xref: /linux/drivers/md/dm.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28 
29 #include <trace/events/block.h>
30 
31 #define DM_MSG_PREFIX "core"
32 
33 #ifdef CONFIG_PRINTK
34 /*
35  * ratelimit state to be used in DMXXX_LIMIT().
36  */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 		       DEFAULT_RATELIMIT_INTERVAL,
39 		       DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42 
43 /*
44  * Cookies are numeric values sent with CHANGE and REMOVE
45  * uevents while resuming, removing or renaming the device.
46  */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per bio.
68  */
69 struct dm_io {
70 	struct mapped_device *md;
71 	int error;
72 	atomic_t io_count;
73 	struct bio *bio;
74 	unsigned long start_time;
75 	spinlock_t endio_lock;
76 	struct dm_stats_aux stats_aux;
77 };
78 
79 /*
80  * For request-based dm.
81  * One of these is allocated per request.
82  */
83 struct dm_rq_target_io {
84 	struct mapped_device *md;
85 	struct dm_target *ti;
86 	struct request *orig, *clone;
87 	struct kthread_work work;
88 	int error;
89 	union map_info info;
90 	struct dm_stats_aux stats_aux;
91 	unsigned long duration_jiffies;
92 	unsigned n_sectors;
93 };
94 
95 /*
96  * For request-based dm - the bio clones we allocate are embedded in these
97  * structs.
98  *
99  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100  * the bioset is created - this means the bio has to come at the end of the
101  * struct.
102  */
103 struct dm_rq_clone_bio_info {
104 	struct bio *orig;
105 	struct dm_rq_target_io *tio;
106 	struct bio clone;
107 };
108 
109 union map_info *dm_get_rq_mapinfo(struct request *rq)
110 {
111 	if (rq && rq->end_io_data)
112 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
113 	return NULL;
114 }
115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
116 
117 #define MINOR_ALLOCED ((void *)-1)
118 
119 /*
120  * Bits for the md->flags field.
121  */
122 #define DMF_BLOCK_IO_FOR_SUSPEND 0
123 #define DMF_SUSPENDED 1
124 #define DMF_FROZEN 2
125 #define DMF_FREEING 3
126 #define DMF_DELETING 4
127 #define DMF_NOFLUSH_SUSPENDING 5
128 #define DMF_DEFERRED_REMOVE 6
129 #define DMF_SUSPENDED_INTERNALLY 7
130 
131 /*
132  * A dummy definition to make RCU happy.
133  * struct dm_table should never be dereferenced in this file.
134  */
135 struct dm_table {
136 	int undefined__;
137 };
138 
139 /*
140  * Work processed by per-device workqueue.
141  */
142 struct mapped_device {
143 	struct srcu_struct io_barrier;
144 	struct mutex suspend_lock;
145 	atomic_t holders;
146 	atomic_t open_count;
147 
148 	/*
149 	 * The current mapping.
150 	 * Use dm_get_live_table{_fast} or take suspend_lock for
151 	 * dereference.
152 	 */
153 	struct dm_table __rcu *map;
154 
155 	struct list_head table_devices;
156 	struct mutex table_devices_lock;
157 
158 	unsigned long flags;
159 
160 	struct request_queue *queue;
161 	unsigned type;
162 	/* Protect queue and type against concurrent access. */
163 	struct mutex type_lock;
164 
165 	struct target_type *immutable_target_type;
166 
167 	struct gendisk *disk;
168 	char name[16];
169 
170 	void *interface_ptr;
171 
172 	/*
173 	 * A list of ios that arrived while we were suspended.
174 	 */
175 	atomic_t pending[2];
176 	wait_queue_head_t wait;
177 	struct work_struct work;
178 	struct bio_list deferred;
179 	spinlock_t deferred_lock;
180 
181 	/*
182 	 * Processing queue (flush)
183 	 */
184 	struct workqueue_struct *wq;
185 
186 	/*
187 	 * io objects are allocated from here.
188 	 */
189 	mempool_t *io_pool;
190 	mempool_t *rq_pool;
191 
192 	struct bio_set *bs;
193 
194 	/*
195 	 * Event handling.
196 	 */
197 	atomic_t event_nr;
198 	wait_queue_head_t eventq;
199 	atomic_t uevent_seq;
200 	struct list_head uevent_list;
201 	spinlock_t uevent_lock; /* Protect access to uevent_list */
202 
203 	/*
204 	 * freeze/thaw support require holding onto a super block
205 	 */
206 	struct super_block *frozen_sb;
207 	struct block_device *bdev;
208 
209 	/* forced geometry settings */
210 	struct hd_geometry geometry;
211 
212 	/* kobject and completion */
213 	struct dm_kobject_holder kobj_holder;
214 
215 	/* zero-length flush that will be cloned and submitted to targets */
216 	struct bio flush_bio;
217 
218 	/* the number of internal suspends */
219 	unsigned internal_suspend_count;
220 
221 	struct dm_stats stats;
222 
223 	struct kthread_worker kworker;
224 	struct task_struct *kworker_task;
225 
226 	/* for request-based merge heuristic in dm_request_fn() */
227 	unsigned seq_rq_merge_deadline_usecs;
228 	int last_rq_rw;
229 	sector_t last_rq_pos;
230 	ktime_t last_rq_start_time;
231 
232 	/* for blk-mq request-based DM support */
233 	struct blk_mq_tag_set tag_set;
234 	bool use_blk_mq;
235 };
236 
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242 
243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 	return md->use_blk_mq;
246 }
247 
248 /*
249  * For mempools pre-allocation at the table loading time.
250  */
251 struct dm_md_mempools {
252 	mempool_t *io_pool;
253 	mempool_t *rq_pool;
254 	struct bio_set *bs;
255 };
256 
257 struct table_device {
258 	struct list_head list;
259 	atomic_t count;
260 	struct dm_dev dm_dev;
261 };
262 
263 #define RESERVED_BIO_BASED_IOS		16
264 #define RESERVED_REQUEST_BASED_IOS	256
265 #define RESERVED_MAX_IOS		1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269 
270 /*
271  * Bio-based DM's mempools' reserved IOs set by the user.
272  */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274 
275 /*
276  * Request-based DM's mempools' reserved IOs set by the user.
277  */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279 
280 static unsigned __dm_get_module_param(unsigned *module_param,
281 				      unsigned def, unsigned max)
282 {
283 	unsigned param = ACCESS_ONCE(*module_param);
284 	unsigned modified_param = 0;
285 
286 	if (!param)
287 		modified_param = def;
288 	else if (param > max)
289 		modified_param = max;
290 
291 	if (modified_param) {
292 		(void)cmpxchg(module_param, param, modified_param);
293 		param = modified_param;
294 	}
295 
296 	return param;
297 }
298 
299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 	return __dm_get_module_param(&reserved_bio_based_ios,
302 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305 
306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 	return __dm_get_module_param(&reserved_rq_based_ios,
309 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312 
313 static int __init local_init(void)
314 {
315 	int r = -ENOMEM;
316 
317 	/* allocate a slab for the dm_ios */
318 	_io_cache = KMEM_CACHE(dm_io, 0);
319 	if (!_io_cache)
320 		return r;
321 
322 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 	if (!_rq_tio_cache)
324 		goto out_free_io_cache;
325 
326 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 				      __alignof__(struct request), 0, NULL);
328 	if (!_rq_cache)
329 		goto out_free_rq_tio_cache;
330 
331 	r = dm_uevent_init();
332 	if (r)
333 		goto out_free_rq_cache;
334 
335 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 	if (!deferred_remove_workqueue) {
337 		r = -ENOMEM;
338 		goto out_uevent_exit;
339 	}
340 
341 	_major = major;
342 	r = register_blkdev(_major, _name);
343 	if (r < 0)
344 		goto out_free_workqueue;
345 
346 	if (!_major)
347 		_major = r;
348 
349 	return 0;
350 
351 out_free_workqueue:
352 	destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 	dm_uevent_exit();
355 out_free_rq_cache:
356 	kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 	kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 	kmem_cache_destroy(_io_cache);
361 
362 	return r;
363 }
364 
365 static void local_exit(void)
366 {
367 	flush_scheduled_work();
368 	destroy_workqueue(deferred_remove_workqueue);
369 
370 	kmem_cache_destroy(_rq_cache);
371 	kmem_cache_destroy(_rq_tio_cache);
372 	kmem_cache_destroy(_io_cache);
373 	unregister_blkdev(_major, _name);
374 	dm_uevent_exit();
375 
376 	_major = 0;
377 
378 	DMINFO("cleaned up");
379 }
380 
381 static int (*_inits[])(void) __initdata = {
382 	local_init,
383 	dm_target_init,
384 	dm_linear_init,
385 	dm_stripe_init,
386 	dm_io_init,
387 	dm_kcopyd_init,
388 	dm_interface_init,
389 	dm_statistics_init,
390 };
391 
392 static void (*_exits[])(void) = {
393 	local_exit,
394 	dm_target_exit,
395 	dm_linear_exit,
396 	dm_stripe_exit,
397 	dm_io_exit,
398 	dm_kcopyd_exit,
399 	dm_interface_exit,
400 	dm_statistics_exit,
401 };
402 
403 static int __init dm_init(void)
404 {
405 	const int count = ARRAY_SIZE(_inits);
406 
407 	int r, i;
408 
409 	for (i = 0; i < count; i++) {
410 		r = _inits[i]();
411 		if (r)
412 			goto bad;
413 	}
414 
415 	return 0;
416 
417       bad:
418 	while (i--)
419 		_exits[i]();
420 
421 	return r;
422 }
423 
424 static void __exit dm_exit(void)
425 {
426 	int i = ARRAY_SIZE(_exits);
427 
428 	while (i--)
429 		_exits[i]();
430 
431 	/*
432 	 * Should be empty by this point.
433 	 */
434 	idr_destroy(&_minor_idr);
435 }
436 
437 /*
438  * Block device functions
439  */
440 int dm_deleting_md(struct mapped_device *md)
441 {
442 	return test_bit(DMF_DELETING, &md->flags);
443 }
444 
445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 	struct mapped_device *md;
448 
449 	spin_lock(&_minor_lock);
450 
451 	md = bdev->bd_disk->private_data;
452 	if (!md)
453 		goto out;
454 
455 	if (test_bit(DMF_FREEING, &md->flags) ||
456 	    dm_deleting_md(md)) {
457 		md = NULL;
458 		goto out;
459 	}
460 
461 	dm_get(md);
462 	atomic_inc(&md->open_count);
463 out:
464 	spin_unlock(&_minor_lock);
465 
466 	return md ? 0 : -ENXIO;
467 }
468 
469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 	struct mapped_device *md;
472 
473 	spin_lock(&_minor_lock);
474 
475 	md = disk->private_data;
476 	if (WARN_ON(!md))
477 		goto out;
478 
479 	if (atomic_dec_and_test(&md->open_count) &&
480 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
482 
483 	dm_put(md);
484 out:
485 	spin_unlock(&_minor_lock);
486 }
487 
488 int dm_open_count(struct mapped_device *md)
489 {
490 	return atomic_read(&md->open_count);
491 }
492 
493 /*
494  * Guarantees nothing is using the device before it's deleted.
495  */
496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 	int r = 0;
499 
500 	spin_lock(&_minor_lock);
501 
502 	if (dm_open_count(md)) {
503 		r = -EBUSY;
504 		if (mark_deferred)
505 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 		r = -EEXIST;
508 	else
509 		set_bit(DMF_DELETING, &md->flags);
510 
511 	spin_unlock(&_minor_lock);
512 
513 	return r;
514 }
515 
516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 	int r = 0;
519 
520 	spin_lock(&_minor_lock);
521 
522 	if (test_bit(DMF_DELETING, &md->flags))
523 		r = -EBUSY;
524 	else
525 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526 
527 	spin_unlock(&_minor_lock);
528 
529 	return r;
530 }
531 
532 static void do_deferred_remove(struct work_struct *w)
533 {
534 	dm_deferred_remove();
535 }
536 
537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 	return get_capacity(md->disk);
540 }
541 
542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 	return md->queue;
545 }
546 
547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 	return &md->stats;
550 }
551 
552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 	struct mapped_device *md = bdev->bd_disk->private_data;
555 
556 	return dm_get_geometry(md, geo);
557 }
558 
559 static int dm_get_live_table_for_ioctl(struct mapped_device *md,
560 		struct dm_target **tgt, struct block_device **bdev,
561 		fmode_t *mode, int *srcu_idx)
562 {
563 	struct dm_table *map;
564 	int r;
565 
566 retry:
567 	r = -ENOTTY;
568 	map = dm_get_live_table(md, srcu_idx);
569 	if (!map || !dm_table_get_size(map))
570 		goto out;
571 
572 	/* We only support devices that have a single target */
573 	if (dm_table_get_num_targets(map) != 1)
574 		goto out;
575 
576 	*tgt = dm_table_get_target(map, 0);
577 
578 	if (!(*tgt)->type->prepare_ioctl)
579 		goto out;
580 
581 	if (dm_suspended_md(md)) {
582 		r = -EAGAIN;
583 		goto out;
584 	}
585 
586 	r = (*tgt)->type->prepare_ioctl(*tgt, bdev, mode);
587 	if (r < 0)
588 		goto out;
589 
590 	return r;
591 
592 out:
593 	dm_put_live_table(md, *srcu_idx);
594 	if (r == -ENOTCONN) {
595 		msleep(10);
596 		goto retry;
597 	}
598 	return r;
599 }
600 
601 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
602 			unsigned int cmd, unsigned long arg)
603 {
604 	struct mapped_device *md = bdev->bd_disk->private_data;
605 	struct dm_target *tgt;
606 	int srcu_idx, r;
607 
608 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
609 	if (r < 0)
610 		return r;
611 
612 	if (r > 0) {
613 		/*
614 		 * Target determined this ioctl is being issued against
615 		 * a logical partition of the parent bdev; so extra
616 		 * validation is needed.
617 		 */
618 		r = scsi_verify_blk_ioctl(NULL, cmd);
619 		if (r)
620 			goto out;
621 	}
622 
623 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
624 out:
625 	dm_put_live_table(md, srcu_idx);
626 	return r;
627 }
628 
629 static struct dm_io *alloc_io(struct mapped_device *md)
630 {
631 	return mempool_alloc(md->io_pool, GFP_NOIO);
632 }
633 
634 static void free_io(struct mapped_device *md, struct dm_io *io)
635 {
636 	mempool_free(io, md->io_pool);
637 }
638 
639 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
640 {
641 	bio_put(&tio->clone);
642 }
643 
644 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
645 					    gfp_t gfp_mask)
646 {
647 	return mempool_alloc(md->io_pool, gfp_mask);
648 }
649 
650 static void free_rq_tio(struct dm_rq_target_io *tio)
651 {
652 	mempool_free(tio, tio->md->io_pool);
653 }
654 
655 static struct request *alloc_clone_request(struct mapped_device *md,
656 					   gfp_t gfp_mask)
657 {
658 	return mempool_alloc(md->rq_pool, gfp_mask);
659 }
660 
661 static void free_clone_request(struct mapped_device *md, struct request *rq)
662 {
663 	mempool_free(rq, md->rq_pool);
664 }
665 
666 static int md_in_flight(struct mapped_device *md)
667 {
668 	return atomic_read(&md->pending[READ]) +
669 	       atomic_read(&md->pending[WRITE]);
670 }
671 
672 static void start_io_acct(struct dm_io *io)
673 {
674 	struct mapped_device *md = io->md;
675 	struct bio *bio = io->bio;
676 	int cpu;
677 	int rw = bio_data_dir(bio);
678 
679 	io->start_time = jiffies;
680 
681 	cpu = part_stat_lock();
682 	part_round_stats(cpu, &dm_disk(md)->part0);
683 	part_stat_unlock();
684 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
685 		atomic_inc_return(&md->pending[rw]));
686 
687 	if (unlikely(dm_stats_used(&md->stats)))
688 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
689 				    bio_sectors(bio), false, 0, &io->stats_aux);
690 }
691 
692 static void end_io_acct(struct dm_io *io)
693 {
694 	struct mapped_device *md = io->md;
695 	struct bio *bio = io->bio;
696 	unsigned long duration = jiffies - io->start_time;
697 	int pending;
698 	int rw = bio_data_dir(bio);
699 
700 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
701 
702 	if (unlikely(dm_stats_used(&md->stats)))
703 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
704 				    bio_sectors(bio), true, duration, &io->stats_aux);
705 
706 	/*
707 	 * After this is decremented the bio must not be touched if it is
708 	 * a flush.
709 	 */
710 	pending = atomic_dec_return(&md->pending[rw]);
711 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
712 	pending += atomic_read(&md->pending[rw^0x1]);
713 
714 	/* nudge anyone waiting on suspend queue */
715 	if (!pending)
716 		wake_up(&md->wait);
717 }
718 
719 /*
720  * Add the bio to the list of deferred io.
721  */
722 static void queue_io(struct mapped_device *md, struct bio *bio)
723 {
724 	unsigned long flags;
725 
726 	spin_lock_irqsave(&md->deferred_lock, flags);
727 	bio_list_add(&md->deferred, bio);
728 	spin_unlock_irqrestore(&md->deferred_lock, flags);
729 	queue_work(md->wq, &md->work);
730 }
731 
732 /*
733  * Everyone (including functions in this file), should use this
734  * function to access the md->map field, and make sure they call
735  * dm_put_live_table() when finished.
736  */
737 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
738 {
739 	*srcu_idx = srcu_read_lock(&md->io_barrier);
740 
741 	return srcu_dereference(md->map, &md->io_barrier);
742 }
743 
744 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
745 {
746 	srcu_read_unlock(&md->io_barrier, srcu_idx);
747 }
748 
749 void dm_sync_table(struct mapped_device *md)
750 {
751 	synchronize_srcu(&md->io_barrier);
752 	synchronize_rcu_expedited();
753 }
754 
755 /*
756  * A fast alternative to dm_get_live_table/dm_put_live_table.
757  * The caller must not block between these two functions.
758  */
759 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
760 {
761 	rcu_read_lock();
762 	return rcu_dereference(md->map);
763 }
764 
765 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
766 {
767 	rcu_read_unlock();
768 }
769 
770 /*
771  * Open a table device so we can use it as a map destination.
772  */
773 static int open_table_device(struct table_device *td, dev_t dev,
774 			     struct mapped_device *md)
775 {
776 	static char *_claim_ptr = "I belong to device-mapper";
777 	struct block_device *bdev;
778 
779 	int r;
780 
781 	BUG_ON(td->dm_dev.bdev);
782 
783 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
784 	if (IS_ERR(bdev))
785 		return PTR_ERR(bdev);
786 
787 	r = bd_link_disk_holder(bdev, dm_disk(md));
788 	if (r) {
789 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
790 		return r;
791 	}
792 
793 	td->dm_dev.bdev = bdev;
794 	return 0;
795 }
796 
797 /*
798  * Close a table device that we've been using.
799  */
800 static void close_table_device(struct table_device *td, struct mapped_device *md)
801 {
802 	if (!td->dm_dev.bdev)
803 		return;
804 
805 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
806 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
807 	td->dm_dev.bdev = NULL;
808 }
809 
810 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
811 					      fmode_t mode) {
812 	struct table_device *td;
813 
814 	list_for_each_entry(td, l, list)
815 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
816 			return td;
817 
818 	return NULL;
819 }
820 
821 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
822 			struct dm_dev **result) {
823 	int r;
824 	struct table_device *td;
825 
826 	mutex_lock(&md->table_devices_lock);
827 	td = find_table_device(&md->table_devices, dev, mode);
828 	if (!td) {
829 		td = kmalloc(sizeof(*td), GFP_KERNEL);
830 		if (!td) {
831 			mutex_unlock(&md->table_devices_lock);
832 			return -ENOMEM;
833 		}
834 
835 		td->dm_dev.mode = mode;
836 		td->dm_dev.bdev = NULL;
837 
838 		if ((r = open_table_device(td, dev, md))) {
839 			mutex_unlock(&md->table_devices_lock);
840 			kfree(td);
841 			return r;
842 		}
843 
844 		format_dev_t(td->dm_dev.name, dev);
845 
846 		atomic_set(&td->count, 0);
847 		list_add(&td->list, &md->table_devices);
848 	}
849 	atomic_inc(&td->count);
850 	mutex_unlock(&md->table_devices_lock);
851 
852 	*result = &td->dm_dev;
853 	return 0;
854 }
855 EXPORT_SYMBOL_GPL(dm_get_table_device);
856 
857 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
858 {
859 	struct table_device *td = container_of(d, struct table_device, dm_dev);
860 
861 	mutex_lock(&md->table_devices_lock);
862 	if (atomic_dec_and_test(&td->count)) {
863 		close_table_device(td, md);
864 		list_del(&td->list);
865 		kfree(td);
866 	}
867 	mutex_unlock(&md->table_devices_lock);
868 }
869 EXPORT_SYMBOL(dm_put_table_device);
870 
871 static void free_table_devices(struct list_head *devices)
872 {
873 	struct list_head *tmp, *next;
874 
875 	list_for_each_safe(tmp, next, devices) {
876 		struct table_device *td = list_entry(tmp, struct table_device, list);
877 
878 		DMWARN("dm_destroy: %s still exists with %d references",
879 		       td->dm_dev.name, atomic_read(&td->count));
880 		kfree(td);
881 	}
882 }
883 
884 /*
885  * Get the geometry associated with a dm device
886  */
887 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
888 {
889 	*geo = md->geometry;
890 
891 	return 0;
892 }
893 
894 /*
895  * Set the geometry of a device.
896  */
897 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
898 {
899 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
900 
901 	if (geo->start > sz) {
902 		DMWARN("Start sector is beyond the geometry limits.");
903 		return -EINVAL;
904 	}
905 
906 	md->geometry = *geo;
907 
908 	return 0;
909 }
910 
911 /*-----------------------------------------------------------------
912  * CRUD START:
913  *   A more elegant soln is in the works that uses the queue
914  *   merge fn, unfortunately there are a couple of changes to
915  *   the block layer that I want to make for this.  So in the
916  *   interests of getting something for people to use I give
917  *   you this clearly demarcated crap.
918  *---------------------------------------------------------------*/
919 
920 static int __noflush_suspending(struct mapped_device *md)
921 {
922 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
923 }
924 
925 /*
926  * Decrements the number of outstanding ios that a bio has been
927  * cloned into, completing the original io if necc.
928  */
929 static void dec_pending(struct dm_io *io, int error)
930 {
931 	unsigned long flags;
932 	int io_error;
933 	struct bio *bio;
934 	struct mapped_device *md = io->md;
935 
936 	/* Push-back supersedes any I/O errors */
937 	if (unlikely(error)) {
938 		spin_lock_irqsave(&io->endio_lock, flags);
939 		if (!(io->error > 0 && __noflush_suspending(md)))
940 			io->error = error;
941 		spin_unlock_irqrestore(&io->endio_lock, flags);
942 	}
943 
944 	if (atomic_dec_and_test(&io->io_count)) {
945 		if (io->error == DM_ENDIO_REQUEUE) {
946 			/*
947 			 * Target requested pushing back the I/O.
948 			 */
949 			spin_lock_irqsave(&md->deferred_lock, flags);
950 			if (__noflush_suspending(md))
951 				bio_list_add_head(&md->deferred, io->bio);
952 			else
953 				/* noflush suspend was interrupted. */
954 				io->error = -EIO;
955 			spin_unlock_irqrestore(&md->deferred_lock, flags);
956 		}
957 
958 		io_error = io->error;
959 		bio = io->bio;
960 		end_io_acct(io);
961 		free_io(md, io);
962 
963 		if (io_error == DM_ENDIO_REQUEUE)
964 			return;
965 
966 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
967 			/*
968 			 * Preflush done for flush with data, reissue
969 			 * without REQ_FLUSH.
970 			 */
971 			bio->bi_rw &= ~REQ_FLUSH;
972 			queue_io(md, bio);
973 		} else {
974 			/* done with normal IO or empty flush */
975 			trace_block_bio_complete(md->queue, bio, io_error);
976 			bio->bi_error = io_error;
977 			bio_endio(bio);
978 		}
979 	}
980 }
981 
982 static void disable_write_same(struct mapped_device *md)
983 {
984 	struct queue_limits *limits = dm_get_queue_limits(md);
985 
986 	/* device doesn't really support WRITE SAME, disable it */
987 	limits->max_write_same_sectors = 0;
988 }
989 
990 static void clone_endio(struct bio *bio)
991 {
992 	int error = bio->bi_error;
993 	int r = error;
994 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
995 	struct dm_io *io = tio->io;
996 	struct mapped_device *md = tio->io->md;
997 	dm_endio_fn endio = tio->ti->type->end_io;
998 
999 	if (endio) {
1000 		r = endio(tio->ti, bio, error);
1001 		if (r < 0 || r == DM_ENDIO_REQUEUE)
1002 			/*
1003 			 * error and requeue request are handled
1004 			 * in dec_pending().
1005 			 */
1006 			error = r;
1007 		else if (r == DM_ENDIO_INCOMPLETE)
1008 			/* The target will handle the io */
1009 			return;
1010 		else if (r) {
1011 			DMWARN("unimplemented target endio return value: %d", r);
1012 			BUG();
1013 		}
1014 	}
1015 
1016 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1017 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1018 		disable_write_same(md);
1019 
1020 	free_tio(md, tio);
1021 	dec_pending(io, error);
1022 }
1023 
1024 /*
1025  * Partial completion handling for request-based dm
1026  */
1027 static void end_clone_bio(struct bio *clone)
1028 {
1029 	struct dm_rq_clone_bio_info *info =
1030 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1031 	struct dm_rq_target_io *tio = info->tio;
1032 	struct bio *bio = info->orig;
1033 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1034 	int error = clone->bi_error;
1035 
1036 	bio_put(clone);
1037 
1038 	if (tio->error)
1039 		/*
1040 		 * An error has already been detected on the request.
1041 		 * Once error occurred, just let clone->end_io() handle
1042 		 * the remainder.
1043 		 */
1044 		return;
1045 	else if (error) {
1046 		/*
1047 		 * Don't notice the error to the upper layer yet.
1048 		 * The error handling decision is made by the target driver,
1049 		 * when the request is completed.
1050 		 */
1051 		tio->error = error;
1052 		return;
1053 	}
1054 
1055 	/*
1056 	 * I/O for the bio successfully completed.
1057 	 * Notice the data completion to the upper layer.
1058 	 */
1059 
1060 	/*
1061 	 * bios are processed from the head of the list.
1062 	 * So the completing bio should always be rq->bio.
1063 	 * If it's not, something wrong is happening.
1064 	 */
1065 	if (tio->orig->bio != bio)
1066 		DMERR("bio completion is going in the middle of the request");
1067 
1068 	/*
1069 	 * Update the original request.
1070 	 * Do not use blk_end_request() here, because it may complete
1071 	 * the original request before the clone, and break the ordering.
1072 	 */
1073 	blk_update_request(tio->orig, 0, nr_bytes);
1074 }
1075 
1076 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1077 {
1078 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1079 }
1080 
1081 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1082 {
1083 	if (unlikely(dm_stats_used(&md->stats))) {
1084 		struct dm_rq_target_io *tio = tio_from_request(orig);
1085 		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1086 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1087 				    tio->n_sectors, true, tio->duration_jiffies,
1088 				    &tio->stats_aux);
1089 	}
1090 }
1091 
1092 /*
1093  * Don't touch any member of the md after calling this function because
1094  * the md may be freed in dm_put() at the end of this function.
1095  * Or do dm_get() before calling this function and dm_put() later.
1096  */
1097 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1098 {
1099 	atomic_dec(&md->pending[rw]);
1100 
1101 	/* nudge anyone waiting on suspend queue */
1102 	if (!md_in_flight(md))
1103 		wake_up(&md->wait);
1104 
1105 	/*
1106 	 * Run this off this callpath, as drivers could invoke end_io while
1107 	 * inside their request_fn (and holding the queue lock). Calling
1108 	 * back into ->request_fn() could deadlock attempting to grab the
1109 	 * queue lock again.
1110 	 */
1111 	if (run_queue) {
1112 		if (md->queue->mq_ops)
1113 			blk_mq_run_hw_queues(md->queue, true);
1114 		else
1115 			blk_run_queue_async(md->queue);
1116 	}
1117 
1118 	/*
1119 	 * dm_put() must be at the end of this function. See the comment above
1120 	 */
1121 	dm_put(md);
1122 }
1123 
1124 static void free_rq_clone(struct request *clone)
1125 {
1126 	struct dm_rq_target_io *tio = clone->end_io_data;
1127 	struct mapped_device *md = tio->md;
1128 
1129 	blk_rq_unprep_clone(clone);
1130 
1131 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1132 		/* stacked on blk-mq queue(s) */
1133 		tio->ti->type->release_clone_rq(clone);
1134 	else if (!md->queue->mq_ops)
1135 		/* request_fn queue stacked on request_fn queue(s) */
1136 		free_clone_request(md, clone);
1137 	/*
1138 	 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1139 	 * no need to call free_clone_request() because we leverage blk-mq by
1140 	 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1141 	 */
1142 
1143 	if (!md->queue->mq_ops)
1144 		free_rq_tio(tio);
1145 }
1146 
1147 /*
1148  * Complete the clone and the original request.
1149  * Must be called without clone's queue lock held,
1150  * see end_clone_request() for more details.
1151  */
1152 static void dm_end_request(struct request *clone, int error)
1153 {
1154 	int rw = rq_data_dir(clone);
1155 	struct dm_rq_target_io *tio = clone->end_io_data;
1156 	struct mapped_device *md = tio->md;
1157 	struct request *rq = tio->orig;
1158 
1159 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1160 		rq->errors = clone->errors;
1161 		rq->resid_len = clone->resid_len;
1162 
1163 		if (rq->sense)
1164 			/*
1165 			 * We are using the sense buffer of the original
1166 			 * request.
1167 			 * So setting the length of the sense data is enough.
1168 			 */
1169 			rq->sense_len = clone->sense_len;
1170 	}
1171 
1172 	free_rq_clone(clone);
1173 	rq_end_stats(md, rq);
1174 	if (!rq->q->mq_ops)
1175 		blk_end_request_all(rq, error);
1176 	else
1177 		blk_mq_end_request(rq, error);
1178 	rq_completed(md, rw, true);
1179 }
1180 
1181 static void dm_unprep_request(struct request *rq)
1182 {
1183 	struct dm_rq_target_io *tio = tio_from_request(rq);
1184 	struct request *clone = tio->clone;
1185 
1186 	if (!rq->q->mq_ops) {
1187 		rq->special = NULL;
1188 		rq->cmd_flags &= ~REQ_DONTPREP;
1189 	}
1190 
1191 	if (clone)
1192 		free_rq_clone(clone);
1193 }
1194 
1195 /*
1196  * Requeue the original request of a clone.
1197  */
1198 static void old_requeue_request(struct request *rq)
1199 {
1200 	struct request_queue *q = rq->q;
1201 	unsigned long flags;
1202 
1203 	spin_lock_irqsave(q->queue_lock, flags);
1204 	blk_requeue_request(q, rq);
1205 	blk_run_queue_async(q);
1206 	spin_unlock_irqrestore(q->queue_lock, flags);
1207 }
1208 
1209 static void dm_requeue_original_request(struct mapped_device *md,
1210 					struct request *rq)
1211 {
1212 	int rw = rq_data_dir(rq);
1213 
1214 	dm_unprep_request(rq);
1215 
1216 	rq_end_stats(md, rq);
1217 	if (!rq->q->mq_ops)
1218 		old_requeue_request(rq);
1219 	else {
1220 		blk_mq_requeue_request(rq);
1221 		blk_mq_kick_requeue_list(rq->q);
1222 	}
1223 
1224 	rq_completed(md, rw, false);
1225 }
1226 
1227 static void old_stop_queue(struct request_queue *q)
1228 {
1229 	unsigned long flags;
1230 
1231 	if (blk_queue_stopped(q))
1232 		return;
1233 
1234 	spin_lock_irqsave(q->queue_lock, flags);
1235 	blk_stop_queue(q);
1236 	spin_unlock_irqrestore(q->queue_lock, flags);
1237 }
1238 
1239 static void stop_queue(struct request_queue *q)
1240 {
1241 	if (!q->mq_ops)
1242 		old_stop_queue(q);
1243 	else
1244 		blk_mq_stop_hw_queues(q);
1245 }
1246 
1247 static void old_start_queue(struct request_queue *q)
1248 {
1249 	unsigned long flags;
1250 
1251 	spin_lock_irqsave(q->queue_lock, flags);
1252 	if (blk_queue_stopped(q))
1253 		blk_start_queue(q);
1254 	spin_unlock_irqrestore(q->queue_lock, flags);
1255 }
1256 
1257 static void start_queue(struct request_queue *q)
1258 {
1259 	if (!q->mq_ops)
1260 		old_start_queue(q);
1261 	else
1262 		blk_mq_start_stopped_hw_queues(q, true);
1263 }
1264 
1265 static void dm_done(struct request *clone, int error, bool mapped)
1266 {
1267 	int r = error;
1268 	struct dm_rq_target_io *tio = clone->end_io_data;
1269 	dm_request_endio_fn rq_end_io = NULL;
1270 
1271 	if (tio->ti) {
1272 		rq_end_io = tio->ti->type->rq_end_io;
1273 
1274 		if (mapped && rq_end_io)
1275 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1276 	}
1277 
1278 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1279 		     !clone->q->limits.max_write_same_sectors))
1280 		disable_write_same(tio->md);
1281 
1282 	if (r <= 0)
1283 		/* The target wants to complete the I/O */
1284 		dm_end_request(clone, r);
1285 	else if (r == DM_ENDIO_INCOMPLETE)
1286 		/* The target will handle the I/O */
1287 		return;
1288 	else if (r == DM_ENDIO_REQUEUE)
1289 		/* The target wants to requeue the I/O */
1290 		dm_requeue_original_request(tio->md, tio->orig);
1291 	else {
1292 		DMWARN("unimplemented target endio return value: %d", r);
1293 		BUG();
1294 	}
1295 }
1296 
1297 /*
1298  * Request completion handler for request-based dm
1299  */
1300 static void dm_softirq_done(struct request *rq)
1301 {
1302 	bool mapped = true;
1303 	struct dm_rq_target_io *tio = tio_from_request(rq);
1304 	struct request *clone = tio->clone;
1305 	int rw;
1306 
1307 	if (!clone) {
1308 		rq_end_stats(tio->md, rq);
1309 		rw = rq_data_dir(rq);
1310 		if (!rq->q->mq_ops) {
1311 			blk_end_request_all(rq, tio->error);
1312 			rq_completed(tio->md, rw, false);
1313 			free_rq_tio(tio);
1314 		} else {
1315 			blk_mq_end_request(rq, tio->error);
1316 			rq_completed(tio->md, rw, false);
1317 		}
1318 		return;
1319 	}
1320 
1321 	if (rq->cmd_flags & REQ_FAILED)
1322 		mapped = false;
1323 
1324 	dm_done(clone, tio->error, mapped);
1325 }
1326 
1327 /*
1328  * Complete the clone and the original request with the error status
1329  * through softirq context.
1330  */
1331 static void dm_complete_request(struct request *rq, int error)
1332 {
1333 	struct dm_rq_target_io *tio = tio_from_request(rq);
1334 
1335 	tio->error = error;
1336 	blk_complete_request(rq);
1337 }
1338 
1339 /*
1340  * Complete the not-mapped clone and the original request with the error status
1341  * through softirq context.
1342  * Target's rq_end_io() function isn't called.
1343  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1344  */
1345 static void dm_kill_unmapped_request(struct request *rq, int error)
1346 {
1347 	rq->cmd_flags |= REQ_FAILED;
1348 	dm_complete_request(rq, error);
1349 }
1350 
1351 /*
1352  * Called with the clone's queue lock held (for non-blk-mq)
1353  */
1354 static void end_clone_request(struct request *clone, int error)
1355 {
1356 	struct dm_rq_target_io *tio = clone->end_io_data;
1357 
1358 	if (!clone->q->mq_ops) {
1359 		/*
1360 		 * For just cleaning up the information of the queue in which
1361 		 * the clone was dispatched.
1362 		 * The clone is *NOT* freed actually here because it is alloced
1363 		 * from dm own mempool (REQ_ALLOCED isn't set).
1364 		 */
1365 		__blk_put_request(clone->q, clone);
1366 	}
1367 
1368 	/*
1369 	 * Actual request completion is done in a softirq context which doesn't
1370 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1371 	 *     - another request may be submitted by the upper level driver
1372 	 *       of the stacking during the completion
1373 	 *     - the submission which requires queue lock may be done
1374 	 *       against this clone's queue
1375 	 */
1376 	dm_complete_request(tio->orig, error);
1377 }
1378 
1379 /*
1380  * Return maximum size of I/O possible at the supplied sector up to the current
1381  * target boundary.
1382  */
1383 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1384 {
1385 	sector_t target_offset = dm_target_offset(ti, sector);
1386 
1387 	return ti->len - target_offset;
1388 }
1389 
1390 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1391 {
1392 	sector_t len = max_io_len_target_boundary(sector, ti);
1393 	sector_t offset, max_len;
1394 
1395 	/*
1396 	 * Does the target need to split even further?
1397 	 */
1398 	if (ti->max_io_len) {
1399 		offset = dm_target_offset(ti, sector);
1400 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1401 			max_len = sector_div(offset, ti->max_io_len);
1402 		else
1403 			max_len = offset & (ti->max_io_len - 1);
1404 		max_len = ti->max_io_len - max_len;
1405 
1406 		if (len > max_len)
1407 			len = max_len;
1408 	}
1409 
1410 	return len;
1411 }
1412 
1413 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1414 {
1415 	if (len > UINT_MAX) {
1416 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1417 		      (unsigned long long)len, UINT_MAX);
1418 		ti->error = "Maximum size of target IO is too large";
1419 		return -EINVAL;
1420 	}
1421 
1422 	ti->max_io_len = (uint32_t) len;
1423 
1424 	return 0;
1425 }
1426 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1427 
1428 /*
1429  * A target may call dm_accept_partial_bio only from the map routine.  It is
1430  * allowed for all bio types except REQ_FLUSH.
1431  *
1432  * dm_accept_partial_bio informs the dm that the target only wants to process
1433  * additional n_sectors sectors of the bio and the rest of the data should be
1434  * sent in a next bio.
1435  *
1436  * A diagram that explains the arithmetics:
1437  * +--------------------+---------------+-------+
1438  * |         1          |       2       |   3   |
1439  * +--------------------+---------------+-------+
1440  *
1441  * <-------------- *tio->len_ptr --------------->
1442  *                      <------- bi_size ------->
1443  *                      <-- n_sectors -->
1444  *
1445  * Region 1 was already iterated over with bio_advance or similar function.
1446  *	(it may be empty if the target doesn't use bio_advance)
1447  * Region 2 is the remaining bio size that the target wants to process.
1448  *	(it may be empty if region 1 is non-empty, although there is no reason
1449  *	 to make it empty)
1450  * The target requires that region 3 is to be sent in the next bio.
1451  *
1452  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1453  * the partially processed part (the sum of regions 1+2) must be the same for all
1454  * copies of the bio.
1455  */
1456 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1457 {
1458 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1459 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1460 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1461 	BUG_ON(bi_size > *tio->len_ptr);
1462 	BUG_ON(n_sectors > bi_size);
1463 	*tio->len_ptr -= bi_size - n_sectors;
1464 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1465 }
1466 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1467 
1468 static void __map_bio(struct dm_target_io *tio)
1469 {
1470 	int r;
1471 	sector_t sector;
1472 	struct mapped_device *md;
1473 	struct bio *clone = &tio->clone;
1474 	struct dm_target *ti = tio->ti;
1475 
1476 	clone->bi_end_io = clone_endio;
1477 
1478 	/*
1479 	 * Map the clone.  If r == 0 we don't need to do
1480 	 * anything, the target has assumed ownership of
1481 	 * this io.
1482 	 */
1483 	atomic_inc(&tio->io->io_count);
1484 	sector = clone->bi_iter.bi_sector;
1485 	r = ti->type->map(ti, clone);
1486 	if (r == DM_MAPIO_REMAPPED) {
1487 		/* the bio has been remapped so dispatch it */
1488 
1489 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1490 				      tio->io->bio->bi_bdev->bd_dev, sector);
1491 
1492 		generic_make_request(clone);
1493 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1494 		/* error the io and bail out, or requeue it if needed */
1495 		md = tio->io->md;
1496 		dec_pending(tio->io, r);
1497 		free_tio(md, tio);
1498 	} else if (r != DM_MAPIO_SUBMITTED) {
1499 		DMWARN("unimplemented target map return value: %d", r);
1500 		BUG();
1501 	}
1502 }
1503 
1504 struct clone_info {
1505 	struct mapped_device *md;
1506 	struct dm_table *map;
1507 	struct bio *bio;
1508 	struct dm_io *io;
1509 	sector_t sector;
1510 	unsigned sector_count;
1511 };
1512 
1513 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1514 {
1515 	bio->bi_iter.bi_sector = sector;
1516 	bio->bi_iter.bi_size = to_bytes(len);
1517 }
1518 
1519 /*
1520  * Creates a bio that consists of range of complete bvecs.
1521  */
1522 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1523 		      sector_t sector, unsigned len)
1524 {
1525 	struct bio *clone = &tio->clone;
1526 
1527 	__bio_clone_fast(clone, bio);
1528 
1529 	if (bio_integrity(bio))
1530 		bio_integrity_clone(clone, bio, GFP_NOIO);
1531 
1532 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1533 	clone->bi_iter.bi_size = to_bytes(len);
1534 
1535 	if (bio_integrity(bio))
1536 		bio_integrity_trim(clone, 0, len);
1537 }
1538 
1539 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1540 				      struct dm_target *ti,
1541 				      unsigned target_bio_nr)
1542 {
1543 	struct dm_target_io *tio;
1544 	struct bio *clone;
1545 
1546 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1547 	tio = container_of(clone, struct dm_target_io, clone);
1548 
1549 	tio->io = ci->io;
1550 	tio->ti = ti;
1551 	tio->target_bio_nr = target_bio_nr;
1552 
1553 	return tio;
1554 }
1555 
1556 static void __clone_and_map_simple_bio(struct clone_info *ci,
1557 				       struct dm_target *ti,
1558 				       unsigned target_bio_nr, unsigned *len)
1559 {
1560 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1561 	struct bio *clone = &tio->clone;
1562 
1563 	tio->len_ptr = len;
1564 
1565 	__bio_clone_fast(clone, ci->bio);
1566 	if (len)
1567 		bio_setup_sector(clone, ci->sector, *len);
1568 
1569 	__map_bio(tio);
1570 }
1571 
1572 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1573 				  unsigned num_bios, unsigned *len)
1574 {
1575 	unsigned target_bio_nr;
1576 
1577 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1578 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1579 }
1580 
1581 static int __send_empty_flush(struct clone_info *ci)
1582 {
1583 	unsigned target_nr = 0;
1584 	struct dm_target *ti;
1585 
1586 	BUG_ON(bio_has_data(ci->bio));
1587 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1588 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1589 
1590 	return 0;
1591 }
1592 
1593 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1594 				     sector_t sector, unsigned *len)
1595 {
1596 	struct bio *bio = ci->bio;
1597 	struct dm_target_io *tio;
1598 	unsigned target_bio_nr;
1599 	unsigned num_target_bios = 1;
1600 
1601 	/*
1602 	 * Does the target want to receive duplicate copies of the bio?
1603 	 */
1604 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1605 		num_target_bios = ti->num_write_bios(ti, bio);
1606 
1607 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1608 		tio = alloc_tio(ci, ti, target_bio_nr);
1609 		tio->len_ptr = len;
1610 		clone_bio(tio, bio, sector, *len);
1611 		__map_bio(tio);
1612 	}
1613 }
1614 
1615 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1616 
1617 static unsigned get_num_discard_bios(struct dm_target *ti)
1618 {
1619 	return ti->num_discard_bios;
1620 }
1621 
1622 static unsigned get_num_write_same_bios(struct dm_target *ti)
1623 {
1624 	return ti->num_write_same_bios;
1625 }
1626 
1627 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1628 
1629 static bool is_split_required_for_discard(struct dm_target *ti)
1630 {
1631 	return ti->split_discard_bios;
1632 }
1633 
1634 static int __send_changing_extent_only(struct clone_info *ci,
1635 				       get_num_bios_fn get_num_bios,
1636 				       is_split_required_fn is_split_required)
1637 {
1638 	struct dm_target *ti;
1639 	unsigned len;
1640 	unsigned num_bios;
1641 
1642 	do {
1643 		ti = dm_table_find_target(ci->map, ci->sector);
1644 		if (!dm_target_is_valid(ti))
1645 			return -EIO;
1646 
1647 		/*
1648 		 * Even though the device advertised support for this type of
1649 		 * request, that does not mean every target supports it, and
1650 		 * reconfiguration might also have changed that since the
1651 		 * check was performed.
1652 		 */
1653 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1654 		if (!num_bios)
1655 			return -EOPNOTSUPP;
1656 
1657 		if (is_split_required && !is_split_required(ti))
1658 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1659 		else
1660 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1661 
1662 		__send_duplicate_bios(ci, ti, num_bios, &len);
1663 
1664 		ci->sector += len;
1665 	} while (ci->sector_count -= len);
1666 
1667 	return 0;
1668 }
1669 
1670 static int __send_discard(struct clone_info *ci)
1671 {
1672 	return __send_changing_extent_only(ci, get_num_discard_bios,
1673 					   is_split_required_for_discard);
1674 }
1675 
1676 static int __send_write_same(struct clone_info *ci)
1677 {
1678 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1679 }
1680 
1681 /*
1682  * Select the correct strategy for processing a non-flush bio.
1683  */
1684 static int __split_and_process_non_flush(struct clone_info *ci)
1685 {
1686 	struct bio *bio = ci->bio;
1687 	struct dm_target *ti;
1688 	unsigned len;
1689 
1690 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1691 		return __send_discard(ci);
1692 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1693 		return __send_write_same(ci);
1694 
1695 	ti = dm_table_find_target(ci->map, ci->sector);
1696 	if (!dm_target_is_valid(ti))
1697 		return -EIO;
1698 
1699 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1700 
1701 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1702 
1703 	ci->sector += len;
1704 	ci->sector_count -= len;
1705 
1706 	return 0;
1707 }
1708 
1709 /*
1710  * Entry point to split a bio into clones and submit them to the targets.
1711  */
1712 static void __split_and_process_bio(struct mapped_device *md,
1713 				    struct dm_table *map, struct bio *bio)
1714 {
1715 	struct clone_info ci;
1716 	int error = 0;
1717 
1718 	if (unlikely(!map)) {
1719 		bio_io_error(bio);
1720 		return;
1721 	}
1722 
1723 	ci.map = map;
1724 	ci.md = md;
1725 	ci.io = alloc_io(md);
1726 	ci.io->error = 0;
1727 	atomic_set(&ci.io->io_count, 1);
1728 	ci.io->bio = bio;
1729 	ci.io->md = md;
1730 	spin_lock_init(&ci.io->endio_lock);
1731 	ci.sector = bio->bi_iter.bi_sector;
1732 
1733 	start_io_acct(ci.io);
1734 
1735 	if (bio->bi_rw & REQ_FLUSH) {
1736 		ci.bio = &ci.md->flush_bio;
1737 		ci.sector_count = 0;
1738 		error = __send_empty_flush(&ci);
1739 		/* dec_pending submits any data associated with flush */
1740 	} else {
1741 		ci.bio = bio;
1742 		ci.sector_count = bio_sectors(bio);
1743 		while (ci.sector_count && !error)
1744 			error = __split_and_process_non_flush(&ci);
1745 	}
1746 
1747 	/* drop the extra reference count */
1748 	dec_pending(ci.io, error);
1749 }
1750 /*-----------------------------------------------------------------
1751  * CRUD END
1752  *---------------------------------------------------------------*/
1753 
1754 /*
1755  * The request function that just remaps the bio built up by
1756  * dm_merge_bvec.
1757  */
1758 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1759 {
1760 	int rw = bio_data_dir(bio);
1761 	struct mapped_device *md = q->queuedata;
1762 	int srcu_idx;
1763 	struct dm_table *map;
1764 
1765 	map = dm_get_live_table(md, &srcu_idx);
1766 
1767 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1768 
1769 	/* if we're suspended, we have to queue this io for later */
1770 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1771 		dm_put_live_table(md, srcu_idx);
1772 
1773 		if (bio_rw(bio) != READA)
1774 			queue_io(md, bio);
1775 		else
1776 			bio_io_error(bio);
1777 		return BLK_QC_T_NONE;
1778 	}
1779 
1780 	__split_and_process_bio(md, map, bio);
1781 	dm_put_live_table(md, srcu_idx);
1782 	return BLK_QC_T_NONE;
1783 }
1784 
1785 int dm_request_based(struct mapped_device *md)
1786 {
1787 	return blk_queue_stackable(md->queue);
1788 }
1789 
1790 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1791 {
1792 	int r;
1793 
1794 	if (blk_queue_io_stat(clone->q))
1795 		clone->cmd_flags |= REQ_IO_STAT;
1796 
1797 	clone->start_time = jiffies;
1798 	r = blk_insert_cloned_request(clone->q, clone);
1799 	if (r)
1800 		/* must complete clone in terms of original request */
1801 		dm_complete_request(rq, r);
1802 }
1803 
1804 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1805 				 void *data)
1806 {
1807 	struct dm_rq_target_io *tio = data;
1808 	struct dm_rq_clone_bio_info *info =
1809 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1810 
1811 	info->orig = bio_orig;
1812 	info->tio = tio;
1813 	bio->bi_end_io = end_clone_bio;
1814 
1815 	return 0;
1816 }
1817 
1818 static int setup_clone(struct request *clone, struct request *rq,
1819 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1820 {
1821 	int r;
1822 
1823 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1824 			      dm_rq_bio_constructor, tio);
1825 	if (r)
1826 		return r;
1827 
1828 	clone->cmd = rq->cmd;
1829 	clone->cmd_len = rq->cmd_len;
1830 	clone->sense = rq->sense;
1831 	clone->end_io = end_clone_request;
1832 	clone->end_io_data = tio;
1833 
1834 	tio->clone = clone;
1835 
1836 	return 0;
1837 }
1838 
1839 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1840 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1841 {
1842 	/*
1843 	 * Do not allocate a clone if tio->clone was already set
1844 	 * (see: dm_mq_queue_rq).
1845 	 */
1846 	bool alloc_clone = !tio->clone;
1847 	struct request *clone;
1848 
1849 	if (alloc_clone) {
1850 		clone = alloc_clone_request(md, gfp_mask);
1851 		if (!clone)
1852 			return NULL;
1853 	} else
1854 		clone = tio->clone;
1855 
1856 	blk_rq_init(NULL, clone);
1857 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1858 		/* -ENOMEM */
1859 		if (alloc_clone)
1860 			free_clone_request(md, clone);
1861 		return NULL;
1862 	}
1863 
1864 	return clone;
1865 }
1866 
1867 static void map_tio_request(struct kthread_work *work);
1868 
1869 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1870 		     struct mapped_device *md)
1871 {
1872 	tio->md = md;
1873 	tio->ti = NULL;
1874 	tio->clone = NULL;
1875 	tio->orig = rq;
1876 	tio->error = 0;
1877 	memset(&tio->info, 0, sizeof(tio->info));
1878 	if (md->kworker_task)
1879 		init_kthread_work(&tio->work, map_tio_request);
1880 }
1881 
1882 static struct dm_rq_target_io *prep_tio(struct request *rq,
1883 					struct mapped_device *md, gfp_t gfp_mask)
1884 {
1885 	struct dm_rq_target_io *tio;
1886 	int srcu_idx;
1887 	struct dm_table *table;
1888 
1889 	tio = alloc_rq_tio(md, gfp_mask);
1890 	if (!tio)
1891 		return NULL;
1892 
1893 	init_tio(tio, rq, md);
1894 
1895 	table = dm_get_live_table(md, &srcu_idx);
1896 	if (!dm_table_mq_request_based(table)) {
1897 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1898 			dm_put_live_table(md, srcu_idx);
1899 			free_rq_tio(tio);
1900 			return NULL;
1901 		}
1902 	}
1903 	dm_put_live_table(md, srcu_idx);
1904 
1905 	return tio;
1906 }
1907 
1908 /*
1909  * Called with the queue lock held.
1910  */
1911 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1912 {
1913 	struct mapped_device *md = q->queuedata;
1914 	struct dm_rq_target_io *tio;
1915 
1916 	if (unlikely(rq->special)) {
1917 		DMWARN("Already has something in rq->special.");
1918 		return BLKPREP_KILL;
1919 	}
1920 
1921 	tio = prep_tio(rq, md, GFP_ATOMIC);
1922 	if (!tio)
1923 		return BLKPREP_DEFER;
1924 
1925 	rq->special = tio;
1926 	rq->cmd_flags |= REQ_DONTPREP;
1927 
1928 	return BLKPREP_OK;
1929 }
1930 
1931 /*
1932  * Returns:
1933  * 0                : the request has been processed
1934  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1935  * < 0              : the request was completed due to failure
1936  */
1937 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1938 		       struct mapped_device *md)
1939 {
1940 	int r;
1941 	struct dm_target *ti = tio->ti;
1942 	struct request *clone = NULL;
1943 
1944 	if (tio->clone) {
1945 		clone = tio->clone;
1946 		r = ti->type->map_rq(ti, clone, &tio->info);
1947 	} else {
1948 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1949 		if (r < 0) {
1950 			/* The target wants to complete the I/O */
1951 			dm_kill_unmapped_request(rq, r);
1952 			return r;
1953 		}
1954 		if (r != DM_MAPIO_REMAPPED)
1955 			return r;
1956 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1957 			/* -ENOMEM */
1958 			ti->type->release_clone_rq(clone);
1959 			return DM_MAPIO_REQUEUE;
1960 		}
1961 	}
1962 
1963 	switch (r) {
1964 	case DM_MAPIO_SUBMITTED:
1965 		/* The target has taken the I/O to submit by itself later */
1966 		break;
1967 	case DM_MAPIO_REMAPPED:
1968 		/* The target has remapped the I/O so dispatch it */
1969 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1970 				     blk_rq_pos(rq));
1971 		dm_dispatch_clone_request(clone, rq);
1972 		break;
1973 	case DM_MAPIO_REQUEUE:
1974 		/* The target wants to requeue the I/O */
1975 		dm_requeue_original_request(md, tio->orig);
1976 		break;
1977 	default:
1978 		if (r > 0) {
1979 			DMWARN("unimplemented target map return value: %d", r);
1980 			BUG();
1981 		}
1982 
1983 		/* The target wants to complete the I/O */
1984 		dm_kill_unmapped_request(rq, r);
1985 		return r;
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 static void map_tio_request(struct kthread_work *work)
1992 {
1993 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1994 	struct request *rq = tio->orig;
1995 	struct mapped_device *md = tio->md;
1996 
1997 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
1998 		dm_requeue_original_request(md, rq);
1999 }
2000 
2001 static void dm_start_request(struct mapped_device *md, struct request *orig)
2002 {
2003 	if (!orig->q->mq_ops)
2004 		blk_start_request(orig);
2005 	else
2006 		blk_mq_start_request(orig);
2007 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2008 
2009 	if (md->seq_rq_merge_deadline_usecs) {
2010 		md->last_rq_pos = rq_end_sector(orig);
2011 		md->last_rq_rw = rq_data_dir(orig);
2012 		md->last_rq_start_time = ktime_get();
2013 	}
2014 
2015 	if (unlikely(dm_stats_used(&md->stats))) {
2016 		struct dm_rq_target_io *tio = tio_from_request(orig);
2017 		tio->duration_jiffies = jiffies;
2018 		tio->n_sectors = blk_rq_sectors(orig);
2019 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2020 				    tio->n_sectors, false, 0, &tio->stats_aux);
2021 	}
2022 
2023 	/*
2024 	 * Hold the md reference here for the in-flight I/O.
2025 	 * We can't rely on the reference count by device opener,
2026 	 * because the device may be closed during the request completion
2027 	 * when all bios are completed.
2028 	 * See the comment in rq_completed() too.
2029 	 */
2030 	dm_get(md);
2031 }
2032 
2033 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2034 
2035 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2036 {
2037 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2038 }
2039 
2040 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2041 						     const char *buf, size_t count)
2042 {
2043 	unsigned deadline;
2044 
2045 	if (!dm_request_based(md) || md->use_blk_mq)
2046 		return count;
2047 
2048 	if (kstrtouint(buf, 10, &deadline))
2049 		return -EINVAL;
2050 
2051 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2052 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2053 
2054 	md->seq_rq_merge_deadline_usecs = deadline;
2055 
2056 	return count;
2057 }
2058 
2059 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2060 {
2061 	ktime_t kt_deadline;
2062 
2063 	if (!md->seq_rq_merge_deadline_usecs)
2064 		return false;
2065 
2066 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2067 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2068 
2069 	return !ktime_after(ktime_get(), kt_deadline);
2070 }
2071 
2072 /*
2073  * q->request_fn for request-based dm.
2074  * Called with the queue lock held.
2075  */
2076 static void dm_request_fn(struct request_queue *q)
2077 {
2078 	struct mapped_device *md = q->queuedata;
2079 	int srcu_idx;
2080 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2081 	struct dm_target *ti;
2082 	struct request *rq;
2083 	struct dm_rq_target_io *tio;
2084 	sector_t pos;
2085 
2086 	/*
2087 	 * For suspend, check blk_queue_stopped() and increment
2088 	 * ->pending within a single queue_lock not to increment the
2089 	 * number of in-flight I/Os after the queue is stopped in
2090 	 * dm_suspend().
2091 	 */
2092 	while (!blk_queue_stopped(q)) {
2093 		rq = blk_peek_request(q);
2094 		if (!rq)
2095 			goto out;
2096 
2097 		/* always use block 0 to find the target for flushes for now */
2098 		pos = 0;
2099 		if (!(rq->cmd_flags & REQ_FLUSH))
2100 			pos = blk_rq_pos(rq);
2101 
2102 		ti = dm_table_find_target(map, pos);
2103 		if (!dm_target_is_valid(ti)) {
2104 			/*
2105 			 * Must perform setup, that rq_completed() requires,
2106 			 * before calling dm_kill_unmapped_request
2107 			 */
2108 			DMERR_LIMIT("request attempted access beyond the end of device");
2109 			dm_start_request(md, rq);
2110 			dm_kill_unmapped_request(rq, -EIO);
2111 			continue;
2112 		}
2113 
2114 		if (dm_request_peeked_before_merge_deadline(md) &&
2115 		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2116 		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2117 			goto delay_and_out;
2118 
2119 		if (ti->type->busy && ti->type->busy(ti))
2120 			goto delay_and_out;
2121 
2122 		dm_start_request(md, rq);
2123 
2124 		tio = tio_from_request(rq);
2125 		/* Establish tio->ti before queuing work (map_tio_request) */
2126 		tio->ti = ti;
2127 		queue_kthread_work(&md->kworker, &tio->work);
2128 		BUG_ON(!irqs_disabled());
2129 	}
2130 
2131 	goto out;
2132 
2133 delay_and_out:
2134 	blk_delay_queue(q, HZ / 100);
2135 out:
2136 	dm_put_live_table(md, srcu_idx);
2137 }
2138 
2139 static int dm_any_congested(void *congested_data, int bdi_bits)
2140 {
2141 	int r = bdi_bits;
2142 	struct mapped_device *md = congested_data;
2143 	struct dm_table *map;
2144 
2145 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2146 		map = dm_get_live_table_fast(md);
2147 		if (map) {
2148 			/*
2149 			 * Request-based dm cares about only own queue for
2150 			 * the query about congestion status of request_queue
2151 			 */
2152 			if (dm_request_based(md))
2153 				r = md->queue->backing_dev_info.wb.state &
2154 				    bdi_bits;
2155 			else
2156 				r = dm_table_any_congested(map, bdi_bits);
2157 		}
2158 		dm_put_live_table_fast(md);
2159 	}
2160 
2161 	return r;
2162 }
2163 
2164 /*-----------------------------------------------------------------
2165  * An IDR is used to keep track of allocated minor numbers.
2166  *---------------------------------------------------------------*/
2167 static void free_minor(int minor)
2168 {
2169 	spin_lock(&_minor_lock);
2170 	idr_remove(&_minor_idr, minor);
2171 	spin_unlock(&_minor_lock);
2172 }
2173 
2174 /*
2175  * See if the device with a specific minor # is free.
2176  */
2177 static int specific_minor(int minor)
2178 {
2179 	int r;
2180 
2181 	if (minor >= (1 << MINORBITS))
2182 		return -EINVAL;
2183 
2184 	idr_preload(GFP_KERNEL);
2185 	spin_lock(&_minor_lock);
2186 
2187 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2188 
2189 	spin_unlock(&_minor_lock);
2190 	idr_preload_end();
2191 	if (r < 0)
2192 		return r == -ENOSPC ? -EBUSY : r;
2193 	return 0;
2194 }
2195 
2196 static int next_free_minor(int *minor)
2197 {
2198 	int r;
2199 
2200 	idr_preload(GFP_KERNEL);
2201 	spin_lock(&_minor_lock);
2202 
2203 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2204 
2205 	spin_unlock(&_minor_lock);
2206 	idr_preload_end();
2207 	if (r < 0)
2208 		return r;
2209 	*minor = r;
2210 	return 0;
2211 }
2212 
2213 static const struct block_device_operations dm_blk_dops;
2214 
2215 static void dm_wq_work(struct work_struct *work);
2216 
2217 static void dm_init_md_queue(struct mapped_device *md)
2218 {
2219 	/*
2220 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2221 	 * devices.  The type of this dm device may not have been decided yet.
2222 	 * The type is decided at the first table loading time.
2223 	 * To prevent problematic device stacking, clear the queue flag
2224 	 * for request stacking support until then.
2225 	 *
2226 	 * This queue is new, so no concurrency on the queue_flags.
2227 	 */
2228 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2229 
2230 	/*
2231 	 * Initialize data that will only be used by a non-blk-mq DM queue
2232 	 * - must do so here (in alloc_dev callchain) before queue is used
2233 	 */
2234 	md->queue->queuedata = md;
2235 	md->queue->backing_dev_info.congested_data = md;
2236 }
2237 
2238 static void dm_init_old_md_queue(struct mapped_device *md)
2239 {
2240 	md->use_blk_mq = false;
2241 	dm_init_md_queue(md);
2242 
2243 	/*
2244 	 * Initialize aspects of queue that aren't relevant for blk-mq
2245 	 */
2246 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2247 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2248 }
2249 
2250 static void cleanup_mapped_device(struct mapped_device *md)
2251 {
2252 	if (md->wq)
2253 		destroy_workqueue(md->wq);
2254 	if (md->kworker_task)
2255 		kthread_stop(md->kworker_task);
2256 	mempool_destroy(md->io_pool);
2257 	mempool_destroy(md->rq_pool);
2258 	if (md->bs)
2259 		bioset_free(md->bs);
2260 
2261 	cleanup_srcu_struct(&md->io_barrier);
2262 
2263 	if (md->disk) {
2264 		spin_lock(&_minor_lock);
2265 		md->disk->private_data = NULL;
2266 		spin_unlock(&_minor_lock);
2267 		del_gendisk(md->disk);
2268 		put_disk(md->disk);
2269 	}
2270 
2271 	if (md->queue)
2272 		blk_cleanup_queue(md->queue);
2273 
2274 	if (md->bdev) {
2275 		bdput(md->bdev);
2276 		md->bdev = NULL;
2277 	}
2278 }
2279 
2280 /*
2281  * Allocate and initialise a blank device with a given minor.
2282  */
2283 static struct mapped_device *alloc_dev(int minor)
2284 {
2285 	int r;
2286 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2287 	void *old_md;
2288 
2289 	if (!md) {
2290 		DMWARN("unable to allocate device, out of memory.");
2291 		return NULL;
2292 	}
2293 
2294 	if (!try_module_get(THIS_MODULE))
2295 		goto bad_module_get;
2296 
2297 	/* get a minor number for the dev */
2298 	if (minor == DM_ANY_MINOR)
2299 		r = next_free_minor(&minor);
2300 	else
2301 		r = specific_minor(minor);
2302 	if (r < 0)
2303 		goto bad_minor;
2304 
2305 	r = init_srcu_struct(&md->io_barrier);
2306 	if (r < 0)
2307 		goto bad_io_barrier;
2308 
2309 	md->use_blk_mq = use_blk_mq;
2310 	md->type = DM_TYPE_NONE;
2311 	mutex_init(&md->suspend_lock);
2312 	mutex_init(&md->type_lock);
2313 	mutex_init(&md->table_devices_lock);
2314 	spin_lock_init(&md->deferred_lock);
2315 	atomic_set(&md->holders, 1);
2316 	atomic_set(&md->open_count, 0);
2317 	atomic_set(&md->event_nr, 0);
2318 	atomic_set(&md->uevent_seq, 0);
2319 	INIT_LIST_HEAD(&md->uevent_list);
2320 	INIT_LIST_HEAD(&md->table_devices);
2321 	spin_lock_init(&md->uevent_lock);
2322 
2323 	md->queue = blk_alloc_queue(GFP_KERNEL);
2324 	if (!md->queue)
2325 		goto bad;
2326 
2327 	dm_init_md_queue(md);
2328 
2329 	md->disk = alloc_disk(1);
2330 	if (!md->disk)
2331 		goto bad;
2332 
2333 	atomic_set(&md->pending[0], 0);
2334 	atomic_set(&md->pending[1], 0);
2335 	init_waitqueue_head(&md->wait);
2336 	INIT_WORK(&md->work, dm_wq_work);
2337 	init_waitqueue_head(&md->eventq);
2338 	init_completion(&md->kobj_holder.completion);
2339 	md->kworker_task = NULL;
2340 
2341 	md->disk->major = _major;
2342 	md->disk->first_minor = minor;
2343 	md->disk->fops = &dm_blk_dops;
2344 	md->disk->queue = md->queue;
2345 	md->disk->private_data = md;
2346 	sprintf(md->disk->disk_name, "dm-%d", minor);
2347 	add_disk(md->disk);
2348 	format_dev_t(md->name, MKDEV(_major, minor));
2349 
2350 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2351 	if (!md->wq)
2352 		goto bad;
2353 
2354 	md->bdev = bdget_disk(md->disk, 0);
2355 	if (!md->bdev)
2356 		goto bad;
2357 
2358 	bio_init(&md->flush_bio);
2359 	md->flush_bio.bi_bdev = md->bdev;
2360 	md->flush_bio.bi_rw = WRITE_FLUSH;
2361 
2362 	dm_stats_init(&md->stats);
2363 
2364 	/* Populate the mapping, nobody knows we exist yet */
2365 	spin_lock(&_minor_lock);
2366 	old_md = idr_replace(&_minor_idr, md, minor);
2367 	spin_unlock(&_minor_lock);
2368 
2369 	BUG_ON(old_md != MINOR_ALLOCED);
2370 
2371 	return md;
2372 
2373 bad:
2374 	cleanup_mapped_device(md);
2375 bad_io_barrier:
2376 	free_minor(minor);
2377 bad_minor:
2378 	module_put(THIS_MODULE);
2379 bad_module_get:
2380 	kfree(md);
2381 	return NULL;
2382 }
2383 
2384 static void unlock_fs(struct mapped_device *md);
2385 
2386 static void free_dev(struct mapped_device *md)
2387 {
2388 	int minor = MINOR(disk_devt(md->disk));
2389 
2390 	unlock_fs(md);
2391 
2392 	cleanup_mapped_device(md);
2393 	if (md->use_blk_mq)
2394 		blk_mq_free_tag_set(&md->tag_set);
2395 
2396 	free_table_devices(&md->table_devices);
2397 	dm_stats_cleanup(&md->stats);
2398 	free_minor(minor);
2399 
2400 	module_put(THIS_MODULE);
2401 	kfree(md);
2402 }
2403 
2404 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2405 {
2406 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2407 
2408 	if (md->bs) {
2409 		/* The md already has necessary mempools. */
2410 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2411 			/*
2412 			 * Reload bioset because front_pad may have changed
2413 			 * because a different table was loaded.
2414 			 */
2415 			bioset_free(md->bs);
2416 			md->bs = p->bs;
2417 			p->bs = NULL;
2418 		}
2419 		/*
2420 		 * There's no need to reload with request-based dm
2421 		 * because the size of front_pad doesn't change.
2422 		 * Note for future: If you are to reload bioset,
2423 		 * prep-ed requests in the queue may refer
2424 		 * to bio from the old bioset, so you must walk
2425 		 * through the queue to unprep.
2426 		 */
2427 		goto out;
2428 	}
2429 
2430 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2431 
2432 	md->io_pool = p->io_pool;
2433 	p->io_pool = NULL;
2434 	md->rq_pool = p->rq_pool;
2435 	p->rq_pool = NULL;
2436 	md->bs = p->bs;
2437 	p->bs = NULL;
2438 
2439 out:
2440 	/* mempool bind completed, no longer need any mempools in the table */
2441 	dm_table_free_md_mempools(t);
2442 }
2443 
2444 /*
2445  * Bind a table to the device.
2446  */
2447 static void event_callback(void *context)
2448 {
2449 	unsigned long flags;
2450 	LIST_HEAD(uevents);
2451 	struct mapped_device *md = (struct mapped_device *) context;
2452 
2453 	spin_lock_irqsave(&md->uevent_lock, flags);
2454 	list_splice_init(&md->uevent_list, &uevents);
2455 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2456 
2457 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2458 
2459 	atomic_inc(&md->event_nr);
2460 	wake_up(&md->eventq);
2461 }
2462 
2463 /*
2464  * Protected by md->suspend_lock obtained by dm_swap_table().
2465  */
2466 static void __set_size(struct mapped_device *md, sector_t size)
2467 {
2468 	set_capacity(md->disk, size);
2469 
2470 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2471 }
2472 
2473 /*
2474  * Returns old map, which caller must destroy.
2475  */
2476 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2477 			       struct queue_limits *limits)
2478 {
2479 	struct dm_table *old_map;
2480 	struct request_queue *q = md->queue;
2481 	sector_t size;
2482 
2483 	size = dm_table_get_size(t);
2484 
2485 	/*
2486 	 * Wipe any geometry if the size of the table changed.
2487 	 */
2488 	if (size != dm_get_size(md))
2489 		memset(&md->geometry, 0, sizeof(md->geometry));
2490 
2491 	__set_size(md, size);
2492 
2493 	dm_table_event_callback(t, event_callback, md);
2494 
2495 	/*
2496 	 * The queue hasn't been stopped yet, if the old table type wasn't
2497 	 * for request-based during suspension.  So stop it to prevent
2498 	 * I/O mapping before resume.
2499 	 * This must be done before setting the queue restrictions,
2500 	 * because request-based dm may be run just after the setting.
2501 	 */
2502 	if (dm_table_request_based(t))
2503 		stop_queue(q);
2504 
2505 	__bind_mempools(md, t);
2506 
2507 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2508 	rcu_assign_pointer(md->map, t);
2509 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2510 
2511 	dm_table_set_restrictions(t, q, limits);
2512 	if (old_map)
2513 		dm_sync_table(md);
2514 
2515 	return old_map;
2516 }
2517 
2518 /*
2519  * Returns unbound table for the caller to free.
2520  */
2521 static struct dm_table *__unbind(struct mapped_device *md)
2522 {
2523 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2524 
2525 	if (!map)
2526 		return NULL;
2527 
2528 	dm_table_event_callback(map, NULL, NULL);
2529 	RCU_INIT_POINTER(md->map, NULL);
2530 	dm_sync_table(md);
2531 
2532 	return map;
2533 }
2534 
2535 /*
2536  * Constructor for a new device.
2537  */
2538 int dm_create(int minor, struct mapped_device **result)
2539 {
2540 	struct mapped_device *md;
2541 
2542 	md = alloc_dev(minor);
2543 	if (!md)
2544 		return -ENXIO;
2545 
2546 	dm_sysfs_init(md);
2547 
2548 	*result = md;
2549 	return 0;
2550 }
2551 
2552 /*
2553  * Functions to manage md->type.
2554  * All are required to hold md->type_lock.
2555  */
2556 void dm_lock_md_type(struct mapped_device *md)
2557 {
2558 	mutex_lock(&md->type_lock);
2559 }
2560 
2561 void dm_unlock_md_type(struct mapped_device *md)
2562 {
2563 	mutex_unlock(&md->type_lock);
2564 }
2565 
2566 void dm_set_md_type(struct mapped_device *md, unsigned type)
2567 {
2568 	BUG_ON(!mutex_is_locked(&md->type_lock));
2569 	md->type = type;
2570 }
2571 
2572 unsigned dm_get_md_type(struct mapped_device *md)
2573 {
2574 	BUG_ON(!mutex_is_locked(&md->type_lock));
2575 	return md->type;
2576 }
2577 
2578 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2579 {
2580 	return md->immutable_target_type;
2581 }
2582 
2583 /*
2584  * The queue_limits are only valid as long as you have a reference
2585  * count on 'md'.
2586  */
2587 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2588 {
2589 	BUG_ON(!atomic_read(&md->holders));
2590 	return &md->queue->limits;
2591 }
2592 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2593 
2594 static void init_rq_based_worker_thread(struct mapped_device *md)
2595 {
2596 	/* Initialize the request-based DM worker thread */
2597 	init_kthread_worker(&md->kworker);
2598 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2599 				       "kdmwork-%s", dm_device_name(md));
2600 }
2601 
2602 /*
2603  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2604  */
2605 static int dm_init_request_based_queue(struct mapped_device *md)
2606 {
2607 	struct request_queue *q = NULL;
2608 
2609 	/* Fully initialize the queue */
2610 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2611 	if (!q)
2612 		return -EINVAL;
2613 
2614 	/* disable dm_request_fn's merge heuristic by default */
2615 	md->seq_rq_merge_deadline_usecs = 0;
2616 
2617 	md->queue = q;
2618 	dm_init_old_md_queue(md);
2619 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2620 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2621 
2622 	init_rq_based_worker_thread(md);
2623 
2624 	elv_register_queue(md->queue);
2625 
2626 	return 0;
2627 }
2628 
2629 static int dm_mq_init_request(void *data, struct request *rq,
2630 			      unsigned int hctx_idx, unsigned int request_idx,
2631 			      unsigned int numa_node)
2632 {
2633 	struct mapped_device *md = data;
2634 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2635 
2636 	/*
2637 	 * Must initialize md member of tio, otherwise it won't
2638 	 * be available in dm_mq_queue_rq.
2639 	 */
2640 	tio->md = md;
2641 
2642 	return 0;
2643 }
2644 
2645 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2646 			  const struct blk_mq_queue_data *bd)
2647 {
2648 	struct request *rq = bd->rq;
2649 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2650 	struct mapped_device *md = tio->md;
2651 	int srcu_idx;
2652 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2653 	struct dm_target *ti;
2654 	sector_t pos;
2655 
2656 	/* always use block 0 to find the target for flushes for now */
2657 	pos = 0;
2658 	if (!(rq->cmd_flags & REQ_FLUSH))
2659 		pos = blk_rq_pos(rq);
2660 
2661 	ti = dm_table_find_target(map, pos);
2662 	if (!dm_target_is_valid(ti)) {
2663 		dm_put_live_table(md, srcu_idx);
2664 		DMERR_LIMIT("request attempted access beyond the end of device");
2665 		/*
2666 		 * Must perform setup, that rq_completed() requires,
2667 		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2668 		 */
2669 		dm_start_request(md, rq);
2670 		return BLK_MQ_RQ_QUEUE_ERROR;
2671 	}
2672 	dm_put_live_table(md, srcu_idx);
2673 
2674 	if (ti->type->busy && ti->type->busy(ti))
2675 		return BLK_MQ_RQ_QUEUE_BUSY;
2676 
2677 	dm_start_request(md, rq);
2678 
2679 	/* Init tio using md established in .init_request */
2680 	init_tio(tio, rq, md);
2681 
2682 	/*
2683 	 * Establish tio->ti before queuing work (map_tio_request)
2684 	 * or making direct call to map_request().
2685 	 */
2686 	tio->ti = ti;
2687 
2688 	/* Clone the request if underlying devices aren't blk-mq */
2689 	if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2690 		/* clone request is allocated at the end of the pdu */
2691 		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2692 		(void) clone_rq(rq, md, tio, GFP_ATOMIC);
2693 		queue_kthread_work(&md->kworker, &tio->work);
2694 	} else {
2695 		/* Direct call is fine since .queue_rq allows allocations */
2696 		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2697 			/* Undo dm_start_request() before requeuing */
2698 			rq_end_stats(md, rq);
2699 			rq_completed(md, rq_data_dir(rq), false);
2700 			return BLK_MQ_RQ_QUEUE_BUSY;
2701 		}
2702 	}
2703 
2704 	return BLK_MQ_RQ_QUEUE_OK;
2705 }
2706 
2707 static struct blk_mq_ops dm_mq_ops = {
2708 	.queue_rq = dm_mq_queue_rq,
2709 	.map_queue = blk_mq_map_queue,
2710 	.complete = dm_softirq_done,
2711 	.init_request = dm_mq_init_request,
2712 };
2713 
2714 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2715 {
2716 	unsigned md_type = dm_get_md_type(md);
2717 	struct request_queue *q;
2718 	int err;
2719 
2720 	memset(&md->tag_set, 0, sizeof(md->tag_set));
2721 	md->tag_set.ops = &dm_mq_ops;
2722 	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2723 	md->tag_set.numa_node = NUMA_NO_NODE;
2724 	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2725 	md->tag_set.nr_hw_queues = 1;
2726 	if (md_type == DM_TYPE_REQUEST_BASED) {
2727 		/* make the memory for non-blk-mq clone part of the pdu */
2728 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2729 	} else
2730 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2731 	md->tag_set.driver_data = md;
2732 
2733 	err = blk_mq_alloc_tag_set(&md->tag_set);
2734 	if (err)
2735 		return err;
2736 
2737 	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2738 	if (IS_ERR(q)) {
2739 		err = PTR_ERR(q);
2740 		goto out_tag_set;
2741 	}
2742 	md->queue = q;
2743 	dm_init_md_queue(md);
2744 
2745 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2746 	blk_mq_register_disk(md->disk);
2747 
2748 	if (md_type == DM_TYPE_REQUEST_BASED)
2749 		init_rq_based_worker_thread(md);
2750 
2751 	return 0;
2752 
2753 out_tag_set:
2754 	blk_mq_free_tag_set(&md->tag_set);
2755 	return err;
2756 }
2757 
2758 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2759 {
2760 	if (type == DM_TYPE_BIO_BASED)
2761 		return type;
2762 
2763 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2764 }
2765 
2766 /*
2767  * Setup the DM device's queue based on md's type
2768  */
2769 int dm_setup_md_queue(struct mapped_device *md)
2770 {
2771 	int r;
2772 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2773 
2774 	switch (md_type) {
2775 	case DM_TYPE_REQUEST_BASED:
2776 		r = dm_init_request_based_queue(md);
2777 		if (r) {
2778 			DMWARN("Cannot initialize queue for request-based mapped device");
2779 			return r;
2780 		}
2781 		break;
2782 	case DM_TYPE_MQ_REQUEST_BASED:
2783 		r = dm_init_request_based_blk_mq_queue(md);
2784 		if (r) {
2785 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2786 			return r;
2787 		}
2788 		break;
2789 	case DM_TYPE_BIO_BASED:
2790 		dm_init_old_md_queue(md);
2791 		blk_queue_make_request(md->queue, dm_make_request);
2792 		/*
2793 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2794 		 * since it won't be used (saves 1 process per bio-based DM device).
2795 		 */
2796 		bioset_free(md->queue->bio_split);
2797 		md->queue->bio_split = NULL;
2798 		break;
2799 	}
2800 
2801 	return 0;
2802 }
2803 
2804 struct mapped_device *dm_get_md(dev_t dev)
2805 {
2806 	struct mapped_device *md;
2807 	unsigned minor = MINOR(dev);
2808 
2809 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2810 		return NULL;
2811 
2812 	spin_lock(&_minor_lock);
2813 
2814 	md = idr_find(&_minor_idr, minor);
2815 	if (md) {
2816 		if ((md == MINOR_ALLOCED ||
2817 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2818 		     dm_deleting_md(md) ||
2819 		     test_bit(DMF_FREEING, &md->flags))) {
2820 			md = NULL;
2821 			goto out;
2822 		}
2823 		dm_get(md);
2824 	}
2825 
2826 out:
2827 	spin_unlock(&_minor_lock);
2828 
2829 	return md;
2830 }
2831 EXPORT_SYMBOL_GPL(dm_get_md);
2832 
2833 void *dm_get_mdptr(struct mapped_device *md)
2834 {
2835 	return md->interface_ptr;
2836 }
2837 
2838 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2839 {
2840 	md->interface_ptr = ptr;
2841 }
2842 
2843 void dm_get(struct mapped_device *md)
2844 {
2845 	atomic_inc(&md->holders);
2846 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2847 }
2848 
2849 int dm_hold(struct mapped_device *md)
2850 {
2851 	spin_lock(&_minor_lock);
2852 	if (test_bit(DMF_FREEING, &md->flags)) {
2853 		spin_unlock(&_minor_lock);
2854 		return -EBUSY;
2855 	}
2856 	dm_get(md);
2857 	spin_unlock(&_minor_lock);
2858 	return 0;
2859 }
2860 EXPORT_SYMBOL_GPL(dm_hold);
2861 
2862 const char *dm_device_name(struct mapped_device *md)
2863 {
2864 	return md->name;
2865 }
2866 EXPORT_SYMBOL_GPL(dm_device_name);
2867 
2868 static void __dm_destroy(struct mapped_device *md, bool wait)
2869 {
2870 	struct dm_table *map;
2871 	int srcu_idx;
2872 
2873 	might_sleep();
2874 
2875 	spin_lock(&_minor_lock);
2876 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2877 	set_bit(DMF_FREEING, &md->flags);
2878 	spin_unlock(&_minor_lock);
2879 
2880 	if (dm_request_based(md) && md->kworker_task)
2881 		flush_kthread_worker(&md->kworker);
2882 
2883 	/*
2884 	 * Take suspend_lock so that presuspend and postsuspend methods
2885 	 * do not race with internal suspend.
2886 	 */
2887 	mutex_lock(&md->suspend_lock);
2888 	map = dm_get_live_table(md, &srcu_idx);
2889 	if (!dm_suspended_md(md)) {
2890 		dm_table_presuspend_targets(map);
2891 		dm_table_postsuspend_targets(map);
2892 	}
2893 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2894 	dm_put_live_table(md, srcu_idx);
2895 	mutex_unlock(&md->suspend_lock);
2896 
2897 	/*
2898 	 * Rare, but there may be I/O requests still going to complete,
2899 	 * for example.  Wait for all references to disappear.
2900 	 * No one should increment the reference count of the mapped_device,
2901 	 * after the mapped_device state becomes DMF_FREEING.
2902 	 */
2903 	if (wait)
2904 		while (atomic_read(&md->holders))
2905 			msleep(1);
2906 	else if (atomic_read(&md->holders))
2907 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2908 		       dm_device_name(md), atomic_read(&md->holders));
2909 
2910 	dm_sysfs_exit(md);
2911 	dm_table_destroy(__unbind(md));
2912 	free_dev(md);
2913 }
2914 
2915 void dm_destroy(struct mapped_device *md)
2916 {
2917 	__dm_destroy(md, true);
2918 }
2919 
2920 void dm_destroy_immediate(struct mapped_device *md)
2921 {
2922 	__dm_destroy(md, false);
2923 }
2924 
2925 void dm_put(struct mapped_device *md)
2926 {
2927 	atomic_dec(&md->holders);
2928 }
2929 EXPORT_SYMBOL_GPL(dm_put);
2930 
2931 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2932 {
2933 	int r = 0;
2934 	DECLARE_WAITQUEUE(wait, current);
2935 
2936 	add_wait_queue(&md->wait, &wait);
2937 
2938 	while (1) {
2939 		set_current_state(interruptible);
2940 
2941 		if (!md_in_flight(md))
2942 			break;
2943 
2944 		if (interruptible == TASK_INTERRUPTIBLE &&
2945 		    signal_pending(current)) {
2946 			r = -EINTR;
2947 			break;
2948 		}
2949 
2950 		io_schedule();
2951 	}
2952 	set_current_state(TASK_RUNNING);
2953 
2954 	remove_wait_queue(&md->wait, &wait);
2955 
2956 	return r;
2957 }
2958 
2959 /*
2960  * Process the deferred bios
2961  */
2962 static void dm_wq_work(struct work_struct *work)
2963 {
2964 	struct mapped_device *md = container_of(work, struct mapped_device,
2965 						work);
2966 	struct bio *c;
2967 	int srcu_idx;
2968 	struct dm_table *map;
2969 
2970 	map = dm_get_live_table(md, &srcu_idx);
2971 
2972 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2973 		spin_lock_irq(&md->deferred_lock);
2974 		c = bio_list_pop(&md->deferred);
2975 		spin_unlock_irq(&md->deferred_lock);
2976 
2977 		if (!c)
2978 			break;
2979 
2980 		if (dm_request_based(md))
2981 			generic_make_request(c);
2982 		else
2983 			__split_and_process_bio(md, map, c);
2984 	}
2985 
2986 	dm_put_live_table(md, srcu_idx);
2987 }
2988 
2989 static void dm_queue_flush(struct mapped_device *md)
2990 {
2991 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2992 	smp_mb__after_atomic();
2993 	queue_work(md->wq, &md->work);
2994 }
2995 
2996 /*
2997  * Swap in a new table, returning the old one for the caller to destroy.
2998  */
2999 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3000 {
3001 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3002 	struct queue_limits limits;
3003 	int r;
3004 
3005 	mutex_lock(&md->suspend_lock);
3006 
3007 	/* device must be suspended */
3008 	if (!dm_suspended_md(md))
3009 		goto out;
3010 
3011 	/*
3012 	 * If the new table has no data devices, retain the existing limits.
3013 	 * This helps multipath with queue_if_no_path if all paths disappear,
3014 	 * then new I/O is queued based on these limits, and then some paths
3015 	 * reappear.
3016 	 */
3017 	if (dm_table_has_no_data_devices(table)) {
3018 		live_map = dm_get_live_table_fast(md);
3019 		if (live_map)
3020 			limits = md->queue->limits;
3021 		dm_put_live_table_fast(md);
3022 	}
3023 
3024 	if (!live_map) {
3025 		r = dm_calculate_queue_limits(table, &limits);
3026 		if (r) {
3027 			map = ERR_PTR(r);
3028 			goto out;
3029 		}
3030 	}
3031 
3032 	map = __bind(md, table, &limits);
3033 
3034 out:
3035 	mutex_unlock(&md->suspend_lock);
3036 	return map;
3037 }
3038 
3039 /*
3040  * Functions to lock and unlock any filesystem running on the
3041  * device.
3042  */
3043 static int lock_fs(struct mapped_device *md)
3044 {
3045 	int r;
3046 
3047 	WARN_ON(md->frozen_sb);
3048 
3049 	md->frozen_sb = freeze_bdev(md->bdev);
3050 	if (IS_ERR(md->frozen_sb)) {
3051 		r = PTR_ERR(md->frozen_sb);
3052 		md->frozen_sb = NULL;
3053 		return r;
3054 	}
3055 
3056 	set_bit(DMF_FROZEN, &md->flags);
3057 
3058 	return 0;
3059 }
3060 
3061 static void unlock_fs(struct mapped_device *md)
3062 {
3063 	if (!test_bit(DMF_FROZEN, &md->flags))
3064 		return;
3065 
3066 	thaw_bdev(md->bdev, md->frozen_sb);
3067 	md->frozen_sb = NULL;
3068 	clear_bit(DMF_FROZEN, &md->flags);
3069 }
3070 
3071 /*
3072  * If __dm_suspend returns 0, the device is completely quiescent
3073  * now. There is no request-processing activity. All new requests
3074  * are being added to md->deferred list.
3075  *
3076  * Caller must hold md->suspend_lock
3077  */
3078 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3079 			unsigned suspend_flags, int interruptible)
3080 {
3081 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3082 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3083 	int r;
3084 
3085 	/*
3086 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3087 	 * This flag is cleared before dm_suspend returns.
3088 	 */
3089 	if (noflush)
3090 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3091 
3092 	/*
3093 	 * This gets reverted if there's an error later and the targets
3094 	 * provide the .presuspend_undo hook.
3095 	 */
3096 	dm_table_presuspend_targets(map);
3097 
3098 	/*
3099 	 * Flush I/O to the device.
3100 	 * Any I/O submitted after lock_fs() may not be flushed.
3101 	 * noflush takes precedence over do_lockfs.
3102 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3103 	 */
3104 	if (!noflush && do_lockfs) {
3105 		r = lock_fs(md);
3106 		if (r) {
3107 			dm_table_presuspend_undo_targets(map);
3108 			return r;
3109 		}
3110 	}
3111 
3112 	/*
3113 	 * Here we must make sure that no processes are submitting requests
3114 	 * to target drivers i.e. no one may be executing
3115 	 * __split_and_process_bio. This is called from dm_request and
3116 	 * dm_wq_work.
3117 	 *
3118 	 * To get all processes out of __split_and_process_bio in dm_request,
3119 	 * we take the write lock. To prevent any process from reentering
3120 	 * __split_and_process_bio from dm_request and quiesce the thread
3121 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3122 	 * flush_workqueue(md->wq).
3123 	 */
3124 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3125 	if (map)
3126 		synchronize_srcu(&md->io_barrier);
3127 
3128 	/*
3129 	 * Stop md->queue before flushing md->wq in case request-based
3130 	 * dm defers requests to md->wq from md->queue.
3131 	 */
3132 	if (dm_request_based(md)) {
3133 		stop_queue(md->queue);
3134 		if (md->kworker_task)
3135 			flush_kthread_worker(&md->kworker);
3136 	}
3137 
3138 	flush_workqueue(md->wq);
3139 
3140 	/*
3141 	 * At this point no more requests are entering target request routines.
3142 	 * We call dm_wait_for_completion to wait for all existing requests
3143 	 * to finish.
3144 	 */
3145 	r = dm_wait_for_completion(md, interruptible);
3146 
3147 	if (noflush)
3148 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3149 	if (map)
3150 		synchronize_srcu(&md->io_barrier);
3151 
3152 	/* were we interrupted ? */
3153 	if (r < 0) {
3154 		dm_queue_flush(md);
3155 
3156 		if (dm_request_based(md))
3157 			start_queue(md->queue);
3158 
3159 		unlock_fs(md);
3160 		dm_table_presuspend_undo_targets(map);
3161 		/* pushback list is already flushed, so skip flush */
3162 	}
3163 
3164 	return r;
3165 }
3166 
3167 /*
3168  * We need to be able to change a mapping table under a mounted
3169  * filesystem.  For example we might want to move some data in
3170  * the background.  Before the table can be swapped with
3171  * dm_bind_table, dm_suspend must be called to flush any in
3172  * flight bios and ensure that any further io gets deferred.
3173  */
3174 /*
3175  * Suspend mechanism in request-based dm.
3176  *
3177  * 1. Flush all I/Os by lock_fs() if needed.
3178  * 2. Stop dispatching any I/O by stopping the request_queue.
3179  * 3. Wait for all in-flight I/Os to be completed or requeued.
3180  *
3181  * To abort suspend, start the request_queue.
3182  */
3183 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3184 {
3185 	struct dm_table *map = NULL;
3186 	int r = 0;
3187 
3188 retry:
3189 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3190 
3191 	if (dm_suspended_md(md)) {
3192 		r = -EINVAL;
3193 		goto out_unlock;
3194 	}
3195 
3196 	if (dm_suspended_internally_md(md)) {
3197 		/* already internally suspended, wait for internal resume */
3198 		mutex_unlock(&md->suspend_lock);
3199 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3200 		if (r)
3201 			return r;
3202 		goto retry;
3203 	}
3204 
3205 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3206 
3207 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3208 	if (r)
3209 		goto out_unlock;
3210 
3211 	set_bit(DMF_SUSPENDED, &md->flags);
3212 
3213 	dm_table_postsuspend_targets(map);
3214 
3215 out_unlock:
3216 	mutex_unlock(&md->suspend_lock);
3217 	return r;
3218 }
3219 
3220 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3221 {
3222 	if (map) {
3223 		int r = dm_table_resume_targets(map);
3224 		if (r)
3225 			return r;
3226 	}
3227 
3228 	dm_queue_flush(md);
3229 
3230 	/*
3231 	 * Flushing deferred I/Os must be done after targets are resumed
3232 	 * so that mapping of targets can work correctly.
3233 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3234 	 */
3235 	if (dm_request_based(md))
3236 		start_queue(md->queue);
3237 
3238 	unlock_fs(md);
3239 
3240 	return 0;
3241 }
3242 
3243 int dm_resume(struct mapped_device *md)
3244 {
3245 	int r = -EINVAL;
3246 	struct dm_table *map = NULL;
3247 
3248 retry:
3249 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3250 
3251 	if (!dm_suspended_md(md))
3252 		goto out;
3253 
3254 	if (dm_suspended_internally_md(md)) {
3255 		/* already internally suspended, wait for internal resume */
3256 		mutex_unlock(&md->suspend_lock);
3257 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3258 		if (r)
3259 			return r;
3260 		goto retry;
3261 	}
3262 
3263 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3264 	if (!map || !dm_table_get_size(map))
3265 		goto out;
3266 
3267 	r = __dm_resume(md, map);
3268 	if (r)
3269 		goto out;
3270 
3271 	clear_bit(DMF_SUSPENDED, &md->flags);
3272 
3273 	r = 0;
3274 out:
3275 	mutex_unlock(&md->suspend_lock);
3276 
3277 	return r;
3278 }
3279 
3280 /*
3281  * Internal suspend/resume works like userspace-driven suspend. It waits
3282  * until all bios finish and prevents issuing new bios to the target drivers.
3283  * It may be used only from the kernel.
3284  */
3285 
3286 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3287 {
3288 	struct dm_table *map = NULL;
3289 
3290 	if (md->internal_suspend_count++)
3291 		return; /* nested internal suspend */
3292 
3293 	if (dm_suspended_md(md)) {
3294 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3295 		return; /* nest suspend */
3296 	}
3297 
3298 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3299 
3300 	/*
3301 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3302 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3303 	 * would require changing .presuspend to return an error -- avoid this
3304 	 * until there is a need for more elaborate variants of internal suspend.
3305 	 */
3306 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3307 
3308 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3309 
3310 	dm_table_postsuspend_targets(map);
3311 }
3312 
3313 static void __dm_internal_resume(struct mapped_device *md)
3314 {
3315 	BUG_ON(!md->internal_suspend_count);
3316 
3317 	if (--md->internal_suspend_count)
3318 		return; /* resume from nested internal suspend */
3319 
3320 	if (dm_suspended_md(md))
3321 		goto done; /* resume from nested suspend */
3322 
3323 	/*
3324 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3325 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3326 	 */
3327 	(void) __dm_resume(md, NULL);
3328 
3329 done:
3330 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3331 	smp_mb__after_atomic();
3332 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3333 }
3334 
3335 void dm_internal_suspend_noflush(struct mapped_device *md)
3336 {
3337 	mutex_lock(&md->suspend_lock);
3338 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3339 	mutex_unlock(&md->suspend_lock);
3340 }
3341 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3342 
3343 void dm_internal_resume(struct mapped_device *md)
3344 {
3345 	mutex_lock(&md->suspend_lock);
3346 	__dm_internal_resume(md);
3347 	mutex_unlock(&md->suspend_lock);
3348 }
3349 EXPORT_SYMBOL_GPL(dm_internal_resume);
3350 
3351 /*
3352  * Fast variants of internal suspend/resume hold md->suspend_lock,
3353  * which prevents interaction with userspace-driven suspend.
3354  */
3355 
3356 void dm_internal_suspend_fast(struct mapped_device *md)
3357 {
3358 	mutex_lock(&md->suspend_lock);
3359 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3360 		return;
3361 
3362 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3363 	synchronize_srcu(&md->io_barrier);
3364 	flush_workqueue(md->wq);
3365 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3366 }
3367 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3368 
3369 void dm_internal_resume_fast(struct mapped_device *md)
3370 {
3371 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3372 		goto done;
3373 
3374 	dm_queue_flush(md);
3375 
3376 done:
3377 	mutex_unlock(&md->suspend_lock);
3378 }
3379 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3380 
3381 /*-----------------------------------------------------------------
3382  * Event notification.
3383  *---------------------------------------------------------------*/
3384 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3385 		       unsigned cookie)
3386 {
3387 	char udev_cookie[DM_COOKIE_LENGTH];
3388 	char *envp[] = { udev_cookie, NULL };
3389 
3390 	if (!cookie)
3391 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3392 	else {
3393 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3394 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3395 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3396 					  action, envp);
3397 	}
3398 }
3399 
3400 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3401 {
3402 	return atomic_add_return(1, &md->uevent_seq);
3403 }
3404 
3405 uint32_t dm_get_event_nr(struct mapped_device *md)
3406 {
3407 	return atomic_read(&md->event_nr);
3408 }
3409 
3410 int dm_wait_event(struct mapped_device *md, int event_nr)
3411 {
3412 	return wait_event_interruptible(md->eventq,
3413 			(event_nr != atomic_read(&md->event_nr)));
3414 }
3415 
3416 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3417 {
3418 	unsigned long flags;
3419 
3420 	spin_lock_irqsave(&md->uevent_lock, flags);
3421 	list_add(elist, &md->uevent_list);
3422 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3423 }
3424 
3425 /*
3426  * The gendisk is only valid as long as you have a reference
3427  * count on 'md'.
3428  */
3429 struct gendisk *dm_disk(struct mapped_device *md)
3430 {
3431 	return md->disk;
3432 }
3433 EXPORT_SYMBOL_GPL(dm_disk);
3434 
3435 struct kobject *dm_kobject(struct mapped_device *md)
3436 {
3437 	return &md->kobj_holder.kobj;
3438 }
3439 
3440 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3441 {
3442 	struct mapped_device *md;
3443 
3444 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3445 
3446 	if (test_bit(DMF_FREEING, &md->flags) ||
3447 	    dm_deleting_md(md))
3448 		return NULL;
3449 
3450 	dm_get(md);
3451 	return md;
3452 }
3453 
3454 int dm_suspended_md(struct mapped_device *md)
3455 {
3456 	return test_bit(DMF_SUSPENDED, &md->flags);
3457 }
3458 
3459 int dm_suspended_internally_md(struct mapped_device *md)
3460 {
3461 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3462 }
3463 
3464 int dm_test_deferred_remove_flag(struct mapped_device *md)
3465 {
3466 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3467 }
3468 
3469 int dm_suspended(struct dm_target *ti)
3470 {
3471 	return dm_suspended_md(dm_table_get_md(ti->table));
3472 }
3473 EXPORT_SYMBOL_GPL(dm_suspended);
3474 
3475 int dm_noflush_suspending(struct dm_target *ti)
3476 {
3477 	return __noflush_suspending(dm_table_get_md(ti->table));
3478 }
3479 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3480 
3481 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3482 					    unsigned integrity, unsigned per_bio_data_size)
3483 {
3484 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3485 	struct kmem_cache *cachep = NULL;
3486 	unsigned int pool_size = 0;
3487 	unsigned int front_pad;
3488 
3489 	if (!pools)
3490 		return NULL;
3491 
3492 	type = filter_md_type(type, md);
3493 
3494 	switch (type) {
3495 	case DM_TYPE_BIO_BASED:
3496 		cachep = _io_cache;
3497 		pool_size = dm_get_reserved_bio_based_ios();
3498 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3499 		break;
3500 	case DM_TYPE_REQUEST_BASED:
3501 		cachep = _rq_tio_cache;
3502 		pool_size = dm_get_reserved_rq_based_ios();
3503 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3504 		if (!pools->rq_pool)
3505 			goto out;
3506 		/* fall through to setup remaining rq-based pools */
3507 	case DM_TYPE_MQ_REQUEST_BASED:
3508 		if (!pool_size)
3509 			pool_size = dm_get_reserved_rq_based_ios();
3510 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3511 		/* per_bio_data_size is not used. See __bind_mempools(). */
3512 		WARN_ON(per_bio_data_size != 0);
3513 		break;
3514 	default:
3515 		BUG();
3516 	}
3517 
3518 	if (cachep) {
3519 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3520 		if (!pools->io_pool)
3521 			goto out;
3522 	}
3523 
3524 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3525 	if (!pools->bs)
3526 		goto out;
3527 
3528 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3529 		goto out;
3530 
3531 	return pools;
3532 
3533 out:
3534 	dm_free_md_mempools(pools);
3535 
3536 	return NULL;
3537 }
3538 
3539 void dm_free_md_mempools(struct dm_md_mempools *pools)
3540 {
3541 	if (!pools)
3542 		return;
3543 
3544 	mempool_destroy(pools->io_pool);
3545 	mempool_destroy(pools->rq_pool);
3546 
3547 	if (pools->bs)
3548 		bioset_free(pools->bs);
3549 
3550 	kfree(pools);
3551 }
3552 
3553 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3554 		u32 flags)
3555 {
3556 	struct mapped_device *md = bdev->bd_disk->private_data;
3557 	const struct pr_ops *ops;
3558 	struct dm_target *tgt;
3559 	fmode_t mode;
3560 	int srcu_idx, r;
3561 
3562 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3563 	if (r < 0)
3564 		return r;
3565 
3566 	ops = bdev->bd_disk->fops->pr_ops;
3567 	if (ops && ops->pr_register)
3568 		r = ops->pr_register(bdev, old_key, new_key, flags);
3569 	else
3570 		r = -EOPNOTSUPP;
3571 
3572 	dm_put_live_table(md, srcu_idx);
3573 	return r;
3574 }
3575 
3576 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3577 		u32 flags)
3578 {
3579 	struct mapped_device *md = bdev->bd_disk->private_data;
3580 	const struct pr_ops *ops;
3581 	struct dm_target *tgt;
3582 	fmode_t mode;
3583 	int srcu_idx, r;
3584 
3585 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3586 	if (r < 0)
3587 		return r;
3588 
3589 	ops = bdev->bd_disk->fops->pr_ops;
3590 	if (ops && ops->pr_reserve)
3591 		r = ops->pr_reserve(bdev, key, type, flags);
3592 	else
3593 		r = -EOPNOTSUPP;
3594 
3595 	dm_put_live_table(md, srcu_idx);
3596 	return r;
3597 }
3598 
3599 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3600 {
3601 	struct mapped_device *md = bdev->bd_disk->private_data;
3602 	const struct pr_ops *ops;
3603 	struct dm_target *tgt;
3604 	fmode_t mode;
3605 	int srcu_idx, r;
3606 
3607 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3608 	if (r < 0)
3609 		return r;
3610 
3611 	ops = bdev->bd_disk->fops->pr_ops;
3612 	if (ops && ops->pr_release)
3613 		r = ops->pr_release(bdev, key, type);
3614 	else
3615 		r = -EOPNOTSUPP;
3616 
3617 	dm_put_live_table(md, srcu_idx);
3618 	return r;
3619 }
3620 
3621 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3622 		enum pr_type type, bool abort)
3623 {
3624 	struct mapped_device *md = bdev->bd_disk->private_data;
3625 	const struct pr_ops *ops;
3626 	struct dm_target *tgt;
3627 	fmode_t mode;
3628 	int srcu_idx, r;
3629 
3630 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3631 	if (r < 0)
3632 		return r;
3633 
3634 	ops = bdev->bd_disk->fops->pr_ops;
3635 	if (ops && ops->pr_preempt)
3636 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3637 	else
3638 		r = -EOPNOTSUPP;
3639 
3640 	dm_put_live_table(md, srcu_idx);
3641 	return r;
3642 }
3643 
3644 static int dm_pr_clear(struct block_device *bdev, u64 key)
3645 {
3646 	struct mapped_device *md = bdev->bd_disk->private_data;
3647 	const struct pr_ops *ops;
3648 	struct dm_target *tgt;
3649 	fmode_t mode;
3650 	int srcu_idx, r;
3651 
3652 	r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3653 	if (r < 0)
3654 		return r;
3655 
3656 	ops = bdev->bd_disk->fops->pr_ops;
3657 	if (ops && ops->pr_clear)
3658 		r = ops->pr_clear(bdev, key);
3659 	else
3660 		r = -EOPNOTSUPP;
3661 
3662 	dm_put_live_table(md, srcu_idx);
3663 	return r;
3664 }
3665 
3666 static const struct pr_ops dm_pr_ops = {
3667 	.pr_register	= dm_pr_register,
3668 	.pr_reserve	= dm_pr_reserve,
3669 	.pr_release	= dm_pr_release,
3670 	.pr_preempt	= dm_pr_preempt,
3671 	.pr_clear	= dm_pr_clear,
3672 };
3673 
3674 static const struct block_device_operations dm_blk_dops = {
3675 	.open = dm_blk_open,
3676 	.release = dm_blk_close,
3677 	.ioctl = dm_blk_ioctl,
3678 	.getgeo = dm_blk_getgeo,
3679 	.pr_ops = &dm_pr_ops,
3680 	.owner = THIS_MODULE
3681 };
3682 
3683 /*
3684  * module hooks
3685  */
3686 module_init(dm_init);
3687 module_exit(dm_exit);
3688 
3689 module_param(major, uint, 0);
3690 MODULE_PARM_DESC(major, "The major number of the device mapper");
3691 
3692 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3693 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3694 
3695 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3696 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3697 
3698 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3699 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3700 
3701 MODULE_DESCRIPTION(DM_NAME " driver");
3702 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3703 MODULE_LICENSE("GPL");
3704