1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated per bio. 64 */ 65 struct dm_io { 66 struct mapped_device *md; 67 blk_status_t status; 68 atomic_t io_count; 69 struct bio *bio; 70 unsigned long start_time; 71 spinlock_t endio_lock; 72 struct dm_stats_aux stats_aux; 73 }; 74 75 #define MINOR_ALLOCED ((void *)-1) 76 77 /* 78 * Bits for the md->flags field. 79 */ 80 #define DMF_BLOCK_IO_FOR_SUSPEND 0 81 #define DMF_SUSPENDED 1 82 #define DMF_FROZEN 2 83 #define DMF_FREEING 3 84 #define DMF_DELETING 4 85 #define DMF_NOFLUSH_SUSPENDING 5 86 #define DMF_DEFERRED_REMOVE 6 87 #define DMF_SUSPENDED_INTERNALLY 7 88 89 #define DM_NUMA_NODE NUMA_NO_NODE 90 static int dm_numa_node = DM_NUMA_NODE; 91 92 /* 93 * For mempools pre-allocation at the table loading time. 94 */ 95 struct dm_md_mempools { 96 mempool_t *io_pool; 97 struct bio_set *bs; 98 }; 99 100 struct table_device { 101 struct list_head list; 102 refcount_t count; 103 struct dm_dev dm_dev; 104 }; 105 106 static struct kmem_cache *_io_cache; 107 static struct kmem_cache *_rq_tio_cache; 108 static struct kmem_cache *_rq_cache; 109 110 /* 111 * Bio-based DM's mempools' reserved IOs set by the user. 112 */ 113 #define RESERVED_BIO_BASED_IOS 16 114 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 115 116 static int __dm_get_module_param_int(int *module_param, int min, int max) 117 { 118 int param = READ_ONCE(*module_param); 119 int modified_param = 0; 120 bool modified = true; 121 122 if (param < min) 123 modified_param = min; 124 else if (param > max) 125 modified_param = max; 126 else 127 modified = false; 128 129 if (modified) { 130 (void)cmpxchg(module_param, param, modified_param); 131 param = modified_param; 132 } 133 134 return param; 135 } 136 137 unsigned __dm_get_module_param(unsigned *module_param, 138 unsigned def, unsigned max) 139 { 140 unsigned param = READ_ONCE(*module_param); 141 unsigned modified_param = 0; 142 143 if (!param) 144 modified_param = def; 145 else if (param > max) 146 modified_param = max; 147 148 if (modified_param) { 149 (void)cmpxchg(module_param, param, modified_param); 150 param = modified_param; 151 } 152 153 return param; 154 } 155 156 unsigned dm_get_reserved_bio_based_ios(void) 157 { 158 return __dm_get_module_param(&reserved_bio_based_ios, 159 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 160 } 161 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 162 163 static unsigned dm_get_numa_node(void) 164 { 165 return __dm_get_module_param_int(&dm_numa_node, 166 DM_NUMA_NODE, num_online_nodes() - 1); 167 } 168 169 static int __init local_init(void) 170 { 171 int r = -ENOMEM; 172 173 /* allocate a slab for the dm_ios */ 174 _io_cache = KMEM_CACHE(dm_io, 0); 175 if (!_io_cache) 176 return r; 177 178 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 179 if (!_rq_tio_cache) 180 goto out_free_io_cache; 181 182 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 183 __alignof__(struct request), 0, NULL); 184 if (!_rq_cache) 185 goto out_free_rq_tio_cache; 186 187 r = dm_uevent_init(); 188 if (r) 189 goto out_free_rq_cache; 190 191 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 192 if (!deferred_remove_workqueue) { 193 r = -ENOMEM; 194 goto out_uevent_exit; 195 } 196 197 _major = major; 198 r = register_blkdev(_major, _name); 199 if (r < 0) 200 goto out_free_workqueue; 201 202 if (!_major) 203 _major = r; 204 205 return 0; 206 207 out_free_workqueue: 208 destroy_workqueue(deferred_remove_workqueue); 209 out_uevent_exit: 210 dm_uevent_exit(); 211 out_free_rq_cache: 212 kmem_cache_destroy(_rq_cache); 213 out_free_rq_tio_cache: 214 kmem_cache_destroy(_rq_tio_cache); 215 out_free_io_cache: 216 kmem_cache_destroy(_io_cache); 217 218 return r; 219 } 220 221 static void local_exit(void) 222 { 223 flush_scheduled_work(); 224 destroy_workqueue(deferred_remove_workqueue); 225 226 kmem_cache_destroy(_rq_cache); 227 kmem_cache_destroy(_rq_tio_cache); 228 kmem_cache_destroy(_io_cache); 229 unregister_blkdev(_major, _name); 230 dm_uevent_exit(); 231 232 _major = 0; 233 234 DMINFO("cleaned up"); 235 } 236 237 static int (*_inits[])(void) __initdata = { 238 local_init, 239 dm_target_init, 240 dm_linear_init, 241 dm_stripe_init, 242 dm_io_init, 243 dm_kcopyd_init, 244 dm_interface_init, 245 dm_statistics_init, 246 }; 247 248 static void (*_exits[])(void) = { 249 local_exit, 250 dm_target_exit, 251 dm_linear_exit, 252 dm_stripe_exit, 253 dm_io_exit, 254 dm_kcopyd_exit, 255 dm_interface_exit, 256 dm_statistics_exit, 257 }; 258 259 static int __init dm_init(void) 260 { 261 const int count = ARRAY_SIZE(_inits); 262 263 int r, i; 264 265 for (i = 0; i < count; i++) { 266 r = _inits[i](); 267 if (r) 268 goto bad; 269 } 270 271 return 0; 272 273 bad: 274 while (i--) 275 _exits[i](); 276 277 return r; 278 } 279 280 static void __exit dm_exit(void) 281 { 282 int i = ARRAY_SIZE(_exits); 283 284 while (i--) 285 _exits[i](); 286 287 /* 288 * Should be empty by this point. 289 */ 290 idr_destroy(&_minor_idr); 291 } 292 293 /* 294 * Block device functions 295 */ 296 int dm_deleting_md(struct mapped_device *md) 297 { 298 return test_bit(DMF_DELETING, &md->flags); 299 } 300 301 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 302 { 303 struct mapped_device *md; 304 305 spin_lock(&_minor_lock); 306 307 md = bdev->bd_disk->private_data; 308 if (!md) 309 goto out; 310 311 if (test_bit(DMF_FREEING, &md->flags) || 312 dm_deleting_md(md)) { 313 md = NULL; 314 goto out; 315 } 316 317 dm_get(md); 318 atomic_inc(&md->open_count); 319 out: 320 spin_unlock(&_minor_lock); 321 322 return md ? 0 : -ENXIO; 323 } 324 325 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 326 { 327 struct mapped_device *md; 328 329 spin_lock(&_minor_lock); 330 331 md = disk->private_data; 332 if (WARN_ON(!md)) 333 goto out; 334 335 if (atomic_dec_and_test(&md->open_count) && 336 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 337 queue_work(deferred_remove_workqueue, &deferred_remove_work); 338 339 dm_put(md); 340 out: 341 spin_unlock(&_minor_lock); 342 } 343 344 int dm_open_count(struct mapped_device *md) 345 { 346 return atomic_read(&md->open_count); 347 } 348 349 /* 350 * Guarantees nothing is using the device before it's deleted. 351 */ 352 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 353 { 354 int r = 0; 355 356 spin_lock(&_minor_lock); 357 358 if (dm_open_count(md)) { 359 r = -EBUSY; 360 if (mark_deferred) 361 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 362 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 363 r = -EEXIST; 364 else 365 set_bit(DMF_DELETING, &md->flags); 366 367 spin_unlock(&_minor_lock); 368 369 return r; 370 } 371 372 int dm_cancel_deferred_remove(struct mapped_device *md) 373 { 374 int r = 0; 375 376 spin_lock(&_minor_lock); 377 378 if (test_bit(DMF_DELETING, &md->flags)) 379 r = -EBUSY; 380 else 381 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 382 383 spin_unlock(&_minor_lock); 384 385 return r; 386 } 387 388 static void do_deferred_remove(struct work_struct *w) 389 { 390 dm_deferred_remove(); 391 } 392 393 sector_t dm_get_size(struct mapped_device *md) 394 { 395 return get_capacity(md->disk); 396 } 397 398 struct request_queue *dm_get_md_queue(struct mapped_device *md) 399 { 400 return md->queue; 401 } 402 403 struct dm_stats *dm_get_stats(struct mapped_device *md) 404 { 405 return &md->stats; 406 } 407 408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 409 { 410 struct mapped_device *md = bdev->bd_disk->private_data; 411 412 return dm_get_geometry(md, geo); 413 } 414 415 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 416 struct block_device **bdev, 417 fmode_t *mode) 418 { 419 struct dm_target *tgt; 420 struct dm_table *map; 421 int srcu_idx, r; 422 423 retry: 424 r = -ENOTTY; 425 map = dm_get_live_table(md, &srcu_idx); 426 if (!map || !dm_table_get_size(map)) 427 goto out; 428 429 /* We only support devices that have a single target */ 430 if (dm_table_get_num_targets(map) != 1) 431 goto out; 432 433 tgt = dm_table_get_target(map, 0); 434 if (!tgt->type->prepare_ioctl) 435 goto out; 436 437 if (dm_suspended_md(md)) { 438 r = -EAGAIN; 439 goto out; 440 } 441 442 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 443 if (r < 0) 444 goto out; 445 446 bdgrab(*bdev); 447 dm_put_live_table(md, srcu_idx); 448 return r; 449 450 out: 451 dm_put_live_table(md, srcu_idx); 452 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 453 msleep(10); 454 goto retry; 455 } 456 return r; 457 } 458 459 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 460 unsigned int cmd, unsigned long arg) 461 { 462 struct mapped_device *md = bdev->bd_disk->private_data; 463 int r; 464 465 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 466 if (r < 0) 467 return r; 468 469 if (r > 0) { 470 /* 471 * Target determined this ioctl is being issued against a 472 * subset of the parent bdev; require extra privileges. 473 */ 474 if (!capable(CAP_SYS_RAWIO)) { 475 DMWARN_LIMIT( 476 "%s: sending ioctl %x to DM device without required privilege.", 477 current->comm, cmd); 478 r = -ENOIOCTLCMD; 479 goto out; 480 } 481 } 482 483 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 484 out: 485 bdput(bdev); 486 return r; 487 } 488 489 static struct dm_io *alloc_io(struct mapped_device *md) 490 { 491 return mempool_alloc(md->io_pool, GFP_NOIO); 492 } 493 494 static void free_io(struct mapped_device *md, struct dm_io *io) 495 { 496 mempool_free(io, md->io_pool); 497 } 498 499 static void free_tio(struct dm_target_io *tio) 500 { 501 bio_put(&tio->clone); 502 } 503 504 int md_in_flight(struct mapped_device *md) 505 { 506 return atomic_read(&md->pending[READ]) + 507 atomic_read(&md->pending[WRITE]); 508 } 509 510 static void start_io_acct(struct dm_io *io) 511 { 512 struct mapped_device *md = io->md; 513 struct bio *bio = io->bio; 514 int cpu; 515 int rw = bio_data_dir(bio); 516 517 io->start_time = jiffies; 518 519 cpu = part_stat_lock(); 520 part_round_stats(md->queue, cpu, &dm_disk(md)->part0); 521 part_stat_unlock(); 522 atomic_set(&dm_disk(md)->part0.in_flight[rw], 523 atomic_inc_return(&md->pending[rw])); 524 525 if (unlikely(dm_stats_used(&md->stats))) 526 dm_stats_account_io(&md->stats, bio_data_dir(bio), 527 bio->bi_iter.bi_sector, bio_sectors(bio), 528 false, 0, &io->stats_aux); 529 } 530 531 static void end_io_acct(struct dm_io *io) 532 { 533 struct mapped_device *md = io->md; 534 struct bio *bio = io->bio; 535 unsigned long duration = jiffies - io->start_time; 536 int pending; 537 int rw = bio_data_dir(bio); 538 539 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time); 540 541 if (unlikely(dm_stats_used(&md->stats))) 542 dm_stats_account_io(&md->stats, bio_data_dir(bio), 543 bio->bi_iter.bi_sector, bio_sectors(bio), 544 true, duration, &io->stats_aux); 545 546 /* 547 * After this is decremented the bio must not be touched if it is 548 * a flush. 549 */ 550 pending = atomic_dec_return(&md->pending[rw]); 551 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 552 pending += atomic_read(&md->pending[rw^0x1]); 553 554 /* nudge anyone waiting on suspend queue */ 555 if (!pending) 556 wake_up(&md->wait); 557 } 558 559 /* 560 * Add the bio to the list of deferred io. 561 */ 562 static void queue_io(struct mapped_device *md, struct bio *bio) 563 { 564 unsigned long flags; 565 566 spin_lock_irqsave(&md->deferred_lock, flags); 567 bio_list_add(&md->deferred, bio); 568 spin_unlock_irqrestore(&md->deferred_lock, flags); 569 queue_work(md->wq, &md->work); 570 } 571 572 /* 573 * Everyone (including functions in this file), should use this 574 * function to access the md->map field, and make sure they call 575 * dm_put_live_table() when finished. 576 */ 577 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 578 { 579 *srcu_idx = srcu_read_lock(&md->io_barrier); 580 581 return srcu_dereference(md->map, &md->io_barrier); 582 } 583 584 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 585 { 586 srcu_read_unlock(&md->io_barrier, srcu_idx); 587 } 588 589 void dm_sync_table(struct mapped_device *md) 590 { 591 synchronize_srcu(&md->io_barrier); 592 synchronize_rcu_expedited(); 593 } 594 595 /* 596 * A fast alternative to dm_get_live_table/dm_put_live_table. 597 * The caller must not block between these two functions. 598 */ 599 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 600 { 601 rcu_read_lock(); 602 return rcu_dereference(md->map); 603 } 604 605 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 606 { 607 rcu_read_unlock(); 608 } 609 610 /* 611 * Open a table device so we can use it as a map destination. 612 */ 613 static int open_table_device(struct table_device *td, dev_t dev, 614 struct mapped_device *md) 615 { 616 static char *_claim_ptr = "I belong to device-mapper"; 617 struct block_device *bdev; 618 619 int r; 620 621 BUG_ON(td->dm_dev.bdev); 622 623 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 624 if (IS_ERR(bdev)) 625 return PTR_ERR(bdev); 626 627 r = bd_link_disk_holder(bdev, dm_disk(md)); 628 if (r) { 629 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 630 return r; 631 } 632 633 td->dm_dev.bdev = bdev; 634 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 635 return 0; 636 } 637 638 /* 639 * Close a table device that we've been using. 640 */ 641 static void close_table_device(struct table_device *td, struct mapped_device *md) 642 { 643 if (!td->dm_dev.bdev) 644 return; 645 646 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 647 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 648 put_dax(td->dm_dev.dax_dev); 649 td->dm_dev.bdev = NULL; 650 td->dm_dev.dax_dev = NULL; 651 } 652 653 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 654 fmode_t mode) { 655 struct table_device *td; 656 657 list_for_each_entry(td, l, list) 658 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 659 return td; 660 661 return NULL; 662 } 663 664 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 665 struct dm_dev **result) { 666 int r; 667 struct table_device *td; 668 669 mutex_lock(&md->table_devices_lock); 670 td = find_table_device(&md->table_devices, dev, mode); 671 if (!td) { 672 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 673 if (!td) { 674 mutex_unlock(&md->table_devices_lock); 675 return -ENOMEM; 676 } 677 678 td->dm_dev.mode = mode; 679 td->dm_dev.bdev = NULL; 680 681 if ((r = open_table_device(td, dev, md))) { 682 mutex_unlock(&md->table_devices_lock); 683 kfree(td); 684 return r; 685 } 686 687 format_dev_t(td->dm_dev.name, dev); 688 689 refcount_set(&td->count, 1); 690 list_add(&td->list, &md->table_devices); 691 } else { 692 refcount_inc(&td->count); 693 } 694 mutex_unlock(&md->table_devices_lock); 695 696 *result = &td->dm_dev; 697 return 0; 698 } 699 EXPORT_SYMBOL_GPL(dm_get_table_device); 700 701 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 702 { 703 struct table_device *td = container_of(d, struct table_device, dm_dev); 704 705 mutex_lock(&md->table_devices_lock); 706 if (refcount_dec_and_test(&td->count)) { 707 close_table_device(td, md); 708 list_del(&td->list); 709 kfree(td); 710 } 711 mutex_unlock(&md->table_devices_lock); 712 } 713 EXPORT_SYMBOL(dm_put_table_device); 714 715 static void free_table_devices(struct list_head *devices) 716 { 717 struct list_head *tmp, *next; 718 719 list_for_each_safe(tmp, next, devices) { 720 struct table_device *td = list_entry(tmp, struct table_device, list); 721 722 DMWARN("dm_destroy: %s still exists with %d references", 723 td->dm_dev.name, refcount_read(&td->count)); 724 kfree(td); 725 } 726 } 727 728 /* 729 * Get the geometry associated with a dm device 730 */ 731 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 732 { 733 *geo = md->geometry; 734 735 return 0; 736 } 737 738 /* 739 * Set the geometry of a device. 740 */ 741 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 742 { 743 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 744 745 if (geo->start > sz) { 746 DMWARN("Start sector is beyond the geometry limits."); 747 return -EINVAL; 748 } 749 750 md->geometry = *geo; 751 752 return 0; 753 } 754 755 /*----------------------------------------------------------------- 756 * CRUD START: 757 * A more elegant soln is in the works that uses the queue 758 * merge fn, unfortunately there are a couple of changes to 759 * the block layer that I want to make for this. So in the 760 * interests of getting something for people to use I give 761 * you this clearly demarcated crap. 762 *---------------------------------------------------------------*/ 763 764 static int __noflush_suspending(struct mapped_device *md) 765 { 766 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 767 } 768 769 /* 770 * Decrements the number of outstanding ios that a bio has been 771 * cloned into, completing the original io if necc. 772 */ 773 static void dec_pending(struct dm_io *io, blk_status_t error) 774 { 775 unsigned long flags; 776 blk_status_t io_error; 777 struct bio *bio; 778 struct mapped_device *md = io->md; 779 780 /* Push-back supersedes any I/O errors */ 781 if (unlikely(error)) { 782 spin_lock_irqsave(&io->endio_lock, flags); 783 if (!(io->status == BLK_STS_DM_REQUEUE && 784 __noflush_suspending(md))) 785 io->status = error; 786 spin_unlock_irqrestore(&io->endio_lock, flags); 787 } 788 789 if (atomic_dec_and_test(&io->io_count)) { 790 if (io->status == BLK_STS_DM_REQUEUE) { 791 /* 792 * Target requested pushing back the I/O. 793 */ 794 spin_lock_irqsave(&md->deferred_lock, flags); 795 if (__noflush_suspending(md)) 796 bio_list_add_head(&md->deferred, io->bio); 797 else 798 /* noflush suspend was interrupted. */ 799 io->status = BLK_STS_IOERR; 800 spin_unlock_irqrestore(&md->deferred_lock, flags); 801 } 802 803 io_error = io->status; 804 bio = io->bio; 805 end_io_acct(io); 806 free_io(md, io); 807 808 if (io_error == BLK_STS_DM_REQUEUE) 809 return; 810 811 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 812 /* 813 * Preflush done for flush with data, reissue 814 * without REQ_PREFLUSH. 815 */ 816 bio->bi_opf &= ~REQ_PREFLUSH; 817 queue_io(md, bio); 818 } else { 819 /* done with normal IO or empty flush */ 820 bio->bi_status = io_error; 821 bio_endio(bio); 822 } 823 } 824 } 825 826 void disable_write_same(struct mapped_device *md) 827 { 828 struct queue_limits *limits = dm_get_queue_limits(md); 829 830 /* device doesn't really support WRITE SAME, disable it */ 831 limits->max_write_same_sectors = 0; 832 } 833 834 void disable_write_zeroes(struct mapped_device *md) 835 { 836 struct queue_limits *limits = dm_get_queue_limits(md); 837 838 /* device doesn't really support WRITE ZEROES, disable it */ 839 limits->max_write_zeroes_sectors = 0; 840 } 841 842 static void clone_endio(struct bio *bio) 843 { 844 blk_status_t error = bio->bi_status; 845 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 846 struct dm_io *io = tio->io; 847 struct mapped_device *md = tio->io->md; 848 dm_endio_fn endio = tio->ti->type->end_io; 849 850 if (unlikely(error == BLK_STS_TARGET)) { 851 if (bio_op(bio) == REQ_OP_WRITE_SAME && 852 !bio->bi_disk->queue->limits.max_write_same_sectors) 853 disable_write_same(md); 854 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 855 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 856 disable_write_zeroes(md); 857 } 858 859 if (endio) { 860 int r = endio(tio->ti, bio, &error); 861 switch (r) { 862 case DM_ENDIO_REQUEUE: 863 error = BLK_STS_DM_REQUEUE; 864 /*FALLTHRU*/ 865 case DM_ENDIO_DONE: 866 break; 867 case DM_ENDIO_INCOMPLETE: 868 /* The target will handle the io */ 869 return; 870 default: 871 DMWARN("unimplemented target endio return value: %d", r); 872 BUG(); 873 } 874 } 875 876 free_tio(tio); 877 dec_pending(io, error); 878 } 879 880 /* 881 * Return maximum size of I/O possible at the supplied sector up to the current 882 * target boundary. 883 */ 884 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 885 { 886 sector_t target_offset = dm_target_offset(ti, sector); 887 888 return ti->len - target_offset; 889 } 890 891 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 892 { 893 sector_t len = max_io_len_target_boundary(sector, ti); 894 sector_t offset, max_len; 895 896 /* 897 * Does the target need to split even further? 898 */ 899 if (ti->max_io_len) { 900 offset = dm_target_offset(ti, sector); 901 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 902 max_len = sector_div(offset, ti->max_io_len); 903 else 904 max_len = offset & (ti->max_io_len - 1); 905 max_len = ti->max_io_len - max_len; 906 907 if (len > max_len) 908 len = max_len; 909 } 910 911 return len; 912 } 913 914 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 915 { 916 if (len > UINT_MAX) { 917 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 918 (unsigned long long)len, UINT_MAX); 919 ti->error = "Maximum size of target IO is too large"; 920 return -EINVAL; 921 } 922 923 /* 924 * BIO based queue uses its own splitting. When multipage bvecs 925 * is switched on, size of the incoming bio may be too big to 926 * be handled in some targets, such as crypt. 927 * 928 * When these targets are ready for the big bio, we can remove 929 * the limit. 930 */ 931 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE); 932 933 return 0; 934 } 935 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 936 937 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 938 sector_t sector, int *srcu_idx) 939 { 940 struct dm_table *map; 941 struct dm_target *ti; 942 943 map = dm_get_live_table(md, srcu_idx); 944 if (!map) 945 return NULL; 946 947 ti = dm_table_find_target(map, sector); 948 if (!dm_target_is_valid(ti)) 949 return NULL; 950 951 return ti; 952 } 953 954 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 955 long nr_pages, void **kaddr, pfn_t *pfn) 956 { 957 struct mapped_device *md = dax_get_private(dax_dev); 958 sector_t sector = pgoff * PAGE_SECTORS; 959 struct dm_target *ti; 960 long len, ret = -EIO; 961 int srcu_idx; 962 963 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 964 965 if (!ti) 966 goto out; 967 if (!ti->type->direct_access) 968 goto out; 969 len = max_io_len(sector, ti) / PAGE_SECTORS; 970 if (len < 1) 971 goto out; 972 nr_pages = min(len, nr_pages); 973 if (ti->type->direct_access) 974 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 975 976 out: 977 dm_put_live_table(md, srcu_idx); 978 979 return ret; 980 } 981 982 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 983 void *addr, size_t bytes, struct iov_iter *i) 984 { 985 struct mapped_device *md = dax_get_private(dax_dev); 986 sector_t sector = pgoff * PAGE_SECTORS; 987 struct dm_target *ti; 988 long ret = 0; 989 int srcu_idx; 990 991 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 992 993 if (!ti) 994 goto out; 995 if (!ti->type->dax_copy_from_iter) { 996 ret = copy_from_iter(addr, bytes, i); 997 goto out; 998 } 999 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1000 out: 1001 dm_put_live_table(md, srcu_idx); 1002 1003 return ret; 1004 } 1005 1006 /* 1007 * A target may call dm_accept_partial_bio only from the map routine. It is 1008 * allowed for all bio types except REQ_PREFLUSH. 1009 * 1010 * dm_accept_partial_bio informs the dm that the target only wants to process 1011 * additional n_sectors sectors of the bio and the rest of the data should be 1012 * sent in a next bio. 1013 * 1014 * A diagram that explains the arithmetics: 1015 * +--------------------+---------------+-------+ 1016 * | 1 | 2 | 3 | 1017 * +--------------------+---------------+-------+ 1018 * 1019 * <-------------- *tio->len_ptr ---------------> 1020 * <------- bi_size -------> 1021 * <-- n_sectors --> 1022 * 1023 * Region 1 was already iterated over with bio_advance or similar function. 1024 * (it may be empty if the target doesn't use bio_advance) 1025 * Region 2 is the remaining bio size that the target wants to process. 1026 * (it may be empty if region 1 is non-empty, although there is no reason 1027 * to make it empty) 1028 * The target requires that region 3 is to be sent in the next bio. 1029 * 1030 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1031 * the partially processed part (the sum of regions 1+2) must be the same for all 1032 * copies of the bio. 1033 */ 1034 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1035 { 1036 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1037 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1038 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1039 BUG_ON(bi_size > *tio->len_ptr); 1040 BUG_ON(n_sectors > bi_size); 1041 *tio->len_ptr -= bi_size - n_sectors; 1042 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1043 } 1044 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1045 1046 /* 1047 * The zone descriptors obtained with a zone report indicate 1048 * zone positions within the target device. The zone descriptors 1049 * must be remapped to match their position within the dm device. 1050 * A target may call dm_remap_zone_report after completion of a 1051 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained 1052 * from the target device mapping to the dm device. 1053 */ 1054 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start) 1055 { 1056 #ifdef CONFIG_BLK_DEV_ZONED 1057 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1058 struct bio *report_bio = tio->io->bio; 1059 struct blk_zone_report_hdr *hdr = NULL; 1060 struct blk_zone *zone; 1061 unsigned int nr_rep = 0; 1062 unsigned int ofst; 1063 struct bio_vec bvec; 1064 struct bvec_iter iter; 1065 void *addr; 1066 1067 if (bio->bi_status) 1068 return; 1069 1070 /* 1071 * Remap the start sector of the reported zones. For sequential zones, 1072 * also remap the write pointer position. 1073 */ 1074 bio_for_each_segment(bvec, report_bio, iter) { 1075 addr = kmap_atomic(bvec.bv_page); 1076 1077 /* Remember the report header in the first page */ 1078 if (!hdr) { 1079 hdr = addr; 1080 ofst = sizeof(struct blk_zone_report_hdr); 1081 } else 1082 ofst = 0; 1083 1084 /* Set zones start sector */ 1085 while (hdr->nr_zones && ofst < bvec.bv_len) { 1086 zone = addr + ofst; 1087 if (zone->start >= start + ti->len) { 1088 hdr->nr_zones = 0; 1089 break; 1090 } 1091 zone->start = zone->start + ti->begin - start; 1092 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 1093 if (zone->cond == BLK_ZONE_COND_FULL) 1094 zone->wp = zone->start + zone->len; 1095 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1096 zone->wp = zone->start; 1097 else 1098 zone->wp = zone->wp + ti->begin - start; 1099 } 1100 ofst += sizeof(struct blk_zone); 1101 hdr->nr_zones--; 1102 nr_rep++; 1103 } 1104 1105 if (addr != hdr) 1106 kunmap_atomic(addr); 1107 1108 if (!hdr->nr_zones) 1109 break; 1110 } 1111 1112 if (hdr) { 1113 hdr->nr_zones = nr_rep; 1114 kunmap_atomic(hdr); 1115 } 1116 1117 bio_advance(report_bio, report_bio->bi_iter.bi_size); 1118 1119 #else /* !CONFIG_BLK_DEV_ZONED */ 1120 bio->bi_status = BLK_STS_NOTSUPP; 1121 #endif 1122 } 1123 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1124 1125 /* 1126 * Flush current->bio_list when the target map method blocks. 1127 * This fixes deadlocks in snapshot and possibly in other targets. 1128 */ 1129 struct dm_offload { 1130 struct blk_plug plug; 1131 struct blk_plug_cb cb; 1132 }; 1133 1134 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule) 1135 { 1136 struct dm_offload *o = container_of(cb, struct dm_offload, cb); 1137 struct bio_list list; 1138 struct bio *bio; 1139 int i; 1140 1141 INIT_LIST_HEAD(&o->cb.list); 1142 1143 if (unlikely(!current->bio_list)) 1144 return; 1145 1146 for (i = 0; i < 2; i++) { 1147 list = current->bio_list[i]; 1148 bio_list_init(¤t->bio_list[i]); 1149 1150 while ((bio = bio_list_pop(&list))) { 1151 struct bio_set *bs = bio->bi_pool; 1152 if (unlikely(!bs) || bs == fs_bio_set || 1153 !bs->rescue_workqueue) { 1154 bio_list_add(¤t->bio_list[i], bio); 1155 continue; 1156 } 1157 1158 spin_lock(&bs->rescue_lock); 1159 bio_list_add(&bs->rescue_list, bio); 1160 queue_work(bs->rescue_workqueue, &bs->rescue_work); 1161 spin_unlock(&bs->rescue_lock); 1162 } 1163 } 1164 } 1165 1166 static void dm_offload_start(struct dm_offload *o) 1167 { 1168 blk_start_plug(&o->plug); 1169 o->cb.callback = flush_current_bio_list; 1170 list_add(&o->cb.list, ¤t->plug->cb_list); 1171 } 1172 1173 static void dm_offload_end(struct dm_offload *o) 1174 { 1175 list_del(&o->cb.list); 1176 blk_finish_plug(&o->plug); 1177 } 1178 1179 static void __map_bio(struct dm_target_io *tio) 1180 { 1181 int r; 1182 sector_t sector; 1183 struct dm_offload o; 1184 struct bio *clone = &tio->clone; 1185 struct dm_target *ti = tio->ti; 1186 1187 clone->bi_end_io = clone_endio; 1188 1189 /* 1190 * Map the clone. If r == 0 we don't need to do 1191 * anything, the target has assumed ownership of 1192 * this io. 1193 */ 1194 atomic_inc(&tio->io->io_count); 1195 sector = clone->bi_iter.bi_sector; 1196 1197 dm_offload_start(&o); 1198 r = ti->type->map(ti, clone); 1199 dm_offload_end(&o); 1200 1201 switch (r) { 1202 case DM_MAPIO_SUBMITTED: 1203 break; 1204 case DM_MAPIO_REMAPPED: 1205 /* the bio has been remapped so dispatch it */ 1206 trace_block_bio_remap(clone->bi_disk->queue, clone, 1207 bio_dev(tio->io->bio), sector); 1208 generic_make_request(clone); 1209 break; 1210 case DM_MAPIO_KILL: 1211 dec_pending(tio->io, BLK_STS_IOERR); 1212 free_tio(tio); 1213 break; 1214 case DM_MAPIO_REQUEUE: 1215 dec_pending(tio->io, BLK_STS_DM_REQUEUE); 1216 free_tio(tio); 1217 break; 1218 default: 1219 DMWARN("unimplemented target map return value: %d", r); 1220 BUG(); 1221 } 1222 } 1223 1224 struct clone_info { 1225 struct mapped_device *md; 1226 struct dm_table *map; 1227 struct bio *bio; 1228 struct dm_io *io; 1229 sector_t sector; 1230 unsigned sector_count; 1231 }; 1232 1233 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1234 { 1235 bio->bi_iter.bi_sector = sector; 1236 bio->bi_iter.bi_size = to_bytes(len); 1237 } 1238 1239 /* 1240 * Creates a bio that consists of range of complete bvecs. 1241 */ 1242 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1243 sector_t sector, unsigned len) 1244 { 1245 struct bio *clone = &tio->clone; 1246 1247 __bio_clone_fast(clone, bio); 1248 1249 if (unlikely(bio_integrity(bio) != NULL)) { 1250 int r; 1251 1252 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1253 !dm_target_passes_integrity(tio->ti->type))) { 1254 DMWARN("%s: the target %s doesn't support integrity data.", 1255 dm_device_name(tio->io->md), 1256 tio->ti->type->name); 1257 return -EIO; 1258 } 1259 1260 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1261 if (r < 0) 1262 return r; 1263 } 1264 1265 if (bio_op(bio) != REQ_OP_ZONE_REPORT) 1266 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1267 clone->bi_iter.bi_size = to_bytes(len); 1268 1269 if (unlikely(bio_integrity(bio) != NULL)) 1270 bio_integrity_trim(clone); 1271 1272 return 0; 1273 } 1274 1275 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1276 struct dm_target *ti, 1277 unsigned target_bio_nr) 1278 { 1279 struct dm_target_io *tio; 1280 struct bio *clone; 1281 1282 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1283 tio = container_of(clone, struct dm_target_io, clone); 1284 1285 tio->io = ci->io; 1286 tio->ti = ti; 1287 tio->target_bio_nr = target_bio_nr; 1288 1289 return tio; 1290 } 1291 1292 static void __clone_and_map_simple_bio(struct clone_info *ci, 1293 struct dm_target *ti, 1294 unsigned target_bio_nr, unsigned *len) 1295 { 1296 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1297 struct bio *clone = &tio->clone; 1298 1299 tio->len_ptr = len; 1300 1301 __bio_clone_fast(clone, ci->bio); 1302 if (len) 1303 bio_setup_sector(clone, ci->sector, *len); 1304 1305 __map_bio(tio); 1306 } 1307 1308 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1309 unsigned num_bios, unsigned *len) 1310 { 1311 unsigned target_bio_nr; 1312 1313 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1314 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1315 } 1316 1317 static int __send_empty_flush(struct clone_info *ci) 1318 { 1319 unsigned target_nr = 0; 1320 struct dm_target *ti; 1321 1322 BUG_ON(bio_has_data(ci->bio)); 1323 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1324 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1325 1326 return 0; 1327 } 1328 1329 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1330 sector_t sector, unsigned *len) 1331 { 1332 struct bio *bio = ci->bio; 1333 struct dm_target_io *tio; 1334 unsigned target_bio_nr; 1335 unsigned num_target_bios = 1; 1336 int r = 0; 1337 1338 /* 1339 * Does the target want to receive duplicate copies of the bio? 1340 */ 1341 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1342 num_target_bios = ti->num_write_bios(ti, bio); 1343 1344 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1345 tio = alloc_tio(ci, ti, target_bio_nr); 1346 tio->len_ptr = len; 1347 r = clone_bio(tio, bio, sector, *len); 1348 if (r < 0) { 1349 free_tio(tio); 1350 break; 1351 } 1352 __map_bio(tio); 1353 } 1354 1355 return r; 1356 } 1357 1358 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1359 1360 static unsigned get_num_discard_bios(struct dm_target *ti) 1361 { 1362 return ti->num_discard_bios; 1363 } 1364 1365 static unsigned get_num_write_same_bios(struct dm_target *ti) 1366 { 1367 return ti->num_write_same_bios; 1368 } 1369 1370 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1371 { 1372 return ti->num_write_zeroes_bios; 1373 } 1374 1375 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1376 1377 static bool is_split_required_for_discard(struct dm_target *ti) 1378 { 1379 return ti->split_discard_bios; 1380 } 1381 1382 static int __send_changing_extent_only(struct clone_info *ci, 1383 get_num_bios_fn get_num_bios, 1384 is_split_required_fn is_split_required) 1385 { 1386 struct dm_target *ti; 1387 unsigned len; 1388 unsigned num_bios; 1389 1390 do { 1391 ti = dm_table_find_target(ci->map, ci->sector); 1392 if (!dm_target_is_valid(ti)) 1393 return -EIO; 1394 1395 /* 1396 * Even though the device advertised support for this type of 1397 * request, that does not mean every target supports it, and 1398 * reconfiguration might also have changed that since the 1399 * check was performed. 1400 */ 1401 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1402 if (!num_bios) 1403 return -EOPNOTSUPP; 1404 1405 if (is_split_required && !is_split_required(ti)) 1406 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1407 else 1408 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1409 1410 __send_duplicate_bios(ci, ti, num_bios, &len); 1411 1412 ci->sector += len; 1413 } while (ci->sector_count -= len); 1414 1415 return 0; 1416 } 1417 1418 static int __send_discard(struct clone_info *ci) 1419 { 1420 return __send_changing_extent_only(ci, get_num_discard_bios, 1421 is_split_required_for_discard); 1422 } 1423 1424 static int __send_write_same(struct clone_info *ci) 1425 { 1426 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1427 } 1428 1429 static int __send_write_zeroes(struct clone_info *ci) 1430 { 1431 return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL); 1432 } 1433 1434 /* 1435 * Select the correct strategy for processing a non-flush bio. 1436 */ 1437 static int __split_and_process_non_flush(struct clone_info *ci) 1438 { 1439 struct bio *bio = ci->bio; 1440 struct dm_target *ti; 1441 unsigned len; 1442 int r; 1443 1444 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1445 return __send_discard(ci); 1446 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1447 return __send_write_same(ci); 1448 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES)) 1449 return __send_write_zeroes(ci); 1450 1451 ti = dm_table_find_target(ci->map, ci->sector); 1452 if (!dm_target_is_valid(ti)) 1453 return -EIO; 1454 1455 if (bio_op(bio) == REQ_OP_ZONE_REPORT) 1456 len = ci->sector_count; 1457 else 1458 len = min_t(sector_t, max_io_len(ci->sector, ti), 1459 ci->sector_count); 1460 1461 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1462 if (r < 0) 1463 return r; 1464 1465 ci->sector += len; 1466 ci->sector_count -= len; 1467 1468 return 0; 1469 } 1470 1471 /* 1472 * Entry point to split a bio into clones and submit them to the targets. 1473 */ 1474 static void __split_and_process_bio(struct mapped_device *md, 1475 struct dm_table *map, struct bio *bio) 1476 { 1477 struct clone_info ci; 1478 int error = 0; 1479 1480 if (unlikely(!map)) { 1481 bio_io_error(bio); 1482 return; 1483 } 1484 1485 ci.map = map; 1486 ci.md = md; 1487 ci.io = alloc_io(md); 1488 ci.io->status = 0; 1489 atomic_set(&ci.io->io_count, 1); 1490 ci.io->bio = bio; 1491 ci.io->md = md; 1492 spin_lock_init(&ci.io->endio_lock); 1493 ci.sector = bio->bi_iter.bi_sector; 1494 1495 start_io_acct(ci.io); 1496 1497 if (bio->bi_opf & REQ_PREFLUSH) { 1498 ci.bio = &ci.md->flush_bio; 1499 ci.sector_count = 0; 1500 error = __send_empty_flush(&ci); 1501 /* dec_pending submits any data associated with flush */ 1502 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1503 ci.bio = bio; 1504 ci.sector_count = 0; 1505 error = __split_and_process_non_flush(&ci); 1506 } else { 1507 ci.bio = bio; 1508 ci.sector_count = bio_sectors(bio); 1509 while (ci.sector_count && !error) 1510 error = __split_and_process_non_flush(&ci); 1511 } 1512 1513 /* drop the extra reference count */ 1514 dec_pending(ci.io, errno_to_blk_status(error)); 1515 } 1516 /*----------------------------------------------------------------- 1517 * CRUD END 1518 *---------------------------------------------------------------*/ 1519 1520 /* 1521 * The request function that just remaps the bio built up by 1522 * dm_merge_bvec. 1523 */ 1524 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1525 { 1526 int rw = bio_data_dir(bio); 1527 struct mapped_device *md = q->queuedata; 1528 int srcu_idx; 1529 struct dm_table *map; 1530 1531 map = dm_get_live_table(md, &srcu_idx); 1532 1533 generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0); 1534 1535 /* if we're suspended, we have to queue this io for later */ 1536 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1537 dm_put_live_table(md, srcu_idx); 1538 1539 if (!(bio->bi_opf & REQ_RAHEAD)) 1540 queue_io(md, bio); 1541 else 1542 bio_io_error(bio); 1543 return BLK_QC_T_NONE; 1544 } 1545 1546 __split_and_process_bio(md, map, bio); 1547 dm_put_live_table(md, srcu_idx); 1548 return BLK_QC_T_NONE; 1549 } 1550 1551 static int dm_any_congested(void *congested_data, int bdi_bits) 1552 { 1553 int r = bdi_bits; 1554 struct mapped_device *md = congested_data; 1555 struct dm_table *map; 1556 1557 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1558 if (dm_request_based(md)) { 1559 /* 1560 * With request-based DM we only need to check the 1561 * top-level queue for congestion. 1562 */ 1563 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1564 } else { 1565 map = dm_get_live_table_fast(md); 1566 if (map) 1567 r = dm_table_any_congested(map, bdi_bits); 1568 dm_put_live_table_fast(md); 1569 } 1570 } 1571 1572 return r; 1573 } 1574 1575 /*----------------------------------------------------------------- 1576 * An IDR is used to keep track of allocated minor numbers. 1577 *---------------------------------------------------------------*/ 1578 static void free_minor(int minor) 1579 { 1580 spin_lock(&_minor_lock); 1581 idr_remove(&_minor_idr, minor); 1582 spin_unlock(&_minor_lock); 1583 } 1584 1585 /* 1586 * See if the device with a specific minor # is free. 1587 */ 1588 static int specific_minor(int minor) 1589 { 1590 int r; 1591 1592 if (minor >= (1 << MINORBITS)) 1593 return -EINVAL; 1594 1595 idr_preload(GFP_KERNEL); 1596 spin_lock(&_minor_lock); 1597 1598 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1599 1600 spin_unlock(&_minor_lock); 1601 idr_preload_end(); 1602 if (r < 0) 1603 return r == -ENOSPC ? -EBUSY : r; 1604 return 0; 1605 } 1606 1607 static int next_free_minor(int *minor) 1608 { 1609 int r; 1610 1611 idr_preload(GFP_KERNEL); 1612 spin_lock(&_minor_lock); 1613 1614 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1615 1616 spin_unlock(&_minor_lock); 1617 idr_preload_end(); 1618 if (r < 0) 1619 return r; 1620 *minor = r; 1621 return 0; 1622 } 1623 1624 static const struct block_device_operations dm_blk_dops; 1625 static const struct dax_operations dm_dax_ops; 1626 1627 static void dm_wq_work(struct work_struct *work); 1628 1629 void dm_init_md_queue(struct mapped_device *md) 1630 { 1631 /* 1632 * Initialize data that will only be used by a non-blk-mq DM queue 1633 * - must do so here (in alloc_dev callchain) before queue is used 1634 */ 1635 md->queue->queuedata = md; 1636 md->queue->backing_dev_info->congested_data = md; 1637 } 1638 1639 void dm_init_normal_md_queue(struct mapped_device *md) 1640 { 1641 md->use_blk_mq = false; 1642 dm_init_md_queue(md); 1643 1644 /* 1645 * Initialize aspects of queue that aren't relevant for blk-mq 1646 */ 1647 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1648 } 1649 1650 static void cleanup_mapped_device(struct mapped_device *md) 1651 { 1652 if (md->wq) 1653 destroy_workqueue(md->wq); 1654 if (md->kworker_task) 1655 kthread_stop(md->kworker_task); 1656 mempool_destroy(md->io_pool); 1657 if (md->bs) 1658 bioset_free(md->bs); 1659 1660 if (md->dax_dev) { 1661 kill_dax(md->dax_dev); 1662 put_dax(md->dax_dev); 1663 md->dax_dev = NULL; 1664 } 1665 1666 if (md->disk) { 1667 spin_lock(&_minor_lock); 1668 md->disk->private_data = NULL; 1669 spin_unlock(&_minor_lock); 1670 del_gendisk(md->disk); 1671 put_disk(md->disk); 1672 } 1673 1674 if (md->queue) 1675 blk_cleanup_queue(md->queue); 1676 1677 cleanup_srcu_struct(&md->io_barrier); 1678 1679 if (md->bdev) { 1680 bdput(md->bdev); 1681 md->bdev = NULL; 1682 } 1683 1684 dm_mq_cleanup_mapped_device(md); 1685 } 1686 1687 /* 1688 * Allocate and initialise a blank device with a given minor. 1689 */ 1690 static struct mapped_device *alloc_dev(int minor) 1691 { 1692 int r, numa_node_id = dm_get_numa_node(); 1693 struct dax_device *dax_dev; 1694 struct mapped_device *md; 1695 void *old_md; 1696 1697 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1698 if (!md) { 1699 DMWARN("unable to allocate device, out of memory."); 1700 return NULL; 1701 } 1702 1703 if (!try_module_get(THIS_MODULE)) 1704 goto bad_module_get; 1705 1706 /* get a minor number for the dev */ 1707 if (minor == DM_ANY_MINOR) 1708 r = next_free_minor(&minor); 1709 else 1710 r = specific_minor(minor); 1711 if (r < 0) 1712 goto bad_minor; 1713 1714 r = init_srcu_struct(&md->io_barrier); 1715 if (r < 0) 1716 goto bad_io_barrier; 1717 1718 md->numa_node_id = numa_node_id; 1719 md->use_blk_mq = dm_use_blk_mq_default(); 1720 md->init_tio_pdu = false; 1721 md->type = DM_TYPE_NONE; 1722 mutex_init(&md->suspend_lock); 1723 mutex_init(&md->type_lock); 1724 mutex_init(&md->table_devices_lock); 1725 spin_lock_init(&md->deferred_lock); 1726 atomic_set(&md->holders, 1); 1727 atomic_set(&md->open_count, 0); 1728 atomic_set(&md->event_nr, 0); 1729 atomic_set(&md->uevent_seq, 0); 1730 INIT_LIST_HEAD(&md->uevent_list); 1731 INIT_LIST_HEAD(&md->table_devices); 1732 spin_lock_init(&md->uevent_lock); 1733 1734 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1735 if (!md->queue) 1736 goto bad; 1737 1738 dm_init_md_queue(md); 1739 1740 md->disk = alloc_disk_node(1, numa_node_id); 1741 if (!md->disk) 1742 goto bad; 1743 1744 atomic_set(&md->pending[0], 0); 1745 atomic_set(&md->pending[1], 0); 1746 init_waitqueue_head(&md->wait); 1747 INIT_WORK(&md->work, dm_wq_work); 1748 init_waitqueue_head(&md->eventq); 1749 init_completion(&md->kobj_holder.completion); 1750 md->kworker_task = NULL; 1751 1752 md->disk->major = _major; 1753 md->disk->first_minor = minor; 1754 md->disk->fops = &dm_blk_dops; 1755 md->disk->queue = md->queue; 1756 md->disk->private_data = md; 1757 sprintf(md->disk->disk_name, "dm-%d", minor); 1758 1759 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1760 if (!dax_dev) 1761 goto bad; 1762 md->dax_dev = dax_dev; 1763 1764 add_disk_no_queue_reg(md->disk); 1765 format_dev_t(md->name, MKDEV(_major, minor)); 1766 1767 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1768 if (!md->wq) 1769 goto bad; 1770 1771 md->bdev = bdget_disk(md->disk, 0); 1772 if (!md->bdev) 1773 goto bad; 1774 1775 bio_init(&md->flush_bio, NULL, 0); 1776 bio_set_dev(&md->flush_bio, md->bdev); 1777 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1778 1779 dm_stats_init(&md->stats); 1780 1781 /* Populate the mapping, nobody knows we exist yet */ 1782 spin_lock(&_minor_lock); 1783 old_md = idr_replace(&_minor_idr, md, minor); 1784 spin_unlock(&_minor_lock); 1785 1786 BUG_ON(old_md != MINOR_ALLOCED); 1787 1788 return md; 1789 1790 bad: 1791 cleanup_mapped_device(md); 1792 bad_io_barrier: 1793 free_minor(minor); 1794 bad_minor: 1795 module_put(THIS_MODULE); 1796 bad_module_get: 1797 kvfree(md); 1798 return NULL; 1799 } 1800 1801 static void unlock_fs(struct mapped_device *md); 1802 1803 static void free_dev(struct mapped_device *md) 1804 { 1805 int minor = MINOR(disk_devt(md->disk)); 1806 1807 unlock_fs(md); 1808 1809 cleanup_mapped_device(md); 1810 1811 free_table_devices(&md->table_devices); 1812 dm_stats_cleanup(&md->stats); 1813 free_minor(minor); 1814 1815 module_put(THIS_MODULE); 1816 kvfree(md); 1817 } 1818 1819 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1820 { 1821 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1822 1823 if (md->bs) { 1824 /* The md already has necessary mempools. */ 1825 if (dm_table_bio_based(t)) { 1826 /* 1827 * Reload bioset because front_pad may have changed 1828 * because a different table was loaded. 1829 */ 1830 bioset_free(md->bs); 1831 md->bs = p->bs; 1832 p->bs = NULL; 1833 } 1834 /* 1835 * There's no need to reload with request-based dm 1836 * because the size of front_pad doesn't change. 1837 * Note for future: If you are to reload bioset, 1838 * prep-ed requests in the queue may refer 1839 * to bio from the old bioset, so you must walk 1840 * through the queue to unprep. 1841 */ 1842 goto out; 1843 } 1844 1845 BUG_ON(!p || md->io_pool || md->bs); 1846 1847 md->io_pool = p->io_pool; 1848 p->io_pool = NULL; 1849 md->bs = p->bs; 1850 p->bs = NULL; 1851 1852 out: 1853 /* mempool bind completed, no longer need any mempools in the table */ 1854 dm_table_free_md_mempools(t); 1855 } 1856 1857 /* 1858 * Bind a table to the device. 1859 */ 1860 static void event_callback(void *context) 1861 { 1862 unsigned long flags; 1863 LIST_HEAD(uevents); 1864 struct mapped_device *md = (struct mapped_device *) context; 1865 1866 spin_lock_irqsave(&md->uevent_lock, flags); 1867 list_splice_init(&md->uevent_list, &uevents); 1868 spin_unlock_irqrestore(&md->uevent_lock, flags); 1869 1870 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1871 1872 atomic_inc(&md->event_nr); 1873 wake_up(&md->eventq); 1874 dm_issue_global_event(); 1875 } 1876 1877 /* 1878 * Protected by md->suspend_lock obtained by dm_swap_table(). 1879 */ 1880 static void __set_size(struct mapped_device *md, sector_t size) 1881 { 1882 lockdep_assert_held(&md->suspend_lock); 1883 1884 set_capacity(md->disk, size); 1885 1886 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1887 } 1888 1889 /* 1890 * Returns old map, which caller must destroy. 1891 */ 1892 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1893 struct queue_limits *limits) 1894 { 1895 struct dm_table *old_map; 1896 struct request_queue *q = md->queue; 1897 sector_t size; 1898 1899 lockdep_assert_held(&md->suspend_lock); 1900 1901 size = dm_table_get_size(t); 1902 1903 /* 1904 * Wipe any geometry if the size of the table changed. 1905 */ 1906 if (size != dm_get_size(md)) 1907 memset(&md->geometry, 0, sizeof(md->geometry)); 1908 1909 __set_size(md, size); 1910 1911 dm_table_event_callback(t, event_callback, md); 1912 1913 /* 1914 * The queue hasn't been stopped yet, if the old table type wasn't 1915 * for request-based during suspension. So stop it to prevent 1916 * I/O mapping before resume. 1917 * This must be done before setting the queue restrictions, 1918 * because request-based dm may be run just after the setting. 1919 */ 1920 if (dm_table_request_based(t)) { 1921 dm_stop_queue(q); 1922 /* 1923 * Leverage the fact that request-based DM targets are 1924 * immutable singletons and establish md->immutable_target 1925 * - used to optimize both dm_request_fn and dm_mq_queue_rq 1926 */ 1927 md->immutable_target = dm_table_get_immutable_target(t); 1928 } 1929 1930 __bind_mempools(md, t); 1931 1932 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1933 rcu_assign_pointer(md->map, (void *)t); 1934 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1935 1936 dm_table_set_restrictions(t, q, limits); 1937 if (old_map) 1938 dm_sync_table(md); 1939 1940 return old_map; 1941 } 1942 1943 /* 1944 * Returns unbound table for the caller to free. 1945 */ 1946 static struct dm_table *__unbind(struct mapped_device *md) 1947 { 1948 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1949 1950 if (!map) 1951 return NULL; 1952 1953 dm_table_event_callback(map, NULL, NULL); 1954 RCU_INIT_POINTER(md->map, NULL); 1955 dm_sync_table(md); 1956 1957 return map; 1958 } 1959 1960 /* 1961 * Constructor for a new device. 1962 */ 1963 int dm_create(int minor, struct mapped_device **result) 1964 { 1965 struct mapped_device *md; 1966 1967 md = alloc_dev(minor); 1968 if (!md) 1969 return -ENXIO; 1970 1971 dm_sysfs_init(md); 1972 1973 *result = md; 1974 return 0; 1975 } 1976 1977 /* 1978 * Functions to manage md->type. 1979 * All are required to hold md->type_lock. 1980 */ 1981 void dm_lock_md_type(struct mapped_device *md) 1982 { 1983 mutex_lock(&md->type_lock); 1984 } 1985 1986 void dm_unlock_md_type(struct mapped_device *md) 1987 { 1988 mutex_unlock(&md->type_lock); 1989 } 1990 1991 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 1992 { 1993 BUG_ON(!mutex_is_locked(&md->type_lock)); 1994 md->type = type; 1995 } 1996 1997 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 1998 { 1999 return md->type; 2000 } 2001 2002 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2003 { 2004 return md->immutable_target_type; 2005 } 2006 2007 /* 2008 * The queue_limits are only valid as long as you have a reference 2009 * count on 'md'. 2010 */ 2011 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2012 { 2013 BUG_ON(!atomic_read(&md->holders)); 2014 return &md->queue->limits; 2015 } 2016 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2017 2018 /* 2019 * Setup the DM device's queue based on md's type 2020 */ 2021 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2022 { 2023 int r; 2024 struct queue_limits limits; 2025 enum dm_queue_mode type = dm_get_md_type(md); 2026 2027 switch (type) { 2028 case DM_TYPE_REQUEST_BASED: 2029 r = dm_old_init_request_queue(md, t); 2030 if (r) { 2031 DMERR("Cannot initialize queue for request-based mapped device"); 2032 return r; 2033 } 2034 break; 2035 case DM_TYPE_MQ_REQUEST_BASED: 2036 r = dm_mq_init_request_queue(md, t); 2037 if (r) { 2038 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2039 return r; 2040 } 2041 break; 2042 case DM_TYPE_BIO_BASED: 2043 case DM_TYPE_DAX_BIO_BASED: 2044 dm_init_normal_md_queue(md); 2045 blk_queue_make_request(md->queue, dm_make_request); 2046 /* 2047 * DM handles splitting bios as needed. Free the bio_split bioset 2048 * since it won't be used (saves 1 process per bio-based DM device). 2049 */ 2050 bioset_free(md->queue->bio_split); 2051 md->queue->bio_split = NULL; 2052 2053 if (type == DM_TYPE_DAX_BIO_BASED) 2054 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue); 2055 break; 2056 case DM_TYPE_NONE: 2057 WARN_ON_ONCE(true); 2058 break; 2059 } 2060 2061 r = dm_calculate_queue_limits(t, &limits); 2062 if (r) { 2063 DMERR("Cannot calculate initial queue limits"); 2064 return r; 2065 } 2066 dm_table_set_restrictions(t, md->queue, &limits); 2067 blk_register_queue(md->disk); 2068 2069 return 0; 2070 } 2071 2072 struct mapped_device *dm_get_md(dev_t dev) 2073 { 2074 struct mapped_device *md; 2075 unsigned minor = MINOR(dev); 2076 2077 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2078 return NULL; 2079 2080 spin_lock(&_minor_lock); 2081 2082 md = idr_find(&_minor_idr, minor); 2083 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2084 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2085 md = NULL; 2086 goto out; 2087 } 2088 dm_get(md); 2089 out: 2090 spin_unlock(&_minor_lock); 2091 2092 return md; 2093 } 2094 EXPORT_SYMBOL_GPL(dm_get_md); 2095 2096 void *dm_get_mdptr(struct mapped_device *md) 2097 { 2098 return md->interface_ptr; 2099 } 2100 2101 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2102 { 2103 md->interface_ptr = ptr; 2104 } 2105 2106 void dm_get(struct mapped_device *md) 2107 { 2108 atomic_inc(&md->holders); 2109 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2110 } 2111 2112 int dm_hold(struct mapped_device *md) 2113 { 2114 spin_lock(&_minor_lock); 2115 if (test_bit(DMF_FREEING, &md->flags)) { 2116 spin_unlock(&_minor_lock); 2117 return -EBUSY; 2118 } 2119 dm_get(md); 2120 spin_unlock(&_minor_lock); 2121 return 0; 2122 } 2123 EXPORT_SYMBOL_GPL(dm_hold); 2124 2125 const char *dm_device_name(struct mapped_device *md) 2126 { 2127 return md->name; 2128 } 2129 EXPORT_SYMBOL_GPL(dm_device_name); 2130 2131 static void __dm_destroy(struct mapped_device *md, bool wait) 2132 { 2133 struct request_queue *q = dm_get_md_queue(md); 2134 struct dm_table *map; 2135 int srcu_idx; 2136 2137 might_sleep(); 2138 2139 spin_lock(&_minor_lock); 2140 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2141 set_bit(DMF_FREEING, &md->flags); 2142 spin_unlock(&_minor_lock); 2143 2144 blk_set_queue_dying(q); 2145 2146 if (dm_request_based(md) && md->kworker_task) 2147 kthread_flush_worker(&md->kworker); 2148 2149 /* 2150 * Take suspend_lock so that presuspend and postsuspend methods 2151 * do not race with internal suspend. 2152 */ 2153 mutex_lock(&md->suspend_lock); 2154 map = dm_get_live_table(md, &srcu_idx); 2155 if (!dm_suspended_md(md)) { 2156 dm_table_presuspend_targets(map); 2157 dm_table_postsuspend_targets(map); 2158 } 2159 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2160 dm_put_live_table(md, srcu_idx); 2161 mutex_unlock(&md->suspend_lock); 2162 2163 /* 2164 * Rare, but there may be I/O requests still going to complete, 2165 * for example. Wait for all references to disappear. 2166 * No one should increment the reference count of the mapped_device, 2167 * after the mapped_device state becomes DMF_FREEING. 2168 */ 2169 if (wait) 2170 while (atomic_read(&md->holders)) 2171 msleep(1); 2172 else if (atomic_read(&md->holders)) 2173 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2174 dm_device_name(md), atomic_read(&md->holders)); 2175 2176 dm_sysfs_exit(md); 2177 dm_table_destroy(__unbind(md)); 2178 free_dev(md); 2179 } 2180 2181 void dm_destroy(struct mapped_device *md) 2182 { 2183 __dm_destroy(md, true); 2184 } 2185 2186 void dm_destroy_immediate(struct mapped_device *md) 2187 { 2188 __dm_destroy(md, false); 2189 } 2190 2191 void dm_put(struct mapped_device *md) 2192 { 2193 atomic_dec(&md->holders); 2194 } 2195 EXPORT_SYMBOL_GPL(dm_put); 2196 2197 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2198 { 2199 int r = 0; 2200 DEFINE_WAIT(wait); 2201 2202 while (1) { 2203 prepare_to_wait(&md->wait, &wait, task_state); 2204 2205 if (!md_in_flight(md)) 2206 break; 2207 2208 if (signal_pending_state(task_state, current)) { 2209 r = -EINTR; 2210 break; 2211 } 2212 2213 io_schedule(); 2214 } 2215 finish_wait(&md->wait, &wait); 2216 2217 return r; 2218 } 2219 2220 /* 2221 * Process the deferred bios 2222 */ 2223 static void dm_wq_work(struct work_struct *work) 2224 { 2225 struct mapped_device *md = container_of(work, struct mapped_device, 2226 work); 2227 struct bio *c; 2228 int srcu_idx; 2229 struct dm_table *map; 2230 2231 map = dm_get_live_table(md, &srcu_idx); 2232 2233 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2234 spin_lock_irq(&md->deferred_lock); 2235 c = bio_list_pop(&md->deferred); 2236 spin_unlock_irq(&md->deferred_lock); 2237 2238 if (!c) 2239 break; 2240 2241 if (dm_request_based(md)) 2242 generic_make_request(c); 2243 else 2244 __split_and_process_bio(md, map, c); 2245 } 2246 2247 dm_put_live_table(md, srcu_idx); 2248 } 2249 2250 static void dm_queue_flush(struct mapped_device *md) 2251 { 2252 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2253 smp_mb__after_atomic(); 2254 queue_work(md->wq, &md->work); 2255 } 2256 2257 /* 2258 * Swap in a new table, returning the old one for the caller to destroy. 2259 */ 2260 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2261 { 2262 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2263 struct queue_limits limits; 2264 int r; 2265 2266 mutex_lock(&md->suspend_lock); 2267 2268 /* device must be suspended */ 2269 if (!dm_suspended_md(md)) 2270 goto out; 2271 2272 /* 2273 * If the new table has no data devices, retain the existing limits. 2274 * This helps multipath with queue_if_no_path if all paths disappear, 2275 * then new I/O is queued based on these limits, and then some paths 2276 * reappear. 2277 */ 2278 if (dm_table_has_no_data_devices(table)) { 2279 live_map = dm_get_live_table_fast(md); 2280 if (live_map) 2281 limits = md->queue->limits; 2282 dm_put_live_table_fast(md); 2283 } 2284 2285 if (!live_map) { 2286 r = dm_calculate_queue_limits(table, &limits); 2287 if (r) { 2288 map = ERR_PTR(r); 2289 goto out; 2290 } 2291 } 2292 2293 map = __bind(md, table, &limits); 2294 dm_issue_global_event(); 2295 2296 out: 2297 mutex_unlock(&md->suspend_lock); 2298 return map; 2299 } 2300 2301 /* 2302 * Functions to lock and unlock any filesystem running on the 2303 * device. 2304 */ 2305 static int lock_fs(struct mapped_device *md) 2306 { 2307 int r; 2308 2309 WARN_ON(md->frozen_sb); 2310 2311 md->frozen_sb = freeze_bdev(md->bdev); 2312 if (IS_ERR(md->frozen_sb)) { 2313 r = PTR_ERR(md->frozen_sb); 2314 md->frozen_sb = NULL; 2315 return r; 2316 } 2317 2318 set_bit(DMF_FROZEN, &md->flags); 2319 2320 return 0; 2321 } 2322 2323 static void unlock_fs(struct mapped_device *md) 2324 { 2325 if (!test_bit(DMF_FROZEN, &md->flags)) 2326 return; 2327 2328 thaw_bdev(md->bdev, md->frozen_sb); 2329 md->frozen_sb = NULL; 2330 clear_bit(DMF_FROZEN, &md->flags); 2331 } 2332 2333 /* 2334 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2335 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2336 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2337 * 2338 * If __dm_suspend returns 0, the device is completely quiescent 2339 * now. There is no request-processing activity. All new requests 2340 * are being added to md->deferred list. 2341 */ 2342 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2343 unsigned suspend_flags, long task_state, 2344 int dmf_suspended_flag) 2345 { 2346 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2347 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2348 int r; 2349 2350 lockdep_assert_held(&md->suspend_lock); 2351 2352 /* 2353 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2354 * This flag is cleared before dm_suspend returns. 2355 */ 2356 if (noflush) 2357 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2358 else 2359 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2360 2361 /* 2362 * This gets reverted if there's an error later and the targets 2363 * provide the .presuspend_undo hook. 2364 */ 2365 dm_table_presuspend_targets(map); 2366 2367 /* 2368 * Flush I/O to the device. 2369 * Any I/O submitted after lock_fs() may not be flushed. 2370 * noflush takes precedence over do_lockfs. 2371 * (lock_fs() flushes I/Os and waits for them to complete.) 2372 */ 2373 if (!noflush && do_lockfs) { 2374 r = lock_fs(md); 2375 if (r) { 2376 dm_table_presuspend_undo_targets(map); 2377 return r; 2378 } 2379 } 2380 2381 /* 2382 * Here we must make sure that no processes are submitting requests 2383 * to target drivers i.e. no one may be executing 2384 * __split_and_process_bio. This is called from dm_request and 2385 * dm_wq_work. 2386 * 2387 * To get all processes out of __split_and_process_bio in dm_request, 2388 * we take the write lock. To prevent any process from reentering 2389 * __split_and_process_bio from dm_request and quiesce the thread 2390 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2391 * flush_workqueue(md->wq). 2392 */ 2393 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2394 if (map) 2395 synchronize_srcu(&md->io_barrier); 2396 2397 /* 2398 * Stop md->queue before flushing md->wq in case request-based 2399 * dm defers requests to md->wq from md->queue. 2400 */ 2401 if (dm_request_based(md)) { 2402 dm_stop_queue(md->queue); 2403 if (md->kworker_task) 2404 kthread_flush_worker(&md->kworker); 2405 } 2406 2407 flush_workqueue(md->wq); 2408 2409 /* 2410 * At this point no more requests are entering target request routines. 2411 * We call dm_wait_for_completion to wait for all existing requests 2412 * to finish. 2413 */ 2414 r = dm_wait_for_completion(md, task_state); 2415 if (!r) 2416 set_bit(dmf_suspended_flag, &md->flags); 2417 2418 if (noflush) 2419 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2420 if (map) 2421 synchronize_srcu(&md->io_barrier); 2422 2423 /* were we interrupted ? */ 2424 if (r < 0) { 2425 dm_queue_flush(md); 2426 2427 if (dm_request_based(md)) 2428 dm_start_queue(md->queue); 2429 2430 unlock_fs(md); 2431 dm_table_presuspend_undo_targets(map); 2432 /* pushback list is already flushed, so skip flush */ 2433 } 2434 2435 return r; 2436 } 2437 2438 /* 2439 * We need to be able to change a mapping table under a mounted 2440 * filesystem. For example we might want to move some data in 2441 * the background. Before the table can be swapped with 2442 * dm_bind_table, dm_suspend must be called to flush any in 2443 * flight bios and ensure that any further io gets deferred. 2444 */ 2445 /* 2446 * Suspend mechanism in request-based dm. 2447 * 2448 * 1. Flush all I/Os by lock_fs() if needed. 2449 * 2. Stop dispatching any I/O by stopping the request_queue. 2450 * 3. Wait for all in-flight I/Os to be completed or requeued. 2451 * 2452 * To abort suspend, start the request_queue. 2453 */ 2454 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2455 { 2456 struct dm_table *map = NULL; 2457 int r = 0; 2458 2459 retry: 2460 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2461 2462 if (dm_suspended_md(md)) { 2463 r = -EINVAL; 2464 goto out_unlock; 2465 } 2466 2467 if (dm_suspended_internally_md(md)) { 2468 /* already internally suspended, wait for internal resume */ 2469 mutex_unlock(&md->suspend_lock); 2470 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2471 if (r) 2472 return r; 2473 goto retry; 2474 } 2475 2476 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2477 2478 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2479 if (r) 2480 goto out_unlock; 2481 2482 dm_table_postsuspend_targets(map); 2483 2484 out_unlock: 2485 mutex_unlock(&md->suspend_lock); 2486 return r; 2487 } 2488 2489 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2490 { 2491 if (map) { 2492 int r = dm_table_resume_targets(map); 2493 if (r) 2494 return r; 2495 } 2496 2497 dm_queue_flush(md); 2498 2499 /* 2500 * Flushing deferred I/Os must be done after targets are resumed 2501 * so that mapping of targets can work correctly. 2502 * Request-based dm is queueing the deferred I/Os in its request_queue. 2503 */ 2504 if (dm_request_based(md)) 2505 dm_start_queue(md->queue); 2506 2507 unlock_fs(md); 2508 2509 return 0; 2510 } 2511 2512 int dm_resume(struct mapped_device *md) 2513 { 2514 int r; 2515 struct dm_table *map = NULL; 2516 2517 retry: 2518 r = -EINVAL; 2519 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2520 2521 if (!dm_suspended_md(md)) 2522 goto out; 2523 2524 if (dm_suspended_internally_md(md)) { 2525 /* already internally suspended, wait for internal resume */ 2526 mutex_unlock(&md->suspend_lock); 2527 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2528 if (r) 2529 return r; 2530 goto retry; 2531 } 2532 2533 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2534 if (!map || !dm_table_get_size(map)) 2535 goto out; 2536 2537 r = __dm_resume(md, map); 2538 if (r) 2539 goto out; 2540 2541 clear_bit(DMF_SUSPENDED, &md->flags); 2542 out: 2543 mutex_unlock(&md->suspend_lock); 2544 2545 return r; 2546 } 2547 2548 /* 2549 * Internal suspend/resume works like userspace-driven suspend. It waits 2550 * until all bios finish and prevents issuing new bios to the target drivers. 2551 * It may be used only from the kernel. 2552 */ 2553 2554 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2555 { 2556 struct dm_table *map = NULL; 2557 2558 lockdep_assert_held(&md->suspend_lock); 2559 2560 if (md->internal_suspend_count++) 2561 return; /* nested internal suspend */ 2562 2563 if (dm_suspended_md(md)) { 2564 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2565 return; /* nest suspend */ 2566 } 2567 2568 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2569 2570 /* 2571 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2572 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2573 * would require changing .presuspend to return an error -- avoid this 2574 * until there is a need for more elaborate variants of internal suspend. 2575 */ 2576 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2577 DMF_SUSPENDED_INTERNALLY); 2578 2579 dm_table_postsuspend_targets(map); 2580 } 2581 2582 static void __dm_internal_resume(struct mapped_device *md) 2583 { 2584 BUG_ON(!md->internal_suspend_count); 2585 2586 if (--md->internal_suspend_count) 2587 return; /* resume from nested internal suspend */ 2588 2589 if (dm_suspended_md(md)) 2590 goto done; /* resume from nested suspend */ 2591 2592 /* 2593 * NOTE: existing callers don't need to call dm_table_resume_targets 2594 * (which may fail -- so best to avoid it for now by passing NULL map) 2595 */ 2596 (void) __dm_resume(md, NULL); 2597 2598 done: 2599 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2600 smp_mb__after_atomic(); 2601 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2602 } 2603 2604 void dm_internal_suspend_noflush(struct mapped_device *md) 2605 { 2606 mutex_lock(&md->suspend_lock); 2607 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2608 mutex_unlock(&md->suspend_lock); 2609 } 2610 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2611 2612 void dm_internal_resume(struct mapped_device *md) 2613 { 2614 mutex_lock(&md->suspend_lock); 2615 __dm_internal_resume(md); 2616 mutex_unlock(&md->suspend_lock); 2617 } 2618 EXPORT_SYMBOL_GPL(dm_internal_resume); 2619 2620 /* 2621 * Fast variants of internal suspend/resume hold md->suspend_lock, 2622 * which prevents interaction with userspace-driven suspend. 2623 */ 2624 2625 void dm_internal_suspend_fast(struct mapped_device *md) 2626 { 2627 mutex_lock(&md->suspend_lock); 2628 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2629 return; 2630 2631 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2632 synchronize_srcu(&md->io_barrier); 2633 flush_workqueue(md->wq); 2634 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2635 } 2636 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2637 2638 void dm_internal_resume_fast(struct mapped_device *md) 2639 { 2640 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2641 goto done; 2642 2643 dm_queue_flush(md); 2644 2645 done: 2646 mutex_unlock(&md->suspend_lock); 2647 } 2648 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2649 2650 /*----------------------------------------------------------------- 2651 * Event notification. 2652 *---------------------------------------------------------------*/ 2653 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2654 unsigned cookie) 2655 { 2656 char udev_cookie[DM_COOKIE_LENGTH]; 2657 char *envp[] = { udev_cookie, NULL }; 2658 2659 if (!cookie) 2660 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2661 else { 2662 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2663 DM_COOKIE_ENV_VAR_NAME, cookie); 2664 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2665 action, envp); 2666 } 2667 } 2668 2669 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2670 { 2671 return atomic_add_return(1, &md->uevent_seq); 2672 } 2673 2674 uint32_t dm_get_event_nr(struct mapped_device *md) 2675 { 2676 return atomic_read(&md->event_nr); 2677 } 2678 2679 int dm_wait_event(struct mapped_device *md, int event_nr) 2680 { 2681 return wait_event_interruptible(md->eventq, 2682 (event_nr != atomic_read(&md->event_nr))); 2683 } 2684 2685 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2686 { 2687 unsigned long flags; 2688 2689 spin_lock_irqsave(&md->uevent_lock, flags); 2690 list_add(elist, &md->uevent_list); 2691 spin_unlock_irqrestore(&md->uevent_lock, flags); 2692 } 2693 2694 /* 2695 * The gendisk is only valid as long as you have a reference 2696 * count on 'md'. 2697 */ 2698 struct gendisk *dm_disk(struct mapped_device *md) 2699 { 2700 return md->disk; 2701 } 2702 EXPORT_SYMBOL_GPL(dm_disk); 2703 2704 struct kobject *dm_kobject(struct mapped_device *md) 2705 { 2706 return &md->kobj_holder.kobj; 2707 } 2708 2709 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2710 { 2711 struct mapped_device *md; 2712 2713 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2714 2715 spin_lock(&_minor_lock); 2716 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2717 md = NULL; 2718 goto out; 2719 } 2720 dm_get(md); 2721 out: 2722 spin_unlock(&_minor_lock); 2723 2724 return md; 2725 } 2726 2727 int dm_suspended_md(struct mapped_device *md) 2728 { 2729 return test_bit(DMF_SUSPENDED, &md->flags); 2730 } 2731 2732 int dm_suspended_internally_md(struct mapped_device *md) 2733 { 2734 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2735 } 2736 2737 int dm_test_deferred_remove_flag(struct mapped_device *md) 2738 { 2739 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2740 } 2741 2742 int dm_suspended(struct dm_target *ti) 2743 { 2744 return dm_suspended_md(dm_table_get_md(ti->table)); 2745 } 2746 EXPORT_SYMBOL_GPL(dm_suspended); 2747 2748 int dm_noflush_suspending(struct dm_target *ti) 2749 { 2750 return __noflush_suspending(dm_table_get_md(ti->table)); 2751 } 2752 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2753 2754 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2755 unsigned integrity, unsigned per_io_data_size) 2756 { 2757 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2758 unsigned int pool_size = 0; 2759 unsigned int front_pad; 2760 2761 if (!pools) 2762 return NULL; 2763 2764 switch (type) { 2765 case DM_TYPE_BIO_BASED: 2766 case DM_TYPE_DAX_BIO_BASED: 2767 pool_size = dm_get_reserved_bio_based_ios(); 2768 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2769 2770 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache); 2771 if (!pools->io_pool) 2772 goto out; 2773 break; 2774 case DM_TYPE_REQUEST_BASED: 2775 case DM_TYPE_MQ_REQUEST_BASED: 2776 pool_size = dm_get_reserved_rq_based_ios(); 2777 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2778 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2779 break; 2780 default: 2781 BUG(); 2782 } 2783 2784 pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER); 2785 if (!pools->bs) 2786 goto out; 2787 2788 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2789 goto out; 2790 2791 return pools; 2792 2793 out: 2794 dm_free_md_mempools(pools); 2795 2796 return NULL; 2797 } 2798 2799 void dm_free_md_mempools(struct dm_md_mempools *pools) 2800 { 2801 if (!pools) 2802 return; 2803 2804 mempool_destroy(pools->io_pool); 2805 2806 if (pools->bs) 2807 bioset_free(pools->bs); 2808 2809 kfree(pools); 2810 } 2811 2812 struct dm_pr { 2813 u64 old_key; 2814 u64 new_key; 2815 u32 flags; 2816 bool fail_early; 2817 }; 2818 2819 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2820 void *data) 2821 { 2822 struct mapped_device *md = bdev->bd_disk->private_data; 2823 struct dm_table *table; 2824 struct dm_target *ti; 2825 int ret = -ENOTTY, srcu_idx; 2826 2827 table = dm_get_live_table(md, &srcu_idx); 2828 if (!table || !dm_table_get_size(table)) 2829 goto out; 2830 2831 /* We only support devices that have a single target */ 2832 if (dm_table_get_num_targets(table) != 1) 2833 goto out; 2834 ti = dm_table_get_target(table, 0); 2835 2836 ret = -EINVAL; 2837 if (!ti->type->iterate_devices) 2838 goto out; 2839 2840 ret = ti->type->iterate_devices(ti, fn, data); 2841 out: 2842 dm_put_live_table(md, srcu_idx); 2843 return ret; 2844 } 2845 2846 /* 2847 * For register / unregister we need to manually call out to every path. 2848 */ 2849 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2850 sector_t start, sector_t len, void *data) 2851 { 2852 struct dm_pr *pr = data; 2853 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2854 2855 if (!ops || !ops->pr_register) 2856 return -EOPNOTSUPP; 2857 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2858 } 2859 2860 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2861 u32 flags) 2862 { 2863 struct dm_pr pr = { 2864 .old_key = old_key, 2865 .new_key = new_key, 2866 .flags = flags, 2867 .fail_early = true, 2868 }; 2869 int ret; 2870 2871 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2872 if (ret && new_key) { 2873 /* unregister all paths if we failed to register any path */ 2874 pr.old_key = new_key; 2875 pr.new_key = 0; 2876 pr.flags = 0; 2877 pr.fail_early = false; 2878 dm_call_pr(bdev, __dm_pr_register, &pr); 2879 } 2880 2881 return ret; 2882 } 2883 2884 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2885 u32 flags) 2886 { 2887 struct mapped_device *md = bdev->bd_disk->private_data; 2888 const struct pr_ops *ops; 2889 fmode_t mode; 2890 int r; 2891 2892 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2893 if (r < 0) 2894 return r; 2895 2896 ops = bdev->bd_disk->fops->pr_ops; 2897 if (ops && ops->pr_reserve) 2898 r = ops->pr_reserve(bdev, key, type, flags); 2899 else 2900 r = -EOPNOTSUPP; 2901 2902 bdput(bdev); 2903 return r; 2904 } 2905 2906 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2907 { 2908 struct mapped_device *md = bdev->bd_disk->private_data; 2909 const struct pr_ops *ops; 2910 fmode_t mode; 2911 int r; 2912 2913 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2914 if (r < 0) 2915 return r; 2916 2917 ops = bdev->bd_disk->fops->pr_ops; 2918 if (ops && ops->pr_release) 2919 r = ops->pr_release(bdev, key, type); 2920 else 2921 r = -EOPNOTSUPP; 2922 2923 bdput(bdev); 2924 return r; 2925 } 2926 2927 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2928 enum pr_type type, bool abort) 2929 { 2930 struct mapped_device *md = bdev->bd_disk->private_data; 2931 const struct pr_ops *ops; 2932 fmode_t mode; 2933 int r; 2934 2935 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2936 if (r < 0) 2937 return r; 2938 2939 ops = bdev->bd_disk->fops->pr_ops; 2940 if (ops && ops->pr_preempt) 2941 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2942 else 2943 r = -EOPNOTSUPP; 2944 2945 bdput(bdev); 2946 return r; 2947 } 2948 2949 static int dm_pr_clear(struct block_device *bdev, u64 key) 2950 { 2951 struct mapped_device *md = bdev->bd_disk->private_data; 2952 const struct pr_ops *ops; 2953 fmode_t mode; 2954 int r; 2955 2956 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2957 if (r < 0) 2958 return r; 2959 2960 ops = bdev->bd_disk->fops->pr_ops; 2961 if (ops && ops->pr_clear) 2962 r = ops->pr_clear(bdev, key); 2963 else 2964 r = -EOPNOTSUPP; 2965 2966 bdput(bdev); 2967 return r; 2968 } 2969 2970 static const struct pr_ops dm_pr_ops = { 2971 .pr_register = dm_pr_register, 2972 .pr_reserve = dm_pr_reserve, 2973 .pr_release = dm_pr_release, 2974 .pr_preempt = dm_pr_preempt, 2975 .pr_clear = dm_pr_clear, 2976 }; 2977 2978 static const struct block_device_operations dm_blk_dops = { 2979 .open = dm_blk_open, 2980 .release = dm_blk_close, 2981 .ioctl = dm_blk_ioctl, 2982 .getgeo = dm_blk_getgeo, 2983 .pr_ops = &dm_pr_ops, 2984 .owner = THIS_MODULE 2985 }; 2986 2987 static const struct dax_operations dm_dax_ops = { 2988 .direct_access = dm_dax_direct_access, 2989 .copy_from_iter = dm_dax_copy_from_iter, 2990 }; 2991 2992 /* 2993 * module hooks 2994 */ 2995 module_init(dm_init); 2996 module_exit(dm_exit); 2997 2998 module_param(major, uint, 0); 2999 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3000 3001 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3002 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3003 3004 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3005 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3006 3007 MODULE_DESCRIPTION(DM_NAME " driver"); 3008 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3009 MODULE_LICENSE("GPL"); 3010