1439 }
1440 
1441 static void dm_submit_bio(struct bio *bio)
1442 {
1443 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1444 	int srcu_idx;
1445 	struct dm_table *map;
1446 
1447 	map = dm_get_live_table(md, &srcu_idx);
1448 	if (unlikely(!map)) {
1449 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1450 			    dm_device_name(md));
1451 		bio_io_error(bio);
1452 		goto out;
1453 	}
1454 
1455 	/* If suspended, queue this IO for later */
1456 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1457 		if (bio->bi_opf & REQ_NOWAIT)
1458 			bio_wouldblock_error(bio);
1459 		else if (bio->bi_opf & REQ_RAHEAD)
1460 			bio_io_error(bio);
1461 		else
1462 			queue_io(md, bio);
1463 		goto out;
1464 	}
1465 
1466 	/*
1467 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1468 	 * otherwise associated queue_limits won't be imposed.
1469 	 */
1470 	if (is_abnormal_io(bio))
1471 		blk_queue_split(&bio);
1472 
1473 	__split_and_process_bio(md, map, bio);
1474 out:
1475 	dm_put_live_table(md, srcu_idx);
1476 }
1477 
1478 /*-----------------------------------------------------------------
1479  * An IDR is used to keep track of allocated minor numbers.
1480  *---------------------------------------------------------------*/
1481 static void free_minor(int minor)
1482 {
1483 	spin_lock(&_minor_lock);
1484 	idr_remove(&_minor_idr, minor);
1485 	spin_unlock(&_minor_lock);
1486 }
1487 
1488 /*
1489  * See if the device with a specific minor # is free.
1490  */
1491 static int specific_minor(int minor)
1492 {
1493 	int r;
1494 
1495 	if (minor >= (1 << MINORBITS))
1496 		return -EINVAL;
1497 
1498 	idr_preload(GFP_KERNEL);
1499 	spin_lock(&_minor_lock);
1500 
1501 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1502 
1503 	spin_unlock(&_minor_lock);
1504 	idr_preload_end();
1505 	if (r < 0)
1506 		return r == -ENOSPC ? -EBUSY : r;
1507 	return 0;
1508 }
1509 
1510 static int next_free_minor(int *minor)
1511 {
1512 	int r;
1513 
1514 	idr_preload(GFP_KERNEL);
1515 	spin_lock(&_minor_lock);
1516 
1517 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1518 
1519 	spin_unlock(&_minor_lock);
1520 	idr_preload_end();
1521 	if (r < 0)
1522 		return r;
1523 	*minor = r;
1524 	return 0;
1525 }
1526 
1527 static const struct block_device_operations dm_blk_dops;
1528 static const struct block_device_operations dm_rq_blk_dops;
1529 static const struct dax_operations dm_dax_ops;
1530 
1531 static void dm_wq_work(struct work_struct *work);
1532 
1533 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1534 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1535 {
1536 	dm_destroy_crypto_profile(q->crypto_profile);
1537 }
1538 
1539 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1540 
1541 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1542 {
1543 }
1544 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1545 
1546 static void cleanup_mapped_device(struct mapped_device *md)
1547 {
1548 	if (md->wq)
1549 		destroy_workqueue(md->wq);
1550 	bioset_exit(&md->bs);
1551 	bioset_exit(&md->io_bs);
1552 
1553 	if (md->dax_dev) {
1554 		dax_remove_host(md->disk);
1555 		kill_dax(md->dax_dev);
1556 		put_dax(md->dax_dev);
1557 		md->dax_dev = NULL;
1558 	}
1559 
1560 	if (md->disk) {
1561 		spin_lock(&_minor_lock);
1562 		md->disk->private_data = NULL;
1563 		spin_unlock(&_minor_lock);
1564 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1565 			dm_sysfs_exit(md);
1566 			del_gendisk(md->disk);
1567 		}
1568 		dm_queue_destroy_crypto_profile(md->queue);
1569 		blk_cleanup_disk(md->disk);
1570 	}
1571 
1572 	cleanup_srcu_struct(&md->io_barrier);
1573 
1574 	mutex_destroy(&md->suspend_lock);
1575 	mutex_destroy(&md->type_lock);
1576 	mutex_destroy(&md->table_devices_lock);
1577 	mutex_destroy(&md->swap_bios_lock);
1578 
1579 	dm_mq_cleanup_mapped_device(md);
1580 	dm_cleanup_zoned_dev(md);
1581 }
1582 
1583 /*
1584  * Allocate and initialise a blank device with a given minor.
1585  */
1586 static struct mapped_device *alloc_dev(int minor)
1587 {
1588 	int r, numa_node_id = dm_get_numa_node();
1589 	struct mapped_device *md;
1590 	void *old_md;
1591 
1592 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1593 	if (!md) {
1594 		DMWARN("unable to allocate device, out of memory.");
1595 		return NULL;
1596 	}
1597 
1598 	if (!try_module_get(THIS_MODULE))
1599 		goto bad_module_get;
1600 
1601 	/* get a minor number for the dev */
1602 	if (minor == DM_ANY_MINOR)
1603 		r = next_free_minor(&minor);
1604 	else
1605 		r = specific_minor(minor);
1606 	if (r < 0)
1607 		goto bad_minor;
1608 
1609 	r = init_srcu_struct(&md->io_barrier);
1610 	if (r < 0)
1611 		goto bad_io_barrier;
1612 
1613 	md->numa_node_id = numa_node_id;
1614 	md->init_tio_pdu = false;
1615 	md->type = DM_TYPE_NONE;
1616 	mutex_init(&md->suspend_lock);
1617 	mutex_init(&md->type_lock);
1618 	mutex_init(&md->table_devices_lock);
1619 	spin_lock_init(&md->deferred_lock);
1620 	atomic_set(&md->holders, 1);
1621 	atomic_set(&md->open_count, 0);
1622 	atomic_set(&md->event_nr, 0);
1623 	atomic_set(&md->uevent_seq, 0);
1624 	INIT_LIST_HEAD(&md->uevent_list);
1625 	INIT_LIST_HEAD(&md->table_devices);
1626 	spin_lock_init(&md->uevent_lock);
1627 
1628 	/*
1629 	 * default to bio-based until DM table is loaded and md->type
1630 	 * established. If request-based table is loaded: blk-mq will
1631 	 * override accordingly.
1632 	 */
1633 	md->disk = blk_alloc_disk(md->numa_node_id);
1634 	if (!md->disk)
1635 		goto bad;
1636 	md->queue = md->disk->queue;
1637 
1638 	init_waitqueue_head(&md->wait);
1639 	INIT_WORK(&md->work, dm_wq_work);
1640 	init_waitqueue_head(&md->eventq);
1641 	init_completion(&md->kobj_holder.completion);
1642 
1643 	md->swap_bios = get_swap_bios();
1644 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1645 	mutex_init(&md->swap_bios_lock);
1646 
1647 	md->disk->major = _major;
1648 	md->disk->first_minor = minor;
1649 	md->disk->minors = 1;
1650 	md->disk->flags |= GENHD_FL_NO_PART;
1651 	md->disk->fops = &dm_blk_dops;
1652 	md->disk->queue = md->queue;
1653 	md->disk->private_data = md;
1654 	sprintf(md->disk->disk_name, "dm-%d", minor);
1655 
1656 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1657 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1658 		if (IS_ERR(md->dax_dev)) {
1659 			md->dax_dev = NULL;
1660 			goto bad;
1661 		}
1662 		set_dax_nocache(md->dax_dev);
1663 		set_dax_nomc(md->dax_dev);
1664 		if (dax_add_host(md->dax_dev, md->disk))
1665 			goto bad;
1666 	}
1667 
1668 	format_dev_t(md->name, MKDEV(_major, minor));
1669 
1670 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1671 	if (!md->wq)
1672 		goto bad;
1673 
1674 	dm_stats_init(&md->stats);
1675 
1676 	/* Populate the mapping, nobody knows we exist yet */
1677 	spin_lock(&_minor_lock);
1678 	old_md = idr_replace(&_minor_idr, md, minor);
1679 	spin_unlock(&_minor_lock);
1680 
1681 	BUG_ON(old_md != MINOR_ALLOCED);
1682 
1683 	return md;
1684 
1685 bad:
1686 	cleanup_mapped_device(md);
1687 bad_io_barrier:
1688 	free_minor(minor);
1689 bad_minor:
1690 	module_put(THIS_MODULE);
1691 bad_module_get:
1692 	kvfree(md);
1693 	return NULL;
1694 }
1695 
1696 static void unlock_fs(struct mapped_device *md);
1697 
1698 static void free_dev(struct mapped_device *md)
1699 {
1700 	int minor = MINOR(disk_devt(md->disk));
1701 
1702 	unlock_fs(md);
1703 
1704 	cleanup_mapped_device(md);
1705 
1706 	free_table_devices(&md->table_devices);
1707 	dm_stats_cleanup(&md->stats);
1708 	free_minor(minor);
1709 
1710 	module_put(THIS_MODULE);
1711 	kvfree(md);
1712 }
1713 
1714 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1715 {
1716 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1717 	int ret = 0;
1718 
1719 	if (dm_table_bio_based(t)) {
1720 		/*
1721 		 * The md may already have mempools that need changing.
1722 		 * If so, reload bioset because front_pad may have changed
1723 		 * because a different table was loaded.
1724 		 */
1725 		bioset_exit(&md->bs);
1726 		bioset_exit(&md->io_bs);
1727 
1728 	} else if (bioset_initialized(&md->bs)) {
1729 		/*
1730 		 * There's no need to reload with request-based dm
1731 		 * because the size of front_pad doesn't change.
1732 		 * Note for future: If you are to reload bioset,
1733 		 * prep-ed requests in the queue may refer
1734 		 * to bio from the old bioset, so you must walk
1735 		 * through the queue to unprep.
1736 		 */
1737 		goto out;
1738 	}
1739 
1740 	BUG_ON(!p ||
1741 	       bioset_initialized(&md->bs) ||
1742 	       bioset_initialized(&md->io_bs));
1743 
1744 	ret = bioset_init_from_src(&md->bs, &p->bs);
1745 	if (ret)
1746 		goto out;
1747 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1748 	if (ret)
1749 		bioset_exit(&md->bs);
1750 out:
1751 	/* mempool bind completed, no longer need any mempools in the table */
1752 	dm_table_free_md_mempools(t);
1753 	return ret;
1754 }
1755 
1756 /*
1757  * Bind a table to the device.
1758  */
1759 static void event_callback(void *context)
1760 {
1761 	unsigned long flags;
1762 	LIST_HEAD(uevents);
1763 	struct mapped_device *md = (struct mapped_device *) context;
1764 
1765 	spin_lock_irqsave(&md->uevent_lock, flags);
1766 	list_splice_init(&md->uevent_list, &uevents);
1767 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1768 
1769 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1770 
1771 	atomic_inc(&md->event_nr);
1772 	wake_up(&md->eventq);
1773 	dm_issue_global_event();
1774 }
1775 
1776 /*
1777  * Returns old map, which caller must destroy.
1778  */
1779 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1780 			       struct queue_limits *limits)
1781 {
1782 	struct dm_table *old_map;
1783 	struct request_queue *q = md->queue;
1784 	bool request_based = dm_table_request_based(t);
1785 	sector_t size;
1786 	int ret;
1787 
1788 	lockdep_assert_held(&md->suspend_lock);
1789 
1790 	size = dm_table_get_size(t);
1791 
1792 	/*
1793 	 * Wipe any geometry if the size of the table changed.
1794 	 */
1795 	if (size != dm_get_size(md))
1796 		memset(&md->geometry, 0, sizeof(md->geometry));
1797 
1798 	if (!get_capacity(md->disk))
1799 		set_capacity(md->disk, size);
1800 	else
1801 		set_capacity_and_notify(md->disk, size);
1802 
1803 	dm_table_event_callback(t, event_callback, md);
1804 
1805 	if (request_based) {
1806 		/*
1807 		 * Leverage the fact that request-based DM targets are
1808 		 * immutable singletons - used to optimize dm_mq_queue_rq.
1809 		 */
1810 		md->immutable_target = dm_table_get_immutable_target(t);
1811 	}
1812 
1813 	ret = __bind_mempools(md, t);
1814 	if (ret) {
1815 		old_map = ERR_PTR(ret);
1816 		goto out;
1817 	}
1818 
1819 	ret = dm_table_set_restrictions(t, q, limits);
1820 	if (ret) {
1821 		old_map = ERR_PTR(ret);
1822 		goto out;
1823 	}
1824 
1825 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1826 	rcu_assign_pointer(md->map, (void *)t);
1827 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1828 
1829 	if (old_map)
1830 		dm_sync_table(md);
1831 
1832 out:
1833 	return old_map;
1834 }
1835 
1836 /*
1837  * Returns unbound table for the caller to free.
1838  */
1839 static struct dm_table *__unbind(struct mapped_device *md)
1840 {
1841 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1842 
1843 	if (!map)
1844 		return NULL;
1845 
1846 	dm_table_event_callback(map, NULL, NULL);
1847 	RCU_INIT_POINTER(md->map, NULL);
1848 	dm_sync_table(md);
1849 
1850 	return map;
1851 }
1852 
1853 /*
1854  * Constructor for a new device.
1855  */
1856 int dm_create(int minor, struct mapped_device **result)
1857 {
1858 	struct mapped_device *md;
1859 
1860 	md = alloc_dev(minor);
1861 	if (!md)
1862 		return -ENXIO;
1863 
1864 	dm_ima_reset_data(md);
1865 
1866 	*result = md;
1867 	return 0;
1868 }
1869 
1870 /*
1871  * Functions to manage md->type.
1872  * All are required to hold md->type_lock.
1873  */
1874 void dm_lock_md_type(struct mapped_device *md)
1875 {
1876 	mutex_lock(&md->type_lock);
1877 }
1878 
1879 void dm_unlock_md_type(struct mapped_device *md)
1880 {
1881 	mutex_unlock(&md->type_lock);
1882 }
1883 
1884 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1885 {
1886 	BUG_ON(!mutex_is_locked(&md->type_lock));
1887 	md->type = type;
1888 }
1889 
1890 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1891 {
1892 	return md->type;
1893 }
1894 
1895 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1896 {
1897 	return md->immutable_target_type;
1898 }
1899 
1900 /*
1901  * The queue_limits are only valid as long as you have a reference
1902  * count on 'md'.
1903  */
1904 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1905 {
1906 	BUG_ON(!atomic_read(&md->holders));
1907 	return &md->queue->limits;
1908 }
1909 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1910 
1911 /*
1912  * Setup the DM device's queue based on md's type
1913  */
1914 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1915 {
1916 	enum dm_queue_mode type = dm_table_get_type(t);
1917 	struct queue_limits limits;
1918 	int r;
1919 
1920 	switch (type) {
1921 	case DM_TYPE_REQUEST_BASED:
1922 		md->disk->fops = &dm_rq_blk_dops;
1923 		r = dm_mq_init_request_queue(md, t);
1924 		if (r) {
1925 			DMERR("Cannot initialize queue for request-based dm mapped device");
1926 			return r;
1927 		}
1928 		break;
1929 	case DM_TYPE_BIO_BASED:
1930 	case DM_TYPE_DAX_BIO_BASED:
1931 		break;
1932 	case DM_TYPE_NONE:
1933 		WARN_ON_ONCE(true);
1934 		break;
1935 	}
1936 
1937 	r = dm_calculate_queue_limits(t, &limits);
1938 	if (r) {
1939 		DMERR("Cannot calculate initial queue limits");
1940 		return r;
1941 	}
1942 	r = dm_table_set_restrictions(t, md->queue, &limits);
1943 	if (r)
1944 		return r;
1945 
1946 	r = add_disk(md->disk);
1947 	if (r)
1948 		return r;
1949 
1950 	r = dm_sysfs_init(md);
1951 	if (r) {
1952 		del_gendisk(md->disk);
1953 		return r;
1954 	}
1955 	md->type = type;
1956 	return 0;
1957 }
1958 
1959 struct mapped_device *dm_get_md(dev_t dev)
1960 {
1961 	struct mapped_device *md;
1962 	unsigned minor = MINOR(dev);
1963 
1964 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1965 		return NULL;
1966 
1967 	spin_lock(&_minor_lock);
1968 
1969 	md = idr_find(&_minor_idr, minor);
1970 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
1971 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
1972 		md = NULL;
1973 		goto out;
1974 	}
1975 	dm_get(md);
1976 out:
1977 	spin_unlock(&_minor_lock);
1978 
1979 	return md;
1980 }
1981 EXPORT_SYMBOL_GPL(dm_get_md);
1982 
1983 void *dm_get_mdptr(struct mapped_device *md)
1984 {
1985 	return md->interface_ptr;
1986 }
1987 
1988 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1989 {
1990 	md->interface_ptr = ptr;
1991 }
1992 
1993 void dm_get(struct mapped_device *md)
1994 {
1995 	atomic_inc(&md->holders);
1996 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1997 }
1998 
1999 int dm_hold(struct mapped_device *md)
2000 {
2001 	spin_lock(&_minor_lock);
2002 	if (test_bit(DMF_FREEING, &md->flags)) {
2003 		spin_unlock(&_minor_lock);
2004 		return -EBUSY;
2005 	}
2006 	dm_get(md);
2007 	spin_unlock(&_minor_lock);
2008 	return 0;
2009 }
2010 EXPORT_SYMBOL_GPL(dm_hold);
2011 
2012 const char *dm_device_name(struct mapped_device *md)
2013 {
2014 	return md->name;
2015 }
2016 EXPORT_SYMBOL_GPL(dm_device_name);
2017 
2018 static void __dm_destroy(struct mapped_device *md, bool wait)
2019 {
2020 	struct dm_table *map;
2021 	int srcu_idx;
2022 
2023 	might_sleep();
2024 
2025 	spin_lock(&_minor_lock);
2026 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2027 	set_bit(DMF_FREEING, &md->flags);
2028 	spin_unlock(&_minor_lock);
2029 
2030 	blk_mark_disk_dead(md->disk);
2031 
2032 	/*
2033 	 * Take suspend_lock so that presuspend and postsuspend methods
2034 	 * do not race with internal suspend.
2035 	 */
2036 	mutex_lock(&md->suspend_lock);
2037 	map = dm_get_live_table(md, &srcu_idx);
2038 	if (!dm_suspended_md(md)) {
2039 		dm_table_presuspend_targets(map);
2040 		set_bit(DMF_SUSPENDED, &md->flags);
2041 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2042 		dm_table_postsuspend_targets(map);
2043 	}
2044 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2045 	dm_put_live_table(md, srcu_idx);
2046 	mutex_unlock(&md->suspend_lock);
2047 
2048 	/*
2049 	 * Rare, but there may be I/O requests still going to complete,
2050 	 * for example.  Wait for all references to disappear.
2051 	 * No one should increment the reference count of the mapped_device,
2052 	 * after the mapped_device state becomes DMF_FREEING.
2053 	 */
2054 	if (wait)
2055 		while (atomic_read(&md->holders))
2056 			msleep(1);
2057 	else if (atomic_read(&md->holders))
2058 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2059 		       dm_device_name(md), atomic_read(&md->holders));
2060 
2061 	dm_table_destroy(__unbind(md));
2062 	free_dev(md);
2063 }
2064 
2065 void dm_destroy(struct mapped_device *md)
2066 {
2067 	__dm_destroy(md, true);
2068 }
2069 
2070 void dm_destroy_immediate(struct mapped_device *md)
2071 {
2072 	__dm_destroy(md, false);
2073 }
2074 
2075 void dm_put(struct mapped_device *md)
2076 {
2077 	atomic_dec(&md->holders);
2078 }
2079 EXPORT_SYMBOL_GPL(dm_put);
2080 
2081 static bool md_in_flight_bios(struct mapped_device *md)
2082 {
2083 	int cpu;
2084 	struct block_device *part = dm_disk(md)->part0;
2085 	long sum = 0;
2086 
2087 	for_each_possible_cpu(cpu) {
2088 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2089 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2090 	}
2091 
2092 	return sum != 0;
2093 }
2094 
2095 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2096 {
2097 	int r = 0;
2098 	DEFINE_WAIT(wait);
2099 
2100 	while (true) {
2101 		prepare_to_wait(&md->wait, &wait, task_state);
2102 
2103 		if (!md_in_flight_bios(md))
2104 			break;
2105 
2106 		if (signal_pending_state(task_state, current)) {
2107 			r = -EINTR;
2108 			break;
2109 		}
2110 
2111 		io_schedule();
2112 	}
2113 	finish_wait(&md->wait, &wait);
2114 
2115 	return r;
2116 }
2117 
2118 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2119 {
2120 	int r = 0;
2121 
2122 	if (!queue_is_mq(md->queue))
2123 		return dm_wait_for_bios_completion(md, task_state);
2124 
2125 	while (true) {
2126 		if (!blk_mq_queue_inflight(md->queue))
2127 			break;
2128 
2129 		if (signal_pending_state(task_state, current)) {
2130 			r = -EINTR;
2131 			break;
2132 		}
2133 
2134 		msleep(5);
2135 	}
2136 
2137 	return r;
2138 }
2139 
2140 /*
2141  * Process the deferred bios
2142  */
2143 static void dm_wq_work(struct work_struct *work)
2144 {
2145 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2146 	struct bio *bio;
2147 
2148 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2149 		spin_lock_irq(&md->deferred_lock);
2150 		bio = bio_list_pop(&md->deferred);
2151 		spin_unlock_irq(&md->deferred_lock);
2152 
2153 		if (!bio)
2154 			break;
2155 
2156 		submit_bio_noacct(bio);
2157 	}
2158 }
2159 
2160 static void dm_queue_flush(struct mapped_device *md)
2161 {
2162 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2163 	smp_mb__after_atomic();
2164 	queue_work(md->wq, &md->work);
2165 }
2166 
2167 /*
2168  * Swap in a new table, returning the old one for the caller to destroy.
2169  */
2170 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2171 {
2172 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2173 	struct queue_limits limits;
2174 	int r;
2175 
2176 	mutex_lock(&md->suspend_lock);
2177 
2178 	/* device must be suspended */
2179 	if (!dm_suspended_md(md))
2180 		goto out;
2181 
2182 	/*
2183 	 * If the new table has no data devices, retain the existing limits.
2184 	 * This helps multipath with queue_if_no_path if all paths disappear,
2185 	 * then new I/O is queued based on these limits, and then some paths
2186 	 * reappear.
2187 	 */
2188 	if (dm_table_has_no_data_devices(table)) {
2189 		live_map = dm_get_live_table_fast(md);
2190 		if (live_map)
2191 			limits = md->queue->limits;
2192 		dm_put_live_table_fast(md);
2193 	}
2194 
2195 	if (!live_map) {
2196 		r = dm_calculate_queue_limits(table, &limits);
2197 		if (r) {
2198 			map = ERR_PTR(r);
2199 			goto out;
2200 		}
2201 	}
2202 
2203 	map = __bind(md, table, &limits);
2204 	dm_issue_global_event();
2205 
2206 out:
2207 	mutex_unlock(&md->suspend_lock);
2208 	return map;
2209 }
2210 
2211 /*
2212  * Functions to lock and unlock any filesystem running on the
2213  * device.
2214  */
2215 static int lock_fs(struct mapped_device *md)
2216 {
2217 	int r;
2218 
2219 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2220 
2221 	r = freeze_bdev(md->disk->part0);
2222 	if (!r)
2223 		set_bit(DMF_FROZEN, &md->flags);
2224 	return r;
2225 }
2226 
2227 static void unlock_fs(struct mapped_device *md)
2228 {
2229 	if (!test_bit(DMF_FROZEN, &md->flags))
2230 		return;
2231 	thaw_bdev(md->disk->part0);
2232 	clear_bit(DMF_FROZEN, &md->flags);
2233 }
2234 
2235 /*
2236  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2237  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2238  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2239  *
2240  * If __dm_suspend returns 0, the device is completely quiescent
2241  * now. There is no request-processing activity. All new requests
2242  * are being added to md->deferred list.
2243  */
2244 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2245 			unsigned suspend_flags, unsigned int task_state,
2246 			int dmf_suspended_flag)
2247 {
2248 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2249 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2250 	int r;
2251 
2252 	lockdep_assert_held(&md->suspend_lock);
2253 
2254 	/*
2255 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2256 	 * This flag is cleared before dm_suspend returns.
2257 	 */
2258 	if (noflush)
2259 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2260 	else
2261 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2262 
2263 	/*
2264 	 * This gets reverted if there's an error later and the targets
2265 	 * provide the .presuspend_undo hook.
2266 	 */
2267 	dm_table_presuspend_targets(map);
2268 
2269 	/*
2270 	 * Flush I/O to the device.
2271 	 * Any I/O submitted after lock_fs() may not be flushed.
2272 	 * noflush takes precedence over do_lockfs.
2273 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2274 	 */
2275 	if (!noflush && do_lockfs) {
2276 		r = lock_fs(md);
2277 		if (r) {
2278 			dm_table_presuspend_undo_targets(map);
2279 			return r;
2280 		}
2281 	}
2282 
2283 	/*
2284 	 * Here we must make sure that no processes are submitting requests
2285 	 * to target drivers i.e. no one may be executing
2286 	 * __split_and_process_bio from dm_submit_bio.
2287 	 *
2288 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2289 	 * we take the write lock. To prevent any process from reentering
2290 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2291 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2292 	 * flush_workqueue(md->wq).
2293 	 */
2294 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2295 	if (map)
2296 		synchronize_srcu(&md->io_barrier);
2297 
2298 	/*
2299 	 * Stop md->queue before flushing md->wq in case request-based
2300 	 * dm defers requests to md->wq from md->queue.
2301 	 */
2302 	if (dm_request_based(md))
2303 		dm_stop_queue(md->queue);
2304 
2305 	flush_workqueue(md->wq);
2306 
2307 	/*
2308 	 * At this point no more requests are entering target request routines.
2309 	 * We call dm_wait_for_completion to wait for all existing requests
2310 	 * to finish.
2311 	 */
2312 	r = dm_wait_for_completion(md, task_state);
2313 	if (!r)
2314 		set_bit(dmf_suspended_flag, &md->flags);
2315 
2316 	if (noflush)
2317 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2318 	if (map)
2319 		synchronize_srcu(&md->io_barrier);
2320 
2321 	/* were we interrupted ? */
2322 	if (r < 0) {
2323 		dm_queue_flush(md);
2324 
2325 		if (dm_request_based(md))
2326 			dm_start_queue(md->queue);
2327 
2328 		unlock_fs(md);
2329 		dm_table_presuspend_undo_targets(map);
2330 		/* pushback list is already flushed, so skip flush */
2331 	}
2332 
2333 	return r;
2334 }
2335 
2336 /*
2337  * We need to be able to change a mapping table under a mounted
2338  * filesystem.  For example we might want to move some data in
2339  * the background.  Before the table can be swapped with
2340  * dm_bind_table, dm_suspend must be called to flush any in
2341  * flight bios and ensure that any further io gets deferred.
2342  */
2343 /*
2344  * Suspend mechanism in request-based dm.
2345  *
2346  * 1. Flush all I/Os by lock_fs() if needed.
2347  * 2. Stop dispatching any I/O by stopping the request_queue.
2348  * 3. Wait for all in-flight I/Os to be completed or requeued.
2349  *
2350  * To abort suspend, start the request_queue.
2351  */
2352 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2353 {
2354 	struct dm_table *map = NULL;
2355 	int r = 0;
2356 
2357 retry:
2358 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2359 
2360 	if (dm_suspended_md(md)) {
2361 		r = -EINVAL;
2362 		goto out_unlock;
2363 	}
2364 
2365 	if (dm_suspended_internally_md(md)) {
2366 		/* already internally suspended, wait for internal resume */
2367 		mutex_unlock(&md->suspend_lock);
2368 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2369 		if (r)
2370 			return r;
2371 		goto retry;
2372 	}
2373 
2374 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2375 
2376 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2377 	if (r)
2378 		goto out_unlock;
2379 
2380 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2381 	dm_table_postsuspend_targets(map);
2382 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2383 
2384 out_unlock:
2385 	mutex_unlock(&md->suspend_lock);
2386 	return r;
2387 }
2388 
2389 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2390 {
2391 	if (map) {
2392 		int r = dm_table_resume_targets(map);
2393 		if (r)
2394 			return r;
2395 	}
2396 
2397 	dm_queue_flush(md);
2398 
2399 	/*
2400 	 * Flushing deferred I/Os must be done after targets are resumed
2401 	 * so that mapping of targets can work correctly.
2402 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2403 	 */
2404 	if (dm_request_based(md))
2405 		dm_start_queue(md->queue);
2406 
2407 	unlock_fs(md);
2408 
2409 	return 0;
2410 }
2411 
2412 int dm_resume(struct mapped_device *md)
2413 {
2414 	int r;
2415 	struct dm_table *map = NULL;
2416 
2417 retry:
2418 	r = -EINVAL;
2419 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2420 
2421 	if (!dm_suspended_md(md))
2422 		goto out;
2423 
2424 	if (dm_suspended_internally_md(md)) {
2425 		/* already internally suspended, wait for internal resume */
2426 		mutex_unlock(&md->suspend_lock);
2427 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2428 		if (r)
2429 			return r;
2430 		goto retry;
2431 	}
2432 
2433 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2434 	if (!map || !dm_table_get_size(map))
2435 		goto out;
2436 
2437 	r = __dm_resume(md, map);
2438 	if (r)
2439 		goto out;
2440 
2441 	clear_bit(DMF_SUSPENDED, &md->flags);
2442 out:
2443 	mutex_unlock(&md->suspend_lock);
2444 
2445 	return r;
2446 }
2447 
2448 /*
2449  * Internal suspend/resume works like userspace-driven suspend. It waits
2450  * until all bios finish and prevents issuing new bios to the target drivers.
2451  * It may be used only from the kernel.
2452  */
2453 
2454 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2455 {
2456 	struct dm_table *map = NULL;
2457 
2458 	lockdep_assert_held(&md->suspend_lock);
2459 
2460 	if (md->internal_suspend_count++)
2461 		return; /* nested internal suspend */
2462 
2463 	if (dm_suspended_md(md)) {
2464 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2465 		return; /* nest suspend */
2466 	}
2467 
2468 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2469 
2470 	/*
2471 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2472 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2473 	 * would require changing .presuspend to return an error -- avoid this
2474 	 * until there is a need for more elaborate variants of internal suspend.
2475 	 */
2476 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2477 			    DMF_SUSPENDED_INTERNALLY);
2478 
2479 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2480 	dm_table_postsuspend_targets(map);
2481 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2482 }
2483 
2484 static void __dm_internal_resume(struct mapped_device *md)
2485 {
2486 	BUG_ON(!md->internal_suspend_count);
2487 
2488 	if (--md->internal_suspend_count)
2489 		return; /* resume from nested internal suspend */
2490 
2491 	if (dm_suspended_md(md))
2492 		goto done; /* resume from nested suspend */
2493 
2494 	/*
2495 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2496 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2497 	 */
2498 	(void) __dm_resume(md, NULL);
2499 
2500 done:
2501 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2502 	smp_mb__after_atomic();
2503 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2504 }
2505 
2506 void dm_internal_suspend_noflush(struct mapped_device *md)
2507 {
2508 	mutex_lock(&md->suspend_lock);
2509 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2510 	mutex_unlock(&md->suspend_lock);
2511 }
2512 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2513 
2514 void dm_internal_resume(struct mapped_device *md)
2515 {
2516 	mutex_lock(&md->suspend_lock);
2517 	__dm_internal_resume(md);
2518 	mutex_unlock(&md->suspend_lock);
2519 }
2520 EXPORT_SYMBOL_GPL(dm_internal_resume);
2521 
2522 /*
2523  * Fast variants of internal suspend/resume hold md->suspend_lock,
2524  * which prevents interaction with userspace-driven suspend.
2525  */
2526 
2527 void dm_internal_suspend_fast(struct mapped_device *md)
2528 {
2529 	mutex_lock(&md->suspend_lock);
2530 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2531 		return;
2532 
2533 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2534 	synchronize_srcu(&md->io_barrier);
2535 	flush_workqueue(md->wq);
2536 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2537 }
2538 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2539 
2540 void dm_internal_resume_fast(struct mapped_device *md)
2541 {
2542 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2543 		goto done;
2544 
2545 	dm_queue_flush(md);
2546 
2547 done:
2548 	mutex_unlock(&md->suspend_lock);
2549 }
2550 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2551 
2552 /*-----------------------------------------------------------------
2553  * Event notification.
2554  *---------------------------------------------------------------*/
2555 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2556 		       unsigned cookie)
2557 {
2558 	int r;
2559 	unsigned noio_flag;
2560 	char udev_cookie[DM_COOKIE_LENGTH];
2561 	char *envp[] = { udev_cookie, NULL };
2562 
2563 	noio_flag = memalloc_noio_save();
2564 
2565 	if (!cookie)
2566 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2567 	else {
2568 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2569 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2570 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2571 				       action, envp);
2572 	}
2573 
2574 	memalloc_noio_restore(noio_flag);
2575 
2576 	return r;
2577 }
2578 
2579 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2580 {
2581 	return atomic_add_return(1, &md->uevent_seq);
2582 }
2583 
2584 uint32_t dm_get_event_nr(struct mapped_device *md)
2585 {
2586 	return atomic_read(&md->event_nr);
2587 }
2588 
2589 int dm_wait_event(struct mapped_device *md, int event_nr)
2590 {
2591 	return wait_event_interruptible(md->eventq,
2592 			(event_nr != atomic_read(&md->event_nr)));
2593 }
2594 
2595 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2596 {
2597 	unsigned long flags;
2598 
2599 	spin_lock_irqsave(&md->uevent_lock, flags);
2600 	list_add(elist, &md->uevent_list);
2601 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2602 }
2603 
2604 /*
2605  * The gendisk is only valid as long as you have a reference
2606  * count on 'md'.
2607  */
2608 struct gendisk *dm_disk(struct mapped_device *md)
2609 {
2610 	return md->disk;
2611 }
2612 EXPORT_SYMBOL_GPL(dm_disk);
2613 
2614 struct kobject *dm_kobject(struct mapped_device *md)
2615 {
2616 	return &md->kobj_holder.kobj;
2617 }
2618 
2619 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2620 {
2621 	struct mapped_device *md;
2622 
2623 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2624 
2625 	spin_lock(&_minor_lock);
2626 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2627 		md = NULL;
2628 		goto out;
2629 	}
2630 	dm_get(md);
2631 out:
2632 	spin_unlock(&_minor_lock);
2633 
2634 	return md;
2635 }
2636 
2637 int dm_suspended_md(struct mapped_device *md)
2638 {
2639 	return test_bit(DMF_SUSPENDED, &md->flags);
2640 }
2641 
2642 static int dm_post_suspending_md(struct mapped_device *md)
2643 {
2644 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2645 }
2646 
2647 int dm_suspended_internally_md(struct mapped_device *md)
2648 {
2649 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2650 }
2651 
2652 int dm_test_deferred_remove_flag(struct mapped_device *md)
2653 {
2654 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2655 }
2656 
2657 int dm_suspended(struct dm_target *ti)
2658 {
2659 	return dm_suspended_md(ti->table->md);
2660 }
2661 EXPORT_SYMBOL_GPL(dm_suspended);
2662 
2663 int dm_post_suspending(struct dm_target *ti)
2664 {
2665 	return dm_post_suspending_md(ti->table->md);
2666 }
2667 EXPORT_SYMBOL_GPL(dm_post_suspending);
2668 
2669 int dm_noflush_suspending(struct dm_target *ti)
2670 {
2671 	return __noflush_suspending(ti->table->md);
2672 }
2673 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2674 
2675 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2676 					    unsigned integrity, unsigned per_io_data_size,
2677 					    unsigned min_pool_size)
2678 {
2679 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2680 	unsigned int pool_size = 0;
2681 	unsigned int front_pad, io_front_pad;
2682 	int ret;
2683 
2684 	if (!pools)
2685 		return NULL;
2686 
2687 	switch (type) {
2688 	case DM_TYPE_BIO_BASED:
2689 	case DM_TYPE_DAX_BIO_BASED:
2690 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2691 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2692 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2693 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2694 		if (ret)
2695 			goto out;
2696 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2697 			goto out;
2698 		break;
2699 	case DM_TYPE_REQUEST_BASED:
2700 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2701 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2702 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2703 		break;
2704 	default:
2705 		BUG();
2706 	}
2707 
2708 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2709 	if (ret)
2710 		goto out;
2711 
2712 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2713 		goto out;
2714 
2715 	return pools;
2716 
2717 out:
2718 	dm_free_md_mempools(pools);
2719 
2720 	return NULL;
2721 }
2722 
2723 void dm_free_md_mempools(struct dm_md_mempools *pools)
2724 {
2725 	if (!pools)
2726 		return;
2727 
2728 	bioset_exit(&pools->bs);
2729 	bioset_exit(&pools->io_bs);
2730 
2731 	kfree(pools);
2732 }
2733 
2734 struct dm_pr {
2735 	u64	old_key;
2736 	u64	new_key;
2737 	u32	flags;
2738 	bool	fail_early;
2739 };
2740 
2741 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2742 		      void *data)
2743 {
2744 	struct mapped_device *md = bdev->bd_disk->private_data;
2745 	struct dm_table *table;
2746 	struct dm_target *ti;
2747 	int ret = -ENOTTY, srcu_idx;
2748 
2749 	table = dm_get_live_table(md, &srcu_idx);
2750 	if (!table || !dm_table_get_size(table))
2751 		goto out;
2752 
2753 	/* We only support devices that have a single target */
2754 	if (dm_table_get_num_targets(table) != 1)
2755 		goto out;
2756 	ti = dm_table_get_target(table, 0);
2757 
2758 	ret = -EINVAL;
2759 	if (!ti->type->iterate_devices)
2760 		goto out;
2761 
2762 	ret = ti->type->iterate_devices(ti, fn, data);
2763 out:
2764 	dm_put_live_table(md, srcu_idx);
2765 	return ret;
2766 }
2767 
2768 /*
2769  * For register / unregister we need to manually call out to every path.
2770  */
2771 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2772 			    sector_t start, sector_t len, void *data)
2773 {
2774 	struct dm_pr *pr = data;
2775 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2776 
2777 	if (!ops || !ops->pr_register)
2778 		return -EOPNOTSUPP;
2779 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2780 }
2781 
2782 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2783 			  u32 flags)
2784 {
2785 	struct dm_pr pr = {
2786 		.old_key	= old_key,
2787 		.new_key	= new_key,
2788 		.flags		= flags,
2789 		.fail_early	= true,
2790 	};
2791 	int ret;
2792 
2793 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2794 	if (ret && new_key) {
2795 		/* unregister all paths if we failed to register any path */
2796 		pr.old_key = new_key;
2797 		pr.new_key = 0;
2798 		pr.flags = 0;
2799 		pr.fail_early = false;
2800 		dm_call_pr(bdev, __dm_pr_register, &pr);
2801 	}
2802 
2803 	return ret;
2804 }
2805 
2806 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2807 			 u32 flags)
2808 {
2809 	struct mapped_device *md = bdev->bd_disk->private_data;
2810 	const struct pr_ops *ops;
2811 	int r, srcu_idx;
2812 
2813 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2814 	if (r < 0)
2815 		goto out;
2816 
2817 	ops = bdev->bd_disk->fops->pr_ops;
2818 	if (ops && ops->pr_reserve)
2819 		r = ops->pr_reserve(bdev, key, type, flags);
2820 	else
2821 		r = -EOPNOTSUPP;
2822 out:
2823 	dm_unprepare_ioctl(md, srcu_idx);
2824 	return r;
2825 }
2826 
2827 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2828 {
2829 	struct mapped_device *md = bdev->bd_disk->private_data;
2830 	const struct pr_ops *ops;
2831 	int r, srcu_idx;
2832 
2833 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2834 	if (r < 0)
2835 		goto out;
2836 
2837 	ops = bdev->bd_disk->fops->pr_ops;
2838 	if (ops && ops->pr_release)
2839 		r = ops->pr_release(bdev, key, type);
2840 	else
2841 		r = -EOPNOTSUPP;
2842 out:
2843 	dm_unprepare_ioctl(md, srcu_idx);
2844 	return r;
2845 }
2846 
2847 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2848 			 enum pr_type type, bool abort)
2849 {
2850 	struct mapped_device *md = bdev->bd_disk->private_data;
2851 	const struct pr_ops *ops;
2852 	int r, srcu_idx;
2853 
2854 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2855 	if (r < 0)
2856 		goto out;
2857 
2858 	ops = bdev->bd_disk->fops->pr_ops;
2859 	if (ops && ops->pr_preempt)
2860 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2861 	else
2862 		r = -EOPNOTSUPP;
2863 out:
2864 	dm_unprepare_ioctl(md, srcu_idx);
2865 	return r;
2866 }
2867 
2868 static int dm_pr_clear(struct block_device *bdev, u64 key)
2869 {
2870 	struct mapped_device *md = bdev->bd_disk->private_data;
2871 	const struct pr_ops *ops;
2872 	int r, srcu_idx;
2873 
2874 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2875 	if (r < 0)
2876 		goto out;
2877 
2878 	ops = bdev->bd_disk->fops->pr_ops;
2879 	if (ops && ops->pr_clear)
2880 		r = ops->pr_clear(bdev, key);
2881 	else
2882 		r = -EOPNOTSUPP;
2883 out:
2884 	dm_unprepare_ioctl(md, srcu_idx);
2885 	return r;
2886 }
2887 
2888 static const struct pr_ops dm_pr_ops = {
2889 	.pr_register	= dm_pr_register,
2890 	.pr_reserve	= dm_pr_reserve,
2891 	.pr_release	= dm_pr_release,
2892 	.pr_preempt	= dm_pr_preempt,
2893 	.pr_clear	= dm_pr_clear,
2894 };
2895 
2896 static const struct block_device_operations dm_blk_dops = {
2897 	.submit_bio = dm_submit_bio,
2898 	.open = dm_blk_open,
2899 	.release = dm_blk_close,
2900 	.ioctl = dm_blk_ioctl,
2901 	.getgeo = dm_blk_getgeo,
2902 	.report_zones = dm_blk_report_zones,
2903 	.pr_ops = &dm_pr_ops,
2904 	.owner = THIS_MODULE
2905 };
2906 
2907 static const struct block_device_operations dm_rq_blk_dops = {
2908 	.open = dm_blk_open,
2909 	.release = dm_blk_close,
2910 	.ioctl = dm_blk_ioctl,
2911 	.getgeo = dm_blk_getgeo,
2912 	.pr_ops = &dm_pr_ops,
2913 	.owner = THIS_MODULE
2914 };
2915 
2916 static const struct dax_operations dm_dax_ops = {
2917 	.direct_access = dm_dax_direct_access,
2918 	.zero_page_range = dm_dax_zero_page_range,
2919 };
2920 
2921 /*
2922  * module hooks
2923  */
2924 module_init(dm_init);
2925 module_exit(dm_exit);
2926 
2927 module_param(major, uint, 0);
2928 MODULE_PARM_DESC(major, "The major number of the device mapper");
2929 
2930 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2931 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2932 
2933 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2934 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2935 
2936 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
2937 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
2938 
2939 MODULE_DESCRIPTION(DM_NAME " driver");
2940 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2941 MODULE_LICENSE("GPL");
2942