xref: /linux/drivers/md/dm.c (revision ab52c59103002b49f2455371e4b9c56ba3ef1781)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
29 #include <linux/pr.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
34 
35 #define DM_MSG_PREFIX "core"
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 /*
45  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46  * dm_io into one list, and reuse bio->bi_private as the list head. Before
47  * ending this fs bio, we will recover its ->bi_private.
48  */
49 #define REQ_DM_POLL_LIST	REQ_DRV
50 
51 static const char *_name = DM_NAME;
52 
53 static unsigned int major;
54 static unsigned int _major;
55 
56 static DEFINE_IDR(_minor_idr);
57 
58 static DEFINE_SPINLOCK(_minor_lock);
59 
60 static void do_deferred_remove(struct work_struct *w);
61 
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 
64 static struct workqueue_struct *deferred_remove_workqueue;
65 
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 
69 void dm_issue_global_event(void)
70 {
71 	atomic_inc(&dm_global_event_nr);
72 	wake_up(&dm_global_eventq);
73 }
74 
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78 
79 /*
80  * One of these is allocated (on-stack) per original bio.
81  */
82 struct clone_info {
83 	struct dm_table *map;
84 	struct bio *bio;
85 	struct dm_io *io;
86 	sector_t sector;
87 	unsigned int sector_count;
88 	bool is_abnormal_io:1;
89 	bool submit_as_polled:1;
90 };
91 
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 {
94 	return container_of(clone, struct dm_target_io, clone);
95 }
96 
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 {
99 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 }
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104 
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 {
107 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108 
109 	if (io->magic == DM_IO_MAGIC)
110 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 	BUG_ON(io->magic != DM_TIO_MAGIC);
112 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113 }
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115 
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117 {
118 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119 }
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121 
122 #define MINOR_ALLOCED ((void *)-1)
123 
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
126 
127 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
130 {
131 	int latch = READ_ONCE(swap_bios);
132 
133 	if (unlikely(latch <= 0))
134 		latch = DEFAULT_SWAP_BIOS;
135 	return latch;
136 }
137 
138 struct table_device {
139 	struct list_head list;
140 	refcount_t count;
141 	struct dm_dev dm_dev;
142 };
143 
144 /*
145  * Bio-based DM's mempools' reserved IOs set by the user.
146  */
147 #define RESERVED_BIO_BASED_IOS		16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149 
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
151 {
152 	int param = READ_ONCE(*module_param);
153 	int modified_param = 0;
154 	bool modified = true;
155 
156 	if (param < min)
157 		modified_param = min;
158 	else if (param > max)
159 		modified_param = max;
160 	else
161 		modified = false;
162 
163 	if (modified) {
164 		(void)cmpxchg(module_param, param, modified_param);
165 		param = modified_param;
166 	}
167 
168 	return param;
169 }
170 
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172 {
173 	unsigned int param = READ_ONCE(*module_param);
174 	unsigned int modified_param = 0;
175 
176 	if (!param)
177 		modified_param = def;
178 	else if (param > max)
179 		modified_param = max;
180 
181 	if (modified_param) {
182 		(void)cmpxchg(module_param, param, modified_param);
183 		param = modified_param;
184 	}
185 
186 	return param;
187 }
188 
189 unsigned int dm_get_reserved_bio_based_ios(void)
190 {
191 	return __dm_get_module_param(&reserved_bio_based_ios,
192 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193 }
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195 
196 static unsigned int dm_get_numa_node(void)
197 {
198 	return __dm_get_module_param_int(&dm_numa_node,
199 					 DM_NUMA_NODE, num_online_nodes() - 1);
200 }
201 
202 static int __init local_init(void)
203 {
204 	int r;
205 
206 	r = dm_uevent_init();
207 	if (r)
208 		return r;
209 
210 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211 	if (!deferred_remove_workqueue) {
212 		r = -ENOMEM;
213 		goto out_uevent_exit;
214 	}
215 
216 	_major = major;
217 	r = register_blkdev(_major, _name);
218 	if (r < 0)
219 		goto out_free_workqueue;
220 
221 	if (!_major)
222 		_major = r;
223 
224 	return 0;
225 
226 out_free_workqueue:
227 	destroy_workqueue(deferred_remove_workqueue);
228 out_uevent_exit:
229 	dm_uevent_exit();
230 
231 	return r;
232 }
233 
234 static void local_exit(void)
235 {
236 	destroy_workqueue(deferred_remove_workqueue);
237 
238 	unregister_blkdev(_major, _name);
239 	dm_uevent_exit();
240 
241 	_major = 0;
242 
243 	DMINFO("cleaned up");
244 }
245 
246 static int (*_inits[])(void) __initdata = {
247 	local_init,
248 	dm_target_init,
249 	dm_linear_init,
250 	dm_stripe_init,
251 	dm_io_init,
252 	dm_kcopyd_init,
253 	dm_interface_init,
254 	dm_statistics_init,
255 };
256 
257 static void (*_exits[])(void) = {
258 	local_exit,
259 	dm_target_exit,
260 	dm_linear_exit,
261 	dm_stripe_exit,
262 	dm_io_exit,
263 	dm_kcopyd_exit,
264 	dm_interface_exit,
265 	dm_statistics_exit,
266 };
267 
268 static int __init dm_init(void)
269 {
270 	const int count = ARRAY_SIZE(_inits);
271 	int r, i;
272 
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276 #endif
277 
278 	for (i = 0; i < count; i++) {
279 		r = _inits[i]();
280 		if (r)
281 			goto bad;
282 	}
283 
284 	return 0;
285 bad:
286 	while (i--)
287 		_exits[i]();
288 
289 	return r;
290 }
291 
292 static void __exit dm_exit(void)
293 {
294 	int i = ARRAY_SIZE(_exits);
295 
296 	while (i--)
297 		_exits[i]();
298 
299 	/*
300 	 * Should be empty by this point.
301 	 */
302 	idr_destroy(&_minor_idr);
303 }
304 
305 /*
306  * Block device functions
307  */
308 int dm_deleting_md(struct mapped_device *md)
309 {
310 	return test_bit(DMF_DELETING, &md->flags);
311 }
312 
313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
314 {
315 	struct mapped_device *md;
316 
317 	spin_lock(&_minor_lock);
318 
319 	md = disk->private_data;
320 	if (!md)
321 		goto out;
322 
323 	if (test_bit(DMF_FREEING, &md->flags) ||
324 	    dm_deleting_md(md)) {
325 		md = NULL;
326 		goto out;
327 	}
328 
329 	dm_get(md);
330 	atomic_inc(&md->open_count);
331 out:
332 	spin_unlock(&_minor_lock);
333 
334 	return md ? 0 : -ENXIO;
335 }
336 
337 static void dm_blk_close(struct gendisk *disk)
338 {
339 	struct mapped_device *md;
340 
341 	spin_lock(&_minor_lock);
342 
343 	md = disk->private_data;
344 	if (WARN_ON(!md))
345 		goto out;
346 
347 	if (atomic_dec_and_test(&md->open_count) &&
348 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350 
351 	dm_put(md);
352 out:
353 	spin_unlock(&_minor_lock);
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md)) {
371 		r = -EBUSY;
372 		if (mark_deferred)
373 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 		r = -EEXIST;
376 	else
377 		set_bit(DMF_DELETING, &md->flags);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return r;
382 }
383 
384 int dm_cancel_deferred_remove(struct mapped_device *md)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (test_bit(DMF_DELETING, &md->flags))
391 		r = -EBUSY;
392 	else
393 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 static void do_deferred_remove(struct work_struct *w)
401 {
402 	dm_deferred_remove();
403 }
404 
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 	struct mapped_device *md = bdev->bd_disk->private_data;
408 
409 	return dm_get_geometry(md, geo);
410 }
411 
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 			    struct block_device **bdev)
414 {
415 	struct dm_target *ti;
416 	struct dm_table *map;
417 	int r;
418 
419 retry:
420 	r = -ENOTTY;
421 	map = dm_get_live_table(md, srcu_idx);
422 	if (!map || !dm_table_get_size(map))
423 		return r;
424 
425 	/* We only support devices that have a single target */
426 	if (map->num_targets != 1)
427 		return r;
428 
429 	ti = dm_table_get_target(map, 0);
430 	if (!ti->type->prepare_ioctl)
431 		return r;
432 
433 	if (dm_suspended_md(md))
434 		return -EAGAIN;
435 
436 	r = ti->type->prepare_ioctl(ti, bdev);
437 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 		dm_put_live_table(md, *srcu_idx);
439 		fsleep(10000);
440 		goto retry;
441 	}
442 
443 	return r;
444 }
445 
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 {
448 	dm_put_live_table(md, srcu_idx);
449 }
450 
451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452 			unsigned int cmd, unsigned long arg)
453 {
454 	struct mapped_device *md = bdev->bd_disk->private_data;
455 	int r, srcu_idx;
456 
457 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 	if (r < 0)
459 		goto out;
460 
461 	if (r > 0) {
462 		/*
463 		 * Target determined this ioctl is being issued against a
464 		 * subset of the parent bdev; require extra privileges.
465 		 */
466 		if (!capable(CAP_SYS_RAWIO)) {
467 			DMDEBUG_LIMIT(
468 	"%s: sending ioctl %x to DM device without required privilege.",
469 				current->comm, cmd);
470 			r = -ENOIOCTLCMD;
471 			goto out;
472 		}
473 	}
474 
475 	if (!bdev->bd_disk->fops->ioctl)
476 		r = -ENOTTY;
477 	else
478 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 out:
480 	dm_unprepare_ioctl(md, srcu_idx);
481 	return r;
482 }
483 
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 {
486 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 }
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489 
490 static inline bool bio_is_flush_with_data(struct bio *bio)
491 {
492 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493 }
494 
495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
496 {
497 	/*
498 	 * If REQ_PREFLUSH set, don't account payload, it will be
499 	 * submitted (and accounted) after this flush completes.
500 	 */
501 	if (bio_is_flush_with_data(bio))
502 		return 0;
503 	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
504 		return io->sectors;
505 	return bio_sectors(bio);
506 }
507 
508 static void dm_io_acct(struct dm_io *io, bool end)
509 {
510 	struct bio *bio = io->orig_bio;
511 
512 	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
513 		if (!end)
514 			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
515 					   io->start_time);
516 		else
517 			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518 					 dm_io_sectors(io, bio),
519 					 io->start_time);
520 	}
521 
522 	if (static_branch_unlikely(&stats_enabled) &&
523 	    unlikely(dm_stats_used(&io->md->stats))) {
524 		sector_t sector;
525 
526 		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527 			sector = bio_end_sector(bio) - io->sector_offset;
528 		else
529 			sector = bio->bi_iter.bi_sector;
530 
531 		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532 				    sector, dm_io_sectors(io, bio),
533 				    end, io->start_time, &io->stats_aux);
534 	}
535 }
536 
537 static void __dm_start_io_acct(struct dm_io *io)
538 {
539 	dm_io_acct(io, false);
540 }
541 
542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
543 {
544 	/*
545 	 * Ensure IO accounting is only ever started once.
546 	 */
547 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
548 		return;
549 
550 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
553 	} else {
554 		unsigned long flags;
555 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556 		spin_lock_irqsave(&io->lock, flags);
557 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558 			spin_unlock_irqrestore(&io->lock, flags);
559 			return;
560 		}
561 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
562 		spin_unlock_irqrestore(&io->lock, flags);
563 	}
564 
565 	__dm_start_io_acct(io);
566 }
567 
568 static void dm_end_io_acct(struct dm_io *io)
569 {
570 	dm_io_acct(io, true);
571 }
572 
573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
574 {
575 	struct dm_io *io;
576 	struct dm_target_io *tio;
577 	struct bio *clone;
578 
579 	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
580 	if (unlikely(!clone))
581 		return NULL;
582 	tio = clone_to_tio(clone);
583 	tio->flags = 0;
584 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
585 	tio->io = NULL;
586 
587 	io = container_of(tio, struct dm_io, tio);
588 	io->magic = DM_IO_MAGIC;
589 	io->status = BLK_STS_OK;
590 
591 	/* one ref is for submission, the other is for completion */
592 	atomic_set(&io->io_count, 2);
593 	this_cpu_inc(*md->pending_io);
594 	io->orig_bio = bio;
595 	io->md = md;
596 	spin_lock_init(&io->lock);
597 	io->start_time = jiffies;
598 	io->flags = 0;
599 	if (blk_queue_io_stat(md->queue))
600 		dm_io_set_flag(io, DM_IO_BLK_STAT);
601 
602 	if (static_branch_unlikely(&stats_enabled) &&
603 	    unlikely(dm_stats_used(&md->stats)))
604 		dm_stats_record_start(&md->stats, &io->stats_aux);
605 
606 	return io;
607 }
608 
609 static void free_io(struct dm_io *io)
610 {
611 	bio_put(&io->tio.clone);
612 }
613 
614 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
615 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
616 {
617 	struct mapped_device *md = ci->io->md;
618 	struct dm_target_io *tio;
619 	struct bio *clone;
620 
621 	if (!ci->io->tio.io) {
622 		/* the dm_target_io embedded in ci->io is available */
623 		tio = &ci->io->tio;
624 		/* alloc_io() already initialized embedded clone */
625 		clone = &tio->clone;
626 	} else {
627 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
628 					&md->mempools->bs);
629 		if (!clone)
630 			return NULL;
631 
632 		/* REQ_DM_POLL_LIST shouldn't be inherited */
633 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
634 
635 		tio = clone_to_tio(clone);
636 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
637 	}
638 
639 	tio->magic = DM_TIO_MAGIC;
640 	tio->io = ci->io;
641 	tio->ti = ti;
642 	tio->target_bio_nr = target_bio_nr;
643 	tio->len_ptr = len;
644 	tio->old_sector = 0;
645 
646 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
647 	clone->bi_bdev = md->disk->part0;
648 	if (unlikely(ti->needs_bio_set_dev))
649 		bio_set_dev(clone, md->disk->part0);
650 
651 	if (len) {
652 		clone->bi_iter.bi_size = to_bytes(*len);
653 		if (bio_integrity(clone))
654 			bio_integrity_trim(clone);
655 	}
656 
657 	return clone;
658 }
659 
660 static void free_tio(struct bio *clone)
661 {
662 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
663 		return;
664 	bio_put(clone);
665 }
666 
667 /*
668  * Add the bio to the list of deferred io.
669  */
670 static void queue_io(struct mapped_device *md, struct bio *bio)
671 {
672 	unsigned long flags;
673 
674 	spin_lock_irqsave(&md->deferred_lock, flags);
675 	bio_list_add(&md->deferred, bio);
676 	spin_unlock_irqrestore(&md->deferred_lock, flags);
677 	queue_work(md->wq, &md->work);
678 }
679 
680 /*
681  * Everyone (including functions in this file), should use this
682  * function to access the md->map field, and make sure they call
683  * dm_put_live_table() when finished.
684  */
685 struct dm_table *dm_get_live_table(struct mapped_device *md,
686 				   int *srcu_idx) __acquires(md->io_barrier)
687 {
688 	*srcu_idx = srcu_read_lock(&md->io_barrier);
689 
690 	return srcu_dereference(md->map, &md->io_barrier);
691 }
692 
693 void dm_put_live_table(struct mapped_device *md,
694 		       int srcu_idx) __releases(md->io_barrier)
695 {
696 	srcu_read_unlock(&md->io_barrier, srcu_idx);
697 }
698 
699 void dm_sync_table(struct mapped_device *md)
700 {
701 	synchronize_srcu(&md->io_barrier);
702 	synchronize_rcu_expedited();
703 }
704 
705 /*
706  * A fast alternative to dm_get_live_table/dm_put_live_table.
707  * The caller must not block between these two functions.
708  */
709 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
710 {
711 	rcu_read_lock();
712 	return rcu_dereference(md->map);
713 }
714 
715 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
716 {
717 	rcu_read_unlock();
718 }
719 
720 static char *_dm_claim_ptr = "I belong to device-mapper";
721 
722 /*
723  * Open a table device so we can use it as a map destination.
724  */
725 static struct table_device *open_table_device(struct mapped_device *md,
726 		dev_t dev, blk_mode_t mode)
727 {
728 	struct table_device *td;
729 	struct file *bdev_file;
730 	struct block_device *bdev;
731 	u64 part_off;
732 	int r;
733 
734 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
735 	if (!td)
736 		return ERR_PTR(-ENOMEM);
737 	refcount_set(&td->count, 1);
738 
739 	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
740 	if (IS_ERR(bdev_file)) {
741 		r = PTR_ERR(bdev_file);
742 		goto out_free_td;
743 	}
744 
745 	bdev = file_bdev(bdev_file);
746 
747 	/*
748 	 * We can be called before the dm disk is added.  In that case we can't
749 	 * register the holder relation here.  It will be done once add_disk was
750 	 * called.
751 	 */
752 	if (md->disk->slave_dir) {
753 		r = bd_link_disk_holder(bdev, md->disk);
754 		if (r)
755 			goto out_blkdev_put;
756 	}
757 
758 	td->dm_dev.mode = mode;
759 	td->dm_dev.bdev = bdev;
760 	td->dm_dev.bdev_file = bdev_file;
761 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
762 						NULL, NULL);
763 	format_dev_t(td->dm_dev.name, dev);
764 	list_add(&td->list, &md->table_devices);
765 	return td;
766 
767 out_blkdev_put:
768 	__fput_sync(bdev_file);
769 out_free_td:
770 	kfree(td);
771 	return ERR_PTR(r);
772 }
773 
774 /*
775  * Close a table device that we've been using.
776  */
777 static void close_table_device(struct table_device *td, struct mapped_device *md)
778 {
779 	if (md->disk->slave_dir)
780 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
781 
782 	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
783 	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
784 		fput(td->dm_dev.bdev_file);
785 	else
786 		__fput_sync(td->dm_dev.bdev_file);
787 
788 	put_dax(td->dm_dev.dax_dev);
789 	list_del(&td->list);
790 	kfree(td);
791 }
792 
793 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
794 					      blk_mode_t mode)
795 {
796 	struct table_device *td;
797 
798 	list_for_each_entry(td, l, list)
799 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
800 			return td;
801 
802 	return NULL;
803 }
804 
805 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
806 			struct dm_dev **result)
807 {
808 	struct table_device *td;
809 
810 	mutex_lock(&md->table_devices_lock);
811 	td = find_table_device(&md->table_devices, dev, mode);
812 	if (!td) {
813 		td = open_table_device(md, dev, mode);
814 		if (IS_ERR(td)) {
815 			mutex_unlock(&md->table_devices_lock);
816 			return PTR_ERR(td);
817 		}
818 	} else {
819 		refcount_inc(&td->count);
820 	}
821 	mutex_unlock(&md->table_devices_lock);
822 
823 	*result = &td->dm_dev;
824 	return 0;
825 }
826 
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 	struct table_device *td = container_of(d, struct table_device, dm_dev);
830 
831 	mutex_lock(&md->table_devices_lock);
832 	if (refcount_dec_and_test(&td->count))
833 		close_table_device(td, md);
834 	mutex_unlock(&md->table_devices_lock);
835 }
836 
837 /*
838  * Get the geometry associated with a dm device
839  */
840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
841 {
842 	*geo = md->geometry;
843 
844 	return 0;
845 }
846 
847 /*
848  * Set the geometry of a device.
849  */
850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
851 {
852 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
853 
854 	if (geo->start > sz) {
855 		DMERR("Start sector is beyond the geometry limits.");
856 		return -EINVAL;
857 	}
858 
859 	md->geometry = *geo;
860 
861 	return 0;
862 }
863 
864 static int __noflush_suspending(struct mapped_device *md)
865 {
866 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867 }
868 
869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
870 {
871 	struct mapped_device *md = io->md;
872 
873 	if (first_stage) {
874 		struct dm_io *next = md->requeue_list;
875 
876 		md->requeue_list = io;
877 		io->next = next;
878 	} else {
879 		bio_list_add_head(&md->deferred, io->orig_bio);
880 	}
881 }
882 
883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
884 {
885 	if (first_stage)
886 		queue_work(md->wq, &md->requeue_work);
887 	else
888 		queue_work(md->wq, &md->work);
889 }
890 
891 /*
892  * Return true if the dm_io's original bio is requeued.
893  * io->status is updated with error if requeue disallowed.
894  */
895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
896 {
897 	struct bio *bio = io->orig_bio;
898 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
899 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
900 				     (bio->bi_opf & REQ_POLLED));
901 	struct mapped_device *md = io->md;
902 	bool requeued = false;
903 
904 	if (handle_requeue || handle_polled_eagain) {
905 		unsigned long flags;
906 
907 		if (bio->bi_opf & REQ_POLLED) {
908 			/*
909 			 * Upper layer won't help us poll split bio
910 			 * (io->orig_bio may only reflect a subset of the
911 			 * pre-split original) so clear REQ_POLLED.
912 			 */
913 			bio_clear_polled(bio);
914 		}
915 
916 		/*
917 		 * Target requested pushing back the I/O or
918 		 * polled IO hit BLK_STS_AGAIN.
919 		 */
920 		spin_lock_irqsave(&md->deferred_lock, flags);
921 		if ((__noflush_suspending(md) &&
922 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
923 		    handle_polled_eagain || first_stage) {
924 			dm_requeue_add_io(io, first_stage);
925 			requeued = true;
926 		} else {
927 			/*
928 			 * noflush suspend was interrupted or this is
929 			 * a write to a zoned target.
930 			 */
931 			io->status = BLK_STS_IOERR;
932 		}
933 		spin_unlock_irqrestore(&md->deferred_lock, flags);
934 	}
935 
936 	if (requeued)
937 		dm_kick_requeue(md, first_stage);
938 
939 	return requeued;
940 }
941 
942 static void __dm_io_complete(struct dm_io *io, bool first_stage)
943 {
944 	struct bio *bio = io->orig_bio;
945 	struct mapped_device *md = io->md;
946 	blk_status_t io_error;
947 	bool requeued;
948 
949 	requeued = dm_handle_requeue(io, first_stage);
950 	if (requeued && first_stage)
951 		return;
952 
953 	io_error = io->status;
954 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955 		dm_end_io_acct(io);
956 	else if (!io_error) {
957 		/*
958 		 * Must handle target that DM_MAPIO_SUBMITTED only to
959 		 * then bio_endio() rather than dm_submit_bio_remap()
960 		 */
961 		__dm_start_io_acct(io);
962 		dm_end_io_acct(io);
963 	}
964 	free_io(io);
965 	smp_wmb();
966 	this_cpu_dec(*md->pending_io);
967 
968 	/* nudge anyone waiting on suspend queue */
969 	if (unlikely(wq_has_sleeper(&md->wait)))
970 		wake_up(&md->wait);
971 
972 	/* Return early if the original bio was requeued */
973 	if (requeued)
974 		return;
975 
976 	if (bio_is_flush_with_data(bio)) {
977 		/*
978 		 * Preflush done for flush with data, reissue
979 		 * without REQ_PREFLUSH.
980 		 */
981 		bio->bi_opf &= ~REQ_PREFLUSH;
982 		queue_io(md, bio);
983 	} else {
984 		/* done with normal IO or empty flush */
985 		if (io_error)
986 			bio->bi_status = io_error;
987 		bio_endio(bio);
988 	}
989 }
990 
991 static void dm_wq_requeue_work(struct work_struct *work)
992 {
993 	struct mapped_device *md = container_of(work, struct mapped_device,
994 						requeue_work);
995 	unsigned long flags;
996 	struct dm_io *io;
997 
998 	/* reuse deferred lock to simplify dm_handle_requeue */
999 	spin_lock_irqsave(&md->deferred_lock, flags);
1000 	io = md->requeue_list;
1001 	md->requeue_list = NULL;
1002 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1003 
1004 	while (io) {
1005 		struct dm_io *next = io->next;
1006 
1007 		dm_io_rewind(io, &md->disk->bio_split);
1008 
1009 		io->next = NULL;
1010 		__dm_io_complete(io, false);
1011 		io = next;
1012 		cond_resched();
1013 	}
1014 }
1015 
1016 /*
1017  * Two staged requeue:
1018  *
1019  * 1) io->orig_bio points to the real original bio, and the part mapped to
1020  *    this io must be requeued, instead of other parts of the original bio.
1021  *
1022  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1023  */
1024 static void dm_io_complete(struct dm_io *io)
1025 {
1026 	bool first_requeue;
1027 
1028 	/*
1029 	 * Only dm_io that has been split needs two stage requeue, otherwise
1030 	 * we may run into long bio clone chain during suspend and OOM could
1031 	 * be triggered.
1032 	 *
1033 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034 	 * also aren't handled via the first stage requeue.
1035 	 */
1036 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037 		first_requeue = true;
1038 	else
1039 		first_requeue = false;
1040 
1041 	__dm_io_complete(io, first_requeue);
1042 }
1043 
1044 /*
1045  * Decrements the number of outstanding ios that a bio has been
1046  * cloned into, completing the original io if necc.
1047  */
1048 static inline void __dm_io_dec_pending(struct dm_io *io)
1049 {
1050 	if (atomic_dec_and_test(&io->io_count))
1051 		dm_io_complete(io);
1052 }
1053 
1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1055 {
1056 	unsigned long flags;
1057 
1058 	/* Push-back supersedes any I/O errors */
1059 	spin_lock_irqsave(&io->lock, flags);
1060 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1061 	      __noflush_suspending(io->md))) {
1062 		io->status = error;
1063 	}
1064 	spin_unlock_irqrestore(&io->lock, flags);
1065 }
1066 
1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1068 {
1069 	if (unlikely(error))
1070 		dm_io_set_error(io, error);
1071 
1072 	__dm_io_dec_pending(io);
1073 }
1074 
1075 /*
1076  * The queue_limits are only valid as long as you have a reference
1077  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1078  */
1079 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1080 {
1081 	return &md->queue->limits;
1082 }
1083 
1084 void disable_discard(struct mapped_device *md)
1085 {
1086 	struct queue_limits *limits = dm_get_queue_limits(md);
1087 
1088 	/* device doesn't really support DISCARD, disable it */
1089 	limits->max_hw_discard_sectors = 0;
1090 }
1091 
1092 void disable_write_zeroes(struct mapped_device *md)
1093 {
1094 	struct queue_limits *limits = dm_get_queue_limits(md);
1095 
1096 	/* device doesn't really support WRITE ZEROES, disable it */
1097 	limits->max_write_zeroes_sectors = 0;
1098 }
1099 
1100 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1101 {
1102 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1103 }
1104 
1105 static void clone_endio(struct bio *bio)
1106 {
1107 	blk_status_t error = bio->bi_status;
1108 	struct dm_target_io *tio = clone_to_tio(bio);
1109 	struct dm_target *ti = tio->ti;
1110 	dm_endio_fn endio = ti->type->end_io;
1111 	struct dm_io *io = tio->io;
1112 	struct mapped_device *md = io->md;
1113 
1114 	if (unlikely(error == BLK_STS_TARGET)) {
1115 		if (bio_op(bio) == REQ_OP_DISCARD &&
1116 		    !bdev_max_discard_sectors(bio->bi_bdev))
1117 			disable_discard(md);
1118 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1119 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1120 			disable_write_zeroes(md);
1121 	}
1122 
1123 	if (static_branch_unlikely(&zoned_enabled) &&
1124 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1125 		dm_zone_endio(io, bio);
1126 
1127 	if (endio) {
1128 		int r = endio(ti, bio, &error);
1129 
1130 		switch (r) {
1131 		case DM_ENDIO_REQUEUE:
1132 			if (static_branch_unlikely(&zoned_enabled)) {
1133 				/*
1134 				 * Requeuing writes to a sequential zone of a zoned
1135 				 * target will break the sequential write pattern:
1136 				 * fail such IO.
1137 				 */
1138 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1139 					error = BLK_STS_IOERR;
1140 				else
1141 					error = BLK_STS_DM_REQUEUE;
1142 			} else
1143 				error = BLK_STS_DM_REQUEUE;
1144 			fallthrough;
1145 		case DM_ENDIO_DONE:
1146 			break;
1147 		case DM_ENDIO_INCOMPLETE:
1148 			/* The target will handle the io */
1149 			return;
1150 		default:
1151 			DMCRIT("unimplemented target endio return value: %d", r);
1152 			BUG();
1153 		}
1154 	}
1155 
1156 	if (static_branch_unlikely(&swap_bios_enabled) &&
1157 	    unlikely(swap_bios_limit(ti, bio)))
1158 		up(&md->swap_bios_semaphore);
1159 
1160 	free_tio(bio);
1161 	dm_io_dec_pending(io, error);
1162 }
1163 
1164 /*
1165  * Return maximum size of I/O possible at the supplied sector up to the current
1166  * target boundary.
1167  */
1168 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1169 						  sector_t target_offset)
1170 {
1171 	return ti->len - target_offset;
1172 }
1173 
1174 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1175 			     unsigned int max_granularity,
1176 			     unsigned int max_sectors)
1177 {
1178 	sector_t target_offset = dm_target_offset(ti, sector);
1179 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1180 
1181 	/*
1182 	 * Does the target need to split IO even further?
1183 	 * - varied (per target) IO splitting is a tenet of DM; this
1184 	 *   explains why stacked chunk_sectors based splitting via
1185 	 *   bio_split_to_limits() isn't possible here.
1186 	 */
1187 	if (!max_granularity)
1188 		return len;
1189 	return min_t(sector_t, len,
1190 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1191 		    blk_chunk_sectors_left(target_offset, max_granularity)));
1192 }
1193 
1194 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1195 {
1196 	return __max_io_len(ti, sector, ti->max_io_len, 0);
1197 }
1198 
1199 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1200 {
1201 	if (len > UINT_MAX) {
1202 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1203 		      (unsigned long long)len, UINT_MAX);
1204 		ti->error = "Maximum size of target IO is too large";
1205 		return -EINVAL;
1206 	}
1207 
1208 	ti->max_io_len = (uint32_t) len;
1209 
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1213 
1214 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1215 						sector_t sector, int *srcu_idx)
1216 	__acquires(md->io_barrier)
1217 {
1218 	struct dm_table *map;
1219 	struct dm_target *ti;
1220 
1221 	map = dm_get_live_table(md, srcu_idx);
1222 	if (!map)
1223 		return NULL;
1224 
1225 	ti = dm_table_find_target(map, sector);
1226 	if (!ti)
1227 		return NULL;
1228 
1229 	return ti;
1230 }
1231 
1232 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1233 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1234 		pfn_t *pfn)
1235 {
1236 	struct mapped_device *md = dax_get_private(dax_dev);
1237 	sector_t sector = pgoff * PAGE_SECTORS;
1238 	struct dm_target *ti;
1239 	long len, ret = -EIO;
1240 	int srcu_idx;
1241 
1242 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1243 
1244 	if (!ti)
1245 		goto out;
1246 	if (!ti->type->direct_access)
1247 		goto out;
1248 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1249 	if (len < 1)
1250 		goto out;
1251 	nr_pages = min(len, nr_pages);
1252 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1253 
1254  out:
1255 	dm_put_live_table(md, srcu_idx);
1256 
1257 	return ret;
1258 }
1259 
1260 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1261 				  size_t nr_pages)
1262 {
1263 	struct mapped_device *md = dax_get_private(dax_dev);
1264 	sector_t sector = pgoff * PAGE_SECTORS;
1265 	struct dm_target *ti;
1266 	int ret = -EIO;
1267 	int srcu_idx;
1268 
1269 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1270 
1271 	if (!ti)
1272 		goto out;
1273 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1274 		/*
1275 		 * ->zero_page_range() is mandatory dax operation. If we are
1276 		 *  here, something is wrong.
1277 		 */
1278 		goto out;
1279 	}
1280 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1281  out:
1282 	dm_put_live_table(md, srcu_idx);
1283 
1284 	return ret;
1285 }
1286 
1287 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1288 		void *addr, size_t bytes, struct iov_iter *i)
1289 {
1290 	struct mapped_device *md = dax_get_private(dax_dev);
1291 	sector_t sector = pgoff * PAGE_SECTORS;
1292 	struct dm_target *ti;
1293 	int srcu_idx;
1294 	long ret = 0;
1295 
1296 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1297 	if (!ti || !ti->type->dax_recovery_write)
1298 		goto out;
1299 
1300 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1301 out:
1302 	dm_put_live_table(md, srcu_idx);
1303 	return ret;
1304 }
1305 
1306 /*
1307  * A target may call dm_accept_partial_bio only from the map routine.  It is
1308  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1309  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1310  * __send_duplicate_bios().
1311  *
1312  * dm_accept_partial_bio informs the dm that the target only wants to process
1313  * additional n_sectors sectors of the bio and the rest of the data should be
1314  * sent in a next bio.
1315  *
1316  * A diagram that explains the arithmetics:
1317  * +--------------------+---------------+-------+
1318  * |         1          |       2       |   3   |
1319  * +--------------------+---------------+-------+
1320  *
1321  * <-------------- *tio->len_ptr --------------->
1322  *                      <----- bio_sectors ----->
1323  *                      <-- n_sectors -->
1324  *
1325  * Region 1 was already iterated over with bio_advance or similar function.
1326  *	(it may be empty if the target doesn't use bio_advance)
1327  * Region 2 is the remaining bio size that the target wants to process.
1328  *	(it may be empty if region 1 is non-empty, although there is no reason
1329  *	 to make it empty)
1330  * The target requires that region 3 is to be sent in the next bio.
1331  *
1332  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1333  * the partially processed part (the sum of regions 1+2) must be the same for all
1334  * copies of the bio.
1335  */
1336 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1337 {
1338 	struct dm_target_io *tio = clone_to_tio(bio);
1339 	struct dm_io *io = tio->io;
1340 	unsigned int bio_sectors = bio_sectors(bio);
1341 
1342 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1343 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1344 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1345 	BUG_ON(bio_sectors > *tio->len_ptr);
1346 	BUG_ON(n_sectors > bio_sectors);
1347 
1348 	*tio->len_ptr -= bio_sectors - n_sectors;
1349 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1350 
1351 	/*
1352 	 * __split_and_process_bio() may have already saved mapped part
1353 	 * for accounting but it is being reduced so update accordingly.
1354 	 */
1355 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1356 	io->sectors = n_sectors;
1357 	io->sector_offset = bio_sectors(io->orig_bio);
1358 }
1359 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1360 
1361 /*
1362  * @clone: clone bio that DM core passed to target's .map function
1363  * @tgt_clone: clone of @clone bio that target needs submitted
1364  *
1365  * Targets should use this interface to submit bios they take
1366  * ownership of when returning DM_MAPIO_SUBMITTED.
1367  *
1368  * Target should also enable ti->accounts_remapped_io
1369  */
1370 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1371 {
1372 	struct dm_target_io *tio = clone_to_tio(clone);
1373 	struct dm_io *io = tio->io;
1374 
1375 	/* establish bio that will get submitted */
1376 	if (!tgt_clone)
1377 		tgt_clone = clone;
1378 
1379 	/*
1380 	 * Account io->origin_bio to DM dev on behalf of target
1381 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1382 	 */
1383 	dm_start_io_acct(io, clone);
1384 
1385 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1386 			      tio->old_sector);
1387 	submit_bio_noacct(tgt_clone);
1388 }
1389 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1390 
1391 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1392 {
1393 	mutex_lock(&md->swap_bios_lock);
1394 	while (latch < md->swap_bios) {
1395 		cond_resched();
1396 		down(&md->swap_bios_semaphore);
1397 		md->swap_bios--;
1398 	}
1399 	while (latch > md->swap_bios) {
1400 		cond_resched();
1401 		up(&md->swap_bios_semaphore);
1402 		md->swap_bios++;
1403 	}
1404 	mutex_unlock(&md->swap_bios_lock);
1405 }
1406 
1407 static void __map_bio(struct bio *clone)
1408 {
1409 	struct dm_target_io *tio = clone_to_tio(clone);
1410 	struct dm_target *ti = tio->ti;
1411 	struct dm_io *io = tio->io;
1412 	struct mapped_device *md = io->md;
1413 	int r;
1414 
1415 	clone->bi_end_io = clone_endio;
1416 
1417 	/*
1418 	 * Map the clone.
1419 	 */
1420 	tio->old_sector = clone->bi_iter.bi_sector;
1421 
1422 	if (static_branch_unlikely(&swap_bios_enabled) &&
1423 	    unlikely(swap_bios_limit(ti, clone))) {
1424 		int latch = get_swap_bios();
1425 
1426 		if (unlikely(latch != md->swap_bios))
1427 			__set_swap_bios_limit(md, latch);
1428 		down(&md->swap_bios_semaphore);
1429 	}
1430 
1431 	if (likely(ti->type->map == linear_map))
1432 		r = linear_map(ti, clone);
1433 	else if (ti->type->map == stripe_map)
1434 		r = stripe_map(ti, clone);
1435 	else
1436 		r = ti->type->map(ti, clone);
1437 
1438 	switch (r) {
1439 	case DM_MAPIO_SUBMITTED:
1440 		/* target has assumed ownership of this io */
1441 		if (!ti->accounts_remapped_io)
1442 			dm_start_io_acct(io, clone);
1443 		break;
1444 	case DM_MAPIO_REMAPPED:
1445 		dm_submit_bio_remap(clone, NULL);
1446 		break;
1447 	case DM_MAPIO_KILL:
1448 	case DM_MAPIO_REQUEUE:
1449 		if (static_branch_unlikely(&swap_bios_enabled) &&
1450 		    unlikely(swap_bios_limit(ti, clone)))
1451 			up(&md->swap_bios_semaphore);
1452 		free_tio(clone);
1453 		if (r == DM_MAPIO_KILL)
1454 			dm_io_dec_pending(io, BLK_STS_IOERR);
1455 		else
1456 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1457 		break;
1458 	default:
1459 		DMCRIT("unimplemented target map return value: %d", r);
1460 		BUG();
1461 	}
1462 }
1463 
1464 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1465 {
1466 	struct dm_io *io = ci->io;
1467 
1468 	if (ci->sector_count > len) {
1469 		/*
1470 		 * Split needed, save the mapped part for accounting.
1471 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1472 		 */
1473 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1474 		io->sectors = len;
1475 		io->sector_offset = bio_sectors(ci->bio);
1476 	}
1477 }
1478 
1479 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1480 				struct dm_target *ti, unsigned int num_bios,
1481 				unsigned *len, gfp_t gfp_flag)
1482 {
1483 	struct bio *bio;
1484 	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1485 
1486 	for (; try < 2; try++) {
1487 		int bio_nr;
1488 
1489 		if (try && num_bios > 1)
1490 			mutex_lock(&ci->io->md->table_devices_lock);
1491 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1492 			bio = alloc_tio(ci, ti, bio_nr, len,
1493 					try ? GFP_NOIO : GFP_NOWAIT);
1494 			if (!bio)
1495 				break;
1496 
1497 			bio_list_add(blist, bio);
1498 		}
1499 		if (try && num_bios > 1)
1500 			mutex_unlock(&ci->io->md->table_devices_lock);
1501 		if (bio_nr == num_bios)
1502 			return;
1503 
1504 		while ((bio = bio_list_pop(blist)))
1505 			free_tio(bio);
1506 	}
1507 }
1508 
1509 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1510 					  unsigned int num_bios, unsigned int *len,
1511 					  gfp_t gfp_flag)
1512 {
1513 	struct bio_list blist = BIO_EMPTY_LIST;
1514 	struct bio *clone;
1515 	unsigned int ret = 0;
1516 
1517 	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1518 		return 0;
1519 
1520 	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1521 	if (len)
1522 		setup_split_accounting(ci, *len);
1523 
1524 	/*
1525 	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1526 	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1527 	 */
1528 	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1529 	while ((clone = bio_list_pop(&blist))) {
1530 		if (num_bios > 1)
1531 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1532 		__map_bio(clone);
1533 		ret += 1;
1534 	}
1535 
1536 	return ret;
1537 }
1538 
1539 static void __send_empty_flush(struct clone_info *ci)
1540 {
1541 	struct dm_table *t = ci->map;
1542 	struct bio flush_bio;
1543 
1544 	/*
1545 	 * Use an on-stack bio for this, it's safe since we don't
1546 	 * need to reference it after submit. It's just used as
1547 	 * the basis for the clone(s).
1548 	 */
1549 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1550 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1551 
1552 	ci->bio = &flush_bio;
1553 	ci->sector_count = 0;
1554 	ci->io->tio.clone.bi_iter.bi_size = 0;
1555 
1556 	for (unsigned int i = 0; i < t->num_targets; i++) {
1557 		unsigned int bios;
1558 		struct dm_target *ti = dm_table_get_target(t, i);
1559 
1560 		if (unlikely(ti->num_flush_bios == 0))
1561 			continue;
1562 
1563 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1564 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1565 					     NULL, GFP_NOWAIT);
1566 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1567 	}
1568 
1569 	/*
1570 	 * alloc_io() takes one extra reference for submission, so the
1571 	 * reference won't reach 0 without the following subtraction
1572 	 */
1573 	atomic_sub(1, &ci->io->io_count);
1574 
1575 	bio_uninit(ci->bio);
1576 }
1577 
1578 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1579 			       unsigned int num_bios, unsigned int max_granularity,
1580 			       unsigned int max_sectors)
1581 {
1582 	unsigned int len, bios;
1583 
1584 	len = min_t(sector_t, ci->sector_count,
1585 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1586 
1587 	atomic_add(num_bios, &ci->io->io_count);
1588 	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1589 	/*
1590 	 * alloc_io() takes one extra reference for submission, so the
1591 	 * reference won't reach 0 without the following (+1) subtraction
1592 	 */
1593 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1594 
1595 	ci->sector += len;
1596 	ci->sector_count -= len;
1597 }
1598 
1599 static bool is_abnormal_io(struct bio *bio)
1600 {
1601 	enum req_op op = bio_op(bio);
1602 
1603 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1604 		switch (op) {
1605 		case REQ_OP_DISCARD:
1606 		case REQ_OP_SECURE_ERASE:
1607 		case REQ_OP_WRITE_ZEROES:
1608 			return true;
1609 		default:
1610 			break;
1611 		}
1612 	}
1613 
1614 	return false;
1615 }
1616 
1617 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1618 					  struct dm_target *ti)
1619 {
1620 	unsigned int num_bios = 0;
1621 	unsigned int max_granularity = 0;
1622 	unsigned int max_sectors = 0;
1623 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1624 
1625 	switch (bio_op(ci->bio)) {
1626 	case REQ_OP_DISCARD:
1627 		num_bios = ti->num_discard_bios;
1628 		max_sectors = limits->max_discard_sectors;
1629 		if (ti->max_discard_granularity)
1630 			max_granularity = max_sectors;
1631 		break;
1632 	case REQ_OP_SECURE_ERASE:
1633 		num_bios = ti->num_secure_erase_bios;
1634 		max_sectors = limits->max_secure_erase_sectors;
1635 		if (ti->max_secure_erase_granularity)
1636 			max_granularity = max_sectors;
1637 		break;
1638 	case REQ_OP_WRITE_ZEROES:
1639 		num_bios = ti->num_write_zeroes_bios;
1640 		max_sectors = limits->max_write_zeroes_sectors;
1641 		if (ti->max_write_zeroes_granularity)
1642 			max_granularity = max_sectors;
1643 		break;
1644 	default:
1645 		break;
1646 	}
1647 
1648 	/*
1649 	 * Even though the device advertised support for this type of
1650 	 * request, that does not mean every target supports it, and
1651 	 * reconfiguration might also have changed that since the
1652 	 * check was performed.
1653 	 */
1654 	if (unlikely(!num_bios))
1655 		return BLK_STS_NOTSUPP;
1656 
1657 	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1658 
1659 	return BLK_STS_OK;
1660 }
1661 
1662 /*
1663  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1664  * associated with this bio, and this bio's bi_private needs to be
1665  * stored in dm_io->data before the reuse.
1666  *
1667  * bio->bi_private is owned by fs or upper layer, so block layer won't
1668  * touch it after splitting. Meantime it won't be changed by anyone after
1669  * bio is submitted. So this reuse is safe.
1670  */
1671 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1672 {
1673 	return (struct dm_io **)&bio->bi_private;
1674 }
1675 
1676 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1677 {
1678 	struct dm_io **head = dm_poll_list_head(bio);
1679 
1680 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1681 		bio->bi_opf |= REQ_DM_POLL_LIST;
1682 		/*
1683 		 * Save .bi_private into dm_io, so that we can reuse
1684 		 * .bi_private as dm_io list head for storing dm_io list
1685 		 */
1686 		io->data = bio->bi_private;
1687 
1688 		/* tell block layer to poll for completion */
1689 		bio->bi_cookie = ~BLK_QC_T_NONE;
1690 
1691 		io->next = NULL;
1692 	} else {
1693 		/*
1694 		 * bio recursed due to split, reuse original poll list,
1695 		 * and save bio->bi_private too.
1696 		 */
1697 		io->data = (*head)->data;
1698 		io->next = *head;
1699 	}
1700 
1701 	*head = io;
1702 }
1703 
1704 /*
1705  * Select the correct strategy for processing a non-flush bio.
1706  */
1707 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1708 {
1709 	struct bio *clone;
1710 	struct dm_target *ti;
1711 	unsigned int len;
1712 
1713 	ti = dm_table_find_target(ci->map, ci->sector);
1714 	if (unlikely(!ti))
1715 		return BLK_STS_IOERR;
1716 
1717 	if (unlikely(ci->is_abnormal_io))
1718 		return __process_abnormal_io(ci, ti);
1719 
1720 	/*
1721 	 * Only support bio polling for normal IO, and the target io is
1722 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1723 	 */
1724 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1725 
1726 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1727 	setup_split_accounting(ci, len);
1728 
1729 	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1730 		if (unlikely(!dm_target_supports_nowait(ti->type)))
1731 			return BLK_STS_NOTSUPP;
1732 
1733 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1734 		if (unlikely(!clone))
1735 			return BLK_STS_AGAIN;
1736 	} else {
1737 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1738 	}
1739 	__map_bio(clone);
1740 
1741 	ci->sector += len;
1742 	ci->sector_count -= len;
1743 
1744 	return BLK_STS_OK;
1745 }
1746 
1747 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1748 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1749 {
1750 	ci->map = map;
1751 	ci->io = io;
1752 	ci->bio = bio;
1753 	ci->is_abnormal_io = is_abnormal;
1754 	ci->submit_as_polled = false;
1755 	ci->sector = bio->bi_iter.bi_sector;
1756 	ci->sector_count = bio_sectors(bio);
1757 
1758 	/* Shouldn't happen but sector_count was being set to 0 so... */
1759 	if (static_branch_unlikely(&zoned_enabled) &&
1760 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1761 		ci->sector_count = 0;
1762 }
1763 
1764 #ifdef CONFIG_BLK_DEV_ZONED
1765 static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1766 					   struct bio *bio)
1767 {
1768 	/*
1769 	 * For mapped device that need zone append emulation, we must
1770 	 * split any large BIO that straddles zone boundaries.
1771 	 */
1772 	return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1773 		!bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1774 }
1775 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1776 {
1777 	return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
1778 }
1779 #else
1780 static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1781 					   struct bio *bio)
1782 {
1783 	return false;
1784 }
1785 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1786 {
1787 	return false;
1788 }
1789 #endif
1790 
1791 /*
1792  * Entry point to split a bio into clones and submit them to the targets.
1793  */
1794 static void dm_split_and_process_bio(struct mapped_device *md,
1795 				     struct dm_table *map, struct bio *bio)
1796 {
1797 	struct clone_info ci;
1798 	struct dm_io *io;
1799 	blk_status_t error = BLK_STS_OK;
1800 	bool is_abnormal, need_split;
1801 
1802 	need_split = is_abnormal = is_abnormal_io(bio);
1803 	if (static_branch_unlikely(&zoned_enabled))
1804 		need_split = is_abnormal || dm_zone_bio_needs_split(md, bio);
1805 
1806 	if (unlikely(need_split)) {
1807 		/*
1808 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1809 		 * otherwise associated queue_limits won't be imposed.
1810 		 * Also split the BIO for mapped devices needing zone append
1811 		 * emulation to ensure that the BIO does not cross zone
1812 		 * boundaries.
1813 		 */
1814 		bio = bio_split_to_limits(bio);
1815 		if (!bio)
1816 			return;
1817 	}
1818 
1819 	/*
1820 	 * Use the block layer zone write plugging for mapped devices that
1821 	 * need zone append emulation (e.g. dm-crypt).
1822 	 */
1823 	if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1824 		return;
1825 
1826 	/* Only support nowait for normal IO */
1827 	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1828 		io = alloc_io(md, bio, GFP_NOWAIT);
1829 		if (unlikely(!io)) {
1830 			/* Unable to do anything without dm_io. */
1831 			bio_wouldblock_error(bio);
1832 			return;
1833 		}
1834 	} else {
1835 		io = alloc_io(md, bio, GFP_NOIO);
1836 	}
1837 	init_clone_info(&ci, io, map, bio, is_abnormal);
1838 
1839 	if (bio->bi_opf & REQ_PREFLUSH) {
1840 		__send_empty_flush(&ci);
1841 		/* dm_io_complete submits any data associated with flush */
1842 		goto out;
1843 	}
1844 
1845 	error = __split_and_process_bio(&ci);
1846 	if (error || !ci.sector_count)
1847 		goto out;
1848 	/*
1849 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1850 	 * *after* bios already submitted have been completely processed.
1851 	 */
1852 	bio_trim(bio, io->sectors, ci.sector_count);
1853 	trace_block_split(bio, bio->bi_iter.bi_sector);
1854 	bio_inc_remaining(bio);
1855 	submit_bio_noacct(bio);
1856 out:
1857 	/*
1858 	 * Drop the extra reference count for non-POLLED bio, and hold one
1859 	 * reference for POLLED bio, which will be released in dm_poll_bio
1860 	 *
1861 	 * Add every dm_io instance into the dm_io list head which is stored
1862 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1863 	 */
1864 	if (error || !ci.submit_as_polled) {
1865 		/*
1866 		 * In case of submission failure, the extra reference for
1867 		 * submitting io isn't consumed yet
1868 		 */
1869 		if (error)
1870 			atomic_dec(&io->io_count);
1871 		dm_io_dec_pending(io, error);
1872 	} else
1873 		dm_queue_poll_io(bio, io);
1874 }
1875 
1876 static void dm_submit_bio(struct bio *bio)
1877 {
1878 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1879 	int srcu_idx;
1880 	struct dm_table *map;
1881 
1882 	map = dm_get_live_table(md, &srcu_idx);
1883 
1884 	/* If suspended, or map not yet available, queue this IO for later */
1885 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1886 	    unlikely(!map)) {
1887 		if (bio->bi_opf & REQ_NOWAIT)
1888 			bio_wouldblock_error(bio);
1889 		else if (bio->bi_opf & REQ_RAHEAD)
1890 			bio_io_error(bio);
1891 		else
1892 			queue_io(md, bio);
1893 		goto out;
1894 	}
1895 
1896 	dm_split_and_process_bio(md, map, bio);
1897 out:
1898 	dm_put_live_table(md, srcu_idx);
1899 }
1900 
1901 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1902 			  unsigned int flags)
1903 {
1904 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1905 
1906 	/* don't poll if the mapped io is done */
1907 	if (atomic_read(&io->io_count) > 1)
1908 		bio_poll(&io->tio.clone, iob, flags);
1909 
1910 	/* bio_poll holds the last reference */
1911 	return atomic_read(&io->io_count) == 1;
1912 }
1913 
1914 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1915 		       unsigned int flags)
1916 {
1917 	struct dm_io **head = dm_poll_list_head(bio);
1918 	struct dm_io *list = *head;
1919 	struct dm_io *tmp = NULL;
1920 	struct dm_io *curr, *next;
1921 
1922 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1923 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1924 		return 0;
1925 
1926 	WARN_ON_ONCE(!list);
1927 
1928 	/*
1929 	 * Restore .bi_private before possibly completing dm_io.
1930 	 *
1931 	 * bio_poll() is only possible once @bio has been completely
1932 	 * submitted via submit_bio_noacct()'s depth-first submission.
1933 	 * So there is no dm_queue_poll_io() race associated with
1934 	 * clearing REQ_DM_POLL_LIST here.
1935 	 */
1936 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1937 	bio->bi_private = list->data;
1938 
1939 	for (curr = list, next = curr->next; curr; curr = next, next =
1940 			curr ? curr->next : NULL) {
1941 		if (dm_poll_dm_io(curr, iob, flags)) {
1942 			/*
1943 			 * clone_endio() has already occurred, so no
1944 			 * error handling is needed here.
1945 			 */
1946 			__dm_io_dec_pending(curr);
1947 		} else {
1948 			curr->next = tmp;
1949 			tmp = curr;
1950 		}
1951 	}
1952 
1953 	/* Not done? */
1954 	if (tmp) {
1955 		bio->bi_opf |= REQ_DM_POLL_LIST;
1956 		/* Reset bio->bi_private to dm_io list head */
1957 		*head = tmp;
1958 		return 0;
1959 	}
1960 	return 1;
1961 }
1962 
1963 /*
1964  *---------------------------------------------------------------
1965  * An IDR is used to keep track of allocated minor numbers.
1966  *---------------------------------------------------------------
1967  */
1968 static void free_minor(int minor)
1969 {
1970 	spin_lock(&_minor_lock);
1971 	idr_remove(&_minor_idr, minor);
1972 	spin_unlock(&_minor_lock);
1973 }
1974 
1975 /*
1976  * See if the device with a specific minor # is free.
1977  */
1978 static int specific_minor(int minor)
1979 {
1980 	int r;
1981 
1982 	if (minor >= (1 << MINORBITS))
1983 		return -EINVAL;
1984 
1985 	idr_preload(GFP_KERNEL);
1986 	spin_lock(&_minor_lock);
1987 
1988 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1989 
1990 	spin_unlock(&_minor_lock);
1991 	idr_preload_end();
1992 	if (r < 0)
1993 		return r == -ENOSPC ? -EBUSY : r;
1994 	return 0;
1995 }
1996 
1997 static int next_free_minor(int *minor)
1998 {
1999 	int r;
2000 
2001 	idr_preload(GFP_KERNEL);
2002 	spin_lock(&_minor_lock);
2003 
2004 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2005 
2006 	spin_unlock(&_minor_lock);
2007 	idr_preload_end();
2008 	if (r < 0)
2009 		return r;
2010 	*minor = r;
2011 	return 0;
2012 }
2013 
2014 static const struct block_device_operations dm_blk_dops;
2015 static const struct block_device_operations dm_rq_blk_dops;
2016 static const struct dax_operations dm_dax_ops;
2017 
2018 static void dm_wq_work(struct work_struct *work);
2019 
2020 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
2021 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2022 {
2023 	dm_destroy_crypto_profile(q->crypto_profile);
2024 }
2025 
2026 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2027 
2028 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2029 {
2030 }
2031 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2032 
2033 static void cleanup_mapped_device(struct mapped_device *md)
2034 {
2035 	if (md->wq)
2036 		destroy_workqueue(md->wq);
2037 	dm_free_md_mempools(md->mempools);
2038 
2039 	if (md->dax_dev) {
2040 		dax_remove_host(md->disk);
2041 		kill_dax(md->dax_dev);
2042 		put_dax(md->dax_dev);
2043 		md->dax_dev = NULL;
2044 	}
2045 
2046 	if (md->disk) {
2047 		spin_lock(&_minor_lock);
2048 		md->disk->private_data = NULL;
2049 		spin_unlock(&_minor_lock);
2050 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2051 			struct table_device *td;
2052 
2053 			dm_sysfs_exit(md);
2054 			list_for_each_entry(td, &md->table_devices, list) {
2055 				bd_unlink_disk_holder(td->dm_dev.bdev,
2056 						      md->disk);
2057 			}
2058 
2059 			/*
2060 			 * Hold lock to make sure del_gendisk() won't concurrent
2061 			 * with open/close_table_device().
2062 			 */
2063 			mutex_lock(&md->table_devices_lock);
2064 			del_gendisk(md->disk);
2065 			mutex_unlock(&md->table_devices_lock);
2066 		}
2067 		dm_queue_destroy_crypto_profile(md->queue);
2068 		put_disk(md->disk);
2069 	}
2070 
2071 	if (md->pending_io) {
2072 		free_percpu(md->pending_io);
2073 		md->pending_io = NULL;
2074 	}
2075 
2076 	cleanup_srcu_struct(&md->io_barrier);
2077 
2078 	mutex_destroy(&md->suspend_lock);
2079 	mutex_destroy(&md->type_lock);
2080 	mutex_destroy(&md->table_devices_lock);
2081 	mutex_destroy(&md->swap_bios_lock);
2082 
2083 	dm_mq_cleanup_mapped_device(md);
2084 }
2085 
2086 /*
2087  * Allocate and initialise a blank device with a given minor.
2088  */
2089 static struct mapped_device *alloc_dev(int minor)
2090 {
2091 	int r, numa_node_id = dm_get_numa_node();
2092 	struct dax_device *dax_dev;
2093 	struct mapped_device *md;
2094 	void *old_md;
2095 
2096 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2097 	if (!md) {
2098 		DMERR("unable to allocate device, out of memory.");
2099 		return NULL;
2100 	}
2101 
2102 	if (!try_module_get(THIS_MODULE))
2103 		goto bad_module_get;
2104 
2105 	/* get a minor number for the dev */
2106 	if (minor == DM_ANY_MINOR)
2107 		r = next_free_minor(&minor);
2108 	else
2109 		r = specific_minor(minor);
2110 	if (r < 0)
2111 		goto bad_minor;
2112 
2113 	r = init_srcu_struct(&md->io_barrier);
2114 	if (r < 0)
2115 		goto bad_io_barrier;
2116 
2117 	md->numa_node_id = numa_node_id;
2118 	md->init_tio_pdu = false;
2119 	md->type = DM_TYPE_NONE;
2120 	mutex_init(&md->suspend_lock);
2121 	mutex_init(&md->type_lock);
2122 	mutex_init(&md->table_devices_lock);
2123 	spin_lock_init(&md->deferred_lock);
2124 	atomic_set(&md->holders, 1);
2125 	atomic_set(&md->open_count, 0);
2126 	atomic_set(&md->event_nr, 0);
2127 	atomic_set(&md->uevent_seq, 0);
2128 	INIT_LIST_HEAD(&md->uevent_list);
2129 	INIT_LIST_HEAD(&md->table_devices);
2130 	spin_lock_init(&md->uevent_lock);
2131 
2132 	/*
2133 	 * default to bio-based until DM table is loaded and md->type
2134 	 * established. If request-based table is loaded: blk-mq will
2135 	 * override accordingly.
2136 	 */
2137 	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2138 	if (IS_ERR(md->disk))
2139 		goto bad;
2140 	md->queue = md->disk->queue;
2141 
2142 	init_waitqueue_head(&md->wait);
2143 	INIT_WORK(&md->work, dm_wq_work);
2144 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2145 	init_waitqueue_head(&md->eventq);
2146 	init_completion(&md->kobj_holder.completion);
2147 
2148 	md->requeue_list = NULL;
2149 	md->swap_bios = get_swap_bios();
2150 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2151 	mutex_init(&md->swap_bios_lock);
2152 
2153 	md->disk->major = _major;
2154 	md->disk->first_minor = minor;
2155 	md->disk->minors = 1;
2156 	md->disk->flags |= GENHD_FL_NO_PART;
2157 	md->disk->fops = &dm_blk_dops;
2158 	md->disk->private_data = md;
2159 	sprintf(md->disk->disk_name, "dm-%d", minor);
2160 
2161 	dax_dev = alloc_dax(md, &dm_dax_ops);
2162 	if (IS_ERR(dax_dev)) {
2163 		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2164 			goto bad;
2165 	} else {
2166 		set_dax_nocache(dax_dev);
2167 		set_dax_nomc(dax_dev);
2168 		md->dax_dev = dax_dev;
2169 		if (dax_add_host(dax_dev, md->disk))
2170 			goto bad;
2171 	}
2172 
2173 	format_dev_t(md->name, MKDEV(_major, minor));
2174 
2175 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2176 	if (!md->wq)
2177 		goto bad;
2178 
2179 	md->pending_io = alloc_percpu(unsigned long);
2180 	if (!md->pending_io)
2181 		goto bad;
2182 
2183 	r = dm_stats_init(&md->stats);
2184 	if (r < 0)
2185 		goto bad;
2186 
2187 	/* Populate the mapping, nobody knows we exist yet */
2188 	spin_lock(&_minor_lock);
2189 	old_md = idr_replace(&_minor_idr, md, minor);
2190 	spin_unlock(&_minor_lock);
2191 
2192 	BUG_ON(old_md != MINOR_ALLOCED);
2193 
2194 	return md;
2195 
2196 bad:
2197 	cleanup_mapped_device(md);
2198 bad_io_barrier:
2199 	free_minor(minor);
2200 bad_minor:
2201 	module_put(THIS_MODULE);
2202 bad_module_get:
2203 	kvfree(md);
2204 	return NULL;
2205 }
2206 
2207 static void unlock_fs(struct mapped_device *md);
2208 
2209 static void free_dev(struct mapped_device *md)
2210 {
2211 	int minor = MINOR(disk_devt(md->disk));
2212 
2213 	unlock_fs(md);
2214 
2215 	cleanup_mapped_device(md);
2216 
2217 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2218 	dm_stats_cleanup(&md->stats);
2219 	free_minor(minor);
2220 
2221 	module_put(THIS_MODULE);
2222 	kvfree(md);
2223 }
2224 
2225 /*
2226  * Bind a table to the device.
2227  */
2228 static void event_callback(void *context)
2229 {
2230 	unsigned long flags;
2231 	LIST_HEAD(uevents);
2232 	struct mapped_device *md = context;
2233 
2234 	spin_lock_irqsave(&md->uevent_lock, flags);
2235 	list_splice_init(&md->uevent_list, &uevents);
2236 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2237 
2238 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2239 
2240 	atomic_inc(&md->event_nr);
2241 	wake_up(&md->eventq);
2242 	dm_issue_global_event();
2243 }
2244 
2245 /*
2246  * Returns old map, which caller must destroy.
2247  */
2248 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2249 			       struct queue_limits *limits)
2250 {
2251 	struct dm_table *old_map;
2252 	sector_t size;
2253 	int ret;
2254 
2255 	lockdep_assert_held(&md->suspend_lock);
2256 
2257 	size = dm_table_get_size(t);
2258 
2259 	/*
2260 	 * Wipe any geometry if the size of the table changed.
2261 	 */
2262 	if (size != dm_get_size(md))
2263 		memset(&md->geometry, 0, sizeof(md->geometry));
2264 
2265 	set_capacity(md->disk, size);
2266 
2267 	dm_table_event_callback(t, event_callback, md);
2268 
2269 	if (dm_table_request_based(t)) {
2270 		/*
2271 		 * Leverage the fact that request-based DM targets are
2272 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2273 		 */
2274 		md->immutable_target = dm_table_get_immutable_target(t);
2275 
2276 		/*
2277 		 * There is no need to reload with request-based dm because the
2278 		 * size of front_pad doesn't change.
2279 		 *
2280 		 * Note for future: If you are to reload bioset, prep-ed
2281 		 * requests in the queue may refer to bio from the old bioset,
2282 		 * so you must walk through the queue to unprep.
2283 		 */
2284 		if (!md->mempools) {
2285 			md->mempools = t->mempools;
2286 			t->mempools = NULL;
2287 		}
2288 	} else {
2289 		/*
2290 		 * The md may already have mempools that need changing.
2291 		 * If so, reload bioset because front_pad may have changed
2292 		 * because a different table was loaded.
2293 		 */
2294 		dm_free_md_mempools(md->mempools);
2295 		md->mempools = t->mempools;
2296 		t->mempools = NULL;
2297 	}
2298 
2299 	ret = dm_table_set_restrictions(t, md->queue, limits);
2300 	if (ret) {
2301 		old_map = ERR_PTR(ret);
2302 		goto out;
2303 	}
2304 
2305 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2306 	rcu_assign_pointer(md->map, (void *)t);
2307 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2308 
2309 	if (old_map)
2310 		dm_sync_table(md);
2311 out:
2312 	return old_map;
2313 }
2314 
2315 /*
2316  * Returns unbound table for the caller to free.
2317  */
2318 static struct dm_table *__unbind(struct mapped_device *md)
2319 {
2320 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2321 
2322 	if (!map)
2323 		return NULL;
2324 
2325 	dm_table_event_callback(map, NULL, NULL);
2326 	RCU_INIT_POINTER(md->map, NULL);
2327 	dm_sync_table(md);
2328 
2329 	return map;
2330 }
2331 
2332 /*
2333  * Constructor for a new device.
2334  */
2335 int dm_create(int minor, struct mapped_device **result)
2336 {
2337 	struct mapped_device *md;
2338 
2339 	md = alloc_dev(minor);
2340 	if (!md)
2341 		return -ENXIO;
2342 
2343 	dm_ima_reset_data(md);
2344 
2345 	*result = md;
2346 	return 0;
2347 }
2348 
2349 /*
2350  * Functions to manage md->type.
2351  * All are required to hold md->type_lock.
2352  */
2353 void dm_lock_md_type(struct mapped_device *md)
2354 {
2355 	mutex_lock(&md->type_lock);
2356 }
2357 
2358 void dm_unlock_md_type(struct mapped_device *md)
2359 {
2360 	mutex_unlock(&md->type_lock);
2361 }
2362 
2363 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2364 {
2365 	BUG_ON(!mutex_is_locked(&md->type_lock));
2366 	md->type = type;
2367 }
2368 
2369 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2370 {
2371 	return md->type;
2372 }
2373 
2374 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2375 {
2376 	return md->immutable_target_type;
2377 }
2378 
2379 /*
2380  * Setup the DM device's queue based on md's type
2381  */
2382 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2383 {
2384 	enum dm_queue_mode type = dm_table_get_type(t);
2385 	struct queue_limits limits;
2386 	struct table_device *td;
2387 	int r;
2388 
2389 	switch (type) {
2390 	case DM_TYPE_REQUEST_BASED:
2391 		md->disk->fops = &dm_rq_blk_dops;
2392 		r = dm_mq_init_request_queue(md, t);
2393 		if (r) {
2394 			DMERR("Cannot initialize queue for request-based dm mapped device");
2395 			return r;
2396 		}
2397 		break;
2398 	case DM_TYPE_BIO_BASED:
2399 	case DM_TYPE_DAX_BIO_BASED:
2400 		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2401 		break;
2402 	case DM_TYPE_NONE:
2403 		WARN_ON_ONCE(true);
2404 		break;
2405 	}
2406 
2407 	r = dm_calculate_queue_limits(t, &limits);
2408 	if (r) {
2409 		DMERR("Cannot calculate initial queue limits");
2410 		return r;
2411 	}
2412 	r = dm_table_set_restrictions(t, md->queue, &limits);
2413 	if (r)
2414 		return r;
2415 
2416 	/*
2417 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2418 	 * with open_table_device() and close_table_device().
2419 	 */
2420 	mutex_lock(&md->table_devices_lock);
2421 	r = add_disk(md->disk);
2422 	mutex_unlock(&md->table_devices_lock);
2423 	if (r)
2424 		return r;
2425 
2426 	/*
2427 	 * Register the holder relationship for devices added before the disk
2428 	 * was live.
2429 	 */
2430 	list_for_each_entry(td, &md->table_devices, list) {
2431 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2432 		if (r)
2433 			goto out_undo_holders;
2434 	}
2435 
2436 	r = dm_sysfs_init(md);
2437 	if (r)
2438 		goto out_undo_holders;
2439 
2440 	md->type = type;
2441 	return 0;
2442 
2443 out_undo_holders:
2444 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2445 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2446 	mutex_lock(&md->table_devices_lock);
2447 	del_gendisk(md->disk);
2448 	mutex_unlock(&md->table_devices_lock);
2449 	return r;
2450 }
2451 
2452 struct mapped_device *dm_get_md(dev_t dev)
2453 {
2454 	struct mapped_device *md;
2455 	unsigned int minor = MINOR(dev);
2456 
2457 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2458 		return NULL;
2459 
2460 	spin_lock(&_minor_lock);
2461 
2462 	md = idr_find(&_minor_idr, minor);
2463 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2464 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2465 		md = NULL;
2466 		goto out;
2467 	}
2468 	dm_get(md);
2469 out:
2470 	spin_unlock(&_minor_lock);
2471 
2472 	return md;
2473 }
2474 EXPORT_SYMBOL_GPL(dm_get_md);
2475 
2476 void *dm_get_mdptr(struct mapped_device *md)
2477 {
2478 	return md->interface_ptr;
2479 }
2480 
2481 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2482 {
2483 	md->interface_ptr = ptr;
2484 }
2485 
2486 void dm_get(struct mapped_device *md)
2487 {
2488 	atomic_inc(&md->holders);
2489 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2490 }
2491 
2492 int dm_hold(struct mapped_device *md)
2493 {
2494 	spin_lock(&_minor_lock);
2495 	if (test_bit(DMF_FREEING, &md->flags)) {
2496 		spin_unlock(&_minor_lock);
2497 		return -EBUSY;
2498 	}
2499 	dm_get(md);
2500 	spin_unlock(&_minor_lock);
2501 	return 0;
2502 }
2503 EXPORT_SYMBOL_GPL(dm_hold);
2504 
2505 const char *dm_device_name(struct mapped_device *md)
2506 {
2507 	return md->name;
2508 }
2509 EXPORT_SYMBOL_GPL(dm_device_name);
2510 
2511 static void __dm_destroy(struct mapped_device *md, bool wait)
2512 {
2513 	struct dm_table *map;
2514 	int srcu_idx;
2515 
2516 	might_sleep();
2517 
2518 	spin_lock(&_minor_lock);
2519 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2520 	set_bit(DMF_FREEING, &md->flags);
2521 	spin_unlock(&_minor_lock);
2522 
2523 	blk_mark_disk_dead(md->disk);
2524 
2525 	/*
2526 	 * Take suspend_lock so that presuspend and postsuspend methods
2527 	 * do not race with internal suspend.
2528 	 */
2529 	mutex_lock(&md->suspend_lock);
2530 	map = dm_get_live_table(md, &srcu_idx);
2531 	if (!dm_suspended_md(md)) {
2532 		dm_table_presuspend_targets(map);
2533 		set_bit(DMF_SUSPENDED, &md->flags);
2534 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2535 		dm_table_postsuspend_targets(map);
2536 	}
2537 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2538 	dm_put_live_table(md, srcu_idx);
2539 	mutex_unlock(&md->suspend_lock);
2540 
2541 	/*
2542 	 * Rare, but there may be I/O requests still going to complete,
2543 	 * for example.  Wait for all references to disappear.
2544 	 * No one should increment the reference count of the mapped_device,
2545 	 * after the mapped_device state becomes DMF_FREEING.
2546 	 */
2547 	if (wait)
2548 		while (atomic_read(&md->holders))
2549 			fsleep(1000);
2550 	else if (atomic_read(&md->holders))
2551 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2552 		       dm_device_name(md), atomic_read(&md->holders));
2553 
2554 	dm_table_destroy(__unbind(md));
2555 	free_dev(md);
2556 }
2557 
2558 void dm_destroy(struct mapped_device *md)
2559 {
2560 	__dm_destroy(md, true);
2561 }
2562 
2563 void dm_destroy_immediate(struct mapped_device *md)
2564 {
2565 	__dm_destroy(md, false);
2566 }
2567 
2568 void dm_put(struct mapped_device *md)
2569 {
2570 	atomic_dec(&md->holders);
2571 }
2572 EXPORT_SYMBOL_GPL(dm_put);
2573 
2574 static bool dm_in_flight_bios(struct mapped_device *md)
2575 {
2576 	int cpu;
2577 	unsigned long sum = 0;
2578 
2579 	for_each_possible_cpu(cpu)
2580 		sum += *per_cpu_ptr(md->pending_io, cpu);
2581 
2582 	return sum != 0;
2583 }
2584 
2585 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2586 {
2587 	int r = 0;
2588 	DEFINE_WAIT(wait);
2589 
2590 	while (true) {
2591 		prepare_to_wait(&md->wait, &wait, task_state);
2592 
2593 		if (!dm_in_flight_bios(md))
2594 			break;
2595 
2596 		if (signal_pending_state(task_state, current)) {
2597 			r = -EINTR;
2598 			break;
2599 		}
2600 
2601 		io_schedule();
2602 	}
2603 	finish_wait(&md->wait, &wait);
2604 
2605 	smp_rmb();
2606 
2607 	return r;
2608 }
2609 
2610 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2611 {
2612 	int r = 0;
2613 
2614 	if (!queue_is_mq(md->queue))
2615 		return dm_wait_for_bios_completion(md, task_state);
2616 
2617 	while (true) {
2618 		if (!blk_mq_queue_inflight(md->queue))
2619 			break;
2620 
2621 		if (signal_pending_state(task_state, current)) {
2622 			r = -EINTR;
2623 			break;
2624 		}
2625 
2626 		fsleep(5000);
2627 	}
2628 
2629 	return r;
2630 }
2631 
2632 /*
2633  * Process the deferred bios
2634  */
2635 static void dm_wq_work(struct work_struct *work)
2636 {
2637 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2638 	struct bio *bio;
2639 
2640 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2641 		spin_lock_irq(&md->deferred_lock);
2642 		bio = bio_list_pop(&md->deferred);
2643 		spin_unlock_irq(&md->deferred_lock);
2644 
2645 		if (!bio)
2646 			break;
2647 
2648 		submit_bio_noacct(bio);
2649 		cond_resched();
2650 	}
2651 }
2652 
2653 static void dm_queue_flush(struct mapped_device *md)
2654 {
2655 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2656 	smp_mb__after_atomic();
2657 	queue_work(md->wq, &md->work);
2658 }
2659 
2660 /*
2661  * Swap in a new table, returning the old one for the caller to destroy.
2662  */
2663 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2664 {
2665 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2666 	struct queue_limits limits;
2667 	int r;
2668 
2669 	mutex_lock(&md->suspend_lock);
2670 
2671 	/* device must be suspended */
2672 	if (!dm_suspended_md(md))
2673 		goto out;
2674 
2675 	/*
2676 	 * If the new table has no data devices, retain the existing limits.
2677 	 * This helps multipath with queue_if_no_path if all paths disappear,
2678 	 * then new I/O is queued based on these limits, and then some paths
2679 	 * reappear.
2680 	 */
2681 	if (dm_table_has_no_data_devices(table)) {
2682 		live_map = dm_get_live_table_fast(md);
2683 		if (live_map)
2684 			limits = md->queue->limits;
2685 		dm_put_live_table_fast(md);
2686 	}
2687 
2688 	if (!live_map) {
2689 		r = dm_calculate_queue_limits(table, &limits);
2690 		if (r) {
2691 			map = ERR_PTR(r);
2692 			goto out;
2693 		}
2694 	}
2695 
2696 	map = __bind(md, table, &limits);
2697 	dm_issue_global_event();
2698 
2699 out:
2700 	mutex_unlock(&md->suspend_lock);
2701 	return map;
2702 }
2703 
2704 /*
2705  * Functions to lock and unlock any filesystem running on the
2706  * device.
2707  */
2708 static int lock_fs(struct mapped_device *md)
2709 {
2710 	int r;
2711 
2712 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2713 
2714 	r = bdev_freeze(md->disk->part0);
2715 	if (!r)
2716 		set_bit(DMF_FROZEN, &md->flags);
2717 	return r;
2718 }
2719 
2720 static void unlock_fs(struct mapped_device *md)
2721 {
2722 	if (!test_bit(DMF_FROZEN, &md->flags))
2723 		return;
2724 	bdev_thaw(md->disk->part0);
2725 	clear_bit(DMF_FROZEN, &md->flags);
2726 }
2727 
2728 /*
2729  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2730  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2731  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2732  *
2733  * If __dm_suspend returns 0, the device is completely quiescent
2734  * now. There is no request-processing activity. All new requests
2735  * are being added to md->deferred list.
2736  */
2737 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2738 			unsigned int suspend_flags, unsigned int task_state,
2739 			int dmf_suspended_flag)
2740 {
2741 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2742 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2743 	int r;
2744 
2745 	lockdep_assert_held(&md->suspend_lock);
2746 
2747 	/*
2748 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2749 	 * This flag is cleared before dm_suspend returns.
2750 	 */
2751 	if (noflush)
2752 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2753 	else
2754 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2755 
2756 	/*
2757 	 * This gets reverted if there's an error later and the targets
2758 	 * provide the .presuspend_undo hook.
2759 	 */
2760 	dm_table_presuspend_targets(map);
2761 
2762 	/*
2763 	 * Flush I/O to the device.
2764 	 * Any I/O submitted after lock_fs() may not be flushed.
2765 	 * noflush takes precedence over do_lockfs.
2766 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2767 	 */
2768 	if (!noflush && do_lockfs) {
2769 		r = lock_fs(md);
2770 		if (r) {
2771 			dm_table_presuspend_undo_targets(map);
2772 			return r;
2773 		}
2774 	}
2775 
2776 	/*
2777 	 * Here we must make sure that no processes are submitting requests
2778 	 * to target drivers i.e. no one may be executing
2779 	 * dm_split_and_process_bio from dm_submit_bio.
2780 	 *
2781 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2782 	 * we take the write lock. To prevent any process from reentering
2783 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2784 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2785 	 * flush_workqueue(md->wq).
2786 	 */
2787 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2788 	if (map)
2789 		synchronize_srcu(&md->io_barrier);
2790 
2791 	/*
2792 	 * Stop md->queue before flushing md->wq in case request-based
2793 	 * dm defers requests to md->wq from md->queue.
2794 	 */
2795 	if (dm_request_based(md))
2796 		dm_stop_queue(md->queue);
2797 
2798 	flush_workqueue(md->wq);
2799 
2800 	/*
2801 	 * At this point no more requests are entering target request routines.
2802 	 * We call dm_wait_for_completion to wait for all existing requests
2803 	 * to finish.
2804 	 */
2805 	r = dm_wait_for_completion(md, task_state);
2806 	if (!r)
2807 		set_bit(dmf_suspended_flag, &md->flags);
2808 
2809 	if (noflush)
2810 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2811 	if (map)
2812 		synchronize_srcu(&md->io_barrier);
2813 
2814 	/* were we interrupted ? */
2815 	if (r < 0) {
2816 		dm_queue_flush(md);
2817 
2818 		if (dm_request_based(md))
2819 			dm_start_queue(md->queue);
2820 
2821 		unlock_fs(md);
2822 		dm_table_presuspend_undo_targets(map);
2823 		/* pushback list is already flushed, so skip flush */
2824 	}
2825 
2826 	return r;
2827 }
2828 
2829 /*
2830  * We need to be able to change a mapping table under a mounted
2831  * filesystem.  For example we might want to move some data in
2832  * the background.  Before the table can be swapped with
2833  * dm_bind_table, dm_suspend must be called to flush any in
2834  * flight bios and ensure that any further io gets deferred.
2835  */
2836 /*
2837  * Suspend mechanism in request-based dm.
2838  *
2839  * 1. Flush all I/Os by lock_fs() if needed.
2840  * 2. Stop dispatching any I/O by stopping the request_queue.
2841  * 3. Wait for all in-flight I/Os to be completed or requeued.
2842  *
2843  * To abort suspend, start the request_queue.
2844  */
2845 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2846 {
2847 	struct dm_table *map = NULL;
2848 	int r = 0;
2849 
2850 retry:
2851 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2852 
2853 	if (dm_suspended_md(md)) {
2854 		r = -EINVAL;
2855 		goto out_unlock;
2856 	}
2857 
2858 	if (dm_suspended_internally_md(md)) {
2859 		/* already internally suspended, wait for internal resume */
2860 		mutex_unlock(&md->suspend_lock);
2861 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2862 		if (r)
2863 			return r;
2864 		goto retry;
2865 	}
2866 
2867 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2868 	if (!map) {
2869 		/* avoid deadlock with fs/namespace.c:do_mount() */
2870 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2871 	}
2872 
2873 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2874 	if (r)
2875 		goto out_unlock;
2876 
2877 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2878 	dm_table_postsuspend_targets(map);
2879 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2880 
2881 out_unlock:
2882 	mutex_unlock(&md->suspend_lock);
2883 	return r;
2884 }
2885 
2886 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2887 {
2888 	if (map) {
2889 		int r = dm_table_resume_targets(map);
2890 
2891 		if (r)
2892 			return r;
2893 	}
2894 
2895 	dm_queue_flush(md);
2896 
2897 	/*
2898 	 * Flushing deferred I/Os must be done after targets are resumed
2899 	 * so that mapping of targets can work correctly.
2900 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2901 	 */
2902 	if (dm_request_based(md))
2903 		dm_start_queue(md->queue);
2904 
2905 	unlock_fs(md);
2906 
2907 	return 0;
2908 }
2909 
2910 int dm_resume(struct mapped_device *md)
2911 {
2912 	int r;
2913 	struct dm_table *map = NULL;
2914 
2915 retry:
2916 	r = -EINVAL;
2917 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2918 
2919 	if (!dm_suspended_md(md))
2920 		goto out;
2921 
2922 	if (dm_suspended_internally_md(md)) {
2923 		/* already internally suspended, wait for internal resume */
2924 		mutex_unlock(&md->suspend_lock);
2925 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2926 		if (r)
2927 			return r;
2928 		goto retry;
2929 	}
2930 
2931 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2932 	if (!map || !dm_table_get_size(map))
2933 		goto out;
2934 
2935 	r = __dm_resume(md, map);
2936 	if (r)
2937 		goto out;
2938 
2939 	clear_bit(DMF_SUSPENDED, &md->flags);
2940 out:
2941 	mutex_unlock(&md->suspend_lock);
2942 
2943 	return r;
2944 }
2945 
2946 /*
2947  * Internal suspend/resume works like userspace-driven suspend. It waits
2948  * until all bios finish and prevents issuing new bios to the target drivers.
2949  * It may be used only from the kernel.
2950  */
2951 
2952 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2953 {
2954 	struct dm_table *map = NULL;
2955 
2956 	lockdep_assert_held(&md->suspend_lock);
2957 
2958 	if (md->internal_suspend_count++)
2959 		return; /* nested internal suspend */
2960 
2961 	if (dm_suspended_md(md)) {
2962 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2963 		return; /* nest suspend */
2964 	}
2965 
2966 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2967 
2968 	/*
2969 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2970 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2971 	 * would require changing .presuspend to return an error -- avoid this
2972 	 * until there is a need for more elaborate variants of internal suspend.
2973 	 */
2974 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2975 			    DMF_SUSPENDED_INTERNALLY);
2976 
2977 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2978 	dm_table_postsuspend_targets(map);
2979 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2980 }
2981 
2982 static void __dm_internal_resume(struct mapped_device *md)
2983 {
2984 	int r;
2985 	struct dm_table *map;
2986 
2987 	BUG_ON(!md->internal_suspend_count);
2988 
2989 	if (--md->internal_suspend_count)
2990 		return; /* resume from nested internal suspend */
2991 
2992 	if (dm_suspended_md(md))
2993 		goto done; /* resume from nested suspend */
2994 
2995 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2996 	r = __dm_resume(md, map);
2997 	if (r) {
2998 		/*
2999 		 * If a preresume method of some target failed, we are in a
3000 		 * tricky situation. We can't return an error to the caller. We
3001 		 * can't fake success because then the "resume" and
3002 		 * "postsuspend" methods would not be paired correctly, and it
3003 		 * would break various targets, for example it would cause list
3004 		 * corruption in the "origin" target.
3005 		 *
3006 		 * So, we fake normal suspend here, to make sure that the
3007 		 * "resume" and "postsuspend" methods will be paired correctly.
3008 		 */
3009 		DMERR("Preresume method failed: %d", r);
3010 		set_bit(DMF_SUSPENDED, &md->flags);
3011 	}
3012 done:
3013 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3014 	smp_mb__after_atomic();
3015 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3016 }
3017 
3018 void dm_internal_suspend_noflush(struct mapped_device *md)
3019 {
3020 	mutex_lock(&md->suspend_lock);
3021 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3022 	mutex_unlock(&md->suspend_lock);
3023 }
3024 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3025 
3026 void dm_internal_resume(struct mapped_device *md)
3027 {
3028 	mutex_lock(&md->suspend_lock);
3029 	__dm_internal_resume(md);
3030 	mutex_unlock(&md->suspend_lock);
3031 }
3032 EXPORT_SYMBOL_GPL(dm_internal_resume);
3033 
3034 /*
3035  * Fast variants of internal suspend/resume hold md->suspend_lock,
3036  * which prevents interaction with userspace-driven suspend.
3037  */
3038 
3039 void dm_internal_suspend_fast(struct mapped_device *md)
3040 {
3041 	mutex_lock(&md->suspend_lock);
3042 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3043 		return;
3044 
3045 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3046 	synchronize_srcu(&md->io_barrier);
3047 	flush_workqueue(md->wq);
3048 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3049 }
3050 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3051 
3052 void dm_internal_resume_fast(struct mapped_device *md)
3053 {
3054 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3055 		goto done;
3056 
3057 	dm_queue_flush(md);
3058 
3059 done:
3060 	mutex_unlock(&md->suspend_lock);
3061 }
3062 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3063 
3064 /*
3065  *---------------------------------------------------------------
3066  * Event notification.
3067  *---------------------------------------------------------------
3068  */
3069 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3070 		      unsigned int cookie, bool need_resize_uevent)
3071 {
3072 	int r;
3073 	unsigned int noio_flag;
3074 	char udev_cookie[DM_COOKIE_LENGTH];
3075 	char *envp[3] = { NULL, NULL, NULL };
3076 	char **envpp = envp;
3077 	if (cookie) {
3078 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3079 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3080 		*envpp++ = udev_cookie;
3081 	}
3082 	if (need_resize_uevent) {
3083 		*envpp++ = "RESIZE=1";
3084 	}
3085 
3086 	noio_flag = memalloc_noio_save();
3087 
3088 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3089 
3090 	memalloc_noio_restore(noio_flag);
3091 
3092 	return r;
3093 }
3094 
3095 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3096 {
3097 	return atomic_add_return(1, &md->uevent_seq);
3098 }
3099 
3100 uint32_t dm_get_event_nr(struct mapped_device *md)
3101 {
3102 	return atomic_read(&md->event_nr);
3103 }
3104 
3105 int dm_wait_event(struct mapped_device *md, int event_nr)
3106 {
3107 	return wait_event_interruptible(md->eventq,
3108 			(event_nr != atomic_read(&md->event_nr)));
3109 }
3110 
3111 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3112 {
3113 	unsigned long flags;
3114 
3115 	spin_lock_irqsave(&md->uevent_lock, flags);
3116 	list_add(elist, &md->uevent_list);
3117 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3118 }
3119 
3120 /*
3121  * The gendisk is only valid as long as you have a reference
3122  * count on 'md'.
3123  */
3124 struct gendisk *dm_disk(struct mapped_device *md)
3125 {
3126 	return md->disk;
3127 }
3128 EXPORT_SYMBOL_GPL(dm_disk);
3129 
3130 struct kobject *dm_kobject(struct mapped_device *md)
3131 {
3132 	return &md->kobj_holder.kobj;
3133 }
3134 
3135 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3136 {
3137 	struct mapped_device *md;
3138 
3139 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3140 
3141 	spin_lock(&_minor_lock);
3142 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3143 		md = NULL;
3144 		goto out;
3145 	}
3146 	dm_get(md);
3147 out:
3148 	spin_unlock(&_minor_lock);
3149 
3150 	return md;
3151 }
3152 
3153 int dm_suspended_md(struct mapped_device *md)
3154 {
3155 	return test_bit(DMF_SUSPENDED, &md->flags);
3156 }
3157 
3158 static int dm_post_suspending_md(struct mapped_device *md)
3159 {
3160 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3161 }
3162 
3163 int dm_suspended_internally_md(struct mapped_device *md)
3164 {
3165 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3166 }
3167 
3168 int dm_test_deferred_remove_flag(struct mapped_device *md)
3169 {
3170 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3171 }
3172 
3173 int dm_suspended(struct dm_target *ti)
3174 {
3175 	return dm_suspended_md(ti->table->md);
3176 }
3177 EXPORT_SYMBOL_GPL(dm_suspended);
3178 
3179 int dm_post_suspending(struct dm_target *ti)
3180 {
3181 	return dm_post_suspending_md(ti->table->md);
3182 }
3183 EXPORT_SYMBOL_GPL(dm_post_suspending);
3184 
3185 int dm_noflush_suspending(struct dm_target *ti)
3186 {
3187 	return __noflush_suspending(ti->table->md);
3188 }
3189 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3190 
3191 void dm_free_md_mempools(struct dm_md_mempools *pools)
3192 {
3193 	if (!pools)
3194 		return;
3195 
3196 	bioset_exit(&pools->bs);
3197 	bioset_exit(&pools->io_bs);
3198 
3199 	kfree(pools);
3200 }
3201 
3202 struct dm_pr {
3203 	u64	old_key;
3204 	u64	new_key;
3205 	u32	flags;
3206 	bool	abort;
3207 	bool	fail_early;
3208 	int	ret;
3209 	enum pr_type type;
3210 	struct pr_keys *read_keys;
3211 	struct pr_held_reservation *rsv;
3212 };
3213 
3214 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3215 		      struct dm_pr *pr)
3216 {
3217 	struct mapped_device *md = bdev->bd_disk->private_data;
3218 	struct dm_table *table;
3219 	struct dm_target *ti;
3220 	int ret = -ENOTTY, srcu_idx;
3221 
3222 	table = dm_get_live_table(md, &srcu_idx);
3223 	if (!table || !dm_table_get_size(table))
3224 		goto out;
3225 
3226 	/* We only support devices that have a single target */
3227 	if (table->num_targets != 1)
3228 		goto out;
3229 	ti = dm_table_get_target(table, 0);
3230 
3231 	if (dm_suspended_md(md)) {
3232 		ret = -EAGAIN;
3233 		goto out;
3234 	}
3235 
3236 	ret = -EINVAL;
3237 	if (!ti->type->iterate_devices)
3238 		goto out;
3239 
3240 	ti->type->iterate_devices(ti, fn, pr);
3241 	ret = 0;
3242 out:
3243 	dm_put_live_table(md, srcu_idx);
3244 	return ret;
3245 }
3246 
3247 /*
3248  * For register / unregister we need to manually call out to every path.
3249  */
3250 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3251 			    sector_t start, sector_t len, void *data)
3252 {
3253 	struct dm_pr *pr = data;
3254 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3255 	int ret;
3256 
3257 	if (!ops || !ops->pr_register) {
3258 		pr->ret = -EOPNOTSUPP;
3259 		return -1;
3260 	}
3261 
3262 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3263 	if (!ret)
3264 		return 0;
3265 
3266 	if (!pr->ret)
3267 		pr->ret = ret;
3268 
3269 	if (pr->fail_early)
3270 		return -1;
3271 
3272 	return 0;
3273 }
3274 
3275 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3276 			  u32 flags)
3277 {
3278 	struct dm_pr pr = {
3279 		.old_key	= old_key,
3280 		.new_key	= new_key,
3281 		.flags		= flags,
3282 		.fail_early	= true,
3283 		.ret		= 0,
3284 	};
3285 	int ret;
3286 
3287 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3288 	if (ret) {
3289 		/* Didn't even get to register a path */
3290 		return ret;
3291 	}
3292 
3293 	if (!pr.ret)
3294 		return 0;
3295 	ret = pr.ret;
3296 
3297 	if (!new_key)
3298 		return ret;
3299 
3300 	/* unregister all paths if we failed to register any path */
3301 	pr.old_key = new_key;
3302 	pr.new_key = 0;
3303 	pr.flags = 0;
3304 	pr.fail_early = false;
3305 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3306 	return ret;
3307 }
3308 
3309 
3310 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3311 			   sector_t start, sector_t len, void *data)
3312 {
3313 	struct dm_pr *pr = data;
3314 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3315 
3316 	if (!ops || !ops->pr_reserve) {
3317 		pr->ret = -EOPNOTSUPP;
3318 		return -1;
3319 	}
3320 
3321 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3322 	if (!pr->ret)
3323 		return -1;
3324 
3325 	return 0;
3326 }
3327 
3328 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3329 			 u32 flags)
3330 {
3331 	struct dm_pr pr = {
3332 		.old_key	= key,
3333 		.flags		= flags,
3334 		.type		= type,
3335 		.fail_early	= false,
3336 		.ret		= 0,
3337 	};
3338 	int ret;
3339 
3340 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3341 	if (ret)
3342 		return ret;
3343 
3344 	return pr.ret;
3345 }
3346 
3347 /*
3348  * If there is a non-All Registrants type of reservation, the release must be
3349  * sent down the holding path. For the cases where there is no reservation or
3350  * the path is not the holder the device will also return success, so we must
3351  * try each path to make sure we got the correct path.
3352  */
3353 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3354 			   sector_t start, sector_t len, void *data)
3355 {
3356 	struct dm_pr *pr = data;
3357 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3358 
3359 	if (!ops || !ops->pr_release) {
3360 		pr->ret = -EOPNOTSUPP;
3361 		return -1;
3362 	}
3363 
3364 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3365 	if (pr->ret)
3366 		return -1;
3367 
3368 	return 0;
3369 }
3370 
3371 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3372 {
3373 	struct dm_pr pr = {
3374 		.old_key	= key,
3375 		.type		= type,
3376 		.fail_early	= false,
3377 	};
3378 	int ret;
3379 
3380 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3381 	if (ret)
3382 		return ret;
3383 
3384 	return pr.ret;
3385 }
3386 
3387 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3388 			   sector_t start, sector_t len, void *data)
3389 {
3390 	struct dm_pr *pr = data;
3391 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3392 
3393 	if (!ops || !ops->pr_preempt) {
3394 		pr->ret = -EOPNOTSUPP;
3395 		return -1;
3396 	}
3397 
3398 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3399 				  pr->abort);
3400 	if (!pr->ret)
3401 		return -1;
3402 
3403 	return 0;
3404 }
3405 
3406 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3407 			 enum pr_type type, bool abort)
3408 {
3409 	struct dm_pr pr = {
3410 		.new_key	= new_key,
3411 		.old_key	= old_key,
3412 		.type		= type,
3413 		.fail_early	= false,
3414 	};
3415 	int ret;
3416 
3417 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3418 	if (ret)
3419 		return ret;
3420 
3421 	return pr.ret;
3422 }
3423 
3424 static int dm_pr_clear(struct block_device *bdev, u64 key)
3425 {
3426 	struct mapped_device *md = bdev->bd_disk->private_data;
3427 	const struct pr_ops *ops;
3428 	int r, srcu_idx;
3429 
3430 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3431 	if (r < 0)
3432 		goto out;
3433 
3434 	ops = bdev->bd_disk->fops->pr_ops;
3435 	if (ops && ops->pr_clear)
3436 		r = ops->pr_clear(bdev, key);
3437 	else
3438 		r = -EOPNOTSUPP;
3439 out:
3440 	dm_unprepare_ioctl(md, srcu_idx);
3441 	return r;
3442 }
3443 
3444 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3445 			     sector_t start, sector_t len, void *data)
3446 {
3447 	struct dm_pr *pr = data;
3448 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3449 
3450 	if (!ops || !ops->pr_read_keys) {
3451 		pr->ret = -EOPNOTSUPP;
3452 		return -1;
3453 	}
3454 
3455 	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3456 	if (!pr->ret)
3457 		return -1;
3458 
3459 	return 0;
3460 }
3461 
3462 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3463 {
3464 	struct dm_pr pr = {
3465 		.read_keys = keys,
3466 	};
3467 	int ret;
3468 
3469 	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3470 	if (ret)
3471 		return ret;
3472 
3473 	return pr.ret;
3474 }
3475 
3476 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3477 				    sector_t start, sector_t len, void *data)
3478 {
3479 	struct dm_pr *pr = data;
3480 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3481 
3482 	if (!ops || !ops->pr_read_reservation) {
3483 		pr->ret = -EOPNOTSUPP;
3484 		return -1;
3485 	}
3486 
3487 	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3488 	if (!pr->ret)
3489 		return -1;
3490 
3491 	return 0;
3492 }
3493 
3494 static int dm_pr_read_reservation(struct block_device *bdev,
3495 				  struct pr_held_reservation *rsv)
3496 {
3497 	struct dm_pr pr = {
3498 		.rsv = rsv,
3499 	};
3500 	int ret;
3501 
3502 	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3503 	if (ret)
3504 		return ret;
3505 
3506 	return pr.ret;
3507 }
3508 
3509 static const struct pr_ops dm_pr_ops = {
3510 	.pr_register	= dm_pr_register,
3511 	.pr_reserve	= dm_pr_reserve,
3512 	.pr_release	= dm_pr_release,
3513 	.pr_preempt	= dm_pr_preempt,
3514 	.pr_clear	= dm_pr_clear,
3515 	.pr_read_keys	= dm_pr_read_keys,
3516 	.pr_read_reservation = dm_pr_read_reservation,
3517 };
3518 
3519 static const struct block_device_operations dm_blk_dops = {
3520 	.submit_bio = dm_submit_bio,
3521 	.poll_bio = dm_poll_bio,
3522 	.open = dm_blk_open,
3523 	.release = dm_blk_close,
3524 	.ioctl = dm_blk_ioctl,
3525 	.getgeo = dm_blk_getgeo,
3526 	.report_zones = dm_blk_report_zones,
3527 	.pr_ops = &dm_pr_ops,
3528 	.owner = THIS_MODULE
3529 };
3530 
3531 static const struct block_device_operations dm_rq_blk_dops = {
3532 	.open = dm_blk_open,
3533 	.release = dm_blk_close,
3534 	.ioctl = dm_blk_ioctl,
3535 	.getgeo = dm_blk_getgeo,
3536 	.pr_ops = &dm_pr_ops,
3537 	.owner = THIS_MODULE
3538 };
3539 
3540 static const struct dax_operations dm_dax_ops = {
3541 	.direct_access = dm_dax_direct_access,
3542 	.zero_page_range = dm_dax_zero_page_range,
3543 	.recovery_write = dm_dax_recovery_write,
3544 };
3545 
3546 /*
3547  * module hooks
3548  */
3549 module_init(dm_init);
3550 module_exit(dm_exit);
3551 
3552 module_param(major, uint, 0);
3553 MODULE_PARM_DESC(major, "The major number of the device mapper");
3554 
3555 module_param(reserved_bio_based_ios, uint, 0644);
3556 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3557 
3558 module_param(dm_numa_node, int, 0644);
3559 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3560 
3561 module_param(swap_bios, int, 0644);
3562 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3563 
3564 MODULE_DESCRIPTION(DM_NAME " driver");
3565 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3566 MODULE_LICENSE("GPL");
3567