xref: /linux/drivers/md/dm.c (revision 9a3853587c2bb0a38c2ce80a613ace5e84ae4337)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated per bio.
64  */
65 struct dm_io {
66 	struct mapped_device *md;
67 	blk_status_t status;
68 	atomic_t io_count;
69 	struct bio *bio;
70 	unsigned long start_time;
71 	spinlock_t endio_lock;
72 	struct dm_stats_aux stats_aux;
73 };
74 
75 #define MINOR_ALLOCED ((void *)-1)
76 
77 /*
78  * Bits for the md->flags field.
79  */
80 #define DMF_BLOCK_IO_FOR_SUSPEND 0
81 #define DMF_SUSPENDED 1
82 #define DMF_FROZEN 2
83 #define DMF_FREEING 3
84 #define DMF_DELETING 4
85 #define DMF_NOFLUSH_SUSPENDING 5
86 #define DMF_DEFERRED_REMOVE 6
87 #define DMF_SUSPENDED_INTERNALLY 7
88 
89 #define DM_NUMA_NODE NUMA_NO_NODE
90 static int dm_numa_node = DM_NUMA_NODE;
91 
92 /*
93  * For mempools pre-allocation at the table loading time.
94  */
95 struct dm_md_mempools {
96 	mempool_t *io_pool;
97 	struct bio_set *bs;
98 };
99 
100 struct table_device {
101 	struct list_head list;
102 	refcount_t count;
103 	struct dm_dev dm_dev;
104 };
105 
106 static struct kmem_cache *_io_cache;
107 static struct kmem_cache *_rq_tio_cache;
108 static struct kmem_cache *_rq_cache;
109 
110 /*
111  * Bio-based DM's mempools' reserved IOs set by the user.
112  */
113 #define RESERVED_BIO_BASED_IOS		16
114 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
115 
116 static int __dm_get_module_param_int(int *module_param, int min, int max)
117 {
118 	int param = READ_ONCE(*module_param);
119 	int modified_param = 0;
120 	bool modified = true;
121 
122 	if (param < min)
123 		modified_param = min;
124 	else if (param > max)
125 		modified_param = max;
126 	else
127 		modified = false;
128 
129 	if (modified) {
130 		(void)cmpxchg(module_param, param, modified_param);
131 		param = modified_param;
132 	}
133 
134 	return param;
135 }
136 
137 unsigned __dm_get_module_param(unsigned *module_param,
138 			       unsigned def, unsigned max)
139 {
140 	unsigned param = READ_ONCE(*module_param);
141 	unsigned modified_param = 0;
142 
143 	if (!param)
144 		modified_param = def;
145 	else if (param > max)
146 		modified_param = max;
147 
148 	if (modified_param) {
149 		(void)cmpxchg(module_param, param, modified_param);
150 		param = modified_param;
151 	}
152 
153 	return param;
154 }
155 
156 unsigned dm_get_reserved_bio_based_ios(void)
157 {
158 	return __dm_get_module_param(&reserved_bio_based_ios,
159 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
160 }
161 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
162 
163 static unsigned dm_get_numa_node(void)
164 {
165 	return __dm_get_module_param_int(&dm_numa_node,
166 					 DM_NUMA_NODE, num_online_nodes() - 1);
167 }
168 
169 static int __init local_init(void)
170 {
171 	int r = -ENOMEM;
172 
173 	/* allocate a slab for the dm_ios */
174 	_io_cache = KMEM_CACHE(dm_io, 0);
175 	if (!_io_cache)
176 		return r;
177 
178 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
179 	if (!_rq_tio_cache)
180 		goto out_free_io_cache;
181 
182 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
183 				      __alignof__(struct request), 0, NULL);
184 	if (!_rq_cache)
185 		goto out_free_rq_tio_cache;
186 
187 	r = dm_uevent_init();
188 	if (r)
189 		goto out_free_rq_cache;
190 
191 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
192 	if (!deferred_remove_workqueue) {
193 		r = -ENOMEM;
194 		goto out_uevent_exit;
195 	}
196 
197 	_major = major;
198 	r = register_blkdev(_major, _name);
199 	if (r < 0)
200 		goto out_free_workqueue;
201 
202 	if (!_major)
203 		_major = r;
204 
205 	return 0;
206 
207 out_free_workqueue:
208 	destroy_workqueue(deferred_remove_workqueue);
209 out_uevent_exit:
210 	dm_uevent_exit();
211 out_free_rq_cache:
212 	kmem_cache_destroy(_rq_cache);
213 out_free_rq_tio_cache:
214 	kmem_cache_destroy(_rq_tio_cache);
215 out_free_io_cache:
216 	kmem_cache_destroy(_io_cache);
217 
218 	return r;
219 }
220 
221 static void local_exit(void)
222 {
223 	flush_scheduled_work();
224 	destroy_workqueue(deferred_remove_workqueue);
225 
226 	kmem_cache_destroy(_rq_cache);
227 	kmem_cache_destroy(_rq_tio_cache);
228 	kmem_cache_destroy(_io_cache);
229 	unregister_blkdev(_major, _name);
230 	dm_uevent_exit();
231 
232 	_major = 0;
233 
234 	DMINFO("cleaned up");
235 }
236 
237 static int (*_inits[])(void) __initdata = {
238 	local_init,
239 	dm_target_init,
240 	dm_linear_init,
241 	dm_stripe_init,
242 	dm_io_init,
243 	dm_kcopyd_init,
244 	dm_interface_init,
245 	dm_statistics_init,
246 };
247 
248 static void (*_exits[])(void) = {
249 	local_exit,
250 	dm_target_exit,
251 	dm_linear_exit,
252 	dm_stripe_exit,
253 	dm_io_exit,
254 	dm_kcopyd_exit,
255 	dm_interface_exit,
256 	dm_statistics_exit,
257 };
258 
259 static int __init dm_init(void)
260 {
261 	const int count = ARRAY_SIZE(_inits);
262 
263 	int r, i;
264 
265 	for (i = 0; i < count; i++) {
266 		r = _inits[i]();
267 		if (r)
268 			goto bad;
269 	}
270 
271 	return 0;
272 
273       bad:
274 	while (i--)
275 		_exits[i]();
276 
277 	return r;
278 }
279 
280 static void __exit dm_exit(void)
281 {
282 	int i = ARRAY_SIZE(_exits);
283 
284 	while (i--)
285 		_exits[i]();
286 
287 	/*
288 	 * Should be empty by this point.
289 	 */
290 	idr_destroy(&_minor_idr);
291 }
292 
293 /*
294  * Block device functions
295  */
296 int dm_deleting_md(struct mapped_device *md)
297 {
298 	return test_bit(DMF_DELETING, &md->flags);
299 }
300 
301 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
302 {
303 	struct mapped_device *md;
304 
305 	spin_lock(&_minor_lock);
306 
307 	md = bdev->bd_disk->private_data;
308 	if (!md)
309 		goto out;
310 
311 	if (test_bit(DMF_FREEING, &md->flags) ||
312 	    dm_deleting_md(md)) {
313 		md = NULL;
314 		goto out;
315 	}
316 
317 	dm_get(md);
318 	atomic_inc(&md->open_count);
319 out:
320 	spin_unlock(&_minor_lock);
321 
322 	return md ? 0 : -ENXIO;
323 }
324 
325 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
326 {
327 	struct mapped_device *md;
328 
329 	spin_lock(&_minor_lock);
330 
331 	md = disk->private_data;
332 	if (WARN_ON(!md))
333 		goto out;
334 
335 	if (atomic_dec_and_test(&md->open_count) &&
336 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
337 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
338 
339 	dm_put(md);
340 out:
341 	spin_unlock(&_minor_lock);
342 }
343 
344 int dm_open_count(struct mapped_device *md)
345 {
346 	return atomic_read(&md->open_count);
347 }
348 
349 /*
350  * Guarantees nothing is using the device before it's deleted.
351  */
352 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
353 {
354 	int r = 0;
355 
356 	spin_lock(&_minor_lock);
357 
358 	if (dm_open_count(md)) {
359 		r = -EBUSY;
360 		if (mark_deferred)
361 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
362 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
363 		r = -EEXIST;
364 	else
365 		set_bit(DMF_DELETING, &md->flags);
366 
367 	spin_unlock(&_minor_lock);
368 
369 	return r;
370 }
371 
372 int dm_cancel_deferred_remove(struct mapped_device *md)
373 {
374 	int r = 0;
375 
376 	spin_lock(&_minor_lock);
377 
378 	if (test_bit(DMF_DELETING, &md->flags))
379 		r = -EBUSY;
380 	else
381 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
382 
383 	spin_unlock(&_minor_lock);
384 
385 	return r;
386 }
387 
388 static void do_deferred_remove(struct work_struct *w)
389 {
390 	dm_deferred_remove();
391 }
392 
393 sector_t dm_get_size(struct mapped_device *md)
394 {
395 	return get_capacity(md->disk);
396 }
397 
398 struct request_queue *dm_get_md_queue(struct mapped_device *md)
399 {
400 	return md->queue;
401 }
402 
403 struct dm_stats *dm_get_stats(struct mapped_device *md)
404 {
405 	return &md->stats;
406 }
407 
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 	struct mapped_device *md = bdev->bd_disk->private_data;
411 
412 	return dm_get_geometry(md, geo);
413 }
414 
415 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
416 				  struct block_device **bdev,
417 				  fmode_t *mode)
418 {
419 	struct dm_target *tgt;
420 	struct dm_table *map;
421 	int srcu_idx, r;
422 
423 retry:
424 	r = -ENOTTY;
425 	map = dm_get_live_table(md, &srcu_idx);
426 	if (!map || !dm_table_get_size(map))
427 		goto out;
428 
429 	/* We only support devices that have a single target */
430 	if (dm_table_get_num_targets(map) != 1)
431 		goto out;
432 
433 	tgt = dm_table_get_target(map, 0);
434 	if (!tgt->type->prepare_ioctl)
435 		goto out;
436 
437 	if (dm_suspended_md(md)) {
438 		r = -EAGAIN;
439 		goto out;
440 	}
441 
442 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
443 	if (r < 0)
444 		goto out;
445 
446 	bdgrab(*bdev);
447 	dm_put_live_table(md, srcu_idx);
448 	return r;
449 
450 out:
451 	dm_put_live_table(md, srcu_idx);
452 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
453 		msleep(10);
454 		goto retry;
455 	}
456 	return r;
457 }
458 
459 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
460 			unsigned int cmd, unsigned long arg)
461 {
462 	struct mapped_device *md = bdev->bd_disk->private_data;
463 	int r;
464 
465 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
466 	if (r < 0)
467 		return r;
468 
469 	if (r > 0) {
470 		/*
471 		 * Target determined this ioctl is being issued against a
472 		 * subset of the parent bdev; require extra privileges.
473 		 */
474 		if (!capable(CAP_SYS_RAWIO)) {
475 			DMWARN_LIMIT(
476 	"%s: sending ioctl %x to DM device without required privilege.",
477 				current->comm, cmd);
478 			r = -ENOIOCTLCMD;
479 			goto out;
480 		}
481 	}
482 
483 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
484 out:
485 	bdput(bdev);
486 	return r;
487 }
488 
489 static struct dm_io *alloc_io(struct mapped_device *md)
490 {
491 	return mempool_alloc(md->io_pool, GFP_NOIO);
492 }
493 
494 static void free_io(struct mapped_device *md, struct dm_io *io)
495 {
496 	mempool_free(io, md->io_pool);
497 }
498 
499 static void free_tio(struct dm_target_io *tio)
500 {
501 	bio_put(&tio->clone);
502 }
503 
504 int md_in_flight(struct mapped_device *md)
505 {
506 	return atomic_read(&md->pending[READ]) +
507 	       atomic_read(&md->pending[WRITE]);
508 }
509 
510 static void start_io_acct(struct dm_io *io)
511 {
512 	struct mapped_device *md = io->md;
513 	struct bio *bio = io->bio;
514 	int cpu;
515 	int rw = bio_data_dir(bio);
516 
517 	io->start_time = jiffies;
518 
519 	cpu = part_stat_lock();
520 	part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
521 	part_stat_unlock();
522 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
523 		atomic_inc_return(&md->pending[rw]));
524 
525 	if (unlikely(dm_stats_used(&md->stats)))
526 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
527 				    bio->bi_iter.bi_sector, bio_sectors(bio),
528 				    false, 0, &io->stats_aux);
529 }
530 
531 static void end_io_acct(struct dm_io *io)
532 {
533 	struct mapped_device *md = io->md;
534 	struct bio *bio = io->bio;
535 	unsigned long duration = jiffies - io->start_time;
536 	int pending;
537 	int rw = bio_data_dir(bio);
538 
539 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
540 
541 	if (unlikely(dm_stats_used(&md->stats)))
542 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
543 				    bio->bi_iter.bi_sector, bio_sectors(bio),
544 				    true, duration, &io->stats_aux);
545 
546 	/*
547 	 * After this is decremented the bio must not be touched if it is
548 	 * a flush.
549 	 */
550 	pending = atomic_dec_return(&md->pending[rw]);
551 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
552 	pending += atomic_read(&md->pending[rw^0x1]);
553 
554 	/* nudge anyone waiting on suspend queue */
555 	if (!pending)
556 		wake_up(&md->wait);
557 }
558 
559 /*
560  * Add the bio to the list of deferred io.
561  */
562 static void queue_io(struct mapped_device *md, struct bio *bio)
563 {
564 	unsigned long flags;
565 
566 	spin_lock_irqsave(&md->deferred_lock, flags);
567 	bio_list_add(&md->deferred, bio);
568 	spin_unlock_irqrestore(&md->deferred_lock, flags);
569 	queue_work(md->wq, &md->work);
570 }
571 
572 /*
573  * Everyone (including functions in this file), should use this
574  * function to access the md->map field, and make sure they call
575  * dm_put_live_table() when finished.
576  */
577 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
578 {
579 	*srcu_idx = srcu_read_lock(&md->io_barrier);
580 
581 	return srcu_dereference(md->map, &md->io_barrier);
582 }
583 
584 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
585 {
586 	srcu_read_unlock(&md->io_barrier, srcu_idx);
587 }
588 
589 void dm_sync_table(struct mapped_device *md)
590 {
591 	synchronize_srcu(&md->io_barrier);
592 	synchronize_rcu_expedited();
593 }
594 
595 /*
596  * A fast alternative to dm_get_live_table/dm_put_live_table.
597  * The caller must not block between these two functions.
598  */
599 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
600 {
601 	rcu_read_lock();
602 	return rcu_dereference(md->map);
603 }
604 
605 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
606 {
607 	rcu_read_unlock();
608 }
609 
610 /*
611  * Open a table device so we can use it as a map destination.
612  */
613 static int open_table_device(struct table_device *td, dev_t dev,
614 			     struct mapped_device *md)
615 {
616 	static char *_claim_ptr = "I belong to device-mapper";
617 	struct block_device *bdev;
618 
619 	int r;
620 
621 	BUG_ON(td->dm_dev.bdev);
622 
623 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
624 	if (IS_ERR(bdev))
625 		return PTR_ERR(bdev);
626 
627 	r = bd_link_disk_holder(bdev, dm_disk(md));
628 	if (r) {
629 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
630 		return r;
631 	}
632 
633 	td->dm_dev.bdev = bdev;
634 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
635 	return 0;
636 }
637 
638 /*
639  * Close a table device that we've been using.
640  */
641 static void close_table_device(struct table_device *td, struct mapped_device *md)
642 {
643 	if (!td->dm_dev.bdev)
644 		return;
645 
646 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
647 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
648 	put_dax(td->dm_dev.dax_dev);
649 	td->dm_dev.bdev = NULL;
650 	td->dm_dev.dax_dev = NULL;
651 }
652 
653 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
654 					      fmode_t mode) {
655 	struct table_device *td;
656 
657 	list_for_each_entry(td, l, list)
658 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
659 			return td;
660 
661 	return NULL;
662 }
663 
664 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
665 			struct dm_dev **result) {
666 	int r;
667 	struct table_device *td;
668 
669 	mutex_lock(&md->table_devices_lock);
670 	td = find_table_device(&md->table_devices, dev, mode);
671 	if (!td) {
672 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
673 		if (!td) {
674 			mutex_unlock(&md->table_devices_lock);
675 			return -ENOMEM;
676 		}
677 
678 		td->dm_dev.mode = mode;
679 		td->dm_dev.bdev = NULL;
680 
681 		if ((r = open_table_device(td, dev, md))) {
682 			mutex_unlock(&md->table_devices_lock);
683 			kfree(td);
684 			return r;
685 		}
686 
687 		format_dev_t(td->dm_dev.name, dev);
688 
689 		refcount_set(&td->count, 1);
690 		list_add(&td->list, &md->table_devices);
691 	} else {
692 		refcount_inc(&td->count);
693 	}
694 	mutex_unlock(&md->table_devices_lock);
695 
696 	*result = &td->dm_dev;
697 	return 0;
698 }
699 EXPORT_SYMBOL_GPL(dm_get_table_device);
700 
701 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
702 {
703 	struct table_device *td = container_of(d, struct table_device, dm_dev);
704 
705 	mutex_lock(&md->table_devices_lock);
706 	if (refcount_dec_and_test(&td->count)) {
707 		close_table_device(td, md);
708 		list_del(&td->list);
709 		kfree(td);
710 	}
711 	mutex_unlock(&md->table_devices_lock);
712 }
713 EXPORT_SYMBOL(dm_put_table_device);
714 
715 static void free_table_devices(struct list_head *devices)
716 {
717 	struct list_head *tmp, *next;
718 
719 	list_for_each_safe(tmp, next, devices) {
720 		struct table_device *td = list_entry(tmp, struct table_device, list);
721 
722 		DMWARN("dm_destroy: %s still exists with %d references",
723 		       td->dm_dev.name, refcount_read(&td->count));
724 		kfree(td);
725 	}
726 }
727 
728 /*
729  * Get the geometry associated with a dm device
730  */
731 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
732 {
733 	*geo = md->geometry;
734 
735 	return 0;
736 }
737 
738 /*
739  * Set the geometry of a device.
740  */
741 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
742 {
743 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
744 
745 	if (geo->start > sz) {
746 		DMWARN("Start sector is beyond the geometry limits.");
747 		return -EINVAL;
748 	}
749 
750 	md->geometry = *geo;
751 
752 	return 0;
753 }
754 
755 /*-----------------------------------------------------------------
756  * CRUD START:
757  *   A more elegant soln is in the works that uses the queue
758  *   merge fn, unfortunately there are a couple of changes to
759  *   the block layer that I want to make for this.  So in the
760  *   interests of getting something for people to use I give
761  *   you this clearly demarcated crap.
762  *---------------------------------------------------------------*/
763 
764 static int __noflush_suspending(struct mapped_device *md)
765 {
766 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
767 }
768 
769 /*
770  * Decrements the number of outstanding ios that a bio has been
771  * cloned into, completing the original io if necc.
772  */
773 static void dec_pending(struct dm_io *io, blk_status_t error)
774 {
775 	unsigned long flags;
776 	blk_status_t io_error;
777 	struct bio *bio;
778 	struct mapped_device *md = io->md;
779 
780 	/* Push-back supersedes any I/O errors */
781 	if (unlikely(error)) {
782 		spin_lock_irqsave(&io->endio_lock, flags);
783 		if (!(io->status == BLK_STS_DM_REQUEUE &&
784 				__noflush_suspending(md)))
785 			io->status = error;
786 		spin_unlock_irqrestore(&io->endio_lock, flags);
787 	}
788 
789 	if (atomic_dec_and_test(&io->io_count)) {
790 		if (io->status == BLK_STS_DM_REQUEUE) {
791 			/*
792 			 * Target requested pushing back the I/O.
793 			 */
794 			spin_lock_irqsave(&md->deferred_lock, flags);
795 			if (__noflush_suspending(md))
796 				bio_list_add_head(&md->deferred, io->bio);
797 			else
798 				/* noflush suspend was interrupted. */
799 				io->status = BLK_STS_IOERR;
800 			spin_unlock_irqrestore(&md->deferred_lock, flags);
801 		}
802 
803 		io_error = io->status;
804 		bio = io->bio;
805 		end_io_acct(io);
806 		free_io(md, io);
807 
808 		if (io_error == BLK_STS_DM_REQUEUE)
809 			return;
810 
811 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
812 			/*
813 			 * Preflush done for flush with data, reissue
814 			 * without REQ_PREFLUSH.
815 			 */
816 			bio->bi_opf &= ~REQ_PREFLUSH;
817 			queue_io(md, bio);
818 		} else {
819 			/* done with normal IO or empty flush */
820 			bio->bi_status = io_error;
821 			bio_endio(bio);
822 		}
823 	}
824 }
825 
826 void disable_write_same(struct mapped_device *md)
827 {
828 	struct queue_limits *limits = dm_get_queue_limits(md);
829 
830 	/* device doesn't really support WRITE SAME, disable it */
831 	limits->max_write_same_sectors = 0;
832 }
833 
834 void disable_write_zeroes(struct mapped_device *md)
835 {
836 	struct queue_limits *limits = dm_get_queue_limits(md);
837 
838 	/* device doesn't really support WRITE ZEROES, disable it */
839 	limits->max_write_zeroes_sectors = 0;
840 }
841 
842 static void clone_endio(struct bio *bio)
843 {
844 	blk_status_t error = bio->bi_status;
845 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
846 	struct dm_io *io = tio->io;
847 	struct mapped_device *md = tio->io->md;
848 	dm_endio_fn endio = tio->ti->type->end_io;
849 
850 	if (unlikely(error == BLK_STS_TARGET)) {
851 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
852 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
853 			disable_write_same(md);
854 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
855 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
856 			disable_write_zeroes(md);
857 	}
858 
859 	if (endio) {
860 		int r = endio(tio->ti, bio, &error);
861 		switch (r) {
862 		case DM_ENDIO_REQUEUE:
863 			error = BLK_STS_DM_REQUEUE;
864 			/*FALLTHRU*/
865 		case DM_ENDIO_DONE:
866 			break;
867 		case DM_ENDIO_INCOMPLETE:
868 			/* The target will handle the io */
869 			return;
870 		default:
871 			DMWARN("unimplemented target endio return value: %d", r);
872 			BUG();
873 		}
874 	}
875 
876 	free_tio(tio);
877 	dec_pending(io, error);
878 }
879 
880 /*
881  * Return maximum size of I/O possible at the supplied sector up to the current
882  * target boundary.
883  */
884 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
885 {
886 	sector_t target_offset = dm_target_offset(ti, sector);
887 
888 	return ti->len - target_offset;
889 }
890 
891 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
892 {
893 	sector_t len = max_io_len_target_boundary(sector, ti);
894 	sector_t offset, max_len;
895 
896 	/*
897 	 * Does the target need to split even further?
898 	 */
899 	if (ti->max_io_len) {
900 		offset = dm_target_offset(ti, sector);
901 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
902 			max_len = sector_div(offset, ti->max_io_len);
903 		else
904 			max_len = offset & (ti->max_io_len - 1);
905 		max_len = ti->max_io_len - max_len;
906 
907 		if (len > max_len)
908 			len = max_len;
909 	}
910 
911 	return len;
912 }
913 
914 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
915 {
916 	if (len > UINT_MAX) {
917 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
918 		      (unsigned long long)len, UINT_MAX);
919 		ti->error = "Maximum size of target IO is too large";
920 		return -EINVAL;
921 	}
922 
923 	/*
924 	 * BIO based queue uses its own splitting. When multipage bvecs
925 	 * is switched on, size of the incoming bio may be too big to
926 	 * be handled in some targets, such as crypt.
927 	 *
928 	 * When these targets are ready for the big bio, we can remove
929 	 * the limit.
930 	 */
931 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
932 
933 	return 0;
934 }
935 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
936 
937 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
938 		sector_t sector, int *srcu_idx)
939 {
940 	struct dm_table *map;
941 	struct dm_target *ti;
942 
943 	map = dm_get_live_table(md, srcu_idx);
944 	if (!map)
945 		return NULL;
946 
947 	ti = dm_table_find_target(map, sector);
948 	if (!dm_target_is_valid(ti))
949 		return NULL;
950 
951 	return ti;
952 }
953 
954 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
955 		long nr_pages, void **kaddr, pfn_t *pfn)
956 {
957 	struct mapped_device *md = dax_get_private(dax_dev);
958 	sector_t sector = pgoff * PAGE_SECTORS;
959 	struct dm_target *ti;
960 	long len, ret = -EIO;
961 	int srcu_idx;
962 
963 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
964 
965 	if (!ti)
966 		goto out;
967 	if (!ti->type->direct_access)
968 		goto out;
969 	len = max_io_len(sector, ti) / PAGE_SECTORS;
970 	if (len < 1)
971 		goto out;
972 	nr_pages = min(len, nr_pages);
973 	if (ti->type->direct_access)
974 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
975 
976  out:
977 	dm_put_live_table(md, srcu_idx);
978 
979 	return ret;
980 }
981 
982 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
983 		void *addr, size_t bytes, struct iov_iter *i)
984 {
985 	struct mapped_device *md = dax_get_private(dax_dev);
986 	sector_t sector = pgoff * PAGE_SECTORS;
987 	struct dm_target *ti;
988 	long ret = 0;
989 	int srcu_idx;
990 
991 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
992 
993 	if (!ti)
994 		goto out;
995 	if (!ti->type->dax_copy_from_iter) {
996 		ret = copy_from_iter(addr, bytes, i);
997 		goto out;
998 	}
999 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1000  out:
1001 	dm_put_live_table(md, srcu_idx);
1002 
1003 	return ret;
1004 }
1005 
1006 /*
1007  * A target may call dm_accept_partial_bio only from the map routine.  It is
1008  * allowed for all bio types except REQ_PREFLUSH.
1009  *
1010  * dm_accept_partial_bio informs the dm that the target only wants to process
1011  * additional n_sectors sectors of the bio and the rest of the data should be
1012  * sent in a next bio.
1013  *
1014  * A diagram that explains the arithmetics:
1015  * +--------------------+---------------+-------+
1016  * |         1          |       2       |   3   |
1017  * +--------------------+---------------+-------+
1018  *
1019  * <-------------- *tio->len_ptr --------------->
1020  *                      <------- bi_size ------->
1021  *                      <-- n_sectors -->
1022  *
1023  * Region 1 was already iterated over with bio_advance or similar function.
1024  *	(it may be empty if the target doesn't use bio_advance)
1025  * Region 2 is the remaining bio size that the target wants to process.
1026  *	(it may be empty if region 1 is non-empty, although there is no reason
1027  *	 to make it empty)
1028  * The target requires that region 3 is to be sent in the next bio.
1029  *
1030  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1031  * the partially processed part (the sum of regions 1+2) must be the same for all
1032  * copies of the bio.
1033  */
1034 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1035 {
1036 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1037 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1038 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1039 	BUG_ON(bi_size > *tio->len_ptr);
1040 	BUG_ON(n_sectors > bi_size);
1041 	*tio->len_ptr -= bi_size - n_sectors;
1042 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1043 }
1044 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1045 
1046 /*
1047  * The zone descriptors obtained with a zone report indicate
1048  * zone positions within the target device. The zone descriptors
1049  * must be remapped to match their position within the dm device.
1050  * A target may call dm_remap_zone_report after completion of a
1051  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1052  * from the target device mapping to the dm device.
1053  */
1054 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1055 {
1056 #ifdef CONFIG_BLK_DEV_ZONED
1057 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1058 	struct bio *report_bio = tio->io->bio;
1059 	struct blk_zone_report_hdr *hdr = NULL;
1060 	struct blk_zone *zone;
1061 	unsigned int nr_rep = 0;
1062 	unsigned int ofst;
1063 	struct bio_vec bvec;
1064 	struct bvec_iter iter;
1065 	void *addr;
1066 
1067 	if (bio->bi_status)
1068 		return;
1069 
1070 	/*
1071 	 * Remap the start sector of the reported zones. For sequential zones,
1072 	 * also remap the write pointer position.
1073 	 */
1074 	bio_for_each_segment(bvec, report_bio, iter) {
1075 		addr = kmap_atomic(bvec.bv_page);
1076 
1077 		/* Remember the report header in the first page */
1078 		if (!hdr) {
1079 			hdr = addr;
1080 			ofst = sizeof(struct blk_zone_report_hdr);
1081 		} else
1082 			ofst = 0;
1083 
1084 		/* Set zones start sector */
1085 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1086 			zone = addr + ofst;
1087 			if (zone->start >= start + ti->len) {
1088 				hdr->nr_zones = 0;
1089 				break;
1090 			}
1091 			zone->start = zone->start + ti->begin - start;
1092 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1093 				if (zone->cond == BLK_ZONE_COND_FULL)
1094 					zone->wp = zone->start + zone->len;
1095 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1096 					zone->wp = zone->start;
1097 				else
1098 					zone->wp = zone->wp + ti->begin - start;
1099 			}
1100 			ofst += sizeof(struct blk_zone);
1101 			hdr->nr_zones--;
1102 			nr_rep++;
1103 		}
1104 
1105 		if (addr != hdr)
1106 			kunmap_atomic(addr);
1107 
1108 		if (!hdr->nr_zones)
1109 			break;
1110 	}
1111 
1112 	if (hdr) {
1113 		hdr->nr_zones = nr_rep;
1114 		kunmap_atomic(hdr);
1115 	}
1116 
1117 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1118 
1119 #else /* !CONFIG_BLK_DEV_ZONED */
1120 	bio->bi_status = BLK_STS_NOTSUPP;
1121 #endif
1122 }
1123 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1124 
1125 /*
1126  * Flush current->bio_list when the target map method blocks.
1127  * This fixes deadlocks in snapshot and possibly in other targets.
1128  */
1129 struct dm_offload {
1130 	struct blk_plug plug;
1131 	struct blk_plug_cb cb;
1132 };
1133 
1134 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1135 {
1136 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1137 	struct bio_list list;
1138 	struct bio *bio;
1139 	int i;
1140 
1141 	INIT_LIST_HEAD(&o->cb.list);
1142 
1143 	if (unlikely(!current->bio_list))
1144 		return;
1145 
1146 	for (i = 0; i < 2; i++) {
1147 		list = current->bio_list[i];
1148 		bio_list_init(&current->bio_list[i]);
1149 
1150 		while ((bio = bio_list_pop(&list))) {
1151 			struct bio_set *bs = bio->bi_pool;
1152 			if (unlikely(!bs) || bs == fs_bio_set ||
1153 			    !bs->rescue_workqueue) {
1154 				bio_list_add(&current->bio_list[i], bio);
1155 				continue;
1156 			}
1157 
1158 			spin_lock(&bs->rescue_lock);
1159 			bio_list_add(&bs->rescue_list, bio);
1160 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1161 			spin_unlock(&bs->rescue_lock);
1162 		}
1163 	}
1164 }
1165 
1166 static void dm_offload_start(struct dm_offload *o)
1167 {
1168 	blk_start_plug(&o->plug);
1169 	o->cb.callback = flush_current_bio_list;
1170 	list_add(&o->cb.list, &current->plug->cb_list);
1171 }
1172 
1173 static void dm_offload_end(struct dm_offload *o)
1174 {
1175 	list_del(&o->cb.list);
1176 	blk_finish_plug(&o->plug);
1177 }
1178 
1179 static void __map_bio(struct dm_target_io *tio)
1180 {
1181 	int r;
1182 	sector_t sector;
1183 	struct dm_offload o;
1184 	struct bio *clone = &tio->clone;
1185 	struct dm_target *ti = tio->ti;
1186 
1187 	clone->bi_end_io = clone_endio;
1188 
1189 	/*
1190 	 * Map the clone.  If r == 0 we don't need to do
1191 	 * anything, the target has assumed ownership of
1192 	 * this io.
1193 	 */
1194 	atomic_inc(&tio->io->io_count);
1195 	sector = clone->bi_iter.bi_sector;
1196 
1197 	dm_offload_start(&o);
1198 	r = ti->type->map(ti, clone);
1199 	dm_offload_end(&o);
1200 
1201 	switch (r) {
1202 	case DM_MAPIO_SUBMITTED:
1203 		break;
1204 	case DM_MAPIO_REMAPPED:
1205 		/* the bio has been remapped so dispatch it */
1206 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1207 				      bio_dev(tio->io->bio), sector);
1208 		generic_make_request(clone);
1209 		break;
1210 	case DM_MAPIO_KILL:
1211 		dec_pending(tio->io, BLK_STS_IOERR);
1212 		free_tio(tio);
1213 		break;
1214 	case DM_MAPIO_REQUEUE:
1215 		dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1216 		free_tio(tio);
1217 		break;
1218 	default:
1219 		DMWARN("unimplemented target map return value: %d", r);
1220 		BUG();
1221 	}
1222 }
1223 
1224 struct clone_info {
1225 	struct mapped_device *md;
1226 	struct dm_table *map;
1227 	struct bio *bio;
1228 	struct dm_io *io;
1229 	sector_t sector;
1230 	unsigned sector_count;
1231 };
1232 
1233 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1234 {
1235 	bio->bi_iter.bi_sector = sector;
1236 	bio->bi_iter.bi_size = to_bytes(len);
1237 }
1238 
1239 /*
1240  * Creates a bio that consists of range of complete bvecs.
1241  */
1242 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1243 		     sector_t sector, unsigned len)
1244 {
1245 	struct bio *clone = &tio->clone;
1246 
1247 	__bio_clone_fast(clone, bio);
1248 
1249 	if (unlikely(bio_integrity(bio) != NULL)) {
1250 		int r;
1251 
1252 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1253 			     !dm_target_passes_integrity(tio->ti->type))) {
1254 			DMWARN("%s: the target %s doesn't support integrity data.",
1255 				dm_device_name(tio->io->md),
1256 				tio->ti->type->name);
1257 			return -EIO;
1258 		}
1259 
1260 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1261 		if (r < 0)
1262 			return r;
1263 	}
1264 
1265 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1266 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1267 	clone->bi_iter.bi_size = to_bytes(len);
1268 
1269 	if (unlikely(bio_integrity(bio) != NULL))
1270 		bio_integrity_trim(clone);
1271 
1272 	return 0;
1273 }
1274 
1275 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1276 				      struct dm_target *ti,
1277 				      unsigned target_bio_nr)
1278 {
1279 	struct dm_target_io *tio;
1280 	struct bio *clone;
1281 
1282 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1283 	tio = container_of(clone, struct dm_target_io, clone);
1284 
1285 	tio->io = ci->io;
1286 	tio->ti = ti;
1287 	tio->target_bio_nr = target_bio_nr;
1288 
1289 	return tio;
1290 }
1291 
1292 static void __clone_and_map_simple_bio(struct clone_info *ci,
1293 				       struct dm_target *ti,
1294 				       unsigned target_bio_nr, unsigned *len)
1295 {
1296 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1297 	struct bio *clone = &tio->clone;
1298 
1299 	tio->len_ptr = len;
1300 
1301 	__bio_clone_fast(clone, ci->bio);
1302 	if (len)
1303 		bio_setup_sector(clone, ci->sector, *len);
1304 
1305 	__map_bio(tio);
1306 }
1307 
1308 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1309 				  unsigned num_bios, unsigned *len)
1310 {
1311 	unsigned target_bio_nr;
1312 
1313 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1314 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1315 }
1316 
1317 static int __send_empty_flush(struct clone_info *ci)
1318 {
1319 	unsigned target_nr = 0;
1320 	struct dm_target *ti;
1321 
1322 	BUG_ON(bio_has_data(ci->bio));
1323 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1324 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1325 
1326 	return 0;
1327 }
1328 
1329 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1330 				     sector_t sector, unsigned *len)
1331 {
1332 	struct bio *bio = ci->bio;
1333 	struct dm_target_io *tio;
1334 	unsigned target_bio_nr;
1335 	unsigned num_target_bios = 1;
1336 	int r = 0;
1337 
1338 	/*
1339 	 * Does the target want to receive duplicate copies of the bio?
1340 	 */
1341 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1342 		num_target_bios = ti->num_write_bios(ti, bio);
1343 
1344 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1345 		tio = alloc_tio(ci, ti, target_bio_nr);
1346 		tio->len_ptr = len;
1347 		r = clone_bio(tio, bio, sector, *len);
1348 		if (r < 0) {
1349 			free_tio(tio);
1350 			break;
1351 		}
1352 		__map_bio(tio);
1353 	}
1354 
1355 	return r;
1356 }
1357 
1358 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1359 
1360 static unsigned get_num_discard_bios(struct dm_target *ti)
1361 {
1362 	return ti->num_discard_bios;
1363 }
1364 
1365 static unsigned get_num_write_same_bios(struct dm_target *ti)
1366 {
1367 	return ti->num_write_same_bios;
1368 }
1369 
1370 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1371 {
1372 	return ti->num_write_zeroes_bios;
1373 }
1374 
1375 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1376 
1377 static bool is_split_required_for_discard(struct dm_target *ti)
1378 {
1379 	return ti->split_discard_bios;
1380 }
1381 
1382 static int __send_changing_extent_only(struct clone_info *ci,
1383 				       get_num_bios_fn get_num_bios,
1384 				       is_split_required_fn is_split_required)
1385 {
1386 	struct dm_target *ti;
1387 	unsigned len;
1388 	unsigned num_bios;
1389 
1390 	do {
1391 		ti = dm_table_find_target(ci->map, ci->sector);
1392 		if (!dm_target_is_valid(ti))
1393 			return -EIO;
1394 
1395 		/*
1396 		 * Even though the device advertised support for this type of
1397 		 * request, that does not mean every target supports it, and
1398 		 * reconfiguration might also have changed that since the
1399 		 * check was performed.
1400 		 */
1401 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1402 		if (!num_bios)
1403 			return -EOPNOTSUPP;
1404 
1405 		if (is_split_required && !is_split_required(ti))
1406 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1407 		else
1408 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1409 
1410 		__send_duplicate_bios(ci, ti, num_bios, &len);
1411 
1412 		ci->sector += len;
1413 	} while (ci->sector_count -= len);
1414 
1415 	return 0;
1416 }
1417 
1418 static int __send_discard(struct clone_info *ci)
1419 {
1420 	return __send_changing_extent_only(ci, get_num_discard_bios,
1421 					   is_split_required_for_discard);
1422 }
1423 
1424 static int __send_write_same(struct clone_info *ci)
1425 {
1426 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1427 }
1428 
1429 static int __send_write_zeroes(struct clone_info *ci)
1430 {
1431 	return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1432 }
1433 
1434 /*
1435  * Select the correct strategy for processing a non-flush bio.
1436  */
1437 static int __split_and_process_non_flush(struct clone_info *ci)
1438 {
1439 	struct bio *bio = ci->bio;
1440 	struct dm_target *ti;
1441 	unsigned len;
1442 	int r;
1443 
1444 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1445 		return __send_discard(ci);
1446 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1447 		return __send_write_same(ci);
1448 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1449 		return __send_write_zeroes(ci);
1450 
1451 	ti = dm_table_find_target(ci->map, ci->sector);
1452 	if (!dm_target_is_valid(ti))
1453 		return -EIO;
1454 
1455 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1456 		len = ci->sector_count;
1457 	else
1458 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1459 			    ci->sector_count);
1460 
1461 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1462 	if (r < 0)
1463 		return r;
1464 
1465 	ci->sector += len;
1466 	ci->sector_count -= len;
1467 
1468 	return 0;
1469 }
1470 
1471 /*
1472  * Entry point to split a bio into clones and submit them to the targets.
1473  */
1474 static void __split_and_process_bio(struct mapped_device *md,
1475 				    struct dm_table *map, struct bio *bio)
1476 {
1477 	struct clone_info ci;
1478 	int error = 0;
1479 
1480 	if (unlikely(!map)) {
1481 		bio_io_error(bio);
1482 		return;
1483 	}
1484 
1485 	ci.map = map;
1486 	ci.md = md;
1487 	ci.io = alloc_io(md);
1488 	ci.io->status = 0;
1489 	atomic_set(&ci.io->io_count, 1);
1490 	ci.io->bio = bio;
1491 	ci.io->md = md;
1492 	spin_lock_init(&ci.io->endio_lock);
1493 	ci.sector = bio->bi_iter.bi_sector;
1494 
1495 	start_io_acct(ci.io);
1496 
1497 	if (bio->bi_opf & REQ_PREFLUSH) {
1498 		ci.bio = &ci.md->flush_bio;
1499 		ci.sector_count = 0;
1500 		error = __send_empty_flush(&ci);
1501 		/* dec_pending submits any data associated with flush */
1502 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1503 		ci.bio = bio;
1504 		ci.sector_count = 0;
1505 		error = __split_and_process_non_flush(&ci);
1506 	} else {
1507 		ci.bio = bio;
1508 		ci.sector_count = bio_sectors(bio);
1509 		while (ci.sector_count && !error)
1510 			error = __split_and_process_non_flush(&ci);
1511 	}
1512 
1513 	/* drop the extra reference count */
1514 	dec_pending(ci.io, errno_to_blk_status(error));
1515 }
1516 /*-----------------------------------------------------------------
1517  * CRUD END
1518  *---------------------------------------------------------------*/
1519 
1520 /*
1521  * The request function that just remaps the bio built up by
1522  * dm_merge_bvec.
1523  */
1524 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1525 {
1526 	int rw = bio_data_dir(bio);
1527 	struct mapped_device *md = q->queuedata;
1528 	int srcu_idx;
1529 	struct dm_table *map;
1530 
1531 	map = dm_get_live_table(md, &srcu_idx);
1532 
1533 	generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1534 
1535 	/* if we're suspended, we have to queue this io for later */
1536 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1537 		dm_put_live_table(md, srcu_idx);
1538 
1539 		if (!(bio->bi_opf & REQ_RAHEAD))
1540 			queue_io(md, bio);
1541 		else
1542 			bio_io_error(bio);
1543 		return BLK_QC_T_NONE;
1544 	}
1545 
1546 	__split_and_process_bio(md, map, bio);
1547 	dm_put_live_table(md, srcu_idx);
1548 	return BLK_QC_T_NONE;
1549 }
1550 
1551 static int dm_any_congested(void *congested_data, int bdi_bits)
1552 {
1553 	int r = bdi_bits;
1554 	struct mapped_device *md = congested_data;
1555 	struct dm_table *map;
1556 
1557 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1558 		if (dm_request_based(md)) {
1559 			/*
1560 			 * With request-based DM we only need to check the
1561 			 * top-level queue for congestion.
1562 			 */
1563 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1564 		} else {
1565 			map = dm_get_live_table_fast(md);
1566 			if (map)
1567 				r = dm_table_any_congested(map, bdi_bits);
1568 			dm_put_live_table_fast(md);
1569 		}
1570 	}
1571 
1572 	return r;
1573 }
1574 
1575 /*-----------------------------------------------------------------
1576  * An IDR is used to keep track of allocated minor numbers.
1577  *---------------------------------------------------------------*/
1578 static void free_minor(int minor)
1579 {
1580 	spin_lock(&_minor_lock);
1581 	idr_remove(&_minor_idr, minor);
1582 	spin_unlock(&_minor_lock);
1583 }
1584 
1585 /*
1586  * See if the device with a specific minor # is free.
1587  */
1588 static int specific_minor(int minor)
1589 {
1590 	int r;
1591 
1592 	if (minor >= (1 << MINORBITS))
1593 		return -EINVAL;
1594 
1595 	idr_preload(GFP_KERNEL);
1596 	spin_lock(&_minor_lock);
1597 
1598 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1599 
1600 	spin_unlock(&_minor_lock);
1601 	idr_preload_end();
1602 	if (r < 0)
1603 		return r == -ENOSPC ? -EBUSY : r;
1604 	return 0;
1605 }
1606 
1607 static int next_free_minor(int *minor)
1608 {
1609 	int r;
1610 
1611 	idr_preload(GFP_KERNEL);
1612 	spin_lock(&_minor_lock);
1613 
1614 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1615 
1616 	spin_unlock(&_minor_lock);
1617 	idr_preload_end();
1618 	if (r < 0)
1619 		return r;
1620 	*minor = r;
1621 	return 0;
1622 }
1623 
1624 static const struct block_device_operations dm_blk_dops;
1625 static const struct dax_operations dm_dax_ops;
1626 
1627 static void dm_wq_work(struct work_struct *work);
1628 
1629 void dm_init_md_queue(struct mapped_device *md)
1630 {
1631 	/*
1632 	 * Initialize data that will only be used by a non-blk-mq DM queue
1633 	 * - must do so here (in alloc_dev callchain) before queue is used
1634 	 */
1635 	md->queue->queuedata = md;
1636 	md->queue->backing_dev_info->congested_data = md;
1637 }
1638 
1639 void dm_init_normal_md_queue(struct mapped_device *md)
1640 {
1641 	md->use_blk_mq = false;
1642 	dm_init_md_queue(md);
1643 
1644 	/*
1645 	 * Initialize aspects of queue that aren't relevant for blk-mq
1646 	 */
1647 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1648 }
1649 
1650 static void cleanup_mapped_device(struct mapped_device *md)
1651 {
1652 	if (md->wq)
1653 		destroy_workqueue(md->wq);
1654 	if (md->kworker_task)
1655 		kthread_stop(md->kworker_task);
1656 	mempool_destroy(md->io_pool);
1657 	if (md->bs)
1658 		bioset_free(md->bs);
1659 
1660 	if (md->dax_dev) {
1661 		kill_dax(md->dax_dev);
1662 		put_dax(md->dax_dev);
1663 		md->dax_dev = NULL;
1664 	}
1665 
1666 	if (md->disk) {
1667 		spin_lock(&_minor_lock);
1668 		md->disk->private_data = NULL;
1669 		spin_unlock(&_minor_lock);
1670 		del_gendisk(md->disk);
1671 		put_disk(md->disk);
1672 	}
1673 
1674 	if (md->queue)
1675 		blk_cleanup_queue(md->queue);
1676 
1677 	cleanup_srcu_struct(&md->io_barrier);
1678 
1679 	if (md->bdev) {
1680 		bdput(md->bdev);
1681 		md->bdev = NULL;
1682 	}
1683 
1684 	dm_mq_cleanup_mapped_device(md);
1685 }
1686 
1687 /*
1688  * Allocate and initialise a blank device with a given minor.
1689  */
1690 static struct mapped_device *alloc_dev(int minor)
1691 {
1692 	int r, numa_node_id = dm_get_numa_node();
1693 	struct dax_device *dax_dev;
1694 	struct mapped_device *md;
1695 	void *old_md;
1696 
1697 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1698 	if (!md) {
1699 		DMWARN("unable to allocate device, out of memory.");
1700 		return NULL;
1701 	}
1702 
1703 	if (!try_module_get(THIS_MODULE))
1704 		goto bad_module_get;
1705 
1706 	/* get a minor number for the dev */
1707 	if (minor == DM_ANY_MINOR)
1708 		r = next_free_minor(&minor);
1709 	else
1710 		r = specific_minor(minor);
1711 	if (r < 0)
1712 		goto bad_minor;
1713 
1714 	r = init_srcu_struct(&md->io_barrier);
1715 	if (r < 0)
1716 		goto bad_io_barrier;
1717 
1718 	md->numa_node_id = numa_node_id;
1719 	md->use_blk_mq = dm_use_blk_mq_default();
1720 	md->init_tio_pdu = false;
1721 	md->type = DM_TYPE_NONE;
1722 	mutex_init(&md->suspend_lock);
1723 	mutex_init(&md->type_lock);
1724 	mutex_init(&md->table_devices_lock);
1725 	spin_lock_init(&md->deferred_lock);
1726 	atomic_set(&md->holders, 1);
1727 	atomic_set(&md->open_count, 0);
1728 	atomic_set(&md->event_nr, 0);
1729 	atomic_set(&md->uevent_seq, 0);
1730 	INIT_LIST_HEAD(&md->uevent_list);
1731 	INIT_LIST_HEAD(&md->table_devices);
1732 	spin_lock_init(&md->uevent_lock);
1733 
1734 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1735 	if (!md->queue)
1736 		goto bad;
1737 
1738 	dm_init_md_queue(md);
1739 
1740 	md->disk = alloc_disk_node(1, numa_node_id);
1741 	if (!md->disk)
1742 		goto bad;
1743 
1744 	atomic_set(&md->pending[0], 0);
1745 	atomic_set(&md->pending[1], 0);
1746 	init_waitqueue_head(&md->wait);
1747 	INIT_WORK(&md->work, dm_wq_work);
1748 	init_waitqueue_head(&md->eventq);
1749 	init_completion(&md->kobj_holder.completion);
1750 	md->kworker_task = NULL;
1751 
1752 	md->disk->major = _major;
1753 	md->disk->first_minor = minor;
1754 	md->disk->fops = &dm_blk_dops;
1755 	md->disk->queue = md->queue;
1756 	md->disk->private_data = md;
1757 	sprintf(md->disk->disk_name, "dm-%d", minor);
1758 
1759 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1760 	if (!dax_dev)
1761 		goto bad;
1762 	md->dax_dev = dax_dev;
1763 
1764 	add_disk_no_queue_reg(md->disk);
1765 	format_dev_t(md->name, MKDEV(_major, minor));
1766 
1767 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1768 	if (!md->wq)
1769 		goto bad;
1770 
1771 	md->bdev = bdget_disk(md->disk, 0);
1772 	if (!md->bdev)
1773 		goto bad;
1774 
1775 	bio_init(&md->flush_bio, NULL, 0);
1776 	bio_set_dev(&md->flush_bio, md->bdev);
1777 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1778 
1779 	dm_stats_init(&md->stats);
1780 
1781 	/* Populate the mapping, nobody knows we exist yet */
1782 	spin_lock(&_minor_lock);
1783 	old_md = idr_replace(&_minor_idr, md, minor);
1784 	spin_unlock(&_minor_lock);
1785 
1786 	BUG_ON(old_md != MINOR_ALLOCED);
1787 
1788 	return md;
1789 
1790 bad:
1791 	cleanup_mapped_device(md);
1792 bad_io_barrier:
1793 	free_minor(minor);
1794 bad_minor:
1795 	module_put(THIS_MODULE);
1796 bad_module_get:
1797 	kvfree(md);
1798 	return NULL;
1799 }
1800 
1801 static void unlock_fs(struct mapped_device *md);
1802 
1803 static void free_dev(struct mapped_device *md)
1804 {
1805 	int minor = MINOR(disk_devt(md->disk));
1806 
1807 	unlock_fs(md);
1808 
1809 	cleanup_mapped_device(md);
1810 
1811 	free_table_devices(&md->table_devices);
1812 	dm_stats_cleanup(&md->stats);
1813 	free_minor(minor);
1814 
1815 	module_put(THIS_MODULE);
1816 	kvfree(md);
1817 }
1818 
1819 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1820 {
1821 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1822 
1823 	if (md->bs) {
1824 		/* The md already has necessary mempools. */
1825 		if (dm_table_bio_based(t)) {
1826 			/*
1827 			 * Reload bioset because front_pad may have changed
1828 			 * because a different table was loaded.
1829 			 */
1830 			bioset_free(md->bs);
1831 			md->bs = p->bs;
1832 			p->bs = NULL;
1833 		}
1834 		/*
1835 		 * There's no need to reload with request-based dm
1836 		 * because the size of front_pad doesn't change.
1837 		 * Note for future: If you are to reload bioset,
1838 		 * prep-ed requests in the queue may refer
1839 		 * to bio from the old bioset, so you must walk
1840 		 * through the queue to unprep.
1841 		 */
1842 		goto out;
1843 	}
1844 
1845 	BUG_ON(!p || md->io_pool || md->bs);
1846 
1847 	md->io_pool = p->io_pool;
1848 	p->io_pool = NULL;
1849 	md->bs = p->bs;
1850 	p->bs = NULL;
1851 
1852 out:
1853 	/* mempool bind completed, no longer need any mempools in the table */
1854 	dm_table_free_md_mempools(t);
1855 }
1856 
1857 /*
1858  * Bind a table to the device.
1859  */
1860 static void event_callback(void *context)
1861 {
1862 	unsigned long flags;
1863 	LIST_HEAD(uevents);
1864 	struct mapped_device *md = (struct mapped_device *) context;
1865 
1866 	spin_lock_irqsave(&md->uevent_lock, flags);
1867 	list_splice_init(&md->uevent_list, &uevents);
1868 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1869 
1870 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1871 
1872 	atomic_inc(&md->event_nr);
1873 	wake_up(&md->eventq);
1874 	dm_issue_global_event();
1875 }
1876 
1877 /*
1878  * Protected by md->suspend_lock obtained by dm_swap_table().
1879  */
1880 static void __set_size(struct mapped_device *md, sector_t size)
1881 {
1882 	lockdep_assert_held(&md->suspend_lock);
1883 
1884 	set_capacity(md->disk, size);
1885 
1886 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1887 }
1888 
1889 /*
1890  * Returns old map, which caller must destroy.
1891  */
1892 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1893 			       struct queue_limits *limits)
1894 {
1895 	struct dm_table *old_map;
1896 	struct request_queue *q = md->queue;
1897 	sector_t size;
1898 
1899 	lockdep_assert_held(&md->suspend_lock);
1900 
1901 	size = dm_table_get_size(t);
1902 
1903 	/*
1904 	 * Wipe any geometry if the size of the table changed.
1905 	 */
1906 	if (size != dm_get_size(md))
1907 		memset(&md->geometry, 0, sizeof(md->geometry));
1908 
1909 	__set_size(md, size);
1910 
1911 	dm_table_event_callback(t, event_callback, md);
1912 
1913 	/*
1914 	 * The queue hasn't been stopped yet, if the old table type wasn't
1915 	 * for request-based during suspension.  So stop it to prevent
1916 	 * I/O mapping before resume.
1917 	 * This must be done before setting the queue restrictions,
1918 	 * because request-based dm may be run just after the setting.
1919 	 */
1920 	if (dm_table_request_based(t)) {
1921 		dm_stop_queue(q);
1922 		/*
1923 		 * Leverage the fact that request-based DM targets are
1924 		 * immutable singletons and establish md->immutable_target
1925 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1926 		 */
1927 		md->immutable_target = dm_table_get_immutable_target(t);
1928 	}
1929 
1930 	__bind_mempools(md, t);
1931 
1932 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1933 	rcu_assign_pointer(md->map, (void *)t);
1934 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1935 
1936 	dm_table_set_restrictions(t, q, limits);
1937 	if (old_map)
1938 		dm_sync_table(md);
1939 
1940 	return old_map;
1941 }
1942 
1943 /*
1944  * Returns unbound table for the caller to free.
1945  */
1946 static struct dm_table *__unbind(struct mapped_device *md)
1947 {
1948 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1949 
1950 	if (!map)
1951 		return NULL;
1952 
1953 	dm_table_event_callback(map, NULL, NULL);
1954 	RCU_INIT_POINTER(md->map, NULL);
1955 	dm_sync_table(md);
1956 
1957 	return map;
1958 }
1959 
1960 /*
1961  * Constructor for a new device.
1962  */
1963 int dm_create(int minor, struct mapped_device **result)
1964 {
1965 	struct mapped_device *md;
1966 
1967 	md = alloc_dev(minor);
1968 	if (!md)
1969 		return -ENXIO;
1970 
1971 	dm_sysfs_init(md);
1972 
1973 	*result = md;
1974 	return 0;
1975 }
1976 
1977 /*
1978  * Functions to manage md->type.
1979  * All are required to hold md->type_lock.
1980  */
1981 void dm_lock_md_type(struct mapped_device *md)
1982 {
1983 	mutex_lock(&md->type_lock);
1984 }
1985 
1986 void dm_unlock_md_type(struct mapped_device *md)
1987 {
1988 	mutex_unlock(&md->type_lock);
1989 }
1990 
1991 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1992 {
1993 	BUG_ON(!mutex_is_locked(&md->type_lock));
1994 	md->type = type;
1995 }
1996 
1997 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1998 {
1999 	return md->type;
2000 }
2001 
2002 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2003 {
2004 	return md->immutable_target_type;
2005 }
2006 
2007 /*
2008  * The queue_limits are only valid as long as you have a reference
2009  * count on 'md'.
2010  */
2011 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2012 {
2013 	BUG_ON(!atomic_read(&md->holders));
2014 	return &md->queue->limits;
2015 }
2016 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2017 
2018 /*
2019  * Setup the DM device's queue based on md's type
2020  */
2021 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2022 {
2023 	int r;
2024 	struct queue_limits limits;
2025 	enum dm_queue_mode type = dm_get_md_type(md);
2026 
2027 	switch (type) {
2028 	case DM_TYPE_REQUEST_BASED:
2029 		r = dm_old_init_request_queue(md, t);
2030 		if (r) {
2031 			DMERR("Cannot initialize queue for request-based mapped device");
2032 			return r;
2033 		}
2034 		break;
2035 	case DM_TYPE_MQ_REQUEST_BASED:
2036 		r = dm_mq_init_request_queue(md, t);
2037 		if (r) {
2038 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2039 			return r;
2040 		}
2041 		break;
2042 	case DM_TYPE_BIO_BASED:
2043 	case DM_TYPE_DAX_BIO_BASED:
2044 		dm_init_normal_md_queue(md);
2045 		blk_queue_make_request(md->queue, dm_make_request);
2046 		/*
2047 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2048 		 * since it won't be used (saves 1 process per bio-based DM device).
2049 		 */
2050 		bioset_free(md->queue->bio_split);
2051 		md->queue->bio_split = NULL;
2052 
2053 		if (type == DM_TYPE_DAX_BIO_BASED)
2054 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2055 		break;
2056 	case DM_TYPE_NONE:
2057 		WARN_ON_ONCE(true);
2058 		break;
2059 	}
2060 
2061 	r = dm_calculate_queue_limits(t, &limits);
2062 	if (r) {
2063 		DMERR("Cannot calculate initial queue limits");
2064 		return r;
2065 	}
2066 	dm_table_set_restrictions(t, md->queue, &limits);
2067 	blk_register_queue(md->disk);
2068 
2069 	return 0;
2070 }
2071 
2072 struct mapped_device *dm_get_md(dev_t dev)
2073 {
2074 	struct mapped_device *md;
2075 	unsigned minor = MINOR(dev);
2076 
2077 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2078 		return NULL;
2079 
2080 	spin_lock(&_minor_lock);
2081 
2082 	md = idr_find(&_minor_idr, minor);
2083 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2084 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2085 		md = NULL;
2086 		goto out;
2087 	}
2088 	dm_get(md);
2089 out:
2090 	spin_unlock(&_minor_lock);
2091 
2092 	return md;
2093 }
2094 EXPORT_SYMBOL_GPL(dm_get_md);
2095 
2096 void *dm_get_mdptr(struct mapped_device *md)
2097 {
2098 	return md->interface_ptr;
2099 }
2100 
2101 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2102 {
2103 	md->interface_ptr = ptr;
2104 }
2105 
2106 void dm_get(struct mapped_device *md)
2107 {
2108 	atomic_inc(&md->holders);
2109 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2110 }
2111 
2112 int dm_hold(struct mapped_device *md)
2113 {
2114 	spin_lock(&_minor_lock);
2115 	if (test_bit(DMF_FREEING, &md->flags)) {
2116 		spin_unlock(&_minor_lock);
2117 		return -EBUSY;
2118 	}
2119 	dm_get(md);
2120 	spin_unlock(&_minor_lock);
2121 	return 0;
2122 }
2123 EXPORT_SYMBOL_GPL(dm_hold);
2124 
2125 const char *dm_device_name(struct mapped_device *md)
2126 {
2127 	return md->name;
2128 }
2129 EXPORT_SYMBOL_GPL(dm_device_name);
2130 
2131 static void __dm_destroy(struct mapped_device *md, bool wait)
2132 {
2133 	struct request_queue *q = dm_get_md_queue(md);
2134 	struct dm_table *map;
2135 	int srcu_idx;
2136 
2137 	might_sleep();
2138 
2139 	spin_lock(&_minor_lock);
2140 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2141 	set_bit(DMF_FREEING, &md->flags);
2142 	spin_unlock(&_minor_lock);
2143 
2144 	blk_set_queue_dying(q);
2145 
2146 	if (dm_request_based(md) && md->kworker_task)
2147 		kthread_flush_worker(&md->kworker);
2148 
2149 	/*
2150 	 * Take suspend_lock so that presuspend and postsuspend methods
2151 	 * do not race with internal suspend.
2152 	 */
2153 	mutex_lock(&md->suspend_lock);
2154 	map = dm_get_live_table(md, &srcu_idx);
2155 	if (!dm_suspended_md(md)) {
2156 		dm_table_presuspend_targets(map);
2157 		dm_table_postsuspend_targets(map);
2158 	}
2159 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2160 	dm_put_live_table(md, srcu_idx);
2161 	mutex_unlock(&md->suspend_lock);
2162 
2163 	/*
2164 	 * Rare, but there may be I/O requests still going to complete,
2165 	 * for example.  Wait for all references to disappear.
2166 	 * No one should increment the reference count of the mapped_device,
2167 	 * after the mapped_device state becomes DMF_FREEING.
2168 	 */
2169 	if (wait)
2170 		while (atomic_read(&md->holders))
2171 			msleep(1);
2172 	else if (atomic_read(&md->holders))
2173 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2174 		       dm_device_name(md), atomic_read(&md->holders));
2175 
2176 	dm_sysfs_exit(md);
2177 	dm_table_destroy(__unbind(md));
2178 	free_dev(md);
2179 }
2180 
2181 void dm_destroy(struct mapped_device *md)
2182 {
2183 	__dm_destroy(md, true);
2184 }
2185 
2186 void dm_destroy_immediate(struct mapped_device *md)
2187 {
2188 	__dm_destroy(md, false);
2189 }
2190 
2191 void dm_put(struct mapped_device *md)
2192 {
2193 	atomic_dec(&md->holders);
2194 }
2195 EXPORT_SYMBOL_GPL(dm_put);
2196 
2197 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2198 {
2199 	int r = 0;
2200 	DEFINE_WAIT(wait);
2201 
2202 	while (1) {
2203 		prepare_to_wait(&md->wait, &wait, task_state);
2204 
2205 		if (!md_in_flight(md))
2206 			break;
2207 
2208 		if (signal_pending_state(task_state, current)) {
2209 			r = -EINTR;
2210 			break;
2211 		}
2212 
2213 		io_schedule();
2214 	}
2215 	finish_wait(&md->wait, &wait);
2216 
2217 	return r;
2218 }
2219 
2220 /*
2221  * Process the deferred bios
2222  */
2223 static void dm_wq_work(struct work_struct *work)
2224 {
2225 	struct mapped_device *md = container_of(work, struct mapped_device,
2226 						work);
2227 	struct bio *c;
2228 	int srcu_idx;
2229 	struct dm_table *map;
2230 
2231 	map = dm_get_live_table(md, &srcu_idx);
2232 
2233 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2234 		spin_lock_irq(&md->deferred_lock);
2235 		c = bio_list_pop(&md->deferred);
2236 		spin_unlock_irq(&md->deferred_lock);
2237 
2238 		if (!c)
2239 			break;
2240 
2241 		if (dm_request_based(md))
2242 			generic_make_request(c);
2243 		else
2244 			__split_and_process_bio(md, map, c);
2245 	}
2246 
2247 	dm_put_live_table(md, srcu_idx);
2248 }
2249 
2250 static void dm_queue_flush(struct mapped_device *md)
2251 {
2252 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2253 	smp_mb__after_atomic();
2254 	queue_work(md->wq, &md->work);
2255 }
2256 
2257 /*
2258  * Swap in a new table, returning the old one for the caller to destroy.
2259  */
2260 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2261 {
2262 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2263 	struct queue_limits limits;
2264 	int r;
2265 
2266 	mutex_lock(&md->suspend_lock);
2267 
2268 	/* device must be suspended */
2269 	if (!dm_suspended_md(md))
2270 		goto out;
2271 
2272 	/*
2273 	 * If the new table has no data devices, retain the existing limits.
2274 	 * This helps multipath with queue_if_no_path if all paths disappear,
2275 	 * then new I/O is queued based on these limits, and then some paths
2276 	 * reappear.
2277 	 */
2278 	if (dm_table_has_no_data_devices(table)) {
2279 		live_map = dm_get_live_table_fast(md);
2280 		if (live_map)
2281 			limits = md->queue->limits;
2282 		dm_put_live_table_fast(md);
2283 	}
2284 
2285 	if (!live_map) {
2286 		r = dm_calculate_queue_limits(table, &limits);
2287 		if (r) {
2288 			map = ERR_PTR(r);
2289 			goto out;
2290 		}
2291 	}
2292 
2293 	map = __bind(md, table, &limits);
2294 	dm_issue_global_event();
2295 
2296 out:
2297 	mutex_unlock(&md->suspend_lock);
2298 	return map;
2299 }
2300 
2301 /*
2302  * Functions to lock and unlock any filesystem running on the
2303  * device.
2304  */
2305 static int lock_fs(struct mapped_device *md)
2306 {
2307 	int r;
2308 
2309 	WARN_ON(md->frozen_sb);
2310 
2311 	md->frozen_sb = freeze_bdev(md->bdev);
2312 	if (IS_ERR(md->frozen_sb)) {
2313 		r = PTR_ERR(md->frozen_sb);
2314 		md->frozen_sb = NULL;
2315 		return r;
2316 	}
2317 
2318 	set_bit(DMF_FROZEN, &md->flags);
2319 
2320 	return 0;
2321 }
2322 
2323 static void unlock_fs(struct mapped_device *md)
2324 {
2325 	if (!test_bit(DMF_FROZEN, &md->flags))
2326 		return;
2327 
2328 	thaw_bdev(md->bdev, md->frozen_sb);
2329 	md->frozen_sb = NULL;
2330 	clear_bit(DMF_FROZEN, &md->flags);
2331 }
2332 
2333 /*
2334  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2335  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2336  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2337  *
2338  * If __dm_suspend returns 0, the device is completely quiescent
2339  * now. There is no request-processing activity. All new requests
2340  * are being added to md->deferred list.
2341  */
2342 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2343 			unsigned suspend_flags, long task_state,
2344 			int dmf_suspended_flag)
2345 {
2346 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2347 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2348 	int r;
2349 
2350 	lockdep_assert_held(&md->suspend_lock);
2351 
2352 	/*
2353 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2354 	 * This flag is cleared before dm_suspend returns.
2355 	 */
2356 	if (noflush)
2357 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2358 	else
2359 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2360 
2361 	/*
2362 	 * This gets reverted if there's an error later and the targets
2363 	 * provide the .presuspend_undo hook.
2364 	 */
2365 	dm_table_presuspend_targets(map);
2366 
2367 	/*
2368 	 * Flush I/O to the device.
2369 	 * Any I/O submitted after lock_fs() may not be flushed.
2370 	 * noflush takes precedence over do_lockfs.
2371 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2372 	 */
2373 	if (!noflush && do_lockfs) {
2374 		r = lock_fs(md);
2375 		if (r) {
2376 			dm_table_presuspend_undo_targets(map);
2377 			return r;
2378 		}
2379 	}
2380 
2381 	/*
2382 	 * Here we must make sure that no processes are submitting requests
2383 	 * to target drivers i.e. no one may be executing
2384 	 * __split_and_process_bio. This is called from dm_request and
2385 	 * dm_wq_work.
2386 	 *
2387 	 * To get all processes out of __split_and_process_bio in dm_request,
2388 	 * we take the write lock. To prevent any process from reentering
2389 	 * __split_and_process_bio from dm_request and quiesce the thread
2390 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2391 	 * flush_workqueue(md->wq).
2392 	 */
2393 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2394 	if (map)
2395 		synchronize_srcu(&md->io_barrier);
2396 
2397 	/*
2398 	 * Stop md->queue before flushing md->wq in case request-based
2399 	 * dm defers requests to md->wq from md->queue.
2400 	 */
2401 	if (dm_request_based(md)) {
2402 		dm_stop_queue(md->queue);
2403 		if (md->kworker_task)
2404 			kthread_flush_worker(&md->kworker);
2405 	}
2406 
2407 	flush_workqueue(md->wq);
2408 
2409 	/*
2410 	 * At this point no more requests are entering target request routines.
2411 	 * We call dm_wait_for_completion to wait for all existing requests
2412 	 * to finish.
2413 	 */
2414 	r = dm_wait_for_completion(md, task_state);
2415 	if (!r)
2416 		set_bit(dmf_suspended_flag, &md->flags);
2417 
2418 	if (noflush)
2419 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2420 	if (map)
2421 		synchronize_srcu(&md->io_barrier);
2422 
2423 	/* were we interrupted ? */
2424 	if (r < 0) {
2425 		dm_queue_flush(md);
2426 
2427 		if (dm_request_based(md))
2428 			dm_start_queue(md->queue);
2429 
2430 		unlock_fs(md);
2431 		dm_table_presuspend_undo_targets(map);
2432 		/* pushback list is already flushed, so skip flush */
2433 	}
2434 
2435 	return r;
2436 }
2437 
2438 /*
2439  * We need to be able to change a mapping table under a mounted
2440  * filesystem.  For example we might want to move some data in
2441  * the background.  Before the table can be swapped with
2442  * dm_bind_table, dm_suspend must be called to flush any in
2443  * flight bios and ensure that any further io gets deferred.
2444  */
2445 /*
2446  * Suspend mechanism in request-based dm.
2447  *
2448  * 1. Flush all I/Os by lock_fs() if needed.
2449  * 2. Stop dispatching any I/O by stopping the request_queue.
2450  * 3. Wait for all in-flight I/Os to be completed or requeued.
2451  *
2452  * To abort suspend, start the request_queue.
2453  */
2454 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2455 {
2456 	struct dm_table *map = NULL;
2457 	int r = 0;
2458 
2459 retry:
2460 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2461 
2462 	if (dm_suspended_md(md)) {
2463 		r = -EINVAL;
2464 		goto out_unlock;
2465 	}
2466 
2467 	if (dm_suspended_internally_md(md)) {
2468 		/* already internally suspended, wait for internal resume */
2469 		mutex_unlock(&md->suspend_lock);
2470 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2471 		if (r)
2472 			return r;
2473 		goto retry;
2474 	}
2475 
2476 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2477 
2478 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2479 	if (r)
2480 		goto out_unlock;
2481 
2482 	dm_table_postsuspend_targets(map);
2483 
2484 out_unlock:
2485 	mutex_unlock(&md->suspend_lock);
2486 	return r;
2487 }
2488 
2489 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2490 {
2491 	if (map) {
2492 		int r = dm_table_resume_targets(map);
2493 		if (r)
2494 			return r;
2495 	}
2496 
2497 	dm_queue_flush(md);
2498 
2499 	/*
2500 	 * Flushing deferred I/Os must be done after targets are resumed
2501 	 * so that mapping of targets can work correctly.
2502 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2503 	 */
2504 	if (dm_request_based(md))
2505 		dm_start_queue(md->queue);
2506 
2507 	unlock_fs(md);
2508 
2509 	return 0;
2510 }
2511 
2512 int dm_resume(struct mapped_device *md)
2513 {
2514 	int r;
2515 	struct dm_table *map = NULL;
2516 
2517 retry:
2518 	r = -EINVAL;
2519 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2520 
2521 	if (!dm_suspended_md(md))
2522 		goto out;
2523 
2524 	if (dm_suspended_internally_md(md)) {
2525 		/* already internally suspended, wait for internal resume */
2526 		mutex_unlock(&md->suspend_lock);
2527 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2528 		if (r)
2529 			return r;
2530 		goto retry;
2531 	}
2532 
2533 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2534 	if (!map || !dm_table_get_size(map))
2535 		goto out;
2536 
2537 	r = __dm_resume(md, map);
2538 	if (r)
2539 		goto out;
2540 
2541 	clear_bit(DMF_SUSPENDED, &md->flags);
2542 out:
2543 	mutex_unlock(&md->suspend_lock);
2544 
2545 	return r;
2546 }
2547 
2548 /*
2549  * Internal suspend/resume works like userspace-driven suspend. It waits
2550  * until all bios finish and prevents issuing new bios to the target drivers.
2551  * It may be used only from the kernel.
2552  */
2553 
2554 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2555 {
2556 	struct dm_table *map = NULL;
2557 
2558 	lockdep_assert_held(&md->suspend_lock);
2559 
2560 	if (md->internal_suspend_count++)
2561 		return; /* nested internal suspend */
2562 
2563 	if (dm_suspended_md(md)) {
2564 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2565 		return; /* nest suspend */
2566 	}
2567 
2568 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2569 
2570 	/*
2571 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2572 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2573 	 * would require changing .presuspend to return an error -- avoid this
2574 	 * until there is a need for more elaborate variants of internal suspend.
2575 	 */
2576 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2577 			    DMF_SUSPENDED_INTERNALLY);
2578 
2579 	dm_table_postsuspend_targets(map);
2580 }
2581 
2582 static void __dm_internal_resume(struct mapped_device *md)
2583 {
2584 	BUG_ON(!md->internal_suspend_count);
2585 
2586 	if (--md->internal_suspend_count)
2587 		return; /* resume from nested internal suspend */
2588 
2589 	if (dm_suspended_md(md))
2590 		goto done; /* resume from nested suspend */
2591 
2592 	/*
2593 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2594 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2595 	 */
2596 	(void) __dm_resume(md, NULL);
2597 
2598 done:
2599 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2600 	smp_mb__after_atomic();
2601 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2602 }
2603 
2604 void dm_internal_suspend_noflush(struct mapped_device *md)
2605 {
2606 	mutex_lock(&md->suspend_lock);
2607 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2608 	mutex_unlock(&md->suspend_lock);
2609 }
2610 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2611 
2612 void dm_internal_resume(struct mapped_device *md)
2613 {
2614 	mutex_lock(&md->suspend_lock);
2615 	__dm_internal_resume(md);
2616 	mutex_unlock(&md->suspend_lock);
2617 }
2618 EXPORT_SYMBOL_GPL(dm_internal_resume);
2619 
2620 /*
2621  * Fast variants of internal suspend/resume hold md->suspend_lock,
2622  * which prevents interaction with userspace-driven suspend.
2623  */
2624 
2625 void dm_internal_suspend_fast(struct mapped_device *md)
2626 {
2627 	mutex_lock(&md->suspend_lock);
2628 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2629 		return;
2630 
2631 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2632 	synchronize_srcu(&md->io_barrier);
2633 	flush_workqueue(md->wq);
2634 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2635 }
2636 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2637 
2638 void dm_internal_resume_fast(struct mapped_device *md)
2639 {
2640 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2641 		goto done;
2642 
2643 	dm_queue_flush(md);
2644 
2645 done:
2646 	mutex_unlock(&md->suspend_lock);
2647 }
2648 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2649 
2650 /*-----------------------------------------------------------------
2651  * Event notification.
2652  *---------------------------------------------------------------*/
2653 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2654 		       unsigned cookie)
2655 {
2656 	char udev_cookie[DM_COOKIE_LENGTH];
2657 	char *envp[] = { udev_cookie, NULL };
2658 
2659 	if (!cookie)
2660 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2661 	else {
2662 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2663 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2664 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2665 					  action, envp);
2666 	}
2667 }
2668 
2669 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2670 {
2671 	return atomic_add_return(1, &md->uevent_seq);
2672 }
2673 
2674 uint32_t dm_get_event_nr(struct mapped_device *md)
2675 {
2676 	return atomic_read(&md->event_nr);
2677 }
2678 
2679 int dm_wait_event(struct mapped_device *md, int event_nr)
2680 {
2681 	return wait_event_interruptible(md->eventq,
2682 			(event_nr != atomic_read(&md->event_nr)));
2683 }
2684 
2685 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2686 {
2687 	unsigned long flags;
2688 
2689 	spin_lock_irqsave(&md->uevent_lock, flags);
2690 	list_add(elist, &md->uevent_list);
2691 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2692 }
2693 
2694 /*
2695  * The gendisk is only valid as long as you have a reference
2696  * count on 'md'.
2697  */
2698 struct gendisk *dm_disk(struct mapped_device *md)
2699 {
2700 	return md->disk;
2701 }
2702 EXPORT_SYMBOL_GPL(dm_disk);
2703 
2704 struct kobject *dm_kobject(struct mapped_device *md)
2705 {
2706 	return &md->kobj_holder.kobj;
2707 }
2708 
2709 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2710 {
2711 	struct mapped_device *md;
2712 
2713 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2714 
2715 	spin_lock(&_minor_lock);
2716 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2717 		md = NULL;
2718 		goto out;
2719 	}
2720 	dm_get(md);
2721 out:
2722 	spin_unlock(&_minor_lock);
2723 
2724 	return md;
2725 }
2726 
2727 int dm_suspended_md(struct mapped_device *md)
2728 {
2729 	return test_bit(DMF_SUSPENDED, &md->flags);
2730 }
2731 
2732 int dm_suspended_internally_md(struct mapped_device *md)
2733 {
2734 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2735 }
2736 
2737 int dm_test_deferred_remove_flag(struct mapped_device *md)
2738 {
2739 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2740 }
2741 
2742 int dm_suspended(struct dm_target *ti)
2743 {
2744 	return dm_suspended_md(dm_table_get_md(ti->table));
2745 }
2746 EXPORT_SYMBOL_GPL(dm_suspended);
2747 
2748 int dm_noflush_suspending(struct dm_target *ti)
2749 {
2750 	return __noflush_suspending(dm_table_get_md(ti->table));
2751 }
2752 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2753 
2754 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2755 					    unsigned integrity, unsigned per_io_data_size)
2756 {
2757 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2758 	unsigned int pool_size = 0;
2759 	unsigned int front_pad;
2760 
2761 	if (!pools)
2762 		return NULL;
2763 
2764 	switch (type) {
2765 	case DM_TYPE_BIO_BASED:
2766 	case DM_TYPE_DAX_BIO_BASED:
2767 		pool_size = dm_get_reserved_bio_based_ios();
2768 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2769 
2770 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2771 		if (!pools->io_pool)
2772 			goto out;
2773 		break;
2774 	case DM_TYPE_REQUEST_BASED:
2775 	case DM_TYPE_MQ_REQUEST_BASED:
2776 		pool_size = dm_get_reserved_rq_based_ios();
2777 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2778 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2779 		break;
2780 	default:
2781 		BUG();
2782 	}
2783 
2784 	pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2785 	if (!pools->bs)
2786 		goto out;
2787 
2788 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2789 		goto out;
2790 
2791 	return pools;
2792 
2793 out:
2794 	dm_free_md_mempools(pools);
2795 
2796 	return NULL;
2797 }
2798 
2799 void dm_free_md_mempools(struct dm_md_mempools *pools)
2800 {
2801 	if (!pools)
2802 		return;
2803 
2804 	mempool_destroy(pools->io_pool);
2805 
2806 	if (pools->bs)
2807 		bioset_free(pools->bs);
2808 
2809 	kfree(pools);
2810 }
2811 
2812 struct dm_pr {
2813 	u64	old_key;
2814 	u64	new_key;
2815 	u32	flags;
2816 	bool	fail_early;
2817 };
2818 
2819 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2820 		      void *data)
2821 {
2822 	struct mapped_device *md = bdev->bd_disk->private_data;
2823 	struct dm_table *table;
2824 	struct dm_target *ti;
2825 	int ret = -ENOTTY, srcu_idx;
2826 
2827 	table = dm_get_live_table(md, &srcu_idx);
2828 	if (!table || !dm_table_get_size(table))
2829 		goto out;
2830 
2831 	/* We only support devices that have a single target */
2832 	if (dm_table_get_num_targets(table) != 1)
2833 		goto out;
2834 	ti = dm_table_get_target(table, 0);
2835 
2836 	ret = -EINVAL;
2837 	if (!ti->type->iterate_devices)
2838 		goto out;
2839 
2840 	ret = ti->type->iterate_devices(ti, fn, data);
2841 out:
2842 	dm_put_live_table(md, srcu_idx);
2843 	return ret;
2844 }
2845 
2846 /*
2847  * For register / unregister we need to manually call out to every path.
2848  */
2849 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2850 			    sector_t start, sector_t len, void *data)
2851 {
2852 	struct dm_pr *pr = data;
2853 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2854 
2855 	if (!ops || !ops->pr_register)
2856 		return -EOPNOTSUPP;
2857 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2858 }
2859 
2860 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2861 			  u32 flags)
2862 {
2863 	struct dm_pr pr = {
2864 		.old_key	= old_key,
2865 		.new_key	= new_key,
2866 		.flags		= flags,
2867 		.fail_early	= true,
2868 	};
2869 	int ret;
2870 
2871 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2872 	if (ret && new_key) {
2873 		/* unregister all paths if we failed to register any path */
2874 		pr.old_key = new_key;
2875 		pr.new_key = 0;
2876 		pr.flags = 0;
2877 		pr.fail_early = false;
2878 		dm_call_pr(bdev, __dm_pr_register, &pr);
2879 	}
2880 
2881 	return ret;
2882 }
2883 
2884 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2885 			 u32 flags)
2886 {
2887 	struct mapped_device *md = bdev->bd_disk->private_data;
2888 	const struct pr_ops *ops;
2889 	fmode_t mode;
2890 	int r;
2891 
2892 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2893 	if (r < 0)
2894 		return r;
2895 
2896 	ops = bdev->bd_disk->fops->pr_ops;
2897 	if (ops && ops->pr_reserve)
2898 		r = ops->pr_reserve(bdev, key, type, flags);
2899 	else
2900 		r = -EOPNOTSUPP;
2901 
2902 	bdput(bdev);
2903 	return r;
2904 }
2905 
2906 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2907 {
2908 	struct mapped_device *md = bdev->bd_disk->private_data;
2909 	const struct pr_ops *ops;
2910 	fmode_t mode;
2911 	int r;
2912 
2913 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2914 	if (r < 0)
2915 		return r;
2916 
2917 	ops = bdev->bd_disk->fops->pr_ops;
2918 	if (ops && ops->pr_release)
2919 		r = ops->pr_release(bdev, key, type);
2920 	else
2921 		r = -EOPNOTSUPP;
2922 
2923 	bdput(bdev);
2924 	return r;
2925 }
2926 
2927 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2928 			 enum pr_type type, bool abort)
2929 {
2930 	struct mapped_device *md = bdev->bd_disk->private_data;
2931 	const struct pr_ops *ops;
2932 	fmode_t mode;
2933 	int r;
2934 
2935 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2936 	if (r < 0)
2937 		return r;
2938 
2939 	ops = bdev->bd_disk->fops->pr_ops;
2940 	if (ops && ops->pr_preempt)
2941 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2942 	else
2943 		r = -EOPNOTSUPP;
2944 
2945 	bdput(bdev);
2946 	return r;
2947 }
2948 
2949 static int dm_pr_clear(struct block_device *bdev, u64 key)
2950 {
2951 	struct mapped_device *md = bdev->bd_disk->private_data;
2952 	const struct pr_ops *ops;
2953 	fmode_t mode;
2954 	int r;
2955 
2956 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2957 	if (r < 0)
2958 		return r;
2959 
2960 	ops = bdev->bd_disk->fops->pr_ops;
2961 	if (ops && ops->pr_clear)
2962 		r = ops->pr_clear(bdev, key);
2963 	else
2964 		r = -EOPNOTSUPP;
2965 
2966 	bdput(bdev);
2967 	return r;
2968 }
2969 
2970 static const struct pr_ops dm_pr_ops = {
2971 	.pr_register	= dm_pr_register,
2972 	.pr_reserve	= dm_pr_reserve,
2973 	.pr_release	= dm_pr_release,
2974 	.pr_preempt	= dm_pr_preempt,
2975 	.pr_clear	= dm_pr_clear,
2976 };
2977 
2978 static const struct block_device_operations dm_blk_dops = {
2979 	.open = dm_blk_open,
2980 	.release = dm_blk_close,
2981 	.ioctl = dm_blk_ioctl,
2982 	.getgeo = dm_blk_getgeo,
2983 	.pr_ops = &dm_pr_ops,
2984 	.owner = THIS_MODULE
2985 };
2986 
2987 static const struct dax_operations dm_dax_ops = {
2988 	.direct_access = dm_dax_direct_access,
2989 	.copy_from_iter = dm_dax_copy_from_iter,
2990 };
2991 
2992 /*
2993  * module hooks
2994  */
2995 module_init(dm_init);
2996 module_exit(dm_exit);
2997 
2998 module_param(major, uint, 0);
2999 MODULE_PARM_DESC(major, "The major number of the device mapper");
3000 
3001 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3002 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3003 
3004 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3005 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3006 
3007 MODULE_DESCRIPTION(DM_NAME " driver");
3008 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3009 MODULE_LICENSE("GPL");
3010