xref: /linux/drivers/md/dm.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/keyslot-manager.h>
32 
33 #define DM_MSG_PREFIX "core"
34 
35 /*
36  * Cookies are numeric values sent with CHANGE and REMOVE
37  * uevents while resuming, removing or renaming the device.
38  */
39 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
40 #define DM_COOKIE_LENGTH 24
41 
42 static const char *_name = DM_NAME;
43 
44 static unsigned int major = 0;
45 static unsigned int _major = 0;
46 
47 static DEFINE_IDR(_minor_idr);
48 
49 static DEFINE_SPINLOCK(_minor_lock);
50 
51 static void do_deferred_remove(struct work_struct *w);
52 
53 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
54 
55 static struct workqueue_struct *deferred_remove_workqueue;
56 
57 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
58 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
59 
60 void dm_issue_global_event(void)
61 {
62 	atomic_inc(&dm_global_event_nr);
63 	wake_up(&dm_global_eventq);
64 }
65 
66 /*
67  * One of these is allocated (on-stack) per original bio.
68  */
69 struct clone_info {
70 	struct dm_table *map;
71 	struct bio *bio;
72 	struct dm_io *io;
73 	sector_t sector;
74 	unsigned sector_count;
75 };
76 
77 /*
78  * One of these is allocated per clone bio.
79  */
80 #define DM_TIO_MAGIC 7282014
81 struct dm_target_io {
82 	unsigned magic;
83 	struct dm_io *io;
84 	struct dm_target *ti;
85 	unsigned target_bio_nr;
86 	unsigned *len_ptr;
87 	bool inside_dm_io;
88 	struct bio clone;
89 };
90 
91 /*
92  * One of these is allocated per original bio.
93  * It contains the first clone used for that original.
94  */
95 #define DM_IO_MAGIC 5191977
96 struct dm_io {
97 	unsigned magic;
98 	struct mapped_device *md;
99 	blk_status_t status;
100 	atomic_t io_count;
101 	struct bio *orig_bio;
102 	unsigned long start_time;
103 	spinlock_t endio_lock;
104 	struct dm_stats_aux stats_aux;
105 	/* last member of dm_target_io is 'struct bio' */
106 	struct dm_target_io tio;
107 };
108 
109 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
110 #define DM_IO_BIO_OFFSET \
111 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
112 
113 void *dm_per_bio_data(struct bio *bio, size_t data_size)
114 {
115 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
116 	if (!tio->inside_dm_io)
117 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
118 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
119 }
120 EXPORT_SYMBOL_GPL(dm_per_bio_data);
121 
122 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
123 {
124 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
125 	if (io->magic == DM_IO_MAGIC)
126 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
127 	BUG_ON(io->magic != DM_TIO_MAGIC);
128 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
129 }
130 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
131 
132 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
133 {
134 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
135 }
136 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
137 
138 #define MINOR_ALLOCED ((void *)-1)
139 
140 /*
141  * Bits for the md->flags field.
142  */
143 #define DMF_BLOCK_IO_FOR_SUSPEND 0
144 #define DMF_SUSPENDED 1
145 #define DMF_FROZEN 2
146 #define DMF_FREEING 3
147 #define DMF_DELETING 4
148 #define DMF_NOFLUSH_SUSPENDING 5
149 #define DMF_DEFERRED_REMOVE 6
150 #define DMF_SUSPENDED_INTERNALLY 7
151 #define DMF_POST_SUSPENDING 8
152 
153 #define DM_NUMA_NODE NUMA_NO_NODE
154 static int dm_numa_node = DM_NUMA_NODE;
155 
156 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
157 static int swap_bios = DEFAULT_SWAP_BIOS;
158 static int get_swap_bios(void)
159 {
160 	int latch = READ_ONCE(swap_bios);
161 	if (unlikely(latch <= 0))
162 		latch = DEFAULT_SWAP_BIOS;
163 	return latch;
164 }
165 
166 /*
167  * For mempools pre-allocation at the table loading time.
168  */
169 struct dm_md_mempools {
170 	struct bio_set bs;
171 	struct bio_set io_bs;
172 };
173 
174 struct table_device {
175 	struct list_head list;
176 	refcount_t count;
177 	struct dm_dev dm_dev;
178 };
179 
180 /*
181  * Bio-based DM's mempools' reserved IOs set by the user.
182  */
183 #define RESERVED_BIO_BASED_IOS		16
184 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
185 
186 static int __dm_get_module_param_int(int *module_param, int min, int max)
187 {
188 	int param = READ_ONCE(*module_param);
189 	int modified_param = 0;
190 	bool modified = true;
191 
192 	if (param < min)
193 		modified_param = min;
194 	else if (param > max)
195 		modified_param = max;
196 	else
197 		modified = false;
198 
199 	if (modified) {
200 		(void)cmpxchg(module_param, param, modified_param);
201 		param = modified_param;
202 	}
203 
204 	return param;
205 }
206 
207 unsigned __dm_get_module_param(unsigned *module_param,
208 			       unsigned def, unsigned max)
209 {
210 	unsigned param = READ_ONCE(*module_param);
211 	unsigned modified_param = 0;
212 
213 	if (!param)
214 		modified_param = def;
215 	else if (param > max)
216 		modified_param = max;
217 
218 	if (modified_param) {
219 		(void)cmpxchg(module_param, param, modified_param);
220 		param = modified_param;
221 	}
222 
223 	return param;
224 }
225 
226 unsigned dm_get_reserved_bio_based_ios(void)
227 {
228 	return __dm_get_module_param(&reserved_bio_based_ios,
229 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
230 }
231 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
232 
233 static unsigned dm_get_numa_node(void)
234 {
235 	return __dm_get_module_param_int(&dm_numa_node,
236 					 DM_NUMA_NODE, num_online_nodes() - 1);
237 }
238 
239 static int __init local_init(void)
240 {
241 	int r;
242 
243 	r = dm_uevent_init();
244 	if (r)
245 		return r;
246 
247 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
248 	if (!deferred_remove_workqueue) {
249 		r = -ENOMEM;
250 		goto out_uevent_exit;
251 	}
252 
253 	_major = major;
254 	r = register_blkdev(_major, _name);
255 	if (r < 0)
256 		goto out_free_workqueue;
257 
258 	if (!_major)
259 		_major = r;
260 
261 	return 0;
262 
263 out_free_workqueue:
264 	destroy_workqueue(deferred_remove_workqueue);
265 out_uevent_exit:
266 	dm_uevent_exit();
267 
268 	return r;
269 }
270 
271 static void local_exit(void)
272 {
273 	flush_scheduled_work();
274 	destroy_workqueue(deferred_remove_workqueue);
275 
276 	unregister_blkdev(_major, _name);
277 	dm_uevent_exit();
278 
279 	_major = 0;
280 
281 	DMINFO("cleaned up");
282 }
283 
284 static int (*_inits[])(void) __initdata = {
285 	local_init,
286 	dm_target_init,
287 	dm_linear_init,
288 	dm_stripe_init,
289 	dm_io_init,
290 	dm_kcopyd_init,
291 	dm_interface_init,
292 	dm_statistics_init,
293 };
294 
295 static void (*_exits[])(void) = {
296 	local_exit,
297 	dm_target_exit,
298 	dm_linear_exit,
299 	dm_stripe_exit,
300 	dm_io_exit,
301 	dm_kcopyd_exit,
302 	dm_interface_exit,
303 	dm_statistics_exit,
304 };
305 
306 static int __init dm_init(void)
307 {
308 	const int count = ARRAY_SIZE(_inits);
309 
310 	int r, i;
311 
312 	for (i = 0; i < count; i++) {
313 		r = _inits[i]();
314 		if (r)
315 			goto bad;
316 	}
317 
318 	return 0;
319 
320       bad:
321 	while (i--)
322 		_exits[i]();
323 
324 	return r;
325 }
326 
327 static void __exit dm_exit(void)
328 {
329 	int i = ARRAY_SIZE(_exits);
330 
331 	while (i--)
332 		_exits[i]();
333 
334 	/*
335 	 * Should be empty by this point.
336 	 */
337 	idr_destroy(&_minor_idr);
338 }
339 
340 /*
341  * Block device functions
342  */
343 int dm_deleting_md(struct mapped_device *md)
344 {
345 	return test_bit(DMF_DELETING, &md->flags);
346 }
347 
348 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
349 {
350 	struct mapped_device *md;
351 
352 	spin_lock(&_minor_lock);
353 
354 	md = bdev->bd_disk->private_data;
355 	if (!md)
356 		goto out;
357 
358 	if (test_bit(DMF_FREEING, &md->flags) ||
359 	    dm_deleting_md(md)) {
360 		md = NULL;
361 		goto out;
362 	}
363 
364 	dm_get(md);
365 	atomic_inc(&md->open_count);
366 out:
367 	spin_unlock(&_minor_lock);
368 
369 	return md ? 0 : -ENXIO;
370 }
371 
372 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
373 {
374 	struct mapped_device *md;
375 
376 	spin_lock(&_minor_lock);
377 
378 	md = disk->private_data;
379 	if (WARN_ON(!md))
380 		goto out;
381 
382 	if (atomic_dec_and_test(&md->open_count) &&
383 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
384 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
385 
386 	dm_put(md);
387 out:
388 	spin_unlock(&_minor_lock);
389 }
390 
391 int dm_open_count(struct mapped_device *md)
392 {
393 	return atomic_read(&md->open_count);
394 }
395 
396 /*
397  * Guarantees nothing is using the device before it's deleted.
398  */
399 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
400 {
401 	int r = 0;
402 
403 	spin_lock(&_minor_lock);
404 
405 	if (dm_open_count(md)) {
406 		r = -EBUSY;
407 		if (mark_deferred)
408 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
409 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
410 		r = -EEXIST;
411 	else
412 		set_bit(DMF_DELETING, &md->flags);
413 
414 	spin_unlock(&_minor_lock);
415 
416 	return r;
417 }
418 
419 int dm_cancel_deferred_remove(struct mapped_device *md)
420 {
421 	int r = 0;
422 
423 	spin_lock(&_minor_lock);
424 
425 	if (test_bit(DMF_DELETING, &md->flags))
426 		r = -EBUSY;
427 	else
428 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
429 
430 	spin_unlock(&_minor_lock);
431 
432 	return r;
433 }
434 
435 static void do_deferred_remove(struct work_struct *w)
436 {
437 	dm_deferred_remove();
438 }
439 
440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
441 {
442 	struct mapped_device *md = bdev->bd_disk->private_data;
443 
444 	return dm_get_geometry(md, geo);
445 }
446 
447 #ifdef CONFIG_BLK_DEV_ZONED
448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
449 {
450 	struct dm_report_zones_args *args = data;
451 	sector_t sector_diff = args->tgt->begin - args->start;
452 
453 	/*
454 	 * Ignore zones beyond the target range.
455 	 */
456 	if (zone->start >= args->start + args->tgt->len)
457 		return 0;
458 
459 	/*
460 	 * Remap the start sector and write pointer position of the zone
461 	 * to match its position in the target range.
462 	 */
463 	zone->start += sector_diff;
464 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
465 		if (zone->cond == BLK_ZONE_COND_FULL)
466 			zone->wp = zone->start + zone->len;
467 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
468 			zone->wp = zone->start;
469 		else
470 			zone->wp += sector_diff;
471 	}
472 
473 	args->next_sector = zone->start + zone->len;
474 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
475 }
476 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
477 
478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
479 		unsigned int nr_zones, report_zones_cb cb, void *data)
480 {
481 	struct mapped_device *md = disk->private_data;
482 	struct dm_table *map;
483 	int srcu_idx, ret;
484 	struct dm_report_zones_args args = {
485 		.next_sector = sector,
486 		.orig_data = data,
487 		.orig_cb = cb,
488 	};
489 
490 	if (dm_suspended_md(md))
491 		return -EAGAIN;
492 
493 	map = dm_get_live_table(md, &srcu_idx);
494 	if (!map) {
495 		ret = -EIO;
496 		goto out;
497 	}
498 
499 	do {
500 		struct dm_target *tgt;
501 
502 		tgt = dm_table_find_target(map, args.next_sector);
503 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
504 			ret = -EIO;
505 			goto out;
506 		}
507 
508 		args.tgt = tgt;
509 		ret = tgt->type->report_zones(tgt, &args,
510 					      nr_zones - args.zone_idx);
511 		if (ret < 0)
512 			goto out;
513 	} while (args.zone_idx < nr_zones &&
514 		 args.next_sector < get_capacity(disk));
515 
516 	ret = args.zone_idx;
517 out:
518 	dm_put_live_table(md, srcu_idx);
519 	return ret;
520 }
521 #else
522 #define dm_blk_report_zones		NULL
523 #endif /* CONFIG_BLK_DEV_ZONED */
524 
525 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
526 			    struct block_device **bdev)
527 {
528 	struct dm_target *tgt;
529 	struct dm_table *map;
530 	int r;
531 
532 retry:
533 	r = -ENOTTY;
534 	map = dm_get_live_table(md, srcu_idx);
535 	if (!map || !dm_table_get_size(map))
536 		return r;
537 
538 	/* We only support devices that have a single target */
539 	if (dm_table_get_num_targets(map) != 1)
540 		return r;
541 
542 	tgt = dm_table_get_target(map, 0);
543 	if (!tgt->type->prepare_ioctl)
544 		return r;
545 
546 	if (dm_suspended_md(md))
547 		return -EAGAIN;
548 
549 	r = tgt->type->prepare_ioctl(tgt, bdev);
550 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
551 		dm_put_live_table(md, *srcu_idx);
552 		msleep(10);
553 		goto retry;
554 	}
555 
556 	return r;
557 }
558 
559 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
560 {
561 	dm_put_live_table(md, srcu_idx);
562 }
563 
564 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
565 			unsigned int cmd, unsigned long arg)
566 {
567 	struct mapped_device *md = bdev->bd_disk->private_data;
568 	int r, srcu_idx;
569 
570 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
571 	if (r < 0)
572 		goto out;
573 
574 	if (r > 0) {
575 		/*
576 		 * Target determined this ioctl is being issued against a
577 		 * subset of the parent bdev; require extra privileges.
578 		 */
579 		if (!capable(CAP_SYS_RAWIO)) {
580 			DMDEBUG_LIMIT(
581 	"%s: sending ioctl %x to DM device without required privilege.",
582 				current->comm, cmd);
583 			r = -ENOIOCTLCMD;
584 			goto out;
585 		}
586 	}
587 
588 	if (!bdev->bd_disk->fops->ioctl)
589 		r = -ENOTTY;
590 	else
591 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
592 out:
593 	dm_unprepare_ioctl(md, srcu_idx);
594 	return r;
595 }
596 
597 u64 dm_start_time_ns_from_clone(struct bio *bio)
598 {
599 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
600 	struct dm_io *io = tio->io;
601 
602 	return jiffies_to_nsecs(io->start_time);
603 }
604 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
605 
606 static void start_io_acct(struct dm_io *io)
607 {
608 	struct mapped_device *md = io->md;
609 	struct bio *bio = io->orig_bio;
610 
611 	io->start_time = bio_start_io_acct(bio);
612 	if (unlikely(dm_stats_used(&md->stats)))
613 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
614 				    bio->bi_iter.bi_sector, bio_sectors(bio),
615 				    false, 0, &io->stats_aux);
616 }
617 
618 static void end_io_acct(struct dm_io *io)
619 {
620 	struct mapped_device *md = io->md;
621 	struct bio *bio = io->orig_bio;
622 	unsigned long duration = jiffies - io->start_time;
623 
624 	bio_end_io_acct(bio, io->start_time);
625 
626 	if (unlikely(dm_stats_used(&md->stats)))
627 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
628 				    bio->bi_iter.bi_sector, bio_sectors(bio),
629 				    true, duration, &io->stats_aux);
630 
631 	/* nudge anyone waiting on suspend queue */
632 	if (unlikely(wq_has_sleeper(&md->wait)))
633 		wake_up(&md->wait);
634 }
635 
636 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
637 {
638 	struct dm_io *io;
639 	struct dm_target_io *tio;
640 	struct bio *clone;
641 
642 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
643 	if (!clone)
644 		return NULL;
645 
646 	tio = container_of(clone, struct dm_target_io, clone);
647 	tio->inside_dm_io = true;
648 	tio->io = NULL;
649 
650 	io = container_of(tio, struct dm_io, tio);
651 	io->magic = DM_IO_MAGIC;
652 	io->status = 0;
653 	atomic_set(&io->io_count, 1);
654 	io->orig_bio = bio;
655 	io->md = md;
656 	spin_lock_init(&io->endio_lock);
657 
658 	start_io_acct(io);
659 
660 	return io;
661 }
662 
663 static void free_io(struct mapped_device *md, struct dm_io *io)
664 {
665 	bio_put(&io->tio.clone);
666 }
667 
668 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
669 				      unsigned target_bio_nr, gfp_t gfp_mask)
670 {
671 	struct dm_target_io *tio;
672 
673 	if (!ci->io->tio.io) {
674 		/* the dm_target_io embedded in ci->io is available */
675 		tio = &ci->io->tio;
676 	} else {
677 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
678 		if (!clone)
679 			return NULL;
680 
681 		tio = container_of(clone, struct dm_target_io, clone);
682 		tio->inside_dm_io = false;
683 	}
684 
685 	tio->magic = DM_TIO_MAGIC;
686 	tio->io = ci->io;
687 	tio->ti = ti;
688 	tio->target_bio_nr = target_bio_nr;
689 
690 	return tio;
691 }
692 
693 static void free_tio(struct dm_target_io *tio)
694 {
695 	if (tio->inside_dm_io)
696 		return;
697 	bio_put(&tio->clone);
698 }
699 
700 /*
701  * Add the bio to the list of deferred io.
702  */
703 static void queue_io(struct mapped_device *md, struct bio *bio)
704 {
705 	unsigned long flags;
706 
707 	spin_lock_irqsave(&md->deferred_lock, flags);
708 	bio_list_add(&md->deferred, bio);
709 	spin_unlock_irqrestore(&md->deferred_lock, flags);
710 	queue_work(md->wq, &md->work);
711 }
712 
713 /*
714  * Everyone (including functions in this file), should use this
715  * function to access the md->map field, and make sure they call
716  * dm_put_live_table() when finished.
717  */
718 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
719 {
720 	*srcu_idx = srcu_read_lock(&md->io_barrier);
721 
722 	return srcu_dereference(md->map, &md->io_barrier);
723 }
724 
725 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
726 {
727 	srcu_read_unlock(&md->io_barrier, srcu_idx);
728 }
729 
730 void dm_sync_table(struct mapped_device *md)
731 {
732 	synchronize_srcu(&md->io_barrier);
733 	synchronize_rcu_expedited();
734 }
735 
736 /*
737  * A fast alternative to dm_get_live_table/dm_put_live_table.
738  * The caller must not block between these two functions.
739  */
740 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
741 {
742 	rcu_read_lock();
743 	return rcu_dereference(md->map);
744 }
745 
746 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
747 {
748 	rcu_read_unlock();
749 }
750 
751 static char *_dm_claim_ptr = "I belong to device-mapper";
752 
753 /*
754  * Open a table device so we can use it as a map destination.
755  */
756 static int open_table_device(struct table_device *td, dev_t dev,
757 			     struct mapped_device *md)
758 {
759 	struct block_device *bdev;
760 
761 	int r;
762 
763 	BUG_ON(td->dm_dev.bdev);
764 
765 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
766 	if (IS_ERR(bdev))
767 		return PTR_ERR(bdev);
768 
769 	r = bd_link_disk_holder(bdev, dm_disk(md));
770 	if (r) {
771 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
772 		return r;
773 	}
774 
775 	td->dm_dev.bdev = bdev;
776 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
777 	return 0;
778 }
779 
780 /*
781  * Close a table device that we've been using.
782  */
783 static void close_table_device(struct table_device *td, struct mapped_device *md)
784 {
785 	if (!td->dm_dev.bdev)
786 		return;
787 
788 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
789 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
790 	put_dax(td->dm_dev.dax_dev);
791 	td->dm_dev.bdev = NULL;
792 	td->dm_dev.dax_dev = NULL;
793 }
794 
795 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
796 					      fmode_t mode)
797 {
798 	struct table_device *td;
799 
800 	list_for_each_entry(td, l, list)
801 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
802 			return td;
803 
804 	return NULL;
805 }
806 
807 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
808 			struct dm_dev **result)
809 {
810 	int r;
811 	struct table_device *td;
812 
813 	mutex_lock(&md->table_devices_lock);
814 	td = find_table_device(&md->table_devices, dev, mode);
815 	if (!td) {
816 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
817 		if (!td) {
818 			mutex_unlock(&md->table_devices_lock);
819 			return -ENOMEM;
820 		}
821 
822 		td->dm_dev.mode = mode;
823 		td->dm_dev.bdev = NULL;
824 
825 		if ((r = open_table_device(td, dev, md))) {
826 			mutex_unlock(&md->table_devices_lock);
827 			kfree(td);
828 			return r;
829 		}
830 
831 		format_dev_t(td->dm_dev.name, dev);
832 
833 		refcount_set(&td->count, 1);
834 		list_add(&td->list, &md->table_devices);
835 	} else {
836 		refcount_inc(&td->count);
837 	}
838 	mutex_unlock(&md->table_devices_lock);
839 
840 	*result = &td->dm_dev;
841 	return 0;
842 }
843 EXPORT_SYMBOL_GPL(dm_get_table_device);
844 
845 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
846 {
847 	struct table_device *td = container_of(d, struct table_device, dm_dev);
848 
849 	mutex_lock(&md->table_devices_lock);
850 	if (refcount_dec_and_test(&td->count)) {
851 		close_table_device(td, md);
852 		list_del(&td->list);
853 		kfree(td);
854 	}
855 	mutex_unlock(&md->table_devices_lock);
856 }
857 EXPORT_SYMBOL(dm_put_table_device);
858 
859 static void free_table_devices(struct list_head *devices)
860 {
861 	struct list_head *tmp, *next;
862 
863 	list_for_each_safe(tmp, next, devices) {
864 		struct table_device *td = list_entry(tmp, struct table_device, list);
865 
866 		DMWARN("dm_destroy: %s still exists with %d references",
867 		       td->dm_dev.name, refcount_read(&td->count));
868 		kfree(td);
869 	}
870 }
871 
872 /*
873  * Get the geometry associated with a dm device
874  */
875 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
876 {
877 	*geo = md->geometry;
878 
879 	return 0;
880 }
881 
882 /*
883  * Set the geometry of a device.
884  */
885 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
886 {
887 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
888 
889 	if (geo->start > sz) {
890 		DMWARN("Start sector is beyond the geometry limits.");
891 		return -EINVAL;
892 	}
893 
894 	md->geometry = *geo;
895 
896 	return 0;
897 }
898 
899 static int __noflush_suspending(struct mapped_device *md)
900 {
901 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
902 }
903 
904 /*
905  * Decrements the number of outstanding ios that a bio has been
906  * cloned into, completing the original io if necc.
907  */
908 static void dec_pending(struct dm_io *io, blk_status_t error)
909 {
910 	unsigned long flags;
911 	blk_status_t io_error;
912 	struct bio *bio;
913 	struct mapped_device *md = io->md;
914 
915 	/* Push-back supersedes any I/O errors */
916 	if (unlikely(error)) {
917 		spin_lock_irqsave(&io->endio_lock, flags);
918 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
919 			io->status = error;
920 		spin_unlock_irqrestore(&io->endio_lock, flags);
921 	}
922 
923 	if (atomic_dec_and_test(&io->io_count)) {
924 		if (io->status == BLK_STS_DM_REQUEUE) {
925 			/*
926 			 * Target requested pushing back the I/O.
927 			 */
928 			spin_lock_irqsave(&md->deferred_lock, flags);
929 			if (__noflush_suspending(md))
930 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
931 				bio_list_add_head(&md->deferred, io->orig_bio);
932 			else
933 				/* noflush suspend was interrupted. */
934 				io->status = BLK_STS_IOERR;
935 			spin_unlock_irqrestore(&md->deferred_lock, flags);
936 		}
937 
938 		io_error = io->status;
939 		bio = io->orig_bio;
940 		end_io_acct(io);
941 		free_io(md, io);
942 
943 		if (io_error == BLK_STS_DM_REQUEUE)
944 			return;
945 
946 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
947 			/*
948 			 * Preflush done for flush with data, reissue
949 			 * without REQ_PREFLUSH.
950 			 */
951 			bio->bi_opf &= ~REQ_PREFLUSH;
952 			queue_io(md, bio);
953 		} else {
954 			/* done with normal IO or empty flush */
955 			if (io_error)
956 				bio->bi_status = io_error;
957 			bio_endio(bio);
958 		}
959 	}
960 }
961 
962 void disable_discard(struct mapped_device *md)
963 {
964 	struct queue_limits *limits = dm_get_queue_limits(md);
965 
966 	/* device doesn't really support DISCARD, disable it */
967 	limits->max_discard_sectors = 0;
968 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
969 }
970 
971 void disable_write_same(struct mapped_device *md)
972 {
973 	struct queue_limits *limits = dm_get_queue_limits(md);
974 
975 	/* device doesn't really support WRITE SAME, disable it */
976 	limits->max_write_same_sectors = 0;
977 }
978 
979 void disable_write_zeroes(struct mapped_device *md)
980 {
981 	struct queue_limits *limits = dm_get_queue_limits(md);
982 
983 	/* device doesn't really support WRITE ZEROES, disable it */
984 	limits->max_write_zeroes_sectors = 0;
985 }
986 
987 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
988 {
989 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
990 }
991 
992 static void clone_endio(struct bio *bio)
993 {
994 	blk_status_t error = bio->bi_status;
995 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
996 	struct dm_io *io = tio->io;
997 	struct mapped_device *md = tio->io->md;
998 	dm_endio_fn endio = tio->ti->type->end_io;
999 	struct bio *orig_bio = io->orig_bio;
1000 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1001 
1002 	if (unlikely(error == BLK_STS_TARGET)) {
1003 		if (bio_op(bio) == REQ_OP_DISCARD &&
1004 		    !q->limits.max_discard_sectors)
1005 			disable_discard(md);
1006 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1007 			 !q->limits.max_write_same_sectors)
1008 			disable_write_same(md);
1009 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1010 			 !q->limits.max_write_zeroes_sectors)
1011 			disable_write_zeroes(md);
1012 	}
1013 
1014 	/*
1015 	 * For zone-append bios get offset in zone of the written
1016 	 * sector and add that to the original bio sector pos.
1017 	 */
1018 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1019 		sector_t written_sector = bio->bi_iter.bi_sector;
1020 		struct request_queue *q = orig_bio->bi_bdev->bd_disk->queue;
1021 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1022 
1023 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1024 	}
1025 
1026 	if (endio) {
1027 		int r = endio(tio->ti, bio, &error);
1028 		switch (r) {
1029 		case DM_ENDIO_REQUEUE:
1030 			error = BLK_STS_DM_REQUEUE;
1031 			fallthrough;
1032 		case DM_ENDIO_DONE:
1033 			break;
1034 		case DM_ENDIO_INCOMPLETE:
1035 			/* The target will handle the io */
1036 			return;
1037 		default:
1038 			DMWARN("unimplemented target endio return value: %d", r);
1039 			BUG();
1040 		}
1041 	}
1042 
1043 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1044 		struct mapped_device *md = io->md;
1045 		up(&md->swap_bios_semaphore);
1046 	}
1047 
1048 	free_tio(tio);
1049 	dec_pending(io, error);
1050 }
1051 
1052 /*
1053  * Return maximum size of I/O possible at the supplied sector up to the current
1054  * target boundary.
1055  */
1056 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1057 						  sector_t target_offset)
1058 {
1059 	return ti->len - target_offset;
1060 }
1061 
1062 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1063 {
1064 	sector_t target_offset = dm_target_offset(ti, sector);
1065 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1066 	sector_t max_len;
1067 
1068 	/*
1069 	 * Does the target need to split IO even further?
1070 	 * - varied (per target) IO splitting is a tenet of DM; this
1071 	 *   explains why stacked chunk_sectors based splitting via
1072 	 *   blk_max_size_offset() isn't possible here. So pass in
1073 	 *   ti->max_io_len to override stacked chunk_sectors.
1074 	 */
1075 	if (ti->max_io_len) {
1076 		max_len = blk_max_size_offset(ti->table->md->queue,
1077 					      target_offset, ti->max_io_len);
1078 		if (len > max_len)
1079 			len = max_len;
1080 	}
1081 
1082 	return len;
1083 }
1084 
1085 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1086 {
1087 	if (len > UINT_MAX) {
1088 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1089 		      (unsigned long long)len, UINT_MAX);
1090 		ti->error = "Maximum size of target IO is too large";
1091 		return -EINVAL;
1092 	}
1093 
1094 	ti->max_io_len = (uint32_t) len;
1095 
1096 	return 0;
1097 }
1098 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1099 
1100 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1101 						sector_t sector, int *srcu_idx)
1102 	__acquires(md->io_barrier)
1103 {
1104 	struct dm_table *map;
1105 	struct dm_target *ti;
1106 
1107 	map = dm_get_live_table(md, srcu_idx);
1108 	if (!map)
1109 		return NULL;
1110 
1111 	ti = dm_table_find_target(map, sector);
1112 	if (!ti)
1113 		return NULL;
1114 
1115 	return ti;
1116 }
1117 
1118 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1119 				 long nr_pages, void **kaddr, pfn_t *pfn)
1120 {
1121 	struct mapped_device *md = dax_get_private(dax_dev);
1122 	sector_t sector = pgoff * PAGE_SECTORS;
1123 	struct dm_target *ti;
1124 	long len, ret = -EIO;
1125 	int srcu_idx;
1126 
1127 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1128 
1129 	if (!ti)
1130 		goto out;
1131 	if (!ti->type->direct_access)
1132 		goto out;
1133 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1134 	if (len < 1)
1135 		goto out;
1136 	nr_pages = min(len, nr_pages);
1137 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1138 
1139  out:
1140 	dm_put_live_table(md, srcu_idx);
1141 
1142 	return ret;
1143 }
1144 
1145 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1146 		int blocksize, sector_t start, sector_t len)
1147 {
1148 	struct mapped_device *md = dax_get_private(dax_dev);
1149 	struct dm_table *map;
1150 	bool ret = false;
1151 	int srcu_idx;
1152 
1153 	map = dm_get_live_table(md, &srcu_idx);
1154 	if (!map)
1155 		goto out;
1156 
1157 	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1158 
1159 out:
1160 	dm_put_live_table(md, srcu_idx);
1161 
1162 	return ret;
1163 }
1164 
1165 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1166 				    void *addr, size_t bytes, struct iov_iter *i)
1167 {
1168 	struct mapped_device *md = dax_get_private(dax_dev);
1169 	sector_t sector = pgoff * PAGE_SECTORS;
1170 	struct dm_target *ti;
1171 	long ret = 0;
1172 	int srcu_idx;
1173 
1174 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1175 
1176 	if (!ti)
1177 		goto out;
1178 	if (!ti->type->dax_copy_from_iter) {
1179 		ret = copy_from_iter(addr, bytes, i);
1180 		goto out;
1181 	}
1182 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1183  out:
1184 	dm_put_live_table(md, srcu_idx);
1185 
1186 	return ret;
1187 }
1188 
1189 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1190 		void *addr, size_t bytes, struct iov_iter *i)
1191 {
1192 	struct mapped_device *md = dax_get_private(dax_dev);
1193 	sector_t sector = pgoff * PAGE_SECTORS;
1194 	struct dm_target *ti;
1195 	long ret = 0;
1196 	int srcu_idx;
1197 
1198 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1199 
1200 	if (!ti)
1201 		goto out;
1202 	if (!ti->type->dax_copy_to_iter) {
1203 		ret = copy_to_iter(addr, bytes, i);
1204 		goto out;
1205 	}
1206 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1207  out:
1208 	dm_put_live_table(md, srcu_idx);
1209 
1210 	return ret;
1211 }
1212 
1213 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1214 				  size_t nr_pages)
1215 {
1216 	struct mapped_device *md = dax_get_private(dax_dev);
1217 	sector_t sector = pgoff * PAGE_SECTORS;
1218 	struct dm_target *ti;
1219 	int ret = -EIO;
1220 	int srcu_idx;
1221 
1222 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1223 
1224 	if (!ti)
1225 		goto out;
1226 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1227 		/*
1228 		 * ->zero_page_range() is mandatory dax operation. If we are
1229 		 *  here, something is wrong.
1230 		 */
1231 		goto out;
1232 	}
1233 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1234  out:
1235 	dm_put_live_table(md, srcu_idx);
1236 
1237 	return ret;
1238 }
1239 
1240 /*
1241  * A target may call dm_accept_partial_bio only from the map routine.  It is
1242  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1243  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1244  *
1245  * dm_accept_partial_bio informs the dm that the target only wants to process
1246  * additional n_sectors sectors of the bio and the rest of the data should be
1247  * sent in a next bio.
1248  *
1249  * A diagram that explains the arithmetics:
1250  * +--------------------+---------------+-------+
1251  * |         1          |       2       |   3   |
1252  * +--------------------+---------------+-------+
1253  *
1254  * <-------------- *tio->len_ptr --------------->
1255  *                      <------- bi_size ------->
1256  *                      <-- n_sectors -->
1257  *
1258  * Region 1 was already iterated over with bio_advance or similar function.
1259  *	(it may be empty if the target doesn't use bio_advance)
1260  * Region 2 is the remaining bio size that the target wants to process.
1261  *	(it may be empty if region 1 is non-empty, although there is no reason
1262  *	 to make it empty)
1263  * The target requires that region 3 is to be sent in the next bio.
1264  *
1265  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1266  * the partially processed part (the sum of regions 1+2) must be the same for all
1267  * copies of the bio.
1268  */
1269 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1270 {
1271 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1272 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1273 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1274 	BUG_ON(bi_size > *tio->len_ptr);
1275 	BUG_ON(n_sectors > bi_size);
1276 	*tio->len_ptr -= bi_size - n_sectors;
1277 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1278 }
1279 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1280 
1281 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1282 {
1283 	mutex_lock(&md->swap_bios_lock);
1284 	while (latch < md->swap_bios) {
1285 		cond_resched();
1286 		down(&md->swap_bios_semaphore);
1287 		md->swap_bios--;
1288 	}
1289 	while (latch > md->swap_bios) {
1290 		cond_resched();
1291 		up(&md->swap_bios_semaphore);
1292 		md->swap_bios++;
1293 	}
1294 	mutex_unlock(&md->swap_bios_lock);
1295 }
1296 
1297 static blk_qc_t __map_bio(struct dm_target_io *tio)
1298 {
1299 	int r;
1300 	sector_t sector;
1301 	struct bio *clone = &tio->clone;
1302 	struct dm_io *io = tio->io;
1303 	struct dm_target *ti = tio->ti;
1304 	blk_qc_t ret = BLK_QC_T_NONE;
1305 
1306 	clone->bi_end_io = clone_endio;
1307 
1308 	/*
1309 	 * Map the clone.  If r == 0 we don't need to do
1310 	 * anything, the target has assumed ownership of
1311 	 * this io.
1312 	 */
1313 	atomic_inc(&io->io_count);
1314 	sector = clone->bi_iter.bi_sector;
1315 
1316 	if (unlikely(swap_bios_limit(ti, clone))) {
1317 		struct mapped_device *md = io->md;
1318 		int latch = get_swap_bios();
1319 		if (unlikely(latch != md->swap_bios))
1320 			__set_swap_bios_limit(md, latch);
1321 		down(&md->swap_bios_semaphore);
1322 	}
1323 
1324 	r = ti->type->map(ti, clone);
1325 	switch (r) {
1326 	case DM_MAPIO_SUBMITTED:
1327 		break;
1328 	case DM_MAPIO_REMAPPED:
1329 		/* the bio has been remapped so dispatch it */
1330 		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1331 		ret = submit_bio_noacct(clone);
1332 		break;
1333 	case DM_MAPIO_KILL:
1334 		if (unlikely(swap_bios_limit(ti, clone))) {
1335 			struct mapped_device *md = io->md;
1336 			up(&md->swap_bios_semaphore);
1337 		}
1338 		free_tio(tio);
1339 		dec_pending(io, BLK_STS_IOERR);
1340 		break;
1341 	case DM_MAPIO_REQUEUE:
1342 		if (unlikely(swap_bios_limit(ti, clone))) {
1343 			struct mapped_device *md = io->md;
1344 			up(&md->swap_bios_semaphore);
1345 		}
1346 		free_tio(tio);
1347 		dec_pending(io, BLK_STS_DM_REQUEUE);
1348 		break;
1349 	default:
1350 		DMWARN("unimplemented target map return value: %d", r);
1351 		BUG();
1352 	}
1353 
1354 	return ret;
1355 }
1356 
1357 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1358 {
1359 	bio->bi_iter.bi_sector = sector;
1360 	bio->bi_iter.bi_size = to_bytes(len);
1361 }
1362 
1363 /*
1364  * Creates a bio that consists of range of complete bvecs.
1365  */
1366 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1367 		     sector_t sector, unsigned len)
1368 {
1369 	struct bio *clone = &tio->clone;
1370 	int r;
1371 
1372 	__bio_clone_fast(clone, bio);
1373 
1374 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1375 	if (r < 0)
1376 		return r;
1377 
1378 	if (bio_integrity(bio)) {
1379 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1380 			     !dm_target_passes_integrity(tio->ti->type))) {
1381 			DMWARN("%s: the target %s doesn't support integrity data.",
1382 				dm_device_name(tio->io->md),
1383 				tio->ti->type->name);
1384 			return -EIO;
1385 		}
1386 
1387 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1388 		if (r < 0)
1389 			return r;
1390 	}
1391 
1392 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1393 	clone->bi_iter.bi_size = to_bytes(len);
1394 
1395 	if (bio_integrity(bio))
1396 		bio_integrity_trim(clone);
1397 
1398 	return 0;
1399 }
1400 
1401 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1402 				struct dm_target *ti, unsigned num_bios)
1403 {
1404 	struct dm_target_io *tio;
1405 	int try;
1406 
1407 	if (!num_bios)
1408 		return;
1409 
1410 	if (num_bios == 1) {
1411 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1412 		bio_list_add(blist, &tio->clone);
1413 		return;
1414 	}
1415 
1416 	for (try = 0; try < 2; try++) {
1417 		int bio_nr;
1418 		struct bio *bio;
1419 
1420 		if (try)
1421 			mutex_lock(&ci->io->md->table_devices_lock);
1422 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1423 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1424 			if (!tio)
1425 				break;
1426 
1427 			bio_list_add(blist, &tio->clone);
1428 		}
1429 		if (try)
1430 			mutex_unlock(&ci->io->md->table_devices_lock);
1431 		if (bio_nr == num_bios)
1432 			return;
1433 
1434 		while ((bio = bio_list_pop(blist))) {
1435 			tio = container_of(bio, struct dm_target_io, clone);
1436 			free_tio(tio);
1437 		}
1438 	}
1439 }
1440 
1441 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1442 					   struct dm_target_io *tio, unsigned *len)
1443 {
1444 	struct bio *clone = &tio->clone;
1445 
1446 	tio->len_ptr = len;
1447 
1448 	__bio_clone_fast(clone, ci->bio);
1449 	if (len)
1450 		bio_setup_sector(clone, ci->sector, *len);
1451 
1452 	return __map_bio(tio);
1453 }
1454 
1455 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1456 				  unsigned num_bios, unsigned *len)
1457 {
1458 	struct bio_list blist = BIO_EMPTY_LIST;
1459 	struct bio *bio;
1460 	struct dm_target_io *tio;
1461 
1462 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1463 
1464 	while ((bio = bio_list_pop(&blist))) {
1465 		tio = container_of(bio, struct dm_target_io, clone);
1466 		(void) __clone_and_map_simple_bio(ci, tio, len);
1467 	}
1468 }
1469 
1470 static int __send_empty_flush(struct clone_info *ci)
1471 {
1472 	unsigned target_nr = 0;
1473 	struct dm_target *ti;
1474 	struct bio flush_bio;
1475 
1476 	/*
1477 	 * Use an on-stack bio for this, it's safe since we don't
1478 	 * need to reference it after submit. It's just used as
1479 	 * the basis for the clone(s).
1480 	 */
1481 	bio_init(&flush_bio, NULL, 0);
1482 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1483 	bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1484 
1485 	ci->bio = &flush_bio;
1486 	ci->sector_count = 0;
1487 
1488 	BUG_ON(bio_has_data(ci->bio));
1489 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1490 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1491 
1492 	bio_uninit(ci->bio);
1493 	return 0;
1494 }
1495 
1496 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1497 				    sector_t sector, unsigned *len)
1498 {
1499 	struct bio *bio = ci->bio;
1500 	struct dm_target_io *tio;
1501 	int r;
1502 
1503 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1504 	tio->len_ptr = len;
1505 	r = clone_bio(tio, bio, sector, *len);
1506 	if (r < 0) {
1507 		free_tio(tio);
1508 		return r;
1509 	}
1510 	(void) __map_bio(tio);
1511 
1512 	return 0;
1513 }
1514 
1515 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1516 				       unsigned num_bios)
1517 {
1518 	unsigned len;
1519 
1520 	/*
1521 	 * Even though the device advertised support for this type of
1522 	 * request, that does not mean every target supports it, and
1523 	 * reconfiguration might also have changed that since the
1524 	 * check was performed.
1525 	 */
1526 	if (!num_bios)
1527 		return -EOPNOTSUPP;
1528 
1529 	len = min_t(sector_t, ci->sector_count,
1530 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1531 
1532 	__send_duplicate_bios(ci, ti, num_bios, &len);
1533 
1534 	ci->sector += len;
1535 	ci->sector_count -= len;
1536 
1537 	return 0;
1538 }
1539 
1540 static bool is_abnormal_io(struct bio *bio)
1541 {
1542 	bool r = false;
1543 
1544 	switch (bio_op(bio)) {
1545 	case REQ_OP_DISCARD:
1546 	case REQ_OP_SECURE_ERASE:
1547 	case REQ_OP_WRITE_SAME:
1548 	case REQ_OP_WRITE_ZEROES:
1549 		r = true;
1550 		break;
1551 	}
1552 
1553 	return r;
1554 }
1555 
1556 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1557 				  int *result)
1558 {
1559 	struct bio *bio = ci->bio;
1560 	unsigned num_bios = 0;
1561 
1562 	switch (bio_op(bio)) {
1563 	case REQ_OP_DISCARD:
1564 		num_bios = ti->num_discard_bios;
1565 		break;
1566 	case REQ_OP_SECURE_ERASE:
1567 		num_bios = ti->num_secure_erase_bios;
1568 		break;
1569 	case REQ_OP_WRITE_SAME:
1570 		num_bios = ti->num_write_same_bios;
1571 		break;
1572 	case REQ_OP_WRITE_ZEROES:
1573 		num_bios = ti->num_write_zeroes_bios;
1574 		break;
1575 	default:
1576 		return false;
1577 	}
1578 
1579 	*result = __send_changing_extent_only(ci, ti, num_bios);
1580 	return true;
1581 }
1582 
1583 /*
1584  * Select the correct strategy for processing a non-flush bio.
1585  */
1586 static int __split_and_process_non_flush(struct clone_info *ci)
1587 {
1588 	struct dm_target *ti;
1589 	unsigned len;
1590 	int r;
1591 
1592 	ti = dm_table_find_target(ci->map, ci->sector);
1593 	if (!ti)
1594 		return -EIO;
1595 
1596 	if (__process_abnormal_io(ci, ti, &r))
1597 		return r;
1598 
1599 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1600 
1601 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1602 	if (r < 0)
1603 		return r;
1604 
1605 	ci->sector += len;
1606 	ci->sector_count -= len;
1607 
1608 	return 0;
1609 }
1610 
1611 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1612 			    struct dm_table *map, struct bio *bio)
1613 {
1614 	ci->map = map;
1615 	ci->io = alloc_io(md, bio);
1616 	ci->sector = bio->bi_iter.bi_sector;
1617 }
1618 
1619 #define __dm_part_stat_sub(part, field, subnd)	\
1620 	(part_stat_get(part, field) -= (subnd))
1621 
1622 /*
1623  * Entry point to split a bio into clones and submit them to the targets.
1624  */
1625 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1626 					struct dm_table *map, struct bio *bio)
1627 {
1628 	struct clone_info ci;
1629 	blk_qc_t ret = BLK_QC_T_NONE;
1630 	int error = 0;
1631 
1632 	init_clone_info(&ci, md, map, bio);
1633 
1634 	if (bio->bi_opf & REQ_PREFLUSH) {
1635 		error = __send_empty_flush(&ci);
1636 		/* dec_pending submits any data associated with flush */
1637 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1638 		ci.bio = bio;
1639 		ci.sector_count = 0;
1640 		error = __split_and_process_non_flush(&ci);
1641 	} else {
1642 		ci.bio = bio;
1643 		ci.sector_count = bio_sectors(bio);
1644 		while (ci.sector_count && !error) {
1645 			error = __split_and_process_non_flush(&ci);
1646 			if (ci.sector_count && !error) {
1647 				/*
1648 				 * Remainder must be passed to submit_bio_noacct()
1649 				 * so that it gets handled *after* bios already submitted
1650 				 * have been completely processed.
1651 				 * We take a clone of the original to store in
1652 				 * ci.io->orig_bio to be used by end_io_acct() and
1653 				 * for dec_pending to use for completion handling.
1654 				 */
1655 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1656 							  GFP_NOIO, &md->queue->bio_split);
1657 				ci.io->orig_bio = b;
1658 
1659 				/*
1660 				 * Adjust IO stats for each split, otherwise upon queue
1661 				 * reentry there will be redundant IO accounting.
1662 				 * NOTE: this is a stop-gap fix, a proper fix involves
1663 				 * significant refactoring of DM core's bio splitting
1664 				 * (by eliminating DM's splitting and just using bio_split)
1665 				 */
1666 				part_stat_lock();
1667 				__dm_part_stat_sub(dm_disk(md)->part0,
1668 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1669 				part_stat_unlock();
1670 
1671 				bio_chain(b, bio);
1672 				trace_block_split(b, bio->bi_iter.bi_sector);
1673 				ret = submit_bio_noacct(bio);
1674 				break;
1675 			}
1676 		}
1677 	}
1678 
1679 	/* drop the extra reference count */
1680 	dec_pending(ci.io, errno_to_blk_status(error));
1681 	return ret;
1682 }
1683 
1684 static blk_qc_t dm_submit_bio(struct bio *bio)
1685 {
1686 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1687 	blk_qc_t ret = BLK_QC_T_NONE;
1688 	int srcu_idx;
1689 	struct dm_table *map;
1690 
1691 	map = dm_get_live_table(md, &srcu_idx);
1692 	if (unlikely(!map)) {
1693 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1694 			    dm_device_name(md));
1695 		bio_io_error(bio);
1696 		goto out;
1697 	}
1698 
1699 	/* If suspended, queue this IO for later */
1700 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1701 		if (bio->bi_opf & REQ_NOWAIT)
1702 			bio_wouldblock_error(bio);
1703 		else if (bio->bi_opf & REQ_RAHEAD)
1704 			bio_io_error(bio);
1705 		else
1706 			queue_io(md, bio);
1707 		goto out;
1708 	}
1709 
1710 	/*
1711 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1712 	 * otherwise associated queue_limits won't be imposed.
1713 	 */
1714 	if (is_abnormal_io(bio))
1715 		blk_queue_split(&bio);
1716 
1717 	ret = __split_and_process_bio(md, map, bio);
1718 out:
1719 	dm_put_live_table(md, srcu_idx);
1720 	return ret;
1721 }
1722 
1723 /*-----------------------------------------------------------------
1724  * An IDR is used to keep track of allocated minor numbers.
1725  *---------------------------------------------------------------*/
1726 static void free_minor(int minor)
1727 {
1728 	spin_lock(&_minor_lock);
1729 	idr_remove(&_minor_idr, minor);
1730 	spin_unlock(&_minor_lock);
1731 }
1732 
1733 /*
1734  * See if the device with a specific minor # is free.
1735  */
1736 static int specific_minor(int minor)
1737 {
1738 	int r;
1739 
1740 	if (minor >= (1 << MINORBITS))
1741 		return -EINVAL;
1742 
1743 	idr_preload(GFP_KERNEL);
1744 	spin_lock(&_minor_lock);
1745 
1746 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1747 
1748 	spin_unlock(&_minor_lock);
1749 	idr_preload_end();
1750 	if (r < 0)
1751 		return r == -ENOSPC ? -EBUSY : r;
1752 	return 0;
1753 }
1754 
1755 static int next_free_minor(int *minor)
1756 {
1757 	int r;
1758 
1759 	idr_preload(GFP_KERNEL);
1760 	spin_lock(&_minor_lock);
1761 
1762 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1763 
1764 	spin_unlock(&_minor_lock);
1765 	idr_preload_end();
1766 	if (r < 0)
1767 		return r;
1768 	*minor = r;
1769 	return 0;
1770 }
1771 
1772 static const struct block_device_operations dm_blk_dops;
1773 static const struct block_device_operations dm_rq_blk_dops;
1774 static const struct dax_operations dm_dax_ops;
1775 
1776 static void dm_wq_work(struct work_struct *work);
1777 
1778 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1779 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1780 {
1781 	dm_destroy_keyslot_manager(q->ksm);
1782 }
1783 
1784 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1785 
1786 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1787 {
1788 }
1789 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1790 
1791 static void cleanup_mapped_device(struct mapped_device *md)
1792 {
1793 	if (md->wq)
1794 		destroy_workqueue(md->wq);
1795 	bioset_exit(&md->bs);
1796 	bioset_exit(&md->io_bs);
1797 
1798 	if (md->dax_dev) {
1799 		kill_dax(md->dax_dev);
1800 		put_dax(md->dax_dev);
1801 		md->dax_dev = NULL;
1802 	}
1803 
1804 	if (md->disk) {
1805 		spin_lock(&_minor_lock);
1806 		md->disk->private_data = NULL;
1807 		spin_unlock(&_minor_lock);
1808 		del_gendisk(md->disk);
1809 		put_disk(md->disk);
1810 	}
1811 
1812 	if (md->queue) {
1813 		dm_queue_destroy_keyslot_manager(md->queue);
1814 		blk_cleanup_queue(md->queue);
1815 	}
1816 
1817 	cleanup_srcu_struct(&md->io_barrier);
1818 
1819 	mutex_destroy(&md->suspend_lock);
1820 	mutex_destroy(&md->type_lock);
1821 	mutex_destroy(&md->table_devices_lock);
1822 	mutex_destroy(&md->swap_bios_lock);
1823 
1824 	dm_mq_cleanup_mapped_device(md);
1825 }
1826 
1827 /*
1828  * Allocate and initialise a blank device with a given minor.
1829  */
1830 static struct mapped_device *alloc_dev(int minor)
1831 {
1832 	int r, numa_node_id = dm_get_numa_node();
1833 	struct mapped_device *md;
1834 	void *old_md;
1835 
1836 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1837 	if (!md) {
1838 		DMWARN("unable to allocate device, out of memory.");
1839 		return NULL;
1840 	}
1841 
1842 	if (!try_module_get(THIS_MODULE))
1843 		goto bad_module_get;
1844 
1845 	/* get a minor number for the dev */
1846 	if (minor == DM_ANY_MINOR)
1847 		r = next_free_minor(&minor);
1848 	else
1849 		r = specific_minor(minor);
1850 	if (r < 0)
1851 		goto bad_minor;
1852 
1853 	r = init_srcu_struct(&md->io_barrier);
1854 	if (r < 0)
1855 		goto bad_io_barrier;
1856 
1857 	md->numa_node_id = numa_node_id;
1858 	md->init_tio_pdu = false;
1859 	md->type = DM_TYPE_NONE;
1860 	mutex_init(&md->suspend_lock);
1861 	mutex_init(&md->type_lock);
1862 	mutex_init(&md->table_devices_lock);
1863 	spin_lock_init(&md->deferred_lock);
1864 	atomic_set(&md->holders, 1);
1865 	atomic_set(&md->open_count, 0);
1866 	atomic_set(&md->event_nr, 0);
1867 	atomic_set(&md->uevent_seq, 0);
1868 	INIT_LIST_HEAD(&md->uevent_list);
1869 	INIT_LIST_HEAD(&md->table_devices);
1870 	spin_lock_init(&md->uevent_lock);
1871 
1872 	/*
1873 	 * default to bio-based until DM table is loaded and md->type
1874 	 * established. If request-based table is loaded: blk-mq will
1875 	 * override accordingly.
1876 	 */
1877 	md->queue = blk_alloc_queue(numa_node_id);
1878 	if (!md->queue)
1879 		goto bad;
1880 
1881 	md->disk = alloc_disk_node(1, md->numa_node_id);
1882 	if (!md->disk)
1883 		goto bad;
1884 
1885 	init_waitqueue_head(&md->wait);
1886 	INIT_WORK(&md->work, dm_wq_work);
1887 	init_waitqueue_head(&md->eventq);
1888 	init_completion(&md->kobj_holder.completion);
1889 
1890 	md->swap_bios = get_swap_bios();
1891 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1892 	mutex_init(&md->swap_bios_lock);
1893 
1894 	md->disk->major = _major;
1895 	md->disk->first_minor = minor;
1896 	md->disk->fops = &dm_blk_dops;
1897 	md->disk->queue = md->queue;
1898 	md->disk->private_data = md;
1899 	sprintf(md->disk->disk_name, "dm-%d", minor);
1900 
1901 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1902 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1903 					&dm_dax_ops, 0);
1904 		if (IS_ERR(md->dax_dev))
1905 			goto bad;
1906 	}
1907 
1908 	add_disk_no_queue_reg(md->disk);
1909 	format_dev_t(md->name, MKDEV(_major, minor));
1910 
1911 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1912 	if (!md->wq)
1913 		goto bad;
1914 
1915 	dm_stats_init(&md->stats);
1916 
1917 	/* Populate the mapping, nobody knows we exist yet */
1918 	spin_lock(&_minor_lock);
1919 	old_md = idr_replace(&_minor_idr, md, minor);
1920 	spin_unlock(&_minor_lock);
1921 
1922 	BUG_ON(old_md != MINOR_ALLOCED);
1923 
1924 	return md;
1925 
1926 bad:
1927 	cleanup_mapped_device(md);
1928 bad_io_barrier:
1929 	free_minor(minor);
1930 bad_minor:
1931 	module_put(THIS_MODULE);
1932 bad_module_get:
1933 	kvfree(md);
1934 	return NULL;
1935 }
1936 
1937 static void unlock_fs(struct mapped_device *md);
1938 
1939 static void free_dev(struct mapped_device *md)
1940 {
1941 	int minor = MINOR(disk_devt(md->disk));
1942 
1943 	unlock_fs(md);
1944 
1945 	cleanup_mapped_device(md);
1946 
1947 	free_table_devices(&md->table_devices);
1948 	dm_stats_cleanup(&md->stats);
1949 	free_minor(minor);
1950 
1951 	module_put(THIS_MODULE);
1952 	kvfree(md);
1953 }
1954 
1955 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1956 {
1957 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1958 	int ret = 0;
1959 
1960 	if (dm_table_bio_based(t)) {
1961 		/*
1962 		 * The md may already have mempools that need changing.
1963 		 * If so, reload bioset because front_pad may have changed
1964 		 * because a different table was loaded.
1965 		 */
1966 		bioset_exit(&md->bs);
1967 		bioset_exit(&md->io_bs);
1968 
1969 	} else if (bioset_initialized(&md->bs)) {
1970 		/*
1971 		 * There's no need to reload with request-based dm
1972 		 * because the size of front_pad doesn't change.
1973 		 * Note for future: If you are to reload bioset,
1974 		 * prep-ed requests in the queue may refer
1975 		 * to bio from the old bioset, so you must walk
1976 		 * through the queue to unprep.
1977 		 */
1978 		goto out;
1979 	}
1980 
1981 	BUG_ON(!p ||
1982 	       bioset_initialized(&md->bs) ||
1983 	       bioset_initialized(&md->io_bs));
1984 
1985 	ret = bioset_init_from_src(&md->bs, &p->bs);
1986 	if (ret)
1987 		goto out;
1988 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1989 	if (ret)
1990 		bioset_exit(&md->bs);
1991 out:
1992 	/* mempool bind completed, no longer need any mempools in the table */
1993 	dm_table_free_md_mempools(t);
1994 	return ret;
1995 }
1996 
1997 /*
1998  * Bind a table to the device.
1999  */
2000 static void event_callback(void *context)
2001 {
2002 	unsigned long flags;
2003 	LIST_HEAD(uevents);
2004 	struct mapped_device *md = (struct mapped_device *) context;
2005 
2006 	spin_lock_irqsave(&md->uevent_lock, flags);
2007 	list_splice_init(&md->uevent_list, &uevents);
2008 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2009 
2010 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2011 
2012 	atomic_inc(&md->event_nr);
2013 	wake_up(&md->eventq);
2014 	dm_issue_global_event();
2015 }
2016 
2017 /*
2018  * Returns old map, which caller must destroy.
2019  */
2020 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2021 			       struct queue_limits *limits)
2022 {
2023 	struct dm_table *old_map;
2024 	struct request_queue *q = md->queue;
2025 	bool request_based = dm_table_request_based(t);
2026 	sector_t size;
2027 	int ret;
2028 
2029 	lockdep_assert_held(&md->suspend_lock);
2030 
2031 	size = dm_table_get_size(t);
2032 
2033 	/*
2034 	 * Wipe any geometry if the size of the table changed.
2035 	 */
2036 	if (size != dm_get_size(md))
2037 		memset(&md->geometry, 0, sizeof(md->geometry));
2038 
2039 	set_capacity_and_notify(md->disk, size);
2040 
2041 	dm_table_event_callback(t, event_callback, md);
2042 
2043 	/*
2044 	 * The queue hasn't been stopped yet, if the old table type wasn't
2045 	 * for request-based during suspension.  So stop it to prevent
2046 	 * I/O mapping before resume.
2047 	 * This must be done before setting the queue restrictions,
2048 	 * because request-based dm may be run just after the setting.
2049 	 */
2050 	if (request_based)
2051 		dm_stop_queue(q);
2052 
2053 	if (request_based) {
2054 		/*
2055 		 * Leverage the fact that request-based DM targets are
2056 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2057 		 */
2058 		md->immutable_target = dm_table_get_immutable_target(t);
2059 	}
2060 
2061 	ret = __bind_mempools(md, t);
2062 	if (ret) {
2063 		old_map = ERR_PTR(ret);
2064 		goto out;
2065 	}
2066 
2067 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2068 	rcu_assign_pointer(md->map, (void *)t);
2069 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2070 
2071 	dm_table_set_restrictions(t, q, limits);
2072 	if (old_map)
2073 		dm_sync_table(md);
2074 
2075 out:
2076 	return old_map;
2077 }
2078 
2079 /*
2080  * Returns unbound table for the caller to free.
2081  */
2082 static struct dm_table *__unbind(struct mapped_device *md)
2083 {
2084 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2085 
2086 	if (!map)
2087 		return NULL;
2088 
2089 	dm_table_event_callback(map, NULL, NULL);
2090 	RCU_INIT_POINTER(md->map, NULL);
2091 	dm_sync_table(md);
2092 
2093 	return map;
2094 }
2095 
2096 /*
2097  * Constructor for a new device.
2098  */
2099 int dm_create(int minor, struct mapped_device **result)
2100 {
2101 	int r;
2102 	struct mapped_device *md;
2103 
2104 	md = alloc_dev(minor);
2105 	if (!md)
2106 		return -ENXIO;
2107 
2108 	r = dm_sysfs_init(md);
2109 	if (r) {
2110 		free_dev(md);
2111 		return r;
2112 	}
2113 
2114 	*result = md;
2115 	return 0;
2116 }
2117 
2118 /*
2119  * Functions to manage md->type.
2120  * All are required to hold md->type_lock.
2121  */
2122 void dm_lock_md_type(struct mapped_device *md)
2123 {
2124 	mutex_lock(&md->type_lock);
2125 }
2126 
2127 void dm_unlock_md_type(struct mapped_device *md)
2128 {
2129 	mutex_unlock(&md->type_lock);
2130 }
2131 
2132 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2133 {
2134 	BUG_ON(!mutex_is_locked(&md->type_lock));
2135 	md->type = type;
2136 }
2137 
2138 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2139 {
2140 	return md->type;
2141 }
2142 
2143 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2144 {
2145 	return md->immutable_target_type;
2146 }
2147 
2148 /*
2149  * The queue_limits are only valid as long as you have a reference
2150  * count on 'md'.
2151  */
2152 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2153 {
2154 	BUG_ON(!atomic_read(&md->holders));
2155 	return &md->queue->limits;
2156 }
2157 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2158 
2159 /*
2160  * Setup the DM device's queue based on md's type
2161  */
2162 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2163 {
2164 	int r;
2165 	struct queue_limits limits;
2166 	enum dm_queue_mode type = dm_get_md_type(md);
2167 
2168 	switch (type) {
2169 	case DM_TYPE_REQUEST_BASED:
2170 		md->disk->fops = &dm_rq_blk_dops;
2171 		r = dm_mq_init_request_queue(md, t);
2172 		if (r) {
2173 			DMERR("Cannot initialize queue for request-based dm mapped device");
2174 			return r;
2175 		}
2176 		break;
2177 	case DM_TYPE_BIO_BASED:
2178 	case DM_TYPE_DAX_BIO_BASED:
2179 		break;
2180 	case DM_TYPE_NONE:
2181 		WARN_ON_ONCE(true);
2182 		break;
2183 	}
2184 
2185 	r = dm_calculate_queue_limits(t, &limits);
2186 	if (r) {
2187 		DMERR("Cannot calculate initial queue limits");
2188 		return r;
2189 	}
2190 	dm_table_set_restrictions(t, md->queue, &limits);
2191 	blk_register_queue(md->disk);
2192 
2193 	return 0;
2194 }
2195 
2196 struct mapped_device *dm_get_md(dev_t dev)
2197 {
2198 	struct mapped_device *md;
2199 	unsigned minor = MINOR(dev);
2200 
2201 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2202 		return NULL;
2203 
2204 	spin_lock(&_minor_lock);
2205 
2206 	md = idr_find(&_minor_idr, minor);
2207 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2208 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2209 		md = NULL;
2210 		goto out;
2211 	}
2212 	dm_get(md);
2213 out:
2214 	spin_unlock(&_minor_lock);
2215 
2216 	return md;
2217 }
2218 EXPORT_SYMBOL_GPL(dm_get_md);
2219 
2220 void *dm_get_mdptr(struct mapped_device *md)
2221 {
2222 	return md->interface_ptr;
2223 }
2224 
2225 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2226 {
2227 	md->interface_ptr = ptr;
2228 }
2229 
2230 void dm_get(struct mapped_device *md)
2231 {
2232 	atomic_inc(&md->holders);
2233 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2234 }
2235 
2236 int dm_hold(struct mapped_device *md)
2237 {
2238 	spin_lock(&_minor_lock);
2239 	if (test_bit(DMF_FREEING, &md->flags)) {
2240 		spin_unlock(&_minor_lock);
2241 		return -EBUSY;
2242 	}
2243 	dm_get(md);
2244 	spin_unlock(&_minor_lock);
2245 	return 0;
2246 }
2247 EXPORT_SYMBOL_GPL(dm_hold);
2248 
2249 const char *dm_device_name(struct mapped_device *md)
2250 {
2251 	return md->name;
2252 }
2253 EXPORT_SYMBOL_GPL(dm_device_name);
2254 
2255 static void __dm_destroy(struct mapped_device *md, bool wait)
2256 {
2257 	struct dm_table *map;
2258 	int srcu_idx;
2259 
2260 	might_sleep();
2261 
2262 	spin_lock(&_minor_lock);
2263 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2264 	set_bit(DMF_FREEING, &md->flags);
2265 	spin_unlock(&_minor_lock);
2266 
2267 	blk_set_queue_dying(md->queue);
2268 
2269 	/*
2270 	 * Take suspend_lock so that presuspend and postsuspend methods
2271 	 * do not race with internal suspend.
2272 	 */
2273 	mutex_lock(&md->suspend_lock);
2274 	map = dm_get_live_table(md, &srcu_idx);
2275 	if (!dm_suspended_md(md)) {
2276 		dm_table_presuspend_targets(map);
2277 		set_bit(DMF_SUSPENDED, &md->flags);
2278 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2279 		dm_table_postsuspend_targets(map);
2280 	}
2281 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2282 	dm_put_live_table(md, srcu_idx);
2283 	mutex_unlock(&md->suspend_lock);
2284 
2285 	/*
2286 	 * Rare, but there may be I/O requests still going to complete,
2287 	 * for example.  Wait for all references to disappear.
2288 	 * No one should increment the reference count of the mapped_device,
2289 	 * after the mapped_device state becomes DMF_FREEING.
2290 	 */
2291 	if (wait)
2292 		while (atomic_read(&md->holders))
2293 			msleep(1);
2294 	else if (atomic_read(&md->holders))
2295 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2296 		       dm_device_name(md), atomic_read(&md->holders));
2297 
2298 	dm_sysfs_exit(md);
2299 	dm_table_destroy(__unbind(md));
2300 	free_dev(md);
2301 }
2302 
2303 void dm_destroy(struct mapped_device *md)
2304 {
2305 	__dm_destroy(md, true);
2306 }
2307 
2308 void dm_destroy_immediate(struct mapped_device *md)
2309 {
2310 	__dm_destroy(md, false);
2311 }
2312 
2313 void dm_put(struct mapped_device *md)
2314 {
2315 	atomic_dec(&md->holders);
2316 }
2317 EXPORT_SYMBOL_GPL(dm_put);
2318 
2319 static bool md_in_flight_bios(struct mapped_device *md)
2320 {
2321 	int cpu;
2322 	struct block_device *part = dm_disk(md)->part0;
2323 	long sum = 0;
2324 
2325 	for_each_possible_cpu(cpu) {
2326 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2327 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2328 	}
2329 
2330 	return sum != 0;
2331 }
2332 
2333 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2334 {
2335 	int r = 0;
2336 	DEFINE_WAIT(wait);
2337 
2338 	while (true) {
2339 		prepare_to_wait(&md->wait, &wait, task_state);
2340 
2341 		if (!md_in_flight_bios(md))
2342 			break;
2343 
2344 		if (signal_pending_state(task_state, current)) {
2345 			r = -EINTR;
2346 			break;
2347 		}
2348 
2349 		io_schedule();
2350 	}
2351 	finish_wait(&md->wait, &wait);
2352 
2353 	return r;
2354 }
2355 
2356 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2357 {
2358 	int r = 0;
2359 
2360 	if (!queue_is_mq(md->queue))
2361 		return dm_wait_for_bios_completion(md, task_state);
2362 
2363 	while (true) {
2364 		if (!blk_mq_queue_inflight(md->queue))
2365 			break;
2366 
2367 		if (signal_pending_state(task_state, current)) {
2368 			r = -EINTR;
2369 			break;
2370 		}
2371 
2372 		msleep(5);
2373 	}
2374 
2375 	return r;
2376 }
2377 
2378 /*
2379  * Process the deferred bios
2380  */
2381 static void dm_wq_work(struct work_struct *work)
2382 {
2383 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2384 	struct bio *bio;
2385 
2386 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2387 		spin_lock_irq(&md->deferred_lock);
2388 		bio = bio_list_pop(&md->deferred);
2389 		spin_unlock_irq(&md->deferred_lock);
2390 
2391 		if (!bio)
2392 			break;
2393 
2394 		submit_bio_noacct(bio);
2395 	}
2396 }
2397 
2398 static void dm_queue_flush(struct mapped_device *md)
2399 {
2400 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2401 	smp_mb__after_atomic();
2402 	queue_work(md->wq, &md->work);
2403 }
2404 
2405 /*
2406  * Swap in a new table, returning the old one for the caller to destroy.
2407  */
2408 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2409 {
2410 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2411 	struct queue_limits limits;
2412 	int r;
2413 
2414 	mutex_lock(&md->suspend_lock);
2415 
2416 	/* device must be suspended */
2417 	if (!dm_suspended_md(md))
2418 		goto out;
2419 
2420 	/*
2421 	 * If the new table has no data devices, retain the existing limits.
2422 	 * This helps multipath with queue_if_no_path if all paths disappear,
2423 	 * then new I/O is queued based on these limits, and then some paths
2424 	 * reappear.
2425 	 */
2426 	if (dm_table_has_no_data_devices(table)) {
2427 		live_map = dm_get_live_table_fast(md);
2428 		if (live_map)
2429 			limits = md->queue->limits;
2430 		dm_put_live_table_fast(md);
2431 	}
2432 
2433 	if (!live_map) {
2434 		r = dm_calculate_queue_limits(table, &limits);
2435 		if (r) {
2436 			map = ERR_PTR(r);
2437 			goto out;
2438 		}
2439 	}
2440 
2441 	map = __bind(md, table, &limits);
2442 	dm_issue_global_event();
2443 
2444 out:
2445 	mutex_unlock(&md->suspend_lock);
2446 	return map;
2447 }
2448 
2449 /*
2450  * Functions to lock and unlock any filesystem running on the
2451  * device.
2452  */
2453 static int lock_fs(struct mapped_device *md)
2454 {
2455 	int r;
2456 
2457 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2458 
2459 	r = freeze_bdev(md->disk->part0);
2460 	if (!r)
2461 		set_bit(DMF_FROZEN, &md->flags);
2462 	return r;
2463 }
2464 
2465 static void unlock_fs(struct mapped_device *md)
2466 {
2467 	if (!test_bit(DMF_FROZEN, &md->flags))
2468 		return;
2469 	thaw_bdev(md->disk->part0);
2470 	clear_bit(DMF_FROZEN, &md->flags);
2471 }
2472 
2473 /*
2474  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2475  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2476  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2477  *
2478  * If __dm_suspend returns 0, the device is completely quiescent
2479  * now. There is no request-processing activity. All new requests
2480  * are being added to md->deferred list.
2481  */
2482 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2483 			unsigned suspend_flags, long task_state,
2484 			int dmf_suspended_flag)
2485 {
2486 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2487 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2488 	int r;
2489 
2490 	lockdep_assert_held(&md->suspend_lock);
2491 
2492 	/*
2493 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2494 	 * This flag is cleared before dm_suspend returns.
2495 	 */
2496 	if (noflush)
2497 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2498 	else
2499 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2500 
2501 	/*
2502 	 * This gets reverted if there's an error later and the targets
2503 	 * provide the .presuspend_undo hook.
2504 	 */
2505 	dm_table_presuspend_targets(map);
2506 
2507 	/*
2508 	 * Flush I/O to the device.
2509 	 * Any I/O submitted after lock_fs() may not be flushed.
2510 	 * noflush takes precedence over do_lockfs.
2511 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2512 	 */
2513 	if (!noflush && do_lockfs) {
2514 		r = lock_fs(md);
2515 		if (r) {
2516 			dm_table_presuspend_undo_targets(map);
2517 			return r;
2518 		}
2519 	}
2520 
2521 	/*
2522 	 * Here we must make sure that no processes are submitting requests
2523 	 * to target drivers i.e. no one may be executing
2524 	 * __split_and_process_bio from dm_submit_bio.
2525 	 *
2526 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2527 	 * we take the write lock. To prevent any process from reentering
2528 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2529 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2530 	 * flush_workqueue(md->wq).
2531 	 */
2532 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2533 	if (map)
2534 		synchronize_srcu(&md->io_barrier);
2535 
2536 	/*
2537 	 * Stop md->queue before flushing md->wq in case request-based
2538 	 * dm defers requests to md->wq from md->queue.
2539 	 */
2540 	if (dm_request_based(md))
2541 		dm_stop_queue(md->queue);
2542 
2543 	flush_workqueue(md->wq);
2544 
2545 	/*
2546 	 * At this point no more requests are entering target request routines.
2547 	 * We call dm_wait_for_completion to wait for all existing requests
2548 	 * to finish.
2549 	 */
2550 	r = dm_wait_for_completion(md, task_state);
2551 	if (!r)
2552 		set_bit(dmf_suspended_flag, &md->flags);
2553 
2554 	if (noflush)
2555 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2556 	if (map)
2557 		synchronize_srcu(&md->io_barrier);
2558 
2559 	/* were we interrupted ? */
2560 	if (r < 0) {
2561 		dm_queue_flush(md);
2562 
2563 		if (dm_request_based(md))
2564 			dm_start_queue(md->queue);
2565 
2566 		unlock_fs(md);
2567 		dm_table_presuspend_undo_targets(map);
2568 		/* pushback list is already flushed, so skip flush */
2569 	}
2570 
2571 	return r;
2572 }
2573 
2574 /*
2575  * We need to be able to change a mapping table under a mounted
2576  * filesystem.  For example we might want to move some data in
2577  * the background.  Before the table can be swapped with
2578  * dm_bind_table, dm_suspend must be called to flush any in
2579  * flight bios and ensure that any further io gets deferred.
2580  */
2581 /*
2582  * Suspend mechanism in request-based dm.
2583  *
2584  * 1. Flush all I/Os by lock_fs() if needed.
2585  * 2. Stop dispatching any I/O by stopping the request_queue.
2586  * 3. Wait for all in-flight I/Os to be completed or requeued.
2587  *
2588  * To abort suspend, start the request_queue.
2589  */
2590 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2591 {
2592 	struct dm_table *map = NULL;
2593 	int r = 0;
2594 
2595 retry:
2596 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2597 
2598 	if (dm_suspended_md(md)) {
2599 		r = -EINVAL;
2600 		goto out_unlock;
2601 	}
2602 
2603 	if (dm_suspended_internally_md(md)) {
2604 		/* already internally suspended, wait for internal resume */
2605 		mutex_unlock(&md->suspend_lock);
2606 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2607 		if (r)
2608 			return r;
2609 		goto retry;
2610 	}
2611 
2612 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2613 
2614 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2615 	if (r)
2616 		goto out_unlock;
2617 
2618 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2619 	dm_table_postsuspend_targets(map);
2620 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2621 
2622 out_unlock:
2623 	mutex_unlock(&md->suspend_lock);
2624 	return r;
2625 }
2626 
2627 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2628 {
2629 	if (map) {
2630 		int r = dm_table_resume_targets(map);
2631 		if (r)
2632 			return r;
2633 	}
2634 
2635 	dm_queue_flush(md);
2636 
2637 	/*
2638 	 * Flushing deferred I/Os must be done after targets are resumed
2639 	 * so that mapping of targets can work correctly.
2640 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2641 	 */
2642 	if (dm_request_based(md))
2643 		dm_start_queue(md->queue);
2644 
2645 	unlock_fs(md);
2646 
2647 	return 0;
2648 }
2649 
2650 int dm_resume(struct mapped_device *md)
2651 {
2652 	int r;
2653 	struct dm_table *map = NULL;
2654 
2655 retry:
2656 	r = -EINVAL;
2657 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2658 
2659 	if (!dm_suspended_md(md))
2660 		goto out;
2661 
2662 	if (dm_suspended_internally_md(md)) {
2663 		/* already internally suspended, wait for internal resume */
2664 		mutex_unlock(&md->suspend_lock);
2665 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2666 		if (r)
2667 			return r;
2668 		goto retry;
2669 	}
2670 
2671 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2672 	if (!map || !dm_table_get_size(map))
2673 		goto out;
2674 
2675 	r = __dm_resume(md, map);
2676 	if (r)
2677 		goto out;
2678 
2679 	clear_bit(DMF_SUSPENDED, &md->flags);
2680 out:
2681 	mutex_unlock(&md->suspend_lock);
2682 
2683 	return r;
2684 }
2685 
2686 /*
2687  * Internal suspend/resume works like userspace-driven suspend. It waits
2688  * until all bios finish and prevents issuing new bios to the target drivers.
2689  * It may be used only from the kernel.
2690  */
2691 
2692 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2693 {
2694 	struct dm_table *map = NULL;
2695 
2696 	lockdep_assert_held(&md->suspend_lock);
2697 
2698 	if (md->internal_suspend_count++)
2699 		return; /* nested internal suspend */
2700 
2701 	if (dm_suspended_md(md)) {
2702 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2703 		return; /* nest suspend */
2704 	}
2705 
2706 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2707 
2708 	/*
2709 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2710 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2711 	 * would require changing .presuspend to return an error -- avoid this
2712 	 * until there is a need for more elaborate variants of internal suspend.
2713 	 */
2714 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2715 			    DMF_SUSPENDED_INTERNALLY);
2716 
2717 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2718 	dm_table_postsuspend_targets(map);
2719 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2720 }
2721 
2722 static void __dm_internal_resume(struct mapped_device *md)
2723 {
2724 	BUG_ON(!md->internal_suspend_count);
2725 
2726 	if (--md->internal_suspend_count)
2727 		return; /* resume from nested internal suspend */
2728 
2729 	if (dm_suspended_md(md))
2730 		goto done; /* resume from nested suspend */
2731 
2732 	/*
2733 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2734 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2735 	 */
2736 	(void) __dm_resume(md, NULL);
2737 
2738 done:
2739 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2740 	smp_mb__after_atomic();
2741 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2742 }
2743 
2744 void dm_internal_suspend_noflush(struct mapped_device *md)
2745 {
2746 	mutex_lock(&md->suspend_lock);
2747 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2748 	mutex_unlock(&md->suspend_lock);
2749 }
2750 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2751 
2752 void dm_internal_resume(struct mapped_device *md)
2753 {
2754 	mutex_lock(&md->suspend_lock);
2755 	__dm_internal_resume(md);
2756 	mutex_unlock(&md->suspend_lock);
2757 }
2758 EXPORT_SYMBOL_GPL(dm_internal_resume);
2759 
2760 /*
2761  * Fast variants of internal suspend/resume hold md->suspend_lock,
2762  * which prevents interaction with userspace-driven suspend.
2763  */
2764 
2765 void dm_internal_suspend_fast(struct mapped_device *md)
2766 {
2767 	mutex_lock(&md->suspend_lock);
2768 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2769 		return;
2770 
2771 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2772 	synchronize_srcu(&md->io_barrier);
2773 	flush_workqueue(md->wq);
2774 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2775 }
2776 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2777 
2778 void dm_internal_resume_fast(struct mapped_device *md)
2779 {
2780 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2781 		goto done;
2782 
2783 	dm_queue_flush(md);
2784 
2785 done:
2786 	mutex_unlock(&md->suspend_lock);
2787 }
2788 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2789 
2790 /*-----------------------------------------------------------------
2791  * Event notification.
2792  *---------------------------------------------------------------*/
2793 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2794 		       unsigned cookie)
2795 {
2796 	int r;
2797 	unsigned noio_flag;
2798 	char udev_cookie[DM_COOKIE_LENGTH];
2799 	char *envp[] = { udev_cookie, NULL };
2800 
2801 	noio_flag = memalloc_noio_save();
2802 
2803 	if (!cookie)
2804 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2805 	else {
2806 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2807 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2808 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2809 				       action, envp);
2810 	}
2811 
2812 	memalloc_noio_restore(noio_flag);
2813 
2814 	return r;
2815 }
2816 
2817 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2818 {
2819 	return atomic_add_return(1, &md->uevent_seq);
2820 }
2821 
2822 uint32_t dm_get_event_nr(struct mapped_device *md)
2823 {
2824 	return atomic_read(&md->event_nr);
2825 }
2826 
2827 int dm_wait_event(struct mapped_device *md, int event_nr)
2828 {
2829 	return wait_event_interruptible(md->eventq,
2830 			(event_nr != atomic_read(&md->event_nr)));
2831 }
2832 
2833 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2834 {
2835 	unsigned long flags;
2836 
2837 	spin_lock_irqsave(&md->uevent_lock, flags);
2838 	list_add(elist, &md->uevent_list);
2839 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2840 }
2841 
2842 /*
2843  * The gendisk is only valid as long as you have a reference
2844  * count on 'md'.
2845  */
2846 struct gendisk *dm_disk(struct mapped_device *md)
2847 {
2848 	return md->disk;
2849 }
2850 EXPORT_SYMBOL_GPL(dm_disk);
2851 
2852 struct kobject *dm_kobject(struct mapped_device *md)
2853 {
2854 	return &md->kobj_holder.kobj;
2855 }
2856 
2857 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2858 {
2859 	struct mapped_device *md;
2860 
2861 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2862 
2863 	spin_lock(&_minor_lock);
2864 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2865 		md = NULL;
2866 		goto out;
2867 	}
2868 	dm_get(md);
2869 out:
2870 	spin_unlock(&_minor_lock);
2871 
2872 	return md;
2873 }
2874 
2875 int dm_suspended_md(struct mapped_device *md)
2876 {
2877 	return test_bit(DMF_SUSPENDED, &md->flags);
2878 }
2879 
2880 static int dm_post_suspending_md(struct mapped_device *md)
2881 {
2882 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2883 }
2884 
2885 int dm_suspended_internally_md(struct mapped_device *md)
2886 {
2887 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2888 }
2889 
2890 int dm_test_deferred_remove_flag(struct mapped_device *md)
2891 {
2892 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2893 }
2894 
2895 int dm_suspended(struct dm_target *ti)
2896 {
2897 	return dm_suspended_md(ti->table->md);
2898 }
2899 EXPORT_SYMBOL_GPL(dm_suspended);
2900 
2901 int dm_post_suspending(struct dm_target *ti)
2902 {
2903 	return dm_post_suspending_md(ti->table->md);
2904 }
2905 EXPORT_SYMBOL_GPL(dm_post_suspending);
2906 
2907 int dm_noflush_suspending(struct dm_target *ti)
2908 {
2909 	return __noflush_suspending(ti->table->md);
2910 }
2911 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2912 
2913 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2914 					    unsigned integrity, unsigned per_io_data_size,
2915 					    unsigned min_pool_size)
2916 {
2917 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2918 	unsigned int pool_size = 0;
2919 	unsigned int front_pad, io_front_pad;
2920 	int ret;
2921 
2922 	if (!pools)
2923 		return NULL;
2924 
2925 	switch (type) {
2926 	case DM_TYPE_BIO_BASED:
2927 	case DM_TYPE_DAX_BIO_BASED:
2928 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2929 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2930 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2931 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2932 		if (ret)
2933 			goto out;
2934 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2935 			goto out;
2936 		break;
2937 	case DM_TYPE_REQUEST_BASED:
2938 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2939 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2940 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2941 		break;
2942 	default:
2943 		BUG();
2944 	}
2945 
2946 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2947 	if (ret)
2948 		goto out;
2949 
2950 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2951 		goto out;
2952 
2953 	return pools;
2954 
2955 out:
2956 	dm_free_md_mempools(pools);
2957 
2958 	return NULL;
2959 }
2960 
2961 void dm_free_md_mempools(struct dm_md_mempools *pools)
2962 {
2963 	if (!pools)
2964 		return;
2965 
2966 	bioset_exit(&pools->bs);
2967 	bioset_exit(&pools->io_bs);
2968 
2969 	kfree(pools);
2970 }
2971 
2972 struct dm_pr {
2973 	u64	old_key;
2974 	u64	new_key;
2975 	u32	flags;
2976 	bool	fail_early;
2977 };
2978 
2979 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2980 		      void *data)
2981 {
2982 	struct mapped_device *md = bdev->bd_disk->private_data;
2983 	struct dm_table *table;
2984 	struct dm_target *ti;
2985 	int ret = -ENOTTY, srcu_idx;
2986 
2987 	table = dm_get_live_table(md, &srcu_idx);
2988 	if (!table || !dm_table_get_size(table))
2989 		goto out;
2990 
2991 	/* We only support devices that have a single target */
2992 	if (dm_table_get_num_targets(table) != 1)
2993 		goto out;
2994 	ti = dm_table_get_target(table, 0);
2995 
2996 	ret = -EINVAL;
2997 	if (!ti->type->iterate_devices)
2998 		goto out;
2999 
3000 	ret = ti->type->iterate_devices(ti, fn, data);
3001 out:
3002 	dm_put_live_table(md, srcu_idx);
3003 	return ret;
3004 }
3005 
3006 /*
3007  * For register / unregister we need to manually call out to every path.
3008  */
3009 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3010 			    sector_t start, sector_t len, void *data)
3011 {
3012 	struct dm_pr *pr = data;
3013 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3014 
3015 	if (!ops || !ops->pr_register)
3016 		return -EOPNOTSUPP;
3017 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3018 }
3019 
3020 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3021 			  u32 flags)
3022 {
3023 	struct dm_pr pr = {
3024 		.old_key	= old_key,
3025 		.new_key	= new_key,
3026 		.flags		= flags,
3027 		.fail_early	= true,
3028 	};
3029 	int ret;
3030 
3031 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3032 	if (ret && new_key) {
3033 		/* unregister all paths if we failed to register any path */
3034 		pr.old_key = new_key;
3035 		pr.new_key = 0;
3036 		pr.flags = 0;
3037 		pr.fail_early = false;
3038 		dm_call_pr(bdev, __dm_pr_register, &pr);
3039 	}
3040 
3041 	return ret;
3042 }
3043 
3044 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3045 			 u32 flags)
3046 {
3047 	struct mapped_device *md = bdev->bd_disk->private_data;
3048 	const struct pr_ops *ops;
3049 	int r, srcu_idx;
3050 
3051 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3052 	if (r < 0)
3053 		goto out;
3054 
3055 	ops = bdev->bd_disk->fops->pr_ops;
3056 	if (ops && ops->pr_reserve)
3057 		r = ops->pr_reserve(bdev, key, type, flags);
3058 	else
3059 		r = -EOPNOTSUPP;
3060 out:
3061 	dm_unprepare_ioctl(md, srcu_idx);
3062 	return r;
3063 }
3064 
3065 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3066 {
3067 	struct mapped_device *md = bdev->bd_disk->private_data;
3068 	const struct pr_ops *ops;
3069 	int r, srcu_idx;
3070 
3071 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3072 	if (r < 0)
3073 		goto out;
3074 
3075 	ops = bdev->bd_disk->fops->pr_ops;
3076 	if (ops && ops->pr_release)
3077 		r = ops->pr_release(bdev, key, type);
3078 	else
3079 		r = -EOPNOTSUPP;
3080 out:
3081 	dm_unprepare_ioctl(md, srcu_idx);
3082 	return r;
3083 }
3084 
3085 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3086 			 enum pr_type type, bool abort)
3087 {
3088 	struct mapped_device *md = bdev->bd_disk->private_data;
3089 	const struct pr_ops *ops;
3090 	int r, srcu_idx;
3091 
3092 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3093 	if (r < 0)
3094 		goto out;
3095 
3096 	ops = bdev->bd_disk->fops->pr_ops;
3097 	if (ops && ops->pr_preempt)
3098 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3099 	else
3100 		r = -EOPNOTSUPP;
3101 out:
3102 	dm_unprepare_ioctl(md, srcu_idx);
3103 	return r;
3104 }
3105 
3106 static int dm_pr_clear(struct block_device *bdev, u64 key)
3107 {
3108 	struct mapped_device *md = bdev->bd_disk->private_data;
3109 	const struct pr_ops *ops;
3110 	int r, srcu_idx;
3111 
3112 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3113 	if (r < 0)
3114 		goto out;
3115 
3116 	ops = bdev->bd_disk->fops->pr_ops;
3117 	if (ops && ops->pr_clear)
3118 		r = ops->pr_clear(bdev, key);
3119 	else
3120 		r = -EOPNOTSUPP;
3121 out:
3122 	dm_unprepare_ioctl(md, srcu_idx);
3123 	return r;
3124 }
3125 
3126 static const struct pr_ops dm_pr_ops = {
3127 	.pr_register	= dm_pr_register,
3128 	.pr_reserve	= dm_pr_reserve,
3129 	.pr_release	= dm_pr_release,
3130 	.pr_preempt	= dm_pr_preempt,
3131 	.pr_clear	= dm_pr_clear,
3132 };
3133 
3134 static const struct block_device_operations dm_blk_dops = {
3135 	.submit_bio = dm_submit_bio,
3136 	.open = dm_blk_open,
3137 	.release = dm_blk_close,
3138 	.ioctl = dm_blk_ioctl,
3139 	.getgeo = dm_blk_getgeo,
3140 	.report_zones = dm_blk_report_zones,
3141 	.pr_ops = &dm_pr_ops,
3142 	.owner = THIS_MODULE
3143 };
3144 
3145 static const struct block_device_operations dm_rq_blk_dops = {
3146 	.open = dm_blk_open,
3147 	.release = dm_blk_close,
3148 	.ioctl = dm_blk_ioctl,
3149 	.getgeo = dm_blk_getgeo,
3150 	.pr_ops = &dm_pr_ops,
3151 	.owner = THIS_MODULE
3152 };
3153 
3154 static const struct dax_operations dm_dax_ops = {
3155 	.direct_access = dm_dax_direct_access,
3156 	.dax_supported = dm_dax_supported,
3157 	.copy_from_iter = dm_dax_copy_from_iter,
3158 	.copy_to_iter = dm_dax_copy_to_iter,
3159 	.zero_page_range = dm_dax_zero_page_range,
3160 };
3161 
3162 /*
3163  * module hooks
3164  */
3165 module_init(dm_init);
3166 module_exit(dm_exit);
3167 
3168 module_param(major, uint, 0);
3169 MODULE_PARM_DESC(major, "The major number of the device mapper");
3170 
3171 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3172 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3173 
3174 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3175 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3176 
3177 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3178 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3179 
3180 MODULE_DESCRIPTION(DM_NAME " driver");
3181 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3182 MODULE_LICENSE("GPL");
3183