1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/buffer_head.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 #include <linux/delay.h> 23 24 #include <trace/events/block.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 #ifdef CONFIG_PRINTK 29 /* 30 * ratelimit state to be used in DMXXX_LIMIT(). 31 */ 32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 33 DEFAULT_RATELIMIT_INTERVAL, 34 DEFAULT_RATELIMIT_BURST); 35 EXPORT_SYMBOL(dm_ratelimit_state); 36 #endif 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 static const char *_name = DM_NAME; 46 47 static unsigned int major = 0; 48 static unsigned int _major = 0; 49 50 static DEFINE_IDR(_minor_idr); 51 52 static DEFINE_SPINLOCK(_minor_lock); 53 /* 54 * For bio-based dm. 55 * One of these is allocated per bio. 56 */ 57 struct dm_io { 58 struct mapped_device *md; 59 int error; 60 atomic_t io_count; 61 struct bio *bio; 62 unsigned long start_time; 63 spinlock_t endio_lock; 64 }; 65 66 /* 67 * For bio-based dm. 68 * One of these is allocated per target within a bio. Hopefully 69 * this will be simplified out one day. 70 */ 71 struct dm_target_io { 72 struct dm_io *io; 73 struct dm_target *ti; 74 union map_info info; 75 }; 76 77 /* 78 * For request-based dm. 79 * One of these is allocated per request. 80 */ 81 struct dm_rq_target_io { 82 struct mapped_device *md; 83 struct dm_target *ti; 84 struct request *orig, clone; 85 int error; 86 union map_info info; 87 }; 88 89 /* 90 * For request-based dm. 91 * One of these is allocated per bio. 92 */ 93 struct dm_rq_clone_bio_info { 94 struct bio *orig; 95 struct dm_rq_target_io *tio; 96 }; 97 98 union map_info *dm_get_mapinfo(struct bio *bio) 99 { 100 if (bio && bio->bi_private) 101 return &((struct dm_target_io *)bio->bi_private)->info; 102 return NULL; 103 } 104 105 union map_info *dm_get_rq_mapinfo(struct request *rq) 106 { 107 if (rq && rq->end_io_data) 108 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 109 return NULL; 110 } 111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 112 113 #define MINOR_ALLOCED ((void *)-1) 114 115 /* 116 * Bits for the md->flags field. 117 */ 118 #define DMF_BLOCK_IO_FOR_SUSPEND 0 119 #define DMF_SUSPENDED 1 120 #define DMF_FROZEN 2 121 #define DMF_FREEING 3 122 #define DMF_DELETING 4 123 #define DMF_NOFLUSH_SUSPENDING 5 124 #define DMF_MERGE_IS_OPTIONAL 6 125 126 /* 127 * Work processed by per-device workqueue. 128 */ 129 struct mapped_device { 130 struct rw_semaphore io_lock; 131 struct mutex suspend_lock; 132 rwlock_t map_lock; 133 atomic_t holders; 134 atomic_t open_count; 135 136 unsigned long flags; 137 138 struct request_queue *queue; 139 unsigned type; 140 /* Protect queue and type against concurrent access. */ 141 struct mutex type_lock; 142 143 struct target_type *immutable_target_type; 144 145 struct gendisk *disk; 146 char name[16]; 147 148 void *interface_ptr; 149 150 /* 151 * A list of ios that arrived while we were suspended. 152 */ 153 atomic_t pending[2]; 154 wait_queue_head_t wait; 155 struct work_struct work; 156 struct bio_list deferred; 157 spinlock_t deferred_lock; 158 159 /* 160 * Processing queue (flush) 161 */ 162 struct workqueue_struct *wq; 163 164 /* 165 * The current mapping. 166 */ 167 struct dm_table *map; 168 169 /* 170 * io objects are allocated from here. 171 */ 172 mempool_t *io_pool; 173 mempool_t *tio_pool; 174 175 struct bio_set *bs; 176 177 /* 178 * Event handling. 179 */ 180 atomic_t event_nr; 181 wait_queue_head_t eventq; 182 atomic_t uevent_seq; 183 struct list_head uevent_list; 184 spinlock_t uevent_lock; /* Protect access to uevent_list */ 185 186 /* 187 * freeze/thaw support require holding onto a super block 188 */ 189 struct super_block *frozen_sb; 190 struct block_device *bdev; 191 192 /* forced geometry settings */ 193 struct hd_geometry geometry; 194 195 /* sysfs handle */ 196 struct kobject kobj; 197 198 /* zero-length flush that will be cloned and submitted to targets */ 199 struct bio flush_bio; 200 }; 201 202 /* 203 * For mempools pre-allocation at the table loading time. 204 */ 205 struct dm_md_mempools { 206 mempool_t *io_pool; 207 mempool_t *tio_pool; 208 struct bio_set *bs; 209 }; 210 211 #define MIN_IOS 256 212 static struct kmem_cache *_io_cache; 213 static struct kmem_cache *_tio_cache; 214 static struct kmem_cache *_rq_tio_cache; 215 static struct kmem_cache *_rq_bio_info_cache; 216 217 static int __init local_init(void) 218 { 219 int r = -ENOMEM; 220 221 /* allocate a slab for the dm_ios */ 222 _io_cache = KMEM_CACHE(dm_io, 0); 223 if (!_io_cache) 224 return r; 225 226 /* allocate a slab for the target ios */ 227 _tio_cache = KMEM_CACHE(dm_target_io, 0); 228 if (!_tio_cache) 229 goto out_free_io_cache; 230 231 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 232 if (!_rq_tio_cache) 233 goto out_free_tio_cache; 234 235 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 236 if (!_rq_bio_info_cache) 237 goto out_free_rq_tio_cache; 238 239 r = dm_uevent_init(); 240 if (r) 241 goto out_free_rq_bio_info_cache; 242 243 _major = major; 244 r = register_blkdev(_major, _name); 245 if (r < 0) 246 goto out_uevent_exit; 247 248 if (!_major) 249 _major = r; 250 251 return 0; 252 253 out_uevent_exit: 254 dm_uevent_exit(); 255 out_free_rq_bio_info_cache: 256 kmem_cache_destroy(_rq_bio_info_cache); 257 out_free_rq_tio_cache: 258 kmem_cache_destroy(_rq_tio_cache); 259 out_free_tio_cache: 260 kmem_cache_destroy(_tio_cache); 261 out_free_io_cache: 262 kmem_cache_destroy(_io_cache); 263 264 return r; 265 } 266 267 static void local_exit(void) 268 { 269 kmem_cache_destroy(_rq_bio_info_cache); 270 kmem_cache_destroy(_rq_tio_cache); 271 kmem_cache_destroy(_tio_cache); 272 kmem_cache_destroy(_io_cache); 273 unregister_blkdev(_major, _name); 274 dm_uevent_exit(); 275 276 _major = 0; 277 278 DMINFO("cleaned up"); 279 } 280 281 static int (*_inits[])(void) __initdata = { 282 local_init, 283 dm_target_init, 284 dm_linear_init, 285 dm_stripe_init, 286 dm_io_init, 287 dm_kcopyd_init, 288 dm_interface_init, 289 }; 290 291 static void (*_exits[])(void) = { 292 local_exit, 293 dm_target_exit, 294 dm_linear_exit, 295 dm_stripe_exit, 296 dm_io_exit, 297 dm_kcopyd_exit, 298 dm_interface_exit, 299 }; 300 301 static int __init dm_init(void) 302 { 303 const int count = ARRAY_SIZE(_inits); 304 305 int r, i; 306 307 for (i = 0; i < count; i++) { 308 r = _inits[i](); 309 if (r) 310 goto bad; 311 } 312 313 return 0; 314 315 bad: 316 while (i--) 317 _exits[i](); 318 319 return r; 320 } 321 322 static void __exit dm_exit(void) 323 { 324 int i = ARRAY_SIZE(_exits); 325 326 while (i--) 327 _exits[i](); 328 329 /* 330 * Should be empty by this point. 331 */ 332 idr_remove_all(&_minor_idr); 333 idr_destroy(&_minor_idr); 334 } 335 336 /* 337 * Block device functions 338 */ 339 int dm_deleting_md(struct mapped_device *md) 340 { 341 return test_bit(DMF_DELETING, &md->flags); 342 } 343 344 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 345 { 346 struct mapped_device *md; 347 348 spin_lock(&_minor_lock); 349 350 md = bdev->bd_disk->private_data; 351 if (!md) 352 goto out; 353 354 if (test_bit(DMF_FREEING, &md->flags) || 355 dm_deleting_md(md)) { 356 md = NULL; 357 goto out; 358 } 359 360 dm_get(md); 361 atomic_inc(&md->open_count); 362 363 out: 364 spin_unlock(&_minor_lock); 365 366 return md ? 0 : -ENXIO; 367 } 368 369 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 370 { 371 struct mapped_device *md = disk->private_data; 372 373 spin_lock(&_minor_lock); 374 375 atomic_dec(&md->open_count); 376 dm_put(md); 377 378 spin_unlock(&_minor_lock); 379 380 return 0; 381 } 382 383 int dm_open_count(struct mapped_device *md) 384 { 385 return atomic_read(&md->open_count); 386 } 387 388 /* 389 * Guarantees nothing is using the device before it's deleted. 390 */ 391 int dm_lock_for_deletion(struct mapped_device *md) 392 { 393 int r = 0; 394 395 spin_lock(&_minor_lock); 396 397 if (dm_open_count(md)) 398 r = -EBUSY; 399 else 400 set_bit(DMF_DELETING, &md->flags); 401 402 spin_unlock(&_minor_lock); 403 404 return r; 405 } 406 407 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 408 { 409 struct mapped_device *md = bdev->bd_disk->private_data; 410 411 return dm_get_geometry(md, geo); 412 } 413 414 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 415 unsigned int cmd, unsigned long arg) 416 { 417 struct mapped_device *md = bdev->bd_disk->private_data; 418 struct dm_table *map = dm_get_live_table(md); 419 struct dm_target *tgt; 420 int r = -ENOTTY; 421 422 if (!map || !dm_table_get_size(map)) 423 goto out; 424 425 /* We only support devices that have a single target */ 426 if (dm_table_get_num_targets(map) != 1) 427 goto out; 428 429 tgt = dm_table_get_target(map, 0); 430 431 if (dm_suspended_md(md)) { 432 r = -EAGAIN; 433 goto out; 434 } 435 436 if (tgt->type->ioctl) 437 r = tgt->type->ioctl(tgt, cmd, arg); 438 439 out: 440 dm_table_put(map); 441 442 return r; 443 } 444 445 static struct dm_io *alloc_io(struct mapped_device *md) 446 { 447 return mempool_alloc(md->io_pool, GFP_NOIO); 448 } 449 450 static void free_io(struct mapped_device *md, struct dm_io *io) 451 { 452 mempool_free(io, md->io_pool); 453 } 454 455 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 456 { 457 mempool_free(tio, md->tio_pool); 458 } 459 460 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 461 gfp_t gfp_mask) 462 { 463 return mempool_alloc(md->tio_pool, gfp_mask); 464 } 465 466 static void free_rq_tio(struct dm_rq_target_io *tio) 467 { 468 mempool_free(tio, tio->md->tio_pool); 469 } 470 471 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md) 472 { 473 return mempool_alloc(md->io_pool, GFP_ATOMIC); 474 } 475 476 static void free_bio_info(struct dm_rq_clone_bio_info *info) 477 { 478 mempool_free(info, info->tio->md->io_pool); 479 } 480 481 static int md_in_flight(struct mapped_device *md) 482 { 483 return atomic_read(&md->pending[READ]) + 484 atomic_read(&md->pending[WRITE]); 485 } 486 487 static void start_io_acct(struct dm_io *io) 488 { 489 struct mapped_device *md = io->md; 490 int cpu; 491 int rw = bio_data_dir(io->bio); 492 493 io->start_time = jiffies; 494 495 cpu = part_stat_lock(); 496 part_round_stats(cpu, &dm_disk(md)->part0); 497 part_stat_unlock(); 498 atomic_set(&dm_disk(md)->part0.in_flight[rw], 499 atomic_inc_return(&md->pending[rw])); 500 } 501 502 static void end_io_acct(struct dm_io *io) 503 { 504 struct mapped_device *md = io->md; 505 struct bio *bio = io->bio; 506 unsigned long duration = jiffies - io->start_time; 507 int pending, cpu; 508 int rw = bio_data_dir(bio); 509 510 cpu = part_stat_lock(); 511 part_round_stats(cpu, &dm_disk(md)->part0); 512 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 513 part_stat_unlock(); 514 515 /* 516 * After this is decremented the bio must not be touched if it is 517 * a flush. 518 */ 519 pending = atomic_dec_return(&md->pending[rw]); 520 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 521 pending += atomic_read(&md->pending[rw^0x1]); 522 523 /* nudge anyone waiting on suspend queue */ 524 if (!pending) 525 wake_up(&md->wait); 526 } 527 528 /* 529 * Add the bio to the list of deferred io. 530 */ 531 static void queue_io(struct mapped_device *md, struct bio *bio) 532 { 533 unsigned long flags; 534 535 spin_lock_irqsave(&md->deferred_lock, flags); 536 bio_list_add(&md->deferred, bio); 537 spin_unlock_irqrestore(&md->deferred_lock, flags); 538 queue_work(md->wq, &md->work); 539 } 540 541 /* 542 * Everyone (including functions in this file), should use this 543 * function to access the md->map field, and make sure they call 544 * dm_table_put() when finished. 545 */ 546 struct dm_table *dm_get_live_table(struct mapped_device *md) 547 { 548 struct dm_table *t; 549 unsigned long flags; 550 551 read_lock_irqsave(&md->map_lock, flags); 552 t = md->map; 553 if (t) 554 dm_table_get(t); 555 read_unlock_irqrestore(&md->map_lock, flags); 556 557 return t; 558 } 559 560 /* 561 * Get the geometry associated with a dm device 562 */ 563 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 564 { 565 *geo = md->geometry; 566 567 return 0; 568 } 569 570 /* 571 * Set the geometry of a device. 572 */ 573 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 574 { 575 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 576 577 if (geo->start > sz) { 578 DMWARN("Start sector is beyond the geometry limits."); 579 return -EINVAL; 580 } 581 582 md->geometry = *geo; 583 584 return 0; 585 } 586 587 /*----------------------------------------------------------------- 588 * CRUD START: 589 * A more elegant soln is in the works that uses the queue 590 * merge fn, unfortunately there are a couple of changes to 591 * the block layer that I want to make for this. So in the 592 * interests of getting something for people to use I give 593 * you this clearly demarcated crap. 594 *---------------------------------------------------------------*/ 595 596 static int __noflush_suspending(struct mapped_device *md) 597 { 598 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 599 } 600 601 /* 602 * Decrements the number of outstanding ios that a bio has been 603 * cloned into, completing the original io if necc. 604 */ 605 static void dec_pending(struct dm_io *io, int error) 606 { 607 unsigned long flags; 608 int io_error; 609 struct bio *bio; 610 struct mapped_device *md = io->md; 611 612 /* Push-back supersedes any I/O errors */ 613 if (unlikely(error)) { 614 spin_lock_irqsave(&io->endio_lock, flags); 615 if (!(io->error > 0 && __noflush_suspending(md))) 616 io->error = error; 617 spin_unlock_irqrestore(&io->endio_lock, flags); 618 } 619 620 if (atomic_dec_and_test(&io->io_count)) { 621 if (io->error == DM_ENDIO_REQUEUE) { 622 /* 623 * Target requested pushing back the I/O. 624 */ 625 spin_lock_irqsave(&md->deferred_lock, flags); 626 if (__noflush_suspending(md)) 627 bio_list_add_head(&md->deferred, io->bio); 628 else 629 /* noflush suspend was interrupted. */ 630 io->error = -EIO; 631 spin_unlock_irqrestore(&md->deferred_lock, flags); 632 } 633 634 io_error = io->error; 635 bio = io->bio; 636 end_io_acct(io); 637 free_io(md, io); 638 639 if (io_error == DM_ENDIO_REQUEUE) 640 return; 641 642 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 643 /* 644 * Preflush done for flush with data, reissue 645 * without REQ_FLUSH. 646 */ 647 bio->bi_rw &= ~REQ_FLUSH; 648 queue_io(md, bio); 649 } else { 650 /* done with normal IO or empty flush */ 651 trace_block_bio_complete(md->queue, bio, io_error); 652 bio_endio(bio, io_error); 653 } 654 } 655 } 656 657 static void clone_endio(struct bio *bio, int error) 658 { 659 int r = 0; 660 struct dm_target_io *tio = bio->bi_private; 661 struct dm_io *io = tio->io; 662 struct mapped_device *md = tio->io->md; 663 dm_endio_fn endio = tio->ti->type->end_io; 664 665 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 666 error = -EIO; 667 668 if (endio) { 669 r = endio(tio->ti, bio, error, &tio->info); 670 if (r < 0 || r == DM_ENDIO_REQUEUE) 671 /* 672 * error and requeue request are handled 673 * in dec_pending(). 674 */ 675 error = r; 676 else if (r == DM_ENDIO_INCOMPLETE) 677 /* The target will handle the io */ 678 return; 679 else if (r) { 680 DMWARN("unimplemented target endio return value: %d", r); 681 BUG(); 682 } 683 } 684 685 /* 686 * Store md for cleanup instead of tio which is about to get freed. 687 */ 688 bio->bi_private = md->bs; 689 690 free_tio(md, tio); 691 bio_put(bio); 692 dec_pending(io, error); 693 } 694 695 /* 696 * Partial completion handling for request-based dm 697 */ 698 static void end_clone_bio(struct bio *clone, int error) 699 { 700 struct dm_rq_clone_bio_info *info = clone->bi_private; 701 struct dm_rq_target_io *tio = info->tio; 702 struct bio *bio = info->orig; 703 unsigned int nr_bytes = info->orig->bi_size; 704 705 bio_put(clone); 706 707 if (tio->error) 708 /* 709 * An error has already been detected on the request. 710 * Once error occurred, just let clone->end_io() handle 711 * the remainder. 712 */ 713 return; 714 else if (error) { 715 /* 716 * Don't notice the error to the upper layer yet. 717 * The error handling decision is made by the target driver, 718 * when the request is completed. 719 */ 720 tio->error = error; 721 return; 722 } 723 724 /* 725 * I/O for the bio successfully completed. 726 * Notice the data completion to the upper layer. 727 */ 728 729 /* 730 * bios are processed from the head of the list. 731 * So the completing bio should always be rq->bio. 732 * If it's not, something wrong is happening. 733 */ 734 if (tio->orig->bio != bio) 735 DMERR("bio completion is going in the middle of the request"); 736 737 /* 738 * Update the original request. 739 * Do not use blk_end_request() here, because it may complete 740 * the original request before the clone, and break the ordering. 741 */ 742 blk_update_request(tio->orig, 0, nr_bytes); 743 } 744 745 /* 746 * Don't touch any member of the md after calling this function because 747 * the md may be freed in dm_put() at the end of this function. 748 * Or do dm_get() before calling this function and dm_put() later. 749 */ 750 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 751 { 752 atomic_dec(&md->pending[rw]); 753 754 /* nudge anyone waiting on suspend queue */ 755 if (!md_in_flight(md)) 756 wake_up(&md->wait); 757 758 if (run_queue) 759 blk_run_queue(md->queue); 760 761 /* 762 * dm_put() must be at the end of this function. See the comment above 763 */ 764 dm_put(md); 765 } 766 767 static void free_rq_clone(struct request *clone) 768 { 769 struct dm_rq_target_io *tio = clone->end_io_data; 770 771 blk_rq_unprep_clone(clone); 772 free_rq_tio(tio); 773 } 774 775 /* 776 * Complete the clone and the original request. 777 * Must be called without queue lock. 778 */ 779 static void dm_end_request(struct request *clone, int error) 780 { 781 int rw = rq_data_dir(clone); 782 struct dm_rq_target_io *tio = clone->end_io_data; 783 struct mapped_device *md = tio->md; 784 struct request *rq = tio->orig; 785 786 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 787 rq->errors = clone->errors; 788 rq->resid_len = clone->resid_len; 789 790 if (rq->sense) 791 /* 792 * We are using the sense buffer of the original 793 * request. 794 * So setting the length of the sense data is enough. 795 */ 796 rq->sense_len = clone->sense_len; 797 } 798 799 free_rq_clone(clone); 800 blk_end_request_all(rq, error); 801 rq_completed(md, rw, true); 802 } 803 804 static void dm_unprep_request(struct request *rq) 805 { 806 struct request *clone = rq->special; 807 808 rq->special = NULL; 809 rq->cmd_flags &= ~REQ_DONTPREP; 810 811 free_rq_clone(clone); 812 } 813 814 /* 815 * Requeue the original request of a clone. 816 */ 817 void dm_requeue_unmapped_request(struct request *clone) 818 { 819 int rw = rq_data_dir(clone); 820 struct dm_rq_target_io *tio = clone->end_io_data; 821 struct mapped_device *md = tio->md; 822 struct request *rq = tio->orig; 823 struct request_queue *q = rq->q; 824 unsigned long flags; 825 826 dm_unprep_request(rq); 827 828 spin_lock_irqsave(q->queue_lock, flags); 829 blk_requeue_request(q, rq); 830 spin_unlock_irqrestore(q->queue_lock, flags); 831 832 rq_completed(md, rw, 0); 833 } 834 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 835 836 static void __stop_queue(struct request_queue *q) 837 { 838 blk_stop_queue(q); 839 } 840 841 static void stop_queue(struct request_queue *q) 842 { 843 unsigned long flags; 844 845 spin_lock_irqsave(q->queue_lock, flags); 846 __stop_queue(q); 847 spin_unlock_irqrestore(q->queue_lock, flags); 848 } 849 850 static void __start_queue(struct request_queue *q) 851 { 852 if (blk_queue_stopped(q)) 853 blk_start_queue(q); 854 } 855 856 static void start_queue(struct request_queue *q) 857 { 858 unsigned long flags; 859 860 spin_lock_irqsave(q->queue_lock, flags); 861 __start_queue(q); 862 spin_unlock_irqrestore(q->queue_lock, flags); 863 } 864 865 static void dm_done(struct request *clone, int error, bool mapped) 866 { 867 int r = error; 868 struct dm_rq_target_io *tio = clone->end_io_data; 869 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io; 870 871 if (mapped && rq_end_io) 872 r = rq_end_io(tio->ti, clone, error, &tio->info); 873 874 if (r <= 0) 875 /* The target wants to complete the I/O */ 876 dm_end_request(clone, r); 877 else if (r == DM_ENDIO_INCOMPLETE) 878 /* The target will handle the I/O */ 879 return; 880 else if (r == DM_ENDIO_REQUEUE) 881 /* The target wants to requeue the I/O */ 882 dm_requeue_unmapped_request(clone); 883 else { 884 DMWARN("unimplemented target endio return value: %d", r); 885 BUG(); 886 } 887 } 888 889 /* 890 * Request completion handler for request-based dm 891 */ 892 static void dm_softirq_done(struct request *rq) 893 { 894 bool mapped = true; 895 struct request *clone = rq->completion_data; 896 struct dm_rq_target_io *tio = clone->end_io_data; 897 898 if (rq->cmd_flags & REQ_FAILED) 899 mapped = false; 900 901 dm_done(clone, tio->error, mapped); 902 } 903 904 /* 905 * Complete the clone and the original request with the error status 906 * through softirq context. 907 */ 908 static void dm_complete_request(struct request *clone, int error) 909 { 910 struct dm_rq_target_io *tio = clone->end_io_data; 911 struct request *rq = tio->orig; 912 913 tio->error = error; 914 rq->completion_data = clone; 915 blk_complete_request(rq); 916 } 917 918 /* 919 * Complete the not-mapped clone and the original request with the error status 920 * through softirq context. 921 * Target's rq_end_io() function isn't called. 922 * This may be used when the target's map_rq() function fails. 923 */ 924 void dm_kill_unmapped_request(struct request *clone, int error) 925 { 926 struct dm_rq_target_io *tio = clone->end_io_data; 927 struct request *rq = tio->orig; 928 929 rq->cmd_flags |= REQ_FAILED; 930 dm_complete_request(clone, error); 931 } 932 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 933 934 /* 935 * Called with the queue lock held 936 */ 937 static void end_clone_request(struct request *clone, int error) 938 { 939 /* 940 * For just cleaning up the information of the queue in which 941 * the clone was dispatched. 942 * The clone is *NOT* freed actually here because it is alloced from 943 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 944 */ 945 __blk_put_request(clone->q, clone); 946 947 /* 948 * Actual request completion is done in a softirq context which doesn't 949 * hold the queue lock. Otherwise, deadlock could occur because: 950 * - another request may be submitted by the upper level driver 951 * of the stacking during the completion 952 * - the submission which requires queue lock may be done 953 * against this queue 954 */ 955 dm_complete_request(clone, error); 956 } 957 958 /* 959 * Return maximum size of I/O possible at the supplied sector up to the current 960 * target boundary. 961 */ 962 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 963 { 964 sector_t target_offset = dm_target_offset(ti, sector); 965 966 return ti->len - target_offset; 967 } 968 969 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 970 { 971 sector_t len = max_io_len_target_boundary(sector, ti); 972 973 /* 974 * Does the target need to split even further ? 975 */ 976 if (ti->split_io) { 977 sector_t boundary; 978 sector_t offset = dm_target_offset(ti, sector); 979 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 980 - offset; 981 if (len > boundary) 982 len = boundary; 983 } 984 985 return len; 986 } 987 988 static void __map_bio(struct dm_target *ti, struct bio *clone, 989 struct dm_target_io *tio) 990 { 991 int r; 992 sector_t sector; 993 struct mapped_device *md; 994 995 clone->bi_end_io = clone_endio; 996 clone->bi_private = tio; 997 998 /* 999 * Map the clone. If r == 0 we don't need to do 1000 * anything, the target has assumed ownership of 1001 * this io. 1002 */ 1003 atomic_inc(&tio->io->io_count); 1004 sector = clone->bi_sector; 1005 r = ti->type->map(ti, clone, &tio->info); 1006 if (r == DM_MAPIO_REMAPPED) { 1007 /* the bio has been remapped so dispatch it */ 1008 1009 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1010 tio->io->bio->bi_bdev->bd_dev, sector); 1011 1012 generic_make_request(clone); 1013 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1014 /* error the io and bail out, or requeue it if needed */ 1015 md = tio->io->md; 1016 dec_pending(tio->io, r); 1017 /* 1018 * Store bio_set for cleanup. 1019 */ 1020 clone->bi_private = md->bs; 1021 bio_put(clone); 1022 free_tio(md, tio); 1023 } else if (r) { 1024 DMWARN("unimplemented target map return value: %d", r); 1025 BUG(); 1026 } 1027 } 1028 1029 struct clone_info { 1030 struct mapped_device *md; 1031 struct dm_table *map; 1032 struct bio *bio; 1033 struct dm_io *io; 1034 sector_t sector; 1035 sector_t sector_count; 1036 unsigned short idx; 1037 }; 1038 1039 static void dm_bio_destructor(struct bio *bio) 1040 { 1041 struct bio_set *bs = bio->bi_private; 1042 1043 bio_free(bio, bs); 1044 } 1045 1046 /* 1047 * Creates a little bio that just does part of a bvec. 1048 */ 1049 static struct bio *split_bvec(struct bio *bio, sector_t sector, 1050 unsigned short idx, unsigned int offset, 1051 unsigned int len, struct bio_set *bs) 1052 { 1053 struct bio *clone; 1054 struct bio_vec *bv = bio->bi_io_vec + idx; 1055 1056 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 1057 clone->bi_destructor = dm_bio_destructor; 1058 *clone->bi_io_vec = *bv; 1059 1060 clone->bi_sector = sector; 1061 clone->bi_bdev = bio->bi_bdev; 1062 clone->bi_rw = bio->bi_rw; 1063 clone->bi_vcnt = 1; 1064 clone->bi_size = to_bytes(len); 1065 clone->bi_io_vec->bv_offset = offset; 1066 clone->bi_io_vec->bv_len = clone->bi_size; 1067 clone->bi_flags |= 1 << BIO_CLONED; 1068 1069 if (bio_integrity(bio)) { 1070 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1071 bio_integrity_trim(clone, 1072 bio_sector_offset(bio, idx, offset), len); 1073 } 1074 1075 return clone; 1076 } 1077 1078 /* 1079 * Creates a bio that consists of range of complete bvecs. 1080 */ 1081 static struct bio *clone_bio(struct bio *bio, sector_t sector, 1082 unsigned short idx, unsigned short bv_count, 1083 unsigned int len, struct bio_set *bs) 1084 { 1085 struct bio *clone; 1086 1087 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 1088 __bio_clone(clone, bio); 1089 clone->bi_destructor = dm_bio_destructor; 1090 clone->bi_sector = sector; 1091 clone->bi_idx = idx; 1092 clone->bi_vcnt = idx + bv_count; 1093 clone->bi_size = to_bytes(len); 1094 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 1095 1096 if (bio_integrity(bio)) { 1097 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1098 1099 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1100 bio_integrity_trim(clone, 1101 bio_sector_offset(bio, idx, 0), len); 1102 } 1103 1104 return clone; 1105 } 1106 1107 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1108 struct dm_target *ti) 1109 { 1110 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO); 1111 1112 tio->io = ci->io; 1113 tio->ti = ti; 1114 memset(&tio->info, 0, sizeof(tio->info)); 1115 1116 return tio; 1117 } 1118 1119 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti, 1120 unsigned request_nr, sector_t len) 1121 { 1122 struct dm_target_io *tio = alloc_tio(ci, ti); 1123 struct bio *clone; 1124 1125 tio->info.target_request_nr = request_nr; 1126 1127 /* 1128 * Discard requests require the bio's inline iovecs be initialized. 1129 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1130 * and discard, so no need for concern about wasted bvec allocations. 1131 */ 1132 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs); 1133 __bio_clone(clone, ci->bio); 1134 clone->bi_destructor = dm_bio_destructor; 1135 if (len) { 1136 clone->bi_sector = ci->sector; 1137 clone->bi_size = to_bytes(len); 1138 } 1139 1140 __map_bio(ti, clone, tio); 1141 } 1142 1143 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti, 1144 unsigned num_requests, sector_t len) 1145 { 1146 unsigned request_nr; 1147 1148 for (request_nr = 0; request_nr < num_requests; request_nr++) 1149 __issue_target_request(ci, ti, request_nr, len); 1150 } 1151 1152 static int __clone_and_map_empty_flush(struct clone_info *ci) 1153 { 1154 unsigned target_nr = 0; 1155 struct dm_target *ti; 1156 1157 BUG_ON(bio_has_data(ci->bio)); 1158 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1159 __issue_target_requests(ci, ti, ti->num_flush_requests, 0); 1160 1161 return 0; 1162 } 1163 1164 /* 1165 * Perform all io with a single clone. 1166 */ 1167 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti) 1168 { 1169 struct bio *clone, *bio = ci->bio; 1170 struct dm_target_io *tio; 1171 1172 tio = alloc_tio(ci, ti); 1173 clone = clone_bio(bio, ci->sector, ci->idx, 1174 bio->bi_vcnt - ci->idx, ci->sector_count, 1175 ci->md->bs); 1176 __map_bio(ti, clone, tio); 1177 ci->sector_count = 0; 1178 } 1179 1180 static int __clone_and_map_discard(struct clone_info *ci) 1181 { 1182 struct dm_target *ti; 1183 sector_t len; 1184 1185 do { 1186 ti = dm_table_find_target(ci->map, ci->sector); 1187 if (!dm_target_is_valid(ti)) 1188 return -EIO; 1189 1190 /* 1191 * Even though the device advertised discard support, 1192 * that does not mean every target supports it, and 1193 * reconfiguration might also have changed that since the 1194 * check was performed. 1195 */ 1196 if (!ti->num_discard_requests) 1197 return -EOPNOTSUPP; 1198 1199 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1200 1201 __issue_target_requests(ci, ti, ti->num_discard_requests, len); 1202 1203 ci->sector += len; 1204 } while (ci->sector_count -= len); 1205 1206 return 0; 1207 } 1208 1209 static int __clone_and_map(struct clone_info *ci) 1210 { 1211 struct bio *clone, *bio = ci->bio; 1212 struct dm_target *ti; 1213 sector_t len = 0, max; 1214 struct dm_target_io *tio; 1215 1216 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1217 return __clone_and_map_discard(ci); 1218 1219 ti = dm_table_find_target(ci->map, ci->sector); 1220 if (!dm_target_is_valid(ti)) 1221 return -EIO; 1222 1223 max = max_io_len(ci->sector, ti); 1224 1225 if (ci->sector_count <= max) { 1226 /* 1227 * Optimise for the simple case where we can do all of 1228 * the remaining io with a single clone. 1229 */ 1230 __clone_and_map_simple(ci, ti); 1231 1232 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1233 /* 1234 * There are some bvecs that don't span targets. 1235 * Do as many of these as possible. 1236 */ 1237 int i; 1238 sector_t remaining = max; 1239 sector_t bv_len; 1240 1241 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1242 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1243 1244 if (bv_len > remaining) 1245 break; 1246 1247 remaining -= bv_len; 1248 len += bv_len; 1249 } 1250 1251 tio = alloc_tio(ci, ti); 1252 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 1253 ci->md->bs); 1254 __map_bio(ti, clone, tio); 1255 1256 ci->sector += len; 1257 ci->sector_count -= len; 1258 ci->idx = i; 1259 1260 } else { 1261 /* 1262 * Handle a bvec that must be split between two or more targets. 1263 */ 1264 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1265 sector_t remaining = to_sector(bv->bv_len); 1266 unsigned int offset = 0; 1267 1268 do { 1269 if (offset) { 1270 ti = dm_table_find_target(ci->map, ci->sector); 1271 if (!dm_target_is_valid(ti)) 1272 return -EIO; 1273 1274 max = max_io_len(ci->sector, ti); 1275 } 1276 1277 len = min(remaining, max); 1278 1279 tio = alloc_tio(ci, ti); 1280 clone = split_bvec(bio, ci->sector, ci->idx, 1281 bv->bv_offset + offset, len, 1282 ci->md->bs); 1283 1284 __map_bio(ti, clone, tio); 1285 1286 ci->sector += len; 1287 ci->sector_count -= len; 1288 offset += to_bytes(len); 1289 } while (remaining -= len); 1290 1291 ci->idx++; 1292 } 1293 1294 return 0; 1295 } 1296 1297 /* 1298 * Split the bio into several clones and submit it to targets. 1299 */ 1300 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1301 { 1302 struct clone_info ci; 1303 int error = 0; 1304 1305 ci.map = dm_get_live_table(md); 1306 if (unlikely(!ci.map)) { 1307 bio_io_error(bio); 1308 return; 1309 } 1310 1311 ci.md = md; 1312 ci.io = alloc_io(md); 1313 ci.io->error = 0; 1314 atomic_set(&ci.io->io_count, 1); 1315 ci.io->bio = bio; 1316 ci.io->md = md; 1317 spin_lock_init(&ci.io->endio_lock); 1318 ci.sector = bio->bi_sector; 1319 ci.idx = bio->bi_idx; 1320 1321 start_io_acct(ci.io); 1322 if (bio->bi_rw & REQ_FLUSH) { 1323 ci.bio = &ci.md->flush_bio; 1324 ci.sector_count = 0; 1325 error = __clone_and_map_empty_flush(&ci); 1326 /* dec_pending submits any data associated with flush */ 1327 } else { 1328 ci.bio = bio; 1329 ci.sector_count = bio_sectors(bio); 1330 while (ci.sector_count && !error) 1331 error = __clone_and_map(&ci); 1332 } 1333 1334 /* drop the extra reference count */ 1335 dec_pending(ci.io, error); 1336 dm_table_put(ci.map); 1337 } 1338 /*----------------------------------------------------------------- 1339 * CRUD END 1340 *---------------------------------------------------------------*/ 1341 1342 static int dm_merge_bvec(struct request_queue *q, 1343 struct bvec_merge_data *bvm, 1344 struct bio_vec *biovec) 1345 { 1346 struct mapped_device *md = q->queuedata; 1347 struct dm_table *map = dm_get_live_table(md); 1348 struct dm_target *ti; 1349 sector_t max_sectors; 1350 int max_size = 0; 1351 1352 if (unlikely(!map)) 1353 goto out; 1354 1355 ti = dm_table_find_target(map, bvm->bi_sector); 1356 if (!dm_target_is_valid(ti)) 1357 goto out_table; 1358 1359 /* 1360 * Find maximum amount of I/O that won't need splitting 1361 */ 1362 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1363 (sector_t) BIO_MAX_SECTORS); 1364 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1365 if (max_size < 0) 1366 max_size = 0; 1367 1368 /* 1369 * merge_bvec_fn() returns number of bytes 1370 * it can accept at this offset 1371 * max is precomputed maximal io size 1372 */ 1373 if (max_size && ti->type->merge) 1374 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1375 /* 1376 * If the target doesn't support merge method and some of the devices 1377 * provided their merge_bvec method (we know this by looking at 1378 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1379 * entries. So always set max_size to 0, and the code below allows 1380 * just one page. 1381 */ 1382 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1383 1384 max_size = 0; 1385 1386 out_table: 1387 dm_table_put(map); 1388 1389 out: 1390 /* 1391 * Always allow an entire first page 1392 */ 1393 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1394 max_size = biovec->bv_len; 1395 1396 return max_size; 1397 } 1398 1399 /* 1400 * The request function that just remaps the bio built up by 1401 * dm_merge_bvec. 1402 */ 1403 static void _dm_request(struct request_queue *q, struct bio *bio) 1404 { 1405 int rw = bio_data_dir(bio); 1406 struct mapped_device *md = q->queuedata; 1407 int cpu; 1408 1409 down_read(&md->io_lock); 1410 1411 cpu = part_stat_lock(); 1412 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1413 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1414 part_stat_unlock(); 1415 1416 /* if we're suspended, we have to queue this io for later */ 1417 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1418 up_read(&md->io_lock); 1419 1420 if (bio_rw(bio) != READA) 1421 queue_io(md, bio); 1422 else 1423 bio_io_error(bio); 1424 return; 1425 } 1426 1427 __split_and_process_bio(md, bio); 1428 up_read(&md->io_lock); 1429 return; 1430 } 1431 1432 static int dm_request_based(struct mapped_device *md) 1433 { 1434 return blk_queue_stackable(md->queue); 1435 } 1436 1437 static void dm_request(struct request_queue *q, struct bio *bio) 1438 { 1439 struct mapped_device *md = q->queuedata; 1440 1441 if (dm_request_based(md)) 1442 blk_queue_bio(q, bio); 1443 else 1444 _dm_request(q, bio); 1445 } 1446 1447 void dm_dispatch_request(struct request *rq) 1448 { 1449 int r; 1450 1451 if (blk_queue_io_stat(rq->q)) 1452 rq->cmd_flags |= REQ_IO_STAT; 1453 1454 rq->start_time = jiffies; 1455 r = blk_insert_cloned_request(rq->q, rq); 1456 if (r) 1457 dm_complete_request(rq, r); 1458 } 1459 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1460 1461 static void dm_rq_bio_destructor(struct bio *bio) 1462 { 1463 struct dm_rq_clone_bio_info *info = bio->bi_private; 1464 struct mapped_device *md = info->tio->md; 1465 1466 free_bio_info(info); 1467 bio_free(bio, md->bs); 1468 } 1469 1470 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1471 void *data) 1472 { 1473 struct dm_rq_target_io *tio = data; 1474 struct mapped_device *md = tio->md; 1475 struct dm_rq_clone_bio_info *info = alloc_bio_info(md); 1476 1477 if (!info) 1478 return -ENOMEM; 1479 1480 info->orig = bio_orig; 1481 info->tio = tio; 1482 bio->bi_end_io = end_clone_bio; 1483 bio->bi_private = info; 1484 bio->bi_destructor = dm_rq_bio_destructor; 1485 1486 return 0; 1487 } 1488 1489 static int setup_clone(struct request *clone, struct request *rq, 1490 struct dm_rq_target_io *tio) 1491 { 1492 int r; 1493 1494 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1495 dm_rq_bio_constructor, tio); 1496 if (r) 1497 return r; 1498 1499 clone->cmd = rq->cmd; 1500 clone->cmd_len = rq->cmd_len; 1501 clone->sense = rq->sense; 1502 clone->buffer = rq->buffer; 1503 clone->end_io = end_clone_request; 1504 clone->end_io_data = tio; 1505 1506 return 0; 1507 } 1508 1509 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1510 gfp_t gfp_mask) 1511 { 1512 struct request *clone; 1513 struct dm_rq_target_io *tio; 1514 1515 tio = alloc_rq_tio(md, gfp_mask); 1516 if (!tio) 1517 return NULL; 1518 1519 tio->md = md; 1520 tio->ti = NULL; 1521 tio->orig = rq; 1522 tio->error = 0; 1523 memset(&tio->info, 0, sizeof(tio->info)); 1524 1525 clone = &tio->clone; 1526 if (setup_clone(clone, rq, tio)) { 1527 /* -ENOMEM */ 1528 free_rq_tio(tio); 1529 return NULL; 1530 } 1531 1532 return clone; 1533 } 1534 1535 /* 1536 * Called with the queue lock held. 1537 */ 1538 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1539 { 1540 struct mapped_device *md = q->queuedata; 1541 struct request *clone; 1542 1543 if (unlikely(rq->special)) { 1544 DMWARN("Already has something in rq->special."); 1545 return BLKPREP_KILL; 1546 } 1547 1548 clone = clone_rq(rq, md, GFP_ATOMIC); 1549 if (!clone) 1550 return BLKPREP_DEFER; 1551 1552 rq->special = clone; 1553 rq->cmd_flags |= REQ_DONTPREP; 1554 1555 return BLKPREP_OK; 1556 } 1557 1558 /* 1559 * Returns: 1560 * 0 : the request has been processed (not requeued) 1561 * !0 : the request has been requeued 1562 */ 1563 static int map_request(struct dm_target *ti, struct request *clone, 1564 struct mapped_device *md) 1565 { 1566 int r, requeued = 0; 1567 struct dm_rq_target_io *tio = clone->end_io_data; 1568 1569 /* 1570 * Hold the md reference here for the in-flight I/O. 1571 * We can't rely on the reference count by device opener, 1572 * because the device may be closed during the request completion 1573 * when all bios are completed. 1574 * See the comment in rq_completed() too. 1575 */ 1576 dm_get(md); 1577 1578 tio->ti = ti; 1579 r = ti->type->map_rq(ti, clone, &tio->info); 1580 switch (r) { 1581 case DM_MAPIO_SUBMITTED: 1582 /* The target has taken the I/O to submit by itself later */ 1583 break; 1584 case DM_MAPIO_REMAPPED: 1585 /* The target has remapped the I/O so dispatch it */ 1586 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1587 blk_rq_pos(tio->orig)); 1588 dm_dispatch_request(clone); 1589 break; 1590 case DM_MAPIO_REQUEUE: 1591 /* The target wants to requeue the I/O */ 1592 dm_requeue_unmapped_request(clone); 1593 requeued = 1; 1594 break; 1595 default: 1596 if (r > 0) { 1597 DMWARN("unimplemented target map return value: %d", r); 1598 BUG(); 1599 } 1600 1601 /* The target wants to complete the I/O */ 1602 dm_kill_unmapped_request(clone, r); 1603 break; 1604 } 1605 1606 return requeued; 1607 } 1608 1609 /* 1610 * q->request_fn for request-based dm. 1611 * Called with the queue lock held. 1612 */ 1613 static void dm_request_fn(struct request_queue *q) 1614 { 1615 struct mapped_device *md = q->queuedata; 1616 struct dm_table *map = dm_get_live_table(md); 1617 struct dm_target *ti; 1618 struct request *rq, *clone; 1619 sector_t pos; 1620 1621 /* 1622 * For suspend, check blk_queue_stopped() and increment 1623 * ->pending within a single queue_lock not to increment the 1624 * number of in-flight I/Os after the queue is stopped in 1625 * dm_suspend(). 1626 */ 1627 while (!blk_queue_stopped(q)) { 1628 rq = blk_peek_request(q); 1629 if (!rq) 1630 goto delay_and_out; 1631 1632 /* always use block 0 to find the target for flushes for now */ 1633 pos = 0; 1634 if (!(rq->cmd_flags & REQ_FLUSH)) 1635 pos = blk_rq_pos(rq); 1636 1637 ti = dm_table_find_target(map, pos); 1638 BUG_ON(!dm_target_is_valid(ti)); 1639 1640 if (ti->type->busy && ti->type->busy(ti)) 1641 goto delay_and_out; 1642 1643 blk_start_request(rq); 1644 clone = rq->special; 1645 atomic_inc(&md->pending[rq_data_dir(clone)]); 1646 1647 spin_unlock(q->queue_lock); 1648 if (map_request(ti, clone, md)) 1649 goto requeued; 1650 1651 BUG_ON(!irqs_disabled()); 1652 spin_lock(q->queue_lock); 1653 } 1654 1655 goto out; 1656 1657 requeued: 1658 BUG_ON(!irqs_disabled()); 1659 spin_lock(q->queue_lock); 1660 1661 delay_and_out: 1662 blk_delay_queue(q, HZ / 10); 1663 out: 1664 dm_table_put(map); 1665 1666 return; 1667 } 1668 1669 int dm_underlying_device_busy(struct request_queue *q) 1670 { 1671 return blk_lld_busy(q); 1672 } 1673 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1674 1675 static int dm_lld_busy(struct request_queue *q) 1676 { 1677 int r; 1678 struct mapped_device *md = q->queuedata; 1679 struct dm_table *map = dm_get_live_table(md); 1680 1681 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1682 r = 1; 1683 else 1684 r = dm_table_any_busy_target(map); 1685 1686 dm_table_put(map); 1687 1688 return r; 1689 } 1690 1691 static int dm_any_congested(void *congested_data, int bdi_bits) 1692 { 1693 int r = bdi_bits; 1694 struct mapped_device *md = congested_data; 1695 struct dm_table *map; 1696 1697 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1698 map = dm_get_live_table(md); 1699 if (map) { 1700 /* 1701 * Request-based dm cares about only own queue for 1702 * the query about congestion status of request_queue 1703 */ 1704 if (dm_request_based(md)) 1705 r = md->queue->backing_dev_info.state & 1706 bdi_bits; 1707 else 1708 r = dm_table_any_congested(map, bdi_bits); 1709 1710 dm_table_put(map); 1711 } 1712 } 1713 1714 return r; 1715 } 1716 1717 /*----------------------------------------------------------------- 1718 * An IDR is used to keep track of allocated minor numbers. 1719 *---------------------------------------------------------------*/ 1720 static void free_minor(int minor) 1721 { 1722 spin_lock(&_minor_lock); 1723 idr_remove(&_minor_idr, minor); 1724 spin_unlock(&_minor_lock); 1725 } 1726 1727 /* 1728 * See if the device with a specific minor # is free. 1729 */ 1730 static int specific_minor(int minor) 1731 { 1732 int r, m; 1733 1734 if (minor >= (1 << MINORBITS)) 1735 return -EINVAL; 1736 1737 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1738 if (!r) 1739 return -ENOMEM; 1740 1741 spin_lock(&_minor_lock); 1742 1743 if (idr_find(&_minor_idr, minor)) { 1744 r = -EBUSY; 1745 goto out; 1746 } 1747 1748 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1749 if (r) 1750 goto out; 1751 1752 if (m != minor) { 1753 idr_remove(&_minor_idr, m); 1754 r = -EBUSY; 1755 goto out; 1756 } 1757 1758 out: 1759 spin_unlock(&_minor_lock); 1760 return r; 1761 } 1762 1763 static int next_free_minor(int *minor) 1764 { 1765 int r, m; 1766 1767 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1768 if (!r) 1769 return -ENOMEM; 1770 1771 spin_lock(&_minor_lock); 1772 1773 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1774 if (r) 1775 goto out; 1776 1777 if (m >= (1 << MINORBITS)) { 1778 idr_remove(&_minor_idr, m); 1779 r = -ENOSPC; 1780 goto out; 1781 } 1782 1783 *minor = m; 1784 1785 out: 1786 spin_unlock(&_minor_lock); 1787 return r; 1788 } 1789 1790 static const struct block_device_operations dm_blk_dops; 1791 1792 static void dm_wq_work(struct work_struct *work); 1793 1794 static void dm_init_md_queue(struct mapped_device *md) 1795 { 1796 /* 1797 * Request-based dm devices cannot be stacked on top of bio-based dm 1798 * devices. The type of this dm device has not been decided yet. 1799 * The type is decided at the first table loading time. 1800 * To prevent problematic device stacking, clear the queue flag 1801 * for request stacking support until then. 1802 * 1803 * This queue is new, so no concurrency on the queue_flags. 1804 */ 1805 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1806 1807 md->queue->queuedata = md; 1808 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1809 md->queue->backing_dev_info.congested_data = md; 1810 blk_queue_make_request(md->queue, dm_request); 1811 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1812 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1813 } 1814 1815 /* 1816 * Allocate and initialise a blank device with a given minor. 1817 */ 1818 static struct mapped_device *alloc_dev(int minor) 1819 { 1820 int r; 1821 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1822 void *old_md; 1823 1824 if (!md) { 1825 DMWARN("unable to allocate device, out of memory."); 1826 return NULL; 1827 } 1828 1829 if (!try_module_get(THIS_MODULE)) 1830 goto bad_module_get; 1831 1832 /* get a minor number for the dev */ 1833 if (minor == DM_ANY_MINOR) 1834 r = next_free_minor(&minor); 1835 else 1836 r = specific_minor(minor); 1837 if (r < 0) 1838 goto bad_minor; 1839 1840 md->type = DM_TYPE_NONE; 1841 init_rwsem(&md->io_lock); 1842 mutex_init(&md->suspend_lock); 1843 mutex_init(&md->type_lock); 1844 spin_lock_init(&md->deferred_lock); 1845 rwlock_init(&md->map_lock); 1846 atomic_set(&md->holders, 1); 1847 atomic_set(&md->open_count, 0); 1848 atomic_set(&md->event_nr, 0); 1849 atomic_set(&md->uevent_seq, 0); 1850 INIT_LIST_HEAD(&md->uevent_list); 1851 spin_lock_init(&md->uevent_lock); 1852 1853 md->queue = blk_alloc_queue(GFP_KERNEL); 1854 if (!md->queue) 1855 goto bad_queue; 1856 1857 dm_init_md_queue(md); 1858 1859 md->disk = alloc_disk(1); 1860 if (!md->disk) 1861 goto bad_disk; 1862 1863 atomic_set(&md->pending[0], 0); 1864 atomic_set(&md->pending[1], 0); 1865 init_waitqueue_head(&md->wait); 1866 INIT_WORK(&md->work, dm_wq_work); 1867 init_waitqueue_head(&md->eventq); 1868 1869 md->disk->major = _major; 1870 md->disk->first_minor = minor; 1871 md->disk->fops = &dm_blk_dops; 1872 md->disk->queue = md->queue; 1873 md->disk->private_data = md; 1874 sprintf(md->disk->disk_name, "dm-%d", minor); 1875 add_disk(md->disk); 1876 format_dev_t(md->name, MKDEV(_major, minor)); 1877 1878 md->wq = alloc_workqueue("kdmflush", 1879 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1880 if (!md->wq) 1881 goto bad_thread; 1882 1883 md->bdev = bdget_disk(md->disk, 0); 1884 if (!md->bdev) 1885 goto bad_bdev; 1886 1887 bio_init(&md->flush_bio); 1888 md->flush_bio.bi_bdev = md->bdev; 1889 md->flush_bio.bi_rw = WRITE_FLUSH; 1890 1891 /* Populate the mapping, nobody knows we exist yet */ 1892 spin_lock(&_minor_lock); 1893 old_md = idr_replace(&_minor_idr, md, minor); 1894 spin_unlock(&_minor_lock); 1895 1896 BUG_ON(old_md != MINOR_ALLOCED); 1897 1898 return md; 1899 1900 bad_bdev: 1901 destroy_workqueue(md->wq); 1902 bad_thread: 1903 del_gendisk(md->disk); 1904 put_disk(md->disk); 1905 bad_disk: 1906 blk_cleanup_queue(md->queue); 1907 bad_queue: 1908 free_minor(minor); 1909 bad_minor: 1910 module_put(THIS_MODULE); 1911 bad_module_get: 1912 kfree(md); 1913 return NULL; 1914 } 1915 1916 static void unlock_fs(struct mapped_device *md); 1917 1918 static void free_dev(struct mapped_device *md) 1919 { 1920 int minor = MINOR(disk_devt(md->disk)); 1921 1922 unlock_fs(md); 1923 bdput(md->bdev); 1924 destroy_workqueue(md->wq); 1925 if (md->tio_pool) 1926 mempool_destroy(md->tio_pool); 1927 if (md->io_pool) 1928 mempool_destroy(md->io_pool); 1929 if (md->bs) 1930 bioset_free(md->bs); 1931 blk_integrity_unregister(md->disk); 1932 del_gendisk(md->disk); 1933 free_minor(minor); 1934 1935 spin_lock(&_minor_lock); 1936 md->disk->private_data = NULL; 1937 spin_unlock(&_minor_lock); 1938 1939 put_disk(md->disk); 1940 blk_cleanup_queue(md->queue); 1941 module_put(THIS_MODULE); 1942 kfree(md); 1943 } 1944 1945 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1946 { 1947 struct dm_md_mempools *p; 1948 1949 if (md->io_pool && md->tio_pool && md->bs) 1950 /* the md already has necessary mempools */ 1951 goto out; 1952 1953 p = dm_table_get_md_mempools(t); 1954 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1955 1956 md->io_pool = p->io_pool; 1957 p->io_pool = NULL; 1958 md->tio_pool = p->tio_pool; 1959 p->tio_pool = NULL; 1960 md->bs = p->bs; 1961 p->bs = NULL; 1962 1963 out: 1964 /* mempool bind completed, now no need any mempools in the table */ 1965 dm_table_free_md_mempools(t); 1966 } 1967 1968 /* 1969 * Bind a table to the device. 1970 */ 1971 static void event_callback(void *context) 1972 { 1973 unsigned long flags; 1974 LIST_HEAD(uevents); 1975 struct mapped_device *md = (struct mapped_device *) context; 1976 1977 spin_lock_irqsave(&md->uevent_lock, flags); 1978 list_splice_init(&md->uevent_list, &uevents); 1979 spin_unlock_irqrestore(&md->uevent_lock, flags); 1980 1981 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1982 1983 atomic_inc(&md->event_nr); 1984 wake_up(&md->eventq); 1985 } 1986 1987 /* 1988 * Protected by md->suspend_lock obtained by dm_swap_table(). 1989 */ 1990 static void __set_size(struct mapped_device *md, sector_t size) 1991 { 1992 set_capacity(md->disk, size); 1993 1994 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1995 } 1996 1997 /* 1998 * Return 1 if the queue has a compulsory merge_bvec_fn function. 1999 * 2000 * If this function returns 0, then the device is either a non-dm 2001 * device without a merge_bvec_fn, or it is a dm device that is 2002 * able to split any bios it receives that are too big. 2003 */ 2004 int dm_queue_merge_is_compulsory(struct request_queue *q) 2005 { 2006 struct mapped_device *dev_md; 2007 2008 if (!q->merge_bvec_fn) 2009 return 0; 2010 2011 if (q->make_request_fn == dm_request) { 2012 dev_md = q->queuedata; 2013 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2014 return 0; 2015 } 2016 2017 return 1; 2018 } 2019 2020 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2021 struct dm_dev *dev, sector_t start, 2022 sector_t len, void *data) 2023 { 2024 struct block_device *bdev = dev->bdev; 2025 struct request_queue *q = bdev_get_queue(bdev); 2026 2027 return dm_queue_merge_is_compulsory(q); 2028 } 2029 2030 /* 2031 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2032 * on the properties of the underlying devices. 2033 */ 2034 static int dm_table_merge_is_optional(struct dm_table *table) 2035 { 2036 unsigned i = 0; 2037 struct dm_target *ti; 2038 2039 while (i < dm_table_get_num_targets(table)) { 2040 ti = dm_table_get_target(table, i++); 2041 2042 if (ti->type->iterate_devices && 2043 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2044 return 0; 2045 } 2046 2047 return 1; 2048 } 2049 2050 /* 2051 * Returns old map, which caller must destroy. 2052 */ 2053 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2054 struct queue_limits *limits) 2055 { 2056 struct dm_table *old_map; 2057 struct request_queue *q = md->queue; 2058 sector_t size; 2059 unsigned long flags; 2060 int merge_is_optional; 2061 2062 size = dm_table_get_size(t); 2063 2064 /* 2065 * Wipe any geometry if the size of the table changed. 2066 */ 2067 if (size != get_capacity(md->disk)) 2068 memset(&md->geometry, 0, sizeof(md->geometry)); 2069 2070 __set_size(md, size); 2071 2072 dm_table_event_callback(t, event_callback, md); 2073 2074 /* 2075 * The queue hasn't been stopped yet, if the old table type wasn't 2076 * for request-based during suspension. So stop it to prevent 2077 * I/O mapping before resume. 2078 * This must be done before setting the queue restrictions, 2079 * because request-based dm may be run just after the setting. 2080 */ 2081 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2082 stop_queue(q); 2083 2084 __bind_mempools(md, t); 2085 2086 merge_is_optional = dm_table_merge_is_optional(t); 2087 2088 write_lock_irqsave(&md->map_lock, flags); 2089 old_map = md->map; 2090 md->map = t; 2091 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2092 2093 dm_table_set_restrictions(t, q, limits); 2094 if (merge_is_optional) 2095 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2096 else 2097 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2098 write_unlock_irqrestore(&md->map_lock, flags); 2099 2100 return old_map; 2101 } 2102 2103 /* 2104 * Returns unbound table for the caller to free. 2105 */ 2106 static struct dm_table *__unbind(struct mapped_device *md) 2107 { 2108 struct dm_table *map = md->map; 2109 unsigned long flags; 2110 2111 if (!map) 2112 return NULL; 2113 2114 dm_table_event_callback(map, NULL, NULL); 2115 write_lock_irqsave(&md->map_lock, flags); 2116 md->map = NULL; 2117 write_unlock_irqrestore(&md->map_lock, flags); 2118 2119 return map; 2120 } 2121 2122 /* 2123 * Constructor for a new device. 2124 */ 2125 int dm_create(int minor, struct mapped_device **result) 2126 { 2127 struct mapped_device *md; 2128 2129 md = alloc_dev(minor); 2130 if (!md) 2131 return -ENXIO; 2132 2133 dm_sysfs_init(md); 2134 2135 *result = md; 2136 return 0; 2137 } 2138 2139 /* 2140 * Functions to manage md->type. 2141 * All are required to hold md->type_lock. 2142 */ 2143 void dm_lock_md_type(struct mapped_device *md) 2144 { 2145 mutex_lock(&md->type_lock); 2146 } 2147 2148 void dm_unlock_md_type(struct mapped_device *md) 2149 { 2150 mutex_unlock(&md->type_lock); 2151 } 2152 2153 void dm_set_md_type(struct mapped_device *md, unsigned type) 2154 { 2155 md->type = type; 2156 } 2157 2158 unsigned dm_get_md_type(struct mapped_device *md) 2159 { 2160 return md->type; 2161 } 2162 2163 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2164 { 2165 return md->immutable_target_type; 2166 } 2167 2168 /* 2169 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2170 */ 2171 static int dm_init_request_based_queue(struct mapped_device *md) 2172 { 2173 struct request_queue *q = NULL; 2174 2175 if (md->queue->elevator) 2176 return 1; 2177 2178 /* Fully initialize the queue */ 2179 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2180 if (!q) 2181 return 0; 2182 2183 md->queue = q; 2184 dm_init_md_queue(md); 2185 blk_queue_softirq_done(md->queue, dm_softirq_done); 2186 blk_queue_prep_rq(md->queue, dm_prep_fn); 2187 blk_queue_lld_busy(md->queue, dm_lld_busy); 2188 2189 elv_register_queue(md->queue); 2190 2191 return 1; 2192 } 2193 2194 /* 2195 * Setup the DM device's queue based on md's type 2196 */ 2197 int dm_setup_md_queue(struct mapped_device *md) 2198 { 2199 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2200 !dm_init_request_based_queue(md)) { 2201 DMWARN("Cannot initialize queue for request-based mapped device"); 2202 return -EINVAL; 2203 } 2204 2205 return 0; 2206 } 2207 2208 static struct mapped_device *dm_find_md(dev_t dev) 2209 { 2210 struct mapped_device *md; 2211 unsigned minor = MINOR(dev); 2212 2213 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2214 return NULL; 2215 2216 spin_lock(&_minor_lock); 2217 2218 md = idr_find(&_minor_idr, minor); 2219 if (md && (md == MINOR_ALLOCED || 2220 (MINOR(disk_devt(dm_disk(md))) != minor) || 2221 dm_deleting_md(md) || 2222 test_bit(DMF_FREEING, &md->flags))) { 2223 md = NULL; 2224 goto out; 2225 } 2226 2227 out: 2228 spin_unlock(&_minor_lock); 2229 2230 return md; 2231 } 2232 2233 struct mapped_device *dm_get_md(dev_t dev) 2234 { 2235 struct mapped_device *md = dm_find_md(dev); 2236 2237 if (md) 2238 dm_get(md); 2239 2240 return md; 2241 } 2242 EXPORT_SYMBOL_GPL(dm_get_md); 2243 2244 void *dm_get_mdptr(struct mapped_device *md) 2245 { 2246 return md->interface_ptr; 2247 } 2248 2249 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2250 { 2251 md->interface_ptr = ptr; 2252 } 2253 2254 void dm_get(struct mapped_device *md) 2255 { 2256 atomic_inc(&md->holders); 2257 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2258 } 2259 2260 const char *dm_device_name(struct mapped_device *md) 2261 { 2262 return md->name; 2263 } 2264 EXPORT_SYMBOL_GPL(dm_device_name); 2265 2266 static void __dm_destroy(struct mapped_device *md, bool wait) 2267 { 2268 struct dm_table *map; 2269 2270 might_sleep(); 2271 2272 spin_lock(&_minor_lock); 2273 map = dm_get_live_table(md); 2274 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2275 set_bit(DMF_FREEING, &md->flags); 2276 spin_unlock(&_minor_lock); 2277 2278 if (!dm_suspended_md(md)) { 2279 dm_table_presuspend_targets(map); 2280 dm_table_postsuspend_targets(map); 2281 } 2282 2283 /* 2284 * Rare, but there may be I/O requests still going to complete, 2285 * for example. Wait for all references to disappear. 2286 * No one should increment the reference count of the mapped_device, 2287 * after the mapped_device state becomes DMF_FREEING. 2288 */ 2289 if (wait) 2290 while (atomic_read(&md->holders)) 2291 msleep(1); 2292 else if (atomic_read(&md->holders)) 2293 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2294 dm_device_name(md), atomic_read(&md->holders)); 2295 2296 dm_sysfs_exit(md); 2297 dm_table_put(map); 2298 dm_table_destroy(__unbind(md)); 2299 free_dev(md); 2300 } 2301 2302 void dm_destroy(struct mapped_device *md) 2303 { 2304 __dm_destroy(md, true); 2305 } 2306 2307 void dm_destroy_immediate(struct mapped_device *md) 2308 { 2309 __dm_destroy(md, false); 2310 } 2311 2312 void dm_put(struct mapped_device *md) 2313 { 2314 atomic_dec(&md->holders); 2315 } 2316 EXPORT_SYMBOL_GPL(dm_put); 2317 2318 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2319 { 2320 int r = 0; 2321 DECLARE_WAITQUEUE(wait, current); 2322 2323 add_wait_queue(&md->wait, &wait); 2324 2325 while (1) { 2326 set_current_state(interruptible); 2327 2328 if (!md_in_flight(md)) 2329 break; 2330 2331 if (interruptible == TASK_INTERRUPTIBLE && 2332 signal_pending(current)) { 2333 r = -EINTR; 2334 break; 2335 } 2336 2337 io_schedule(); 2338 } 2339 set_current_state(TASK_RUNNING); 2340 2341 remove_wait_queue(&md->wait, &wait); 2342 2343 return r; 2344 } 2345 2346 /* 2347 * Process the deferred bios 2348 */ 2349 static void dm_wq_work(struct work_struct *work) 2350 { 2351 struct mapped_device *md = container_of(work, struct mapped_device, 2352 work); 2353 struct bio *c; 2354 2355 down_read(&md->io_lock); 2356 2357 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2358 spin_lock_irq(&md->deferred_lock); 2359 c = bio_list_pop(&md->deferred); 2360 spin_unlock_irq(&md->deferred_lock); 2361 2362 if (!c) 2363 break; 2364 2365 up_read(&md->io_lock); 2366 2367 if (dm_request_based(md)) 2368 generic_make_request(c); 2369 else 2370 __split_and_process_bio(md, c); 2371 2372 down_read(&md->io_lock); 2373 } 2374 2375 up_read(&md->io_lock); 2376 } 2377 2378 static void dm_queue_flush(struct mapped_device *md) 2379 { 2380 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2381 smp_mb__after_clear_bit(); 2382 queue_work(md->wq, &md->work); 2383 } 2384 2385 /* 2386 * Swap in a new table, returning the old one for the caller to destroy. 2387 */ 2388 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2389 { 2390 struct dm_table *map = ERR_PTR(-EINVAL); 2391 struct queue_limits limits; 2392 int r; 2393 2394 mutex_lock(&md->suspend_lock); 2395 2396 /* device must be suspended */ 2397 if (!dm_suspended_md(md)) 2398 goto out; 2399 2400 r = dm_calculate_queue_limits(table, &limits); 2401 if (r) { 2402 map = ERR_PTR(r); 2403 goto out; 2404 } 2405 2406 map = __bind(md, table, &limits); 2407 2408 out: 2409 mutex_unlock(&md->suspend_lock); 2410 return map; 2411 } 2412 2413 /* 2414 * Functions to lock and unlock any filesystem running on the 2415 * device. 2416 */ 2417 static int lock_fs(struct mapped_device *md) 2418 { 2419 int r; 2420 2421 WARN_ON(md->frozen_sb); 2422 2423 md->frozen_sb = freeze_bdev(md->bdev); 2424 if (IS_ERR(md->frozen_sb)) { 2425 r = PTR_ERR(md->frozen_sb); 2426 md->frozen_sb = NULL; 2427 return r; 2428 } 2429 2430 set_bit(DMF_FROZEN, &md->flags); 2431 2432 return 0; 2433 } 2434 2435 static void unlock_fs(struct mapped_device *md) 2436 { 2437 if (!test_bit(DMF_FROZEN, &md->flags)) 2438 return; 2439 2440 thaw_bdev(md->bdev, md->frozen_sb); 2441 md->frozen_sb = NULL; 2442 clear_bit(DMF_FROZEN, &md->flags); 2443 } 2444 2445 /* 2446 * We need to be able to change a mapping table under a mounted 2447 * filesystem. For example we might want to move some data in 2448 * the background. Before the table can be swapped with 2449 * dm_bind_table, dm_suspend must be called to flush any in 2450 * flight bios and ensure that any further io gets deferred. 2451 */ 2452 /* 2453 * Suspend mechanism in request-based dm. 2454 * 2455 * 1. Flush all I/Os by lock_fs() if needed. 2456 * 2. Stop dispatching any I/O by stopping the request_queue. 2457 * 3. Wait for all in-flight I/Os to be completed or requeued. 2458 * 2459 * To abort suspend, start the request_queue. 2460 */ 2461 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2462 { 2463 struct dm_table *map = NULL; 2464 int r = 0; 2465 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2466 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2467 2468 mutex_lock(&md->suspend_lock); 2469 2470 if (dm_suspended_md(md)) { 2471 r = -EINVAL; 2472 goto out_unlock; 2473 } 2474 2475 map = dm_get_live_table(md); 2476 2477 /* 2478 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2479 * This flag is cleared before dm_suspend returns. 2480 */ 2481 if (noflush) 2482 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2483 2484 /* This does not get reverted if there's an error later. */ 2485 dm_table_presuspend_targets(map); 2486 2487 /* 2488 * Flush I/O to the device. 2489 * Any I/O submitted after lock_fs() may not be flushed. 2490 * noflush takes precedence over do_lockfs. 2491 * (lock_fs() flushes I/Os and waits for them to complete.) 2492 */ 2493 if (!noflush && do_lockfs) { 2494 r = lock_fs(md); 2495 if (r) 2496 goto out; 2497 } 2498 2499 /* 2500 * Here we must make sure that no processes are submitting requests 2501 * to target drivers i.e. no one may be executing 2502 * __split_and_process_bio. This is called from dm_request and 2503 * dm_wq_work. 2504 * 2505 * To get all processes out of __split_and_process_bio in dm_request, 2506 * we take the write lock. To prevent any process from reentering 2507 * __split_and_process_bio from dm_request and quiesce the thread 2508 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2509 * flush_workqueue(md->wq). 2510 */ 2511 down_write(&md->io_lock); 2512 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2513 up_write(&md->io_lock); 2514 2515 /* 2516 * Stop md->queue before flushing md->wq in case request-based 2517 * dm defers requests to md->wq from md->queue. 2518 */ 2519 if (dm_request_based(md)) 2520 stop_queue(md->queue); 2521 2522 flush_workqueue(md->wq); 2523 2524 /* 2525 * At this point no more requests are entering target request routines. 2526 * We call dm_wait_for_completion to wait for all existing requests 2527 * to finish. 2528 */ 2529 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2530 2531 down_write(&md->io_lock); 2532 if (noflush) 2533 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2534 up_write(&md->io_lock); 2535 2536 /* were we interrupted ? */ 2537 if (r < 0) { 2538 dm_queue_flush(md); 2539 2540 if (dm_request_based(md)) 2541 start_queue(md->queue); 2542 2543 unlock_fs(md); 2544 goto out; /* pushback list is already flushed, so skip flush */ 2545 } 2546 2547 /* 2548 * If dm_wait_for_completion returned 0, the device is completely 2549 * quiescent now. There is no request-processing activity. All new 2550 * requests are being added to md->deferred list. 2551 */ 2552 2553 set_bit(DMF_SUSPENDED, &md->flags); 2554 2555 dm_table_postsuspend_targets(map); 2556 2557 out: 2558 dm_table_put(map); 2559 2560 out_unlock: 2561 mutex_unlock(&md->suspend_lock); 2562 return r; 2563 } 2564 2565 int dm_resume(struct mapped_device *md) 2566 { 2567 int r = -EINVAL; 2568 struct dm_table *map = NULL; 2569 2570 mutex_lock(&md->suspend_lock); 2571 if (!dm_suspended_md(md)) 2572 goto out; 2573 2574 map = dm_get_live_table(md); 2575 if (!map || !dm_table_get_size(map)) 2576 goto out; 2577 2578 r = dm_table_resume_targets(map); 2579 if (r) 2580 goto out; 2581 2582 dm_queue_flush(md); 2583 2584 /* 2585 * Flushing deferred I/Os must be done after targets are resumed 2586 * so that mapping of targets can work correctly. 2587 * Request-based dm is queueing the deferred I/Os in its request_queue. 2588 */ 2589 if (dm_request_based(md)) 2590 start_queue(md->queue); 2591 2592 unlock_fs(md); 2593 2594 clear_bit(DMF_SUSPENDED, &md->flags); 2595 2596 r = 0; 2597 out: 2598 dm_table_put(map); 2599 mutex_unlock(&md->suspend_lock); 2600 2601 return r; 2602 } 2603 2604 /*----------------------------------------------------------------- 2605 * Event notification. 2606 *---------------------------------------------------------------*/ 2607 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2608 unsigned cookie) 2609 { 2610 char udev_cookie[DM_COOKIE_LENGTH]; 2611 char *envp[] = { udev_cookie, NULL }; 2612 2613 if (!cookie) 2614 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2615 else { 2616 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2617 DM_COOKIE_ENV_VAR_NAME, cookie); 2618 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2619 action, envp); 2620 } 2621 } 2622 2623 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2624 { 2625 return atomic_add_return(1, &md->uevent_seq); 2626 } 2627 2628 uint32_t dm_get_event_nr(struct mapped_device *md) 2629 { 2630 return atomic_read(&md->event_nr); 2631 } 2632 2633 int dm_wait_event(struct mapped_device *md, int event_nr) 2634 { 2635 return wait_event_interruptible(md->eventq, 2636 (event_nr != atomic_read(&md->event_nr))); 2637 } 2638 2639 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2640 { 2641 unsigned long flags; 2642 2643 spin_lock_irqsave(&md->uevent_lock, flags); 2644 list_add(elist, &md->uevent_list); 2645 spin_unlock_irqrestore(&md->uevent_lock, flags); 2646 } 2647 2648 /* 2649 * The gendisk is only valid as long as you have a reference 2650 * count on 'md'. 2651 */ 2652 struct gendisk *dm_disk(struct mapped_device *md) 2653 { 2654 return md->disk; 2655 } 2656 2657 struct kobject *dm_kobject(struct mapped_device *md) 2658 { 2659 return &md->kobj; 2660 } 2661 2662 /* 2663 * struct mapped_device should not be exported outside of dm.c 2664 * so use this check to verify that kobj is part of md structure 2665 */ 2666 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2667 { 2668 struct mapped_device *md; 2669 2670 md = container_of(kobj, struct mapped_device, kobj); 2671 if (&md->kobj != kobj) 2672 return NULL; 2673 2674 if (test_bit(DMF_FREEING, &md->flags) || 2675 dm_deleting_md(md)) 2676 return NULL; 2677 2678 dm_get(md); 2679 return md; 2680 } 2681 2682 int dm_suspended_md(struct mapped_device *md) 2683 { 2684 return test_bit(DMF_SUSPENDED, &md->flags); 2685 } 2686 2687 int dm_suspended(struct dm_target *ti) 2688 { 2689 return dm_suspended_md(dm_table_get_md(ti->table)); 2690 } 2691 EXPORT_SYMBOL_GPL(dm_suspended); 2692 2693 int dm_noflush_suspending(struct dm_target *ti) 2694 { 2695 return __noflush_suspending(dm_table_get_md(ti->table)); 2696 } 2697 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2698 2699 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity) 2700 { 2701 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2702 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS; 2703 2704 if (!pools) 2705 return NULL; 2706 2707 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2708 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2709 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2710 if (!pools->io_pool) 2711 goto free_pools_and_out; 2712 2713 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ? 2714 mempool_create_slab_pool(MIN_IOS, _tio_cache) : 2715 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2716 if (!pools->tio_pool) 2717 goto free_io_pool_and_out; 2718 2719 pools->bs = bioset_create(pool_size, 0); 2720 if (!pools->bs) 2721 goto free_tio_pool_and_out; 2722 2723 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2724 goto free_bioset_and_out; 2725 2726 return pools; 2727 2728 free_bioset_and_out: 2729 bioset_free(pools->bs); 2730 2731 free_tio_pool_and_out: 2732 mempool_destroy(pools->tio_pool); 2733 2734 free_io_pool_and_out: 2735 mempool_destroy(pools->io_pool); 2736 2737 free_pools_and_out: 2738 kfree(pools); 2739 2740 return NULL; 2741 } 2742 2743 void dm_free_md_mempools(struct dm_md_mempools *pools) 2744 { 2745 if (!pools) 2746 return; 2747 2748 if (pools->io_pool) 2749 mempool_destroy(pools->io_pool); 2750 2751 if (pools->tio_pool) 2752 mempool_destroy(pools->tio_pool); 2753 2754 if (pools->bs) 2755 bioset_free(pools->bs); 2756 2757 kfree(pools); 2758 } 2759 2760 static const struct block_device_operations dm_blk_dops = { 2761 .open = dm_blk_open, 2762 .release = dm_blk_close, 2763 .ioctl = dm_blk_ioctl, 2764 .getgeo = dm_blk_getgeo, 2765 .owner = THIS_MODULE 2766 }; 2767 2768 EXPORT_SYMBOL(dm_get_mapinfo); 2769 2770 /* 2771 * module hooks 2772 */ 2773 module_init(dm_init); 2774 module_exit(dm_exit); 2775 2776 module_param(major, uint, 0); 2777 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2778 MODULE_DESCRIPTION(DM_NAME " driver"); 2779 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2780 MODULE_LICENSE("GPL"); 2781