xref: /linux/drivers/md/dm.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per target within a bio.  Hopefully
68  * this will be simplified out one day.
69  */
70 struct dm_target_io {
71 	struct dm_io *io;
72 	struct dm_target *ti;
73 	union map_info info;
74 };
75 
76 /*
77  * For request-based dm.
78  * One of these is allocated per request.
79  */
80 struct dm_rq_target_io {
81 	struct mapped_device *md;
82 	struct dm_target *ti;
83 	struct request *orig, clone;
84 	int error;
85 	union map_info info;
86 };
87 
88 /*
89  * For request-based dm.
90  * One of these is allocated per bio.
91  */
92 struct dm_rq_clone_bio_info {
93 	struct bio *orig;
94 	struct dm_rq_target_io *tio;
95 };
96 
97 union map_info *dm_get_mapinfo(struct bio *bio)
98 {
99 	if (bio && bio->bi_private)
100 		return &((struct dm_target_io *)bio->bi_private)->info;
101 	return NULL;
102 }
103 
104 union map_info *dm_get_rq_mapinfo(struct request *rq)
105 {
106 	if (rq && rq->end_io_data)
107 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 	return NULL;
109 }
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
111 
112 #define MINOR_ALLOCED ((void *)-1)
113 
114 /*
115  * Bits for the md->flags field.
116  */
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
119 #define DMF_FROZEN 2
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
124 
125 /*
126  * Work processed by per-device workqueue.
127  */
128 struct mapped_device {
129 	struct rw_semaphore io_lock;
130 	struct mutex suspend_lock;
131 	rwlock_t map_lock;
132 	atomic_t holders;
133 	atomic_t open_count;
134 
135 	unsigned long flags;
136 
137 	struct request_queue *queue;
138 	unsigned type;
139 	/* Protect queue and type against concurrent access. */
140 	struct mutex type_lock;
141 
142 	struct target_type *immutable_target_type;
143 
144 	struct gendisk *disk;
145 	char name[16];
146 
147 	void *interface_ptr;
148 
149 	/*
150 	 * A list of ios that arrived while we were suspended.
151 	 */
152 	atomic_t pending[2];
153 	wait_queue_head_t wait;
154 	struct work_struct work;
155 	struct bio_list deferred;
156 	spinlock_t deferred_lock;
157 
158 	/*
159 	 * Processing queue (flush)
160 	 */
161 	struct workqueue_struct *wq;
162 
163 	/*
164 	 * The current mapping.
165 	 */
166 	struct dm_table *map;
167 
168 	/*
169 	 * io objects are allocated from here.
170 	 */
171 	mempool_t *io_pool;
172 	mempool_t *tio_pool;
173 
174 	struct bio_set *bs;
175 
176 	/*
177 	 * Event handling.
178 	 */
179 	atomic_t event_nr;
180 	wait_queue_head_t eventq;
181 	atomic_t uevent_seq;
182 	struct list_head uevent_list;
183 	spinlock_t uevent_lock; /* Protect access to uevent_list */
184 
185 	/*
186 	 * freeze/thaw support require holding onto a super block
187 	 */
188 	struct super_block *frozen_sb;
189 	struct block_device *bdev;
190 
191 	/* forced geometry settings */
192 	struct hd_geometry geometry;
193 
194 	/* sysfs handle */
195 	struct kobject kobj;
196 
197 	/* zero-length flush that will be cloned and submitted to targets */
198 	struct bio flush_bio;
199 };
200 
201 /*
202  * For mempools pre-allocation at the table loading time.
203  */
204 struct dm_md_mempools {
205 	mempool_t *io_pool;
206 	mempool_t *tio_pool;
207 	struct bio_set *bs;
208 };
209 
210 #define MIN_IOS 256
211 static struct kmem_cache *_io_cache;
212 static struct kmem_cache *_tio_cache;
213 static struct kmem_cache *_rq_tio_cache;
214 static struct kmem_cache *_rq_bio_info_cache;
215 
216 static int __init local_init(void)
217 {
218 	int r = -ENOMEM;
219 
220 	/* allocate a slab for the dm_ios */
221 	_io_cache = KMEM_CACHE(dm_io, 0);
222 	if (!_io_cache)
223 		return r;
224 
225 	/* allocate a slab for the target ios */
226 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
227 	if (!_tio_cache)
228 		goto out_free_io_cache;
229 
230 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 	if (!_rq_tio_cache)
232 		goto out_free_tio_cache;
233 
234 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
235 	if (!_rq_bio_info_cache)
236 		goto out_free_rq_tio_cache;
237 
238 	r = dm_uevent_init();
239 	if (r)
240 		goto out_free_rq_bio_info_cache;
241 
242 	_major = major;
243 	r = register_blkdev(_major, _name);
244 	if (r < 0)
245 		goto out_uevent_exit;
246 
247 	if (!_major)
248 		_major = r;
249 
250 	return 0;
251 
252 out_uevent_exit:
253 	dm_uevent_exit();
254 out_free_rq_bio_info_cache:
255 	kmem_cache_destroy(_rq_bio_info_cache);
256 out_free_rq_tio_cache:
257 	kmem_cache_destroy(_rq_tio_cache);
258 out_free_tio_cache:
259 	kmem_cache_destroy(_tio_cache);
260 out_free_io_cache:
261 	kmem_cache_destroy(_io_cache);
262 
263 	return r;
264 }
265 
266 static void local_exit(void)
267 {
268 	kmem_cache_destroy(_rq_bio_info_cache);
269 	kmem_cache_destroy(_rq_tio_cache);
270 	kmem_cache_destroy(_tio_cache);
271 	kmem_cache_destroy(_io_cache);
272 	unregister_blkdev(_major, _name);
273 	dm_uevent_exit();
274 
275 	_major = 0;
276 
277 	DMINFO("cleaned up");
278 }
279 
280 static int (*_inits[])(void) __initdata = {
281 	local_init,
282 	dm_target_init,
283 	dm_linear_init,
284 	dm_stripe_init,
285 	dm_io_init,
286 	dm_kcopyd_init,
287 	dm_interface_init,
288 };
289 
290 static void (*_exits[])(void) = {
291 	local_exit,
292 	dm_target_exit,
293 	dm_linear_exit,
294 	dm_stripe_exit,
295 	dm_io_exit,
296 	dm_kcopyd_exit,
297 	dm_interface_exit,
298 };
299 
300 static int __init dm_init(void)
301 {
302 	const int count = ARRAY_SIZE(_inits);
303 
304 	int r, i;
305 
306 	for (i = 0; i < count; i++) {
307 		r = _inits[i]();
308 		if (r)
309 			goto bad;
310 	}
311 
312 	return 0;
313 
314       bad:
315 	while (i--)
316 		_exits[i]();
317 
318 	return r;
319 }
320 
321 static void __exit dm_exit(void)
322 {
323 	int i = ARRAY_SIZE(_exits);
324 
325 	while (i--)
326 		_exits[i]();
327 
328 	/*
329 	 * Should be empty by this point.
330 	 */
331 	idr_remove_all(&_minor_idr);
332 	idr_destroy(&_minor_idr);
333 }
334 
335 /*
336  * Block device functions
337  */
338 int dm_deleting_md(struct mapped_device *md)
339 {
340 	return test_bit(DMF_DELETING, &md->flags);
341 }
342 
343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = bdev->bd_disk->private_data;
350 	if (!md)
351 		goto out;
352 
353 	if (test_bit(DMF_FREEING, &md->flags) ||
354 	    dm_deleting_md(md)) {
355 		md = NULL;
356 		goto out;
357 	}
358 
359 	dm_get(md);
360 	atomic_inc(&md->open_count);
361 
362 out:
363 	spin_unlock(&_minor_lock);
364 
365 	return md ? 0 : -ENXIO;
366 }
367 
368 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
369 {
370 	struct mapped_device *md = disk->private_data;
371 
372 	spin_lock(&_minor_lock);
373 
374 	atomic_dec(&md->open_count);
375 	dm_put(md);
376 
377 	spin_unlock(&_minor_lock);
378 
379 	return 0;
380 }
381 
382 int dm_open_count(struct mapped_device *md)
383 {
384 	return atomic_read(&md->open_count);
385 }
386 
387 /*
388  * Guarantees nothing is using the device before it's deleted.
389  */
390 int dm_lock_for_deletion(struct mapped_device *md)
391 {
392 	int r = 0;
393 
394 	spin_lock(&_minor_lock);
395 
396 	if (dm_open_count(md))
397 		r = -EBUSY;
398 	else
399 		set_bit(DMF_DELETING, &md->flags);
400 
401 	spin_unlock(&_minor_lock);
402 
403 	return r;
404 }
405 
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
413 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
414 			unsigned int cmd, unsigned long arg)
415 {
416 	struct mapped_device *md = bdev->bd_disk->private_data;
417 	struct dm_table *map = dm_get_live_table(md);
418 	struct dm_target *tgt;
419 	int r = -ENOTTY;
420 
421 	if (!map || !dm_table_get_size(map))
422 		goto out;
423 
424 	/* We only support devices that have a single target */
425 	if (dm_table_get_num_targets(map) != 1)
426 		goto out;
427 
428 	tgt = dm_table_get_target(map, 0);
429 
430 	if (dm_suspended_md(md)) {
431 		r = -EAGAIN;
432 		goto out;
433 	}
434 
435 	if (tgt->type->ioctl)
436 		r = tgt->type->ioctl(tgt, cmd, arg);
437 
438 out:
439 	dm_table_put(map);
440 
441 	return r;
442 }
443 
444 static struct dm_io *alloc_io(struct mapped_device *md)
445 {
446 	return mempool_alloc(md->io_pool, GFP_NOIO);
447 }
448 
449 static void free_io(struct mapped_device *md, struct dm_io *io)
450 {
451 	mempool_free(io, md->io_pool);
452 }
453 
454 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
455 {
456 	mempool_free(tio, md->tio_pool);
457 }
458 
459 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
460 					    gfp_t gfp_mask)
461 {
462 	return mempool_alloc(md->tio_pool, gfp_mask);
463 }
464 
465 static void free_rq_tio(struct dm_rq_target_io *tio)
466 {
467 	mempool_free(tio, tio->md->tio_pool);
468 }
469 
470 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
471 {
472 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
473 }
474 
475 static void free_bio_info(struct dm_rq_clone_bio_info *info)
476 {
477 	mempool_free(info, info->tio->md->io_pool);
478 }
479 
480 static int md_in_flight(struct mapped_device *md)
481 {
482 	return atomic_read(&md->pending[READ]) +
483 	       atomic_read(&md->pending[WRITE]);
484 }
485 
486 static void start_io_acct(struct dm_io *io)
487 {
488 	struct mapped_device *md = io->md;
489 	int cpu;
490 	int rw = bio_data_dir(io->bio);
491 
492 	io->start_time = jiffies;
493 
494 	cpu = part_stat_lock();
495 	part_round_stats(cpu, &dm_disk(md)->part0);
496 	part_stat_unlock();
497 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 		atomic_inc_return(&md->pending[rw]));
499 }
500 
501 static void end_io_acct(struct dm_io *io)
502 {
503 	struct mapped_device *md = io->md;
504 	struct bio *bio = io->bio;
505 	unsigned long duration = jiffies - io->start_time;
506 	int pending, cpu;
507 	int rw = bio_data_dir(bio);
508 
509 	cpu = part_stat_lock();
510 	part_round_stats(cpu, &dm_disk(md)->part0);
511 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 	part_stat_unlock();
513 
514 	/*
515 	 * After this is decremented the bio must not be touched if it is
516 	 * a flush.
517 	 */
518 	pending = atomic_dec_return(&md->pending[rw]);
519 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 	pending += atomic_read(&md->pending[rw^0x1]);
521 
522 	/* nudge anyone waiting on suspend queue */
523 	if (!pending)
524 		wake_up(&md->wait);
525 }
526 
527 /*
528  * Add the bio to the list of deferred io.
529  */
530 static void queue_io(struct mapped_device *md, struct bio *bio)
531 {
532 	unsigned long flags;
533 
534 	spin_lock_irqsave(&md->deferred_lock, flags);
535 	bio_list_add(&md->deferred, bio);
536 	spin_unlock_irqrestore(&md->deferred_lock, flags);
537 	queue_work(md->wq, &md->work);
538 }
539 
540 /*
541  * Everyone (including functions in this file), should use this
542  * function to access the md->map field, and make sure they call
543  * dm_table_put() when finished.
544  */
545 struct dm_table *dm_get_live_table(struct mapped_device *md)
546 {
547 	struct dm_table *t;
548 	unsigned long flags;
549 
550 	read_lock_irqsave(&md->map_lock, flags);
551 	t = md->map;
552 	if (t)
553 		dm_table_get(t);
554 	read_unlock_irqrestore(&md->map_lock, flags);
555 
556 	return t;
557 }
558 
559 /*
560  * Get the geometry associated with a dm device
561  */
562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563 {
564 	*geo = md->geometry;
565 
566 	return 0;
567 }
568 
569 /*
570  * Set the geometry of a device.
571  */
572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573 {
574 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575 
576 	if (geo->start > sz) {
577 		DMWARN("Start sector is beyond the geometry limits.");
578 		return -EINVAL;
579 	}
580 
581 	md->geometry = *geo;
582 
583 	return 0;
584 }
585 
586 /*-----------------------------------------------------------------
587  * CRUD START:
588  *   A more elegant soln is in the works that uses the queue
589  *   merge fn, unfortunately there are a couple of changes to
590  *   the block layer that I want to make for this.  So in the
591  *   interests of getting something for people to use I give
592  *   you this clearly demarcated crap.
593  *---------------------------------------------------------------*/
594 
595 static int __noflush_suspending(struct mapped_device *md)
596 {
597 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
598 }
599 
600 /*
601  * Decrements the number of outstanding ios that a bio has been
602  * cloned into, completing the original io if necc.
603  */
604 static void dec_pending(struct dm_io *io, int error)
605 {
606 	unsigned long flags;
607 	int io_error;
608 	struct bio *bio;
609 	struct mapped_device *md = io->md;
610 
611 	/* Push-back supersedes any I/O errors */
612 	if (unlikely(error)) {
613 		spin_lock_irqsave(&io->endio_lock, flags);
614 		if (!(io->error > 0 && __noflush_suspending(md)))
615 			io->error = error;
616 		spin_unlock_irqrestore(&io->endio_lock, flags);
617 	}
618 
619 	if (atomic_dec_and_test(&io->io_count)) {
620 		if (io->error == DM_ENDIO_REQUEUE) {
621 			/*
622 			 * Target requested pushing back the I/O.
623 			 */
624 			spin_lock_irqsave(&md->deferred_lock, flags);
625 			if (__noflush_suspending(md))
626 				bio_list_add_head(&md->deferred, io->bio);
627 			else
628 				/* noflush suspend was interrupted. */
629 				io->error = -EIO;
630 			spin_unlock_irqrestore(&md->deferred_lock, flags);
631 		}
632 
633 		io_error = io->error;
634 		bio = io->bio;
635 		end_io_acct(io);
636 		free_io(md, io);
637 
638 		if (io_error == DM_ENDIO_REQUEUE)
639 			return;
640 
641 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 			/*
643 			 * Preflush done for flush with data, reissue
644 			 * without REQ_FLUSH.
645 			 */
646 			bio->bi_rw &= ~REQ_FLUSH;
647 			queue_io(md, bio);
648 		} else {
649 			/* done with normal IO or empty flush */
650 			trace_block_bio_complete(md->queue, bio, io_error);
651 			bio_endio(bio, io_error);
652 		}
653 	}
654 }
655 
656 static void clone_endio(struct bio *bio, int error)
657 {
658 	int r = 0;
659 	struct dm_target_io *tio = bio->bi_private;
660 	struct dm_io *io = tio->io;
661 	struct mapped_device *md = tio->io->md;
662 	dm_endio_fn endio = tio->ti->type->end_io;
663 
664 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 		error = -EIO;
666 
667 	if (endio) {
668 		r = endio(tio->ti, bio, error, &tio->info);
669 		if (r < 0 || r == DM_ENDIO_REQUEUE)
670 			/*
671 			 * error and requeue request are handled
672 			 * in dec_pending().
673 			 */
674 			error = r;
675 		else if (r == DM_ENDIO_INCOMPLETE)
676 			/* The target will handle the io */
677 			return;
678 		else if (r) {
679 			DMWARN("unimplemented target endio return value: %d", r);
680 			BUG();
681 		}
682 	}
683 
684 	/*
685 	 * Store md for cleanup instead of tio which is about to get freed.
686 	 */
687 	bio->bi_private = md->bs;
688 
689 	free_tio(md, tio);
690 	bio_put(bio);
691 	dec_pending(io, error);
692 }
693 
694 /*
695  * Partial completion handling for request-based dm
696  */
697 static void end_clone_bio(struct bio *clone, int error)
698 {
699 	struct dm_rq_clone_bio_info *info = clone->bi_private;
700 	struct dm_rq_target_io *tio = info->tio;
701 	struct bio *bio = info->orig;
702 	unsigned int nr_bytes = info->orig->bi_size;
703 
704 	bio_put(clone);
705 
706 	if (tio->error)
707 		/*
708 		 * An error has already been detected on the request.
709 		 * Once error occurred, just let clone->end_io() handle
710 		 * the remainder.
711 		 */
712 		return;
713 	else if (error) {
714 		/*
715 		 * Don't notice the error to the upper layer yet.
716 		 * The error handling decision is made by the target driver,
717 		 * when the request is completed.
718 		 */
719 		tio->error = error;
720 		return;
721 	}
722 
723 	/*
724 	 * I/O for the bio successfully completed.
725 	 * Notice the data completion to the upper layer.
726 	 */
727 
728 	/*
729 	 * bios are processed from the head of the list.
730 	 * So the completing bio should always be rq->bio.
731 	 * If it's not, something wrong is happening.
732 	 */
733 	if (tio->orig->bio != bio)
734 		DMERR("bio completion is going in the middle of the request");
735 
736 	/*
737 	 * Update the original request.
738 	 * Do not use blk_end_request() here, because it may complete
739 	 * the original request before the clone, and break the ordering.
740 	 */
741 	blk_update_request(tio->orig, 0, nr_bytes);
742 }
743 
744 /*
745  * Don't touch any member of the md after calling this function because
746  * the md may be freed in dm_put() at the end of this function.
747  * Or do dm_get() before calling this function and dm_put() later.
748  */
749 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
750 {
751 	atomic_dec(&md->pending[rw]);
752 
753 	/* nudge anyone waiting on suspend queue */
754 	if (!md_in_flight(md))
755 		wake_up(&md->wait);
756 
757 	if (run_queue)
758 		blk_run_queue(md->queue);
759 
760 	/*
761 	 * dm_put() must be at the end of this function. See the comment above
762 	 */
763 	dm_put(md);
764 }
765 
766 static void free_rq_clone(struct request *clone)
767 {
768 	struct dm_rq_target_io *tio = clone->end_io_data;
769 
770 	blk_rq_unprep_clone(clone);
771 	free_rq_tio(tio);
772 }
773 
774 /*
775  * Complete the clone and the original request.
776  * Must be called without queue lock.
777  */
778 static void dm_end_request(struct request *clone, int error)
779 {
780 	int rw = rq_data_dir(clone);
781 	struct dm_rq_target_io *tio = clone->end_io_data;
782 	struct mapped_device *md = tio->md;
783 	struct request *rq = tio->orig;
784 
785 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
786 		rq->errors = clone->errors;
787 		rq->resid_len = clone->resid_len;
788 
789 		if (rq->sense)
790 			/*
791 			 * We are using the sense buffer of the original
792 			 * request.
793 			 * So setting the length of the sense data is enough.
794 			 */
795 			rq->sense_len = clone->sense_len;
796 	}
797 
798 	free_rq_clone(clone);
799 	blk_end_request_all(rq, error);
800 	rq_completed(md, rw, true);
801 }
802 
803 static void dm_unprep_request(struct request *rq)
804 {
805 	struct request *clone = rq->special;
806 
807 	rq->special = NULL;
808 	rq->cmd_flags &= ~REQ_DONTPREP;
809 
810 	free_rq_clone(clone);
811 }
812 
813 /*
814  * Requeue the original request of a clone.
815  */
816 void dm_requeue_unmapped_request(struct request *clone)
817 {
818 	int rw = rq_data_dir(clone);
819 	struct dm_rq_target_io *tio = clone->end_io_data;
820 	struct mapped_device *md = tio->md;
821 	struct request *rq = tio->orig;
822 	struct request_queue *q = rq->q;
823 	unsigned long flags;
824 
825 	dm_unprep_request(rq);
826 
827 	spin_lock_irqsave(q->queue_lock, flags);
828 	blk_requeue_request(q, rq);
829 	spin_unlock_irqrestore(q->queue_lock, flags);
830 
831 	rq_completed(md, rw, 0);
832 }
833 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
834 
835 static void __stop_queue(struct request_queue *q)
836 {
837 	blk_stop_queue(q);
838 }
839 
840 static void stop_queue(struct request_queue *q)
841 {
842 	unsigned long flags;
843 
844 	spin_lock_irqsave(q->queue_lock, flags);
845 	__stop_queue(q);
846 	spin_unlock_irqrestore(q->queue_lock, flags);
847 }
848 
849 static void __start_queue(struct request_queue *q)
850 {
851 	if (blk_queue_stopped(q))
852 		blk_start_queue(q);
853 }
854 
855 static void start_queue(struct request_queue *q)
856 {
857 	unsigned long flags;
858 
859 	spin_lock_irqsave(q->queue_lock, flags);
860 	__start_queue(q);
861 	spin_unlock_irqrestore(q->queue_lock, flags);
862 }
863 
864 static void dm_done(struct request *clone, int error, bool mapped)
865 {
866 	int r = error;
867 	struct dm_rq_target_io *tio = clone->end_io_data;
868 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
869 
870 	if (mapped && rq_end_io)
871 		r = rq_end_io(tio->ti, clone, error, &tio->info);
872 
873 	if (r <= 0)
874 		/* The target wants to complete the I/O */
875 		dm_end_request(clone, r);
876 	else if (r == DM_ENDIO_INCOMPLETE)
877 		/* The target will handle the I/O */
878 		return;
879 	else if (r == DM_ENDIO_REQUEUE)
880 		/* The target wants to requeue the I/O */
881 		dm_requeue_unmapped_request(clone);
882 	else {
883 		DMWARN("unimplemented target endio return value: %d", r);
884 		BUG();
885 	}
886 }
887 
888 /*
889  * Request completion handler for request-based dm
890  */
891 static void dm_softirq_done(struct request *rq)
892 {
893 	bool mapped = true;
894 	struct request *clone = rq->completion_data;
895 	struct dm_rq_target_io *tio = clone->end_io_data;
896 
897 	if (rq->cmd_flags & REQ_FAILED)
898 		mapped = false;
899 
900 	dm_done(clone, tio->error, mapped);
901 }
902 
903 /*
904  * Complete the clone and the original request with the error status
905  * through softirq context.
906  */
907 static void dm_complete_request(struct request *clone, int error)
908 {
909 	struct dm_rq_target_io *tio = clone->end_io_data;
910 	struct request *rq = tio->orig;
911 
912 	tio->error = error;
913 	rq->completion_data = clone;
914 	blk_complete_request(rq);
915 }
916 
917 /*
918  * Complete the not-mapped clone and the original request with the error status
919  * through softirq context.
920  * Target's rq_end_io() function isn't called.
921  * This may be used when the target's map_rq() function fails.
922  */
923 void dm_kill_unmapped_request(struct request *clone, int error)
924 {
925 	struct dm_rq_target_io *tio = clone->end_io_data;
926 	struct request *rq = tio->orig;
927 
928 	rq->cmd_flags |= REQ_FAILED;
929 	dm_complete_request(clone, error);
930 }
931 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
932 
933 /*
934  * Called with the queue lock held
935  */
936 static void end_clone_request(struct request *clone, int error)
937 {
938 	/*
939 	 * For just cleaning up the information of the queue in which
940 	 * the clone was dispatched.
941 	 * The clone is *NOT* freed actually here because it is alloced from
942 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
943 	 */
944 	__blk_put_request(clone->q, clone);
945 
946 	/*
947 	 * Actual request completion is done in a softirq context which doesn't
948 	 * hold the queue lock.  Otherwise, deadlock could occur because:
949 	 *     - another request may be submitted by the upper level driver
950 	 *       of the stacking during the completion
951 	 *     - the submission which requires queue lock may be done
952 	 *       against this queue
953 	 */
954 	dm_complete_request(clone, error);
955 }
956 
957 /*
958  * Return maximum size of I/O possible at the supplied sector up to the current
959  * target boundary.
960  */
961 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
962 {
963 	sector_t target_offset = dm_target_offset(ti, sector);
964 
965 	return ti->len - target_offset;
966 }
967 
968 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
969 {
970 	sector_t len = max_io_len_target_boundary(sector, ti);
971 
972 	/*
973 	 * Does the target need to split even further ?
974 	 */
975 	if (ti->split_io) {
976 		sector_t boundary;
977 		sector_t offset = dm_target_offset(ti, sector);
978 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
979 			   - offset;
980 		if (len > boundary)
981 			len = boundary;
982 	}
983 
984 	return len;
985 }
986 
987 static void __map_bio(struct dm_target *ti, struct bio *clone,
988 		      struct dm_target_io *tio)
989 {
990 	int r;
991 	sector_t sector;
992 	struct mapped_device *md;
993 
994 	clone->bi_end_io = clone_endio;
995 	clone->bi_private = tio;
996 
997 	/*
998 	 * Map the clone.  If r == 0 we don't need to do
999 	 * anything, the target has assumed ownership of
1000 	 * this io.
1001 	 */
1002 	atomic_inc(&tio->io->io_count);
1003 	sector = clone->bi_sector;
1004 	r = ti->type->map(ti, clone, &tio->info);
1005 	if (r == DM_MAPIO_REMAPPED) {
1006 		/* the bio has been remapped so dispatch it */
1007 
1008 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1009 				      tio->io->bio->bi_bdev->bd_dev, sector);
1010 
1011 		generic_make_request(clone);
1012 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1013 		/* error the io and bail out, or requeue it if needed */
1014 		md = tio->io->md;
1015 		dec_pending(tio->io, r);
1016 		/*
1017 		 * Store bio_set for cleanup.
1018 		 */
1019 		clone->bi_private = md->bs;
1020 		bio_put(clone);
1021 		free_tio(md, tio);
1022 	} else if (r) {
1023 		DMWARN("unimplemented target map return value: %d", r);
1024 		BUG();
1025 	}
1026 }
1027 
1028 struct clone_info {
1029 	struct mapped_device *md;
1030 	struct dm_table *map;
1031 	struct bio *bio;
1032 	struct dm_io *io;
1033 	sector_t sector;
1034 	sector_t sector_count;
1035 	unsigned short idx;
1036 };
1037 
1038 static void dm_bio_destructor(struct bio *bio)
1039 {
1040 	struct bio_set *bs = bio->bi_private;
1041 
1042 	bio_free(bio, bs);
1043 }
1044 
1045 /*
1046  * Creates a little bio that just does part of a bvec.
1047  */
1048 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1049 			      unsigned short idx, unsigned int offset,
1050 			      unsigned int len, struct bio_set *bs)
1051 {
1052 	struct bio *clone;
1053 	struct bio_vec *bv = bio->bi_io_vec + idx;
1054 
1055 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1056 	clone->bi_destructor = dm_bio_destructor;
1057 	*clone->bi_io_vec = *bv;
1058 
1059 	clone->bi_sector = sector;
1060 	clone->bi_bdev = bio->bi_bdev;
1061 	clone->bi_rw = bio->bi_rw;
1062 	clone->bi_vcnt = 1;
1063 	clone->bi_size = to_bytes(len);
1064 	clone->bi_io_vec->bv_offset = offset;
1065 	clone->bi_io_vec->bv_len = clone->bi_size;
1066 	clone->bi_flags |= 1 << BIO_CLONED;
1067 
1068 	if (bio_integrity(bio)) {
1069 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1070 		bio_integrity_trim(clone,
1071 				   bio_sector_offset(bio, idx, offset), len);
1072 	}
1073 
1074 	return clone;
1075 }
1076 
1077 /*
1078  * Creates a bio that consists of range of complete bvecs.
1079  */
1080 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1081 			     unsigned short idx, unsigned short bv_count,
1082 			     unsigned int len, struct bio_set *bs)
1083 {
1084 	struct bio *clone;
1085 
1086 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1087 	__bio_clone(clone, bio);
1088 	clone->bi_destructor = dm_bio_destructor;
1089 	clone->bi_sector = sector;
1090 	clone->bi_idx = idx;
1091 	clone->bi_vcnt = idx + bv_count;
1092 	clone->bi_size = to_bytes(len);
1093 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1094 
1095 	if (bio_integrity(bio)) {
1096 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1097 
1098 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1099 			bio_integrity_trim(clone,
1100 					   bio_sector_offset(bio, idx, 0), len);
1101 	}
1102 
1103 	return clone;
1104 }
1105 
1106 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1107 				      struct dm_target *ti)
1108 {
1109 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1110 
1111 	tio->io = ci->io;
1112 	tio->ti = ti;
1113 	memset(&tio->info, 0, sizeof(tio->info));
1114 
1115 	return tio;
1116 }
1117 
1118 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1119 				   unsigned request_nr, sector_t len)
1120 {
1121 	struct dm_target_io *tio = alloc_tio(ci, ti);
1122 	struct bio *clone;
1123 
1124 	tio->info.target_request_nr = request_nr;
1125 
1126 	/*
1127 	 * Discard requests require the bio's inline iovecs be initialized.
1128 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1129 	 * and discard, so no need for concern about wasted bvec allocations.
1130 	 */
1131 	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1132 	__bio_clone(clone, ci->bio);
1133 	clone->bi_destructor = dm_bio_destructor;
1134 	if (len) {
1135 		clone->bi_sector = ci->sector;
1136 		clone->bi_size = to_bytes(len);
1137 	}
1138 
1139 	__map_bio(ti, clone, tio);
1140 }
1141 
1142 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1143 				    unsigned num_requests, sector_t len)
1144 {
1145 	unsigned request_nr;
1146 
1147 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1148 		__issue_target_request(ci, ti, request_nr, len);
1149 }
1150 
1151 static int __clone_and_map_empty_flush(struct clone_info *ci)
1152 {
1153 	unsigned target_nr = 0;
1154 	struct dm_target *ti;
1155 
1156 	BUG_ON(bio_has_data(ci->bio));
1157 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1158 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1159 
1160 	return 0;
1161 }
1162 
1163 /*
1164  * Perform all io with a single clone.
1165  */
1166 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1167 {
1168 	struct bio *clone, *bio = ci->bio;
1169 	struct dm_target_io *tio;
1170 
1171 	tio = alloc_tio(ci, ti);
1172 	clone = clone_bio(bio, ci->sector, ci->idx,
1173 			  bio->bi_vcnt - ci->idx, ci->sector_count,
1174 			  ci->md->bs);
1175 	__map_bio(ti, clone, tio);
1176 	ci->sector_count = 0;
1177 }
1178 
1179 static int __clone_and_map_discard(struct clone_info *ci)
1180 {
1181 	struct dm_target *ti;
1182 	sector_t len;
1183 
1184 	do {
1185 		ti = dm_table_find_target(ci->map, ci->sector);
1186 		if (!dm_target_is_valid(ti))
1187 			return -EIO;
1188 
1189 		/*
1190 		 * Even though the device advertised discard support,
1191 		 * that does not mean every target supports it, and
1192 		 * reconfiguration might also have changed that since the
1193 		 * check was performed.
1194 		 */
1195 		if (!ti->num_discard_requests)
1196 			return -EOPNOTSUPP;
1197 
1198 		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1199 
1200 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1201 
1202 		ci->sector += len;
1203 	} while (ci->sector_count -= len);
1204 
1205 	return 0;
1206 }
1207 
1208 static int __clone_and_map(struct clone_info *ci)
1209 {
1210 	struct bio *clone, *bio = ci->bio;
1211 	struct dm_target *ti;
1212 	sector_t len = 0, max;
1213 	struct dm_target_io *tio;
1214 
1215 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1216 		return __clone_and_map_discard(ci);
1217 
1218 	ti = dm_table_find_target(ci->map, ci->sector);
1219 	if (!dm_target_is_valid(ti))
1220 		return -EIO;
1221 
1222 	max = max_io_len(ci->sector, ti);
1223 
1224 	if (ci->sector_count <= max) {
1225 		/*
1226 		 * Optimise for the simple case where we can do all of
1227 		 * the remaining io with a single clone.
1228 		 */
1229 		__clone_and_map_simple(ci, ti);
1230 
1231 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1232 		/*
1233 		 * There are some bvecs that don't span targets.
1234 		 * Do as many of these as possible.
1235 		 */
1236 		int i;
1237 		sector_t remaining = max;
1238 		sector_t bv_len;
1239 
1240 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1241 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1242 
1243 			if (bv_len > remaining)
1244 				break;
1245 
1246 			remaining -= bv_len;
1247 			len += bv_len;
1248 		}
1249 
1250 		tio = alloc_tio(ci, ti);
1251 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1252 				  ci->md->bs);
1253 		__map_bio(ti, clone, tio);
1254 
1255 		ci->sector += len;
1256 		ci->sector_count -= len;
1257 		ci->idx = i;
1258 
1259 	} else {
1260 		/*
1261 		 * Handle a bvec that must be split between two or more targets.
1262 		 */
1263 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1264 		sector_t remaining = to_sector(bv->bv_len);
1265 		unsigned int offset = 0;
1266 
1267 		do {
1268 			if (offset) {
1269 				ti = dm_table_find_target(ci->map, ci->sector);
1270 				if (!dm_target_is_valid(ti))
1271 					return -EIO;
1272 
1273 				max = max_io_len(ci->sector, ti);
1274 			}
1275 
1276 			len = min(remaining, max);
1277 
1278 			tio = alloc_tio(ci, ti);
1279 			clone = split_bvec(bio, ci->sector, ci->idx,
1280 					   bv->bv_offset + offset, len,
1281 					   ci->md->bs);
1282 
1283 			__map_bio(ti, clone, tio);
1284 
1285 			ci->sector += len;
1286 			ci->sector_count -= len;
1287 			offset += to_bytes(len);
1288 		} while (remaining -= len);
1289 
1290 		ci->idx++;
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Split the bio into several clones and submit it to targets.
1298  */
1299 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1300 {
1301 	struct clone_info ci;
1302 	int error = 0;
1303 
1304 	ci.map = dm_get_live_table(md);
1305 	if (unlikely(!ci.map)) {
1306 		bio_io_error(bio);
1307 		return;
1308 	}
1309 
1310 	ci.md = md;
1311 	ci.io = alloc_io(md);
1312 	ci.io->error = 0;
1313 	atomic_set(&ci.io->io_count, 1);
1314 	ci.io->bio = bio;
1315 	ci.io->md = md;
1316 	spin_lock_init(&ci.io->endio_lock);
1317 	ci.sector = bio->bi_sector;
1318 	ci.idx = bio->bi_idx;
1319 
1320 	start_io_acct(ci.io);
1321 	if (bio->bi_rw & REQ_FLUSH) {
1322 		ci.bio = &ci.md->flush_bio;
1323 		ci.sector_count = 0;
1324 		error = __clone_and_map_empty_flush(&ci);
1325 		/* dec_pending submits any data associated with flush */
1326 	} else {
1327 		ci.bio = bio;
1328 		ci.sector_count = bio_sectors(bio);
1329 		while (ci.sector_count && !error)
1330 			error = __clone_and_map(&ci);
1331 	}
1332 
1333 	/* drop the extra reference count */
1334 	dec_pending(ci.io, error);
1335 	dm_table_put(ci.map);
1336 }
1337 /*-----------------------------------------------------------------
1338  * CRUD END
1339  *---------------------------------------------------------------*/
1340 
1341 static int dm_merge_bvec(struct request_queue *q,
1342 			 struct bvec_merge_data *bvm,
1343 			 struct bio_vec *biovec)
1344 {
1345 	struct mapped_device *md = q->queuedata;
1346 	struct dm_table *map = dm_get_live_table(md);
1347 	struct dm_target *ti;
1348 	sector_t max_sectors;
1349 	int max_size = 0;
1350 
1351 	if (unlikely(!map))
1352 		goto out;
1353 
1354 	ti = dm_table_find_target(map, bvm->bi_sector);
1355 	if (!dm_target_is_valid(ti))
1356 		goto out_table;
1357 
1358 	/*
1359 	 * Find maximum amount of I/O that won't need splitting
1360 	 */
1361 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1362 			  (sector_t) BIO_MAX_SECTORS);
1363 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1364 	if (max_size < 0)
1365 		max_size = 0;
1366 
1367 	/*
1368 	 * merge_bvec_fn() returns number of bytes
1369 	 * it can accept at this offset
1370 	 * max is precomputed maximal io size
1371 	 */
1372 	if (max_size && ti->type->merge)
1373 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1374 	/*
1375 	 * If the target doesn't support merge method and some of the devices
1376 	 * provided their merge_bvec method (we know this by looking at
1377 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1378 	 * entries.  So always set max_size to 0, and the code below allows
1379 	 * just one page.
1380 	 */
1381 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1382 
1383 		max_size = 0;
1384 
1385 out_table:
1386 	dm_table_put(map);
1387 
1388 out:
1389 	/*
1390 	 * Always allow an entire first page
1391 	 */
1392 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1393 		max_size = biovec->bv_len;
1394 
1395 	return max_size;
1396 }
1397 
1398 /*
1399  * The request function that just remaps the bio built up by
1400  * dm_merge_bvec.
1401  */
1402 static void _dm_request(struct request_queue *q, struct bio *bio)
1403 {
1404 	int rw = bio_data_dir(bio);
1405 	struct mapped_device *md = q->queuedata;
1406 	int cpu;
1407 
1408 	down_read(&md->io_lock);
1409 
1410 	cpu = part_stat_lock();
1411 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1412 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1413 	part_stat_unlock();
1414 
1415 	/* if we're suspended, we have to queue this io for later */
1416 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1417 		up_read(&md->io_lock);
1418 
1419 		if (bio_rw(bio) != READA)
1420 			queue_io(md, bio);
1421 		else
1422 			bio_io_error(bio);
1423 		return;
1424 	}
1425 
1426 	__split_and_process_bio(md, bio);
1427 	up_read(&md->io_lock);
1428 	return;
1429 }
1430 
1431 static int dm_request_based(struct mapped_device *md)
1432 {
1433 	return blk_queue_stackable(md->queue);
1434 }
1435 
1436 static void dm_request(struct request_queue *q, struct bio *bio)
1437 {
1438 	struct mapped_device *md = q->queuedata;
1439 
1440 	if (dm_request_based(md))
1441 		blk_queue_bio(q, bio);
1442 	else
1443 		_dm_request(q, bio);
1444 }
1445 
1446 void dm_dispatch_request(struct request *rq)
1447 {
1448 	int r;
1449 
1450 	if (blk_queue_io_stat(rq->q))
1451 		rq->cmd_flags |= REQ_IO_STAT;
1452 
1453 	rq->start_time = jiffies;
1454 	r = blk_insert_cloned_request(rq->q, rq);
1455 	if (r)
1456 		dm_complete_request(rq, r);
1457 }
1458 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1459 
1460 static void dm_rq_bio_destructor(struct bio *bio)
1461 {
1462 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1463 	struct mapped_device *md = info->tio->md;
1464 
1465 	free_bio_info(info);
1466 	bio_free(bio, md->bs);
1467 }
1468 
1469 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1470 				 void *data)
1471 {
1472 	struct dm_rq_target_io *tio = data;
1473 	struct mapped_device *md = tio->md;
1474 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1475 
1476 	if (!info)
1477 		return -ENOMEM;
1478 
1479 	info->orig = bio_orig;
1480 	info->tio = tio;
1481 	bio->bi_end_io = end_clone_bio;
1482 	bio->bi_private = info;
1483 	bio->bi_destructor = dm_rq_bio_destructor;
1484 
1485 	return 0;
1486 }
1487 
1488 static int setup_clone(struct request *clone, struct request *rq,
1489 		       struct dm_rq_target_io *tio)
1490 {
1491 	int r;
1492 
1493 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1494 			      dm_rq_bio_constructor, tio);
1495 	if (r)
1496 		return r;
1497 
1498 	clone->cmd = rq->cmd;
1499 	clone->cmd_len = rq->cmd_len;
1500 	clone->sense = rq->sense;
1501 	clone->buffer = rq->buffer;
1502 	clone->end_io = end_clone_request;
1503 	clone->end_io_data = tio;
1504 
1505 	return 0;
1506 }
1507 
1508 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1509 				gfp_t gfp_mask)
1510 {
1511 	struct request *clone;
1512 	struct dm_rq_target_io *tio;
1513 
1514 	tio = alloc_rq_tio(md, gfp_mask);
1515 	if (!tio)
1516 		return NULL;
1517 
1518 	tio->md = md;
1519 	tio->ti = NULL;
1520 	tio->orig = rq;
1521 	tio->error = 0;
1522 	memset(&tio->info, 0, sizeof(tio->info));
1523 
1524 	clone = &tio->clone;
1525 	if (setup_clone(clone, rq, tio)) {
1526 		/* -ENOMEM */
1527 		free_rq_tio(tio);
1528 		return NULL;
1529 	}
1530 
1531 	return clone;
1532 }
1533 
1534 /*
1535  * Called with the queue lock held.
1536  */
1537 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1538 {
1539 	struct mapped_device *md = q->queuedata;
1540 	struct request *clone;
1541 
1542 	if (unlikely(rq->special)) {
1543 		DMWARN("Already has something in rq->special.");
1544 		return BLKPREP_KILL;
1545 	}
1546 
1547 	clone = clone_rq(rq, md, GFP_ATOMIC);
1548 	if (!clone)
1549 		return BLKPREP_DEFER;
1550 
1551 	rq->special = clone;
1552 	rq->cmd_flags |= REQ_DONTPREP;
1553 
1554 	return BLKPREP_OK;
1555 }
1556 
1557 /*
1558  * Returns:
1559  * 0  : the request has been processed (not requeued)
1560  * !0 : the request has been requeued
1561  */
1562 static int map_request(struct dm_target *ti, struct request *clone,
1563 		       struct mapped_device *md)
1564 {
1565 	int r, requeued = 0;
1566 	struct dm_rq_target_io *tio = clone->end_io_data;
1567 
1568 	/*
1569 	 * Hold the md reference here for the in-flight I/O.
1570 	 * We can't rely on the reference count by device opener,
1571 	 * because the device may be closed during the request completion
1572 	 * when all bios are completed.
1573 	 * See the comment in rq_completed() too.
1574 	 */
1575 	dm_get(md);
1576 
1577 	tio->ti = ti;
1578 	r = ti->type->map_rq(ti, clone, &tio->info);
1579 	switch (r) {
1580 	case DM_MAPIO_SUBMITTED:
1581 		/* The target has taken the I/O to submit by itself later */
1582 		break;
1583 	case DM_MAPIO_REMAPPED:
1584 		/* The target has remapped the I/O so dispatch it */
1585 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1586 				     blk_rq_pos(tio->orig));
1587 		dm_dispatch_request(clone);
1588 		break;
1589 	case DM_MAPIO_REQUEUE:
1590 		/* The target wants to requeue the I/O */
1591 		dm_requeue_unmapped_request(clone);
1592 		requeued = 1;
1593 		break;
1594 	default:
1595 		if (r > 0) {
1596 			DMWARN("unimplemented target map return value: %d", r);
1597 			BUG();
1598 		}
1599 
1600 		/* The target wants to complete the I/O */
1601 		dm_kill_unmapped_request(clone, r);
1602 		break;
1603 	}
1604 
1605 	return requeued;
1606 }
1607 
1608 /*
1609  * q->request_fn for request-based dm.
1610  * Called with the queue lock held.
1611  */
1612 static void dm_request_fn(struct request_queue *q)
1613 {
1614 	struct mapped_device *md = q->queuedata;
1615 	struct dm_table *map = dm_get_live_table(md);
1616 	struct dm_target *ti;
1617 	struct request *rq, *clone;
1618 	sector_t pos;
1619 
1620 	/*
1621 	 * For suspend, check blk_queue_stopped() and increment
1622 	 * ->pending within a single queue_lock not to increment the
1623 	 * number of in-flight I/Os after the queue is stopped in
1624 	 * dm_suspend().
1625 	 */
1626 	while (!blk_queue_stopped(q)) {
1627 		rq = blk_peek_request(q);
1628 		if (!rq)
1629 			goto delay_and_out;
1630 
1631 		/* always use block 0 to find the target for flushes for now */
1632 		pos = 0;
1633 		if (!(rq->cmd_flags & REQ_FLUSH))
1634 			pos = blk_rq_pos(rq);
1635 
1636 		ti = dm_table_find_target(map, pos);
1637 		BUG_ON(!dm_target_is_valid(ti));
1638 
1639 		if (ti->type->busy && ti->type->busy(ti))
1640 			goto delay_and_out;
1641 
1642 		blk_start_request(rq);
1643 		clone = rq->special;
1644 		atomic_inc(&md->pending[rq_data_dir(clone)]);
1645 
1646 		spin_unlock(q->queue_lock);
1647 		if (map_request(ti, clone, md))
1648 			goto requeued;
1649 
1650 		BUG_ON(!irqs_disabled());
1651 		spin_lock(q->queue_lock);
1652 	}
1653 
1654 	goto out;
1655 
1656 requeued:
1657 	BUG_ON(!irqs_disabled());
1658 	spin_lock(q->queue_lock);
1659 
1660 delay_and_out:
1661 	blk_delay_queue(q, HZ / 10);
1662 out:
1663 	dm_table_put(map);
1664 
1665 	return;
1666 }
1667 
1668 int dm_underlying_device_busy(struct request_queue *q)
1669 {
1670 	return blk_lld_busy(q);
1671 }
1672 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1673 
1674 static int dm_lld_busy(struct request_queue *q)
1675 {
1676 	int r;
1677 	struct mapped_device *md = q->queuedata;
1678 	struct dm_table *map = dm_get_live_table(md);
1679 
1680 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1681 		r = 1;
1682 	else
1683 		r = dm_table_any_busy_target(map);
1684 
1685 	dm_table_put(map);
1686 
1687 	return r;
1688 }
1689 
1690 static int dm_any_congested(void *congested_data, int bdi_bits)
1691 {
1692 	int r = bdi_bits;
1693 	struct mapped_device *md = congested_data;
1694 	struct dm_table *map;
1695 
1696 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1697 		map = dm_get_live_table(md);
1698 		if (map) {
1699 			/*
1700 			 * Request-based dm cares about only own queue for
1701 			 * the query about congestion status of request_queue
1702 			 */
1703 			if (dm_request_based(md))
1704 				r = md->queue->backing_dev_info.state &
1705 				    bdi_bits;
1706 			else
1707 				r = dm_table_any_congested(map, bdi_bits);
1708 
1709 			dm_table_put(map);
1710 		}
1711 	}
1712 
1713 	return r;
1714 }
1715 
1716 /*-----------------------------------------------------------------
1717  * An IDR is used to keep track of allocated minor numbers.
1718  *---------------------------------------------------------------*/
1719 static void free_minor(int minor)
1720 {
1721 	spin_lock(&_minor_lock);
1722 	idr_remove(&_minor_idr, minor);
1723 	spin_unlock(&_minor_lock);
1724 }
1725 
1726 /*
1727  * See if the device with a specific minor # is free.
1728  */
1729 static int specific_minor(int minor)
1730 {
1731 	int r, m;
1732 
1733 	if (minor >= (1 << MINORBITS))
1734 		return -EINVAL;
1735 
1736 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1737 	if (!r)
1738 		return -ENOMEM;
1739 
1740 	spin_lock(&_minor_lock);
1741 
1742 	if (idr_find(&_minor_idr, minor)) {
1743 		r = -EBUSY;
1744 		goto out;
1745 	}
1746 
1747 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1748 	if (r)
1749 		goto out;
1750 
1751 	if (m != minor) {
1752 		idr_remove(&_minor_idr, m);
1753 		r = -EBUSY;
1754 		goto out;
1755 	}
1756 
1757 out:
1758 	spin_unlock(&_minor_lock);
1759 	return r;
1760 }
1761 
1762 static int next_free_minor(int *minor)
1763 {
1764 	int r, m;
1765 
1766 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1767 	if (!r)
1768 		return -ENOMEM;
1769 
1770 	spin_lock(&_minor_lock);
1771 
1772 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1773 	if (r)
1774 		goto out;
1775 
1776 	if (m >= (1 << MINORBITS)) {
1777 		idr_remove(&_minor_idr, m);
1778 		r = -ENOSPC;
1779 		goto out;
1780 	}
1781 
1782 	*minor = m;
1783 
1784 out:
1785 	spin_unlock(&_minor_lock);
1786 	return r;
1787 }
1788 
1789 static const struct block_device_operations dm_blk_dops;
1790 
1791 static void dm_wq_work(struct work_struct *work);
1792 
1793 static void dm_init_md_queue(struct mapped_device *md)
1794 {
1795 	/*
1796 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1797 	 * devices.  The type of this dm device has not been decided yet.
1798 	 * The type is decided at the first table loading time.
1799 	 * To prevent problematic device stacking, clear the queue flag
1800 	 * for request stacking support until then.
1801 	 *
1802 	 * This queue is new, so no concurrency on the queue_flags.
1803 	 */
1804 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1805 
1806 	md->queue->queuedata = md;
1807 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1808 	md->queue->backing_dev_info.congested_data = md;
1809 	blk_queue_make_request(md->queue, dm_request);
1810 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1811 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1812 }
1813 
1814 /*
1815  * Allocate and initialise a blank device with a given minor.
1816  */
1817 static struct mapped_device *alloc_dev(int minor)
1818 {
1819 	int r;
1820 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1821 	void *old_md;
1822 
1823 	if (!md) {
1824 		DMWARN("unable to allocate device, out of memory.");
1825 		return NULL;
1826 	}
1827 
1828 	if (!try_module_get(THIS_MODULE))
1829 		goto bad_module_get;
1830 
1831 	/* get a minor number for the dev */
1832 	if (minor == DM_ANY_MINOR)
1833 		r = next_free_minor(&minor);
1834 	else
1835 		r = specific_minor(minor);
1836 	if (r < 0)
1837 		goto bad_minor;
1838 
1839 	md->type = DM_TYPE_NONE;
1840 	init_rwsem(&md->io_lock);
1841 	mutex_init(&md->suspend_lock);
1842 	mutex_init(&md->type_lock);
1843 	spin_lock_init(&md->deferred_lock);
1844 	rwlock_init(&md->map_lock);
1845 	atomic_set(&md->holders, 1);
1846 	atomic_set(&md->open_count, 0);
1847 	atomic_set(&md->event_nr, 0);
1848 	atomic_set(&md->uevent_seq, 0);
1849 	INIT_LIST_HEAD(&md->uevent_list);
1850 	spin_lock_init(&md->uevent_lock);
1851 
1852 	md->queue = blk_alloc_queue(GFP_KERNEL);
1853 	if (!md->queue)
1854 		goto bad_queue;
1855 
1856 	dm_init_md_queue(md);
1857 
1858 	md->disk = alloc_disk(1);
1859 	if (!md->disk)
1860 		goto bad_disk;
1861 
1862 	atomic_set(&md->pending[0], 0);
1863 	atomic_set(&md->pending[1], 0);
1864 	init_waitqueue_head(&md->wait);
1865 	INIT_WORK(&md->work, dm_wq_work);
1866 	init_waitqueue_head(&md->eventq);
1867 
1868 	md->disk->major = _major;
1869 	md->disk->first_minor = minor;
1870 	md->disk->fops = &dm_blk_dops;
1871 	md->disk->queue = md->queue;
1872 	md->disk->private_data = md;
1873 	sprintf(md->disk->disk_name, "dm-%d", minor);
1874 	add_disk(md->disk);
1875 	format_dev_t(md->name, MKDEV(_major, minor));
1876 
1877 	md->wq = alloc_workqueue("kdmflush",
1878 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1879 	if (!md->wq)
1880 		goto bad_thread;
1881 
1882 	md->bdev = bdget_disk(md->disk, 0);
1883 	if (!md->bdev)
1884 		goto bad_bdev;
1885 
1886 	bio_init(&md->flush_bio);
1887 	md->flush_bio.bi_bdev = md->bdev;
1888 	md->flush_bio.bi_rw = WRITE_FLUSH;
1889 
1890 	/* Populate the mapping, nobody knows we exist yet */
1891 	spin_lock(&_minor_lock);
1892 	old_md = idr_replace(&_minor_idr, md, minor);
1893 	spin_unlock(&_minor_lock);
1894 
1895 	BUG_ON(old_md != MINOR_ALLOCED);
1896 
1897 	return md;
1898 
1899 bad_bdev:
1900 	destroy_workqueue(md->wq);
1901 bad_thread:
1902 	del_gendisk(md->disk);
1903 	put_disk(md->disk);
1904 bad_disk:
1905 	blk_cleanup_queue(md->queue);
1906 bad_queue:
1907 	free_minor(minor);
1908 bad_minor:
1909 	module_put(THIS_MODULE);
1910 bad_module_get:
1911 	kfree(md);
1912 	return NULL;
1913 }
1914 
1915 static void unlock_fs(struct mapped_device *md);
1916 
1917 static void free_dev(struct mapped_device *md)
1918 {
1919 	int minor = MINOR(disk_devt(md->disk));
1920 
1921 	unlock_fs(md);
1922 	bdput(md->bdev);
1923 	destroy_workqueue(md->wq);
1924 	if (md->tio_pool)
1925 		mempool_destroy(md->tio_pool);
1926 	if (md->io_pool)
1927 		mempool_destroy(md->io_pool);
1928 	if (md->bs)
1929 		bioset_free(md->bs);
1930 	blk_integrity_unregister(md->disk);
1931 	del_gendisk(md->disk);
1932 	free_minor(minor);
1933 
1934 	spin_lock(&_minor_lock);
1935 	md->disk->private_data = NULL;
1936 	spin_unlock(&_minor_lock);
1937 
1938 	put_disk(md->disk);
1939 	blk_cleanup_queue(md->queue);
1940 	module_put(THIS_MODULE);
1941 	kfree(md);
1942 }
1943 
1944 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1945 {
1946 	struct dm_md_mempools *p;
1947 
1948 	if (md->io_pool && md->tio_pool && md->bs)
1949 		/* the md already has necessary mempools */
1950 		goto out;
1951 
1952 	p = dm_table_get_md_mempools(t);
1953 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1954 
1955 	md->io_pool = p->io_pool;
1956 	p->io_pool = NULL;
1957 	md->tio_pool = p->tio_pool;
1958 	p->tio_pool = NULL;
1959 	md->bs = p->bs;
1960 	p->bs = NULL;
1961 
1962 out:
1963 	/* mempool bind completed, now no need any mempools in the table */
1964 	dm_table_free_md_mempools(t);
1965 }
1966 
1967 /*
1968  * Bind a table to the device.
1969  */
1970 static void event_callback(void *context)
1971 {
1972 	unsigned long flags;
1973 	LIST_HEAD(uevents);
1974 	struct mapped_device *md = (struct mapped_device *) context;
1975 
1976 	spin_lock_irqsave(&md->uevent_lock, flags);
1977 	list_splice_init(&md->uevent_list, &uevents);
1978 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1979 
1980 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1981 
1982 	atomic_inc(&md->event_nr);
1983 	wake_up(&md->eventq);
1984 }
1985 
1986 /*
1987  * Protected by md->suspend_lock obtained by dm_swap_table().
1988  */
1989 static void __set_size(struct mapped_device *md, sector_t size)
1990 {
1991 	set_capacity(md->disk, size);
1992 
1993 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1994 }
1995 
1996 /*
1997  * Return 1 if the queue has a compulsory merge_bvec_fn function.
1998  *
1999  * If this function returns 0, then the device is either a non-dm
2000  * device without a merge_bvec_fn, or it is a dm device that is
2001  * able to split any bios it receives that are too big.
2002  */
2003 int dm_queue_merge_is_compulsory(struct request_queue *q)
2004 {
2005 	struct mapped_device *dev_md;
2006 
2007 	if (!q->merge_bvec_fn)
2008 		return 0;
2009 
2010 	if (q->make_request_fn == dm_request) {
2011 		dev_md = q->queuedata;
2012 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2013 			return 0;
2014 	}
2015 
2016 	return 1;
2017 }
2018 
2019 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2020 					 struct dm_dev *dev, sector_t start,
2021 					 sector_t len, void *data)
2022 {
2023 	struct block_device *bdev = dev->bdev;
2024 	struct request_queue *q = bdev_get_queue(bdev);
2025 
2026 	return dm_queue_merge_is_compulsory(q);
2027 }
2028 
2029 /*
2030  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2031  * on the properties of the underlying devices.
2032  */
2033 static int dm_table_merge_is_optional(struct dm_table *table)
2034 {
2035 	unsigned i = 0;
2036 	struct dm_target *ti;
2037 
2038 	while (i < dm_table_get_num_targets(table)) {
2039 		ti = dm_table_get_target(table, i++);
2040 
2041 		if (ti->type->iterate_devices &&
2042 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2043 			return 0;
2044 	}
2045 
2046 	return 1;
2047 }
2048 
2049 /*
2050  * Returns old map, which caller must destroy.
2051  */
2052 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2053 			       struct queue_limits *limits)
2054 {
2055 	struct dm_table *old_map;
2056 	struct request_queue *q = md->queue;
2057 	sector_t size;
2058 	unsigned long flags;
2059 	int merge_is_optional;
2060 
2061 	size = dm_table_get_size(t);
2062 
2063 	/*
2064 	 * Wipe any geometry if the size of the table changed.
2065 	 */
2066 	if (size != get_capacity(md->disk))
2067 		memset(&md->geometry, 0, sizeof(md->geometry));
2068 
2069 	__set_size(md, size);
2070 
2071 	dm_table_event_callback(t, event_callback, md);
2072 
2073 	/*
2074 	 * The queue hasn't been stopped yet, if the old table type wasn't
2075 	 * for request-based during suspension.  So stop it to prevent
2076 	 * I/O mapping before resume.
2077 	 * This must be done before setting the queue restrictions,
2078 	 * because request-based dm may be run just after the setting.
2079 	 */
2080 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2081 		stop_queue(q);
2082 
2083 	__bind_mempools(md, t);
2084 
2085 	merge_is_optional = dm_table_merge_is_optional(t);
2086 
2087 	write_lock_irqsave(&md->map_lock, flags);
2088 	old_map = md->map;
2089 	md->map = t;
2090 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2091 
2092 	dm_table_set_restrictions(t, q, limits);
2093 	if (merge_is_optional)
2094 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2095 	else
2096 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2097 	write_unlock_irqrestore(&md->map_lock, flags);
2098 
2099 	return old_map;
2100 }
2101 
2102 /*
2103  * Returns unbound table for the caller to free.
2104  */
2105 static struct dm_table *__unbind(struct mapped_device *md)
2106 {
2107 	struct dm_table *map = md->map;
2108 	unsigned long flags;
2109 
2110 	if (!map)
2111 		return NULL;
2112 
2113 	dm_table_event_callback(map, NULL, NULL);
2114 	write_lock_irqsave(&md->map_lock, flags);
2115 	md->map = NULL;
2116 	write_unlock_irqrestore(&md->map_lock, flags);
2117 
2118 	return map;
2119 }
2120 
2121 /*
2122  * Constructor for a new device.
2123  */
2124 int dm_create(int minor, struct mapped_device **result)
2125 {
2126 	struct mapped_device *md;
2127 
2128 	md = alloc_dev(minor);
2129 	if (!md)
2130 		return -ENXIO;
2131 
2132 	dm_sysfs_init(md);
2133 
2134 	*result = md;
2135 	return 0;
2136 }
2137 
2138 /*
2139  * Functions to manage md->type.
2140  * All are required to hold md->type_lock.
2141  */
2142 void dm_lock_md_type(struct mapped_device *md)
2143 {
2144 	mutex_lock(&md->type_lock);
2145 }
2146 
2147 void dm_unlock_md_type(struct mapped_device *md)
2148 {
2149 	mutex_unlock(&md->type_lock);
2150 }
2151 
2152 void dm_set_md_type(struct mapped_device *md, unsigned type)
2153 {
2154 	md->type = type;
2155 }
2156 
2157 unsigned dm_get_md_type(struct mapped_device *md)
2158 {
2159 	return md->type;
2160 }
2161 
2162 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2163 {
2164 	return md->immutable_target_type;
2165 }
2166 
2167 /*
2168  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2169  */
2170 static int dm_init_request_based_queue(struct mapped_device *md)
2171 {
2172 	struct request_queue *q = NULL;
2173 
2174 	if (md->queue->elevator)
2175 		return 1;
2176 
2177 	/* Fully initialize the queue */
2178 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2179 	if (!q)
2180 		return 0;
2181 
2182 	md->queue = q;
2183 	dm_init_md_queue(md);
2184 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2185 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2186 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2187 
2188 	elv_register_queue(md->queue);
2189 
2190 	return 1;
2191 }
2192 
2193 /*
2194  * Setup the DM device's queue based on md's type
2195  */
2196 int dm_setup_md_queue(struct mapped_device *md)
2197 {
2198 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2199 	    !dm_init_request_based_queue(md)) {
2200 		DMWARN("Cannot initialize queue for request-based mapped device");
2201 		return -EINVAL;
2202 	}
2203 
2204 	return 0;
2205 }
2206 
2207 static struct mapped_device *dm_find_md(dev_t dev)
2208 {
2209 	struct mapped_device *md;
2210 	unsigned minor = MINOR(dev);
2211 
2212 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2213 		return NULL;
2214 
2215 	spin_lock(&_minor_lock);
2216 
2217 	md = idr_find(&_minor_idr, minor);
2218 	if (md && (md == MINOR_ALLOCED ||
2219 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2220 		   dm_deleting_md(md) ||
2221 		   test_bit(DMF_FREEING, &md->flags))) {
2222 		md = NULL;
2223 		goto out;
2224 	}
2225 
2226 out:
2227 	spin_unlock(&_minor_lock);
2228 
2229 	return md;
2230 }
2231 
2232 struct mapped_device *dm_get_md(dev_t dev)
2233 {
2234 	struct mapped_device *md = dm_find_md(dev);
2235 
2236 	if (md)
2237 		dm_get(md);
2238 
2239 	return md;
2240 }
2241 EXPORT_SYMBOL_GPL(dm_get_md);
2242 
2243 void *dm_get_mdptr(struct mapped_device *md)
2244 {
2245 	return md->interface_ptr;
2246 }
2247 
2248 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2249 {
2250 	md->interface_ptr = ptr;
2251 }
2252 
2253 void dm_get(struct mapped_device *md)
2254 {
2255 	atomic_inc(&md->holders);
2256 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2257 }
2258 
2259 const char *dm_device_name(struct mapped_device *md)
2260 {
2261 	return md->name;
2262 }
2263 EXPORT_SYMBOL_GPL(dm_device_name);
2264 
2265 static void __dm_destroy(struct mapped_device *md, bool wait)
2266 {
2267 	struct dm_table *map;
2268 
2269 	might_sleep();
2270 
2271 	spin_lock(&_minor_lock);
2272 	map = dm_get_live_table(md);
2273 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2274 	set_bit(DMF_FREEING, &md->flags);
2275 	spin_unlock(&_minor_lock);
2276 
2277 	if (!dm_suspended_md(md)) {
2278 		dm_table_presuspend_targets(map);
2279 		dm_table_postsuspend_targets(map);
2280 	}
2281 
2282 	/*
2283 	 * Rare, but there may be I/O requests still going to complete,
2284 	 * for example.  Wait for all references to disappear.
2285 	 * No one should increment the reference count of the mapped_device,
2286 	 * after the mapped_device state becomes DMF_FREEING.
2287 	 */
2288 	if (wait)
2289 		while (atomic_read(&md->holders))
2290 			msleep(1);
2291 	else if (atomic_read(&md->holders))
2292 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2293 		       dm_device_name(md), atomic_read(&md->holders));
2294 
2295 	dm_sysfs_exit(md);
2296 	dm_table_put(map);
2297 	dm_table_destroy(__unbind(md));
2298 	free_dev(md);
2299 }
2300 
2301 void dm_destroy(struct mapped_device *md)
2302 {
2303 	__dm_destroy(md, true);
2304 }
2305 
2306 void dm_destroy_immediate(struct mapped_device *md)
2307 {
2308 	__dm_destroy(md, false);
2309 }
2310 
2311 void dm_put(struct mapped_device *md)
2312 {
2313 	atomic_dec(&md->holders);
2314 }
2315 EXPORT_SYMBOL_GPL(dm_put);
2316 
2317 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2318 {
2319 	int r = 0;
2320 	DECLARE_WAITQUEUE(wait, current);
2321 
2322 	add_wait_queue(&md->wait, &wait);
2323 
2324 	while (1) {
2325 		set_current_state(interruptible);
2326 
2327 		if (!md_in_flight(md))
2328 			break;
2329 
2330 		if (interruptible == TASK_INTERRUPTIBLE &&
2331 		    signal_pending(current)) {
2332 			r = -EINTR;
2333 			break;
2334 		}
2335 
2336 		io_schedule();
2337 	}
2338 	set_current_state(TASK_RUNNING);
2339 
2340 	remove_wait_queue(&md->wait, &wait);
2341 
2342 	return r;
2343 }
2344 
2345 /*
2346  * Process the deferred bios
2347  */
2348 static void dm_wq_work(struct work_struct *work)
2349 {
2350 	struct mapped_device *md = container_of(work, struct mapped_device,
2351 						work);
2352 	struct bio *c;
2353 
2354 	down_read(&md->io_lock);
2355 
2356 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2357 		spin_lock_irq(&md->deferred_lock);
2358 		c = bio_list_pop(&md->deferred);
2359 		spin_unlock_irq(&md->deferred_lock);
2360 
2361 		if (!c)
2362 			break;
2363 
2364 		up_read(&md->io_lock);
2365 
2366 		if (dm_request_based(md))
2367 			generic_make_request(c);
2368 		else
2369 			__split_and_process_bio(md, c);
2370 
2371 		down_read(&md->io_lock);
2372 	}
2373 
2374 	up_read(&md->io_lock);
2375 }
2376 
2377 static void dm_queue_flush(struct mapped_device *md)
2378 {
2379 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2380 	smp_mb__after_clear_bit();
2381 	queue_work(md->wq, &md->work);
2382 }
2383 
2384 /*
2385  * Swap in a new table, returning the old one for the caller to destroy.
2386  */
2387 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2388 {
2389 	struct dm_table *map = ERR_PTR(-EINVAL);
2390 	struct queue_limits limits;
2391 	int r;
2392 
2393 	mutex_lock(&md->suspend_lock);
2394 
2395 	/* device must be suspended */
2396 	if (!dm_suspended_md(md))
2397 		goto out;
2398 
2399 	r = dm_calculate_queue_limits(table, &limits);
2400 	if (r) {
2401 		map = ERR_PTR(r);
2402 		goto out;
2403 	}
2404 
2405 	map = __bind(md, table, &limits);
2406 
2407 out:
2408 	mutex_unlock(&md->suspend_lock);
2409 	return map;
2410 }
2411 
2412 /*
2413  * Functions to lock and unlock any filesystem running on the
2414  * device.
2415  */
2416 static int lock_fs(struct mapped_device *md)
2417 {
2418 	int r;
2419 
2420 	WARN_ON(md->frozen_sb);
2421 
2422 	md->frozen_sb = freeze_bdev(md->bdev);
2423 	if (IS_ERR(md->frozen_sb)) {
2424 		r = PTR_ERR(md->frozen_sb);
2425 		md->frozen_sb = NULL;
2426 		return r;
2427 	}
2428 
2429 	set_bit(DMF_FROZEN, &md->flags);
2430 
2431 	return 0;
2432 }
2433 
2434 static void unlock_fs(struct mapped_device *md)
2435 {
2436 	if (!test_bit(DMF_FROZEN, &md->flags))
2437 		return;
2438 
2439 	thaw_bdev(md->bdev, md->frozen_sb);
2440 	md->frozen_sb = NULL;
2441 	clear_bit(DMF_FROZEN, &md->flags);
2442 }
2443 
2444 /*
2445  * We need to be able to change a mapping table under a mounted
2446  * filesystem.  For example we might want to move some data in
2447  * the background.  Before the table can be swapped with
2448  * dm_bind_table, dm_suspend must be called to flush any in
2449  * flight bios and ensure that any further io gets deferred.
2450  */
2451 /*
2452  * Suspend mechanism in request-based dm.
2453  *
2454  * 1. Flush all I/Os by lock_fs() if needed.
2455  * 2. Stop dispatching any I/O by stopping the request_queue.
2456  * 3. Wait for all in-flight I/Os to be completed or requeued.
2457  *
2458  * To abort suspend, start the request_queue.
2459  */
2460 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2461 {
2462 	struct dm_table *map = NULL;
2463 	int r = 0;
2464 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2465 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2466 
2467 	mutex_lock(&md->suspend_lock);
2468 
2469 	if (dm_suspended_md(md)) {
2470 		r = -EINVAL;
2471 		goto out_unlock;
2472 	}
2473 
2474 	map = dm_get_live_table(md);
2475 
2476 	/*
2477 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2478 	 * This flag is cleared before dm_suspend returns.
2479 	 */
2480 	if (noflush)
2481 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2482 
2483 	/* This does not get reverted if there's an error later. */
2484 	dm_table_presuspend_targets(map);
2485 
2486 	/*
2487 	 * Flush I/O to the device.
2488 	 * Any I/O submitted after lock_fs() may not be flushed.
2489 	 * noflush takes precedence over do_lockfs.
2490 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2491 	 */
2492 	if (!noflush && do_lockfs) {
2493 		r = lock_fs(md);
2494 		if (r)
2495 			goto out;
2496 	}
2497 
2498 	/*
2499 	 * Here we must make sure that no processes are submitting requests
2500 	 * to target drivers i.e. no one may be executing
2501 	 * __split_and_process_bio. This is called from dm_request and
2502 	 * dm_wq_work.
2503 	 *
2504 	 * To get all processes out of __split_and_process_bio in dm_request,
2505 	 * we take the write lock. To prevent any process from reentering
2506 	 * __split_and_process_bio from dm_request and quiesce the thread
2507 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2508 	 * flush_workqueue(md->wq).
2509 	 */
2510 	down_write(&md->io_lock);
2511 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2512 	up_write(&md->io_lock);
2513 
2514 	/*
2515 	 * Stop md->queue before flushing md->wq in case request-based
2516 	 * dm defers requests to md->wq from md->queue.
2517 	 */
2518 	if (dm_request_based(md))
2519 		stop_queue(md->queue);
2520 
2521 	flush_workqueue(md->wq);
2522 
2523 	/*
2524 	 * At this point no more requests are entering target request routines.
2525 	 * We call dm_wait_for_completion to wait for all existing requests
2526 	 * to finish.
2527 	 */
2528 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2529 
2530 	down_write(&md->io_lock);
2531 	if (noflush)
2532 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2533 	up_write(&md->io_lock);
2534 
2535 	/* were we interrupted ? */
2536 	if (r < 0) {
2537 		dm_queue_flush(md);
2538 
2539 		if (dm_request_based(md))
2540 			start_queue(md->queue);
2541 
2542 		unlock_fs(md);
2543 		goto out; /* pushback list is already flushed, so skip flush */
2544 	}
2545 
2546 	/*
2547 	 * If dm_wait_for_completion returned 0, the device is completely
2548 	 * quiescent now. There is no request-processing activity. All new
2549 	 * requests are being added to md->deferred list.
2550 	 */
2551 
2552 	set_bit(DMF_SUSPENDED, &md->flags);
2553 
2554 	dm_table_postsuspend_targets(map);
2555 
2556 out:
2557 	dm_table_put(map);
2558 
2559 out_unlock:
2560 	mutex_unlock(&md->suspend_lock);
2561 	return r;
2562 }
2563 
2564 int dm_resume(struct mapped_device *md)
2565 {
2566 	int r = -EINVAL;
2567 	struct dm_table *map = NULL;
2568 
2569 	mutex_lock(&md->suspend_lock);
2570 	if (!dm_suspended_md(md))
2571 		goto out;
2572 
2573 	map = dm_get_live_table(md);
2574 	if (!map || !dm_table_get_size(map))
2575 		goto out;
2576 
2577 	r = dm_table_resume_targets(map);
2578 	if (r)
2579 		goto out;
2580 
2581 	dm_queue_flush(md);
2582 
2583 	/*
2584 	 * Flushing deferred I/Os must be done after targets are resumed
2585 	 * so that mapping of targets can work correctly.
2586 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2587 	 */
2588 	if (dm_request_based(md))
2589 		start_queue(md->queue);
2590 
2591 	unlock_fs(md);
2592 
2593 	clear_bit(DMF_SUSPENDED, &md->flags);
2594 
2595 	r = 0;
2596 out:
2597 	dm_table_put(map);
2598 	mutex_unlock(&md->suspend_lock);
2599 
2600 	return r;
2601 }
2602 
2603 /*-----------------------------------------------------------------
2604  * Event notification.
2605  *---------------------------------------------------------------*/
2606 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2607 		       unsigned cookie)
2608 {
2609 	char udev_cookie[DM_COOKIE_LENGTH];
2610 	char *envp[] = { udev_cookie, NULL };
2611 
2612 	if (!cookie)
2613 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2614 	else {
2615 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2616 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2617 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2618 					  action, envp);
2619 	}
2620 }
2621 
2622 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2623 {
2624 	return atomic_add_return(1, &md->uevent_seq);
2625 }
2626 
2627 uint32_t dm_get_event_nr(struct mapped_device *md)
2628 {
2629 	return atomic_read(&md->event_nr);
2630 }
2631 
2632 int dm_wait_event(struct mapped_device *md, int event_nr)
2633 {
2634 	return wait_event_interruptible(md->eventq,
2635 			(event_nr != atomic_read(&md->event_nr)));
2636 }
2637 
2638 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2639 {
2640 	unsigned long flags;
2641 
2642 	spin_lock_irqsave(&md->uevent_lock, flags);
2643 	list_add(elist, &md->uevent_list);
2644 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2645 }
2646 
2647 /*
2648  * The gendisk is only valid as long as you have a reference
2649  * count on 'md'.
2650  */
2651 struct gendisk *dm_disk(struct mapped_device *md)
2652 {
2653 	return md->disk;
2654 }
2655 
2656 struct kobject *dm_kobject(struct mapped_device *md)
2657 {
2658 	return &md->kobj;
2659 }
2660 
2661 /*
2662  * struct mapped_device should not be exported outside of dm.c
2663  * so use this check to verify that kobj is part of md structure
2664  */
2665 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2666 {
2667 	struct mapped_device *md;
2668 
2669 	md = container_of(kobj, struct mapped_device, kobj);
2670 	if (&md->kobj != kobj)
2671 		return NULL;
2672 
2673 	if (test_bit(DMF_FREEING, &md->flags) ||
2674 	    dm_deleting_md(md))
2675 		return NULL;
2676 
2677 	dm_get(md);
2678 	return md;
2679 }
2680 
2681 int dm_suspended_md(struct mapped_device *md)
2682 {
2683 	return test_bit(DMF_SUSPENDED, &md->flags);
2684 }
2685 
2686 int dm_suspended(struct dm_target *ti)
2687 {
2688 	return dm_suspended_md(dm_table_get_md(ti->table));
2689 }
2690 EXPORT_SYMBOL_GPL(dm_suspended);
2691 
2692 int dm_noflush_suspending(struct dm_target *ti)
2693 {
2694 	return __noflush_suspending(dm_table_get_md(ti->table));
2695 }
2696 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2697 
2698 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2699 {
2700 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2701 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2702 
2703 	if (!pools)
2704 		return NULL;
2705 
2706 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2707 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2708 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2709 	if (!pools->io_pool)
2710 		goto free_pools_and_out;
2711 
2712 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2713 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2714 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2715 	if (!pools->tio_pool)
2716 		goto free_io_pool_and_out;
2717 
2718 	pools->bs = bioset_create(pool_size, 0);
2719 	if (!pools->bs)
2720 		goto free_tio_pool_and_out;
2721 
2722 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2723 		goto free_bioset_and_out;
2724 
2725 	return pools;
2726 
2727 free_bioset_and_out:
2728 	bioset_free(pools->bs);
2729 
2730 free_tio_pool_and_out:
2731 	mempool_destroy(pools->tio_pool);
2732 
2733 free_io_pool_and_out:
2734 	mempool_destroy(pools->io_pool);
2735 
2736 free_pools_and_out:
2737 	kfree(pools);
2738 
2739 	return NULL;
2740 }
2741 
2742 void dm_free_md_mempools(struct dm_md_mempools *pools)
2743 {
2744 	if (!pools)
2745 		return;
2746 
2747 	if (pools->io_pool)
2748 		mempool_destroy(pools->io_pool);
2749 
2750 	if (pools->tio_pool)
2751 		mempool_destroy(pools->tio_pool);
2752 
2753 	if (pools->bs)
2754 		bioset_free(pools->bs);
2755 
2756 	kfree(pools);
2757 }
2758 
2759 static const struct block_device_operations dm_blk_dops = {
2760 	.open = dm_blk_open,
2761 	.release = dm_blk_close,
2762 	.ioctl = dm_blk_ioctl,
2763 	.getgeo = dm_blk_getgeo,
2764 	.owner = THIS_MODULE
2765 };
2766 
2767 EXPORT_SYMBOL(dm_get_mapinfo);
2768 
2769 /*
2770  * module hooks
2771  */
2772 module_init(dm_init);
2773 module_exit(dm_exit);
2774 
2775 module_param(major, uint, 0);
2776 MODULE_PARM_DESC(major, "The major number of the device mapper");
2777 MODULE_DESCRIPTION(DM_NAME " driver");
2778 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2779 MODULE_LICENSE("GPL");
2780