xref: /linux/drivers/md/dm.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <trace/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 static const char *_name = DM_NAME;
29 
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32 
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35  * For bio-based dm.
36  * One of these is allocated per bio.
37  */
38 struct dm_io {
39 	struct mapped_device *md;
40 	int error;
41 	atomic_t io_count;
42 	struct bio *bio;
43 	unsigned long start_time;
44 };
45 
46 /*
47  * For bio-based dm.
48  * One of these is allocated per target within a bio.  Hopefully
49  * this will be simplified out one day.
50  */
51 struct dm_target_io {
52 	struct dm_io *io;
53 	struct dm_target *ti;
54 	union map_info info;
55 };
56 
57 DEFINE_TRACE(block_bio_complete);
58 
59 /*
60  * For request-based dm.
61  * One of these is allocated per request.
62  */
63 struct dm_rq_target_io {
64 	struct mapped_device *md;
65 	struct dm_target *ti;
66 	struct request *orig, clone;
67 	int error;
68 	union map_info info;
69 };
70 
71 /*
72  * For request-based dm.
73  * One of these is allocated per bio.
74  */
75 struct dm_rq_clone_bio_info {
76 	struct bio *orig;
77 	struct request *rq;
78 };
79 
80 union map_info *dm_get_mapinfo(struct bio *bio)
81 {
82 	if (bio && bio->bi_private)
83 		return &((struct dm_target_io *)bio->bi_private)->info;
84 	return NULL;
85 }
86 
87 #define MINOR_ALLOCED ((void *)-1)
88 
89 /*
90  * Bits for the md->flags field.
91  */
92 #define DMF_BLOCK_IO 0
93 #define DMF_SUSPENDED 1
94 #define DMF_FROZEN 2
95 #define DMF_FREEING 3
96 #define DMF_DELETING 4
97 #define DMF_NOFLUSH_SUSPENDING 5
98 
99 /*
100  * Work processed by per-device workqueue.
101  */
102 struct dm_wq_req {
103 	enum {
104 		DM_WQ_FLUSH_DEFERRED,
105 	} type;
106 	struct work_struct work;
107 	struct mapped_device *md;
108 	void *context;
109 };
110 
111 struct mapped_device {
112 	struct rw_semaphore io_lock;
113 	struct mutex suspend_lock;
114 	spinlock_t pushback_lock;
115 	rwlock_t map_lock;
116 	atomic_t holders;
117 	atomic_t open_count;
118 
119 	unsigned long flags;
120 
121 	struct request_queue *queue;
122 	struct gendisk *disk;
123 	char name[16];
124 
125 	void *interface_ptr;
126 
127 	/*
128 	 * A list of ios that arrived while we were suspended.
129 	 */
130 	atomic_t pending;
131 	wait_queue_head_t wait;
132 	struct bio_list deferred;
133 	struct bio_list pushback;
134 
135 	/*
136 	 * Processing queue (flush/barriers)
137 	 */
138 	struct workqueue_struct *wq;
139 
140 	/*
141 	 * The current mapping.
142 	 */
143 	struct dm_table *map;
144 
145 	/*
146 	 * io objects are allocated from here.
147 	 */
148 	mempool_t *io_pool;
149 	mempool_t *tio_pool;
150 
151 	struct bio_set *bs;
152 
153 	/*
154 	 * Event handling.
155 	 */
156 	atomic_t event_nr;
157 	wait_queue_head_t eventq;
158 	atomic_t uevent_seq;
159 	struct list_head uevent_list;
160 	spinlock_t uevent_lock; /* Protect access to uevent_list */
161 
162 	/*
163 	 * freeze/thaw support require holding onto a super block
164 	 */
165 	struct super_block *frozen_sb;
166 	struct block_device *suspended_bdev;
167 
168 	/* forced geometry settings */
169 	struct hd_geometry geometry;
170 
171 	/* sysfs handle */
172 	struct kobject kobj;
173 };
174 
175 #define MIN_IOS 256
176 static struct kmem_cache *_io_cache;
177 static struct kmem_cache *_tio_cache;
178 static struct kmem_cache *_rq_tio_cache;
179 static struct kmem_cache *_rq_bio_info_cache;
180 
181 static int __init local_init(void)
182 {
183 	int r = -ENOMEM;
184 
185 	/* allocate a slab for the dm_ios */
186 	_io_cache = KMEM_CACHE(dm_io, 0);
187 	if (!_io_cache)
188 		return r;
189 
190 	/* allocate a slab for the target ios */
191 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
192 	if (!_tio_cache)
193 		goto out_free_io_cache;
194 
195 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
196 	if (!_rq_tio_cache)
197 		goto out_free_tio_cache;
198 
199 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
200 	if (!_rq_bio_info_cache)
201 		goto out_free_rq_tio_cache;
202 
203 	r = dm_uevent_init();
204 	if (r)
205 		goto out_free_rq_bio_info_cache;
206 
207 	_major = major;
208 	r = register_blkdev(_major, _name);
209 	if (r < 0)
210 		goto out_uevent_exit;
211 
212 	if (!_major)
213 		_major = r;
214 
215 	return 0;
216 
217 out_uevent_exit:
218 	dm_uevent_exit();
219 out_free_rq_bio_info_cache:
220 	kmem_cache_destroy(_rq_bio_info_cache);
221 out_free_rq_tio_cache:
222 	kmem_cache_destroy(_rq_tio_cache);
223 out_free_tio_cache:
224 	kmem_cache_destroy(_tio_cache);
225 out_free_io_cache:
226 	kmem_cache_destroy(_io_cache);
227 
228 	return r;
229 }
230 
231 static void local_exit(void)
232 {
233 	kmem_cache_destroy(_rq_bio_info_cache);
234 	kmem_cache_destroy(_rq_tio_cache);
235 	kmem_cache_destroy(_tio_cache);
236 	kmem_cache_destroy(_io_cache);
237 	unregister_blkdev(_major, _name);
238 	dm_uevent_exit();
239 
240 	_major = 0;
241 
242 	DMINFO("cleaned up");
243 }
244 
245 static int (*_inits[])(void) __initdata = {
246 	local_init,
247 	dm_target_init,
248 	dm_linear_init,
249 	dm_stripe_init,
250 	dm_kcopyd_init,
251 	dm_interface_init,
252 };
253 
254 static void (*_exits[])(void) = {
255 	local_exit,
256 	dm_target_exit,
257 	dm_linear_exit,
258 	dm_stripe_exit,
259 	dm_kcopyd_exit,
260 	dm_interface_exit,
261 };
262 
263 static int __init dm_init(void)
264 {
265 	const int count = ARRAY_SIZE(_inits);
266 
267 	int r, i;
268 
269 	for (i = 0; i < count; i++) {
270 		r = _inits[i]();
271 		if (r)
272 			goto bad;
273 	}
274 
275 	return 0;
276 
277       bad:
278 	while (i--)
279 		_exits[i]();
280 
281 	return r;
282 }
283 
284 static void __exit dm_exit(void)
285 {
286 	int i = ARRAY_SIZE(_exits);
287 
288 	while (i--)
289 		_exits[i]();
290 }
291 
292 /*
293  * Block device functions
294  */
295 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
296 {
297 	struct mapped_device *md;
298 
299 	spin_lock(&_minor_lock);
300 
301 	md = bdev->bd_disk->private_data;
302 	if (!md)
303 		goto out;
304 
305 	if (test_bit(DMF_FREEING, &md->flags) ||
306 	    test_bit(DMF_DELETING, &md->flags)) {
307 		md = NULL;
308 		goto out;
309 	}
310 
311 	dm_get(md);
312 	atomic_inc(&md->open_count);
313 
314 out:
315 	spin_unlock(&_minor_lock);
316 
317 	return md ? 0 : -ENXIO;
318 }
319 
320 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
321 {
322 	struct mapped_device *md = disk->private_data;
323 	atomic_dec(&md->open_count);
324 	dm_put(md);
325 	return 0;
326 }
327 
328 int dm_open_count(struct mapped_device *md)
329 {
330 	return atomic_read(&md->open_count);
331 }
332 
333 /*
334  * Guarantees nothing is using the device before it's deleted.
335  */
336 int dm_lock_for_deletion(struct mapped_device *md)
337 {
338 	int r = 0;
339 
340 	spin_lock(&_minor_lock);
341 
342 	if (dm_open_count(md))
343 		r = -EBUSY;
344 	else
345 		set_bit(DMF_DELETING, &md->flags);
346 
347 	spin_unlock(&_minor_lock);
348 
349 	return r;
350 }
351 
352 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
353 {
354 	struct mapped_device *md = bdev->bd_disk->private_data;
355 
356 	return dm_get_geometry(md, geo);
357 }
358 
359 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
360 			unsigned int cmd, unsigned long arg)
361 {
362 	struct mapped_device *md = bdev->bd_disk->private_data;
363 	struct dm_table *map = dm_get_table(md);
364 	struct dm_target *tgt;
365 	int r = -ENOTTY;
366 
367 	if (!map || !dm_table_get_size(map))
368 		goto out;
369 
370 	/* We only support devices that have a single target */
371 	if (dm_table_get_num_targets(map) != 1)
372 		goto out;
373 
374 	tgt = dm_table_get_target(map, 0);
375 
376 	if (dm_suspended(md)) {
377 		r = -EAGAIN;
378 		goto out;
379 	}
380 
381 	if (tgt->type->ioctl)
382 		r = tgt->type->ioctl(tgt, cmd, arg);
383 
384 out:
385 	dm_table_put(map);
386 
387 	return r;
388 }
389 
390 static struct dm_io *alloc_io(struct mapped_device *md)
391 {
392 	return mempool_alloc(md->io_pool, GFP_NOIO);
393 }
394 
395 static void free_io(struct mapped_device *md, struct dm_io *io)
396 {
397 	mempool_free(io, md->io_pool);
398 }
399 
400 static struct dm_target_io *alloc_tio(struct mapped_device *md)
401 {
402 	return mempool_alloc(md->tio_pool, GFP_NOIO);
403 }
404 
405 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
406 {
407 	mempool_free(tio, md->tio_pool);
408 }
409 
410 static void start_io_acct(struct dm_io *io)
411 {
412 	struct mapped_device *md = io->md;
413 	int cpu;
414 
415 	io->start_time = jiffies;
416 
417 	cpu = part_stat_lock();
418 	part_round_stats(cpu, &dm_disk(md)->part0);
419 	part_stat_unlock();
420 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
421 }
422 
423 static void end_io_acct(struct dm_io *io)
424 {
425 	struct mapped_device *md = io->md;
426 	struct bio *bio = io->bio;
427 	unsigned long duration = jiffies - io->start_time;
428 	int pending, cpu;
429 	int rw = bio_data_dir(bio);
430 
431 	cpu = part_stat_lock();
432 	part_round_stats(cpu, &dm_disk(md)->part0);
433 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
434 	part_stat_unlock();
435 
436 	dm_disk(md)->part0.in_flight = pending =
437 		atomic_dec_return(&md->pending);
438 
439 	/* nudge anyone waiting on suspend queue */
440 	if (!pending)
441 		wake_up(&md->wait);
442 }
443 
444 /*
445  * Add the bio to the list of deferred io.
446  */
447 static int queue_io(struct mapped_device *md, struct bio *bio)
448 {
449 	down_write(&md->io_lock);
450 
451 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
452 		up_write(&md->io_lock);
453 		return 1;
454 	}
455 
456 	bio_list_add(&md->deferred, bio);
457 
458 	up_write(&md->io_lock);
459 	return 0;		/* deferred successfully */
460 }
461 
462 /*
463  * Everyone (including functions in this file), should use this
464  * function to access the md->map field, and make sure they call
465  * dm_table_put() when finished.
466  */
467 struct dm_table *dm_get_table(struct mapped_device *md)
468 {
469 	struct dm_table *t;
470 
471 	read_lock(&md->map_lock);
472 	t = md->map;
473 	if (t)
474 		dm_table_get(t);
475 	read_unlock(&md->map_lock);
476 
477 	return t;
478 }
479 
480 /*
481  * Get the geometry associated with a dm device
482  */
483 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
484 {
485 	*geo = md->geometry;
486 
487 	return 0;
488 }
489 
490 /*
491  * Set the geometry of a device.
492  */
493 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
494 {
495 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
496 
497 	if (geo->start > sz) {
498 		DMWARN("Start sector is beyond the geometry limits.");
499 		return -EINVAL;
500 	}
501 
502 	md->geometry = *geo;
503 
504 	return 0;
505 }
506 
507 /*-----------------------------------------------------------------
508  * CRUD START:
509  *   A more elegant soln is in the works that uses the queue
510  *   merge fn, unfortunately there are a couple of changes to
511  *   the block layer that I want to make for this.  So in the
512  *   interests of getting something for people to use I give
513  *   you this clearly demarcated crap.
514  *---------------------------------------------------------------*/
515 
516 static int __noflush_suspending(struct mapped_device *md)
517 {
518 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
519 }
520 
521 /*
522  * Decrements the number of outstanding ios that a bio has been
523  * cloned into, completing the original io if necc.
524  */
525 static void dec_pending(struct dm_io *io, int error)
526 {
527 	unsigned long flags;
528 
529 	/* Push-back supersedes any I/O errors */
530 	if (error && !(io->error > 0 && __noflush_suspending(io->md)))
531 		io->error = error;
532 
533 	if (atomic_dec_and_test(&io->io_count)) {
534 		if (io->error == DM_ENDIO_REQUEUE) {
535 			/*
536 			 * Target requested pushing back the I/O.
537 			 * This must be handled before the sleeper on
538 			 * suspend queue merges the pushback list.
539 			 */
540 			spin_lock_irqsave(&io->md->pushback_lock, flags);
541 			if (__noflush_suspending(io->md))
542 				bio_list_add(&io->md->pushback, io->bio);
543 			else
544 				/* noflush suspend was interrupted. */
545 				io->error = -EIO;
546 			spin_unlock_irqrestore(&io->md->pushback_lock, flags);
547 		}
548 
549 		end_io_acct(io);
550 
551 		if (io->error != DM_ENDIO_REQUEUE) {
552 			trace_block_bio_complete(io->md->queue, io->bio);
553 
554 			bio_endio(io->bio, io->error);
555 		}
556 
557 		free_io(io->md, io);
558 	}
559 }
560 
561 static void clone_endio(struct bio *bio, int error)
562 {
563 	int r = 0;
564 	struct dm_target_io *tio = bio->bi_private;
565 	struct mapped_device *md = tio->io->md;
566 	dm_endio_fn endio = tio->ti->type->end_io;
567 
568 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
569 		error = -EIO;
570 
571 	if (endio) {
572 		r = endio(tio->ti, bio, error, &tio->info);
573 		if (r < 0 || r == DM_ENDIO_REQUEUE)
574 			/*
575 			 * error and requeue request are handled
576 			 * in dec_pending().
577 			 */
578 			error = r;
579 		else if (r == DM_ENDIO_INCOMPLETE)
580 			/* The target will handle the io */
581 			return;
582 		else if (r) {
583 			DMWARN("unimplemented target endio return value: %d", r);
584 			BUG();
585 		}
586 	}
587 
588 	dec_pending(tio->io, error);
589 
590 	/*
591 	 * Store md for cleanup instead of tio which is about to get freed.
592 	 */
593 	bio->bi_private = md->bs;
594 
595 	bio_put(bio);
596 	free_tio(md, tio);
597 }
598 
599 static sector_t max_io_len(struct mapped_device *md,
600 			   sector_t sector, struct dm_target *ti)
601 {
602 	sector_t offset = sector - ti->begin;
603 	sector_t len = ti->len - offset;
604 
605 	/*
606 	 * Does the target need to split even further ?
607 	 */
608 	if (ti->split_io) {
609 		sector_t boundary;
610 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
611 			   - offset;
612 		if (len > boundary)
613 			len = boundary;
614 	}
615 
616 	return len;
617 }
618 
619 static void __map_bio(struct dm_target *ti, struct bio *clone,
620 		      struct dm_target_io *tio)
621 {
622 	int r;
623 	sector_t sector;
624 	struct mapped_device *md;
625 
626 	/*
627 	 * Sanity checks.
628 	 */
629 	BUG_ON(!clone->bi_size);
630 
631 	clone->bi_end_io = clone_endio;
632 	clone->bi_private = tio;
633 
634 	/*
635 	 * Map the clone.  If r == 0 we don't need to do
636 	 * anything, the target has assumed ownership of
637 	 * this io.
638 	 */
639 	atomic_inc(&tio->io->io_count);
640 	sector = clone->bi_sector;
641 	r = ti->type->map(ti, clone, &tio->info);
642 	if (r == DM_MAPIO_REMAPPED) {
643 		/* the bio has been remapped so dispatch it */
644 
645 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
646 				    tio->io->bio->bi_bdev->bd_dev,
647 				    clone->bi_sector, sector);
648 
649 		generic_make_request(clone);
650 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
651 		/* error the io and bail out, or requeue it if needed */
652 		md = tio->io->md;
653 		dec_pending(tio->io, r);
654 		/*
655 		 * Store bio_set for cleanup.
656 		 */
657 		clone->bi_private = md->bs;
658 		bio_put(clone);
659 		free_tio(md, tio);
660 	} else if (r) {
661 		DMWARN("unimplemented target map return value: %d", r);
662 		BUG();
663 	}
664 }
665 
666 struct clone_info {
667 	struct mapped_device *md;
668 	struct dm_table *map;
669 	struct bio *bio;
670 	struct dm_io *io;
671 	sector_t sector;
672 	sector_t sector_count;
673 	unsigned short idx;
674 };
675 
676 static void dm_bio_destructor(struct bio *bio)
677 {
678 	struct bio_set *bs = bio->bi_private;
679 
680 	bio_free(bio, bs);
681 }
682 
683 /*
684  * Creates a little bio that is just does part of a bvec.
685  */
686 static struct bio *split_bvec(struct bio *bio, sector_t sector,
687 			      unsigned short idx, unsigned int offset,
688 			      unsigned int len, struct bio_set *bs)
689 {
690 	struct bio *clone;
691 	struct bio_vec *bv = bio->bi_io_vec + idx;
692 
693 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
694 	clone->bi_destructor = dm_bio_destructor;
695 	*clone->bi_io_vec = *bv;
696 
697 	clone->bi_sector = sector;
698 	clone->bi_bdev = bio->bi_bdev;
699 	clone->bi_rw = bio->bi_rw;
700 	clone->bi_vcnt = 1;
701 	clone->bi_size = to_bytes(len);
702 	clone->bi_io_vec->bv_offset = offset;
703 	clone->bi_io_vec->bv_len = clone->bi_size;
704 	clone->bi_flags |= 1 << BIO_CLONED;
705 
706 	return clone;
707 }
708 
709 /*
710  * Creates a bio that consists of range of complete bvecs.
711  */
712 static struct bio *clone_bio(struct bio *bio, sector_t sector,
713 			     unsigned short idx, unsigned short bv_count,
714 			     unsigned int len, struct bio_set *bs)
715 {
716 	struct bio *clone;
717 
718 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
719 	__bio_clone(clone, bio);
720 	clone->bi_destructor = dm_bio_destructor;
721 	clone->bi_sector = sector;
722 	clone->bi_idx = idx;
723 	clone->bi_vcnt = idx + bv_count;
724 	clone->bi_size = to_bytes(len);
725 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
726 
727 	return clone;
728 }
729 
730 static int __clone_and_map(struct clone_info *ci)
731 {
732 	struct bio *clone, *bio = ci->bio;
733 	struct dm_target *ti;
734 	sector_t len = 0, max;
735 	struct dm_target_io *tio;
736 
737 	ti = dm_table_find_target(ci->map, ci->sector);
738 	if (!dm_target_is_valid(ti))
739 		return -EIO;
740 
741 	max = max_io_len(ci->md, ci->sector, ti);
742 
743 	/*
744 	 * Allocate a target io object.
745 	 */
746 	tio = alloc_tio(ci->md);
747 	tio->io = ci->io;
748 	tio->ti = ti;
749 	memset(&tio->info, 0, sizeof(tio->info));
750 
751 	if (ci->sector_count <= max) {
752 		/*
753 		 * Optimise for the simple case where we can do all of
754 		 * the remaining io with a single clone.
755 		 */
756 		clone = clone_bio(bio, ci->sector, ci->idx,
757 				  bio->bi_vcnt - ci->idx, ci->sector_count,
758 				  ci->md->bs);
759 		__map_bio(ti, clone, tio);
760 		ci->sector_count = 0;
761 
762 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
763 		/*
764 		 * There are some bvecs that don't span targets.
765 		 * Do as many of these as possible.
766 		 */
767 		int i;
768 		sector_t remaining = max;
769 		sector_t bv_len;
770 
771 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
772 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
773 
774 			if (bv_len > remaining)
775 				break;
776 
777 			remaining -= bv_len;
778 			len += bv_len;
779 		}
780 
781 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
782 				  ci->md->bs);
783 		__map_bio(ti, clone, tio);
784 
785 		ci->sector += len;
786 		ci->sector_count -= len;
787 		ci->idx = i;
788 
789 	} else {
790 		/*
791 		 * Handle a bvec that must be split between two or more targets.
792 		 */
793 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
794 		sector_t remaining = to_sector(bv->bv_len);
795 		unsigned int offset = 0;
796 
797 		do {
798 			if (offset) {
799 				ti = dm_table_find_target(ci->map, ci->sector);
800 				if (!dm_target_is_valid(ti))
801 					return -EIO;
802 
803 				max = max_io_len(ci->md, ci->sector, ti);
804 
805 				tio = alloc_tio(ci->md);
806 				tio->io = ci->io;
807 				tio->ti = ti;
808 				memset(&tio->info, 0, sizeof(tio->info));
809 			}
810 
811 			len = min(remaining, max);
812 
813 			clone = split_bvec(bio, ci->sector, ci->idx,
814 					   bv->bv_offset + offset, len,
815 					   ci->md->bs);
816 
817 			__map_bio(ti, clone, tio);
818 
819 			ci->sector += len;
820 			ci->sector_count -= len;
821 			offset += to_bytes(len);
822 		} while (remaining -= len);
823 
824 		ci->idx++;
825 	}
826 
827 	return 0;
828 }
829 
830 /*
831  * Split the bio into several clones.
832  */
833 static int __split_bio(struct mapped_device *md, struct bio *bio)
834 {
835 	struct clone_info ci;
836 	int error = 0;
837 
838 	ci.map = dm_get_table(md);
839 	if (unlikely(!ci.map))
840 		return -EIO;
841 	if (unlikely(bio_barrier(bio) && !dm_table_barrier_ok(ci.map))) {
842 		dm_table_put(ci.map);
843 		bio_endio(bio, -EOPNOTSUPP);
844 		return 0;
845 	}
846 	ci.md = md;
847 	ci.bio = bio;
848 	ci.io = alloc_io(md);
849 	ci.io->error = 0;
850 	atomic_set(&ci.io->io_count, 1);
851 	ci.io->bio = bio;
852 	ci.io->md = md;
853 	ci.sector = bio->bi_sector;
854 	ci.sector_count = bio_sectors(bio);
855 	ci.idx = bio->bi_idx;
856 
857 	start_io_acct(ci.io);
858 	while (ci.sector_count && !error)
859 		error = __clone_and_map(&ci);
860 
861 	/* drop the extra reference count */
862 	dec_pending(ci.io, error);
863 	dm_table_put(ci.map);
864 
865 	return 0;
866 }
867 /*-----------------------------------------------------------------
868  * CRUD END
869  *---------------------------------------------------------------*/
870 
871 static int dm_merge_bvec(struct request_queue *q,
872 			 struct bvec_merge_data *bvm,
873 			 struct bio_vec *biovec)
874 {
875 	struct mapped_device *md = q->queuedata;
876 	struct dm_table *map = dm_get_table(md);
877 	struct dm_target *ti;
878 	sector_t max_sectors;
879 	int max_size = 0;
880 
881 	if (unlikely(!map))
882 		goto out;
883 
884 	ti = dm_table_find_target(map, bvm->bi_sector);
885 	if (!dm_target_is_valid(ti))
886 		goto out_table;
887 
888 	/*
889 	 * Find maximum amount of I/O that won't need splitting
890 	 */
891 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
892 			  (sector_t) BIO_MAX_SECTORS);
893 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
894 	if (max_size < 0)
895 		max_size = 0;
896 
897 	/*
898 	 * merge_bvec_fn() returns number of bytes
899 	 * it can accept at this offset
900 	 * max is precomputed maximal io size
901 	 */
902 	if (max_size && ti->type->merge)
903 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
904 
905 out_table:
906 	dm_table_put(map);
907 
908 out:
909 	/*
910 	 * Always allow an entire first page
911 	 */
912 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
913 		max_size = biovec->bv_len;
914 
915 	return max_size;
916 }
917 
918 /*
919  * The request function that just remaps the bio built up by
920  * dm_merge_bvec.
921  */
922 static int dm_request(struct request_queue *q, struct bio *bio)
923 {
924 	int r = -EIO;
925 	int rw = bio_data_dir(bio);
926 	struct mapped_device *md = q->queuedata;
927 	int cpu;
928 
929 	down_read(&md->io_lock);
930 
931 	cpu = part_stat_lock();
932 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
933 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
934 	part_stat_unlock();
935 
936 	/*
937 	 * If we're suspended we have to queue
938 	 * this io for later.
939 	 */
940 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
941 		up_read(&md->io_lock);
942 
943 		if (bio_rw(bio) != READA)
944 			r = queue_io(md, bio);
945 
946 		if (r <= 0)
947 			goto out_req;
948 
949 		/*
950 		 * We're in a while loop, because someone could suspend
951 		 * before we get to the following read lock.
952 		 */
953 		down_read(&md->io_lock);
954 	}
955 
956 	r = __split_bio(md, bio);
957 	up_read(&md->io_lock);
958 
959 out_req:
960 	if (r < 0)
961 		bio_io_error(bio);
962 
963 	return 0;
964 }
965 
966 static void dm_unplug_all(struct request_queue *q)
967 {
968 	struct mapped_device *md = q->queuedata;
969 	struct dm_table *map = dm_get_table(md);
970 
971 	if (map) {
972 		dm_table_unplug_all(map);
973 		dm_table_put(map);
974 	}
975 }
976 
977 static int dm_any_congested(void *congested_data, int bdi_bits)
978 {
979 	int r = bdi_bits;
980 	struct mapped_device *md = congested_data;
981 	struct dm_table *map;
982 
983 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
984 		map = dm_get_table(md);
985 		if (map) {
986 			r = dm_table_any_congested(map, bdi_bits);
987 			dm_table_put(map);
988 		}
989 	}
990 
991 	return r;
992 }
993 
994 /*-----------------------------------------------------------------
995  * An IDR is used to keep track of allocated minor numbers.
996  *---------------------------------------------------------------*/
997 static DEFINE_IDR(_minor_idr);
998 
999 static void free_minor(int minor)
1000 {
1001 	spin_lock(&_minor_lock);
1002 	idr_remove(&_minor_idr, minor);
1003 	spin_unlock(&_minor_lock);
1004 }
1005 
1006 /*
1007  * See if the device with a specific minor # is free.
1008  */
1009 static int specific_minor(int minor)
1010 {
1011 	int r, m;
1012 
1013 	if (minor >= (1 << MINORBITS))
1014 		return -EINVAL;
1015 
1016 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1017 	if (!r)
1018 		return -ENOMEM;
1019 
1020 	spin_lock(&_minor_lock);
1021 
1022 	if (idr_find(&_minor_idr, minor)) {
1023 		r = -EBUSY;
1024 		goto out;
1025 	}
1026 
1027 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1028 	if (r)
1029 		goto out;
1030 
1031 	if (m != minor) {
1032 		idr_remove(&_minor_idr, m);
1033 		r = -EBUSY;
1034 		goto out;
1035 	}
1036 
1037 out:
1038 	spin_unlock(&_minor_lock);
1039 	return r;
1040 }
1041 
1042 static int next_free_minor(int *minor)
1043 {
1044 	int r, m;
1045 
1046 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1047 	if (!r)
1048 		return -ENOMEM;
1049 
1050 	spin_lock(&_minor_lock);
1051 
1052 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1053 	if (r)
1054 		goto out;
1055 
1056 	if (m >= (1 << MINORBITS)) {
1057 		idr_remove(&_minor_idr, m);
1058 		r = -ENOSPC;
1059 		goto out;
1060 	}
1061 
1062 	*minor = m;
1063 
1064 out:
1065 	spin_unlock(&_minor_lock);
1066 	return r;
1067 }
1068 
1069 static struct block_device_operations dm_blk_dops;
1070 
1071 /*
1072  * Allocate and initialise a blank device with a given minor.
1073  */
1074 static struct mapped_device *alloc_dev(int minor)
1075 {
1076 	int r;
1077 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1078 	void *old_md;
1079 
1080 	if (!md) {
1081 		DMWARN("unable to allocate device, out of memory.");
1082 		return NULL;
1083 	}
1084 
1085 	if (!try_module_get(THIS_MODULE))
1086 		goto bad_module_get;
1087 
1088 	/* get a minor number for the dev */
1089 	if (minor == DM_ANY_MINOR)
1090 		r = next_free_minor(&minor);
1091 	else
1092 		r = specific_minor(minor);
1093 	if (r < 0)
1094 		goto bad_minor;
1095 
1096 	init_rwsem(&md->io_lock);
1097 	mutex_init(&md->suspend_lock);
1098 	spin_lock_init(&md->pushback_lock);
1099 	rwlock_init(&md->map_lock);
1100 	atomic_set(&md->holders, 1);
1101 	atomic_set(&md->open_count, 0);
1102 	atomic_set(&md->event_nr, 0);
1103 	atomic_set(&md->uevent_seq, 0);
1104 	INIT_LIST_HEAD(&md->uevent_list);
1105 	spin_lock_init(&md->uevent_lock);
1106 
1107 	md->queue = blk_alloc_queue(GFP_KERNEL);
1108 	if (!md->queue)
1109 		goto bad_queue;
1110 
1111 	md->queue->queuedata = md;
1112 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1113 	md->queue->backing_dev_info.congested_data = md;
1114 	blk_queue_make_request(md->queue, dm_request);
1115 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1116 	md->queue->unplug_fn = dm_unplug_all;
1117 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1118 
1119 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1120 	if (!md->io_pool)
1121 		goto bad_io_pool;
1122 
1123 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1124 	if (!md->tio_pool)
1125 		goto bad_tio_pool;
1126 
1127 	md->bs = bioset_create(16, 0);
1128 	if (!md->bs)
1129 		goto bad_no_bioset;
1130 
1131 	md->disk = alloc_disk(1);
1132 	if (!md->disk)
1133 		goto bad_disk;
1134 
1135 	atomic_set(&md->pending, 0);
1136 	init_waitqueue_head(&md->wait);
1137 	init_waitqueue_head(&md->eventq);
1138 
1139 	md->disk->major = _major;
1140 	md->disk->first_minor = minor;
1141 	md->disk->fops = &dm_blk_dops;
1142 	md->disk->queue = md->queue;
1143 	md->disk->private_data = md;
1144 	sprintf(md->disk->disk_name, "dm-%d", minor);
1145 	add_disk(md->disk);
1146 	format_dev_t(md->name, MKDEV(_major, minor));
1147 
1148 	md->wq = create_singlethread_workqueue("kdmflush");
1149 	if (!md->wq)
1150 		goto bad_thread;
1151 
1152 	/* Populate the mapping, nobody knows we exist yet */
1153 	spin_lock(&_minor_lock);
1154 	old_md = idr_replace(&_minor_idr, md, minor);
1155 	spin_unlock(&_minor_lock);
1156 
1157 	BUG_ON(old_md != MINOR_ALLOCED);
1158 
1159 	return md;
1160 
1161 bad_thread:
1162 	put_disk(md->disk);
1163 bad_disk:
1164 	bioset_free(md->bs);
1165 bad_no_bioset:
1166 	mempool_destroy(md->tio_pool);
1167 bad_tio_pool:
1168 	mempool_destroy(md->io_pool);
1169 bad_io_pool:
1170 	blk_cleanup_queue(md->queue);
1171 bad_queue:
1172 	free_minor(minor);
1173 bad_minor:
1174 	module_put(THIS_MODULE);
1175 bad_module_get:
1176 	kfree(md);
1177 	return NULL;
1178 }
1179 
1180 static void unlock_fs(struct mapped_device *md);
1181 
1182 static void free_dev(struct mapped_device *md)
1183 {
1184 	int minor = MINOR(disk_devt(md->disk));
1185 
1186 	if (md->suspended_bdev) {
1187 		unlock_fs(md);
1188 		bdput(md->suspended_bdev);
1189 	}
1190 	destroy_workqueue(md->wq);
1191 	mempool_destroy(md->tio_pool);
1192 	mempool_destroy(md->io_pool);
1193 	bioset_free(md->bs);
1194 	del_gendisk(md->disk);
1195 	free_minor(minor);
1196 
1197 	spin_lock(&_minor_lock);
1198 	md->disk->private_data = NULL;
1199 	spin_unlock(&_minor_lock);
1200 
1201 	put_disk(md->disk);
1202 	blk_cleanup_queue(md->queue);
1203 	module_put(THIS_MODULE);
1204 	kfree(md);
1205 }
1206 
1207 /*
1208  * Bind a table to the device.
1209  */
1210 static void event_callback(void *context)
1211 {
1212 	unsigned long flags;
1213 	LIST_HEAD(uevents);
1214 	struct mapped_device *md = (struct mapped_device *) context;
1215 
1216 	spin_lock_irqsave(&md->uevent_lock, flags);
1217 	list_splice_init(&md->uevent_list, &uevents);
1218 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1219 
1220 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1221 
1222 	atomic_inc(&md->event_nr);
1223 	wake_up(&md->eventq);
1224 }
1225 
1226 static void __set_size(struct mapped_device *md, sector_t size)
1227 {
1228 	set_capacity(md->disk, size);
1229 
1230 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1231 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1232 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1233 }
1234 
1235 static int __bind(struct mapped_device *md, struct dm_table *t)
1236 {
1237 	struct request_queue *q = md->queue;
1238 	sector_t size;
1239 
1240 	size = dm_table_get_size(t);
1241 
1242 	/*
1243 	 * Wipe any geometry if the size of the table changed.
1244 	 */
1245 	if (size != get_capacity(md->disk))
1246 		memset(&md->geometry, 0, sizeof(md->geometry));
1247 
1248 	if (md->suspended_bdev)
1249 		__set_size(md, size);
1250 
1251 	if (!size) {
1252 		dm_table_destroy(t);
1253 		return 0;
1254 	}
1255 
1256 	dm_table_event_callback(t, event_callback, md);
1257 
1258 	write_lock(&md->map_lock);
1259 	md->map = t;
1260 	dm_table_set_restrictions(t, q);
1261 	write_unlock(&md->map_lock);
1262 
1263 	return 0;
1264 }
1265 
1266 static void __unbind(struct mapped_device *md)
1267 {
1268 	struct dm_table *map = md->map;
1269 
1270 	if (!map)
1271 		return;
1272 
1273 	dm_table_event_callback(map, NULL, NULL);
1274 	write_lock(&md->map_lock);
1275 	md->map = NULL;
1276 	write_unlock(&md->map_lock);
1277 	dm_table_destroy(map);
1278 }
1279 
1280 /*
1281  * Constructor for a new device.
1282  */
1283 int dm_create(int minor, struct mapped_device **result)
1284 {
1285 	struct mapped_device *md;
1286 
1287 	md = alloc_dev(minor);
1288 	if (!md)
1289 		return -ENXIO;
1290 
1291 	dm_sysfs_init(md);
1292 
1293 	*result = md;
1294 	return 0;
1295 }
1296 
1297 static struct mapped_device *dm_find_md(dev_t dev)
1298 {
1299 	struct mapped_device *md;
1300 	unsigned minor = MINOR(dev);
1301 
1302 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1303 		return NULL;
1304 
1305 	spin_lock(&_minor_lock);
1306 
1307 	md = idr_find(&_minor_idr, minor);
1308 	if (md && (md == MINOR_ALLOCED ||
1309 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1310 		   test_bit(DMF_FREEING, &md->flags))) {
1311 		md = NULL;
1312 		goto out;
1313 	}
1314 
1315 out:
1316 	spin_unlock(&_minor_lock);
1317 
1318 	return md;
1319 }
1320 
1321 struct mapped_device *dm_get_md(dev_t dev)
1322 {
1323 	struct mapped_device *md = dm_find_md(dev);
1324 
1325 	if (md)
1326 		dm_get(md);
1327 
1328 	return md;
1329 }
1330 
1331 void *dm_get_mdptr(struct mapped_device *md)
1332 {
1333 	return md->interface_ptr;
1334 }
1335 
1336 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1337 {
1338 	md->interface_ptr = ptr;
1339 }
1340 
1341 void dm_get(struct mapped_device *md)
1342 {
1343 	atomic_inc(&md->holders);
1344 }
1345 
1346 const char *dm_device_name(struct mapped_device *md)
1347 {
1348 	return md->name;
1349 }
1350 EXPORT_SYMBOL_GPL(dm_device_name);
1351 
1352 void dm_put(struct mapped_device *md)
1353 {
1354 	struct dm_table *map;
1355 
1356 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1357 
1358 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1359 		map = dm_get_table(md);
1360 		idr_replace(&_minor_idr, MINOR_ALLOCED,
1361 			    MINOR(disk_devt(dm_disk(md))));
1362 		set_bit(DMF_FREEING, &md->flags);
1363 		spin_unlock(&_minor_lock);
1364 		if (!dm_suspended(md)) {
1365 			dm_table_presuspend_targets(map);
1366 			dm_table_postsuspend_targets(map);
1367 		}
1368 		dm_sysfs_exit(md);
1369 		dm_table_put(map);
1370 		__unbind(md);
1371 		free_dev(md);
1372 	}
1373 }
1374 EXPORT_SYMBOL_GPL(dm_put);
1375 
1376 static int dm_wait_for_completion(struct mapped_device *md)
1377 {
1378 	int r = 0;
1379 
1380 	while (1) {
1381 		set_current_state(TASK_INTERRUPTIBLE);
1382 
1383 		smp_mb();
1384 		if (!atomic_read(&md->pending))
1385 			break;
1386 
1387 		if (signal_pending(current)) {
1388 			r = -EINTR;
1389 			break;
1390 		}
1391 
1392 		io_schedule();
1393 	}
1394 	set_current_state(TASK_RUNNING);
1395 
1396 	return r;
1397 }
1398 
1399 /*
1400  * Process the deferred bios
1401  */
1402 static void __flush_deferred_io(struct mapped_device *md)
1403 {
1404 	struct bio *c;
1405 
1406 	while ((c = bio_list_pop(&md->deferred))) {
1407 		if (__split_bio(md, c))
1408 			bio_io_error(c);
1409 	}
1410 
1411 	clear_bit(DMF_BLOCK_IO, &md->flags);
1412 }
1413 
1414 static void __merge_pushback_list(struct mapped_device *md)
1415 {
1416 	unsigned long flags;
1417 
1418 	spin_lock_irqsave(&md->pushback_lock, flags);
1419 	clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1420 	bio_list_merge_head(&md->deferred, &md->pushback);
1421 	bio_list_init(&md->pushback);
1422 	spin_unlock_irqrestore(&md->pushback_lock, flags);
1423 }
1424 
1425 static void dm_wq_work(struct work_struct *work)
1426 {
1427 	struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1428 	struct mapped_device *md = req->md;
1429 
1430 	down_write(&md->io_lock);
1431 	switch (req->type) {
1432 	case DM_WQ_FLUSH_DEFERRED:
1433 		__flush_deferred_io(md);
1434 		break;
1435 	default:
1436 		DMERR("dm_wq_work: unrecognised work type %d", req->type);
1437 		BUG();
1438 	}
1439 	up_write(&md->io_lock);
1440 }
1441 
1442 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1443 			struct dm_wq_req *req)
1444 {
1445 	req->type = type;
1446 	req->md = md;
1447 	req->context = context;
1448 	INIT_WORK(&req->work, dm_wq_work);
1449 	queue_work(md->wq, &req->work);
1450 }
1451 
1452 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1453 {
1454 	struct dm_wq_req req;
1455 
1456 	dm_wq_queue(md, type, context, &req);
1457 	flush_workqueue(md->wq);
1458 }
1459 
1460 /*
1461  * Swap in a new table (destroying old one).
1462  */
1463 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1464 {
1465 	int r = -EINVAL;
1466 
1467 	mutex_lock(&md->suspend_lock);
1468 
1469 	/* device must be suspended */
1470 	if (!dm_suspended(md))
1471 		goto out;
1472 
1473 	/* without bdev, the device size cannot be changed */
1474 	if (!md->suspended_bdev)
1475 		if (get_capacity(md->disk) != dm_table_get_size(table))
1476 			goto out;
1477 
1478 	__unbind(md);
1479 	r = __bind(md, table);
1480 
1481 out:
1482 	mutex_unlock(&md->suspend_lock);
1483 	return r;
1484 }
1485 
1486 /*
1487  * Functions to lock and unlock any filesystem running on the
1488  * device.
1489  */
1490 static int lock_fs(struct mapped_device *md)
1491 {
1492 	int r;
1493 
1494 	WARN_ON(md->frozen_sb);
1495 
1496 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1497 	if (IS_ERR(md->frozen_sb)) {
1498 		r = PTR_ERR(md->frozen_sb);
1499 		md->frozen_sb = NULL;
1500 		return r;
1501 	}
1502 
1503 	set_bit(DMF_FROZEN, &md->flags);
1504 
1505 	/* don't bdput right now, we don't want the bdev
1506 	 * to go away while it is locked.
1507 	 */
1508 	return 0;
1509 }
1510 
1511 static void unlock_fs(struct mapped_device *md)
1512 {
1513 	if (!test_bit(DMF_FROZEN, &md->flags))
1514 		return;
1515 
1516 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1517 	md->frozen_sb = NULL;
1518 	clear_bit(DMF_FROZEN, &md->flags);
1519 }
1520 
1521 /*
1522  * We need to be able to change a mapping table under a mounted
1523  * filesystem.  For example we might want to move some data in
1524  * the background.  Before the table can be swapped with
1525  * dm_bind_table, dm_suspend must be called to flush any in
1526  * flight bios and ensure that any further io gets deferred.
1527  */
1528 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1529 {
1530 	struct dm_table *map = NULL;
1531 	DECLARE_WAITQUEUE(wait, current);
1532 	int r = 0;
1533 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1534 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1535 
1536 	mutex_lock(&md->suspend_lock);
1537 
1538 	if (dm_suspended(md)) {
1539 		r = -EINVAL;
1540 		goto out_unlock;
1541 	}
1542 
1543 	map = dm_get_table(md);
1544 
1545 	/*
1546 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1547 	 * This flag is cleared before dm_suspend returns.
1548 	 */
1549 	if (noflush)
1550 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1551 
1552 	/* This does not get reverted if there's an error later. */
1553 	dm_table_presuspend_targets(map);
1554 
1555 	/* bdget() can stall if the pending I/Os are not flushed */
1556 	if (!noflush) {
1557 		md->suspended_bdev = bdget_disk(md->disk, 0);
1558 		if (!md->suspended_bdev) {
1559 			DMWARN("bdget failed in dm_suspend");
1560 			r = -ENOMEM;
1561 			goto out;
1562 		}
1563 
1564 		/*
1565 		 * Flush I/O to the device. noflush supersedes do_lockfs,
1566 		 * because lock_fs() needs to flush I/Os.
1567 		 */
1568 		if (do_lockfs) {
1569 			r = lock_fs(md);
1570 			if (r)
1571 				goto out;
1572 		}
1573 	}
1574 
1575 	/*
1576 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1577 	 */
1578 	down_write(&md->io_lock);
1579 	set_bit(DMF_BLOCK_IO, &md->flags);
1580 
1581 	add_wait_queue(&md->wait, &wait);
1582 	up_write(&md->io_lock);
1583 
1584 	/* unplug */
1585 	if (map)
1586 		dm_table_unplug_all(map);
1587 
1588 	/*
1589 	 * Wait for the already-mapped ios to complete.
1590 	 */
1591 	r = dm_wait_for_completion(md);
1592 
1593 	down_write(&md->io_lock);
1594 	remove_wait_queue(&md->wait, &wait);
1595 
1596 	if (noflush)
1597 		__merge_pushback_list(md);
1598 	up_write(&md->io_lock);
1599 
1600 	/* were we interrupted ? */
1601 	if (r < 0) {
1602 		dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1603 
1604 		unlock_fs(md);
1605 		goto out; /* pushback list is already flushed, so skip flush */
1606 	}
1607 
1608 	dm_table_postsuspend_targets(map);
1609 
1610 	set_bit(DMF_SUSPENDED, &md->flags);
1611 
1612 out:
1613 	if (r && md->suspended_bdev) {
1614 		bdput(md->suspended_bdev);
1615 		md->suspended_bdev = NULL;
1616 	}
1617 
1618 	dm_table_put(map);
1619 
1620 out_unlock:
1621 	mutex_unlock(&md->suspend_lock);
1622 	return r;
1623 }
1624 
1625 int dm_resume(struct mapped_device *md)
1626 {
1627 	int r = -EINVAL;
1628 	struct dm_table *map = NULL;
1629 
1630 	mutex_lock(&md->suspend_lock);
1631 	if (!dm_suspended(md))
1632 		goto out;
1633 
1634 	map = dm_get_table(md);
1635 	if (!map || !dm_table_get_size(map))
1636 		goto out;
1637 
1638 	r = dm_table_resume_targets(map);
1639 	if (r)
1640 		goto out;
1641 
1642 	dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1643 
1644 	unlock_fs(md);
1645 
1646 	if (md->suspended_bdev) {
1647 		bdput(md->suspended_bdev);
1648 		md->suspended_bdev = NULL;
1649 	}
1650 
1651 	clear_bit(DMF_SUSPENDED, &md->flags);
1652 
1653 	dm_table_unplug_all(map);
1654 
1655 	dm_kobject_uevent(md);
1656 
1657 	r = 0;
1658 
1659 out:
1660 	dm_table_put(map);
1661 	mutex_unlock(&md->suspend_lock);
1662 
1663 	return r;
1664 }
1665 
1666 /*-----------------------------------------------------------------
1667  * Event notification.
1668  *---------------------------------------------------------------*/
1669 void dm_kobject_uevent(struct mapped_device *md)
1670 {
1671 	kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1672 }
1673 
1674 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1675 {
1676 	return atomic_add_return(1, &md->uevent_seq);
1677 }
1678 
1679 uint32_t dm_get_event_nr(struct mapped_device *md)
1680 {
1681 	return atomic_read(&md->event_nr);
1682 }
1683 
1684 int dm_wait_event(struct mapped_device *md, int event_nr)
1685 {
1686 	return wait_event_interruptible(md->eventq,
1687 			(event_nr != atomic_read(&md->event_nr)));
1688 }
1689 
1690 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1691 {
1692 	unsigned long flags;
1693 
1694 	spin_lock_irqsave(&md->uevent_lock, flags);
1695 	list_add(elist, &md->uevent_list);
1696 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1697 }
1698 
1699 /*
1700  * The gendisk is only valid as long as you have a reference
1701  * count on 'md'.
1702  */
1703 struct gendisk *dm_disk(struct mapped_device *md)
1704 {
1705 	return md->disk;
1706 }
1707 
1708 struct kobject *dm_kobject(struct mapped_device *md)
1709 {
1710 	return &md->kobj;
1711 }
1712 
1713 /*
1714  * struct mapped_device should not be exported outside of dm.c
1715  * so use this check to verify that kobj is part of md structure
1716  */
1717 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1718 {
1719 	struct mapped_device *md;
1720 
1721 	md = container_of(kobj, struct mapped_device, kobj);
1722 	if (&md->kobj != kobj)
1723 		return NULL;
1724 
1725 	dm_get(md);
1726 	return md;
1727 }
1728 
1729 int dm_suspended(struct mapped_device *md)
1730 {
1731 	return test_bit(DMF_SUSPENDED, &md->flags);
1732 }
1733 
1734 int dm_noflush_suspending(struct dm_target *ti)
1735 {
1736 	struct mapped_device *md = dm_table_get_md(ti->table);
1737 	int r = __noflush_suspending(md);
1738 
1739 	dm_put(md);
1740 
1741 	return r;
1742 }
1743 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1744 
1745 static struct block_device_operations dm_blk_dops = {
1746 	.open = dm_blk_open,
1747 	.release = dm_blk_close,
1748 	.ioctl = dm_blk_ioctl,
1749 	.getgeo = dm_blk_getgeo,
1750 	.owner = THIS_MODULE
1751 };
1752 
1753 EXPORT_SYMBOL(dm_get_mapinfo);
1754 
1755 /*
1756  * module hooks
1757  */
1758 module_init(dm_init);
1759 module_exit(dm_exit);
1760 
1761 module_param(major, uint, 0);
1762 MODULE_PARM_DESC(major, "The major number of the device mapper");
1763 MODULE_DESCRIPTION(DM_NAME " driver");
1764 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1765 MODULE_LICENSE("GPL");
1766