xref: /linux/drivers/md/dm.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28 
29 #include <trace/events/block.h>
30 
31 #define DM_MSG_PREFIX "core"
32 
33 #ifdef CONFIG_PRINTK
34 /*
35  * ratelimit state to be used in DMXXX_LIMIT().
36  */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 		       DEFAULT_RATELIMIT_INTERVAL,
39 		       DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42 
43 /*
44  * Cookies are numeric values sent with CHANGE and REMOVE
45  * uevents while resuming, removing or renaming the device.
46  */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per bio.
68  */
69 struct dm_io {
70 	struct mapped_device *md;
71 	int error;
72 	atomic_t io_count;
73 	struct bio *bio;
74 	unsigned long start_time;
75 	spinlock_t endio_lock;
76 	struct dm_stats_aux stats_aux;
77 };
78 
79 /*
80  * For request-based dm.
81  * One of these is allocated per request.
82  */
83 struct dm_rq_target_io {
84 	struct mapped_device *md;
85 	struct dm_target *ti;
86 	struct request *orig, *clone;
87 	struct kthread_work work;
88 	int error;
89 	union map_info info;
90 	struct dm_stats_aux stats_aux;
91 	unsigned long duration_jiffies;
92 	unsigned n_sectors;
93 };
94 
95 /*
96  * For request-based dm - the bio clones we allocate are embedded in these
97  * structs.
98  *
99  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100  * the bioset is created - this means the bio has to come at the end of the
101  * struct.
102  */
103 struct dm_rq_clone_bio_info {
104 	struct bio *orig;
105 	struct dm_rq_target_io *tio;
106 	struct bio clone;
107 };
108 
109 union map_info *dm_get_rq_mapinfo(struct request *rq)
110 {
111 	if (rq && rq->end_io_data)
112 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
113 	return NULL;
114 }
115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
116 
117 #define MINOR_ALLOCED ((void *)-1)
118 
119 /*
120  * Bits for the md->flags field.
121  */
122 #define DMF_BLOCK_IO_FOR_SUSPEND 0
123 #define DMF_SUSPENDED 1
124 #define DMF_FROZEN 2
125 #define DMF_FREEING 3
126 #define DMF_DELETING 4
127 #define DMF_NOFLUSH_SUSPENDING 5
128 #define DMF_DEFERRED_REMOVE 6
129 #define DMF_SUSPENDED_INTERNALLY 7
130 
131 /*
132  * A dummy definition to make RCU happy.
133  * struct dm_table should never be dereferenced in this file.
134  */
135 struct dm_table {
136 	int undefined__;
137 };
138 
139 /*
140  * Work processed by per-device workqueue.
141  */
142 struct mapped_device {
143 	struct srcu_struct io_barrier;
144 	struct mutex suspend_lock;
145 	atomic_t holders;
146 	atomic_t open_count;
147 
148 	/*
149 	 * The current mapping.
150 	 * Use dm_get_live_table{_fast} or take suspend_lock for
151 	 * dereference.
152 	 */
153 	struct dm_table __rcu *map;
154 
155 	struct list_head table_devices;
156 	struct mutex table_devices_lock;
157 
158 	unsigned long flags;
159 
160 	struct request_queue *queue;
161 	unsigned type;
162 	/* Protect queue and type against concurrent access. */
163 	struct mutex type_lock;
164 
165 	struct target_type *immutable_target_type;
166 
167 	struct gendisk *disk;
168 	char name[16];
169 
170 	void *interface_ptr;
171 
172 	/*
173 	 * A list of ios that arrived while we were suspended.
174 	 */
175 	atomic_t pending[2];
176 	wait_queue_head_t wait;
177 	struct work_struct work;
178 	struct bio_list deferred;
179 	spinlock_t deferred_lock;
180 
181 	/*
182 	 * Processing queue (flush)
183 	 */
184 	struct workqueue_struct *wq;
185 
186 	/*
187 	 * io objects are allocated from here.
188 	 */
189 	mempool_t *io_pool;
190 	mempool_t *rq_pool;
191 
192 	struct bio_set *bs;
193 
194 	/*
195 	 * Event handling.
196 	 */
197 	atomic_t event_nr;
198 	wait_queue_head_t eventq;
199 	atomic_t uevent_seq;
200 	struct list_head uevent_list;
201 	spinlock_t uevent_lock; /* Protect access to uevent_list */
202 
203 	/*
204 	 * freeze/thaw support require holding onto a super block
205 	 */
206 	struct super_block *frozen_sb;
207 	struct block_device *bdev;
208 
209 	/* forced geometry settings */
210 	struct hd_geometry geometry;
211 
212 	/* kobject and completion */
213 	struct dm_kobject_holder kobj_holder;
214 
215 	/* zero-length flush that will be cloned and submitted to targets */
216 	struct bio flush_bio;
217 
218 	/* the number of internal suspends */
219 	unsigned internal_suspend_count;
220 
221 	struct dm_stats stats;
222 
223 	struct kthread_worker kworker;
224 	struct task_struct *kworker_task;
225 
226 	/* for request-based merge heuristic in dm_request_fn() */
227 	unsigned seq_rq_merge_deadline_usecs;
228 	int last_rq_rw;
229 	sector_t last_rq_pos;
230 	ktime_t last_rq_start_time;
231 
232 	/* for blk-mq request-based DM support */
233 	struct blk_mq_tag_set tag_set;
234 	bool use_blk_mq;
235 };
236 
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242 
243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 	return md->use_blk_mq;
246 }
247 
248 /*
249  * For mempools pre-allocation at the table loading time.
250  */
251 struct dm_md_mempools {
252 	mempool_t *io_pool;
253 	mempool_t *rq_pool;
254 	struct bio_set *bs;
255 };
256 
257 struct table_device {
258 	struct list_head list;
259 	atomic_t count;
260 	struct dm_dev dm_dev;
261 };
262 
263 #define RESERVED_BIO_BASED_IOS		16
264 #define RESERVED_REQUEST_BASED_IOS	256
265 #define RESERVED_MAX_IOS		1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269 
270 /*
271  * Bio-based DM's mempools' reserved IOs set by the user.
272  */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274 
275 /*
276  * Request-based DM's mempools' reserved IOs set by the user.
277  */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279 
280 static unsigned __dm_get_module_param(unsigned *module_param,
281 				      unsigned def, unsigned max)
282 {
283 	unsigned param = ACCESS_ONCE(*module_param);
284 	unsigned modified_param = 0;
285 
286 	if (!param)
287 		modified_param = def;
288 	else if (param > max)
289 		modified_param = max;
290 
291 	if (modified_param) {
292 		(void)cmpxchg(module_param, param, modified_param);
293 		param = modified_param;
294 	}
295 
296 	return param;
297 }
298 
299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 	return __dm_get_module_param(&reserved_bio_based_ios,
302 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305 
306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 	return __dm_get_module_param(&reserved_rq_based_ios,
309 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312 
313 static int __init local_init(void)
314 {
315 	int r = -ENOMEM;
316 
317 	/* allocate a slab for the dm_ios */
318 	_io_cache = KMEM_CACHE(dm_io, 0);
319 	if (!_io_cache)
320 		return r;
321 
322 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 	if (!_rq_tio_cache)
324 		goto out_free_io_cache;
325 
326 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 				      __alignof__(struct request), 0, NULL);
328 	if (!_rq_cache)
329 		goto out_free_rq_tio_cache;
330 
331 	r = dm_uevent_init();
332 	if (r)
333 		goto out_free_rq_cache;
334 
335 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 	if (!deferred_remove_workqueue) {
337 		r = -ENOMEM;
338 		goto out_uevent_exit;
339 	}
340 
341 	_major = major;
342 	r = register_blkdev(_major, _name);
343 	if (r < 0)
344 		goto out_free_workqueue;
345 
346 	if (!_major)
347 		_major = r;
348 
349 	return 0;
350 
351 out_free_workqueue:
352 	destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 	dm_uevent_exit();
355 out_free_rq_cache:
356 	kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 	kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 	kmem_cache_destroy(_io_cache);
361 
362 	return r;
363 }
364 
365 static void local_exit(void)
366 {
367 	flush_scheduled_work();
368 	destroy_workqueue(deferred_remove_workqueue);
369 
370 	kmem_cache_destroy(_rq_cache);
371 	kmem_cache_destroy(_rq_tio_cache);
372 	kmem_cache_destroy(_io_cache);
373 	unregister_blkdev(_major, _name);
374 	dm_uevent_exit();
375 
376 	_major = 0;
377 
378 	DMINFO("cleaned up");
379 }
380 
381 static int (*_inits[])(void) __initdata = {
382 	local_init,
383 	dm_target_init,
384 	dm_linear_init,
385 	dm_stripe_init,
386 	dm_io_init,
387 	dm_kcopyd_init,
388 	dm_interface_init,
389 	dm_statistics_init,
390 };
391 
392 static void (*_exits[])(void) = {
393 	local_exit,
394 	dm_target_exit,
395 	dm_linear_exit,
396 	dm_stripe_exit,
397 	dm_io_exit,
398 	dm_kcopyd_exit,
399 	dm_interface_exit,
400 	dm_statistics_exit,
401 };
402 
403 static int __init dm_init(void)
404 {
405 	const int count = ARRAY_SIZE(_inits);
406 
407 	int r, i;
408 
409 	for (i = 0; i < count; i++) {
410 		r = _inits[i]();
411 		if (r)
412 			goto bad;
413 	}
414 
415 	return 0;
416 
417       bad:
418 	while (i--)
419 		_exits[i]();
420 
421 	return r;
422 }
423 
424 static void __exit dm_exit(void)
425 {
426 	int i = ARRAY_SIZE(_exits);
427 
428 	while (i--)
429 		_exits[i]();
430 
431 	/*
432 	 * Should be empty by this point.
433 	 */
434 	idr_destroy(&_minor_idr);
435 }
436 
437 /*
438  * Block device functions
439  */
440 int dm_deleting_md(struct mapped_device *md)
441 {
442 	return test_bit(DMF_DELETING, &md->flags);
443 }
444 
445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 	struct mapped_device *md;
448 
449 	spin_lock(&_minor_lock);
450 
451 	md = bdev->bd_disk->private_data;
452 	if (!md)
453 		goto out;
454 
455 	if (test_bit(DMF_FREEING, &md->flags) ||
456 	    dm_deleting_md(md)) {
457 		md = NULL;
458 		goto out;
459 	}
460 
461 	dm_get(md);
462 	atomic_inc(&md->open_count);
463 out:
464 	spin_unlock(&_minor_lock);
465 
466 	return md ? 0 : -ENXIO;
467 }
468 
469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 	struct mapped_device *md;
472 
473 	spin_lock(&_minor_lock);
474 
475 	md = disk->private_data;
476 	if (WARN_ON(!md))
477 		goto out;
478 
479 	if (atomic_dec_and_test(&md->open_count) &&
480 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
482 
483 	dm_put(md);
484 out:
485 	spin_unlock(&_minor_lock);
486 }
487 
488 int dm_open_count(struct mapped_device *md)
489 {
490 	return atomic_read(&md->open_count);
491 }
492 
493 /*
494  * Guarantees nothing is using the device before it's deleted.
495  */
496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 	int r = 0;
499 
500 	spin_lock(&_minor_lock);
501 
502 	if (dm_open_count(md)) {
503 		r = -EBUSY;
504 		if (mark_deferred)
505 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 		r = -EEXIST;
508 	else
509 		set_bit(DMF_DELETING, &md->flags);
510 
511 	spin_unlock(&_minor_lock);
512 
513 	return r;
514 }
515 
516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 	int r = 0;
519 
520 	spin_lock(&_minor_lock);
521 
522 	if (test_bit(DMF_DELETING, &md->flags))
523 		r = -EBUSY;
524 	else
525 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526 
527 	spin_unlock(&_minor_lock);
528 
529 	return r;
530 }
531 
532 static void do_deferred_remove(struct work_struct *w)
533 {
534 	dm_deferred_remove();
535 }
536 
537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 	return get_capacity(md->disk);
540 }
541 
542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 	return md->queue;
545 }
546 
547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 	return &md->stats;
550 }
551 
552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 	struct mapped_device *md = bdev->bd_disk->private_data;
555 
556 	return dm_get_geometry(md, geo);
557 }
558 
559 static int dm_get_live_table_for_ioctl(struct mapped_device *md,
560 		struct dm_target **tgt, struct block_device **bdev,
561 		fmode_t *mode, int *srcu_idx)
562 {
563 	struct dm_table *map;
564 	int r;
565 
566 retry:
567 	r = -ENOTTY;
568 	map = dm_get_live_table(md, srcu_idx);
569 	if (!map || !dm_table_get_size(map))
570 		goto out;
571 
572 	/* We only support devices that have a single target */
573 	if (dm_table_get_num_targets(map) != 1)
574 		goto out;
575 
576 	*tgt = dm_table_get_target(map, 0);
577 
578 	if (!(*tgt)->type->prepare_ioctl)
579 		goto out;
580 
581 	if (dm_suspended_md(md)) {
582 		r = -EAGAIN;
583 		goto out;
584 	}
585 
586 	r = (*tgt)->type->prepare_ioctl(*tgt, bdev, mode);
587 	if (r < 0)
588 		goto out;
589 
590 	return r;
591 
592 out:
593 	dm_put_live_table(md, *srcu_idx);
594 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
595 		msleep(10);
596 		goto retry;
597 	}
598 	return r;
599 }
600 
601 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
602 			unsigned int cmd, unsigned long arg)
603 {
604 	struct mapped_device *md = bdev->bd_disk->private_data;
605 	struct dm_target *tgt;
606 	struct block_device *tgt_bdev = NULL;
607 	int srcu_idx, r;
608 
609 	r = dm_get_live_table_for_ioctl(md, &tgt, &tgt_bdev, &mode, &srcu_idx);
610 	if (r < 0)
611 		return r;
612 
613 	if (r > 0) {
614 		/*
615 		 * Target determined this ioctl is being issued against
616 		 * a logical partition of the parent bdev; so extra
617 		 * validation is needed.
618 		 */
619 		r = scsi_verify_blk_ioctl(NULL, cmd);
620 		if (r)
621 			goto out;
622 	}
623 
624 	r =  __blkdev_driver_ioctl(tgt_bdev, mode, cmd, arg);
625 out:
626 	dm_put_live_table(md, srcu_idx);
627 	return r;
628 }
629 
630 static struct dm_io *alloc_io(struct mapped_device *md)
631 {
632 	return mempool_alloc(md->io_pool, GFP_NOIO);
633 }
634 
635 static void free_io(struct mapped_device *md, struct dm_io *io)
636 {
637 	mempool_free(io, md->io_pool);
638 }
639 
640 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
641 {
642 	bio_put(&tio->clone);
643 }
644 
645 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
646 					    gfp_t gfp_mask)
647 {
648 	return mempool_alloc(md->io_pool, gfp_mask);
649 }
650 
651 static void free_rq_tio(struct dm_rq_target_io *tio)
652 {
653 	mempool_free(tio, tio->md->io_pool);
654 }
655 
656 static struct request *alloc_clone_request(struct mapped_device *md,
657 					   gfp_t gfp_mask)
658 {
659 	return mempool_alloc(md->rq_pool, gfp_mask);
660 }
661 
662 static void free_clone_request(struct mapped_device *md, struct request *rq)
663 {
664 	mempool_free(rq, md->rq_pool);
665 }
666 
667 static int md_in_flight(struct mapped_device *md)
668 {
669 	return atomic_read(&md->pending[READ]) +
670 	       atomic_read(&md->pending[WRITE]);
671 }
672 
673 static void start_io_acct(struct dm_io *io)
674 {
675 	struct mapped_device *md = io->md;
676 	struct bio *bio = io->bio;
677 	int cpu;
678 	int rw = bio_data_dir(bio);
679 
680 	io->start_time = jiffies;
681 
682 	cpu = part_stat_lock();
683 	part_round_stats(cpu, &dm_disk(md)->part0);
684 	part_stat_unlock();
685 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
686 		atomic_inc_return(&md->pending[rw]));
687 
688 	if (unlikely(dm_stats_used(&md->stats)))
689 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
690 				    bio_sectors(bio), false, 0, &io->stats_aux);
691 }
692 
693 static void end_io_acct(struct dm_io *io)
694 {
695 	struct mapped_device *md = io->md;
696 	struct bio *bio = io->bio;
697 	unsigned long duration = jiffies - io->start_time;
698 	int pending;
699 	int rw = bio_data_dir(bio);
700 
701 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
702 
703 	if (unlikely(dm_stats_used(&md->stats)))
704 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
705 				    bio_sectors(bio), true, duration, &io->stats_aux);
706 
707 	/*
708 	 * After this is decremented the bio must not be touched if it is
709 	 * a flush.
710 	 */
711 	pending = atomic_dec_return(&md->pending[rw]);
712 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
713 	pending += atomic_read(&md->pending[rw^0x1]);
714 
715 	/* nudge anyone waiting on suspend queue */
716 	if (!pending)
717 		wake_up(&md->wait);
718 }
719 
720 /*
721  * Add the bio to the list of deferred io.
722  */
723 static void queue_io(struct mapped_device *md, struct bio *bio)
724 {
725 	unsigned long flags;
726 
727 	spin_lock_irqsave(&md->deferred_lock, flags);
728 	bio_list_add(&md->deferred, bio);
729 	spin_unlock_irqrestore(&md->deferred_lock, flags);
730 	queue_work(md->wq, &md->work);
731 }
732 
733 /*
734  * Everyone (including functions in this file), should use this
735  * function to access the md->map field, and make sure they call
736  * dm_put_live_table() when finished.
737  */
738 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
739 {
740 	*srcu_idx = srcu_read_lock(&md->io_barrier);
741 
742 	return srcu_dereference(md->map, &md->io_barrier);
743 }
744 
745 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
746 {
747 	srcu_read_unlock(&md->io_barrier, srcu_idx);
748 }
749 
750 void dm_sync_table(struct mapped_device *md)
751 {
752 	synchronize_srcu(&md->io_barrier);
753 	synchronize_rcu_expedited();
754 }
755 
756 /*
757  * A fast alternative to dm_get_live_table/dm_put_live_table.
758  * The caller must not block between these two functions.
759  */
760 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
761 {
762 	rcu_read_lock();
763 	return rcu_dereference(md->map);
764 }
765 
766 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
767 {
768 	rcu_read_unlock();
769 }
770 
771 /*
772  * Open a table device so we can use it as a map destination.
773  */
774 static int open_table_device(struct table_device *td, dev_t dev,
775 			     struct mapped_device *md)
776 {
777 	static char *_claim_ptr = "I belong to device-mapper";
778 	struct block_device *bdev;
779 
780 	int r;
781 
782 	BUG_ON(td->dm_dev.bdev);
783 
784 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
785 	if (IS_ERR(bdev))
786 		return PTR_ERR(bdev);
787 
788 	r = bd_link_disk_holder(bdev, dm_disk(md));
789 	if (r) {
790 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
791 		return r;
792 	}
793 
794 	td->dm_dev.bdev = bdev;
795 	return 0;
796 }
797 
798 /*
799  * Close a table device that we've been using.
800  */
801 static void close_table_device(struct table_device *td, struct mapped_device *md)
802 {
803 	if (!td->dm_dev.bdev)
804 		return;
805 
806 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
807 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
808 	td->dm_dev.bdev = NULL;
809 }
810 
811 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
812 					      fmode_t mode) {
813 	struct table_device *td;
814 
815 	list_for_each_entry(td, l, list)
816 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
817 			return td;
818 
819 	return NULL;
820 }
821 
822 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
823 			struct dm_dev **result) {
824 	int r;
825 	struct table_device *td;
826 
827 	mutex_lock(&md->table_devices_lock);
828 	td = find_table_device(&md->table_devices, dev, mode);
829 	if (!td) {
830 		td = kmalloc(sizeof(*td), GFP_KERNEL);
831 		if (!td) {
832 			mutex_unlock(&md->table_devices_lock);
833 			return -ENOMEM;
834 		}
835 
836 		td->dm_dev.mode = mode;
837 		td->dm_dev.bdev = NULL;
838 
839 		if ((r = open_table_device(td, dev, md))) {
840 			mutex_unlock(&md->table_devices_lock);
841 			kfree(td);
842 			return r;
843 		}
844 
845 		format_dev_t(td->dm_dev.name, dev);
846 
847 		atomic_set(&td->count, 0);
848 		list_add(&td->list, &md->table_devices);
849 	}
850 	atomic_inc(&td->count);
851 	mutex_unlock(&md->table_devices_lock);
852 
853 	*result = &td->dm_dev;
854 	return 0;
855 }
856 EXPORT_SYMBOL_GPL(dm_get_table_device);
857 
858 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
859 {
860 	struct table_device *td = container_of(d, struct table_device, dm_dev);
861 
862 	mutex_lock(&md->table_devices_lock);
863 	if (atomic_dec_and_test(&td->count)) {
864 		close_table_device(td, md);
865 		list_del(&td->list);
866 		kfree(td);
867 	}
868 	mutex_unlock(&md->table_devices_lock);
869 }
870 EXPORT_SYMBOL(dm_put_table_device);
871 
872 static void free_table_devices(struct list_head *devices)
873 {
874 	struct list_head *tmp, *next;
875 
876 	list_for_each_safe(tmp, next, devices) {
877 		struct table_device *td = list_entry(tmp, struct table_device, list);
878 
879 		DMWARN("dm_destroy: %s still exists with %d references",
880 		       td->dm_dev.name, atomic_read(&td->count));
881 		kfree(td);
882 	}
883 }
884 
885 /*
886  * Get the geometry associated with a dm device
887  */
888 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
889 {
890 	*geo = md->geometry;
891 
892 	return 0;
893 }
894 
895 /*
896  * Set the geometry of a device.
897  */
898 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
899 {
900 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
901 
902 	if (geo->start > sz) {
903 		DMWARN("Start sector is beyond the geometry limits.");
904 		return -EINVAL;
905 	}
906 
907 	md->geometry = *geo;
908 
909 	return 0;
910 }
911 
912 /*-----------------------------------------------------------------
913  * CRUD START:
914  *   A more elegant soln is in the works that uses the queue
915  *   merge fn, unfortunately there are a couple of changes to
916  *   the block layer that I want to make for this.  So in the
917  *   interests of getting something for people to use I give
918  *   you this clearly demarcated crap.
919  *---------------------------------------------------------------*/
920 
921 static int __noflush_suspending(struct mapped_device *md)
922 {
923 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
924 }
925 
926 /*
927  * Decrements the number of outstanding ios that a bio has been
928  * cloned into, completing the original io if necc.
929  */
930 static void dec_pending(struct dm_io *io, int error)
931 {
932 	unsigned long flags;
933 	int io_error;
934 	struct bio *bio;
935 	struct mapped_device *md = io->md;
936 
937 	/* Push-back supersedes any I/O errors */
938 	if (unlikely(error)) {
939 		spin_lock_irqsave(&io->endio_lock, flags);
940 		if (!(io->error > 0 && __noflush_suspending(md)))
941 			io->error = error;
942 		spin_unlock_irqrestore(&io->endio_lock, flags);
943 	}
944 
945 	if (atomic_dec_and_test(&io->io_count)) {
946 		if (io->error == DM_ENDIO_REQUEUE) {
947 			/*
948 			 * Target requested pushing back the I/O.
949 			 */
950 			spin_lock_irqsave(&md->deferred_lock, flags);
951 			if (__noflush_suspending(md))
952 				bio_list_add_head(&md->deferred, io->bio);
953 			else
954 				/* noflush suspend was interrupted. */
955 				io->error = -EIO;
956 			spin_unlock_irqrestore(&md->deferred_lock, flags);
957 		}
958 
959 		io_error = io->error;
960 		bio = io->bio;
961 		end_io_acct(io);
962 		free_io(md, io);
963 
964 		if (io_error == DM_ENDIO_REQUEUE)
965 			return;
966 
967 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
968 			/*
969 			 * Preflush done for flush with data, reissue
970 			 * without REQ_FLUSH.
971 			 */
972 			bio->bi_rw &= ~REQ_FLUSH;
973 			queue_io(md, bio);
974 		} else {
975 			/* done with normal IO or empty flush */
976 			trace_block_bio_complete(md->queue, bio, io_error);
977 			bio->bi_error = io_error;
978 			bio_endio(bio);
979 		}
980 	}
981 }
982 
983 static void disable_write_same(struct mapped_device *md)
984 {
985 	struct queue_limits *limits = dm_get_queue_limits(md);
986 
987 	/* device doesn't really support WRITE SAME, disable it */
988 	limits->max_write_same_sectors = 0;
989 }
990 
991 static void clone_endio(struct bio *bio)
992 {
993 	int error = bio->bi_error;
994 	int r = error;
995 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
996 	struct dm_io *io = tio->io;
997 	struct mapped_device *md = tio->io->md;
998 	dm_endio_fn endio = tio->ti->type->end_io;
999 
1000 	if (endio) {
1001 		r = endio(tio->ti, bio, error);
1002 		if (r < 0 || r == DM_ENDIO_REQUEUE)
1003 			/*
1004 			 * error and requeue request are handled
1005 			 * in dec_pending().
1006 			 */
1007 			error = r;
1008 		else if (r == DM_ENDIO_INCOMPLETE)
1009 			/* The target will handle the io */
1010 			return;
1011 		else if (r) {
1012 			DMWARN("unimplemented target endio return value: %d", r);
1013 			BUG();
1014 		}
1015 	}
1016 
1017 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1018 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1019 		disable_write_same(md);
1020 
1021 	free_tio(md, tio);
1022 	dec_pending(io, error);
1023 }
1024 
1025 /*
1026  * Partial completion handling for request-based dm
1027  */
1028 static void end_clone_bio(struct bio *clone)
1029 {
1030 	struct dm_rq_clone_bio_info *info =
1031 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1032 	struct dm_rq_target_io *tio = info->tio;
1033 	struct bio *bio = info->orig;
1034 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1035 	int error = clone->bi_error;
1036 
1037 	bio_put(clone);
1038 
1039 	if (tio->error)
1040 		/*
1041 		 * An error has already been detected on the request.
1042 		 * Once error occurred, just let clone->end_io() handle
1043 		 * the remainder.
1044 		 */
1045 		return;
1046 	else if (error) {
1047 		/*
1048 		 * Don't notice the error to the upper layer yet.
1049 		 * The error handling decision is made by the target driver,
1050 		 * when the request is completed.
1051 		 */
1052 		tio->error = error;
1053 		return;
1054 	}
1055 
1056 	/*
1057 	 * I/O for the bio successfully completed.
1058 	 * Notice the data completion to the upper layer.
1059 	 */
1060 
1061 	/*
1062 	 * bios are processed from the head of the list.
1063 	 * So the completing bio should always be rq->bio.
1064 	 * If it's not, something wrong is happening.
1065 	 */
1066 	if (tio->orig->bio != bio)
1067 		DMERR("bio completion is going in the middle of the request");
1068 
1069 	/*
1070 	 * Update the original request.
1071 	 * Do not use blk_end_request() here, because it may complete
1072 	 * the original request before the clone, and break the ordering.
1073 	 */
1074 	blk_update_request(tio->orig, 0, nr_bytes);
1075 }
1076 
1077 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1078 {
1079 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1080 }
1081 
1082 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1083 {
1084 	if (unlikely(dm_stats_used(&md->stats))) {
1085 		struct dm_rq_target_io *tio = tio_from_request(orig);
1086 		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1087 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1088 				    tio->n_sectors, true, tio->duration_jiffies,
1089 				    &tio->stats_aux);
1090 	}
1091 }
1092 
1093 /*
1094  * Don't touch any member of the md after calling this function because
1095  * the md may be freed in dm_put() at the end of this function.
1096  * Or do dm_get() before calling this function and dm_put() later.
1097  */
1098 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1099 {
1100 	atomic_dec(&md->pending[rw]);
1101 
1102 	/* nudge anyone waiting on suspend queue */
1103 	if (!md_in_flight(md))
1104 		wake_up(&md->wait);
1105 
1106 	/*
1107 	 * Run this off this callpath, as drivers could invoke end_io while
1108 	 * inside their request_fn (and holding the queue lock). Calling
1109 	 * back into ->request_fn() could deadlock attempting to grab the
1110 	 * queue lock again.
1111 	 */
1112 	if (run_queue) {
1113 		if (md->queue->mq_ops)
1114 			blk_mq_run_hw_queues(md->queue, true);
1115 		else
1116 			blk_run_queue_async(md->queue);
1117 	}
1118 
1119 	/*
1120 	 * dm_put() must be at the end of this function. See the comment above
1121 	 */
1122 	dm_put(md);
1123 }
1124 
1125 static void free_rq_clone(struct request *clone)
1126 {
1127 	struct dm_rq_target_io *tio = clone->end_io_data;
1128 	struct mapped_device *md = tio->md;
1129 
1130 	blk_rq_unprep_clone(clone);
1131 
1132 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1133 		/* stacked on blk-mq queue(s) */
1134 		tio->ti->type->release_clone_rq(clone);
1135 	else if (!md->queue->mq_ops)
1136 		/* request_fn queue stacked on request_fn queue(s) */
1137 		free_clone_request(md, clone);
1138 	/*
1139 	 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1140 	 * no need to call free_clone_request() because we leverage blk-mq by
1141 	 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1142 	 */
1143 
1144 	if (!md->queue->mq_ops)
1145 		free_rq_tio(tio);
1146 }
1147 
1148 /*
1149  * Complete the clone and the original request.
1150  * Must be called without clone's queue lock held,
1151  * see end_clone_request() for more details.
1152  */
1153 static void dm_end_request(struct request *clone, int error)
1154 {
1155 	int rw = rq_data_dir(clone);
1156 	struct dm_rq_target_io *tio = clone->end_io_data;
1157 	struct mapped_device *md = tio->md;
1158 	struct request *rq = tio->orig;
1159 
1160 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1161 		rq->errors = clone->errors;
1162 		rq->resid_len = clone->resid_len;
1163 
1164 		if (rq->sense)
1165 			/*
1166 			 * We are using the sense buffer of the original
1167 			 * request.
1168 			 * So setting the length of the sense data is enough.
1169 			 */
1170 			rq->sense_len = clone->sense_len;
1171 	}
1172 
1173 	free_rq_clone(clone);
1174 	rq_end_stats(md, rq);
1175 	if (!rq->q->mq_ops)
1176 		blk_end_request_all(rq, error);
1177 	else
1178 		blk_mq_end_request(rq, error);
1179 	rq_completed(md, rw, true);
1180 }
1181 
1182 static void dm_unprep_request(struct request *rq)
1183 {
1184 	struct dm_rq_target_io *tio = tio_from_request(rq);
1185 	struct request *clone = tio->clone;
1186 
1187 	if (!rq->q->mq_ops) {
1188 		rq->special = NULL;
1189 		rq->cmd_flags &= ~REQ_DONTPREP;
1190 	}
1191 
1192 	if (clone)
1193 		free_rq_clone(clone);
1194 }
1195 
1196 /*
1197  * Requeue the original request of a clone.
1198  */
1199 static void old_requeue_request(struct request *rq)
1200 {
1201 	struct request_queue *q = rq->q;
1202 	unsigned long flags;
1203 
1204 	spin_lock_irqsave(q->queue_lock, flags);
1205 	blk_requeue_request(q, rq);
1206 	blk_run_queue_async(q);
1207 	spin_unlock_irqrestore(q->queue_lock, flags);
1208 }
1209 
1210 static void dm_requeue_original_request(struct mapped_device *md,
1211 					struct request *rq)
1212 {
1213 	int rw = rq_data_dir(rq);
1214 
1215 	dm_unprep_request(rq);
1216 
1217 	rq_end_stats(md, rq);
1218 	if (!rq->q->mq_ops)
1219 		old_requeue_request(rq);
1220 	else {
1221 		blk_mq_requeue_request(rq);
1222 		blk_mq_kick_requeue_list(rq->q);
1223 	}
1224 
1225 	rq_completed(md, rw, false);
1226 }
1227 
1228 static void old_stop_queue(struct request_queue *q)
1229 {
1230 	unsigned long flags;
1231 
1232 	if (blk_queue_stopped(q))
1233 		return;
1234 
1235 	spin_lock_irqsave(q->queue_lock, flags);
1236 	blk_stop_queue(q);
1237 	spin_unlock_irqrestore(q->queue_lock, flags);
1238 }
1239 
1240 static void stop_queue(struct request_queue *q)
1241 {
1242 	if (!q->mq_ops)
1243 		old_stop_queue(q);
1244 	else
1245 		blk_mq_stop_hw_queues(q);
1246 }
1247 
1248 static void old_start_queue(struct request_queue *q)
1249 {
1250 	unsigned long flags;
1251 
1252 	spin_lock_irqsave(q->queue_lock, flags);
1253 	if (blk_queue_stopped(q))
1254 		blk_start_queue(q);
1255 	spin_unlock_irqrestore(q->queue_lock, flags);
1256 }
1257 
1258 static void start_queue(struct request_queue *q)
1259 {
1260 	if (!q->mq_ops)
1261 		old_start_queue(q);
1262 	else
1263 		blk_mq_start_stopped_hw_queues(q, true);
1264 }
1265 
1266 static void dm_done(struct request *clone, int error, bool mapped)
1267 {
1268 	int r = error;
1269 	struct dm_rq_target_io *tio = clone->end_io_data;
1270 	dm_request_endio_fn rq_end_io = NULL;
1271 
1272 	if (tio->ti) {
1273 		rq_end_io = tio->ti->type->rq_end_io;
1274 
1275 		if (mapped && rq_end_io)
1276 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1277 	}
1278 
1279 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1280 		     !clone->q->limits.max_write_same_sectors))
1281 		disable_write_same(tio->md);
1282 
1283 	if (r <= 0)
1284 		/* The target wants to complete the I/O */
1285 		dm_end_request(clone, r);
1286 	else if (r == DM_ENDIO_INCOMPLETE)
1287 		/* The target will handle the I/O */
1288 		return;
1289 	else if (r == DM_ENDIO_REQUEUE)
1290 		/* The target wants to requeue the I/O */
1291 		dm_requeue_original_request(tio->md, tio->orig);
1292 	else {
1293 		DMWARN("unimplemented target endio return value: %d", r);
1294 		BUG();
1295 	}
1296 }
1297 
1298 /*
1299  * Request completion handler for request-based dm
1300  */
1301 static void dm_softirq_done(struct request *rq)
1302 {
1303 	bool mapped = true;
1304 	struct dm_rq_target_io *tio = tio_from_request(rq);
1305 	struct request *clone = tio->clone;
1306 	int rw;
1307 
1308 	if (!clone) {
1309 		rq_end_stats(tio->md, rq);
1310 		rw = rq_data_dir(rq);
1311 		if (!rq->q->mq_ops) {
1312 			blk_end_request_all(rq, tio->error);
1313 			rq_completed(tio->md, rw, false);
1314 			free_rq_tio(tio);
1315 		} else {
1316 			blk_mq_end_request(rq, tio->error);
1317 			rq_completed(tio->md, rw, false);
1318 		}
1319 		return;
1320 	}
1321 
1322 	if (rq->cmd_flags & REQ_FAILED)
1323 		mapped = false;
1324 
1325 	dm_done(clone, tio->error, mapped);
1326 }
1327 
1328 /*
1329  * Complete the clone and the original request with the error status
1330  * through softirq context.
1331  */
1332 static void dm_complete_request(struct request *rq, int error)
1333 {
1334 	struct dm_rq_target_io *tio = tio_from_request(rq);
1335 
1336 	tio->error = error;
1337 	blk_complete_request(rq);
1338 }
1339 
1340 /*
1341  * Complete the not-mapped clone and the original request with the error status
1342  * through softirq context.
1343  * Target's rq_end_io() function isn't called.
1344  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1345  */
1346 static void dm_kill_unmapped_request(struct request *rq, int error)
1347 {
1348 	rq->cmd_flags |= REQ_FAILED;
1349 	dm_complete_request(rq, error);
1350 }
1351 
1352 /*
1353  * Called with the clone's queue lock held (for non-blk-mq)
1354  */
1355 static void end_clone_request(struct request *clone, int error)
1356 {
1357 	struct dm_rq_target_io *tio = clone->end_io_data;
1358 
1359 	if (!clone->q->mq_ops) {
1360 		/*
1361 		 * For just cleaning up the information of the queue in which
1362 		 * the clone was dispatched.
1363 		 * The clone is *NOT* freed actually here because it is alloced
1364 		 * from dm own mempool (REQ_ALLOCED isn't set).
1365 		 */
1366 		__blk_put_request(clone->q, clone);
1367 	}
1368 
1369 	/*
1370 	 * Actual request completion is done in a softirq context which doesn't
1371 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1372 	 *     - another request may be submitted by the upper level driver
1373 	 *       of the stacking during the completion
1374 	 *     - the submission which requires queue lock may be done
1375 	 *       against this clone's queue
1376 	 */
1377 	dm_complete_request(tio->orig, error);
1378 }
1379 
1380 /*
1381  * Return maximum size of I/O possible at the supplied sector up to the current
1382  * target boundary.
1383  */
1384 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1385 {
1386 	sector_t target_offset = dm_target_offset(ti, sector);
1387 
1388 	return ti->len - target_offset;
1389 }
1390 
1391 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1392 {
1393 	sector_t len = max_io_len_target_boundary(sector, ti);
1394 	sector_t offset, max_len;
1395 
1396 	/*
1397 	 * Does the target need to split even further?
1398 	 */
1399 	if (ti->max_io_len) {
1400 		offset = dm_target_offset(ti, sector);
1401 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1402 			max_len = sector_div(offset, ti->max_io_len);
1403 		else
1404 			max_len = offset & (ti->max_io_len - 1);
1405 		max_len = ti->max_io_len - max_len;
1406 
1407 		if (len > max_len)
1408 			len = max_len;
1409 	}
1410 
1411 	return len;
1412 }
1413 
1414 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1415 {
1416 	if (len > UINT_MAX) {
1417 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1418 		      (unsigned long long)len, UINT_MAX);
1419 		ti->error = "Maximum size of target IO is too large";
1420 		return -EINVAL;
1421 	}
1422 
1423 	ti->max_io_len = (uint32_t) len;
1424 
1425 	return 0;
1426 }
1427 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1428 
1429 /*
1430  * A target may call dm_accept_partial_bio only from the map routine.  It is
1431  * allowed for all bio types except REQ_FLUSH.
1432  *
1433  * dm_accept_partial_bio informs the dm that the target only wants to process
1434  * additional n_sectors sectors of the bio and the rest of the data should be
1435  * sent in a next bio.
1436  *
1437  * A diagram that explains the arithmetics:
1438  * +--------------------+---------------+-------+
1439  * |         1          |       2       |   3   |
1440  * +--------------------+---------------+-------+
1441  *
1442  * <-------------- *tio->len_ptr --------------->
1443  *                      <------- bi_size ------->
1444  *                      <-- n_sectors -->
1445  *
1446  * Region 1 was already iterated over with bio_advance or similar function.
1447  *	(it may be empty if the target doesn't use bio_advance)
1448  * Region 2 is the remaining bio size that the target wants to process.
1449  *	(it may be empty if region 1 is non-empty, although there is no reason
1450  *	 to make it empty)
1451  * The target requires that region 3 is to be sent in the next bio.
1452  *
1453  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1454  * the partially processed part (the sum of regions 1+2) must be the same for all
1455  * copies of the bio.
1456  */
1457 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1458 {
1459 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1460 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1461 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1462 	BUG_ON(bi_size > *tio->len_ptr);
1463 	BUG_ON(n_sectors > bi_size);
1464 	*tio->len_ptr -= bi_size - n_sectors;
1465 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1466 }
1467 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1468 
1469 static void __map_bio(struct dm_target_io *tio)
1470 {
1471 	int r;
1472 	sector_t sector;
1473 	struct mapped_device *md;
1474 	struct bio *clone = &tio->clone;
1475 	struct dm_target *ti = tio->ti;
1476 
1477 	clone->bi_end_io = clone_endio;
1478 
1479 	/*
1480 	 * Map the clone.  If r == 0 we don't need to do
1481 	 * anything, the target has assumed ownership of
1482 	 * this io.
1483 	 */
1484 	atomic_inc(&tio->io->io_count);
1485 	sector = clone->bi_iter.bi_sector;
1486 	r = ti->type->map(ti, clone);
1487 	if (r == DM_MAPIO_REMAPPED) {
1488 		/* the bio has been remapped so dispatch it */
1489 
1490 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1491 				      tio->io->bio->bi_bdev->bd_dev, sector);
1492 
1493 		generic_make_request(clone);
1494 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1495 		/* error the io and bail out, or requeue it if needed */
1496 		md = tio->io->md;
1497 		dec_pending(tio->io, r);
1498 		free_tio(md, tio);
1499 	} else if (r != DM_MAPIO_SUBMITTED) {
1500 		DMWARN("unimplemented target map return value: %d", r);
1501 		BUG();
1502 	}
1503 }
1504 
1505 struct clone_info {
1506 	struct mapped_device *md;
1507 	struct dm_table *map;
1508 	struct bio *bio;
1509 	struct dm_io *io;
1510 	sector_t sector;
1511 	unsigned sector_count;
1512 };
1513 
1514 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1515 {
1516 	bio->bi_iter.bi_sector = sector;
1517 	bio->bi_iter.bi_size = to_bytes(len);
1518 }
1519 
1520 /*
1521  * Creates a bio that consists of range of complete bvecs.
1522  */
1523 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1524 		      sector_t sector, unsigned len)
1525 {
1526 	struct bio *clone = &tio->clone;
1527 
1528 	__bio_clone_fast(clone, bio);
1529 
1530 	if (bio_integrity(bio))
1531 		bio_integrity_clone(clone, bio, GFP_NOIO);
1532 
1533 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1534 	clone->bi_iter.bi_size = to_bytes(len);
1535 
1536 	if (bio_integrity(bio))
1537 		bio_integrity_trim(clone, 0, len);
1538 }
1539 
1540 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1541 				      struct dm_target *ti,
1542 				      unsigned target_bio_nr)
1543 {
1544 	struct dm_target_io *tio;
1545 	struct bio *clone;
1546 
1547 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1548 	tio = container_of(clone, struct dm_target_io, clone);
1549 
1550 	tio->io = ci->io;
1551 	tio->ti = ti;
1552 	tio->target_bio_nr = target_bio_nr;
1553 
1554 	return tio;
1555 }
1556 
1557 static void __clone_and_map_simple_bio(struct clone_info *ci,
1558 				       struct dm_target *ti,
1559 				       unsigned target_bio_nr, unsigned *len)
1560 {
1561 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1562 	struct bio *clone = &tio->clone;
1563 
1564 	tio->len_ptr = len;
1565 
1566 	__bio_clone_fast(clone, ci->bio);
1567 	if (len)
1568 		bio_setup_sector(clone, ci->sector, *len);
1569 
1570 	__map_bio(tio);
1571 }
1572 
1573 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1574 				  unsigned num_bios, unsigned *len)
1575 {
1576 	unsigned target_bio_nr;
1577 
1578 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1579 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1580 }
1581 
1582 static int __send_empty_flush(struct clone_info *ci)
1583 {
1584 	unsigned target_nr = 0;
1585 	struct dm_target *ti;
1586 
1587 	BUG_ON(bio_has_data(ci->bio));
1588 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1589 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1590 
1591 	return 0;
1592 }
1593 
1594 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1595 				     sector_t sector, unsigned *len)
1596 {
1597 	struct bio *bio = ci->bio;
1598 	struct dm_target_io *tio;
1599 	unsigned target_bio_nr;
1600 	unsigned num_target_bios = 1;
1601 
1602 	/*
1603 	 * Does the target want to receive duplicate copies of the bio?
1604 	 */
1605 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1606 		num_target_bios = ti->num_write_bios(ti, bio);
1607 
1608 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1609 		tio = alloc_tio(ci, ti, target_bio_nr);
1610 		tio->len_ptr = len;
1611 		clone_bio(tio, bio, sector, *len);
1612 		__map_bio(tio);
1613 	}
1614 }
1615 
1616 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1617 
1618 static unsigned get_num_discard_bios(struct dm_target *ti)
1619 {
1620 	return ti->num_discard_bios;
1621 }
1622 
1623 static unsigned get_num_write_same_bios(struct dm_target *ti)
1624 {
1625 	return ti->num_write_same_bios;
1626 }
1627 
1628 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1629 
1630 static bool is_split_required_for_discard(struct dm_target *ti)
1631 {
1632 	return ti->split_discard_bios;
1633 }
1634 
1635 static int __send_changing_extent_only(struct clone_info *ci,
1636 				       get_num_bios_fn get_num_bios,
1637 				       is_split_required_fn is_split_required)
1638 {
1639 	struct dm_target *ti;
1640 	unsigned len;
1641 	unsigned num_bios;
1642 
1643 	do {
1644 		ti = dm_table_find_target(ci->map, ci->sector);
1645 		if (!dm_target_is_valid(ti))
1646 			return -EIO;
1647 
1648 		/*
1649 		 * Even though the device advertised support for this type of
1650 		 * request, that does not mean every target supports it, and
1651 		 * reconfiguration might also have changed that since the
1652 		 * check was performed.
1653 		 */
1654 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1655 		if (!num_bios)
1656 			return -EOPNOTSUPP;
1657 
1658 		if (is_split_required && !is_split_required(ti))
1659 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1660 		else
1661 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1662 
1663 		__send_duplicate_bios(ci, ti, num_bios, &len);
1664 
1665 		ci->sector += len;
1666 	} while (ci->sector_count -= len);
1667 
1668 	return 0;
1669 }
1670 
1671 static int __send_discard(struct clone_info *ci)
1672 {
1673 	return __send_changing_extent_only(ci, get_num_discard_bios,
1674 					   is_split_required_for_discard);
1675 }
1676 
1677 static int __send_write_same(struct clone_info *ci)
1678 {
1679 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1680 }
1681 
1682 /*
1683  * Select the correct strategy for processing a non-flush bio.
1684  */
1685 static int __split_and_process_non_flush(struct clone_info *ci)
1686 {
1687 	struct bio *bio = ci->bio;
1688 	struct dm_target *ti;
1689 	unsigned len;
1690 
1691 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1692 		return __send_discard(ci);
1693 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1694 		return __send_write_same(ci);
1695 
1696 	ti = dm_table_find_target(ci->map, ci->sector);
1697 	if (!dm_target_is_valid(ti))
1698 		return -EIO;
1699 
1700 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1701 
1702 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1703 
1704 	ci->sector += len;
1705 	ci->sector_count -= len;
1706 
1707 	return 0;
1708 }
1709 
1710 /*
1711  * Entry point to split a bio into clones and submit them to the targets.
1712  */
1713 static void __split_and_process_bio(struct mapped_device *md,
1714 				    struct dm_table *map, struct bio *bio)
1715 {
1716 	struct clone_info ci;
1717 	int error = 0;
1718 
1719 	if (unlikely(!map)) {
1720 		bio_io_error(bio);
1721 		return;
1722 	}
1723 
1724 	ci.map = map;
1725 	ci.md = md;
1726 	ci.io = alloc_io(md);
1727 	ci.io->error = 0;
1728 	atomic_set(&ci.io->io_count, 1);
1729 	ci.io->bio = bio;
1730 	ci.io->md = md;
1731 	spin_lock_init(&ci.io->endio_lock);
1732 	ci.sector = bio->bi_iter.bi_sector;
1733 
1734 	start_io_acct(ci.io);
1735 
1736 	if (bio->bi_rw & REQ_FLUSH) {
1737 		ci.bio = &ci.md->flush_bio;
1738 		ci.sector_count = 0;
1739 		error = __send_empty_flush(&ci);
1740 		/* dec_pending submits any data associated with flush */
1741 	} else {
1742 		ci.bio = bio;
1743 		ci.sector_count = bio_sectors(bio);
1744 		while (ci.sector_count && !error)
1745 			error = __split_and_process_non_flush(&ci);
1746 	}
1747 
1748 	/* drop the extra reference count */
1749 	dec_pending(ci.io, error);
1750 }
1751 /*-----------------------------------------------------------------
1752  * CRUD END
1753  *---------------------------------------------------------------*/
1754 
1755 /*
1756  * The request function that just remaps the bio built up by
1757  * dm_merge_bvec.
1758  */
1759 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1760 {
1761 	int rw = bio_data_dir(bio);
1762 	struct mapped_device *md = q->queuedata;
1763 	int srcu_idx;
1764 	struct dm_table *map;
1765 
1766 	map = dm_get_live_table(md, &srcu_idx);
1767 
1768 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1769 
1770 	/* if we're suspended, we have to queue this io for later */
1771 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1772 		dm_put_live_table(md, srcu_idx);
1773 
1774 		if (bio_rw(bio) != READA)
1775 			queue_io(md, bio);
1776 		else
1777 			bio_io_error(bio);
1778 		return BLK_QC_T_NONE;
1779 	}
1780 
1781 	__split_and_process_bio(md, map, bio);
1782 	dm_put_live_table(md, srcu_idx);
1783 	return BLK_QC_T_NONE;
1784 }
1785 
1786 int dm_request_based(struct mapped_device *md)
1787 {
1788 	return blk_queue_stackable(md->queue);
1789 }
1790 
1791 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1792 {
1793 	int r;
1794 
1795 	if (blk_queue_io_stat(clone->q))
1796 		clone->cmd_flags |= REQ_IO_STAT;
1797 
1798 	clone->start_time = jiffies;
1799 	r = blk_insert_cloned_request(clone->q, clone);
1800 	if (r)
1801 		/* must complete clone in terms of original request */
1802 		dm_complete_request(rq, r);
1803 }
1804 
1805 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1806 				 void *data)
1807 {
1808 	struct dm_rq_target_io *tio = data;
1809 	struct dm_rq_clone_bio_info *info =
1810 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1811 
1812 	info->orig = bio_orig;
1813 	info->tio = tio;
1814 	bio->bi_end_io = end_clone_bio;
1815 
1816 	return 0;
1817 }
1818 
1819 static int setup_clone(struct request *clone, struct request *rq,
1820 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1821 {
1822 	int r;
1823 
1824 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1825 			      dm_rq_bio_constructor, tio);
1826 	if (r)
1827 		return r;
1828 
1829 	clone->cmd = rq->cmd;
1830 	clone->cmd_len = rq->cmd_len;
1831 	clone->sense = rq->sense;
1832 	clone->end_io = end_clone_request;
1833 	clone->end_io_data = tio;
1834 
1835 	tio->clone = clone;
1836 
1837 	return 0;
1838 }
1839 
1840 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1841 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1842 {
1843 	/*
1844 	 * Do not allocate a clone if tio->clone was already set
1845 	 * (see: dm_mq_queue_rq).
1846 	 */
1847 	bool alloc_clone = !tio->clone;
1848 	struct request *clone;
1849 
1850 	if (alloc_clone) {
1851 		clone = alloc_clone_request(md, gfp_mask);
1852 		if (!clone)
1853 			return NULL;
1854 	} else
1855 		clone = tio->clone;
1856 
1857 	blk_rq_init(NULL, clone);
1858 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1859 		/* -ENOMEM */
1860 		if (alloc_clone)
1861 			free_clone_request(md, clone);
1862 		return NULL;
1863 	}
1864 
1865 	return clone;
1866 }
1867 
1868 static void map_tio_request(struct kthread_work *work);
1869 
1870 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1871 		     struct mapped_device *md)
1872 {
1873 	tio->md = md;
1874 	tio->ti = NULL;
1875 	tio->clone = NULL;
1876 	tio->orig = rq;
1877 	tio->error = 0;
1878 	memset(&tio->info, 0, sizeof(tio->info));
1879 	if (md->kworker_task)
1880 		init_kthread_work(&tio->work, map_tio_request);
1881 }
1882 
1883 static struct dm_rq_target_io *prep_tio(struct request *rq,
1884 					struct mapped_device *md, gfp_t gfp_mask)
1885 {
1886 	struct dm_rq_target_io *tio;
1887 	int srcu_idx;
1888 	struct dm_table *table;
1889 
1890 	tio = alloc_rq_tio(md, gfp_mask);
1891 	if (!tio)
1892 		return NULL;
1893 
1894 	init_tio(tio, rq, md);
1895 
1896 	table = dm_get_live_table(md, &srcu_idx);
1897 	if (!dm_table_mq_request_based(table)) {
1898 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1899 			dm_put_live_table(md, srcu_idx);
1900 			free_rq_tio(tio);
1901 			return NULL;
1902 		}
1903 	}
1904 	dm_put_live_table(md, srcu_idx);
1905 
1906 	return tio;
1907 }
1908 
1909 /*
1910  * Called with the queue lock held.
1911  */
1912 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1913 {
1914 	struct mapped_device *md = q->queuedata;
1915 	struct dm_rq_target_io *tio;
1916 
1917 	if (unlikely(rq->special)) {
1918 		DMWARN("Already has something in rq->special.");
1919 		return BLKPREP_KILL;
1920 	}
1921 
1922 	tio = prep_tio(rq, md, GFP_ATOMIC);
1923 	if (!tio)
1924 		return BLKPREP_DEFER;
1925 
1926 	rq->special = tio;
1927 	rq->cmd_flags |= REQ_DONTPREP;
1928 
1929 	return BLKPREP_OK;
1930 }
1931 
1932 /*
1933  * Returns:
1934  * 0                : the request has been processed
1935  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1936  * < 0              : the request was completed due to failure
1937  */
1938 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1939 		       struct mapped_device *md)
1940 {
1941 	int r;
1942 	struct dm_target *ti = tio->ti;
1943 	struct request *clone = NULL;
1944 
1945 	if (tio->clone) {
1946 		clone = tio->clone;
1947 		r = ti->type->map_rq(ti, clone, &tio->info);
1948 	} else {
1949 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1950 		if (r < 0) {
1951 			/* The target wants to complete the I/O */
1952 			dm_kill_unmapped_request(rq, r);
1953 			return r;
1954 		}
1955 		if (r != DM_MAPIO_REMAPPED)
1956 			return r;
1957 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1958 			/* -ENOMEM */
1959 			ti->type->release_clone_rq(clone);
1960 			return DM_MAPIO_REQUEUE;
1961 		}
1962 	}
1963 
1964 	switch (r) {
1965 	case DM_MAPIO_SUBMITTED:
1966 		/* The target has taken the I/O to submit by itself later */
1967 		break;
1968 	case DM_MAPIO_REMAPPED:
1969 		/* The target has remapped the I/O so dispatch it */
1970 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1971 				     blk_rq_pos(rq));
1972 		dm_dispatch_clone_request(clone, rq);
1973 		break;
1974 	case DM_MAPIO_REQUEUE:
1975 		/* The target wants to requeue the I/O */
1976 		dm_requeue_original_request(md, tio->orig);
1977 		break;
1978 	default:
1979 		if (r > 0) {
1980 			DMWARN("unimplemented target map return value: %d", r);
1981 			BUG();
1982 		}
1983 
1984 		/* The target wants to complete the I/O */
1985 		dm_kill_unmapped_request(rq, r);
1986 		return r;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 static void map_tio_request(struct kthread_work *work)
1993 {
1994 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1995 	struct request *rq = tio->orig;
1996 	struct mapped_device *md = tio->md;
1997 
1998 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
1999 		dm_requeue_original_request(md, rq);
2000 }
2001 
2002 static void dm_start_request(struct mapped_device *md, struct request *orig)
2003 {
2004 	if (!orig->q->mq_ops)
2005 		blk_start_request(orig);
2006 	else
2007 		blk_mq_start_request(orig);
2008 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2009 
2010 	if (md->seq_rq_merge_deadline_usecs) {
2011 		md->last_rq_pos = rq_end_sector(orig);
2012 		md->last_rq_rw = rq_data_dir(orig);
2013 		md->last_rq_start_time = ktime_get();
2014 	}
2015 
2016 	if (unlikely(dm_stats_used(&md->stats))) {
2017 		struct dm_rq_target_io *tio = tio_from_request(orig);
2018 		tio->duration_jiffies = jiffies;
2019 		tio->n_sectors = blk_rq_sectors(orig);
2020 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2021 				    tio->n_sectors, false, 0, &tio->stats_aux);
2022 	}
2023 
2024 	/*
2025 	 * Hold the md reference here for the in-flight I/O.
2026 	 * We can't rely on the reference count by device opener,
2027 	 * because the device may be closed during the request completion
2028 	 * when all bios are completed.
2029 	 * See the comment in rq_completed() too.
2030 	 */
2031 	dm_get(md);
2032 }
2033 
2034 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2035 
2036 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2037 {
2038 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2039 }
2040 
2041 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2042 						     const char *buf, size_t count)
2043 {
2044 	unsigned deadline;
2045 
2046 	if (!dm_request_based(md) || md->use_blk_mq)
2047 		return count;
2048 
2049 	if (kstrtouint(buf, 10, &deadline))
2050 		return -EINVAL;
2051 
2052 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2053 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2054 
2055 	md->seq_rq_merge_deadline_usecs = deadline;
2056 
2057 	return count;
2058 }
2059 
2060 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2061 {
2062 	ktime_t kt_deadline;
2063 
2064 	if (!md->seq_rq_merge_deadline_usecs)
2065 		return false;
2066 
2067 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2068 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2069 
2070 	return !ktime_after(ktime_get(), kt_deadline);
2071 }
2072 
2073 /*
2074  * q->request_fn for request-based dm.
2075  * Called with the queue lock held.
2076  */
2077 static void dm_request_fn(struct request_queue *q)
2078 {
2079 	struct mapped_device *md = q->queuedata;
2080 	int srcu_idx;
2081 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2082 	struct dm_target *ti;
2083 	struct request *rq;
2084 	struct dm_rq_target_io *tio;
2085 	sector_t pos;
2086 
2087 	/*
2088 	 * For suspend, check blk_queue_stopped() and increment
2089 	 * ->pending within a single queue_lock not to increment the
2090 	 * number of in-flight I/Os after the queue is stopped in
2091 	 * dm_suspend().
2092 	 */
2093 	while (!blk_queue_stopped(q)) {
2094 		rq = blk_peek_request(q);
2095 		if (!rq)
2096 			goto out;
2097 
2098 		/* always use block 0 to find the target for flushes for now */
2099 		pos = 0;
2100 		if (!(rq->cmd_flags & REQ_FLUSH))
2101 			pos = blk_rq_pos(rq);
2102 
2103 		ti = dm_table_find_target(map, pos);
2104 		if (!dm_target_is_valid(ti)) {
2105 			/*
2106 			 * Must perform setup, that rq_completed() requires,
2107 			 * before calling dm_kill_unmapped_request
2108 			 */
2109 			DMERR_LIMIT("request attempted access beyond the end of device");
2110 			dm_start_request(md, rq);
2111 			dm_kill_unmapped_request(rq, -EIO);
2112 			continue;
2113 		}
2114 
2115 		if (dm_request_peeked_before_merge_deadline(md) &&
2116 		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2117 		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2118 			goto delay_and_out;
2119 
2120 		if (ti->type->busy && ti->type->busy(ti))
2121 			goto delay_and_out;
2122 
2123 		dm_start_request(md, rq);
2124 
2125 		tio = tio_from_request(rq);
2126 		/* Establish tio->ti before queuing work (map_tio_request) */
2127 		tio->ti = ti;
2128 		queue_kthread_work(&md->kworker, &tio->work);
2129 		BUG_ON(!irqs_disabled());
2130 	}
2131 
2132 	goto out;
2133 
2134 delay_and_out:
2135 	blk_delay_queue(q, HZ / 100);
2136 out:
2137 	dm_put_live_table(md, srcu_idx);
2138 }
2139 
2140 static int dm_any_congested(void *congested_data, int bdi_bits)
2141 {
2142 	int r = bdi_bits;
2143 	struct mapped_device *md = congested_data;
2144 	struct dm_table *map;
2145 
2146 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2147 		map = dm_get_live_table_fast(md);
2148 		if (map) {
2149 			/*
2150 			 * Request-based dm cares about only own queue for
2151 			 * the query about congestion status of request_queue
2152 			 */
2153 			if (dm_request_based(md))
2154 				r = md->queue->backing_dev_info.wb.state &
2155 				    bdi_bits;
2156 			else
2157 				r = dm_table_any_congested(map, bdi_bits);
2158 		}
2159 		dm_put_live_table_fast(md);
2160 	}
2161 
2162 	return r;
2163 }
2164 
2165 /*-----------------------------------------------------------------
2166  * An IDR is used to keep track of allocated minor numbers.
2167  *---------------------------------------------------------------*/
2168 static void free_minor(int minor)
2169 {
2170 	spin_lock(&_minor_lock);
2171 	idr_remove(&_minor_idr, minor);
2172 	spin_unlock(&_minor_lock);
2173 }
2174 
2175 /*
2176  * See if the device with a specific minor # is free.
2177  */
2178 static int specific_minor(int minor)
2179 {
2180 	int r;
2181 
2182 	if (minor >= (1 << MINORBITS))
2183 		return -EINVAL;
2184 
2185 	idr_preload(GFP_KERNEL);
2186 	spin_lock(&_minor_lock);
2187 
2188 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2189 
2190 	spin_unlock(&_minor_lock);
2191 	idr_preload_end();
2192 	if (r < 0)
2193 		return r == -ENOSPC ? -EBUSY : r;
2194 	return 0;
2195 }
2196 
2197 static int next_free_minor(int *minor)
2198 {
2199 	int r;
2200 
2201 	idr_preload(GFP_KERNEL);
2202 	spin_lock(&_minor_lock);
2203 
2204 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2205 
2206 	spin_unlock(&_minor_lock);
2207 	idr_preload_end();
2208 	if (r < 0)
2209 		return r;
2210 	*minor = r;
2211 	return 0;
2212 }
2213 
2214 static const struct block_device_operations dm_blk_dops;
2215 
2216 static void dm_wq_work(struct work_struct *work);
2217 
2218 static void dm_init_md_queue(struct mapped_device *md)
2219 {
2220 	/*
2221 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2222 	 * devices.  The type of this dm device may not have been decided yet.
2223 	 * The type is decided at the first table loading time.
2224 	 * To prevent problematic device stacking, clear the queue flag
2225 	 * for request stacking support until then.
2226 	 *
2227 	 * This queue is new, so no concurrency on the queue_flags.
2228 	 */
2229 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2230 
2231 	/*
2232 	 * Initialize data that will only be used by a non-blk-mq DM queue
2233 	 * - must do so here (in alloc_dev callchain) before queue is used
2234 	 */
2235 	md->queue->queuedata = md;
2236 	md->queue->backing_dev_info.congested_data = md;
2237 }
2238 
2239 static void dm_init_old_md_queue(struct mapped_device *md)
2240 {
2241 	md->use_blk_mq = false;
2242 	dm_init_md_queue(md);
2243 
2244 	/*
2245 	 * Initialize aspects of queue that aren't relevant for blk-mq
2246 	 */
2247 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2248 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2249 }
2250 
2251 static void cleanup_mapped_device(struct mapped_device *md)
2252 {
2253 	if (md->wq)
2254 		destroy_workqueue(md->wq);
2255 	if (md->kworker_task)
2256 		kthread_stop(md->kworker_task);
2257 	mempool_destroy(md->io_pool);
2258 	mempool_destroy(md->rq_pool);
2259 	if (md->bs)
2260 		bioset_free(md->bs);
2261 
2262 	cleanup_srcu_struct(&md->io_barrier);
2263 
2264 	if (md->disk) {
2265 		spin_lock(&_minor_lock);
2266 		md->disk->private_data = NULL;
2267 		spin_unlock(&_minor_lock);
2268 		del_gendisk(md->disk);
2269 		put_disk(md->disk);
2270 	}
2271 
2272 	if (md->queue)
2273 		blk_cleanup_queue(md->queue);
2274 
2275 	if (md->bdev) {
2276 		bdput(md->bdev);
2277 		md->bdev = NULL;
2278 	}
2279 }
2280 
2281 /*
2282  * Allocate and initialise a blank device with a given minor.
2283  */
2284 static struct mapped_device *alloc_dev(int minor)
2285 {
2286 	int r;
2287 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2288 	void *old_md;
2289 
2290 	if (!md) {
2291 		DMWARN("unable to allocate device, out of memory.");
2292 		return NULL;
2293 	}
2294 
2295 	if (!try_module_get(THIS_MODULE))
2296 		goto bad_module_get;
2297 
2298 	/* get a minor number for the dev */
2299 	if (minor == DM_ANY_MINOR)
2300 		r = next_free_minor(&minor);
2301 	else
2302 		r = specific_minor(minor);
2303 	if (r < 0)
2304 		goto bad_minor;
2305 
2306 	r = init_srcu_struct(&md->io_barrier);
2307 	if (r < 0)
2308 		goto bad_io_barrier;
2309 
2310 	md->use_blk_mq = use_blk_mq;
2311 	md->type = DM_TYPE_NONE;
2312 	mutex_init(&md->suspend_lock);
2313 	mutex_init(&md->type_lock);
2314 	mutex_init(&md->table_devices_lock);
2315 	spin_lock_init(&md->deferred_lock);
2316 	atomic_set(&md->holders, 1);
2317 	atomic_set(&md->open_count, 0);
2318 	atomic_set(&md->event_nr, 0);
2319 	atomic_set(&md->uevent_seq, 0);
2320 	INIT_LIST_HEAD(&md->uevent_list);
2321 	INIT_LIST_HEAD(&md->table_devices);
2322 	spin_lock_init(&md->uevent_lock);
2323 
2324 	md->queue = blk_alloc_queue(GFP_KERNEL);
2325 	if (!md->queue)
2326 		goto bad;
2327 
2328 	dm_init_md_queue(md);
2329 
2330 	md->disk = alloc_disk(1);
2331 	if (!md->disk)
2332 		goto bad;
2333 
2334 	atomic_set(&md->pending[0], 0);
2335 	atomic_set(&md->pending[1], 0);
2336 	init_waitqueue_head(&md->wait);
2337 	INIT_WORK(&md->work, dm_wq_work);
2338 	init_waitqueue_head(&md->eventq);
2339 	init_completion(&md->kobj_holder.completion);
2340 	md->kworker_task = NULL;
2341 
2342 	md->disk->major = _major;
2343 	md->disk->first_minor = minor;
2344 	md->disk->fops = &dm_blk_dops;
2345 	md->disk->queue = md->queue;
2346 	md->disk->private_data = md;
2347 	sprintf(md->disk->disk_name, "dm-%d", minor);
2348 	add_disk(md->disk);
2349 	format_dev_t(md->name, MKDEV(_major, minor));
2350 
2351 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2352 	if (!md->wq)
2353 		goto bad;
2354 
2355 	md->bdev = bdget_disk(md->disk, 0);
2356 	if (!md->bdev)
2357 		goto bad;
2358 
2359 	bio_init(&md->flush_bio);
2360 	md->flush_bio.bi_bdev = md->bdev;
2361 	md->flush_bio.bi_rw = WRITE_FLUSH;
2362 
2363 	dm_stats_init(&md->stats);
2364 
2365 	/* Populate the mapping, nobody knows we exist yet */
2366 	spin_lock(&_minor_lock);
2367 	old_md = idr_replace(&_minor_idr, md, minor);
2368 	spin_unlock(&_minor_lock);
2369 
2370 	BUG_ON(old_md != MINOR_ALLOCED);
2371 
2372 	return md;
2373 
2374 bad:
2375 	cleanup_mapped_device(md);
2376 bad_io_barrier:
2377 	free_minor(minor);
2378 bad_minor:
2379 	module_put(THIS_MODULE);
2380 bad_module_get:
2381 	kfree(md);
2382 	return NULL;
2383 }
2384 
2385 static void unlock_fs(struct mapped_device *md);
2386 
2387 static void free_dev(struct mapped_device *md)
2388 {
2389 	int minor = MINOR(disk_devt(md->disk));
2390 
2391 	unlock_fs(md);
2392 
2393 	cleanup_mapped_device(md);
2394 	if (md->use_blk_mq)
2395 		blk_mq_free_tag_set(&md->tag_set);
2396 
2397 	free_table_devices(&md->table_devices);
2398 	dm_stats_cleanup(&md->stats);
2399 	free_minor(minor);
2400 
2401 	module_put(THIS_MODULE);
2402 	kfree(md);
2403 }
2404 
2405 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2406 {
2407 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2408 
2409 	if (md->bs) {
2410 		/* The md already has necessary mempools. */
2411 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2412 			/*
2413 			 * Reload bioset because front_pad may have changed
2414 			 * because a different table was loaded.
2415 			 */
2416 			bioset_free(md->bs);
2417 			md->bs = p->bs;
2418 			p->bs = NULL;
2419 		}
2420 		/*
2421 		 * There's no need to reload with request-based dm
2422 		 * because the size of front_pad doesn't change.
2423 		 * Note for future: If you are to reload bioset,
2424 		 * prep-ed requests in the queue may refer
2425 		 * to bio from the old bioset, so you must walk
2426 		 * through the queue to unprep.
2427 		 */
2428 		goto out;
2429 	}
2430 
2431 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2432 
2433 	md->io_pool = p->io_pool;
2434 	p->io_pool = NULL;
2435 	md->rq_pool = p->rq_pool;
2436 	p->rq_pool = NULL;
2437 	md->bs = p->bs;
2438 	p->bs = NULL;
2439 
2440 out:
2441 	/* mempool bind completed, no longer need any mempools in the table */
2442 	dm_table_free_md_mempools(t);
2443 }
2444 
2445 /*
2446  * Bind a table to the device.
2447  */
2448 static void event_callback(void *context)
2449 {
2450 	unsigned long flags;
2451 	LIST_HEAD(uevents);
2452 	struct mapped_device *md = (struct mapped_device *) context;
2453 
2454 	spin_lock_irqsave(&md->uevent_lock, flags);
2455 	list_splice_init(&md->uevent_list, &uevents);
2456 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2457 
2458 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2459 
2460 	atomic_inc(&md->event_nr);
2461 	wake_up(&md->eventq);
2462 }
2463 
2464 /*
2465  * Protected by md->suspend_lock obtained by dm_swap_table().
2466  */
2467 static void __set_size(struct mapped_device *md, sector_t size)
2468 {
2469 	set_capacity(md->disk, size);
2470 
2471 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2472 }
2473 
2474 /*
2475  * Returns old map, which caller must destroy.
2476  */
2477 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2478 			       struct queue_limits *limits)
2479 {
2480 	struct dm_table *old_map;
2481 	struct request_queue *q = md->queue;
2482 	sector_t size;
2483 
2484 	size = dm_table_get_size(t);
2485 
2486 	/*
2487 	 * Wipe any geometry if the size of the table changed.
2488 	 */
2489 	if (size != dm_get_size(md))
2490 		memset(&md->geometry, 0, sizeof(md->geometry));
2491 
2492 	__set_size(md, size);
2493 
2494 	dm_table_event_callback(t, event_callback, md);
2495 
2496 	/*
2497 	 * The queue hasn't been stopped yet, if the old table type wasn't
2498 	 * for request-based during suspension.  So stop it to prevent
2499 	 * I/O mapping before resume.
2500 	 * This must be done before setting the queue restrictions,
2501 	 * because request-based dm may be run just after the setting.
2502 	 */
2503 	if (dm_table_request_based(t))
2504 		stop_queue(q);
2505 
2506 	__bind_mempools(md, t);
2507 
2508 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2509 	rcu_assign_pointer(md->map, t);
2510 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2511 
2512 	dm_table_set_restrictions(t, q, limits);
2513 	if (old_map)
2514 		dm_sync_table(md);
2515 
2516 	return old_map;
2517 }
2518 
2519 /*
2520  * Returns unbound table for the caller to free.
2521  */
2522 static struct dm_table *__unbind(struct mapped_device *md)
2523 {
2524 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2525 
2526 	if (!map)
2527 		return NULL;
2528 
2529 	dm_table_event_callback(map, NULL, NULL);
2530 	RCU_INIT_POINTER(md->map, NULL);
2531 	dm_sync_table(md);
2532 
2533 	return map;
2534 }
2535 
2536 /*
2537  * Constructor for a new device.
2538  */
2539 int dm_create(int minor, struct mapped_device **result)
2540 {
2541 	struct mapped_device *md;
2542 
2543 	md = alloc_dev(minor);
2544 	if (!md)
2545 		return -ENXIO;
2546 
2547 	dm_sysfs_init(md);
2548 
2549 	*result = md;
2550 	return 0;
2551 }
2552 
2553 /*
2554  * Functions to manage md->type.
2555  * All are required to hold md->type_lock.
2556  */
2557 void dm_lock_md_type(struct mapped_device *md)
2558 {
2559 	mutex_lock(&md->type_lock);
2560 }
2561 
2562 void dm_unlock_md_type(struct mapped_device *md)
2563 {
2564 	mutex_unlock(&md->type_lock);
2565 }
2566 
2567 void dm_set_md_type(struct mapped_device *md, unsigned type)
2568 {
2569 	BUG_ON(!mutex_is_locked(&md->type_lock));
2570 	md->type = type;
2571 }
2572 
2573 unsigned dm_get_md_type(struct mapped_device *md)
2574 {
2575 	BUG_ON(!mutex_is_locked(&md->type_lock));
2576 	return md->type;
2577 }
2578 
2579 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2580 {
2581 	return md->immutable_target_type;
2582 }
2583 
2584 /*
2585  * The queue_limits are only valid as long as you have a reference
2586  * count on 'md'.
2587  */
2588 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2589 {
2590 	BUG_ON(!atomic_read(&md->holders));
2591 	return &md->queue->limits;
2592 }
2593 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2594 
2595 static void init_rq_based_worker_thread(struct mapped_device *md)
2596 {
2597 	/* Initialize the request-based DM worker thread */
2598 	init_kthread_worker(&md->kworker);
2599 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2600 				       "kdmwork-%s", dm_device_name(md));
2601 }
2602 
2603 /*
2604  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2605  */
2606 static int dm_init_request_based_queue(struct mapped_device *md)
2607 {
2608 	struct request_queue *q = NULL;
2609 
2610 	/* Fully initialize the queue */
2611 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2612 	if (!q)
2613 		return -EINVAL;
2614 
2615 	/* disable dm_request_fn's merge heuristic by default */
2616 	md->seq_rq_merge_deadline_usecs = 0;
2617 
2618 	md->queue = q;
2619 	dm_init_old_md_queue(md);
2620 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2621 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2622 
2623 	init_rq_based_worker_thread(md);
2624 
2625 	elv_register_queue(md->queue);
2626 
2627 	return 0;
2628 }
2629 
2630 static int dm_mq_init_request(void *data, struct request *rq,
2631 			      unsigned int hctx_idx, unsigned int request_idx,
2632 			      unsigned int numa_node)
2633 {
2634 	struct mapped_device *md = data;
2635 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2636 
2637 	/*
2638 	 * Must initialize md member of tio, otherwise it won't
2639 	 * be available in dm_mq_queue_rq.
2640 	 */
2641 	tio->md = md;
2642 
2643 	return 0;
2644 }
2645 
2646 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2647 			  const struct blk_mq_queue_data *bd)
2648 {
2649 	struct request *rq = bd->rq;
2650 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2651 	struct mapped_device *md = tio->md;
2652 	int srcu_idx;
2653 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2654 	struct dm_target *ti;
2655 	sector_t pos;
2656 
2657 	/* always use block 0 to find the target for flushes for now */
2658 	pos = 0;
2659 	if (!(rq->cmd_flags & REQ_FLUSH))
2660 		pos = blk_rq_pos(rq);
2661 
2662 	ti = dm_table_find_target(map, pos);
2663 	if (!dm_target_is_valid(ti)) {
2664 		dm_put_live_table(md, srcu_idx);
2665 		DMERR_LIMIT("request attempted access beyond the end of device");
2666 		/*
2667 		 * Must perform setup, that rq_completed() requires,
2668 		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2669 		 */
2670 		dm_start_request(md, rq);
2671 		return BLK_MQ_RQ_QUEUE_ERROR;
2672 	}
2673 	dm_put_live_table(md, srcu_idx);
2674 
2675 	if (ti->type->busy && ti->type->busy(ti))
2676 		return BLK_MQ_RQ_QUEUE_BUSY;
2677 
2678 	dm_start_request(md, rq);
2679 
2680 	/* Init tio using md established in .init_request */
2681 	init_tio(tio, rq, md);
2682 
2683 	/*
2684 	 * Establish tio->ti before queuing work (map_tio_request)
2685 	 * or making direct call to map_request().
2686 	 */
2687 	tio->ti = ti;
2688 
2689 	/* Clone the request if underlying devices aren't blk-mq */
2690 	if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2691 		/* clone request is allocated at the end of the pdu */
2692 		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2693 		(void) clone_rq(rq, md, tio, GFP_ATOMIC);
2694 		queue_kthread_work(&md->kworker, &tio->work);
2695 	} else {
2696 		/* Direct call is fine since .queue_rq allows allocations */
2697 		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2698 			/* Undo dm_start_request() before requeuing */
2699 			rq_end_stats(md, rq);
2700 			rq_completed(md, rq_data_dir(rq), false);
2701 			return BLK_MQ_RQ_QUEUE_BUSY;
2702 		}
2703 	}
2704 
2705 	return BLK_MQ_RQ_QUEUE_OK;
2706 }
2707 
2708 static struct blk_mq_ops dm_mq_ops = {
2709 	.queue_rq = dm_mq_queue_rq,
2710 	.map_queue = blk_mq_map_queue,
2711 	.complete = dm_softirq_done,
2712 	.init_request = dm_mq_init_request,
2713 };
2714 
2715 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2716 {
2717 	unsigned md_type = dm_get_md_type(md);
2718 	struct request_queue *q;
2719 	int err;
2720 
2721 	memset(&md->tag_set, 0, sizeof(md->tag_set));
2722 	md->tag_set.ops = &dm_mq_ops;
2723 	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2724 	md->tag_set.numa_node = NUMA_NO_NODE;
2725 	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2726 	md->tag_set.nr_hw_queues = 1;
2727 	if (md_type == DM_TYPE_REQUEST_BASED) {
2728 		/* make the memory for non-blk-mq clone part of the pdu */
2729 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2730 	} else
2731 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2732 	md->tag_set.driver_data = md;
2733 
2734 	err = blk_mq_alloc_tag_set(&md->tag_set);
2735 	if (err)
2736 		return err;
2737 
2738 	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2739 	if (IS_ERR(q)) {
2740 		err = PTR_ERR(q);
2741 		goto out_tag_set;
2742 	}
2743 	md->queue = q;
2744 	dm_init_md_queue(md);
2745 
2746 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2747 	blk_mq_register_disk(md->disk);
2748 
2749 	if (md_type == DM_TYPE_REQUEST_BASED)
2750 		init_rq_based_worker_thread(md);
2751 
2752 	return 0;
2753 
2754 out_tag_set:
2755 	blk_mq_free_tag_set(&md->tag_set);
2756 	return err;
2757 }
2758 
2759 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2760 {
2761 	if (type == DM_TYPE_BIO_BASED)
2762 		return type;
2763 
2764 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2765 }
2766 
2767 /*
2768  * Setup the DM device's queue based on md's type
2769  */
2770 int dm_setup_md_queue(struct mapped_device *md)
2771 {
2772 	int r;
2773 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2774 
2775 	switch (md_type) {
2776 	case DM_TYPE_REQUEST_BASED:
2777 		r = dm_init_request_based_queue(md);
2778 		if (r) {
2779 			DMWARN("Cannot initialize queue for request-based mapped device");
2780 			return r;
2781 		}
2782 		break;
2783 	case DM_TYPE_MQ_REQUEST_BASED:
2784 		r = dm_init_request_based_blk_mq_queue(md);
2785 		if (r) {
2786 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2787 			return r;
2788 		}
2789 		break;
2790 	case DM_TYPE_BIO_BASED:
2791 		dm_init_old_md_queue(md);
2792 		blk_queue_make_request(md->queue, dm_make_request);
2793 		/*
2794 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2795 		 * since it won't be used (saves 1 process per bio-based DM device).
2796 		 */
2797 		bioset_free(md->queue->bio_split);
2798 		md->queue->bio_split = NULL;
2799 		break;
2800 	}
2801 
2802 	return 0;
2803 }
2804 
2805 struct mapped_device *dm_get_md(dev_t dev)
2806 {
2807 	struct mapped_device *md;
2808 	unsigned minor = MINOR(dev);
2809 
2810 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2811 		return NULL;
2812 
2813 	spin_lock(&_minor_lock);
2814 
2815 	md = idr_find(&_minor_idr, minor);
2816 	if (md) {
2817 		if ((md == MINOR_ALLOCED ||
2818 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2819 		     dm_deleting_md(md) ||
2820 		     test_bit(DMF_FREEING, &md->flags))) {
2821 			md = NULL;
2822 			goto out;
2823 		}
2824 		dm_get(md);
2825 	}
2826 
2827 out:
2828 	spin_unlock(&_minor_lock);
2829 
2830 	return md;
2831 }
2832 EXPORT_SYMBOL_GPL(dm_get_md);
2833 
2834 void *dm_get_mdptr(struct mapped_device *md)
2835 {
2836 	return md->interface_ptr;
2837 }
2838 
2839 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2840 {
2841 	md->interface_ptr = ptr;
2842 }
2843 
2844 void dm_get(struct mapped_device *md)
2845 {
2846 	atomic_inc(&md->holders);
2847 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2848 }
2849 
2850 int dm_hold(struct mapped_device *md)
2851 {
2852 	spin_lock(&_minor_lock);
2853 	if (test_bit(DMF_FREEING, &md->flags)) {
2854 		spin_unlock(&_minor_lock);
2855 		return -EBUSY;
2856 	}
2857 	dm_get(md);
2858 	spin_unlock(&_minor_lock);
2859 	return 0;
2860 }
2861 EXPORT_SYMBOL_GPL(dm_hold);
2862 
2863 const char *dm_device_name(struct mapped_device *md)
2864 {
2865 	return md->name;
2866 }
2867 EXPORT_SYMBOL_GPL(dm_device_name);
2868 
2869 static void __dm_destroy(struct mapped_device *md, bool wait)
2870 {
2871 	struct dm_table *map;
2872 	int srcu_idx;
2873 
2874 	might_sleep();
2875 
2876 	spin_lock(&_minor_lock);
2877 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2878 	set_bit(DMF_FREEING, &md->flags);
2879 	spin_unlock(&_minor_lock);
2880 
2881 	if (dm_request_based(md) && md->kworker_task)
2882 		flush_kthread_worker(&md->kworker);
2883 
2884 	/*
2885 	 * Take suspend_lock so that presuspend and postsuspend methods
2886 	 * do not race with internal suspend.
2887 	 */
2888 	mutex_lock(&md->suspend_lock);
2889 	map = dm_get_live_table(md, &srcu_idx);
2890 	if (!dm_suspended_md(md)) {
2891 		dm_table_presuspend_targets(map);
2892 		dm_table_postsuspend_targets(map);
2893 	}
2894 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2895 	dm_put_live_table(md, srcu_idx);
2896 	mutex_unlock(&md->suspend_lock);
2897 
2898 	/*
2899 	 * Rare, but there may be I/O requests still going to complete,
2900 	 * for example.  Wait for all references to disappear.
2901 	 * No one should increment the reference count of the mapped_device,
2902 	 * after the mapped_device state becomes DMF_FREEING.
2903 	 */
2904 	if (wait)
2905 		while (atomic_read(&md->holders))
2906 			msleep(1);
2907 	else if (atomic_read(&md->holders))
2908 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2909 		       dm_device_name(md), atomic_read(&md->holders));
2910 
2911 	dm_sysfs_exit(md);
2912 	dm_table_destroy(__unbind(md));
2913 	free_dev(md);
2914 }
2915 
2916 void dm_destroy(struct mapped_device *md)
2917 {
2918 	__dm_destroy(md, true);
2919 }
2920 
2921 void dm_destroy_immediate(struct mapped_device *md)
2922 {
2923 	__dm_destroy(md, false);
2924 }
2925 
2926 void dm_put(struct mapped_device *md)
2927 {
2928 	atomic_dec(&md->holders);
2929 }
2930 EXPORT_SYMBOL_GPL(dm_put);
2931 
2932 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2933 {
2934 	int r = 0;
2935 	DECLARE_WAITQUEUE(wait, current);
2936 
2937 	add_wait_queue(&md->wait, &wait);
2938 
2939 	while (1) {
2940 		set_current_state(interruptible);
2941 
2942 		if (!md_in_flight(md))
2943 			break;
2944 
2945 		if (interruptible == TASK_INTERRUPTIBLE &&
2946 		    signal_pending(current)) {
2947 			r = -EINTR;
2948 			break;
2949 		}
2950 
2951 		io_schedule();
2952 	}
2953 	set_current_state(TASK_RUNNING);
2954 
2955 	remove_wait_queue(&md->wait, &wait);
2956 
2957 	return r;
2958 }
2959 
2960 /*
2961  * Process the deferred bios
2962  */
2963 static void dm_wq_work(struct work_struct *work)
2964 {
2965 	struct mapped_device *md = container_of(work, struct mapped_device,
2966 						work);
2967 	struct bio *c;
2968 	int srcu_idx;
2969 	struct dm_table *map;
2970 
2971 	map = dm_get_live_table(md, &srcu_idx);
2972 
2973 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2974 		spin_lock_irq(&md->deferred_lock);
2975 		c = bio_list_pop(&md->deferred);
2976 		spin_unlock_irq(&md->deferred_lock);
2977 
2978 		if (!c)
2979 			break;
2980 
2981 		if (dm_request_based(md))
2982 			generic_make_request(c);
2983 		else
2984 			__split_and_process_bio(md, map, c);
2985 	}
2986 
2987 	dm_put_live_table(md, srcu_idx);
2988 }
2989 
2990 static void dm_queue_flush(struct mapped_device *md)
2991 {
2992 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2993 	smp_mb__after_atomic();
2994 	queue_work(md->wq, &md->work);
2995 }
2996 
2997 /*
2998  * Swap in a new table, returning the old one for the caller to destroy.
2999  */
3000 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3001 {
3002 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3003 	struct queue_limits limits;
3004 	int r;
3005 
3006 	mutex_lock(&md->suspend_lock);
3007 
3008 	/* device must be suspended */
3009 	if (!dm_suspended_md(md))
3010 		goto out;
3011 
3012 	/*
3013 	 * If the new table has no data devices, retain the existing limits.
3014 	 * This helps multipath with queue_if_no_path if all paths disappear,
3015 	 * then new I/O is queued based on these limits, and then some paths
3016 	 * reappear.
3017 	 */
3018 	if (dm_table_has_no_data_devices(table)) {
3019 		live_map = dm_get_live_table_fast(md);
3020 		if (live_map)
3021 			limits = md->queue->limits;
3022 		dm_put_live_table_fast(md);
3023 	}
3024 
3025 	if (!live_map) {
3026 		r = dm_calculate_queue_limits(table, &limits);
3027 		if (r) {
3028 			map = ERR_PTR(r);
3029 			goto out;
3030 		}
3031 	}
3032 
3033 	map = __bind(md, table, &limits);
3034 
3035 out:
3036 	mutex_unlock(&md->suspend_lock);
3037 	return map;
3038 }
3039 
3040 /*
3041  * Functions to lock and unlock any filesystem running on the
3042  * device.
3043  */
3044 static int lock_fs(struct mapped_device *md)
3045 {
3046 	int r;
3047 
3048 	WARN_ON(md->frozen_sb);
3049 
3050 	md->frozen_sb = freeze_bdev(md->bdev);
3051 	if (IS_ERR(md->frozen_sb)) {
3052 		r = PTR_ERR(md->frozen_sb);
3053 		md->frozen_sb = NULL;
3054 		return r;
3055 	}
3056 
3057 	set_bit(DMF_FROZEN, &md->flags);
3058 
3059 	return 0;
3060 }
3061 
3062 static void unlock_fs(struct mapped_device *md)
3063 {
3064 	if (!test_bit(DMF_FROZEN, &md->flags))
3065 		return;
3066 
3067 	thaw_bdev(md->bdev, md->frozen_sb);
3068 	md->frozen_sb = NULL;
3069 	clear_bit(DMF_FROZEN, &md->flags);
3070 }
3071 
3072 /*
3073  * If __dm_suspend returns 0, the device is completely quiescent
3074  * now. There is no request-processing activity. All new requests
3075  * are being added to md->deferred list.
3076  *
3077  * Caller must hold md->suspend_lock
3078  */
3079 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3080 			unsigned suspend_flags, int interruptible)
3081 {
3082 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3083 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3084 	int r;
3085 
3086 	/*
3087 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3088 	 * This flag is cleared before dm_suspend returns.
3089 	 */
3090 	if (noflush)
3091 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3092 
3093 	/*
3094 	 * This gets reverted if there's an error later and the targets
3095 	 * provide the .presuspend_undo hook.
3096 	 */
3097 	dm_table_presuspend_targets(map);
3098 
3099 	/*
3100 	 * Flush I/O to the device.
3101 	 * Any I/O submitted after lock_fs() may not be flushed.
3102 	 * noflush takes precedence over do_lockfs.
3103 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3104 	 */
3105 	if (!noflush && do_lockfs) {
3106 		r = lock_fs(md);
3107 		if (r) {
3108 			dm_table_presuspend_undo_targets(map);
3109 			return r;
3110 		}
3111 	}
3112 
3113 	/*
3114 	 * Here we must make sure that no processes are submitting requests
3115 	 * to target drivers i.e. no one may be executing
3116 	 * __split_and_process_bio. This is called from dm_request and
3117 	 * dm_wq_work.
3118 	 *
3119 	 * To get all processes out of __split_and_process_bio in dm_request,
3120 	 * we take the write lock. To prevent any process from reentering
3121 	 * __split_and_process_bio from dm_request and quiesce the thread
3122 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3123 	 * flush_workqueue(md->wq).
3124 	 */
3125 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3126 	if (map)
3127 		synchronize_srcu(&md->io_barrier);
3128 
3129 	/*
3130 	 * Stop md->queue before flushing md->wq in case request-based
3131 	 * dm defers requests to md->wq from md->queue.
3132 	 */
3133 	if (dm_request_based(md)) {
3134 		stop_queue(md->queue);
3135 		if (md->kworker_task)
3136 			flush_kthread_worker(&md->kworker);
3137 	}
3138 
3139 	flush_workqueue(md->wq);
3140 
3141 	/*
3142 	 * At this point no more requests are entering target request routines.
3143 	 * We call dm_wait_for_completion to wait for all existing requests
3144 	 * to finish.
3145 	 */
3146 	r = dm_wait_for_completion(md, interruptible);
3147 
3148 	if (noflush)
3149 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3150 	if (map)
3151 		synchronize_srcu(&md->io_barrier);
3152 
3153 	/* were we interrupted ? */
3154 	if (r < 0) {
3155 		dm_queue_flush(md);
3156 
3157 		if (dm_request_based(md))
3158 			start_queue(md->queue);
3159 
3160 		unlock_fs(md);
3161 		dm_table_presuspend_undo_targets(map);
3162 		/* pushback list is already flushed, so skip flush */
3163 	}
3164 
3165 	return r;
3166 }
3167 
3168 /*
3169  * We need to be able to change a mapping table under a mounted
3170  * filesystem.  For example we might want to move some data in
3171  * the background.  Before the table can be swapped with
3172  * dm_bind_table, dm_suspend must be called to flush any in
3173  * flight bios and ensure that any further io gets deferred.
3174  */
3175 /*
3176  * Suspend mechanism in request-based dm.
3177  *
3178  * 1. Flush all I/Os by lock_fs() if needed.
3179  * 2. Stop dispatching any I/O by stopping the request_queue.
3180  * 3. Wait for all in-flight I/Os to be completed or requeued.
3181  *
3182  * To abort suspend, start the request_queue.
3183  */
3184 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3185 {
3186 	struct dm_table *map = NULL;
3187 	int r = 0;
3188 
3189 retry:
3190 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3191 
3192 	if (dm_suspended_md(md)) {
3193 		r = -EINVAL;
3194 		goto out_unlock;
3195 	}
3196 
3197 	if (dm_suspended_internally_md(md)) {
3198 		/* already internally suspended, wait for internal resume */
3199 		mutex_unlock(&md->suspend_lock);
3200 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3201 		if (r)
3202 			return r;
3203 		goto retry;
3204 	}
3205 
3206 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3207 
3208 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3209 	if (r)
3210 		goto out_unlock;
3211 
3212 	set_bit(DMF_SUSPENDED, &md->flags);
3213 
3214 	dm_table_postsuspend_targets(map);
3215 
3216 out_unlock:
3217 	mutex_unlock(&md->suspend_lock);
3218 	return r;
3219 }
3220 
3221 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3222 {
3223 	if (map) {
3224 		int r = dm_table_resume_targets(map);
3225 		if (r)
3226 			return r;
3227 	}
3228 
3229 	dm_queue_flush(md);
3230 
3231 	/*
3232 	 * Flushing deferred I/Os must be done after targets are resumed
3233 	 * so that mapping of targets can work correctly.
3234 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3235 	 */
3236 	if (dm_request_based(md))
3237 		start_queue(md->queue);
3238 
3239 	unlock_fs(md);
3240 
3241 	return 0;
3242 }
3243 
3244 int dm_resume(struct mapped_device *md)
3245 {
3246 	int r = -EINVAL;
3247 	struct dm_table *map = NULL;
3248 
3249 retry:
3250 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3251 
3252 	if (!dm_suspended_md(md))
3253 		goto out;
3254 
3255 	if (dm_suspended_internally_md(md)) {
3256 		/* already internally suspended, wait for internal resume */
3257 		mutex_unlock(&md->suspend_lock);
3258 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3259 		if (r)
3260 			return r;
3261 		goto retry;
3262 	}
3263 
3264 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3265 	if (!map || !dm_table_get_size(map))
3266 		goto out;
3267 
3268 	r = __dm_resume(md, map);
3269 	if (r)
3270 		goto out;
3271 
3272 	clear_bit(DMF_SUSPENDED, &md->flags);
3273 
3274 	r = 0;
3275 out:
3276 	mutex_unlock(&md->suspend_lock);
3277 
3278 	return r;
3279 }
3280 
3281 /*
3282  * Internal suspend/resume works like userspace-driven suspend. It waits
3283  * until all bios finish and prevents issuing new bios to the target drivers.
3284  * It may be used only from the kernel.
3285  */
3286 
3287 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3288 {
3289 	struct dm_table *map = NULL;
3290 
3291 	if (md->internal_suspend_count++)
3292 		return; /* nested internal suspend */
3293 
3294 	if (dm_suspended_md(md)) {
3295 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3296 		return; /* nest suspend */
3297 	}
3298 
3299 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3300 
3301 	/*
3302 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3303 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3304 	 * would require changing .presuspend to return an error -- avoid this
3305 	 * until there is a need for more elaborate variants of internal suspend.
3306 	 */
3307 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3308 
3309 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3310 
3311 	dm_table_postsuspend_targets(map);
3312 }
3313 
3314 static void __dm_internal_resume(struct mapped_device *md)
3315 {
3316 	BUG_ON(!md->internal_suspend_count);
3317 
3318 	if (--md->internal_suspend_count)
3319 		return; /* resume from nested internal suspend */
3320 
3321 	if (dm_suspended_md(md))
3322 		goto done; /* resume from nested suspend */
3323 
3324 	/*
3325 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3326 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3327 	 */
3328 	(void) __dm_resume(md, NULL);
3329 
3330 done:
3331 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3332 	smp_mb__after_atomic();
3333 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3334 }
3335 
3336 void dm_internal_suspend_noflush(struct mapped_device *md)
3337 {
3338 	mutex_lock(&md->suspend_lock);
3339 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3340 	mutex_unlock(&md->suspend_lock);
3341 }
3342 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3343 
3344 void dm_internal_resume(struct mapped_device *md)
3345 {
3346 	mutex_lock(&md->suspend_lock);
3347 	__dm_internal_resume(md);
3348 	mutex_unlock(&md->suspend_lock);
3349 }
3350 EXPORT_SYMBOL_GPL(dm_internal_resume);
3351 
3352 /*
3353  * Fast variants of internal suspend/resume hold md->suspend_lock,
3354  * which prevents interaction with userspace-driven suspend.
3355  */
3356 
3357 void dm_internal_suspend_fast(struct mapped_device *md)
3358 {
3359 	mutex_lock(&md->suspend_lock);
3360 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3361 		return;
3362 
3363 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3364 	synchronize_srcu(&md->io_barrier);
3365 	flush_workqueue(md->wq);
3366 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3367 }
3368 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3369 
3370 void dm_internal_resume_fast(struct mapped_device *md)
3371 {
3372 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3373 		goto done;
3374 
3375 	dm_queue_flush(md);
3376 
3377 done:
3378 	mutex_unlock(&md->suspend_lock);
3379 }
3380 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3381 
3382 /*-----------------------------------------------------------------
3383  * Event notification.
3384  *---------------------------------------------------------------*/
3385 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3386 		       unsigned cookie)
3387 {
3388 	char udev_cookie[DM_COOKIE_LENGTH];
3389 	char *envp[] = { udev_cookie, NULL };
3390 
3391 	if (!cookie)
3392 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3393 	else {
3394 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3395 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3396 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3397 					  action, envp);
3398 	}
3399 }
3400 
3401 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3402 {
3403 	return atomic_add_return(1, &md->uevent_seq);
3404 }
3405 
3406 uint32_t dm_get_event_nr(struct mapped_device *md)
3407 {
3408 	return atomic_read(&md->event_nr);
3409 }
3410 
3411 int dm_wait_event(struct mapped_device *md, int event_nr)
3412 {
3413 	return wait_event_interruptible(md->eventq,
3414 			(event_nr != atomic_read(&md->event_nr)));
3415 }
3416 
3417 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3418 {
3419 	unsigned long flags;
3420 
3421 	spin_lock_irqsave(&md->uevent_lock, flags);
3422 	list_add(elist, &md->uevent_list);
3423 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3424 }
3425 
3426 /*
3427  * The gendisk is only valid as long as you have a reference
3428  * count on 'md'.
3429  */
3430 struct gendisk *dm_disk(struct mapped_device *md)
3431 {
3432 	return md->disk;
3433 }
3434 EXPORT_SYMBOL_GPL(dm_disk);
3435 
3436 struct kobject *dm_kobject(struct mapped_device *md)
3437 {
3438 	return &md->kobj_holder.kobj;
3439 }
3440 
3441 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3442 {
3443 	struct mapped_device *md;
3444 
3445 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3446 
3447 	if (test_bit(DMF_FREEING, &md->flags) ||
3448 	    dm_deleting_md(md))
3449 		return NULL;
3450 
3451 	dm_get(md);
3452 	return md;
3453 }
3454 
3455 int dm_suspended_md(struct mapped_device *md)
3456 {
3457 	return test_bit(DMF_SUSPENDED, &md->flags);
3458 }
3459 
3460 int dm_suspended_internally_md(struct mapped_device *md)
3461 {
3462 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3463 }
3464 
3465 int dm_test_deferred_remove_flag(struct mapped_device *md)
3466 {
3467 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3468 }
3469 
3470 int dm_suspended(struct dm_target *ti)
3471 {
3472 	return dm_suspended_md(dm_table_get_md(ti->table));
3473 }
3474 EXPORT_SYMBOL_GPL(dm_suspended);
3475 
3476 int dm_noflush_suspending(struct dm_target *ti)
3477 {
3478 	return __noflush_suspending(dm_table_get_md(ti->table));
3479 }
3480 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3481 
3482 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3483 					    unsigned integrity, unsigned per_bio_data_size)
3484 {
3485 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3486 	struct kmem_cache *cachep = NULL;
3487 	unsigned int pool_size = 0;
3488 	unsigned int front_pad;
3489 
3490 	if (!pools)
3491 		return NULL;
3492 
3493 	type = filter_md_type(type, md);
3494 
3495 	switch (type) {
3496 	case DM_TYPE_BIO_BASED:
3497 		cachep = _io_cache;
3498 		pool_size = dm_get_reserved_bio_based_ios();
3499 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3500 		break;
3501 	case DM_TYPE_REQUEST_BASED:
3502 		cachep = _rq_tio_cache;
3503 		pool_size = dm_get_reserved_rq_based_ios();
3504 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3505 		if (!pools->rq_pool)
3506 			goto out;
3507 		/* fall through to setup remaining rq-based pools */
3508 	case DM_TYPE_MQ_REQUEST_BASED:
3509 		if (!pool_size)
3510 			pool_size = dm_get_reserved_rq_based_ios();
3511 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3512 		/* per_bio_data_size is not used. See __bind_mempools(). */
3513 		WARN_ON(per_bio_data_size != 0);
3514 		break;
3515 	default:
3516 		BUG();
3517 	}
3518 
3519 	if (cachep) {
3520 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3521 		if (!pools->io_pool)
3522 			goto out;
3523 	}
3524 
3525 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3526 	if (!pools->bs)
3527 		goto out;
3528 
3529 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3530 		goto out;
3531 
3532 	return pools;
3533 
3534 out:
3535 	dm_free_md_mempools(pools);
3536 
3537 	return NULL;
3538 }
3539 
3540 void dm_free_md_mempools(struct dm_md_mempools *pools)
3541 {
3542 	if (!pools)
3543 		return;
3544 
3545 	mempool_destroy(pools->io_pool);
3546 	mempool_destroy(pools->rq_pool);
3547 
3548 	if (pools->bs)
3549 		bioset_free(pools->bs);
3550 
3551 	kfree(pools);
3552 }
3553 
3554 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3555 		u32 flags)
3556 {
3557 	struct mapped_device *md = bdev->bd_disk->private_data;
3558 	const struct pr_ops *ops;
3559 	struct dm_target *tgt;
3560 	fmode_t mode;
3561 	int srcu_idx, r;
3562 
3563 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3564 	if (r < 0)
3565 		return r;
3566 
3567 	ops = bdev->bd_disk->fops->pr_ops;
3568 	if (ops && ops->pr_register)
3569 		r = ops->pr_register(bdev, old_key, new_key, flags);
3570 	else
3571 		r = -EOPNOTSUPP;
3572 
3573 	dm_put_live_table(md, srcu_idx);
3574 	return r;
3575 }
3576 
3577 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3578 		u32 flags)
3579 {
3580 	struct mapped_device *md = bdev->bd_disk->private_data;
3581 	const struct pr_ops *ops;
3582 	struct dm_target *tgt;
3583 	fmode_t mode;
3584 	int srcu_idx, r;
3585 
3586 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3587 	if (r < 0)
3588 		return r;
3589 
3590 	ops = bdev->bd_disk->fops->pr_ops;
3591 	if (ops && ops->pr_reserve)
3592 		r = ops->pr_reserve(bdev, key, type, flags);
3593 	else
3594 		r = -EOPNOTSUPP;
3595 
3596 	dm_put_live_table(md, srcu_idx);
3597 	return r;
3598 }
3599 
3600 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3601 {
3602 	struct mapped_device *md = bdev->bd_disk->private_data;
3603 	const struct pr_ops *ops;
3604 	struct dm_target *tgt;
3605 	fmode_t mode;
3606 	int srcu_idx, r;
3607 
3608 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3609 	if (r < 0)
3610 		return r;
3611 
3612 	ops = bdev->bd_disk->fops->pr_ops;
3613 	if (ops && ops->pr_release)
3614 		r = ops->pr_release(bdev, key, type);
3615 	else
3616 		r = -EOPNOTSUPP;
3617 
3618 	dm_put_live_table(md, srcu_idx);
3619 	return r;
3620 }
3621 
3622 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3623 		enum pr_type type, bool abort)
3624 {
3625 	struct mapped_device *md = bdev->bd_disk->private_data;
3626 	const struct pr_ops *ops;
3627 	struct dm_target *tgt;
3628 	fmode_t mode;
3629 	int srcu_idx, r;
3630 
3631 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3632 	if (r < 0)
3633 		return r;
3634 
3635 	ops = bdev->bd_disk->fops->pr_ops;
3636 	if (ops && ops->pr_preempt)
3637 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3638 	else
3639 		r = -EOPNOTSUPP;
3640 
3641 	dm_put_live_table(md, srcu_idx);
3642 	return r;
3643 }
3644 
3645 static int dm_pr_clear(struct block_device *bdev, u64 key)
3646 {
3647 	struct mapped_device *md = bdev->bd_disk->private_data;
3648 	const struct pr_ops *ops;
3649 	struct dm_target *tgt;
3650 	fmode_t mode;
3651 	int srcu_idx, r;
3652 
3653 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3654 	if (r < 0)
3655 		return r;
3656 
3657 	ops = bdev->bd_disk->fops->pr_ops;
3658 	if (ops && ops->pr_clear)
3659 		r = ops->pr_clear(bdev, key);
3660 	else
3661 		r = -EOPNOTSUPP;
3662 
3663 	dm_put_live_table(md, srcu_idx);
3664 	return r;
3665 }
3666 
3667 static const struct pr_ops dm_pr_ops = {
3668 	.pr_register	= dm_pr_register,
3669 	.pr_reserve	= dm_pr_reserve,
3670 	.pr_release	= dm_pr_release,
3671 	.pr_preempt	= dm_pr_preempt,
3672 	.pr_clear	= dm_pr_clear,
3673 };
3674 
3675 static const struct block_device_operations dm_blk_dops = {
3676 	.open = dm_blk_open,
3677 	.release = dm_blk_close,
3678 	.ioctl = dm_blk_ioctl,
3679 	.getgeo = dm_blk_getgeo,
3680 	.pr_ops = &dm_pr_ops,
3681 	.owner = THIS_MODULE
3682 };
3683 
3684 /*
3685  * module hooks
3686  */
3687 module_init(dm_init);
3688 module_exit(dm_exit);
3689 
3690 module_param(major, uint, 0);
3691 MODULE_PARM_DESC(major, "The major number of the device mapper");
3692 
3693 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3694 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3695 
3696 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3697 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3698 
3699 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3700 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3701 
3702 MODULE_DESCRIPTION(DM_NAME " driver");
3703 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3704 MODULE_LICENSE("GPL");
3705