xref: /linux/drivers/md/dm.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per target within a bio.  Hopefully
68  * this will be simplified out one day.
69  */
70 struct dm_target_io {
71 	struct dm_io *io;
72 	struct dm_target *ti;
73 	union map_info info;
74 	struct bio clone;
75 };
76 
77 /*
78  * For request-based dm.
79  * One of these is allocated per request.
80  */
81 struct dm_rq_target_io {
82 	struct mapped_device *md;
83 	struct dm_target *ti;
84 	struct request *orig, clone;
85 	int error;
86 	union map_info info;
87 };
88 
89 /*
90  * For request-based dm - the bio clones we allocate are embedded in these
91  * structs.
92  *
93  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
94  * the bioset is created - this means the bio has to come at the end of the
95  * struct.
96  */
97 struct dm_rq_clone_bio_info {
98 	struct bio *orig;
99 	struct dm_rq_target_io *tio;
100 	struct bio clone;
101 };
102 
103 union map_info *dm_get_mapinfo(struct bio *bio)
104 {
105 	if (bio && bio->bi_private)
106 		return &((struct dm_target_io *)bio->bi_private)->info;
107 	return NULL;
108 }
109 
110 union map_info *dm_get_rq_mapinfo(struct request *rq)
111 {
112 	if (rq && rq->end_io_data)
113 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
114 	return NULL;
115 }
116 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
117 
118 #define MINOR_ALLOCED ((void *)-1)
119 
120 /*
121  * Bits for the md->flags field.
122  */
123 #define DMF_BLOCK_IO_FOR_SUSPEND 0
124 #define DMF_SUSPENDED 1
125 #define DMF_FROZEN 2
126 #define DMF_FREEING 3
127 #define DMF_DELETING 4
128 #define DMF_NOFLUSH_SUSPENDING 5
129 #define DMF_MERGE_IS_OPTIONAL 6
130 
131 /*
132  * Work processed by per-device workqueue.
133  */
134 struct mapped_device {
135 	struct rw_semaphore io_lock;
136 	struct mutex suspend_lock;
137 	rwlock_t map_lock;
138 	atomic_t holders;
139 	atomic_t open_count;
140 
141 	unsigned long flags;
142 
143 	struct request_queue *queue;
144 	unsigned type;
145 	/* Protect queue and type against concurrent access. */
146 	struct mutex type_lock;
147 
148 	struct target_type *immutable_target_type;
149 
150 	struct gendisk *disk;
151 	char name[16];
152 
153 	void *interface_ptr;
154 
155 	/*
156 	 * A list of ios that arrived while we were suspended.
157 	 */
158 	atomic_t pending[2];
159 	wait_queue_head_t wait;
160 	struct work_struct work;
161 	struct bio_list deferred;
162 	spinlock_t deferred_lock;
163 
164 	/*
165 	 * Processing queue (flush)
166 	 */
167 	struct workqueue_struct *wq;
168 
169 	/*
170 	 * The current mapping.
171 	 */
172 	struct dm_table *map;
173 
174 	/*
175 	 * io objects are allocated from here.
176 	 */
177 	mempool_t *io_pool;
178 	mempool_t *tio_pool;
179 
180 	struct bio_set *bs;
181 
182 	/*
183 	 * Event handling.
184 	 */
185 	atomic_t event_nr;
186 	wait_queue_head_t eventq;
187 	atomic_t uevent_seq;
188 	struct list_head uevent_list;
189 	spinlock_t uevent_lock; /* Protect access to uevent_list */
190 
191 	/*
192 	 * freeze/thaw support require holding onto a super block
193 	 */
194 	struct super_block *frozen_sb;
195 	struct block_device *bdev;
196 
197 	/* forced geometry settings */
198 	struct hd_geometry geometry;
199 
200 	/* sysfs handle */
201 	struct kobject kobj;
202 
203 	/* zero-length flush that will be cloned and submitted to targets */
204 	struct bio flush_bio;
205 };
206 
207 /*
208  * For mempools pre-allocation at the table loading time.
209  */
210 struct dm_md_mempools {
211 	mempool_t *io_pool;
212 	mempool_t *tio_pool;
213 	struct bio_set *bs;
214 };
215 
216 #define MIN_IOS 256
217 static struct kmem_cache *_io_cache;
218 static struct kmem_cache *_rq_tio_cache;
219 
220 /*
221  * Unused now, and needs to be deleted. But since io_pool is overloaded and it's
222  * still used for _io_cache, I'm leaving this for a later cleanup
223  */
224 static struct kmem_cache *_rq_bio_info_cache;
225 
226 static int __init local_init(void)
227 {
228 	int r = -ENOMEM;
229 
230 	/* allocate a slab for the dm_ios */
231 	_io_cache = KMEM_CACHE(dm_io, 0);
232 	if (!_io_cache)
233 		return r;
234 
235 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
236 	if (!_rq_tio_cache)
237 		goto out_free_io_cache;
238 
239 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
240 	if (!_rq_bio_info_cache)
241 		goto out_free_rq_tio_cache;
242 
243 	r = dm_uevent_init();
244 	if (r)
245 		goto out_free_rq_bio_info_cache;
246 
247 	_major = major;
248 	r = register_blkdev(_major, _name);
249 	if (r < 0)
250 		goto out_uevent_exit;
251 
252 	if (!_major)
253 		_major = r;
254 
255 	return 0;
256 
257 out_uevent_exit:
258 	dm_uevent_exit();
259 out_free_rq_bio_info_cache:
260 	kmem_cache_destroy(_rq_bio_info_cache);
261 out_free_rq_tio_cache:
262 	kmem_cache_destroy(_rq_tio_cache);
263 out_free_io_cache:
264 	kmem_cache_destroy(_io_cache);
265 
266 	return r;
267 }
268 
269 static void local_exit(void)
270 {
271 	kmem_cache_destroy(_rq_bio_info_cache);
272 	kmem_cache_destroy(_rq_tio_cache);
273 	kmem_cache_destroy(_io_cache);
274 	unregister_blkdev(_major, _name);
275 	dm_uevent_exit();
276 
277 	_major = 0;
278 
279 	DMINFO("cleaned up");
280 }
281 
282 static int (*_inits[])(void) __initdata = {
283 	local_init,
284 	dm_target_init,
285 	dm_linear_init,
286 	dm_stripe_init,
287 	dm_io_init,
288 	dm_kcopyd_init,
289 	dm_interface_init,
290 };
291 
292 static void (*_exits[])(void) = {
293 	local_exit,
294 	dm_target_exit,
295 	dm_linear_exit,
296 	dm_stripe_exit,
297 	dm_io_exit,
298 	dm_kcopyd_exit,
299 	dm_interface_exit,
300 };
301 
302 static int __init dm_init(void)
303 {
304 	const int count = ARRAY_SIZE(_inits);
305 
306 	int r, i;
307 
308 	for (i = 0; i < count; i++) {
309 		r = _inits[i]();
310 		if (r)
311 			goto bad;
312 	}
313 
314 	return 0;
315 
316       bad:
317 	while (i--)
318 		_exits[i]();
319 
320 	return r;
321 }
322 
323 static void __exit dm_exit(void)
324 {
325 	int i = ARRAY_SIZE(_exits);
326 
327 	while (i--)
328 		_exits[i]();
329 
330 	/*
331 	 * Should be empty by this point.
332 	 */
333 	idr_remove_all(&_minor_idr);
334 	idr_destroy(&_minor_idr);
335 }
336 
337 /*
338  * Block device functions
339  */
340 int dm_deleting_md(struct mapped_device *md)
341 {
342 	return test_bit(DMF_DELETING, &md->flags);
343 }
344 
345 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
346 {
347 	struct mapped_device *md;
348 
349 	spin_lock(&_minor_lock);
350 
351 	md = bdev->bd_disk->private_data;
352 	if (!md)
353 		goto out;
354 
355 	if (test_bit(DMF_FREEING, &md->flags) ||
356 	    dm_deleting_md(md)) {
357 		md = NULL;
358 		goto out;
359 	}
360 
361 	dm_get(md);
362 	atomic_inc(&md->open_count);
363 
364 out:
365 	spin_unlock(&_minor_lock);
366 
367 	return md ? 0 : -ENXIO;
368 }
369 
370 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
371 {
372 	struct mapped_device *md = disk->private_data;
373 
374 	spin_lock(&_minor_lock);
375 
376 	atomic_dec(&md->open_count);
377 	dm_put(md);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return 0;
382 }
383 
384 int dm_open_count(struct mapped_device *md)
385 {
386 	return atomic_read(&md->open_count);
387 }
388 
389 /*
390  * Guarantees nothing is using the device before it's deleted.
391  */
392 int dm_lock_for_deletion(struct mapped_device *md)
393 {
394 	int r = 0;
395 
396 	spin_lock(&_minor_lock);
397 
398 	if (dm_open_count(md))
399 		r = -EBUSY;
400 	else
401 		set_bit(DMF_DELETING, &md->flags);
402 
403 	spin_unlock(&_minor_lock);
404 
405 	return r;
406 }
407 
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 	struct mapped_device *md = bdev->bd_disk->private_data;
411 
412 	return dm_get_geometry(md, geo);
413 }
414 
415 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
416 			unsigned int cmd, unsigned long arg)
417 {
418 	struct mapped_device *md = bdev->bd_disk->private_data;
419 	struct dm_table *map = dm_get_live_table(md);
420 	struct dm_target *tgt;
421 	int r = -ENOTTY;
422 
423 	if (!map || !dm_table_get_size(map))
424 		goto out;
425 
426 	/* We only support devices that have a single target */
427 	if (dm_table_get_num_targets(map) != 1)
428 		goto out;
429 
430 	tgt = dm_table_get_target(map, 0);
431 
432 	if (dm_suspended_md(md)) {
433 		r = -EAGAIN;
434 		goto out;
435 	}
436 
437 	if (tgt->type->ioctl)
438 		r = tgt->type->ioctl(tgt, cmd, arg);
439 
440 out:
441 	dm_table_put(map);
442 
443 	return r;
444 }
445 
446 static struct dm_io *alloc_io(struct mapped_device *md)
447 {
448 	return mempool_alloc(md->io_pool, GFP_NOIO);
449 }
450 
451 static void free_io(struct mapped_device *md, struct dm_io *io)
452 {
453 	mempool_free(io, md->io_pool);
454 }
455 
456 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
457 {
458 	bio_put(&tio->clone);
459 }
460 
461 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
462 					    gfp_t gfp_mask)
463 {
464 	return mempool_alloc(md->tio_pool, gfp_mask);
465 }
466 
467 static void free_rq_tio(struct dm_rq_target_io *tio)
468 {
469 	mempool_free(tio, tio->md->tio_pool);
470 }
471 
472 static int md_in_flight(struct mapped_device *md)
473 {
474 	return atomic_read(&md->pending[READ]) +
475 	       atomic_read(&md->pending[WRITE]);
476 }
477 
478 static void start_io_acct(struct dm_io *io)
479 {
480 	struct mapped_device *md = io->md;
481 	int cpu;
482 	int rw = bio_data_dir(io->bio);
483 
484 	io->start_time = jiffies;
485 
486 	cpu = part_stat_lock();
487 	part_round_stats(cpu, &dm_disk(md)->part0);
488 	part_stat_unlock();
489 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
490 		atomic_inc_return(&md->pending[rw]));
491 }
492 
493 static void end_io_acct(struct dm_io *io)
494 {
495 	struct mapped_device *md = io->md;
496 	struct bio *bio = io->bio;
497 	unsigned long duration = jiffies - io->start_time;
498 	int pending, cpu;
499 	int rw = bio_data_dir(bio);
500 
501 	cpu = part_stat_lock();
502 	part_round_stats(cpu, &dm_disk(md)->part0);
503 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
504 	part_stat_unlock();
505 
506 	/*
507 	 * After this is decremented the bio must not be touched if it is
508 	 * a flush.
509 	 */
510 	pending = atomic_dec_return(&md->pending[rw]);
511 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
512 	pending += atomic_read(&md->pending[rw^0x1]);
513 
514 	/* nudge anyone waiting on suspend queue */
515 	if (!pending)
516 		wake_up(&md->wait);
517 }
518 
519 /*
520  * Add the bio to the list of deferred io.
521  */
522 static void queue_io(struct mapped_device *md, struct bio *bio)
523 {
524 	unsigned long flags;
525 
526 	spin_lock_irqsave(&md->deferred_lock, flags);
527 	bio_list_add(&md->deferred, bio);
528 	spin_unlock_irqrestore(&md->deferred_lock, flags);
529 	queue_work(md->wq, &md->work);
530 }
531 
532 /*
533  * Everyone (including functions in this file), should use this
534  * function to access the md->map field, and make sure they call
535  * dm_table_put() when finished.
536  */
537 struct dm_table *dm_get_live_table(struct mapped_device *md)
538 {
539 	struct dm_table *t;
540 	unsigned long flags;
541 
542 	read_lock_irqsave(&md->map_lock, flags);
543 	t = md->map;
544 	if (t)
545 		dm_table_get(t);
546 	read_unlock_irqrestore(&md->map_lock, flags);
547 
548 	return t;
549 }
550 
551 /*
552  * Get the geometry associated with a dm device
553  */
554 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
555 {
556 	*geo = md->geometry;
557 
558 	return 0;
559 }
560 
561 /*
562  * Set the geometry of a device.
563  */
564 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
565 {
566 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
567 
568 	if (geo->start > sz) {
569 		DMWARN("Start sector is beyond the geometry limits.");
570 		return -EINVAL;
571 	}
572 
573 	md->geometry = *geo;
574 
575 	return 0;
576 }
577 
578 /*-----------------------------------------------------------------
579  * CRUD START:
580  *   A more elegant soln is in the works that uses the queue
581  *   merge fn, unfortunately there are a couple of changes to
582  *   the block layer that I want to make for this.  So in the
583  *   interests of getting something for people to use I give
584  *   you this clearly demarcated crap.
585  *---------------------------------------------------------------*/
586 
587 static int __noflush_suspending(struct mapped_device *md)
588 {
589 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
590 }
591 
592 /*
593  * Decrements the number of outstanding ios that a bio has been
594  * cloned into, completing the original io if necc.
595  */
596 static void dec_pending(struct dm_io *io, int error)
597 {
598 	unsigned long flags;
599 	int io_error;
600 	struct bio *bio;
601 	struct mapped_device *md = io->md;
602 
603 	/* Push-back supersedes any I/O errors */
604 	if (unlikely(error)) {
605 		spin_lock_irqsave(&io->endio_lock, flags);
606 		if (!(io->error > 0 && __noflush_suspending(md)))
607 			io->error = error;
608 		spin_unlock_irqrestore(&io->endio_lock, flags);
609 	}
610 
611 	if (atomic_dec_and_test(&io->io_count)) {
612 		if (io->error == DM_ENDIO_REQUEUE) {
613 			/*
614 			 * Target requested pushing back the I/O.
615 			 */
616 			spin_lock_irqsave(&md->deferred_lock, flags);
617 			if (__noflush_suspending(md))
618 				bio_list_add_head(&md->deferred, io->bio);
619 			else
620 				/* noflush suspend was interrupted. */
621 				io->error = -EIO;
622 			spin_unlock_irqrestore(&md->deferred_lock, flags);
623 		}
624 
625 		io_error = io->error;
626 		bio = io->bio;
627 		end_io_acct(io);
628 		free_io(md, io);
629 
630 		if (io_error == DM_ENDIO_REQUEUE)
631 			return;
632 
633 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
634 			/*
635 			 * Preflush done for flush with data, reissue
636 			 * without REQ_FLUSH.
637 			 */
638 			bio->bi_rw &= ~REQ_FLUSH;
639 			queue_io(md, bio);
640 		} else {
641 			/* done with normal IO or empty flush */
642 			trace_block_bio_complete(md->queue, bio, io_error);
643 			bio_endio(bio, io_error);
644 		}
645 	}
646 }
647 
648 static void clone_endio(struct bio *bio, int error)
649 {
650 	int r = 0;
651 	struct dm_target_io *tio = bio->bi_private;
652 	struct dm_io *io = tio->io;
653 	struct mapped_device *md = tio->io->md;
654 	dm_endio_fn endio = tio->ti->type->end_io;
655 
656 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
657 		error = -EIO;
658 
659 	if (endio) {
660 		r = endio(tio->ti, bio, error, &tio->info);
661 		if (r < 0 || r == DM_ENDIO_REQUEUE)
662 			/*
663 			 * error and requeue request are handled
664 			 * in dec_pending().
665 			 */
666 			error = r;
667 		else if (r == DM_ENDIO_INCOMPLETE)
668 			/* The target will handle the io */
669 			return;
670 		else if (r) {
671 			DMWARN("unimplemented target endio return value: %d", r);
672 			BUG();
673 		}
674 	}
675 
676 	free_tio(md, tio);
677 	dec_pending(io, error);
678 }
679 
680 /*
681  * Partial completion handling for request-based dm
682  */
683 static void end_clone_bio(struct bio *clone, int error)
684 {
685 	struct dm_rq_clone_bio_info *info = clone->bi_private;
686 	struct dm_rq_target_io *tio = info->tio;
687 	struct bio *bio = info->orig;
688 	unsigned int nr_bytes = info->orig->bi_size;
689 
690 	bio_put(clone);
691 
692 	if (tio->error)
693 		/*
694 		 * An error has already been detected on the request.
695 		 * Once error occurred, just let clone->end_io() handle
696 		 * the remainder.
697 		 */
698 		return;
699 	else if (error) {
700 		/*
701 		 * Don't notice the error to the upper layer yet.
702 		 * The error handling decision is made by the target driver,
703 		 * when the request is completed.
704 		 */
705 		tio->error = error;
706 		return;
707 	}
708 
709 	/*
710 	 * I/O for the bio successfully completed.
711 	 * Notice the data completion to the upper layer.
712 	 */
713 
714 	/*
715 	 * bios are processed from the head of the list.
716 	 * So the completing bio should always be rq->bio.
717 	 * If it's not, something wrong is happening.
718 	 */
719 	if (tio->orig->bio != bio)
720 		DMERR("bio completion is going in the middle of the request");
721 
722 	/*
723 	 * Update the original request.
724 	 * Do not use blk_end_request() here, because it may complete
725 	 * the original request before the clone, and break the ordering.
726 	 */
727 	blk_update_request(tio->orig, 0, nr_bytes);
728 }
729 
730 /*
731  * Don't touch any member of the md after calling this function because
732  * the md may be freed in dm_put() at the end of this function.
733  * Or do dm_get() before calling this function and dm_put() later.
734  */
735 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
736 {
737 	atomic_dec(&md->pending[rw]);
738 
739 	/* nudge anyone waiting on suspend queue */
740 	if (!md_in_flight(md))
741 		wake_up(&md->wait);
742 
743 	/*
744 	 * Run this off this callpath, as drivers could invoke end_io while
745 	 * inside their request_fn (and holding the queue lock). Calling
746 	 * back into ->request_fn() could deadlock attempting to grab the
747 	 * queue lock again.
748 	 */
749 	if (run_queue)
750 		blk_run_queue_async(md->queue);
751 
752 	/*
753 	 * dm_put() must be at the end of this function. See the comment above
754 	 */
755 	dm_put(md);
756 }
757 
758 static void free_rq_clone(struct request *clone)
759 {
760 	struct dm_rq_target_io *tio = clone->end_io_data;
761 
762 	blk_rq_unprep_clone(clone);
763 	free_rq_tio(tio);
764 }
765 
766 /*
767  * Complete the clone and the original request.
768  * Must be called without queue lock.
769  */
770 static void dm_end_request(struct request *clone, int error)
771 {
772 	int rw = rq_data_dir(clone);
773 	struct dm_rq_target_io *tio = clone->end_io_data;
774 	struct mapped_device *md = tio->md;
775 	struct request *rq = tio->orig;
776 
777 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
778 		rq->errors = clone->errors;
779 		rq->resid_len = clone->resid_len;
780 
781 		if (rq->sense)
782 			/*
783 			 * We are using the sense buffer of the original
784 			 * request.
785 			 * So setting the length of the sense data is enough.
786 			 */
787 			rq->sense_len = clone->sense_len;
788 	}
789 
790 	free_rq_clone(clone);
791 	blk_end_request_all(rq, error);
792 	rq_completed(md, rw, true);
793 }
794 
795 static void dm_unprep_request(struct request *rq)
796 {
797 	struct request *clone = rq->special;
798 
799 	rq->special = NULL;
800 	rq->cmd_flags &= ~REQ_DONTPREP;
801 
802 	free_rq_clone(clone);
803 }
804 
805 /*
806  * Requeue the original request of a clone.
807  */
808 void dm_requeue_unmapped_request(struct request *clone)
809 {
810 	int rw = rq_data_dir(clone);
811 	struct dm_rq_target_io *tio = clone->end_io_data;
812 	struct mapped_device *md = tio->md;
813 	struct request *rq = tio->orig;
814 	struct request_queue *q = rq->q;
815 	unsigned long flags;
816 
817 	dm_unprep_request(rq);
818 
819 	spin_lock_irqsave(q->queue_lock, flags);
820 	blk_requeue_request(q, rq);
821 	spin_unlock_irqrestore(q->queue_lock, flags);
822 
823 	rq_completed(md, rw, 0);
824 }
825 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
826 
827 static void __stop_queue(struct request_queue *q)
828 {
829 	blk_stop_queue(q);
830 }
831 
832 static void stop_queue(struct request_queue *q)
833 {
834 	unsigned long flags;
835 
836 	spin_lock_irqsave(q->queue_lock, flags);
837 	__stop_queue(q);
838 	spin_unlock_irqrestore(q->queue_lock, flags);
839 }
840 
841 static void __start_queue(struct request_queue *q)
842 {
843 	if (blk_queue_stopped(q))
844 		blk_start_queue(q);
845 }
846 
847 static void start_queue(struct request_queue *q)
848 {
849 	unsigned long flags;
850 
851 	spin_lock_irqsave(q->queue_lock, flags);
852 	__start_queue(q);
853 	spin_unlock_irqrestore(q->queue_lock, flags);
854 }
855 
856 static void dm_done(struct request *clone, int error, bool mapped)
857 {
858 	int r = error;
859 	struct dm_rq_target_io *tio = clone->end_io_data;
860 	dm_request_endio_fn rq_end_io = NULL;
861 
862 	if (tio->ti) {
863 		rq_end_io = tio->ti->type->rq_end_io;
864 
865 		if (mapped && rq_end_io)
866 			r = rq_end_io(tio->ti, clone, error, &tio->info);
867 	}
868 
869 	if (r <= 0)
870 		/* The target wants to complete the I/O */
871 		dm_end_request(clone, r);
872 	else if (r == DM_ENDIO_INCOMPLETE)
873 		/* The target will handle the I/O */
874 		return;
875 	else if (r == DM_ENDIO_REQUEUE)
876 		/* The target wants to requeue the I/O */
877 		dm_requeue_unmapped_request(clone);
878 	else {
879 		DMWARN("unimplemented target endio return value: %d", r);
880 		BUG();
881 	}
882 }
883 
884 /*
885  * Request completion handler for request-based dm
886  */
887 static void dm_softirq_done(struct request *rq)
888 {
889 	bool mapped = true;
890 	struct request *clone = rq->completion_data;
891 	struct dm_rq_target_io *tio = clone->end_io_data;
892 
893 	if (rq->cmd_flags & REQ_FAILED)
894 		mapped = false;
895 
896 	dm_done(clone, tio->error, mapped);
897 }
898 
899 /*
900  * Complete the clone and the original request with the error status
901  * through softirq context.
902  */
903 static void dm_complete_request(struct request *clone, int error)
904 {
905 	struct dm_rq_target_io *tio = clone->end_io_data;
906 	struct request *rq = tio->orig;
907 
908 	tio->error = error;
909 	rq->completion_data = clone;
910 	blk_complete_request(rq);
911 }
912 
913 /*
914  * Complete the not-mapped clone and the original request with the error status
915  * through softirq context.
916  * Target's rq_end_io() function isn't called.
917  * This may be used when the target's map_rq() function fails.
918  */
919 void dm_kill_unmapped_request(struct request *clone, int error)
920 {
921 	struct dm_rq_target_io *tio = clone->end_io_data;
922 	struct request *rq = tio->orig;
923 
924 	rq->cmd_flags |= REQ_FAILED;
925 	dm_complete_request(clone, error);
926 }
927 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
928 
929 /*
930  * Called with the queue lock held
931  */
932 static void end_clone_request(struct request *clone, int error)
933 {
934 	/*
935 	 * For just cleaning up the information of the queue in which
936 	 * the clone was dispatched.
937 	 * The clone is *NOT* freed actually here because it is alloced from
938 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
939 	 */
940 	__blk_put_request(clone->q, clone);
941 
942 	/*
943 	 * Actual request completion is done in a softirq context which doesn't
944 	 * hold the queue lock.  Otherwise, deadlock could occur because:
945 	 *     - another request may be submitted by the upper level driver
946 	 *       of the stacking during the completion
947 	 *     - the submission which requires queue lock may be done
948 	 *       against this queue
949 	 */
950 	dm_complete_request(clone, error);
951 }
952 
953 /*
954  * Return maximum size of I/O possible at the supplied sector up to the current
955  * target boundary.
956  */
957 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
958 {
959 	sector_t target_offset = dm_target_offset(ti, sector);
960 
961 	return ti->len - target_offset;
962 }
963 
964 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
965 {
966 	sector_t len = max_io_len_target_boundary(sector, ti);
967 	sector_t offset, max_len;
968 
969 	/*
970 	 * Does the target need to split even further?
971 	 */
972 	if (ti->max_io_len) {
973 		offset = dm_target_offset(ti, sector);
974 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
975 			max_len = sector_div(offset, ti->max_io_len);
976 		else
977 			max_len = offset & (ti->max_io_len - 1);
978 		max_len = ti->max_io_len - max_len;
979 
980 		if (len > max_len)
981 			len = max_len;
982 	}
983 
984 	return len;
985 }
986 
987 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
988 {
989 	if (len > UINT_MAX) {
990 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
991 		      (unsigned long long)len, UINT_MAX);
992 		ti->error = "Maximum size of target IO is too large";
993 		return -EINVAL;
994 	}
995 
996 	ti->max_io_len = (uint32_t) len;
997 
998 	return 0;
999 }
1000 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1001 
1002 static void __map_bio(struct dm_target *ti, struct dm_target_io *tio)
1003 {
1004 	int r;
1005 	sector_t sector;
1006 	struct mapped_device *md;
1007 	struct bio *clone = &tio->clone;
1008 
1009 	clone->bi_end_io = clone_endio;
1010 	clone->bi_private = tio;
1011 
1012 	/*
1013 	 * Map the clone.  If r == 0 we don't need to do
1014 	 * anything, the target has assumed ownership of
1015 	 * this io.
1016 	 */
1017 	atomic_inc(&tio->io->io_count);
1018 	sector = clone->bi_sector;
1019 	r = ti->type->map(ti, clone, &tio->info);
1020 	if (r == DM_MAPIO_REMAPPED) {
1021 		/* the bio has been remapped so dispatch it */
1022 
1023 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1024 				      tio->io->bio->bi_bdev->bd_dev, sector);
1025 
1026 		generic_make_request(clone);
1027 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1028 		/* error the io and bail out, or requeue it if needed */
1029 		md = tio->io->md;
1030 		dec_pending(tio->io, r);
1031 		free_tio(md, tio);
1032 	} else if (r) {
1033 		DMWARN("unimplemented target map return value: %d", r);
1034 		BUG();
1035 	}
1036 }
1037 
1038 struct clone_info {
1039 	struct mapped_device *md;
1040 	struct dm_table *map;
1041 	struct bio *bio;
1042 	struct dm_io *io;
1043 	sector_t sector;
1044 	sector_t sector_count;
1045 	unsigned short idx;
1046 };
1047 
1048 /*
1049  * Creates a little bio that just does part of a bvec.
1050  */
1051 static void split_bvec(struct dm_target_io *tio, struct bio *bio,
1052 		       sector_t sector, unsigned short idx, unsigned int offset,
1053 		       unsigned int len, struct bio_set *bs)
1054 {
1055 	struct bio *clone = &tio->clone;
1056 	struct bio_vec *bv = bio->bi_io_vec + idx;
1057 
1058 	*clone->bi_io_vec = *bv;
1059 
1060 	clone->bi_sector = sector;
1061 	clone->bi_bdev = bio->bi_bdev;
1062 	clone->bi_rw = bio->bi_rw;
1063 	clone->bi_vcnt = 1;
1064 	clone->bi_size = to_bytes(len);
1065 	clone->bi_io_vec->bv_offset = offset;
1066 	clone->bi_io_vec->bv_len = clone->bi_size;
1067 	clone->bi_flags |= 1 << BIO_CLONED;
1068 
1069 	if (bio_integrity(bio)) {
1070 		bio_integrity_clone(clone, bio, GFP_NOIO);
1071 		bio_integrity_trim(clone,
1072 				   bio_sector_offset(bio, idx, offset), len);
1073 	}
1074 }
1075 
1076 /*
1077  * Creates a bio that consists of range of complete bvecs.
1078  */
1079 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1080 		      sector_t sector, unsigned short idx,
1081 		      unsigned short bv_count, unsigned int len,
1082 		      struct bio_set *bs)
1083 {
1084 	struct bio *clone = &tio->clone;
1085 
1086 	__bio_clone(clone, bio);
1087 	clone->bi_sector = sector;
1088 	clone->bi_idx = idx;
1089 	clone->bi_vcnt = idx + bv_count;
1090 	clone->bi_size = to_bytes(len);
1091 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1092 
1093 	if (bio_integrity(bio)) {
1094 		bio_integrity_clone(clone, bio, GFP_NOIO);
1095 
1096 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1097 			bio_integrity_trim(clone,
1098 					   bio_sector_offset(bio, idx, 0), len);
1099 	}
1100 }
1101 
1102 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1103 				      struct dm_target *ti, int nr_iovecs)
1104 {
1105 	struct dm_target_io *tio;
1106 	struct bio *clone;
1107 
1108 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1109 	tio = container_of(clone, struct dm_target_io, clone);
1110 
1111 	tio->io = ci->io;
1112 	tio->ti = ti;
1113 	memset(&tio->info, 0, sizeof(tio->info));
1114 
1115 	return tio;
1116 }
1117 
1118 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1119 				   unsigned request_nr, sector_t len)
1120 {
1121 	struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs);
1122 	struct bio *clone = &tio->clone;
1123 
1124 	tio->info.target_request_nr = request_nr;
1125 
1126 	/*
1127 	 * Discard requests require the bio's inline iovecs be initialized.
1128 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1129 	 * and discard, so no need for concern about wasted bvec allocations.
1130 	 */
1131 
1132 	 __bio_clone(clone, ci->bio);
1133 	if (len) {
1134 		clone->bi_sector = ci->sector;
1135 		clone->bi_size = to_bytes(len);
1136 	}
1137 
1138 	__map_bio(ti, tio);
1139 }
1140 
1141 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1142 				    unsigned num_requests, sector_t len)
1143 {
1144 	unsigned request_nr;
1145 
1146 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1147 		__issue_target_request(ci, ti, request_nr, len);
1148 }
1149 
1150 static int __clone_and_map_empty_flush(struct clone_info *ci)
1151 {
1152 	unsigned target_nr = 0;
1153 	struct dm_target *ti;
1154 
1155 	BUG_ON(bio_has_data(ci->bio));
1156 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1157 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1158 
1159 	return 0;
1160 }
1161 
1162 /*
1163  * Perform all io with a single clone.
1164  */
1165 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1166 {
1167 	struct bio *bio = ci->bio;
1168 	struct dm_target_io *tio;
1169 
1170 	tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1171 	clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx,
1172 		  ci->sector_count, ci->md->bs);
1173 	__map_bio(ti, tio);
1174 	ci->sector_count = 0;
1175 }
1176 
1177 static int __clone_and_map_discard(struct clone_info *ci)
1178 {
1179 	struct dm_target *ti;
1180 	sector_t len;
1181 
1182 	do {
1183 		ti = dm_table_find_target(ci->map, ci->sector);
1184 		if (!dm_target_is_valid(ti))
1185 			return -EIO;
1186 
1187 		/*
1188 		 * Even though the device advertised discard support,
1189 		 * that does not mean every target supports it, and
1190 		 * reconfiguration might also have changed that since the
1191 		 * check was performed.
1192 		 */
1193 		if (!ti->num_discard_requests)
1194 			return -EOPNOTSUPP;
1195 
1196 		if (!ti->split_discard_requests)
1197 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1198 		else
1199 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1200 
1201 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1202 
1203 		ci->sector += len;
1204 	} while (ci->sector_count -= len);
1205 
1206 	return 0;
1207 }
1208 
1209 static int __clone_and_map(struct clone_info *ci)
1210 {
1211 	struct bio *bio = ci->bio;
1212 	struct dm_target *ti;
1213 	sector_t len = 0, max;
1214 	struct dm_target_io *tio;
1215 
1216 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1217 		return __clone_and_map_discard(ci);
1218 
1219 	ti = dm_table_find_target(ci->map, ci->sector);
1220 	if (!dm_target_is_valid(ti))
1221 		return -EIO;
1222 
1223 	max = max_io_len(ci->sector, ti);
1224 
1225 	if (ci->sector_count <= max) {
1226 		/*
1227 		 * Optimise for the simple case where we can do all of
1228 		 * the remaining io with a single clone.
1229 		 */
1230 		__clone_and_map_simple(ci, ti);
1231 
1232 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1233 		/*
1234 		 * There are some bvecs that don't span targets.
1235 		 * Do as many of these as possible.
1236 		 */
1237 		int i;
1238 		sector_t remaining = max;
1239 		sector_t bv_len;
1240 
1241 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1242 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1243 
1244 			if (bv_len > remaining)
1245 				break;
1246 
1247 			remaining -= bv_len;
1248 			len += bv_len;
1249 		}
1250 
1251 		tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1252 		clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len,
1253 			  ci->md->bs);
1254 		__map_bio(ti, tio);
1255 
1256 		ci->sector += len;
1257 		ci->sector_count -= len;
1258 		ci->idx = i;
1259 
1260 	} else {
1261 		/*
1262 		 * Handle a bvec that must be split between two or more targets.
1263 		 */
1264 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1265 		sector_t remaining = to_sector(bv->bv_len);
1266 		unsigned int offset = 0;
1267 
1268 		do {
1269 			if (offset) {
1270 				ti = dm_table_find_target(ci->map, ci->sector);
1271 				if (!dm_target_is_valid(ti))
1272 					return -EIO;
1273 
1274 				max = max_io_len(ci->sector, ti);
1275 			}
1276 
1277 			len = min(remaining, max);
1278 
1279 			tio = alloc_tio(ci, ti, 1);
1280 			split_bvec(tio, bio, ci->sector, ci->idx,
1281 				   bv->bv_offset + offset, len, ci->md->bs);
1282 
1283 			__map_bio(ti, tio);
1284 
1285 			ci->sector += len;
1286 			ci->sector_count -= len;
1287 			offset += to_bytes(len);
1288 		} while (remaining -= len);
1289 
1290 		ci->idx++;
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Split the bio into several clones and submit it to targets.
1298  */
1299 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1300 {
1301 	struct clone_info ci;
1302 	int error = 0;
1303 
1304 	ci.map = dm_get_live_table(md);
1305 	if (unlikely(!ci.map)) {
1306 		bio_io_error(bio);
1307 		return;
1308 	}
1309 
1310 	ci.md = md;
1311 	ci.io = alloc_io(md);
1312 	ci.io->error = 0;
1313 	atomic_set(&ci.io->io_count, 1);
1314 	ci.io->bio = bio;
1315 	ci.io->md = md;
1316 	spin_lock_init(&ci.io->endio_lock);
1317 	ci.sector = bio->bi_sector;
1318 	ci.idx = bio->bi_idx;
1319 
1320 	start_io_acct(ci.io);
1321 	if (bio->bi_rw & REQ_FLUSH) {
1322 		ci.bio = &ci.md->flush_bio;
1323 		ci.sector_count = 0;
1324 		error = __clone_and_map_empty_flush(&ci);
1325 		/* dec_pending submits any data associated with flush */
1326 	} else {
1327 		ci.bio = bio;
1328 		ci.sector_count = bio_sectors(bio);
1329 		while (ci.sector_count && !error)
1330 			error = __clone_and_map(&ci);
1331 	}
1332 
1333 	/* drop the extra reference count */
1334 	dec_pending(ci.io, error);
1335 	dm_table_put(ci.map);
1336 }
1337 /*-----------------------------------------------------------------
1338  * CRUD END
1339  *---------------------------------------------------------------*/
1340 
1341 static int dm_merge_bvec(struct request_queue *q,
1342 			 struct bvec_merge_data *bvm,
1343 			 struct bio_vec *biovec)
1344 {
1345 	struct mapped_device *md = q->queuedata;
1346 	struct dm_table *map = dm_get_live_table(md);
1347 	struct dm_target *ti;
1348 	sector_t max_sectors;
1349 	int max_size = 0;
1350 
1351 	if (unlikely(!map))
1352 		goto out;
1353 
1354 	ti = dm_table_find_target(map, bvm->bi_sector);
1355 	if (!dm_target_is_valid(ti))
1356 		goto out_table;
1357 
1358 	/*
1359 	 * Find maximum amount of I/O that won't need splitting
1360 	 */
1361 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1362 			  (sector_t) BIO_MAX_SECTORS);
1363 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1364 	if (max_size < 0)
1365 		max_size = 0;
1366 
1367 	/*
1368 	 * merge_bvec_fn() returns number of bytes
1369 	 * it can accept at this offset
1370 	 * max is precomputed maximal io size
1371 	 */
1372 	if (max_size && ti->type->merge)
1373 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1374 	/*
1375 	 * If the target doesn't support merge method and some of the devices
1376 	 * provided their merge_bvec method (we know this by looking at
1377 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1378 	 * entries.  So always set max_size to 0, and the code below allows
1379 	 * just one page.
1380 	 */
1381 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1382 
1383 		max_size = 0;
1384 
1385 out_table:
1386 	dm_table_put(map);
1387 
1388 out:
1389 	/*
1390 	 * Always allow an entire first page
1391 	 */
1392 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1393 		max_size = biovec->bv_len;
1394 
1395 	return max_size;
1396 }
1397 
1398 /*
1399  * The request function that just remaps the bio built up by
1400  * dm_merge_bvec.
1401  */
1402 static void _dm_request(struct request_queue *q, struct bio *bio)
1403 {
1404 	int rw = bio_data_dir(bio);
1405 	struct mapped_device *md = q->queuedata;
1406 	int cpu;
1407 
1408 	down_read(&md->io_lock);
1409 
1410 	cpu = part_stat_lock();
1411 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1412 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1413 	part_stat_unlock();
1414 
1415 	/* if we're suspended, we have to queue this io for later */
1416 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1417 		up_read(&md->io_lock);
1418 
1419 		if (bio_rw(bio) != READA)
1420 			queue_io(md, bio);
1421 		else
1422 			bio_io_error(bio);
1423 		return;
1424 	}
1425 
1426 	__split_and_process_bio(md, bio);
1427 	up_read(&md->io_lock);
1428 	return;
1429 }
1430 
1431 static int dm_request_based(struct mapped_device *md)
1432 {
1433 	return blk_queue_stackable(md->queue);
1434 }
1435 
1436 static void dm_request(struct request_queue *q, struct bio *bio)
1437 {
1438 	struct mapped_device *md = q->queuedata;
1439 
1440 	if (dm_request_based(md))
1441 		blk_queue_bio(q, bio);
1442 	else
1443 		_dm_request(q, bio);
1444 }
1445 
1446 void dm_dispatch_request(struct request *rq)
1447 {
1448 	int r;
1449 
1450 	if (blk_queue_io_stat(rq->q))
1451 		rq->cmd_flags |= REQ_IO_STAT;
1452 
1453 	rq->start_time = jiffies;
1454 	r = blk_insert_cloned_request(rq->q, rq);
1455 	if (r)
1456 		dm_complete_request(rq, r);
1457 }
1458 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1459 
1460 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1461 				 void *data)
1462 {
1463 	struct dm_rq_target_io *tio = data;
1464 	struct dm_rq_clone_bio_info *info =
1465 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1466 
1467 	info->orig = bio_orig;
1468 	info->tio = tio;
1469 	bio->bi_end_io = end_clone_bio;
1470 	bio->bi_private = info;
1471 
1472 	return 0;
1473 }
1474 
1475 static int setup_clone(struct request *clone, struct request *rq,
1476 		       struct dm_rq_target_io *tio)
1477 {
1478 	int r;
1479 
1480 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1481 			      dm_rq_bio_constructor, tio);
1482 	if (r)
1483 		return r;
1484 
1485 	clone->cmd = rq->cmd;
1486 	clone->cmd_len = rq->cmd_len;
1487 	clone->sense = rq->sense;
1488 	clone->buffer = rq->buffer;
1489 	clone->end_io = end_clone_request;
1490 	clone->end_io_data = tio;
1491 
1492 	return 0;
1493 }
1494 
1495 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1496 				gfp_t gfp_mask)
1497 {
1498 	struct request *clone;
1499 	struct dm_rq_target_io *tio;
1500 
1501 	tio = alloc_rq_tio(md, gfp_mask);
1502 	if (!tio)
1503 		return NULL;
1504 
1505 	tio->md = md;
1506 	tio->ti = NULL;
1507 	tio->orig = rq;
1508 	tio->error = 0;
1509 	memset(&tio->info, 0, sizeof(tio->info));
1510 
1511 	clone = &tio->clone;
1512 	if (setup_clone(clone, rq, tio)) {
1513 		/* -ENOMEM */
1514 		free_rq_tio(tio);
1515 		return NULL;
1516 	}
1517 
1518 	return clone;
1519 }
1520 
1521 /*
1522  * Called with the queue lock held.
1523  */
1524 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1525 {
1526 	struct mapped_device *md = q->queuedata;
1527 	struct request *clone;
1528 
1529 	if (unlikely(rq->special)) {
1530 		DMWARN("Already has something in rq->special.");
1531 		return BLKPREP_KILL;
1532 	}
1533 
1534 	clone = clone_rq(rq, md, GFP_ATOMIC);
1535 	if (!clone)
1536 		return BLKPREP_DEFER;
1537 
1538 	rq->special = clone;
1539 	rq->cmd_flags |= REQ_DONTPREP;
1540 
1541 	return BLKPREP_OK;
1542 }
1543 
1544 /*
1545  * Returns:
1546  * 0  : the request has been processed (not requeued)
1547  * !0 : the request has been requeued
1548  */
1549 static int map_request(struct dm_target *ti, struct request *clone,
1550 		       struct mapped_device *md)
1551 {
1552 	int r, requeued = 0;
1553 	struct dm_rq_target_io *tio = clone->end_io_data;
1554 
1555 	tio->ti = ti;
1556 	r = ti->type->map_rq(ti, clone, &tio->info);
1557 	switch (r) {
1558 	case DM_MAPIO_SUBMITTED:
1559 		/* The target has taken the I/O to submit by itself later */
1560 		break;
1561 	case DM_MAPIO_REMAPPED:
1562 		/* The target has remapped the I/O so dispatch it */
1563 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1564 				     blk_rq_pos(tio->orig));
1565 		dm_dispatch_request(clone);
1566 		break;
1567 	case DM_MAPIO_REQUEUE:
1568 		/* The target wants to requeue the I/O */
1569 		dm_requeue_unmapped_request(clone);
1570 		requeued = 1;
1571 		break;
1572 	default:
1573 		if (r > 0) {
1574 			DMWARN("unimplemented target map return value: %d", r);
1575 			BUG();
1576 		}
1577 
1578 		/* The target wants to complete the I/O */
1579 		dm_kill_unmapped_request(clone, r);
1580 		break;
1581 	}
1582 
1583 	return requeued;
1584 }
1585 
1586 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1587 {
1588 	struct request *clone;
1589 
1590 	blk_start_request(orig);
1591 	clone = orig->special;
1592 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1593 
1594 	/*
1595 	 * Hold the md reference here for the in-flight I/O.
1596 	 * We can't rely on the reference count by device opener,
1597 	 * because the device may be closed during the request completion
1598 	 * when all bios are completed.
1599 	 * See the comment in rq_completed() too.
1600 	 */
1601 	dm_get(md);
1602 
1603 	return clone;
1604 }
1605 
1606 /*
1607  * q->request_fn for request-based dm.
1608  * Called with the queue lock held.
1609  */
1610 static void dm_request_fn(struct request_queue *q)
1611 {
1612 	struct mapped_device *md = q->queuedata;
1613 	struct dm_table *map = dm_get_live_table(md);
1614 	struct dm_target *ti;
1615 	struct request *rq, *clone;
1616 	sector_t pos;
1617 
1618 	/*
1619 	 * For suspend, check blk_queue_stopped() and increment
1620 	 * ->pending within a single queue_lock not to increment the
1621 	 * number of in-flight I/Os after the queue is stopped in
1622 	 * dm_suspend().
1623 	 */
1624 	while (!blk_queue_stopped(q)) {
1625 		rq = blk_peek_request(q);
1626 		if (!rq)
1627 			goto delay_and_out;
1628 
1629 		/* always use block 0 to find the target for flushes for now */
1630 		pos = 0;
1631 		if (!(rq->cmd_flags & REQ_FLUSH))
1632 			pos = blk_rq_pos(rq);
1633 
1634 		ti = dm_table_find_target(map, pos);
1635 		if (!dm_target_is_valid(ti)) {
1636 			/*
1637 			 * Must perform setup, that dm_done() requires,
1638 			 * before calling dm_kill_unmapped_request
1639 			 */
1640 			DMERR_LIMIT("request attempted access beyond the end of device");
1641 			clone = dm_start_request(md, rq);
1642 			dm_kill_unmapped_request(clone, -EIO);
1643 			continue;
1644 		}
1645 
1646 		if (ti->type->busy && ti->type->busy(ti))
1647 			goto delay_and_out;
1648 
1649 		clone = dm_start_request(md, rq);
1650 
1651 		spin_unlock(q->queue_lock);
1652 		if (map_request(ti, clone, md))
1653 			goto requeued;
1654 
1655 		BUG_ON(!irqs_disabled());
1656 		spin_lock(q->queue_lock);
1657 	}
1658 
1659 	goto out;
1660 
1661 requeued:
1662 	BUG_ON(!irqs_disabled());
1663 	spin_lock(q->queue_lock);
1664 
1665 delay_and_out:
1666 	blk_delay_queue(q, HZ / 10);
1667 out:
1668 	dm_table_put(map);
1669 }
1670 
1671 int dm_underlying_device_busy(struct request_queue *q)
1672 {
1673 	return blk_lld_busy(q);
1674 }
1675 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1676 
1677 static int dm_lld_busy(struct request_queue *q)
1678 {
1679 	int r;
1680 	struct mapped_device *md = q->queuedata;
1681 	struct dm_table *map = dm_get_live_table(md);
1682 
1683 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1684 		r = 1;
1685 	else
1686 		r = dm_table_any_busy_target(map);
1687 
1688 	dm_table_put(map);
1689 
1690 	return r;
1691 }
1692 
1693 static int dm_any_congested(void *congested_data, int bdi_bits)
1694 {
1695 	int r = bdi_bits;
1696 	struct mapped_device *md = congested_data;
1697 	struct dm_table *map;
1698 
1699 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1700 		map = dm_get_live_table(md);
1701 		if (map) {
1702 			/*
1703 			 * Request-based dm cares about only own queue for
1704 			 * the query about congestion status of request_queue
1705 			 */
1706 			if (dm_request_based(md))
1707 				r = md->queue->backing_dev_info.state &
1708 				    bdi_bits;
1709 			else
1710 				r = dm_table_any_congested(map, bdi_bits);
1711 
1712 			dm_table_put(map);
1713 		}
1714 	}
1715 
1716 	return r;
1717 }
1718 
1719 /*-----------------------------------------------------------------
1720  * An IDR is used to keep track of allocated minor numbers.
1721  *---------------------------------------------------------------*/
1722 static void free_minor(int minor)
1723 {
1724 	spin_lock(&_minor_lock);
1725 	idr_remove(&_minor_idr, minor);
1726 	spin_unlock(&_minor_lock);
1727 }
1728 
1729 /*
1730  * See if the device with a specific minor # is free.
1731  */
1732 static int specific_minor(int minor)
1733 {
1734 	int r, m;
1735 
1736 	if (minor >= (1 << MINORBITS))
1737 		return -EINVAL;
1738 
1739 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1740 	if (!r)
1741 		return -ENOMEM;
1742 
1743 	spin_lock(&_minor_lock);
1744 
1745 	if (idr_find(&_minor_idr, minor)) {
1746 		r = -EBUSY;
1747 		goto out;
1748 	}
1749 
1750 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1751 	if (r)
1752 		goto out;
1753 
1754 	if (m != minor) {
1755 		idr_remove(&_minor_idr, m);
1756 		r = -EBUSY;
1757 		goto out;
1758 	}
1759 
1760 out:
1761 	spin_unlock(&_minor_lock);
1762 	return r;
1763 }
1764 
1765 static int next_free_minor(int *minor)
1766 {
1767 	int r, m;
1768 
1769 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1770 	if (!r)
1771 		return -ENOMEM;
1772 
1773 	spin_lock(&_minor_lock);
1774 
1775 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1776 	if (r)
1777 		goto out;
1778 
1779 	if (m >= (1 << MINORBITS)) {
1780 		idr_remove(&_minor_idr, m);
1781 		r = -ENOSPC;
1782 		goto out;
1783 	}
1784 
1785 	*minor = m;
1786 
1787 out:
1788 	spin_unlock(&_minor_lock);
1789 	return r;
1790 }
1791 
1792 static const struct block_device_operations dm_blk_dops;
1793 
1794 static void dm_wq_work(struct work_struct *work);
1795 
1796 static void dm_init_md_queue(struct mapped_device *md)
1797 {
1798 	/*
1799 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1800 	 * devices.  The type of this dm device has not been decided yet.
1801 	 * The type is decided at the first table loading time.
1802 	 * To prevent problematic device stacking, clear the queue flag
1803 	 * for request stacking support until then.
1804 	 *
1805 	 * This queue is new, so no concurrency on the queue_flags.
1806 	 */
1807 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1808 
1809 	md->queue->queuedata = md;
1810 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1811 	md->queue->backing_dev_info.congested_data = md;
1812 	blk_queue_make_request(md->queue, dm_request);
1813 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1814 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1815 }
1816 
1817 /*
1818  * Allocate and initialise a blank device with a given minor.
1819  */
1820 static struct mapped_device *alloc_dev(int minor)
1821 {
1822 	int r;
1823 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1824 	void *old_md;
1825 
1826 	if (!md) {
1827 		DMWARN("unable to allocate device, out of memory.");
1828 		return NULL;
1829 	}
1830 
1831 	if (!try_module_get(THIS_MODULE))
1832 		goto bad_module_get;
1833 
1834 	/* get a minor number for the dev */
1835 	if (minor == DM_ANY_MINOR)
1836 		r = next_free_minor(&minor);
1837 	else
1838 		r = specific_minor(minor);
1839 	if (r < 0)
1840 		goto bad_minor;
1841 
1842 	md->type = DM_TYPE_NONE;
1843 	init_rwsem(&md->io_lock);
1844 	mutex_init(&md->suspend_lock);
1845 	mutex_init(&md->type_lock);
1846 	spin_lock_init(&md->deferred_lock);
1847 	rwlock_init(&md->map_lock);
1848 	atomic_set(&md->holders, 1);
1849 	atomic_set(&md->open_count, 0);
1850 	atomic_set(&md->event_nr, 0);
1851 	atomic_set(&md->uevent_seq, 0);
1852 	INIT_LIST_HEAD(&md->uevent_list);
1853 	spin_lock_init(&md->uevent_lock);
1854 
1855 	md->queue = blk_alloc_queue(GFP_KERNEL);
1856 	if (!md->queue)
1857 		goto bad_queue;
1858 
1859 	dm_init_md_queue(md);
1860 
1861 	md->disk = alloc_disk(1);
1862 	if (!md->disk)
1863 		goto bad_disk;
1864 
1865 	atomic_set(&md->pending[0], 0);
1866 	atomic_set(&md->pending[1], 0);
1867 	init_waitqueue_head(&md->wait);
1868 	INIT_WORK(&md->work, dm_wq_work);
1869 	init_waitqueue_head(&md->eventq);
1870 
1871 	md->disk->major = _major;
1872 	md->disk->first_minor = minor;
1873 	md->disk->fops = &dm_blk_dops;
1874 	md->disk->queue = md->queue;
1875 	md->disk->private_data = md;
1876 	sprintf(md->disk->disk_name, "dm-%d", minor);
1877 	add_disk(md->disk);
1878 	format_dev_t(md->name, MKDEV(_major, minor));
1879 
1880 	md->wq = alloc_workqueue("kdmflush",
1881 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1882 	if (!md->wq)
1883 		goto bad_thread;
1884 
1885 	md->bdev = bdget_disk(md->disk, 0);
1886 	if (!md->bdev)
1887 		goto bad_bdev;
1888 
1889 	bio_init(&md->flush_bio);
1890 	md->flush_bio.bi_bdev = md->bdev;
1891 	md->flush_bio.bi_rw = WRITE_FLUSH;
1892 
1893 	/* Populate the mapping, nobody knows we exist yet */
1894 	spin_lock(&_minor_lock);
1895 	old_md = idr_replace(&_minor_idr, md, minor);
1896 	spin_unlock(&_minor_lock);
1897 
1898 	BUG_ON(old_md != MINOR_ALLOCED);
1899 
1900 	return md;
1901 
1902 bad_bdev:
1903 	destroy_workqueue(md->wq);
1904 bad_thread:
1905 	del_gendisk(md->disk);
1906 	put_disk(md->disk);
1907 bad_disk:
1908 	blk_cleanup_queue(md->queue);
1909 bad_queue:
1910 	free_minor(minor);
1911 bad_minor:
1912 	module_put(THIS_MODULE);
1913 bad_module_get:
1914 	kfree(md);
1915 	return NULL;
1916 }
1917 
1918 static void unlock_fs(struct mapped_device *md);
1919 
1920 static void free_dev(struct mapped_device *md)
1921 {
1922 	int minor = MINOR(disk_devt(md->disk));
1923 
1924 	unlock_fs(md);
1925 	bdput(md->bdev);
1926 	destroy_workqueue(md->wq);
1927 	if (md->tio_pool)
1928 		mempool_destroy(md->tio_pool);
1929 	if (md->io_pool)
1930 		mempool_destroy(md->io_pool);
1931 	if (md->bs)
1932 		bioset_free(md->bs);
1933 	blk_integrity_unregister(md->disk);
1934 	del_gendisk(md->disk);
1935 	free_minor(minor);
1936 
1937 	spin_lock(&_minor_lock);
1938 	md->disk->private_data = NULL;
1939 	spin_unlock(&_minor_lock);
1940 
1941 	put_disk(md->disk);
1942 	blk_cleanup_queue(md->queue);
1943 	module_put(THIS_MODULE);
1944 	kfree(md);
1945 }
1946 
1947 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1948 {
1949 	struct dm_md_mempools *p;
1950 
1951 	if (md->io_pool && (md->tio_pool || dm_table_get_type(t) == DM_TYPE_BIO_BASED) && md->bs)
1952 		/* the md already has necessary mempools */
1953 		goto out;
1954 
1955 	p = dm_table_get_md_mempools(t);
1956 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1957 
1958 	md->io_pool = p->io_pool;
1959 	p->io_pool = NULL;
1960 	md->tio_pool = p->tio_pool;
1961 	p->tio_pool = NULL;
1962 	md->bs = p->bs;
1963 	p->bs = NULL;
1964 
1965 out:
1966 	/* mempool bind completed, now no need any mempools in the table */
1967 	dm_table_free_md_mempools(t);
1968 }
1969 
1970 /*
1971  * Bind a table to the device.
1972  */
1973 static void event_callback(void *context)
1974 {
1975 	unsigned long flags;
1976 	LIST_HEAD(uevents);
1977 	struct mapped_device *md = (struct mapped_device *) context;
1978 
1979 	spin_lock_irqsave(&md->uevent_lock, flags);
1980 	list_splice_init(&md->uevent_list, &uevents);
1981 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1982 
1983 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1984 
1985 	atomic_inc(&md->event_nr);
1986 	wake_up(&md->eventq);
1987 }
1988 
1989 /*
1990  * Protected by md->suspend_lock obtained by dm_swap_table().
1991  */
1992 static void __set_size(struct mapped_device *md, sector_t size)
1993 {
1994 	set_capacity(md->disk, size);
1995 
1996 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1997 }
1998 
1999 /*
2000  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2001  *
2002  * If this function returns 0, then the device is either a non-dm
2003  * device without a merge_bvec_fn, or it is a dm device that is
2004  * able to split any bios it receives that are too big.
2005  */
2006 int dm_queue_merge_is_compulsory(struct request_queue *q)
2007 {
2008 	struct mapped_device *dev_md;
2009 
2010 	if (!q->merge_bvec_fn)
2011 		return 0;
2012 
2013 	if (q->make_request_fn == dm_request) {
2014 		dev_md = q->queuedata;
2015 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2016 			return 0;
2017 	}
2018 
2019 	return 1;
2020 }
2021 
2022 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2023 					 struct dm_dev *dev, sector_t start,
2024 					 sector_t len, void *data)
2025 {
2026 	struct block_device *bdev = dev->bdev;
2027 	struct request_queue *q = bdev_get_queue(bdev);
2028 
2029 	return dm_queue_merge_is_compulsory(q);
2030 }
2031 
2032 /*
2033  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2034  * on the properties of the underlying devices.
2035  */
2036 static int dm_table_merge_is_optional(struct dm_table *table)
2037 {
2038 	unsigned i = 0;
2039 	struct dm_target *ti;
2040 
2041 	while (i < dm_table_get_num_targets(table)) {
2042 		ti = dm_table_get_target(table, i++);
2043 
2044 		if (ti->type->iterate_devices &&
2045 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2046 			return 0;
2047 	}
2048 
2049 	return 1;
2050 }
2051 
2052 /*
2053  * Returns old map, which caller must destroy.
2054  */
2055 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2056 			       struct queue_limits *limits)
2057 {
2058 	struct dm_table *old_map;
2059 	struct request_queue *q = md->queue;
2060 	sector_t size;
2061 	unsigned long flags;
2062 	int merge_is_optional;
2063 
2064 	size = dm_table_get_size(t);
2065 
2066 	/*
2067 	 * Wipe any geometry if the size of the table changed.
2068 	 */
2069 	if (size != get_capacity(md->disk))
2070 		memset(&md->geometry, 0, sizeof(md->geometry));
2071 
2072 	__set_size(md, size);
2073 
2074 	dm_table_event_callback(t, event_callback, md);
2075 
2076 	/*
2077 	 * The queue hasn't been stopped yet, if the old table type wasn't
2078 	 * for request-based during suspension.  So stop it to prevent
2079 	 * I/O mapping before resume.
2080 	 * This must be done before setting the queue restrictions,
2081 	 * because request-based dm may be run just after the setting.
2082 	 */
2083 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2084 		stop_queue(q);
2085 
2086 	__bind_mempools(md, t);
2087 
2088 	merge_is_optional = dm_table_merge_is_optional(t);
2089 
2090 	write_lock_irqsave(&md->map_lock, flags);
2091 	old_map = md->map;
2092 	md->map = t;
2093 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2094 
2095 	dm_table_set_restrictions(t, q, limits);
2096 	if (merge_is_optional)
2097 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2098 	else
2099 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2100 	write_unlock_irqrestore(&md->map_lock, flags);
2101 
2102 	return old_map;
2103 }
2104 
2105 /*
2106  * Returns unbound table for the caller to free.
2107  */
2108 static struct dm_table *__unbind(struct mapped_device *md)
2109 {
2110 	struct dm_table *map = md->map;
2111 	unsigned long flags;
2112 
2113 	if (!map)
2114 		return NULL;
2115 
2116 	dm_table_event_callback(map, NULL, NULL);
2117 	write_lock_irqsave(&md->map_lock, flags);
2118 	md->map = NULL;
2119 	write_unlock_irqrestore(&md->map_lock, flags);
2120 
2121 	return map;
2122 }
2123 
2124 /*
2125  * Constructor for a new device.
2126  */
2127 int dm_create(int minor, struct mapped_device **result)
2128 {
2129 	struct mapped_device *md;
2130 
2131 	md = alloc_dev(minor);
2132 	if (!md)
2133 		return -ENXIO;
2134 
2135 	dm_sysfs_init(md);
2136 
2137 	*result = md;
2138 	return 0;
2139 }
2140 
2141 /*
2142  * Functions to manage md->type.
2143  * All are required to hold md->type_lock.
2144  */
2145 void dm_lock_md_type(struct mapped_device *md)
2146 {
2147 	mutex_lock(&md->type_lock);
2148 }
2149 
2150 void dm_unlock_md_type(struct mapped_device *md)
2151 {
2152 	mutex_unlock(&md->type_lock);
2153 }
2154 
2155 void dm_set_md_type(struct mapped_device *md, unsigned type)
2156 {
2157 	md->type = type;
2158 }
2159 
2160 unsigned dm_get_md_type(struct mapped_device *md)
2161 {
2162 	return md->type;
2163 }
2164 
2165 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2166 {
2167 	return md->immutable_target_type;
2168 }
2169 
2170 /*
2171  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2172  */
2173 static int dm_init_request_based_queue(struct mapped_device *md)
2174 {
2175 	struct request_queue *q = NULL;
2176 
2177 	if (md->queue->elevator)
2178 		return 1;
2179 
2180 	/* Fully initialize the queue */
2181 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2182 	if (!q)
2183 		return 0;
2184 
2185 	md->queue = q;
2186 	dm_init_md_queue(md);
2187 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2188 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2189 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2190 
2191 	elv_register_queue(md->queue);
2192 
2193 	return 1;
2194 }
2195 
2196 /*
2197  * Setup the DM device's queue based on md's type
2198  */
2199 int dm_setup_md_queue(struct mapped_device *md)
2200 {
2201 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2202 	    !dm_init_request_based_queue(md)) {
2203 		DMWARN("Cannot initialize queue for request-based mapped device");
2204 		return -EINVAL;
2205 	}
2206 
2207 	return 0;
2208 }
2209 
2210 static struct mapped_device *dm_find_md(dev_t dev)
2211 {
2212 	struct mapped_device *md;
2213 	unsigned minor = MINOR(dev);
2214 
2215 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2216 		return NULL;
2217 
2218 	spin_lock(&_minor_lock);
2219 
2220 	md = idr_find(&_minor_idr, minor);
2221 	if (md && (md == MINOR_ALLOCED ||
2222 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2223 		   dm_deleting_md(md) ||
2224 		   test_bit(DMF_FREEING, &md->flags))) {
2225 		md = NULL;
2226 		goto out;
2227 	}
2228 
2229 out:
2230 	spin_unlock(&_minor_lock);
2231 
2232 	return md;
2233 }
2234 
2235 struct mapped_device *dm_get_md(dev_t dev)
2236 {
2237 	struct mapped_device *md = dm_find_md(dev);
2238 
2239 	if (md)
2240 		dm_get(md);
2241 
2242 	return md;
2243 }
2244 EXPORT_SYMBOL_GPL(dm_get_md);
2245 
2246 void *dm_get_mdptr(struct mapped_device *md)
2247 {
2248 	return md->interface_ptr;
2249 }
2250 
2251 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2252 {
2253 	md->interface_ptr = ptr;
2254 }
2255 
2256 void dm_get(struct mapped_device *md)
2257 {
2258 	atomic_inc(&md->holders);
2259 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2260 }
2261 
2262 const char *dm_device_name(struct mapped_device *md)
2263 {
2264 	return md->name;
2265 }
2266 EXPORT_SYMBOL_GPL(dm_device_name);
2267 
2268 static void __dm_destroy(struct mapped_device *md, bool wait)
2269 {
2270 	struct dm_table *map;
2271 
2272 	might_sleep();
2273 
2274 	spin_lock(&_minor_lock);
2275 	map = dm_get_live_table(md);
2276 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2277 	set_bit(DMF_FREEING, &md->flags);
2278 	spin_unlock(&_minor_lock);
2279 
2280 	if (!dm_suspended_md(md)) {
2281 		dm_table_presuspend_targets(map);
2282 		dm_table_postsuspend_targets(map);
2283 	}
2284 
2285 	/*
2286 	 * Rare, but there may be I/O requests still going to complete,
2287 	 * for example.  Wait for all references to disappear.
2288 	 * No one should increment the reference count of the mapped_device,
2289 	 * after the mapped_device state becomes DMF_FREEING.
2290 	 */
2291 	if (wait)
2292 		while (atomic_read(&md->holders))
2293 			msleep(1);
2294 	else if (atomic_read(&md->holders))
2295 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2296 		       dm_device_name(md), atomic_read(&md->holders));
2297 
2298 	dm_sysfs_exit(md);
2299 	dm_table_put(map);
2300 	dm_table_destroy(__unbind(md));
2301 	free_dev(md);
2302 }
2303 
2304 void dm_destroy(struct mapped_device *md)
2305 {
2306 	__dm_destroy(md, true);
2307 }
2308 
2309 void dm_destroy_immediate(struct mapped_device *md)
2310 {
2311 	__dm_destroy(md, false);
2312 }
2313 
2314 void dm_put(struct mapped_device *md)
2315 {
2316 	atomic_dec(&md->holders);
2317 }
2318 EXPORT_SYMBOL_GPL(dm_put);
2319 
2320 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2321 {
2322 	int r = 0;
2323 	DECLARE_WAITQUEUE(wait, current);
2324 
2325 	add_wait_queue(&md->wait, &wait);
2326 
2327 	while (1) {
2328 		set_current_state(interruptible);
2329 
2330 		if (!md_in_flight(md))
2331 			break;
2332 
2333 		if (interruptible == TASK_INTERRUPTIBLE &&
2334 		    signal_pending(current)) {
2335 			r = -EINTR;
2336 			break;
2337 		}
2338 
2339 		io_schedule();
2340 	}
2341 	set_current_state(TASK_RUNNING);
2342 
2343 	remove_wait_queue(&md->wait, &wait);
2344 
2345 	return r;
2346 }
2347 
2348 /*
2349  * Process the deferred bios
2350  */
2351 static void dm_wq_work(struct work_struct *work)
2352 {
2353 	struct mapped_device *md = container_of(work, struct mapped_device,
2354 						work);
2355 	struct bio *c;
2356 
2357 	down_read(&md->io_lock);
2358 
2359 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2360 		spin_lock_irq(&md->deferred_lock);
2361 		c = bio_list_pop(&md->deferred);
2362 		spin_unlock_irq(&md->deferred_lock);
2363 
2364 		if (!c)
2365 			break;
2366 
2367 		up_read(&md->io_lock);
2368 
2369 		if (dm_request_based(md))
2370 			generic_make_request(c);
2371 		else
2372 			__split_and_process_bio(md, c);
2373 
2374 		down_read(&md->io_lock);
2375 	}
2376 
2377 	up_read(&md->io_lock);
2378 }
2379 
2380 static void dm_queue_flush(struct mapped_device *md)
2381 {
2382 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2383 	smp_mb__after_clear_bit();
2384 	queue_work(md->wq, &md->work);
2385 }
2386 
2387 /*
2388  * Swap in a new table, returning the old one for the caller to destroy.
2389  */
2390 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2391 {
2392 	struct dm_table *live_map, *map = ERR_PTR(-EINVAL);
2393 	struct queue_limits limits;
2394 	int r;
2395 
2396 	mutex_lock(&md->suspend_lock);
2397 
2398 	/* device must be suspended */
2399 	if (!dm_suspended_md(md))
2400 		goto out;
2401 
2402 	/*
2403 	 * If the new table has no data devices, retain the existing limits.
2404 	 * This helps multipath with queue_if_no_path if all paths disappear,
2405 	 * then new I/O is queued based on these limits, and then some paths
2406 	 * reappear.
2407 	 */
2408 	if (dm_table_has_no_data_devices(table)) {
2409 		live_map = dm_get_live_table(md);
2410 		if (live_map)
2411 			limits = md->queue->limits;
2412 		dm_table_put(live_map);
2413 	}
2414 
2415 	r = dm_calculate_queue_limits(table, &limits);
2416 	if (r) {
2417 		map = ERR_PTR(r);
2418 		goto out;
2419 	}
2420 
2421 	map = __bind(md, table, &limits);
2422 
2423 out:
2424 	mutex_unlock(&md->suspend_lock);
2425 	return map;
2426 }
2427 
2428 /*
2429  * Functions to lock and unlock any filesystem running on the
2430  * device.
2431  */
2432 static int lock_fs(struct mapped_device *md)
2433 {
2434 	int r;
2435 
2436 	WARN_ON(md->frozen_sb);
2437 
2438 	md->frozen_sb = freeze_bdev(md->bdev);
2439 	if (IS_ERR(md->frozen_sb)) {
2440 		r = PTR_ERR(md->frozen_sb);
2441 		md->frozen_sb = NULL;
2442 		return r;
2443 	}
2444 
2445 	set_bit(DMF_FROZEN, &md->flags);
2446 
2447 	return 0;
2448 }
2449 
2450 static void unlock_fs(struct mapped_device *md)
2451 {
2452 	if (!test_bit(DMF_FROZEN, &md->flags))
2453 		return;
2454 
2455 	thaw_bdev(md->bdev, md->frozen_sb);
2456 	md->frozen_sb = NULL;
2457 	clear_bit(DMF_FROZEN, &md->flags);
2458 }
2459 
2460 /*
2461  * We need to be able to change a mapping table under a mounted
2462  * filesystem.  For example we might want to move some data in
2463  * the background.  Before the table can be swapped with
2464  * dm_bind_table, dm_suspend must be called to flush any in
2465  * flight bios and ensure that any further io gets deferred.
2466  */
2467 /*
2468  * Suspend mechanism in request-based dm.
2469  *
2470  * 1. Flush all I/Os by lock_fs() if needed.
2471  * 2. Stop dispatching any I/O by stopping the request_queue.
2472  * 3. Wait for all in-flight I/Os to be completed or requeued.
2473  *
2474  * To abort suspend, start the request_queue.
2475  */
2476 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2477 {
2478 	struct dm_table *map = NULL;
2479 	int r = 0;
2480 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2481 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2482 
2483 	mutex_lock(&md->suspend_lock);
2484 
2485 	if (dm_suspended_md(md)) {
2486 		r = -EINVAL;
2487 		goto out_unlock;
2488 	}
2489 
2490 	map = dm_get_live_table(md);
2491 
2492 	/*
2493 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2494 	 * This flag is cleared before dm_suspend returns.
2495 	 */
2496 	if (noflush)
2497 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2498 
2499 	/* This does not get reverted if there's an error later. */
2500 	dm_table_presuspend_targets(map);
2501 
2502 	/*
2503 	 * Flush I/O to the device.
2504 	 * Any I/O submitted after lock_fs() may not be flushed.
2505 	 * noflush takes precedence over do_lockfs.
2506 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2507 	 */
2508 	if (!noflush && do_lockfs) {
2509 		r = lock_fs(md);
2510 		if (r)
2511 			goto out;
2512 	}
2513 
2514 	/*
2515 	 * Here we must make sure that no processes are submitting requests
2516 	 * to target drivers i.e. no one may be executing
2517 	 * __split_and_process_bio. This is called from dm_request and
2518 	 * dm_wq_work.
2519 	 *
2520 	 * To get all processes out of __split_and_process_bio in dm_request,
2521 	 * we take the write lock. To prevent any process from reentering
2522 	 * __split_and_process_bio from dm_request and quiesce the thread
2523 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2524 	 * flush_workqueue(md->wq).
2525 	 */
2526 	down_write(&md->io_lock);
2527 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2528 	up_write(&md->io_lock);
2529 
2530 	/*
2531 	 * Stop md->queue before flushing md->wq in case request-based
2532 	 * dm defers requests to md->wq from md->queue.
2533 	 */
2534 	if (dm_request_based(md))
2535 		stop_queue(md->queue);
2536 
2537 	flush_workqueue(md->wq);
2538 
2539 	/*
2540 	 * At this point no more requests are entering target request routines.
2541 	 * We call dm_wait_for_completion to wait for all existing requests
2542 	 * to finish.
2543 	 */
2544 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2545 
2546 	down_write(&md->io_lock);
2547 	if (noflush)
2548 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2549 	up_write(&md->io_lock);
2550 
2551 	/* were we interrupted ? */
2552 	if (r < 0) {
2553 		dm_queue_flush(md);
2554 
2555 		if (dm_request_based(md))
2556 			start_queue(md->queue);
2557 
2558 		unlock_fs(md);
2559 		goto out; /* pushback list is already flushed, so skip flush */
2560 	}
2561 
2562 	/*
2563 	 * If dm_wait_for_completion returned 0, the device is completely
2564 	 * quiescent now. There is no request-processing activity. All new
2565 	 * requests are being added to md->deferred list.
2566 	 */
2567 
2568 	set_bit(DMF_SUSPENDED, &md->flags);
2569 
2570 	dm_table_postsuspend_targets(map);
2571 
2572 out:
2573 	dm_table_put(map);
2574 
2575 out_unlock:
2576 	mutex_unlock(&md->suspend_lock);
2577 	return r;
2578 }
2579 
2580 int dm_resume(struct mapped_device *md)
2581 {
2582 	int r = -EINVAL;
2583 	struct dm_table *map = NULL;
2584 
2585 	mutex_lock(&md->suspend_lock);
2586 	if (!dm_suspended_md(md))
2587 		goto out;
2588 
2589 	map = dm_get_live_table(md);
2590 	if (!map || !dm_table_get_size(map))
2591 		goto out;
2592 
2593 	r = dm_table_resume_targets(map);
2594 	if (r)
2595 		goto out;
2596 
2597 	dm_queue_flush(md);
2598 
2599 	/*
2600 	 * Flushing deferred I/Os must be done after targets are resumed
2601 	 * so that mapping of targets can work correctly.
2602 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2603 	 */
2604 	if (dm_request_based(md))
2605 		start_queue(md->queue);
2606 
2607 	unlock_fs(md);
2608 
2609 	clear_bit(DMF_SUSPENDED, &md->flags);
2610 
2611 	r = 0;
2612 out:
2613 	dm_table_put(map);
2614 	mutex_unlock(&md->suspend_lock);
2615 
2616 	return r;
2617 }
2618 
2619 /*-----------------------------------------------------------------
2620  * Event notification.
2621  *---------------------------------------------------------------*/
2622 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2623 		       unsigned cookie)
2624 {
2625 	char udev_cookie[DM_COOKIE_LENGTH];
2626 	char *envp[] = { udev_cookie, NULL };
2627 
2628 	if (!cookie)
2629 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2630 	else {
2631 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2632 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2633 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2634 					  action, envp);
2635 	}
2636 }
2637 
2638 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2639 {
2640 	return atomic_add_return(1, &md->uevent_seq);
2641 }
2642 
2643 uint32_t dm_get_event_nr(struct mapped_device *md)
2644 {
2645 	return atomic_read(&md->event_nr);
2646 }
2647 
2648 int dm_wait_event(struct mapped_device *md, int event_nr)
2649 {
2650 	return wait_event_interruptible(md->eventq,
2651 			(event_nr != atomic_read(&md->event_nr)));
2652 }
2653 
2654 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2655 {
2656 	unsigned long flags;
2657 
2658 	spin_lock_irqsave(&md->uevent_lock, flags);
2659 	list_add(elist, &md->uevent_list);
2660 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2661 }
2662 
2663 /*
2664  * The gendisk is only valid as long as you have a reference
2665  * count on 'md'.
2666  */
2667 struct gendisk *dm_disk(struct mapped_device *md)
2668 {
2669 	return md->disk;
2670 }
2671 
2672 struct kobject *dm_kobject(struct mapped_device *md)
2673 {
2674 	return &md->kobj;
2675 }
2676 
2677 /*
2678  * struct mapped_device should not be exported outside of dm.c
2679  * so use this check to verify that kobj is part of md structure
2680  */
2681 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2682 {
2683 	struct mapped_device *md;
2684 
2685 	md = container_of(kobj, struct mapped_device, kobj);
2686 	if (&md->kobj != kobj)
2687 		return NULL;
2688 
2689 	if (test_bit(DMF_FREEING, &md->flags) ||
2690 	    dm_deleting_md(md))
2691 		return NULL;
2692 
2693 	dm_get(md);
2694 	return md;
2695 }
2696 
2697 int dm_suspended_md(struct mapped_device *md)
2698 {
2699 	return test_bit(DMF_SUSPENDED, &md->flags);
2700 }
2701 
2702 int dm_suspended(struct dm_target *ti)
2703 {
2704 	return dm_suspended_md(dm_table_get_md(ti->table));
2705 }
2706 EXPORT_SYMBOL_GPL(dm_suspended);
2707 
2708 int dm_noflush_suspending(struct dm_target *ti)
2709 {
2710 	return __noflush_suspending(dm_table_get_md(ti->table));
2711 }
2712 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2713 
2714 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2715 {
2716 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2717 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2718 
2719 	if (!pools)
2720 		return NULL;
2721 
2722 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2723 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2724 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2725 	if (!pools->io_pool)
2726 		goto free_pools_and_out;
2727 
2728 	pools->tio_pool = NULL;
2729 	if (type == DM_TYPE_REQUEST_BASED) {
2730 		pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2731 		if (!pools->tio_pool)
2732 			goto free_io_pool_and_out;
2733 	}
2734 
2735 	pools->bs = (type == DM_TYPE_BIO_BASED) ?
2736 		bioset_create(pool_size,
2737 			      offsetof(struct dm_target_io, clone)) :
2738 		bioset_create(pool_size,
2739 			      offsetof(struct dm_rq_clone_bio_info, clone));
2740 	if (!pools->bs)
2741 		goto free_tio_pool_and_out;
2742 
2743 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2744 		goto free_bioset_and_out;
2745 
2746 	return pools;
2747 
2748 free_bioset_and_out:
2749 	bioset_free(pools->bs);
2750 
2751 free_tio_pool_and_out:
2752 	if (pools->tio_pool)
2753 		mempool_destroy(pools->tio_pool);
2754 
2755 free_io_pool_and_out:
2756 	mempool_destroy(pools->io_pool);
2757 
2758 free_pools_and_out:
2759 	kfree(pools);
2760 
2761 	return NULL;
2762 }
2763 
2764 void dm_free_md_mempools(struct dm_md_mempools *pools)
2765 {
2766 	if (!pools)
2767 		return;
2768 
2769 	if (pools->io_pool)
2770 		mempool_destroy(pools->io_pool);
2771 
2772 	if (pools->tio_pool)
2773 		mempool_destroy(pools->tio_pool);
2774 
2775 	if (pools->bs)
2776 		bioset_free(pools->bs);
2777 
2778 	kfree(pools);
2779 }
2780 
2781 static const struct block_device_operations dm_blk_dops = {
2782 	.open = dm_blk_open,
2783 	.release = dm_blk_close,
2784 	.ioctl = dm_blk_ioctl,
2785 	.getgeo = dm_blk_getgeo,
2786 	.owner = THIS_MODULE
2787 };
2788 
2789 EXPORT_SYMBOL(dm_get_mapinfo);
2790 
2791 /*
2792  * module hooks
2793  */
2794 module_init(dm_init);
2795 module_exit(dm_exit);
2796 
2797 module_param(major, uint, 0);
2798 MODULE_PARM_DESC(major, "The major number of the device mapper");
2799 MODULE_DESCRIPTION(DM_NAME " driver");
2800 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2801 MODULE_LICENSE("GPL");
2802