1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 static const char *_name = DM_NAME; 44 45 static unsigned int major = 0; 46 static unsigned int _major = 0; 47 48 static DEFINE_IDR(_minor_idr); 49 50 static DEFINE_SPINLOCK(_minor_lock); 51 52 static void do_deferred_remove(struct work_struct *w); 53 54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 55 56 static struct workqueue_struct *deferred_remove_workqueue; 57 58 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 60 61 void dm_issue_global_event(void) 62 { 63 atomic_inc(&dm_global_event_nr); 64 wake_up(&dm_global_eventq); 65 } 66 67 /* 68 * One of these is allocated (on-stack) per original bio. 69 */ 70 struct clone_info { 71 struct dm_table *map; 72 struct bio *bio; 73 struct dm_io *io; 74 sector_t sector; 75 unsigned sector_count; 76 }; 77 78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 79 #define DM_IO_BIO_OFFSET \ 80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 81 82 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 83 { 84 return container_of(clone, struct dm_target_io, clone); 85 } 86 87 void *dm_per_bio_data(struct bio *bio, size_t data_size) 88 { 89 if (!clone_to_tio(bio)->inside_dm_io) 90 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 91 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 92 } 93 EXPORT_SYMBOL_GPL(dm_per_bio_data); 94 95 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 96 { 97 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 98 if (io->magic == DM_IO_MAGIC) 99 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 100 BUG_ON(io->magic != DM_TIO_MAGIC); 101 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 102 } 103 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 104 105 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 106 { 107 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 108 } 109 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 110 111 #define MINOR_ALLOCED ((void *)-1) 112 113 #define DM_NUMA_NODE NUMA_NO_NODE 114 static int dm_numa_node = DM_NUMA_NODE; 115 116 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 117 static int swap_bios = DEFAULT_SWAP_BIOS; 118 static int get_swap_bios(void) 119 { 120 int latch = READ_ONCE(swap_bios); 121 if (unlikely(latch <= 0)) 122 latch = DEFAULT_SWAP_BIOS; 123 return latch; 124 } 125 126 /* 127 * For mempools pre-allocation at the table loading time. 128 */ 129 struct dm_md_mempools { 130 struct bio_set bs; 131 struct bio_set io_bs; 132 }; 133 134 struct table_device { 135 struct list_head list; 136 refcount_t count; 137 struct dm_dev dm_dev; 138 }; 139 140 /* 141 * Bio-based DM's mempools' reserved IOs set by the user. 142 */ 143 #define RESERVED_BIO_BASED_IOS 16 144 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 145 146 static int __dm_get_module_param_int(int *module_param, int min, int max) 147 { 148 int param = READ_ONCE(*module_param); 149 int modified_param = 0; 150 bool modified = true; 151 152 if (param < min) 153 modified_param = min; 154 else if (param > max) 155 modified_param = max; 156 else 157 modified = false; 158 159 if (modified) { 160 (void)cmpxchg(module_param, param, modified_param); 161 param = modified_param; 162 } 163 164 return param; 165 } 166 167 unsigned __dm_get_module_param(unsigned *module_param, 168 unsigned def, unsigned max) 169 { 170 unsigned param = READ_ONCE(*module_param); 171 unsigned modified_param = 0; 172 173 if (!param) 174 modified_param = def; 175 else if (param > max) 176 modified_param = max; 177 178 if (modified_param) { 179 (void)cmpxchg(module_param, param, modified_param); 180 param = modified_param; 181 } 182 183 return param; 184 } 185 186 unsigned dm_get_reserved_bio_based_ios(void) 187 { 188 return __dm_get_module_param(&reserved_bio_based_ios, 189 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 190 } 191 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 192 193 static unsigned dm_get_numa_node(void) 194 { 195 return __dm_get_module_param_int(&dm_numa_node, 196 DM_NUMA_NODE, num_online_nodes() - 1); 197 } 198 199 static int __init local_init(void) 200 { 201 int r; 202 203 r = dm_uevent_init(); 204 if (r) 205 return r; 206 207 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 208 if (!deferred_remove_workqueue) { 209 r = -ENOMEM; 210 goto out_uevent_exit; 211 } 212 213 _major = major; 214 r = register_blkdev(_major, _name); 215 if (r < 0) 216 goto out_free_workqueue; 217 218 if (!_major) 219 _major = r; 220 221 return 0; 222 223 out_free_workqueue: 224 destroy_workqueue(deferred_remove_workqueue); 225 out_uevent_exit: 226 dm_uevent_exit(); 227 228 return r; 229 } 230 231 static void local_exit(void) 232 { 233 flush_scheduled_work(); 234 destroy_workqueue(deferred_remove_workqueue); 235 236 unregister_blkdev(_major, _name); 237 dm_uevent_exit(); 238 239 _major = 0; 240 241 DMINFO("cleaned up"); 242 } 243 244 static int (*_inits[])(void) __initdata = { 245 local_init, 246 dm_target_init, 247 dm_linear_init, 248 dm_stripe_init, 249 dm_io_init, 250 dm_kcopyd_init, 251 dm_interface_init, 252 dm_statistics_init, 253 }; 254 255 static void (*_exits[])(void) = { 256 local_exit, 257 dm_target_exit, 258 dm_linear_exit, 259 dm_stripe_exit, 260 dm_io_exit, 261 dm_kcopyd_exit, 262 dm_interface_exit, 263 dm_statistics_exit, 264 }; 265 266 static int __init dm_init(void) 267 { 268 const int count = ARRAY_SIZE(_inits); 269 int r, i; 270 271 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 272 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 273 " Duplicate IMA measurements will not be recorded in the IMA log."); 274 #endif 275 276 for (i = 0; i < count; i++) { 277 r = _inits[i](); 278 if (r) 279 goto bad; 280 } 281 282 return 0; 283 bad: 284 while (i--) 285 _exits[i](); 286 287 return r; 288 } 289 290 static void __exit dm_exit(void) 291 { 292 int i = ARRAY_SIZE(_exits); 293 294 while (i--) 295 _exits[i](); 296 297 /* 298 * Should be empty by this point. 299 */ 300 idr_destroy(&_minor_idr); 301 } 302 303 /* 304 * Block device functions 305 */ 306 int dm_deleting_md(struct mapped_device *md) 307 { 308 return test_bit(DMF_DELETING, &md->flags); 309 } 310 311 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 312 { 313 struct mapped_device *md; 314 315 spin_lock(&_minor_lock); 316 317 md = bdev->bd_disk->private_data; 318 if (!md) 319 goto out; 320 321 if (test_bit(DMF_FREEING, &md->flags) || 322 dm_deleting_md(md)) { 323 md = NULL; 324 goto out; 325 } 326 327 dm_get(md); 328 atomic_inc(&md->open_count); 329 out: 330 spin_unlock(&_minor_lock); 331 332 return md ? 0 : -ENXIO; 333 } 334 335 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 336 { 337 struct mapped_device *md; 338 339 spin_lock(&_minor_lock); 340 341 md = disk->private_data; 342 if (WARN_ON(!md)) 343 goto out; 344 345 if (atomic_dec_and_test(&md->open_count) && 346 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 347 queue_work(deferred_remove_workqueue, &deferred_remove_work); 348 349 dm_put(md); 350 out: 351 spin_unlock(&_minor_lock); 352 } 353 354 int dm_open_count(struct mapped_device *md) 355 { 356 return atomic_read(&md->open_count); 357 } 358 359 /* 360 * Guarantees nothing is using the device before it's deleted. 361 */ 362 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 363 { 364 int r = 0; 365 366 spin_lock(&_minor_lock); 367 368 if (dm_open_count(md)) { 369 r = -EBUSY; 370 if (mark_deferred) 371 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 372 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 373 r = -EEXIST; 374 else 375 set_bit(DMF_DELETING, &md->flags); 376 377 spin_unlock(&_minor_lock); 378 379 return r; 380 } 381 382 int dm_cancel_deferred_remove(struct mapped_device *md) 383 { 384 int r = 0; 385 386 spin_lock(&_minor_lock); 387 388 if (test_bit(DMF_DELETING, &md->flags)) 389 r = -EBUSY; 390 else 391 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 392 393 spin_unlock(&_minor_lock); 394 395 return r; 396 } 397 398 static void do_deferred_remove(struct work_struct *w) 399 { 400 dm_deferred_remove(); 401 } 402 403 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 404 { 405 struct mapped_device *md = bdev->bd_disk->private_data; 406 407 return dm_get_geometry(md, geo); 408 } 409 410 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 411 struct block_device **bdev) 412 { 413 struct dm_target *tgt; 414 struct dm_table *map; 415 int r; 416 417 retry: 418 r = -ENOTTY; 419 map = dm_get_live_table(md, srcu_idx); 420 if (!map || !dm_table_get_size(map)) 421 return r; 422 423 /* We only support devices that have a single target */ 424 if (dm_table_get_num_targets(map) != 1) 425 return r; 426 427 tgt = dm_table_get_target(map, 0); 428 if (!tgt->type->prepare_ioctl) 429 return r; 430 431 if (dm_suspended_md(md)) 432 return -EAGAIN; 433 434 r = tgt->type->prepare_ioctl(tgt, bdev); 435 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 436 dm_put_live_table(md, *srcu_idx); 437 msleep(10); 438 goto retry; 439 } 440 441 return r; 442 } 443 444 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 445 { 446 dm_put_live_table(md, srcu_idx); 447 } 448 449 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 450 unsigned int cmd, unsigned long arg) 451 { 452 struct mapped_device *md = bdev->bd_disk->private_data; 453 int r, srcu_idx; 454 455 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 456 if (r < 0) 457 goto out; 458 459 if (r > 0) { 460 /* 461 * Target determined this ioctl is being issued against a 462 * subset of the parent bdev; require extra privileges. 463 */ 464 if (!capable(CAP_SYS_RAWIO)) { 465 DMDEBUG_LIMIT( 466 "%s: sending ioctl %x to DM device without required privilege.", 467 current->comm, cmd); 468 r = -ENOIOCTLCMD; 469 goto out; 470 } 471 } 472 473 if (!bdev->bd_disk->fops->ioctl) 474 r = -ENOTTY; 475 else 476 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 477 out: 478 dm_unprepare_ioctl(md, srcu_idx); 479 return r; 480 } 481 482 u64 dm_start_time_ns_from_clone(struct bio *bio) 483 { 484 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 485 } 486 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 487 488 static void start_io_acct(struct dm_io *io) 489 { 490 struct mapped_device *md = io->md; 491 struct bio *bio = io->orig_bio; 492 493 bio_start_io_acct_time(bio, io->start_time); 494 if (unlikely(dm_stats_used(&md->stats))) 495 dm_stats_account_io(&md->stats, bio_data_dir(bio), 496 bio->bi_iter.bi_sector, bio_sectors(bio), 497 false, 0, &io->stats_aux); 498 } 499 500 static void end_io_acct(struct mapped_device *md, struct bio *bio, 501 unsigned long start_time, struct dm_stats_aux *stats_aux) 502 { 503 unsigned long duration = jiffies - start_time; 504 505 bio_end_io_acct(bio, start_time); 506 507 if (unlikely(dm_stats_used(&md->stats))) 508 dm_stats_account_io(&md->stats, bio_data_dir(bio), 509 bio->bi_iter.bi_sector, bio_sectors(bio), 510 true, duration, stats_aux); 511 512 /* nudge anyone waiting on suspend queue */ 513 if (unlikely(wq_has_sleeper(&md->wait))) 514 wake_up(&md->wait); 515 } 516 517 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 518 { 519 struct dm_io *io; 520 struct dm_target_io *tio; 521 struct bio *clone; 522 523 clone = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, &md->io_bs); 524 525 tio = clone_to_tio(clone); 526 tio->inside_dm_io = true; 527 tio->io = NULL; 528 529 io = container_of(tio, struct dm_io, tio); 530 io->magic = DM_IO_MAGIC; 531 io->status = 0; 532 atomic_set(&io->io_count, 1); 533 io->orig_bio = bio; 534 io->md = md; 535 spin_lock_init(&io->endio_lock); 536 537 io->start_time = jiffies; 538 539 return io; 540 } 541 542 static void free_io(struct mapped_device *md, struct dm_io *io) 543 { 544 bio_put(&io->tio.clone); 545 } 546 547 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 548 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 549 { 550 struct dm_target_io *tio; 551 552 if (!ci->io->tio.io) { 553 /* the dm_target_io embedded in ci->io is available */ 554 tio = &ci->io->tio; 555 } else { 556 struct bio *clone = bio_alloc_clone(ci->bio->bi_bdev, ci->bio, 557 gfp_mask, &ci->io->md->bs); 558 if (!clone) 559 return NULL; 560 561 tio = clone_to_tio(clone); 562 tio->inside_dm_io = false; 563 } 564 565 tio->magic = DM_TIO_MAGIC; 566 tio->io = ci->io; 567 tio->ti = ti; 568 tio->target_bio_nr = target_bio_nr; 569 tio->len_ptr = len; 570 571 return &tio->clone; 572 } 573 574 static void free_tio(struct bio *clone) 575 { 576 if (clone_to_tio(clone)->inside_dm_io) 577 return; 578 bio_put(clone); 579 } 580 581 /* 582 * Add the bio to the list of deferred io. 583 */ 584 static void queue_io(struct mapped_device *md, struct bio *bio) 585 { 586 unsigned long flags; 587 588 spin_lock_irqsave(&md->deferred_lock, flags); 589 bio_list_add(&md->deferred, bio); 590 spin_unlock_irqrestore(&md->deferred_lock, flags); 591 queue_work(md->wq, &md->work); 592 } 593 594 /* 595 * Everyone (including functions in this file), should use this 596 * function to access the md->map field, and make sure they call 597 * dm_put_live_table() when finished. 598 */ 599 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 600 { 601 *srcu_idx = srcu_read_lock(&md->io_barrier); 602 603 return srcu_dereference(md->map, &md->io_barrier); 604 } 605 606 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 607 { 608 srcu_read_unlock(&md->io_barrier, srcu_idx); 609 } 610 611 void dm_sync_table(struct mapped_device *md) 612 { 613 synchronize_srcu(&md->io_barrier); 614 synchronize_rcu_expedited(); 615 } 616 617 /* 618 * A fast alternative to dm_get_live_table/dm_put_live_table. 619 * The caller must not block between these two functions. 620 */ 621 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 622 { 623 rcu_read_lock(); 624 return rcu_dereference(md->map); 625 } 626 627 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 628 { 629 rcu_read_unlock(); 630 } 631 632 static char *_dm_claim_ptr = "I belong to device-mapper"; 633 634 /* 635 * Open a table device so we can use it as a map destination. 636 */ 637 static int open_table_device(struct table_device *td, dev_t dev, 638 struct mapped_device *md) 639 { 640 struct block_device *bdev; 641 u64 part_off; 642 int r; 643 644 BUG_ON(td->dm_dev.bdev); 645 646 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 647 if (IS_ERR(bdev)) 648 return PTR_ERR(bdev); 649 650 r = bd_link_disk_holder(bdev, dm_disk(md)); 651 if (r) { 652 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 653 return r; 654 } 655 656 td->dm_dev.bdev = bdev; 657 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 658 return 0; 659 } 660 661 /* 662 * Close a table device that we've been using. 663 */ 664 static void close_table_device(struct table_device *td, struct mapped_device *md) 665 { 666 if (!td->dm_dev.bdev) 667 return; 668 669 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 670 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 671 put_dax(td->dm_dev.dax_dev); 672 td->dm_dev.bdev = NULL; 673 td->dm_dev.dax_dev = NULL; 674 } 675 676 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 677 fmode_t mode) 678 { 679 struct table_device *td; 680 681 list_for_each_entry(td, l, list) 682 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 683 return td; 684 685 return NULL; 686 } 687 688 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 689 struct dm_dev **result) 690 { 691 int r; 692 struct table_device *td; 693 694 mutex_lock(&md->table_devices_lock); 695 td = find_table_device(&md->table_devices, dev, mode); 696 if (!td) { 697 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 698 if (!td) { 699 mutex_unlock(&md->table_devices_lock); 700 return -ENOMEM; 701 } 702 703 td->dm_dev.mode = mode; 704 td->dm_dev.bdev = NULL; 705 706 if ((r = open_table_device(td, dev, md))) { 707 mutex_unlock(&md->table_devices_lock); 708 kfree(td); 709 return r; 710 } 711 712 format_dev_t(td->dm_dev.name, dev); 713 714 refcount_set(&td->count, 1); 715 list_add(&td->list, &md->table_devices); 716 } else { 717 refcount_inc(&td->count); 718 } 719 mutex_unlock(&md->table_devices_lock); 720 721 *result = &td->dm_dev; 722 return 0; 723 } 724 725 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 726 { 727 struct table_device *td = container_of(d, struct table_device, dm_dev); 728 729 mutex_lock(&md->table_devices_lock); 730 if (refcount_dec_and_test(&td->count)) { 731 close_table_device(td, md); 732 list_del(&td->list); 733 kfree(td); 734 } 735 mutex_unlock(&md->table_devices_lock); 736 } 737 738 static void free_table_devices(struct list_head *devices) 739 { 740 struct list_head *tmp, *next; 741 742 list_for_each_safe(tmp, next, devices) { 743 struct table_device *td = list_entry(tmp, struct table_device, list); 744 745 DMWARN("dm_destroy: %s still exists with %d references", 746 td->dm_dev.name, refcount_read(&td->count)); 747 kfree(td); 748 } 749 } 750 751 /* 752 * Get the geometry associated with a dm device 753 */ 754 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 755 { 756 *geo = md->geometry; 757 758 return 0; 759 } 760 761 /* 762 * Set the geometry of a device. 763 */ 764 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 765 { 766 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 767 768 if (geo->start > sz) { 769 DMWARN("Start sector is beyond the geometry limits."); 770 return -EINVAL; 771 } 772 773 md->geometry = *geo; 774 775 return 0; 776 } 777 778 static int __noflush_suspending(struct mapped_device *md) 779 { 780 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 781 } 782 783 /* 784 * Decrements the number of outstanding ios that a bio has been 785 * cloned into, completing the original io if necc. 786 */ 787 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 788 { 789 unsigned long flags; 790 blk_status_t io_error; 791 struct bio *bio; 792 struct mapped_device *md = io->md; 793 unsigned long start_time = 0; 794 struct dm_stats_aux stats_aux; 795 796 /* Push-back supersedes any I/O errors */ 797 if (unlikely(error)) { 798 spin_lock_irqsave(&io->endio_lock, flags); 799 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 800 io->status = error; 801 spin_unlock_irqrestore(&io->endio_lock, flags); 802 } 803 804 if (atomic_dec_and_test(&io->io_count)) { 805 bio = io->orig_bio; 806 if (io->status == BLK_STS_DM_REQUEUE) { 807 /* 808 * Target requested pushing back the I/O. 809 */ 810 spin_lock_irqsave(&md->deferred_lock, flags); 811 if (__noflush_suspending(md) && 812 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 813 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 814 bio_list_add_head(&md->deferred, bio); 815 } else { 816 /* 817 * noflush suspend was interrupted or this is 818 * a write to a zoned target. 819 */ 820 io->status = BLK_STS_IOERR; 821 } 822 spin_unlock_irqrestore(&md->deferred_lock, flags); 823 } 824 825 io_error = io->status; 826 start_time = io->start_time; 827 stats_aux = io->stats_aux; 828 free_io(md, io); 829 end_io_acct(md, bio, start_time, &stats_aux); 830 831 if (io_error == BLK_STS_DM_REQUEUE) 832 return; 833 834 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 835 /* 836 * Preflush done for flush with data, reissue 837 * without REQ_PREFLUSH. 838 */ 839 bio->bi_opf &= ~REQ_PREFLUSH; 840 queue_io(md, bio); 841 } else { 842 /* done with normal IO or empty flush */ 843 if (io_error) 844 bio->bi_status = io_error; 845 bio_endio(bio); 846 } 847 } 848 } 849 850 void disable_discard(struct mapped_device *md) 851 { 852 struct queue_limits *limits = dm_get_queue_limits(md); 853 854 /* device doesn't really support DISCARD, disable it */ 855 limits->max_discard_sectors = 0; 856 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 857 } 858 859 void disable_write_same(struct mapped_device *md) 860 { 861 struct queue_limits *limits = dm_get_queue_limits(md); 862 863 /* device doesn't really support WRITE SAME, disable it */ 864 limits->max_write_same_sectors = 0; 865 } 866 867 void disable_write_zeroes(struct mapped_device *md) 868 { 869 struct queue_limits *limits = dm_get_queue_limits(md); 870 871 /* device doesn't really support WRITE ZEROES, disable it */ 872 limits->max_write_zeroes_sectors = 0; 873 } 874 875 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 876 { 877 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 878 } 879 880 static void clone_endio(struct bio *bio) 881 { 882 blk_status_t error = bio->bi_status; 883 struct dm_target_io *tio = clone_to_tio(bio); 884 struct dm_io *io = tio->io; 885 struct mapped_device *md = tio->io->md; 886 dm_endio_fn endio = tio->ti->type->end_io; 887 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 888 889 if (unlikely(error == BLK_STS_TARGET)) { 890 if (bio_op(bio) == REQ_OP_DISCARD && 891 !q->limits.max_discard_sectors) 892 disable_discard(md); 893 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 894 !q->limits.max_write_same_sectors) 895 disable_write_same(md); 896 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 897 !q->limits.max_write_zeroes_sectors) 898 disable_write_zeroes(md); 899 } 900 901 if (blk_queue_is_zoned(q)) 902 dm_zone_endio(io, bio); 903 904 if (endio) { 905 int r = endio(tio->ti, bio, &error); 906 switch (r) { 907 case DM_ENDIO_REQUEUE: 908 /* 909 * Requeuing writes to a sequential zone of a zoned 910 * target will break the sequential write pattern: 911 * fail such IO. 912 */ 913 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 914 error = BLK_STS_IOERR; 915 else 916 error = BLK_STS_DM_REQUEUE; 917 fallthrough; 918 case DM_ENDIO_DONE: 919 break; 920 case DM_ENDIO_INCOMPLETE: 921 /* The target will handle the io */ 922 return; 923 default: 924 DMWARN("unimplemented target endio return value: %d", r); 925 BUG(); 926 } 927 } 928 929 if (unlikely(swap_bios_limit(tio->ti, bio))) { 930 struct mapped_device *md = io->md; 931 up(&md->swap_bios_semaphore); 932 } 933 934 free_tio(bio); 935 dm_io_dec_pending(io, error); 936 } 937 938 /* 939 * Return maximum size of I/O possible at the supplied sector up to the current 940 * target boundary. 941 */ 942 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 943 sector_t target_offset) 944 { 945 return ti->len - target_offset; 946 } 947 948 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 949 { 950 sector_t target_offset = dm_target_offset(ti, sector); 951 sector_t len = max_io_len_target_boundary(ti, target_offset); 952 sector_t max_len; 953 954 /* 955 * Does the target need to split IO even further? 956 * - varied (per target) IO splitting is a tenet of DM; this 957 * explains why stacked chunk_sectors based splitting via 958 * blk_max_size_offset() isn't possible here. So pass in 959 * ti->max_io_len to override stacked chunk_sectors. 960 */ 961 if (ti->max_io_len) { 962 max_len = blk_max_size_offset(ti->table->md->queue, 963 target_offset, ti->max_io_len); 964 if (len > max_len) 965 len = max_len; 966 } 967 968 return len; 969 } 970 971 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 972 { 973 if (len > UINT_MAX) { 974 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 975 (unsigned long long)len, UINT_MAX); 976 ti->error = "Maximum size of target IO is too large"; 977 return -EINVAL; 978 } 979 980 ti->max_io_len = (uint32_t) len; 981 982 return 0; 983 } 984 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 985 986 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 987 sector_t sector, int *srcu_idx) 988 __acquires(md->io_barrier) 989 { 990 struct dm_table *map; 991 struct dm_target *ti; 992 993 map = dm_get_live_table(md, srcu_idx); 994 if (!map) 995 return NULL; 996 997 ti = dm_table_find_target(map, sector); 998 if (!ti) 999 return NULL; 1000 1001 return ti; 1002 } 1003 1004 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1005 long nr_pages, void **kaddr, pfn_t *pfn) 1006 { 1007 struct mapped_device *md = dax_get_private(dax_dev); 1008 sector_t sector = pgoff * PAGE_SECTORS; 1009 struct dm_target *ti; 1010 long len, ret = -EIO; 1011 int srcu_idx; 1012 1013 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1014 1015 if (!ti) 1016 goto out; 1017 if (!ti->type->direct_access) 1018 goto out; 1019 len = max_io_len(ti, sector) / PAGE_SECTORS; 1020 if (len < 1) 1021 goto out; 1022 nr_pages = min(len, nr_pages); 1023 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1024 1025 out: 1026 dm_put_live_table(md, srcu_idx); 1027 1028 return ret; 1029 } 1030 1031 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1032 size_t nr_pages) 1033 { 1034 struct mapped_device *md = dax_get_private(dax_dev); 1035 sector_t sector = pgoff * PAGE_SECTORS; 1036 struct dm_target *ti; 1037 int ret = -EIO; 1038 int srcu_idx; 1039 1040 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1041 1042 if (!ti) 1043 goto out; 1044 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1045 /* 1046 * ->zero_page_range() is mandatory dax operation. If we are 1047 * here, something is wrong. 1048 */ 1049 goto out; 1050 } 1051 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1052 out: 1053 dm_put_live_table(md, srcu_idx); 1054 1055 return ret; 1056 } 1057 1058 /* 1059 * A target may call dm_accept_partial_bio only from the map routine. It is 1060 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1061 * operations and REQ_OP_ZONE_APPEND (zone append writes). 1062 * 1063 * dm_accept_partial_bio informs the dm that the target only wants to process 1064 * additional n_sectors sectors of the bio and the rest of the data should be 1065 * sent in a next bio. 1066 * 1067 * A diagram that explains the arithmetics: 1068 * +--------------------+---------------+-------+ 1069 * | 1 | 2 | 3 | 1070 * +--------------------+---------------+-------+ 1071 * 1072 * <-------------- *tio->len_ptr ---------------> 1073 * <------- bi_size -------> 1074 * <-- n_sectors --> 1075 * 1076 * Region 1 was already iterated over with bio_advance or similar function. 1077 * (it may be empty if the target doesn't use bio_advance) 1078 * Region 2 is the remaining bio size that the target wants to process. 1079 * (it may be empty if region 1 is non-empty, although there is no reason 1080 * to make it empty) 1081 * The target requires that region 3 is to be sent in the next bio. 1082 * 1083 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1084 * the partially processed part (the sum of regions 1+2) must be the same for all 1085 * copies of the bio. 1086 */ 1087 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1088 { 1089 struct dm_target_io *tio = clone_to_tio(bio); 1090 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1091 1092 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1093 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1094 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1095 BUG_ON(bi_size > *tio->len_ptr); 1096 BUG_ON(n_sectors > bi_size); 1097 1098 *tio->len_ptr -= bi_size - n_sectors; 1099 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1100 } 1101 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1102 1103 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1104 { 1105 mutex_lock(&md->swap_bios_lock); 1106 while (latch < md->swap_bios) { 1107 cond_resched(); 1108 down(&md->swap_bios_semaphore); 1109 md->swap_bios--; 1110 } 1111 while (latch > md->swap_bios) { 1112 cond_resched(); 1113 up(&md->swap_bios_semaphore); 1114 md->swap_bios++; 1115 } 1116 mutex_unlock(&md->swap_bios_lock); 1117 } 1118 1119 static void __map_bio(struct bio *clone) 1120 { 1121 struct dm_target_io *tio = clone_to_tio(clone); 1122 int r; 1123 sector_t sector; 1124 struct dm_io *io = tio->io; 1125 struct dm_target *ti = tio->ti; 1126 1127 clone->bi_end_io = clone_endio; 1128 1129 /* 1130 * Map the clone. If r == 0 we don't need to do 1131 * anything, the target has assumed ownership of 1132 * this io. 1133 */ 1134 dm_io_inc_pending(io); 1135 sector = clone->bi_iter.bi_sector; 1136 1137 if (unlikely(swap_bios_limit(ti, clone))) { 1138 struct mapped_device *md = io->md; 1139 int latch = get_swap_bios(); 1140 if (unlikely(latch != md->swap_bios)) 1141 __set_swap_bios_limit(md, latch); 1142 down(&md->swap_bios_semaphore); 1143 } 1144 1145 /* 1146 * Check if the IO needs a special mapping due to zone append emulation 1147 * on zoned target. In this case, dm_zone_map_bio() calls the target 1148 * map operation. 1149 */ 1150 if (dm_emulate_zone_append(io->md)) 1151 r = dm_zone_map_bio(tio); 1152 else 1153 r = ti->type->map(ti, clone); 1154 1155 switch (r) { 1156 case DM_MAPIO_SUBMITTED: 1157 break; 1158 case DM_MAPIO_REMAPPED: 1159 /* the bio has been remapped so dispatch it */ 1160 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector); 1161 submit_bio_noacct(clone); 1162 break; 1163 case DM_MAPIO_KILL: 1164 if (unlikely(swap_bios_limit(ti, clone))) { 1165 struct mapped_device *md = io->md; 1166 up(&md->swap_bios_semaphore); 1167 } 1168 free_tio(clone); 1169 dm_io_dec_pending(io, BLK_STS_IOERR); 1170 break; 1171 case DM_MAPIO_REQUEUE: 1172 if (unlikely(swap_bios_limit(ti, clone))) { 1173 struct mapped_device *md = io->md; 1174 up(&md->swap_bios_semaphore); 1175 } 1176 free_tio(clone); 1177 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1178 break; 1179 default: 1180 DMWARN("unimplemented target map return value: %d", r); 1181 BUG(); 1182 } 1183 } 1184 1185 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1186 { 1187 bio->bi_iter.bi_sector = sector; 1188 bio->bi_iter.bi_size = to_bytes(len); 1189 } 1190 1191 /* 1192 * Creates a bio that consists of range of complete bvecs. 1193 */ 1194 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1195 sector_t sector, unsigned *len) 1196 { 1197 struct bio *bio = ci->bio, *clone; 1198 1199 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1200 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1201 clone->bi_iter.bi_size = to_bytes(*len); 1202 1203 if (bio_integrity(bio)) 1204 bio_integrity_trim(clone); 1205 1206 __map_bio(clone); 1207 return 0; 1208 } 1209 1210 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1211 struct dm_target *ti, unsigned num_bios, 1212 unsigned *len) 1213 { 1214 struct bio *bio; 1215 int try; 1216 1217 for (try = 0; try < 2; try++) { 1218 int bio_nr; 1219 1220 if (try) 1221 mutex_lock(&ci->io->md->table_devices_lock); 1222 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1223 bio = alloc_tio(ci, ti, bio_nr, len, 1224 try ? GFP_NOIO : GFP_NOWAIT); 1225 if (!bio) 1226 break; 1227 1228 bio_list_add(blist, bio); 1229 } 1230 if (try) 1231 mutex_unlock(&ci->io->md->table_devices_lock); 1232 if (bio_nr == num_bios) 1233 return; 1234 1235 while ((bio = bio_list_pop(blist))) 1236 free_tio(bio); 1237 } 1238 } 1239 1240 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1241 unsigned num_bios, unsigned *len) 1242 { 1243 struct bio_list blist = BIO_EMPTY_LIST; 1244 struct bio *clone; 1245 1246 switch (num_bios) { 1247 case 0: 1248 break; 1249 case 1: 1250 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1251 if (len) 1252 bio_setup_sector(clone, ci->sector, *len); 1253 __map_bio(clone); 1254 break; 1255 default: 1256 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1257 while ((clone = bio_list_pop(&blist))) { 1258 if (len) 1259 bio_setup_sector(clone, ci->sector, *len); 1260 __map_bio(clone); 1261 } 1262 break; 1263 } 1264 } 1265 1266 static int __send_empty_flush(struct clone_info *ci) 1267 { 1268 unsigned target_nr = 0; 1269 struct dm_target *ti; 1270 struct bio flush_bio; 1271 1272 /* 1273 * Use an on-stack bio for this, it's safe since we don't 1274 * need to reference it after submit. It's just used as 1275 * the basis for the clone(s). 1276 */ 1277 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1278 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1279 1280 ci->bio = &flush_bio; 1281 ci->sector_count = 0; 1282 1283 BUG_ON(bio_has_data(ci->bio)); 1284 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1285 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1286 1287 bio_uninit(ci->bio); 1288 return 0; 1289 } 1290 1291 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1292 unsigned num_bios) 1293 { 1294 unsigned len; 1295 1296 /* 1297 * Even though the device advertised support for this type of 1298 * request, that does not mean every target supports it, and 1299 * reconfiguration might also have changed that since the 1300 * check was performed. 1301 */ 1302 if (!num_bios) 1303 return -EOPNOTSUPP; 1304 1305 len = min_t(sector_t, ci->sector_count, 1306 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1307 1308 __send_duplicate_bios(ci, ti, num_bios, &len); 1309 1310 ci->sector += len; 1311 ci->sector_count -= len; 1312 1313 return 0; 1314 } 1315 1316 static bool is_abnormal_io(struct bio *bio) 1317 { 1318 bool r = false; 1319 1320 switch (bio_op(bio)) { 1321 case REQ_OP_DISCARD: 1322 case REQ_OP_SECURE_ERASE: 1323 case REQ_OP_WRITE_SAME: 1324 case REQ_OP_WRITE_ZEROES: 1325 r = true; 1326 break; 1327 } 1328 1329 return r; 1330 } 1331 1332 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1333 int *result) 1334 { 1335 struct bio *bio = ci->bio; 1336 unsigned num_bios = 0; 1337 1338 switch (bio_op(bio)) { 1339 case REQ_OP_DISCARD: 1340 num_bios = ti->num_discard_bios; 1341 break; 1342 case REQ_OP_SECURE_ERASE: 1343 num_bios = ti->num_secure_erase_bios; 1344 break; 1345 case REQ_OP_WRITE_SAME: 1346 num_bios = ti->num_write_same_bios; 1347 break; 1348 case REQ_OP_WRITE_ZEROES: 1349 num_bios = ti->num_write_zeroes_bios; 1350 break; 1351 default: 1352 return false; 1353 } 1354 1355 *result = __send_changing_extent_only(ci, ti, num_bios); 1356 return true; 1357 } 1358 1359 /* 1360 * Select the correct strategy for processing a non-flush bio. 1361 */ 1362 static int __split_and_process_non_flush(struct clone_info *ci) 1363 { 1364 struct dm_target *ti; 1365 unsigned len; 1366 int r; 1367 1368 ti = dm_table_find_target(ci->map, ci->sector); 1369 if (!ti) 1370 return -EIO; 1371 1372 if (__process_abnormal_io(ci, ti, &r)) 1373 return r; 1374 1375 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1376 1377 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1378 if (r < 0) 1379 return r; 1380 1381 ci->sector += len; 1382 ci->sector_count -= len; 1383 1384 return 0; 1385 } 1386 1387 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1388 struct dm_table *map, struct bio *bio) 1389 { 1390 ci->map = map; 1391 ci->io = alloc_io(md, bio); 1392 ci->sector = bio->bi_iter.bi_sector; 1393 } 1394 1395 /* 1396 * Entry point to split a bio into clones and submit them to the targets. 1397 */ 1398 static void __split_and_process_bio(struct mapped_device *md, 1399 struct dm_table *map, struct bio *bio) 1400 { 1401 struct clone_info ci; 1402 int error = 0; 1403 1404 init_clone_info(&ci, md, map, bio); 1405 1406 if (bio->bi_opf & REQ_PREFLUSH) { 1407 error = __send_empty_flush(&ci); 1408 /* dm_io_dec_pending submits any data associated with flush */ 1409 } else if (op_is_zone_mgmt(bio_op(bio))) { 1410 ci.bio = bio; 1411 ci.sector_count = 0; 1412 error = __split_and_process_non_flush(&ci); 1413 } else { 1414 ci.bio = bio; 1415 ci.sector_count = bio_sectors(bio); 1416 error = __split_and_process_non_flush(&ci); 1417 if (ci.sector_count && !error) { 1418 /* 1419 * Remainder must be passed to submit_bio_noacct() 1420 * so that it gets handled *after* bios already submitted 1421 * have been completely processed. 1422 * We take a clone of the original to store in 1423 * ci.io->orig_bio to be used by end_io_acct() and 1424 * for dec_pending to use for completion handling. 1425 */ 1426 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1427 GFP_NOIO, &md->queue->bio_split); 1428 ci.io->orig_bio = b; 1429 1430 bio_chain(b, bio); 1431 trace_block_split(b, bio->bi_iter.bi_sector); 1432 submit_bio_noacct(bio); 1433 } 1434 } 1435 start_io_acct(ci.io); 1436 1437 /* drop the extra reference count */ 1438 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1439 } 1440 1441 static void dm_submit_bio(struct bio *bio) 1442 { 1443 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1444 int srcu_idx; 1445 struct dm_table *map; 1446 1447 map = dm_get_live_table(md, &srcu_idx); 1448 if (unlikely(!map)) { 1449 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1450 dm_device_name(md)); 1451 bio_io_error(bio); 1452 goto out; 1453 } 1454 1455 /* If suspended, queue this IO for later */ 1456 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1457 if (bio->bi_opf & REQ_NOWAIT) 1458 bio_wouldblock_error(bio); 1459 else if (bio->bi_opf & REQ_RAHEAD) 1460 bio_io_error(bio); 1461 else 1462 queue_io(md, bio); 1463 goto out; 1464 } 1465 1466 /* 1467 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1468 * otherwise associated queue_limits won't be imposed. 1469 */ 1470 if (is_abnormal_io(bio)) 1471 blk_queue_split(&bio); 1472 1473 __split_and_process_bio(md, map, bio); 1474 out: 1475 dm_put_live_table(md, srcu_idx); 1476 } 1477 1478 /*----------------------------------------------------------------- 1479 * An IDR is used to keep track of allocated minor numbers. 1480 *---------------------------------------------------------------*/ 1481 static void free_minor(int minor) 1482 { 1483 spin_lock(&_minor_lock); 1484 idr_remove(&_minor_idr, minor); 1485 spin_unlock(&_minor_lock); 1486 } 1487 1488 /* 1489 * See if the device with a specific minor # is free. 1490 */ 1491 static int specific_minor(int minor) 1492 { 1493 int r; 1494 1495 if (minor >= (1 << MINORBITS)) 1496 return -EINVAL; 1497 1498 idr_preload(GFP_KERNEL); 1499 spin_lock(&_minor_lock); 1500 1501 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1502 1503 spin_unlock(&_minor_lock); 1504 idr_preload_end(); 1505 if (r < 0) 1506 return r == -ENOSPC ? -EBUSY : r; 1507 return 0; 1508 } 1509 1510 static int next_free_minor(int *minor) 1511 { 1512 int r; 1513 1514 idr_preload(GFP_KERNEL); 1515 spin_lock(&_minor_lock); 1516 1517 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1518 1519 spin_unlock(&_minor_lock); 1520 idr_preload_end(); 1521 if (r < 0) 1522 return r; 1523 *minor = r; 1524 return 0; 1525 } 1526 1527 static const struct block_device_operations dm_blk_dops; 1528 static const struct block_device_operations dm_rq_blk_dops; 1529 static const struct dax_operations dm_dax_ops; 1530 1531 static void dm_wq_work(struct work_struct *work); 1532 1533 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1534 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1535 { 1536 dm_destroy_crypto_profile(q->crypto_profile); 1537 } 1538 1539 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1540 1541 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1542 { 1543 } 1544 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1545 1546 static void cleanup_mapped_device(struct mapped_device *md) 1547 { 1548 if (md->wq) 1549 destroy_workqueue(md->wq); 1550 bioset_exit(&md->bs); 1551 bioset_exit(&md->io_bs); 1552 1553 if (md->dax_dev) { 1554 dax_remove_host(md->disk); 1555 kill_dax(md->dax_dev); 1556 put_dax(md->dax_dev); 1557 md->dax_dev = NULL; 1558 } 1559 1560 if (md->disk) { 1561 spin_lock(&_minor_lock); 1562 md->disk->private_data = NULL; 1563 spin_unlock(&_minor_lock); 1564 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1565 dm_sysfs_exit(md); 1566 del_gendisk(md->disk); 1567 } 1568 dm_queue_destroy_crypto_profile(md->queue); 1569 blk_cleanup_disk(md->disk); 1570 } 1571 1572 cleanup_srcu_struct(&md->io_barrier); 1573 1574 mutex_destroy(&md->suspend_lock); 1575 mutex_destroy(&md->type_lock); 1576 mutex_destroy(&md->table_devices_lock); 1577 mutex_destroy(&md->swap_bios_lock); 1578 1579 dm_mq_cleanup_mapped_device(md); 1580 dm_cleanup_zoned_dev(md); 1581 } 1582 1583 /* 1584 * Allocate and initialise a blank device with a given minor. 1585 */ 1586 static struct mapped_device *alloc_dev(int minor) 1587 { 1588 int r, numa_node_id = dm_get_numa_node(); 1589 struct mapped_device *md; 1590 void *old_md; 1591 1592 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1593 if (!md) { 1594 DMWARN("unable to allocate device, out of memory."); 1595 return NULL; 1596 } 1597 1598 if (!try_module_get(THIS_MODULE)) 1599 goto bad_module_get; 1600 1601 /* get a minor number for the dev */ 1602 if (minor == DM_ANY_MINOR) 1603 r = next_free_minor(&minor); 1604 else 1605 r = specific_minor(minor); 1606 if (r < 0) 1607 goto bad_minor; 1608 1609 r = init_srcu_struct(&md->io_barrier); 1610 if (r < 0) 1611 goto bad_io_barrier; 1612 1613 md->numa_node_id = numa_node_id; 1614 md->init_tio_pdu = false; 1615 md->type = DM_TYPE_NONE; 1616 mutex_init(&md->suspend_lock); 1617 mutex_init(&md->type_lock); 1618 mutex_init(&md->table_devices_lock); 1619 spin_lock_init(&md->deferred_lock); 1620 atomic_set(&md->holders, 1); 1621 atomic_set(&md->open_count, 0); 1622 atomic_set(&md->event_nr, 0); 1623 atomic_set(&md->uevent_seq, 0); 1624 INIT_LIST_HEAD(&md->uevent_list); 1625 INIT_LIST_HEAD(&md->table_devices); 1626 spin_lock_init(&md->uevent_lock); 1627 1628 /* 1629 * default to bio-based until DM table is loaded and md->type 1630 * established. If request-based table is loaded: blk-mq will 1631 * override accordingly. 1632 */ 1633 md->disk = blk_alloc_disk(md->numa_node_id); 1634 if (!md->disk) 1635 goto bad; 1636 md->queue = md->disk->queue; 1637 1638 init_waitqueue_head(&md->wait); 1639 INIT_WORK(&md->work, dm_wq_work); 1640 init_waitqueue_head(&md->eventq); 1641 init_completion(&md->kobj_holder.completion); 1642 1643 md->swap_bios = get_swap_bios(); 1644 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1645 mutex_init(&md->swap_bios_lock); 1646 1647 md->disk->major = _major; 1648 md->disk->first_minor = minor; 1649 md->disk->minors = 1; 1650 md->disk->flags |= GENHD_FL_NO_PART; 1651 md->disk->fops = &dm_blk_dops; 1652 md->disk->queue = md->queue; 1653 md->disk->private_data = md; 1654 sprintf(md->disk->disk_name, "dm-%d", minor); 1655 1656 if (IS_ENABLED(CONFIG_FS_DAX)) { 1657 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1658 if (IS_ERR(md->dax_dev)) { 1659 md->dax_dev = NULL; 1660 goto bad; 1661 } 1662 set_dax_nocache(md->dax_dev); 1663 set_dax_nomc(md->dax_dev); 1664 if (dax_add_host(md->dax_dev, md->disk)) 1665 goto bad; 1666 } 1667 1668 format_dev_t(md->name, MKDEV(_major, minor)); 1669 1670 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1671 if (!md->wq) 1672 goto bad; 1673 1674 dm_stats_init(&md->stats); 1675 1676 /* Populate the mapping, nobody knows we exist yet */ 1677 spin_lock(&_minor_lock); 1678 old_md = idr_replace(&_minor_idr, md, minor); 1679 spin_unlock(&_minor_lock); 1680 1681 BUG_ON(old_md != MINOR_ALLOCED); 1682 1683 return md; 1684 1685 bad: 1686 cleanup_mapped_device(md); 1687 bad_io_barrier: 1688 free_minor(minor); 1689 bad_minor: 1690 module_put(THIS_MODULE); 1691 bad_module_get: 1692 kvfree(md); 1693 return NULL; 1694 } 1695 1696 static void unlock_fs(struct mapped_device *md); 1697 1698 static void free_dev(struct mapped_device *md) 1699 { 1700 int minor = MINOR(disk_devt(md->disk)); 1701 1702 unlock_fs(md); 1703 1704 cleanup_mapped_device(md); 1705 1706 free_table_devices(&md->table_devices); 1707 dm_stats_cleanup(&md->stats); 1708 free_minor(minor); 1709 1710 module_put(THIS_MODULE); 1711 kvfree(md); 1712 } 1713 1714 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1715 { 1716 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1717 int ret = 0; 1718 1719 if (dm_table_bio_based(t)) { 1720 /* 1721 * The md may already have mempools that need changing. 1722 * If so, reload bioset because front_pad may have changed 1723 * because a different table was loaded. 1724 */ 1725 bioset_exit(&md->bs); 1726 bioset_exit(&md->io_bs); 1727 1728 } else if (bioset_initialized(&md->bs)) { 1729 /* 1730 * There's no need to reload with request-based dm 1731 * because the size of front_pad doesn't change. 1732 * Note for future: If you are to reload bioset, 1733 * prep-ed requests in the queue may refer 1734 * to bio from the old bioset, so you must walk 1735 * through the queue to unprep. 1736 */ 1737 goto out; 1738 } 1739 1740 BUG_ON(!p || 1741 bioset_initialized(&md->bs) || 1742 bioset_initialized(&md->io_bs)); 1743 1744 ret = bioset_init_from_src(&md->bs, &p->bs); 1745 if (ret) 1746 goto out; 1747 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1748 if (ret) 1749 bioset_exit(&md->bs); 1750 out: 1751 /* mempool bind completed, no longer need any mempools in the table */ 1752 dm_table_free_md_mempools(t); 1753 return ret; 1754 } 1755 1756 /* 1757 * Bind a table to the device. 1758 */ 1759 static void event_callback(void *context) 1760 { 1761 unsigned long flags; 1762 LIST_HEAD(uevents); 1763 struct mapped_device *md = (struct mapped_device *) context; 1764 1765 spin_lock_irqsave(&md->uevent_lock, flags); 1766 list_splice_init(&md->uevent_list, &uevents); 1767 spin_unlock_irqrestore(&md->uevent_lock, flags); 1768 1769 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1770 1771 atomic_inc(&md->event_nr); 1772 wake_up(&md->eventq); 1773 dm_issue_global_event(); 1774 } 1775 1776 /* 1777 * Returns old map, which caller must destroy. 1778 */ 1779 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1780 struct queue_limits *limits) 1781 { 1782 struct dm_table *old_map; 1783 struct request_queue *q = md->queue; 1784 bool request_based = dm_table_request_based(t); 1785 sector_t size; 1786 int ret; 1787 1788 lockdep_assert_held(&md->suspend_lock); 1789 1790 size = dm_table_get_size(t); 1791 1792 /* 1793 * Wipe any geometry if the size of the table changed. 1794 */ 1795 if (size != dm_get_size(md)) 1796 memset(&md->geometry, 0, sizeof(md->geometry)); 1797 1798 if (!get_capacity(md->disk)) 1799 set_capacity(md->disk, size); 1800 else 1801 set_capacity_and_notify(md->disk, size); 1802 1803 dm_table_event_callback(t, event_callback, md); 1804 1805 if (request_based) { 1806 /* 1807 * Leverage the fact that request-based DM targets are 1808 * immutable singletons - used to optimize dm_mq_queue_rq. 1809 */ 1810 md->immutable_target = dm_table_get_immutable_target(t); 1811 } 1812 1813 ret = __bind_mempools(md, t); 1814 if (ret) { 1815 old_map = ERR_PTR(ret); 1816 goto out; 1817 } 1818 1819 ret = dm_table_set_restrictions(t, q, limits); 1820 if (ret) { 1821 old_map = ERR_PTR(ret); 1822 goto out; 1823 } 1824 1825 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1826 rcu_assign_pointer(md->map, (void *)t); 1827 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1828 1829 if (old_map) 1830 dm_sync_table(md); 1831 1832 out: 1833 return old_map; 1834 } 1835 1836 /* 1837 * Returns unbound table for the caller to free. 1838 */ 1839 static struct dm_table *__unbind(struct mapped_device *md) 1840 { 1841 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1842 1843 if (!map) 1844 return NULL; 1845 1846 dm_table_event_callback(map, NULL, NULL); 1847 RCU_INIT_POINTER(md->map, NULL); 1848 dm_sync_table(md); 1849 1850 return map; 1851 } 1852 1853 /* 1854 * Constructor for a new device. 1855 */ 1856 int dm_create(int minor, struct mapped_device **result) 1857 { 1858 struct mapped_device *md; 1859 1860 md = alloc_dev(minor); 1861 if (!md) 1862 return -ENXIO; 1863 1864 dm_ima_reset_data(md); 1865 1866 *result = md; 1867 return 0; 1868 } 1869 1870 /* 1871 * Functions to manage md->type. 1872 * All are required to hold md->type_lock. 1873 */ 1874 void dm_lock_md_type(struct mapped_device *md) 1875 { 1876 mutex_lock(&md->type_lock); 1877 } 1878 1879 void dm_unlock_md_type(struct mapped_device *md) 1880 { 1881 mutex_unlock(&md->type_lock); 1882 } 1883 1884 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1885 { 1886 BUG_ON(!mutex_is_locked(&md->type_lock)); 1887 md->type = type; 1888 } 1889 1890 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1891 { 1892 return md->type; 1893 } 1894 1895 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1896 { 1897 return md->immutable_target_type; 1898 } 1899 1900 /* 1901 * The queue_limits are only valid as long as you have a reference 1902 * count on 'md'. 1903 */ 1904 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1905 { 1906 BUG_ON(!atomic_read(&md->holders)); 1907 return &md->queue->limits; 1908 } 1909 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1910 1911 /* 1912 * Setup the DM device's queue based on md's type 1913 */ 1914 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1915 { 1916 enum dm_queue_mode type = dm_table_get_type(t); 1917 struct queue_limits limits; 1918 int r; 1919 1920 switch (type) { 1921 case DM_TYPE_REQUEST_BASED: 1922 md->disk->fops = &dm_rq_blk_dops; 1923 r = dm_mq_init_request_queue(md, t); 1924 if (r) { 1925 DMERR("Cannot initialize queue for request-based dm mapped device"); 1926 return r; 1927 } 1928 break; 1929 case DM_TYPE_BIO_BASED: 1930 case DM_TYPE_DAX_BIO_BASED: 1931 break; 1932 case DM_TYPE_NONE: 1933 WARN_ON_ONCE(true); 1934 break; 1935 } 1936 1937 r = dm_calculate_queue_limits(t, &limits); 1938 if (r) { 1939 DMERR("Cannot calculate initial queue limits"); 1940 return r; 1941 } 1942 r = dm_table_set_restrictions(t, md->queue, &limits); 1943 if (r) 1944 return r; 1945 1946 r = add_disk(md->disk); 1947 if (r) 1948 return r; 1949 1950 r = dm_sysfs_init(md); 1951 if (r) { 1952 del_gendisk(md->disk); 1953 return r; 1954 } 1955 md->type = type; 1956 return 0; 1957 } 1958 1959 struct mapped_device *dm_get_md(dev_t dev) 1960 { 1961 struct mapped_device *md; 1962 unsigned minor = MINOR(dev); 1963 1964 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1965 return NULL; 1966 1967 spin_lock(&_minor_lock); 1968 1969 md = idr_find(&_minor_idr, minor); 1970 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 1971 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 1972 md = NULL; 1973 goto out; 1974 } 1975 dm_get(md); 1976 out: 1977 spin_unlock(&_minor_lock); 1978 1979 return md; 1980 } 1981 EXPORT_SYMBOL_GPL(dm_get_md); 1982 1983 void *dm_get_mdptr(struct mapped_device *md) 1984 { 1985 return md->interface_ptr; 1986 } 1987 1988 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1989 { 1990 md->interface_ptr = ptr; 1991 } 1992 1993 void dm_get(struct mapped_device *md) 1994 { 1995 atomic_inc(&md->holders); 1996 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1997 } 1998 1999 int dm_hold(struct mapped_device *md) 2000 { 2001 spin_lock(&_minor_lock); 2002 if (test_bit(DMF_FREEING, &md->flags)) { 2003 spin_unlock(&_minor_lock); 2004 return -EBUSY; 2005 } 2006 dm_get(md); 2007 spin_unlock(&_minor_lock); 2008 return 0; 2009 } 2010 EXPORT_SYMBOL_GPL(dm_hold); 2011 2012 const char *dm_device_name(struct mapped_device *md) 2013 { 2014 return md->name; 2015 } 2016 EXPORT_SYMBOL_GPL(dm_device_name); 2017 2018 static void __dm_destroy(struct mapped_device *md, bool wait) 2019 { 2020 struct dm_table *map; 2021 int srcu_idx; 2022 2023 might_sleep(); 2024 2025 spin_lock(&_minor_lock); 2026 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2027 set_bit(DMF_FREEING, &md->flags); 2028 spin_unlock(&_minor_lock); 2029 2030 blk_mark_disk_dead(md->disk); 2031 2032 /* 2033 * Take suspend_lock so that presuspend and postsuspend methods 2034 * do not race with internal suspend. 2035 */ 2036 mutex_lock(&md->suspend_lock); 2037 map = dm_get_live_table(md, &srcu_idx); 2038 if (!dm_suspended_md(md)) { 2039 dm_table_presuspend_targets(map); 2040 set_bit(DMF_SUSPENDED, &md->flags); 2041 set_bit(DMF_POST_SUSPENDING, &md->flags); 2042 dm_table_postsuspend_targets(map); 2043 } 2044 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2045 dm_put_live_table(md, srcu_idx); 2046 mutex_unlock(&md->suspend_lock); 2047 2048 /* 2049 * Rare, but there may be I/O requests still going to complete, 2050 * for example. Wait for all references to disappear. 2051 * No one should increment the reference count of the mapped_device, 2052 * after the mapped_device state becomes DMF_FREEING. 2053 */ 2054 if (wait) 2055 while (atomic_read(&md->holders)) 2056 msleep(1); 2057 else if (atomic_read(&md->holders)) 2058 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2059 dm_device_name(md), atomic_read(&md->holders)); 2060 2061 dm_table_destroy(__unbind(md)); 2062 free_dev(md); 2063 } 2064 2065 void dm_destroy(struct mapped_device *md) 2066 { 2067 __dm_destroy(md, true); 2068 } 2069 2070 void dm_destroy_immediate(struct mapped_device *md) 2071 { 2072 __dm_destroy(md, false); 2073 } 2074 2075 void dm_put(struct mapped_device *md) 2076 { 2077 atomic_dec(&md->holders); 2078 } 2079 EXPORT_SYMBOL_GPL(dm_put); 2080 2081 static bool md_in_flight_bios(struct mapped_device *md) 2082 { 2083 int cpu; 2084 struct block_device *part = dm_disk(md)->part0; 2085 long sum = 0; 2086 2087 for_each_possible_cpu(cpu) { 2088 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2089 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2090 } 2091 2092 return sum != 0; 2093 } 2094 2095 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2096 { 2097 int r = 0; 2098 DEFINE_WAIT(wait); 2099 2100 while (true) { 2101 prepare_to_wait(&md->wait, &wait, task_state); 2102 2103 if (!md_in_flight_bios(md)) 2104 break; 2105 2106 if (signal_pending_state(task_state, current)) { 2107 r = -EINTR; 2108 break; 2109 } 2110 2111 io_schedule(); 2112 } 2113 finish_wait(&md->wait, &wait); 2114 2115 return r; 2116 } 2117 2118 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2119 { 2120 int r = 0; 2121 2122 if (!queue_is_mq(md->queue)) 2123 return dm_wait_for_bios_completion(md, task_state); 2124 2125 while (true) { 2126 if (!blk_mq_queue_inflight(md->queue)) 2127 break; 2128 2129 if (signal_pending_state(task_state, current)) { 2130 r = -EINTR; 2131 break; 2132 } 2133 2134 msleep(5); 2135 } 2136 2137 return r; 2138 } 2139 2140 /* 2141 * Process the deferred bios 2142 */ 2143 static void dm_wq_work(struct work_struct *work) 2144 { 2145 struct mapped_device *md = container_of(work, struct mapped_device, work); 2146 struct bio *bio; 2147 2148 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2149 spin_lock_irq(&md->deferred_lock); 2150 bio = bio_list_pop(&md->deferred); 2151 spin_unlock_irq(&md->deferred_lock); 2152 2153 if (!bio) 2154 break; 2155 2156 submit_bio_noacct(bio); 2157 } 2158 } 2159 2160 static void dm_queue_flush(struct mapped_device *md) 2161 { 2162 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2163 smp_mb__after_atomic(); 2164 queue_work(md->wq, &md->work); 2165 } 2166 2167 /* 2168 * Swap in a new table, returning the old one for the caller to destroy. 2169 */ 2170 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2171 { 2172 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2173 struct queue_limits limits; 2174 int r; 2175 2176 mutex_lock(&md->suspend_lock); 2177 2178 /* device must be suspended */ 2179 if (!dm_suspended_md(md)) 2180 goto out; 2181 2182 /* 2183 * If the new table has no data devices, retain the existing limits. 2184 * This helps multipath with queue_if_no_path if all paths disappear, 2185 * then new I/O is queued based on these limits, and then some paths 2186 * reappear. 2187 */ 2188 if (dm_table_has_no_data_devices(table)) { 2189 live_map = dm_get_live_table_fast(md); 2190 if (live_map) 2191 limits = md->queue->limits; 2192 dm_put_live_table_fast(md); 2193 } 2194 2195 if (!live_map) { 2196 r = dm_calculate_queue_limits(table, &limits); 2197 if (r) { 2198 map = ERR_PTR(r); 2199 goto out; 2200 } 2201 } 2202 2203 map = __bind(md, table, &limits); 2204 dm_issue_global_event(); 2205 2206 out: 2207 mutex_unlock(&md->suspend_lock); 2208 return map; 2209 } 2210 2211 /* 2212 * Functions to lock and unlock any filesystem running on the 2213 * device. 2214 */ 2215 static int lock_fs(struct mapped_device *md) 2216 { 2217 int r; 2218 2219 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2220 2221 r = freeze_bdev(md->disk->part0); 2222 if (!r) 2223 set_bit(DMF_FROZEN, &md->flags); 2224 return r; 2225 } 2226 2227 static void unlock_fs(struct mapped_device *md) 2228 { 2229 if (!test_bit(DMF_FROZEN, &md->flags)) 2230 return; 2231 thaw_bdev(md->disk->part0); 2232 clear_bit(DMF_FROZEN, &md->flags); 2233 } 2234 2235 /* 2236 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2237 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2238 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2239 * 2240 * If __dm_suspend returns 0, the device is completely quiescent 2241 * now. There is no request-processing activity. All new requests 2242 * are being added to md->deferred list. 2243 */ 2244 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2245 unsigned suspend_flags, unsigned int task_state, 2246 int dmf_suspended_flag) 2247 { 2248 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2249 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2250 int r; 2251 2252 lockdep_assert_held(&md->suspend_lock); 2253 2254 /* 2255 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2256 * This flag is cleared before dm_suspend returns. 2257 */ 2258 if (noflush) 2259 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2260 else 2261 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2262 2263 /* 2264 * This gets reverted if there's an error later and the targets 2265 * provide the .presuspend_undo hook. 2266 */ 2267 dm_table_presuspend_targets(map); 2268 2269 /* 2270 * Flush I/O to the device. 2271 * Any I/O submitted after lock_fs() may not be flushed. 2272 * noflush takes precedence over do_lockfs. 2273 * (lock_fs() flushes I/Os and waits for them to complete.) 2274 */ 2275 if (!noflush && do_lockfs) { 2276 r = lock_fs(md); 2277 if (r) { 2278 dm_table_presuspend_undo_targets(map); 2279 return r; 2280 } 2281 } 2282 2283 /* 2284 * Here we must make sure that no processes are submitting requests 2285 * to target drivers i.e. no one may be executing 2286 * __split_and_process_bio from dm_submit_bio. 2287 * 2288 * To get all processes out of __split_and_process_bio in dm_submit_bio, 2289 * we take the write lock. To prevent any process from reentering 2290 * __split_and_process_bio from dm_submit_bio and quiesce the thread 2291 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2292 * flush_workqueue(md->wq). 2293 */ 2294 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2295 if (map) 2296 synchronize_srcu(&md->io_barrier); 2297 2298 /* 2299 * Stop md->queue before flushing md->wq in case request-based 2300 * dm defers requests to md->wq from md->queue. 2301 */ 2302 if (dm_request_based(md)) 2303 dm_stop_queue(md->queue); 2304 2305 flush_workqueue(md->wq); 2306 2307 /* 2308 * At this point no more requests are entering target request routines. 2309 * We call dm_wait_for_completion to wait for all existing requests 2310 * to finish. 2311 */ 2312 r = dm_wait_for_completion(md, task_state); 2313 if (!r) 2314 set_bit(dmf_suspended_flag, &md->flags); 2315 2316 if (noflush) 2317 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2318 if (map) 2319 synchronize_srcu(&md->io_barrier); 2320 2321 /* were we interrupted ? */ 2322 if (r < 0) { 2323 dm_queue_flush(md); 2324 2325 if (dm_request_based(md)) 2326 dm_start_queue(md->queue); 2327 2328 unlock_fs(md); 2329 dm_table_presuspend_undo_targets(map); 2330 /* pushback list is already flushed, so skip flush */ 2331 } 2332 2333 return r; 2334 } 2335 2336 /* 2337 * We need to be able to change a mapping table under a mounted 2338 * filesystem. For example we might want to move some data in 2339 * the background. Before the table can be swapped with 2340 * dm_bind_table, dm_suspend must be called to flush any in 2341 * flight bios and ensure that any further io gets deferred. 2342 */ 2343 /* 2344 * Suspend mechanism in request-based dm. 2345 * 2346 * 1. Flush all I/Os by lock_fs() if needed. 2347 * 2. Stop dispatching any I/O by stopping the request_queue. 2348 * 3. Wait for all in-flight I/Os to be completed or requeued. 2349 * 2350 * To abort suspend, start the request_queue. 2351 */ 2352 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2353 { 2354 struct dm_table *map = NULL; 2355 int r = 0; 2356 2357 retry: 2358 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2359 2360 if (dm_suspended_md(md)) { 2361 r = -EINVAL; 2362 goto out_unlock; 2363 } 2364 2365 if (dm_suspended_internally_md(md)) { 2366 /* already internally suspended, wait for internal resume */ 2367 mutex_unlock(&md->suspend_lock); 2368 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2369 if (r) 2370 return r; 2371 goto retry; 2372 } 2373 2374 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2375 2376 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2377 if (r) 2378 goto out_unlock; 2379 2380 set_bit(DMF_POST_SUSPENDING, &md->flags); 2381 dm_table_postsuspend_targets(map); 2382 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2383 2384 out_unlock: 2385 mutex_unlock(&md->suspend_lock); 2386 return r; 2387 } 2388 2389 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2390 { 2391 if (map) { 2392 int r = dm_table_resume_targets(map); 2393 if (r) 2394 return r; 2395 } 2396 2397 dm_queue_flush(md); 2398 2399 /* 2400 * Flushing deferred I/Os must be done after targets are resumed 2401 * so that mapping of targets can work correctly. 2402 * Request-based dm is queueing the deferred I/Os in its request_queue. 2403 */ 2404 if (dm_request_based(md)) 2405 dm_start_queue(md->queue); 2406 2407 unlock_fs(md); 2408 2409 return 0; 2410 } 2411 2412 int dm_resume(struct mapped_device *md) 2413 { 2414 int r; 2415 struct dm_table *map = NULL; 2416 2417 retry: 2418 r = -EINVAL; 2419 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2420 2421 if (!dm_suspended_md(md)) 2422 goto out; 2423 2424 if (dm_suspended_internally_md(md)) { 2425 /* already internally suspended, wait for internal resume */ 2426 mutex_unlock(&md->suspend_lock); 2427 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2428 if (r) 2429 return r; 2430 goto retry; 2431 } 2432 2433 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2434 if (!map || !dm_table_get_size(map)) 2435 goto out; 2436 2437 r = __dm_resume(md, map); 2438 if (r) 2439 goto out; 2440 2441 clear_bit(DMF_SUSPENDED, &md->flags); 2442 out: 2443 mutex_unlock(&md->suspend_lock); 2444 2445 return r; 2446 } 2447 2448 /* 2449 * Internal suspend/resume works like userspace-driven suspend. It waits 2450 * until all bios finish and prevents issuing new bios to the target drivers. 2451 * It may be used only from the kernel. 2452 */ 2453 2454 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2455 { 2456 struct dm_table *map = NULL; 2457 2458 lockdep_assert_held(&md->suspend_lock); 2459 2460 if (md->internal_suspend_count++) 2461 return; /* nested internal suspend */ 2462 2463 if (dm_suspended_md(md)) { 2464 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2465 return; /* nest suspend */ 2466 } 2467 2468 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2469 2470 /* 2471 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2472 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2473 * would require changing .presuspend to return an error -- avoid this 2474 * until there is a need for more elaborate variants of internal suspend. 2475 */ 2476 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2477 DMF_SUSPENDED_INTERNALLY); 2478 2479 set_bit(DMF_POST_SUSPENDING, &md->flags); 2480 dm_table_postsuspend_targets(map); 2481 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2482 } 2483 2484 static void __dm_internal_resume(struct mapped_device *md) 2485 { 2486 BUG_ON(!md->internal_suspend_count); 2487 2488 if (--md->internal_suspend_count) 2489 return; /* resume from nested internal suspend */ 2490 2491 if (dm_suspended_md(md)) 2492 goto done; /* resume from nested suspend */ 2493 2494 /* 2495 * NOTE: existing callers don't need to call dm_table_resume_targets 2496 * (which may fail -- so best to avoid it for now by passing NULL map) 2497 */ 2498 (void) __dm_resume(md, NULL); 2499 2500 done: 2501 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2502 smp_mb__after_atomic(); 2503 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2504 } 2505 2506 void dm_internal_suspend_noflush(struct mapped_device *md) 2507 { 2508 mutex_lock(&md->suspend_lock); 2509 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2510 mutex_unlock(&md->suspend_lock); 2511 } 2512 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2513 2514 void dm_internal_resume(struct mapped_device *md) 2515 { 2516 mutex_lock(&md->suspend_lock); 2517 __dm_internal_resume(md); 2518 mutex_unlock(&md->suspend_lock); 2519 } 2520 EXPORT_SYMBOL_GPL(dm_internal_resume); 2521 2522 /* 2523 * Fast variants of internal suspend/resume hold md->suspend_lock, 2524 * which prevents interaction with userspace-driven suspend. 2525 */ 2526 2527 void dm_internal_suspend_fast(struct mapped_device *md) 2528 { 2529 mutex_lock(&md->suspend_lock); 2530 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2531 return; 2532 2533 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2534 synchronize_srcu(&md->io_barrier); 2535 flush_workqueue(md->wq); 2536 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2537 } 2538 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2539 2540 void dm_internal_resume_fast(struct mapped_device *md) 2541 { 2542 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2543 goto done; 2544 2545 dm_queue_flush(md); 2546 2547 done: 2548 mutex_unlock(&md->suspend_lock); 2549 } 2550 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2551 2552 /*----------------------------------------------------------------- 2553 * Event notification. 2554 *---------------------------------------------------------------*/ 2555 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2556 unsigned cookie) 2557 { 2558 int r; 2559 unsigned noio_flag; 2560 char udev_cookie[DM_COOKIE_LENGTH]; 2561 char *envp[] = { udev_cookie, NULL }; 2562 2563 noio_flag = memalloc_noio_save(); 2564 2565 if (!cookie) 2566 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2567 else { 2568 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2569 DM_COOKIE_ENV_VAR_NAME, cookie); 2570 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2571 action, envp); 2572 } 2573 2574 memalloc_noio_restore(noio_flag); 2575 2576 return r; 2577 } 2578 2579 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2580 { 2581 return atomic_add_return(1, &md->uevent_seq); 2582 } 2583 2584 uint32_t dm_get_event_nr(struct mapped_device *md) 2585 { 2586 return atomic_read(&md->event_nr); 2587 } 2588 2589 int dm_wait_event(struct mapped_device *md, int event_nr) 2590 { 2591 return wait_event_interruptible(md->eventq, 2592 (event_nr != atomic_read(&md->event_nr))); 2593 } 2594 2595 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2596 { 2597 unsigned long flags; 2598 2599 spin_lock_irqsave(&md->uevent_lock, flags); 2600 list_add(elist, &md->uevent_list); 2601 spin_unlock_irqrestore(&md->uevent_lock, flags); 2602 } 2603 2604 /* 2605 * The gendisk is only valid as long as you have a reference 2606 * count on 'md'. 2607 */ 2608 struct gendisk *dm_disk(struct mapped_device *md) 2609 { 2610 return md->disk; 2611 } 2612 EXPORT_SYMBOL_GPL(dm_disk); 2613 2614 struct kobject *dm_kobject(struct mapped_device *md) 2615 { 2616 return &md->kobj_holder.kobj; 2617 } 2618 2619 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2620 { 2621 struct mapped_device *md; 2622 2623 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2624 2625 spin_lock(&_minor_lock); 2626 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2627 md = NULL; 2628 goto out; 2629 } 2630 dm_get(md); 2631 out: 2632 spin_unlock(&_minor_lock); 2633 2634 return md; 2635 } 2636 2637 int dm_suspended_md(struct mapped_device *md) 2638 { 2639 return test_bit(DMF_SUSPENDED, &md->flags); 2640 } 2641 2642 static int dm_post_suspending_md(struct mapped_device *md) 2643 { 2644 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2645 } 2646 2647 int dm_suspended_internally_md(struct mapped_device *md) 2648 { 2649 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2650 } 2651 2652 int dm_test_deferred_remove_flag(struct mapped_device *md) 2653 { 2654 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2655 } 2656 2657 int dm_suspended(struct dm_target *ti) 2658 { 2659 return dm_suspended_md(ti->table->md); 2660 } 2661 EXPORT_SYMBOL_GPL(dm_suspended); 2662 2663 int dm_post_suspending(struct dm_target *ti) 2664 { 2665 return dm_post_suspending_md(ti->table->md); 2666 } 2667 EXPORT_SYMBOL_GPL(dm_post_suspending); 2668 2669 int dm_noflush_suspending(struct dm_target *ti) 2670 { 2671 return __noflush_suspending(ti->table->md); 2672 } 2673 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2674 2675 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2676 unsigned integrity, unsigned per_io_data_size, 2677 unsigned min_pool_size) 2678 { 2679 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2680 unsigned int pool_size = 0; 2681 unsigned int front_pad, io_front_pad; 2682 int ret; 2683 2684 if (!pools) 2685 return NULL; 2686 2687 switch (type) { 2688 case DM_TYPE_BIO_BASED: 2689 case DM_TYPE_DAX_BIO_BASED: 2690 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2691 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2692 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2693 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2694 if (ret) 2695 goto out; 2696 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2697 goto out; 2698 break; 2699 case DM_TYPE_REQUEST_BASED: 2700 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2701 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2702 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2703 break; 2704 default: 2705 BUG(); 2706 } 2707 2708 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2709 if (ret) 2710 goto out; 2711 2712 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2713 goto out; 2714 2715 return pools; 2716 2717 out: 2718 dm_free_md_mempools(pools); 2719 2720 return NULL; 2721 } 2722 2723 void dm_free_md_mempools(struct dm_md_mempools *pools) 2724 { 2725 if (!pools) 2726 return; 2727 2728 bioset_exit(&pools->bs); 2729 bioset_exit(&pools->io_bs); 2730 2731 kfree(pools); 2732 } 2733 2734 struct dm_pr { 2735 u64 old_key; 2736 u64 new_key; 2737 u32 flags; 2738 bool fail_early; 2739 }; 2740 2741 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2742 void *data) 2743 { 2744 struct mapped_device *md = bdev->bd_disk->private_data; 2745 struct dm_table *table; 2746 struct dm_target *ti; 2747 int ret = -ENOTTY, srcu_idx; 2748 2749 table = dm_get_live_table(md, &srcu_idx); 2750 if (!table || !dm_table_get_size(table)) 2751 goto out; 2752 2753 /* We only support devices that have a single target */ 2754 if (dm_table_get_num_targets(table) != 1) 2755 goto out; 2756 ti = dm_table_get_target(table, 0); 2757 2758 ret = -EINVAL; 2759 if (!ti->type->iterate_devices) 2760 goto out; 2761 2762 ret = ti->type->iterate_devices(ti, fn, data); 2763 out: 2764 dm_put_live_table(md, srcu_idx); 2765 return ret; 2766 } 2767 2768 /* 2769 * For register / unregister we need to manually call out to every path. 2770 */ 2771 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2772 sector_t start, sector_t len, void *data) 2773 { 2774 struct dm_pr *pr = data; 2775 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2776 2777 if (!ops || !ops->pr_register) 2778 return -EOPNOTSUPP; 2779 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2780 } 2781 2782 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2783 u32 flags) 2784 { 2785 struct dm_pr pr = { 2786 .old_key = old_key, 2787 .new_key = new_key, 2788 .flags = flags, 2789 .fail_early = true, 2790 }; 2791 int ret; 2792 2793 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2794 if (ret && new_key) { 2795 /* unregister all paths if we failed to register any path */ 2796 pr.old_key = new_key; 2797 pr.new_key = 0; 2798 pr.flags = 0; 2799 pr.fail_early = false; 2800 dm_call_pr(bdev, __dm_pr_register, &pr); 2801 } 2802 2803 return ret; 2804 } 2805 2806 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2807 u32 flags) 2808 { 2809 struct mapped_device *md = bdev->bd_disk->private_data; 2810 const struct pr_ops *ops; 2811 int r, srcu_idx; 2812 2813 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2814 if (r < 0) 2815 goto out; 2816 2817 ops = bdev->bd_disk->fops->pr_ops; 2818 if (ops && ops->pr_reserve) 2819 r = ops->pr_reserve(bdev, key, type, flags); 2820 else 2821 r = -EOPNOTSUPP; 2822 out: 2823 dm_unprepare_ioctl(md, srcu_idx); 2824 return r; 2825 } 2826 2827 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2828 { 2829 struct mapped_device *md = bdev->bd_disk->private_data; 2830 const struct pr_ops *ops; 2831 int r, srcu_idx; 2832 2833 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2834 if (r < 0) 2835 goto out; 2836 2837 ops = bdev->bd_disk->fops->pr_ops; 2838 if (ops && ops->pr_release) 2839 r = ops->pr_release(bdev, key, type); 2840 else 2841 r = -EOPNOTSUPP; 2842 out: 2843 dm_unprepare_ioctl(md, srcu_idx); 2844 return r; 2845 } 2846 2847 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2848 enum pr_type type, bool abort) 2849 { 2850 struct mapped_device *md = bdev->bd_disk->private_data; 2851 const struct pr_ops *ops; 2852 int r, srcu_idx; 2853 2854 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2855 if (r < 0) 2856 goto out; 2857 2858 ops = bdev->bd_disk->fops->pr_ops; 2859 if (ops && ops->pr_preempt) 2860 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2861 else 2862 r = -EOPNOTSUPP; 2863 out: 2864 dm_unprepare_ioctl(md, srcu_idx); 2865 return r; 2866 } 2867 2868 static int dm_pr_clear(struct block_device *bdev, u64 key) 2869 { 2870 struct mapped_device *md = bdev->bd_disk->private_data; 2871 const struct pr_ops *ops; 2872 int r, srcu_idx; 2873 2874 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2875 if (r < 0) 2876 goto out; 2877 2878 ops = bdev->bd_disk->fops->pr_ops; 2879 if (ops && ops->pr_clear) 2880 r = ops->pr_clear(bdev, key); 2881 else 2882 r = -EOPNOTSUPP; 2883 out: 2884 dm_unprepare_ioctl(md, srcu_idx); 2885 return r; 2886 } 2887 2888 static const struct pr_ops dm_pr_ops = { 2889 .pr_register = dm_pr_register, 2890 .pr_reserve = dm_pr_reserve, 2891 .pr_release = dm_pr_release, 2892 .pr_preempt = dm_pr_preempt, 2893 .pr_clear = dm_pr_clear, 2894 }; 2895 2896 static const struct block_device_operations dm_blk_dops = { 2897 .submit_bio = dm_submit_bio, 2898 .open = dm_blk_open, 2899 .release = dm_blk_close, 2900 .ioctl = dm_blk_ioctl, 2901 .getgeo = dm_blk_getgeo, 2902 .report_zones = dm_blk_report_zones, 2903 .pr_ops = &dm_pr_ops, 2904 .owner = THIS_MODULE 2905 }; 2906 2907 static const struct block_device_operations dm_rq_blk_dops = { 2908 .open = dm_blk_open, 2909 .release = dm_blk_close, 2910 .ioctl = dm_blk_ioctl, 2911 .getgeo = dm_blk_getgeo, 2912 .pr_ops = &dm_pr_ops, 2913 .owner = THIS_MODULE 2914 }; 2915 2916 static const struct dax_operations dm_dax_ops = { 2917 .direct_access = dm_dax_direct_access, 2918 .zero_page_range = dm_dax_zero_page_range, 2919 }; 2920 2921 /* 2922 * module hooks 2923 */ 2924 module_init(dm_init); 2925 module_exit(dm_exit); 2926 2927 module_param(major, uint, 0); 2928 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2929 2930 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2931 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2932 2933 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2934 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2935 2936 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 2937 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 2938 2939 MODULE_DESCRIPTION(DM_NAME " driver"); 2940 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2941 MODULE_LICENSE("GPL"); 2942