1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set bs; 152 struct bio_set io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 /* 162 * Bio-based DM's mempools' reserved IOs set by the user. 163 */ 164 #define RESERVED_BIO_BASED_IOS 16 165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 166 167 static int __dm_get_module_param_int(int *module_param, int min, int max) 168 { 169 int param = READ_ONCE(*module_param); 170 int modified_param = 0; 171 bool modified = true; 172 173 if (param < min) 174 modified_param = min; 175 else if (param > max) 176 modified_param = max; 177 else 178 modified = false; 179 180 if (modified) { 181 (void)cmpxchg(module_param, param, modified_param); 182 param = modified_param; 183 } 184 185 return param; 186 } 187 188 unsigned __dm_get_module_param(unsigned *module_param, 189 unsigned def, unsigned max) 190 { 191 unsigned param = READ_ONCE(*module_param); 192 unsigned modified_param = 0; 193 194 if (!param) 195 modified_param = def; 196 else if (param > max) 197 modified_param = max; 198 199 if (modified_param) { 200 (void)cmpxchg(module_param, param, modified_param); 201 param = modified_param; 202 } 203 204 return param; 205 } 206 207 unsigned dm_get_reserved_bio_based_ios(void) 208 { 209 return __dm_get_module_param(&reserved_bio_based_ios, 210 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 211 } 212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 213 214 static unsigned dm_get_numa_node(void) 215 { 216 return __dm_get_module_param_int(&dm_numa_node, 217 DM_NUMA_NODE, num_online_nodes() - 1); 218 } 219 220 static int __init local_init(void) 221 { 222 int r; 223 224 r = dm_uevent_init(); 225 if (r) 226 return r; 227 228 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 229 if (!deferred_remove_workqueue) { 230 r = -ENOMEM; 231 goto out_uevent_exit; 232 } 233 234 _major = major; 235 r = register_blkdev(_major, _name); 236 if (r < 0) 237 goto out_free_workqueue; 238 239 if (!_major) 240 _major = r; 241 242 return 0; 243 244 out_free_workqueue: 245 destroy_workqueue(deferred_remove_workqueue); 246 out_uevent_exit: 247 dm_uevent_exit(); 248 249 return r; 250 } 251 252 static void local_exit(void) 253 { 254 flush_scheduled_work(); 255 destroy_workqueue(deferred_remove_workqueue); 256 257 unregister_blkdev(_major, _name); 258 dm_uevent_exit(); 259 260 _major = 0; 261 262 DMINFO("cleaned up"); 263 } 264 265 static int (*_inits[])(void) __initdata = { 266 local_init, 267 dm_target_init, 268 dm_linear_init, 269 dm_stripe_init, 270 dm_io_init, 271 dm_kcopyd_init, 272 dm_interface_init, 273 dm_statistics_init, 274 }; 275 276 static void (*_exits[])(void) = { 277 local_exit, 278 dm_target_exit, 279 dm_linear_exit, 280 dm_stripe_exit, 281 dm_io_exit, 282 dm_kcopyd_exit, 283 dm_interface_exit, 284 dm_statistics_exit, 285 }; 286 287 static int __init dm_init(void) 288 { 289 const int count = ARRAY_SIZE(_inits); 290 291 int r, i; 292 293 for (i = 0; i < count; i++) { 294 r = _inits[i](); 295 if (r) 296 goto bad; 297 } 298 299 return 0; 300 301 bad: 302 while (i--) 303 _exits[i](); 304 305 return r; 306 } 307 308 static void __exit dm_exit(void) 309 { 310 int i = ARRAY_SIZE(_exits); 311 312 while (i--) 313 _exits[i](); 314 315 /* 316 * Should be empty by this point. 317 */ 318 idr_destroy(&_minor_idr); 319 } 320 321 /* 322 * Block device functions 323 */ 324 int dm_deleting_md(struct mapped_device *md) 325 { 326 return test_bit(DMF_DELETING, &md->flags); 327 } 328 329 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 330 { 331 struct mapped_device *md; 332 333 spin_lock(&_minor_lock); 334 335 md = bdev->bd_disk->private_data; 336 if (!md) 337 goto out; 338 339 if (test_bit(DMF_FREEING, &md->flags) || 340 dm_deleting_md(md)) { 341 md = NULL; 342 goto out; 343 } 344 345 dm_get(md); 346 atomic_inc(&md->open_count); 347 out: 348 spin_unlock(&_minor_lock); 349 350 return md ? 0 : -ENXIO; 351 } 352 353 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 354 { 355 struct mapped_device *md; 356 357 spin_lock(&_minor_lock); 358 359 md = disk->private_data; 360 if (WARN_ON(!md)) 361 goto out; 362 363 if (atomic_dec_and_test(&md->open_count) && 364 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 365 queue_work(deferred_remove_workqueue, &deferred_remove_work); 366 367 dm_put(md); 368 out: 369 spin_unlock(&_minor_lock); 370 } 371 372 int dm_open_count(struct mapped_device *md) 373 { 374 return atomic_read(&md->open_count); 375 } 376 377 /* 378 * Guarantees nothing is using the device before it's deleted. 379 */ 380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 381 { 382 int r = 0; 383 384 spin_lock(&_minor_lock); 385 386 if (dm_open_count(md)) { 387 r = -EBUSY; 388 if (mark_deferred) 389 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 390 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 391 r = -EEXIST; 392 else 393 set_bit(DMF_DELETING, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 int dm_cancel_deferred_remove(struct mapped_device *md) 401 { 402 int r = 0; 403 404 spin_lock(&_minor_lock); 405 406 if (test_bit(DMF_DELETING, &md->flags)) 407 r = -EBUSY; 408 else 409 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 410 411 spin_unlock(&_minor_lock); 412 413 return r; 414 } 415 416 static void do_deferred_remove(struct work_struct *w) 417 { 418 dm_deferred_remove(); 419 } 420 421 sector_t dm_get_size(struct mapped_device *md) 422 { 423 return get_capacity(md->disk); 424 } 425 426 struct request_queue *dm_get_md_queue(struct mapped_device *md) 427 { 428 return md->queue; 429 } 430 431 struct dm_stats *dm_get_stats(struct mapped_device *md) 432 { 433 return &md->stats; 434 } 435 436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 437 { 438 struct mapped_device *md = bdev->bd_disk->private_data; 439 440 return dm_get_geometry(md, geo); 441 } 442 443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 444 struct blk_zone *zones, unsigned int *nr_zones, 445 gfp_t gfp_mask) 446 { 447 #ifdef CONFIG_BLK_DEV_ZONED 448 struct mapped_device *md = disk->private_data; 449 struct dm_target *tgt; 450 struct dm_table *map; 451 int srcu_idx, ret; 452 453 if (dm_suspended_md(md)) 454 return -EAGAIN; 455 456 map = dm_get_live_table(md, &srcu_idx); 457 if (!map) 458 return -EIO; 459 460 tgt = dm_table_find_target(map, sector); 461 if (!dm_target_is_valid(tgt)) { 462 ret = -EIO; 463 goto out; 464 } 465 466 /* 467 * If we are executing this, we already know that the block device 468 * is a zoned device and so each target should have support for that 469 * type of drive. A missing report_zones method means that the target 470 * driver has a problem. 471 */ 472 if (WARN_ON(!tgt->type->report_zones)) { 473 ret = -EIO; 474 goto out; 475 } 476 477 /* 478 * blkdev_report_zones() will loop and call this again to cover all the 479 * zones of the target, eventually moving on to the next target. 480 * So there is no need to loop here trying to fill the entire array 481 * of zones. 482 */ 483 ret = tgt->type->report_zones(tgt, sector, zones, 484 nr_zones, gfp_mask); 485 486 out: 487 dm_put_live_table(md, srcu_idx); 488 return ret; 489 #else 490 return -ENOTSUPP; 491 #endif 492 } 493 494 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 495 struct block_device **bdev) 496 __acquires(md->io_barrier) 497 { 498 struct dm_target *tgt; 499 struct dm_table *map; 500 int r; 501 502 retry: 503 r = -ENOTTY; 504 map = dm_get_live_table(md, srcu_idx); 505 if (!map || !dm_table_get_size(map)) 506 return r; 507 508 /* We only support devices that have a single target */ 509 if (dm_table_get_num_targets(map) != 1) 510 return r; 511 512 tgt = dm_table_get_target(map, 0); 513 if (!tgt->type->prepare_ioctl) 514 return r; 515 516 if (dm_suspended_md(md)) 517 return -EAGAIN; 518 519 r = tgt->type->prepare_ioctl(tgt, bdev); 520 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 521 dm_put_live_table(md, *srcu_idx); 522 msleep(10); 523 goto retry; 524 } 525 526 return r; 527 } 528 529 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 530 __releases(md->io_barrier) 531 { 532 dm_put_live_table(md, srcu_idx); 533 } 534 535 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 536 unsigned int cmd, unsigned long arg) 537 { 538 struct mapped_device *md = bdev->bd_disk->private_data; 539 int r, srcu_idx; 540 541 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 542 if (r < 0) 543 goto out; 544 545 if (r > 0) { 546 /* 547 * Target determined this ioctl is being issued against a 548 * subset of the parent bdev; require extra privileges. 549 */ 550 if (!capable(CAP_SYS_RAWIO)) { 551 DMWARN_LIMIT( 552 "%s: sending ioctl %x to DM device without required privilege.", 553 current->comm, cmd); 554 r = -ENOIOCTLCMD; 555 goto out; 556 } 557 } 558 559 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 560 out: 561 dm_unprepare_ioctl(md, srcu_idx); 562 return r; 563 } 564 565 static void start_io_acct(struct dm_io *io); 566 567 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 568 { 569 struct dm_io *io; 570 struct dm_target_io *tio; 571 struct bio *clone; 572 573 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 574 if (!clone) 575 return NULL; 576 577 tio = container_of(clone, struct dm_target_io, clone); 578 tio->inside_dm_io = true; 579 tio->io = NULL; 580 581 io = container_of(tio, struct dm_io, tio); 582 io->magic = DM_IO_MAGIC; 583 io->status = 0; 584 atomic_set(&io->io_count, 1); 585 io->orig_bio = bio; 586 io->md = md; 587 spin_lock_init(&io->endio_lock); 588 589 start_io_acct(io); 590 591 return io; 592 } 593 594 static void free_io(struct mapped_device *md, struct dm_io *io) 595 { 596 bio_put(&io->tio.clone); 597 } 598 599 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 600 unsigned target_bio_nr, gfp_t gfp_mask) 601 { 602 struct dm_target_io *tio; 603 604 if (!ci->io->tio.io) { 605 /* the dm_target_io embedded in ci->io is available */ 606 tio = &ci->io->tio; 607 } else { 608 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 609 if (!clone) 610 return NULL; 611 612 tio = container_of(clone, struct dm_target_io, clone); 613 tio->inside_dm_io = false; 614 } 615 616 tio->magic = DM_TIO_MAGIC; 617 tio->io = ci->io; 618 tio->ti = ti; 619 tio->target_bio_nr = target_bio_nr; 620 621 return tio; 622 } 623 624 static void free_tio(struct dm_target_io *tio) 625 { 626 if (tio->inside_dm_io) 627 return; 628 bio_put(&tio->clone); 629 } 630 631 static bool md_in_flight_bios(struct mapped_device *md) 632 { 633 int cpu; 634 struct hd_struct *part = &dm_disk(md)->part0; 635 long sum = 0; 636 637 for_each_possible_cpu(cpu) { 638 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 639 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 640 } 641 642 return sum != 0; 643 } 644 645 static bool md_in_flight(struct mapped_device *md) 646 { 647 if (queue_is_mq(md->queue)) 648 return blk_mq_queue_inflight(md->queue); 649 else 650 return md_in_flight_bios(md); 651 } 652 653 static void start_io_acct(struct dm_io *io) 654 { 655 struct mapped_device *md = io->md; 656 struct bio *bio = io->orig_bio; 657 658 io->start_time = jiffies; 659 660 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 661 &dm_disk(md)->part0); 662 663 if (unlikely(dm_stats_used(&md->stats))) 664 dm_stats_account_io(&md->stats, bio_data_dir(bio), 665 bio->bi_iter.bi_sector, bio_sectors(bio), 666 false, 0, &io->stats_aux); 667 } 668 669 static void end_io_acct(struct dm_io *io) 670 { 671 struct mapped_device *md = io->md; 672 struct bio *bio = io->orig_bio; 673 unsigned long duration = jiffies - io->start_time; 674 675 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 676 io->start_time); 677 678 if (unlikely(dm_stats_used(&md->stats))) 679 dm_stats_account_io(&md->stats, bio_data_dir(bio), 680 bio->bi_iter.bi_sector, bio_sectors(bio), 681 true, duration, &io->stats_aux); 682 683 /* nudge anyone waiting on suspend queue */ 684 if (unlikely(wq_has_sleeper(&md->wait))) 685 wake_up(&md->wait); 686 } 687 688 /* 689 * Add the bio to the list of deferred io. 690 */ 691 static void queue_io(struct mapped_device *md, struct bio *bio) 692 { 693 unsigned long flags; 694 695 spin_lock_irqsave(&md->deferred_lock, flags); 696 bio_list_add(&md->deferred, bio); 697 spin_unlock_irqrestore(&md->deferred_lock, flags); 698 queue_work(md->wq, &md->work); 699 } 700 701 /* 702 * Everyone (including functions in this file), should use this 703 * function to access the md->map field, and make sure they call 704 * dm_put_live_table() when finished. 705 */ 706 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 707 { 708 *srcu_idx = srcu_read_lock(&md->io_barrier); 709 710 return srcu_dereference(md->map, &md->io_barrier); 711 } 712 713 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 714 { 715 srcu_read_unlock(&md->io_barrier, srcu_idx); 716 } 717 718 void dm_sync_table(struct mapped_device *md) 719 { 720 synchronize_srcu(&md->io_barrier); 721 synchronize_rcu_expedited(); 722 } 723 724 /* 725 * A fast alternative to dm_get_live_table/dm_put_live_table. 726 * The caller must not block between these two functions. 727 */ 728 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 729 { 730 rcu_read_lock(); 731 return rcu_dereference(md->map); 732 } 733 734 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 735 { 736 rcu_read_unlock(); 737 } 738 739 static char *_dm_claim_ptr = "I belong to device-mapper"; 740 741 /* 742 * Open a table device so we can use it as a map destination. 743 */ 744 static int open_table_device(struct table_device *td, dev_t dev, 745 struct mapped_device *md) 746 { 747 struct block_device *bdev; 748 749 int r; 750 751 BUG_ON(td->dm_dev.bdev); 752 753 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 754 if (IS_ERR(bdev)) 755 return PTR_ERR(bdev); 756 757 r = bd_link_disk_holder(bdev, dm_disk(md)); 758 if (r) { 759 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 760 return r; 761 } 762 763 td->dm_dev.bdev = bdev; 764 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 765 return 0; 766 } 767 768 /* 769 * Close a table device that we've been using. 770 */ 771 static void close_table_device(struct table_device *td, struct mapped_device *md) 772 { 773 if (!td->dm_dev.bdev) 774 return; 775 776 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 777 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 778 put_dax(td->dm_dev.dax_dev); 779 td->dm_dev.bdev = NULL; 780 td->dm_dev.dax_dev = NULL; 781 } 782 783 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 784 fmode_t mode) 785 { 786 struct table_device *td; 787 788 list_for_each_entry(td, l, list) 789 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 790 return td; 791 792 return NULL; 793 } 794 795 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 796 struct dm_dev **result) 797 { 798 int r; 799 struct table_device *td; 800 801 mutex_lock(&md->table_devices_lock); 802 td = find_table_device(&md->table_devices, dev, mode); 803 if (!td) { 804 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 805 if (!td) { 806 mutex_unlock(&md->table_devices_lock); 807 return -ENOMEM; 808 } 809 810 td->dm_dev.mode = mode; 811 td->dm_dev.bdev = NULL; 812 813 if ((r = open_table_device(td, dev, md))) { 814 mutex_unlock(&md->table_devices_lock); 815 kfree(td); 816 return r; 817 } 818 819 format_dev_t(td->dm_dev.name, dev); 820 821 refcount_set(&td->count, 1); 822 list_add(&td->list, &md->table_devices); 823 } else { 824 refcount_inc(&td->count); 825 } 826 mutex_unlock(&md->table_devices_lock); 827 828 *result = &td->dm_dev; 829 return 0; 830 } 831 EXPORT_SYMBOL_GPL(dm_get_table_device); 832 833 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 834 { 835 struct table_device *td = container_of(d, struct table_device, dm_dev); 836 837 mutex_lock(&md->table_devices_lock); 838 if (refcount_dec_and_test(&td->count)) { 839 close_table_device(td, md); 840 list_del(&td->list); 841 kfree(td); 842 } 843 mutex_unlock(&md->table_devices_lock); 844 } 845 EXPORT_SYMBOL(dm_put_table_device); 846 847 static void free_table_devices(struct list_head *devices) 848 { 849 struct list_head *tmp, *next; 850 851 list_for_each_safe(tmp, next, devices) { 852 struct table_device *td = list_entry(tmp, struct table_device, list); 853 854 DMWARN("dm_destroy: %s still exists with %d references", 855 td->dm_dev.name, refcount_read(&td->count)); 856 kfree(td); 857 } 858 } 859 860 /* 861 * Get the geometry associated with a dm device 862 */ 863 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 864 { 865 *geo = md->geometry; 866 867 return 0; 868 } 869 870 /* 871 * Set the geometry of a device. 872 */ 873 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 874 { 875 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 876 877 if (geo->start > sz) { 878 DMWARN("Start sector is beyond the geometry limits."); 879 return -EINVAL; 880 } 881 882 md->geometry = *geo; 883 884 return 0; 885 } 886 887 static int __noflush_suspending(struct mapped_device *md) 888 { 889 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 890 } 891 892 /* 893 * Decrements the number of outstanding ios that a bio has been 894 * cloned into, completing the original io if necc. 895 */ 896 static void dec_pending(struct dm_io *io, blk_status_t error) 897 { 898 unsigned long flags; 899 blk_status_t io_error; 900 struct bio *bio; 901 struct mapped_device *md = io->md; 902 903 /* Push-back supersedes any I/O errors */ 904 if (unlikely(error)) { 905 spin_lock_irqsave(&io->endio_lock, flags); 906 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 907 io->status = error; 908 spin_unlock_irqrestore(&io->endio_lock, flags); 909 } 910 911 if (atomic_dec_and_test(&io->io_count)) { 912 if (io->status == BLK_STS_DM_REQUEUE) { 913 /* 914 * Target requested pushing back the I/O. 915 */ 916 spin_lock_irqsave(&md->deferred_lock, flags); 917 if (__noflush_suspending(md)) 918 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 919 bio_list_add_head(&md->deferred, io->orig_bio); 920 else 921 /* noflush suspend was interrupted. */ 922 io->status = BLK_STS_IOERR; 923 spin_unlock_irqrestore(&md->deferred_lock, flags); 924 } 925 926 io_error = io->status; 927 bio = io->orig_bio; 928 end_io_acct(io); 929 free_io(md, io); 930 931 if (io_error == BLK_STS_DM_REQUEUE) 932 return; 933 934 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 935 /* 936 * Preflush done for flush with data, reissue 937 * without REQ_PREFLUSH. 938 */ 939 bio->bi_opf &= ~REQ_PREFLUSH; 940 queue_io(md, bio); 941 } else { 942 /* done with normal IO or empty flush */ 943 if (io_error) 944 bio->bi_status = io_error; 945 bio_endio(bio); 946 } 947 } 948 } 949 950 void disable_discard(struct mapped_device *md) 951 { 952 struct queue_limits *limits = dm_get_queue_limits(md); 953 954 /* device doesn't really support DISCARD, disable it */ 955 limits->max_discard_sectors = 0; 956 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 957 } 958 959 void disable_write_same(struct mapped_device *md) 960 { 961 struct queue_limits *limits = dm_get_queue_limits(md); 962 963 /* device doesn't really support WRITE SAME, disable it */ 964 limits->max_write_same_sectors = 0; 965 } 966 967 void disable_write_zeroes(struct mapped_device *md) 968 { 969 struct queue_limits *limits = dm_get_queue_limits(md); 970 971 /* device doesn't really support WRITE ZEROES, disable it */ 972 limits->max_write_zeroes_sectors = 0; 973 } 974 975 static void clone_endio(struct bio *bio) 976 { 977 blk_status_t error = bio->bi_status; 978 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 979 struct dm_io *io = tio->io; 980 struct mapped_device *md = tio->io->md; 981 dm_endio_fn endio = tio->ti->type->end_io; 982 983 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 984 if (bio_op(bio) == REQ_OP_DISCARD && 985 !bio->bi_disk->queue->limits.max_discard_sectors) 986 disable_discard(md); 987 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 988 !bio->bi_disk->queue->limits.max_write_same_sectors) 989 disable_write_same(md); 990 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 991 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 992 disable_write_zeroes(md); 993 } 994 995 if (endio) { 996 int r = endio(tio->ti, bio, &error); 997 switch (r) { 998 case DM_ENDIO_REQUEUE: 999 error = BLK_STS_DM_REQUEUE; 1000 /*FALLTHRU*/ 1001 case DM_ENDIO_DONE: 1002 break; 1003 case DM_ENDIO_INCOMPLETE: 1004 /* The target will handle the io */ 1005 return; 1006 default: 1007 DMWARN("unimplemented target endio return value: %d", r); 1008 BUG(); 1009 } 1010 } 1011 1012 free_tio(tio); 1013 dec_pending(io, error); 1014 } 1015 1016 /* 1017 * Return maximum size of I/O possible at the supplied sector up to the current 1018 * target boundary. 1019 */ 1020 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1021 { 1022 sector_t target_offset = dm_target_offset(ti, sector); 1023 1024 return ti->len - target_offset; 1025 } 1026 1027 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1028 { 1029 sector_t len = max_io_len_target_boundary(sector, ti); 1030 sector_t offset, max_len; 1031 1032 /* 1033 * Does the target need to split even further? 1034 */ 1035 if (ti->max_io_len) { 1036 offset = dm_target_offset(ti, sector); 1037 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1038 max_len = sector_div(offset, ti->max_io_len); 1039 else 1040 max_len = offset & (ti->max_io_len - 1); 1041 max_len = ti->max_io_len - max_len; 1042 1043 if (len > max_len) 1044 len = max_len; 1045 } 1046 1047 return len; 1048 } 1049 1050 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1051 { 1052 if (len > UINT_MAX) { 1053 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1054 (unsigned long long)len, UINT_MAX); 1055 ti->error = "Maximum size of target IO is too large"; 1056 return -EINVAL; 1057 } 1058 1059 ti->max_io_len = (uint32_t) len; 1060 1061 return 0; 1062 } 1063 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1064 1065 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1066 sector_t sector, int *srcu_idx) 1067 __acquires(md->io_barrier) 1068 { 1069 struct dm_table *map; 1070 struct dm_target *ti; 1071 1072 map = dm_get_live_table(md, srcu_idx); 1073 if (!map) 1074 return NULL; 1075 1076 ti = dm_table_find_target(map, sector); 1077 if (!dm_target_is_valid(ti)) 1078 return NULL; 1079 1080 return ti; 1081 } 1082 1083 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1084 long nr_pages, void **kaddr, pfn_t *pfn) 1085 { 1086 struct mapped_device *md = dax_get_private(dax_dev); 1087 sector_t sector = pgoff * PAGE_SECTORS; 1088 struct dm_target *ti; 1089 long len, ret = -EIO; 1090 int srcu_idx; 1091 1092 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1093 1094 if (!ti) 1095 goto out; 1096 if (!ti->type->direct_access) 1097 goto out; 1098 len = max_io_len(sector, ti) / PAGE_SECTORS; 1099 if (len < 1) 1100 goto out; 1101 nr_pages = min(len, nr_pages); 1102 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1103 1104 out: 1105 dm_put_live_table(md, srcu_idx); 1106 1107 return ret; 1108 } 1109 1110 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1111 void *addr, size_t bytes, struct iov_iter *i) 1112 { 1113 struct mapped_device *md = dax_get_private(dax_dev); 1114 sector_t sector = pgoff * PAGE_SECTORS; 1115 struct dm_target *ti; 1116 long ret = 0; 1117 int srcu_idx; 1118 1119 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1120 1121 if (!ti) 1122 goto out; 1123 if (!ti->type->dax_copy_from_iter) { 1124 ret = copy_from_iter(addr, bytes, i); 1125 goto out; 1126 } 1127 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1128 out: 1129 dm_put_live_table(md, srcu_idx); 1130 1131 return ret; 1132 } 1133 1134 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1135 void *addr, size_t bytes, struct iov_iter *i) 1136 { 1137 struct mapped_device *md = dax_get_private(dax_dev); 1138 sector_t sector = pgoff * PAGE_SECTORS; 1139 struct dm_target *ti; 1140 long ret = 0; 1141 int srcu_idx; 1142 1143 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1144 1145 if (!ti) 1146 goto out; 1147 if (!ti->type->dax_copy_to_iter) { 1148 ret = copy_to_iter(addr, bytes, i); 1149 goto out; 1150 } 1151 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1152 out: 1153 dm_put_live_table(md, srcu_idx); 1154 1155 return ret; 1156 } 1157 1158 /* 1159 * A target may call dm_accept_partial_bio only from the map routine. It is 1160 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1161 * 1162 * dm_accept_partial_bio informs the dm that the target only wants to process 1163 * additional n_sectors sectors of the bio and the rest of the data should be 1164 * sent in a next bio. 1165 * 1166 * A diagram that explains the arithmetics: 1167 * +--------------------+---------------+-------+ 1168 * | 1 | 2 | 3 | 1169 * +--------------------+---------------+-------+ 1170 * 1171 * <-------------- *tio->len_ptr ---------------> 1172 * <------- bi_size -------> 1173 * <-- n_sectors --> 1174 * 1175 * Region 1 was already iterated over with bio_advance or similar function. 1176 * (it may be empty if the target doesn't use bio_advance) 1177 * Region 2 is the remaining bio size that the target wants to process. 1178 * (it may be empty if region 1 is non-empty, although there is no reason 1179 * to make it empty) 1180 * The target requires that region 3 is to be sent in the next bio. 1181 * 1182 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1183 * the partially processed part (the sum of regions 1+2) must be the same for all 1184 * copies of the bio. 1185 */ 1186 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1187 { 1188 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1189 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1190 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1191 BUG_ON(bi_size > *tio->len_ptr); 1192 BUG_ON(n_sectors > bi_size); 1193 *tio->len_ptr -= bi_size - n_sectors; 1194 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1195 } 1196 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1197 1198 /* 1199 * The zone descriptors obtained with a zone report indicate 1200 * zone positions within the underlying device of the target. The zone 1201 * descriptors must be remapped to match their position within the dm device. 1202 * The caller target should obtain the zones information using 1203 * blkdev_report_zones() to ensure that remapping for partition offset is 1204 * already handled. 1205 */ 1206 void dm_remap_zone_report(struct dm_target *ti, sector_t start, 1207 struct blk_zone *zones, unsigned int *nr_zones) 1208 { 1209 #ifdef CONFIG_BLK_DEV_ZONED 1210 struct blk_zone *zone; 1211 unsigned int nrz = *nr_zones; 1212 int i; 1213 1214 /* 1215 * Remap the start sector and write pointer position of the zones in 1216 * the array. Since we may have obtained from the target underlying 1217 * device more zones that the target size, also adjust the number 1218 * of zones. 1219 */ 1220 for (i = 0; i < nrz; i++) { 1221 zone = zones + i; 1222 if (zone->start >= start + ti->len) { 1223 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i)); 1224 break; 1225 } 1226 1227 zone->start = zone->start + ti->begin - start; 1228 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 1229 continue; 1230 1231 if (zone->cond == BLK_ZONE_COND_FULL) 1232 zone->wp = zone->start + zone->len; 1233 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1234 zone->wp = zone->start; 1235 else 1236 zone->wp = zone->wp + ti->begin - start; 1237 } 1238 1239 *nr_zones = i; 1240 #else /* !CONFIG_BLK_DEV_ZONED */ 1241 *nr_zones = 0; 1242 #endif 1243 } 1244 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1245 1246 static blk_qc_t __map_bio(struct dm_target_io *tio) 1247 { 1248 int r; 1249 sector_t sector; 1250 struct bio *clone = &tio->clone; 1251 struct dm_io *io = tio->io; 1252 struct mapped_device *md = io->md; 1253 struct dm_target *ti = tio->ti; 1254 blk_qc_t ret = BLK_QC_T_NONE; 1255 1256 clone->bi_end_io = clone_endio; 1257 1258 /* 1259 * Map the clone. If r == 0 we don't need to do 1260 * anything, the target has assumed ownership of 1261 * this io. 1262 */ 1263 atomic_inc(&io->io_count); 1264 sector = clone->bi_iter.bi_sector; 1265 1266 r = ti->type->map(ti, clone); 1267 switch (r) { 1268 case DM_MAPIO_SUBMITTED: 1269 break; 1270 case DM_MAPIO_REMAPPED: 1271 /* the bio has been remapped so dispatch it */ 1272 trace_block_bio_remap(clone->bi_disk->queue, clone, 1273 bio_dev(io->orig_bio), sector); 1274 if (md->type == DM_TYPE_NVME_BIO_BASED) 1275 ret = direct_make_request(clone); 1276 else 1277 ret = generic_make_request(clone); 1278 break; 1279 case DM_MAPIO_KILL: 1280 free_tio(tio); 1281 dec_pending(io, BLK_STS_IOERR); 1282 break; 1283 case DM_MAPIO_REQUEUE: 1284 free_tio(tio); 1285 dec_pending(io, BLK_STS_DM_REQUEUE); 1286 break; 1287 default: 1288 DMWARN("unimplemented target map return value: %d", r); 1289 BUG(); 1290 } 1291 1292 return ret; 1293 } 1294 1295 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1296 { 1297 bio->bi_iter.bi_sector = sector; 1298 bio->bi_iter.bi_size = to_bytes(len); 1299 } 1300 1301 /* 1302 * Creates a bio that consists of range of complete bvecs. 1303 */ 1304 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1305 sector_t sector, unsigned len) 1306 { 1307 struct bio *clone = &tio->clone; 1308 1309 __bio_clone_fast(clone, bio); 1310 1311 if (bio_integrity(bio)) { 1312 int r; 1313 1314 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1315 !dm_target_passes_integrity(tio->ti->type))) { 1316 DMWARN("%s: the target %s doesn't support integrity data.", 1317 dm_device_name(tio->io->md), 1318 tio->ti->type->name); 1319 return -EIO; 1320 } 1321 1322 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1323 if (r < 0) 1324 return r; 1325 } 1326 1327 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1328 clone->bi_iter.bi_size = to_bytes(len); 1329 1330 if (bio_integrity(bio)) 1331 bio_integrity_trim(clone); 1332 1333 return 0; 1334 } 1335 1336 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1337 struct dm_target *ti, unsigned num_bios) 1338 { 1339 struct dm_target_io *tio; 1340 int try; 1341 1342 if (!num_bios) 1343 return; 1344 1345 if (num_bios == 1) { 1346 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1347 bio_list_add(blist, &tio->clone); 1348 return; 1349 } 1350 1351 for (try = 0; try < 2; try++) { 1352 int bio_nr; 1353 struct bio *bio; 1354 1355 if (try) 1356 mutex_lock(&ci->io->md->table_devices_lock); 1357 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1358 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1359 if (!tio) 1360 break; 1361 1362 bio_list_add(blist, &tio->clone); 1363 } 1364 if (try) 1365 mutex_unlock(&ci->io->md->table_devices_lock); 1366 if (bio_nr == num_bios) 1367 return; 1368 1369 while ((bio = bio_list_pop(blist))) { 1370 tio = container_of(bio, struct dm_target_io, clone); 1371 free_tio(tio); 1372 } 1373 } 1374 } 1375 1376 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1377 struct dm_target_io *tio, unsigned *len) 1378 { 1379 struct bio *clone = &tio->clone; 1380 1381 tio->len_ptr = len; 1382 1383 __bio_clone_fast(clone, ci->bio); 1384 if (len) 1385 bio_setup_sector(clone, ci->sector, *len); 1386 1387 return __map_bio(tio); 1388 } 1389 1390 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1391 unsigned num_bios, unsigned *len) 1392 { 1393 struct bio_list blist = BIO_EMPTY_LIST; 1394 struct bio *bio; 1395 struct dm_target_io *tio; 1396 1397 alloc_multiple_bios(&blist, ci, ti, num_bios); 1398 1399 while ((bio = bio_list_pop(&blist))) { 1400 tio = container_of(bio, struct dm_target_io, clone); 1401 (void) __clone_and_map_simple_bio(ci, tio, len); 1402 } 1403 } 1404 1405 static int __send_empty_flush(struct clone_info *ci) 1406 { 1407 unsigned target_nr = 0; 1408 struct dm_target *ti; 1409 1410 /* 1411 * Empty flush uses a statically initialized bio, as the base for 1412 * cloning. However, blkg association requires that a bdev is 1413 * associated with a gendisk, which doesn't happen until the bdev is 1414 * opened. So, blkg association is done at issue time of the flush 1415 * rather than when the device is created in alloc_dev(). 1416 */ 1417 bio_set_dev(ci->bio, ci->io->md->bdev); 1418 1419 BUG_ON(bio_has_data(ci->bio)); 1420 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1421 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1422 1423 bio_disassociate_blkg(ci->bio); 1424 1425 return 0; 1426 } 1427 1428 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1429 sector_t sector, unsigned *len) 1430 { 1431 struct bio *bio = ci->bio; 1432 struct dm_target_io *tio; 1433 int r; 1434 1435 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1436 tio->len_ptr = len; 1437 r = clone_bio(tio, bio, sector, *len); 1438 if (r < 0) { 1439 free_tio(tio); 1440 return r; 1441 } 1442 (void) __map_bio(tio); 1443 1444 return 0; 1445 } 1446 1447 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1448 1449 static unsigned get_num_discard_bios(struct dm_target *ti) 1450 { 1451 return ti->num_discard_bios; 1452 } 1453 1454 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1455 { 1456 return ti->num_secure_erase_bios; 1457 } 1458 1459 static unsigned get_num_write_same_bios(struct dm_target *ti) 1460 { 1461 return ti->num_write_same_bios; 1462 } 1463 1464 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1465 { 1466 return ti->num_write_zeroes_bios; 1467 } 1468 1469 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1470 unsigned num_bios) 1471 { 1472 unsigned len; 1473 1474 /* 1475 * Even though the device advertised support for this type of 1476 * request, that does not mean every target supports it, and 1477 * reconfiguration might also have changed that since the 1478 * check was performed. 1479 */ 1480 if (!num_bios) 1481 return -EOPNOTSUPP; 1482 1483 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1484 1485 __send_duplicate_bios(ci, ti, num_bios, &len); 1486 1487 ci->sector += len; 1488 ci->sector_count -= len; 1489 1490 return 0; 1491 } 1492 1493 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1494 { 1495 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1496 } 1497 1498 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1499 { 1500 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1501 } 1502 1503 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1504 { 1505 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1506 } 1507 1508 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1509 { 1510 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1511 } 1512 1513 static bool is_abnormal_io(struct bio *bio) 1514 { 1515 bool r = false; 1516 1517 switch (bio_op(bio)) { 1518 case REQ_OP_DISCARD: 1519 case REQ_OP_SECURE_ERASE: 1520 case REQ_OP_WRITE_SAME: 1521 case REQ_OP_WRITE_ZEROES: 1522 r = true; 1523 break; 1524 } 1525 1526 return r; 1527 } 1528 1529 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1530 int *result) 1531 { 1532 struct bio *bio = ci->bio; 1533 1534 if (bio_op(bio) == REQ_OP_DISCARD) 1535 *result = __send_discard(ci, ti); 1536 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1537 *result = __send_secure_erase(ci, ti); 1538 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1539 *result = __send_write_same(ci, ti); 1540 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1541 *result = __send_write_zeroes(ci, ti); 1542 else 1543 return false; 1544 1545 return true; 1546 } 1547 1548 /* 1549 * Select the correct strategy for processing a non-flush bio. 1550 */ 1551 static int __split_and_process_non_flush(struct clone_info *ci) 1552 { 1553 struct dm_target *ti; 1554 unsigned len; 1555 int r; 1556 1557 ti = dm_table_find_target(ci->map, ci->sector); 1558 if (!dm_target_is_valid(ti)) 1559 return -EIO; 1560 1561 if (__process_abnormal_io(ci, ti, &r)) 1562 return r; 1563 1564 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1565 1566 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1567 if (r < 0) 1568 return r; 1569 1570 ci->sector += len; 1571 ci->sector_count -= len; 1572 1573 return 0; 1574 } 1575 1576 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1577 struct dm_table *map, struct bio *bio) 1578 { 1579 ci->map = map; 1580 ci->io = alloc_io(md, bio); 1581 ci->sector = bio->bi_iter.bi_sector; 1582 } 1583 1584 #define __dm_part_stat_sub(part, field, subnd) \ 1585 (part_stat_get(part, field) -= (subnd)) 1586 1587 /* 1588 * Entry point to split a bio into clones and submit them to the targets. 1589 */ 1590 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1591 struct dm_table *map, struct bio *bio) 1592 { 1593 struct clone_info ci; 1594 blk_qc_t ret = BLK_QC_T_NONE; 1595 int error = 0; 1596 1597 init_clone_info(&ci, md, map, bio); 1598 1599 if (bio->bi_opf & REQ_PREFLUSH) { 1600 struct bio flush_bio; 1601 1602 /* 1603 * Use an on-stack bio for this, it's safe since we don't 1604 * need to reference it after submit. It's just used as 1605 * the basis for the clone(s). 1606 */ 1607 bio_init(&flush_bio, NULL, 0); 1608 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1609 ci.bio = &flush_bio; 1610 ci.sector_count = 0; 1611 error = __send_empty_flush(&ci); 1612 /* dec_pending submits any data associated with flush */ 1613 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1614 ci.bio = bio; 1615 ci.sector_count = 0; 1616 error = __split_and_process_non_flush(&ci); 1617 } else { 1618 ci.bio = bio; 1619 ci.sector_count = bio_sectors(bio); 1620 while (ci.sector_count && !error) { 1621 error = __split_and_process_non_flush(&ci); 1622 if (current->bio_list && ci.sector_count && !error) { 1623 /* 1624 * Remainder must be passed to generic_make_request() 1625 * so that it gets handled *after* bios already submitted 1626 * have been completely processed. 1627 * We take a clone of the original to store in 1628 * ci.io->orig_bio to be used by end_io_acct() and 1629 * for dec_pending to use for completion handling. 1630 */ 1631 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1632 GFP_NOIO, &md->queue->bio_split); 1633 ci.io->orig_bio = b; 1634 1635 /* 1636 * Adjust IO stats for each split, otherwise upon queue 1637 * reentry there will be redundant IO accounting. 1638 * NOTE: this is a stop-gap fix, a proper fix involves 1639 * significant refactoring of DM core's bio splitting 1640 * (by eliminating DM's splitting and just using bio_split) 1641 */ 1642 part_stat_lock(); 1643 __dm_part_stat_sub(&dm_disk(md)->part0, 1644 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1645 part_stat_unlock(); 1646 1647 bio_chain(b, bio); 1648 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1649 ret = generic_make_request(bio); 1650 break; 1651 } 1652 } 1653 } 1654 1655 /* drop the extra reference count */ 1656 dec_pending(ci.io, errno_to_blk_status(error)); 1657 return ret; 1658 } 1659 1660 /* 1661 * Optimized variant of __split_and_process_bio that leverages the 1662 * fact that targets that use it do _not_ have a need to split bios. 1663 */ 1664 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1665 struct bio *bio, struct dm_target *ti) 1666 { 1667 struct clone_info ci; 1668 blk_qc_t ret = BLK_QC_T_NONE; 1669 int error = 0; 1670 1671 init_clone_info(&ci, md, map, bio); 1672 1673 if (bio->bi_opf & REQ_PREFLUSH) { 1674 struct bio flush_bio; 1675 1676 /* 1677 * Use an on-stack bio for this, it's safe since we don't 1678 * need to reference it after submit. It's just used as 1679 * the basis for the clone(s). 1680 */ 1681 bio_init(&flush_bio, NULL, 0); 1682 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1683 ci.bio = &flush_bio; 1684 ci.sector_count = 0; 1685 error = __send_empty_flush(&ci); 1686 /* dec_pending submits any data associated with flush */ 1687 } else { 1688 struct dm_target_io *tio; 1689 1690 ci.bio = bio; 1691 ci.sector_count = bio_sectors(bio); 1692 if (__process_abnormal_io(&ci, ti, &error)) 1693 goto out; 1694 1695 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1696 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1697 } 1698 out: 1699 /* drop the extra reference count */ 1700 dec_pending(ci.io, errno_to_blk_status(error)); 1701 return ret; 1702 } 1703 1704 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1705 { 1706 unsigned len, sector_count; 1707 1708 sector_count = bio_sectors(*bio); 1709 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1710 1711 if (sector_count > len) { 1712 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1713 1714 bio_chain(split, *bio); 1715 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1716 generic_make_request(*bio); 1717 *bio = split; 1718 } 1719 } 1720 1721 static blk_qc_t dm_process_bio(struct mapped_device *md, 1722 struct dm_table *map, struct bio *bio) 1723 { 1724 blk_qc_t ret = BLK_QC_T_NONE; 1725 struct dm_target *ti = md->immutable_target; 1726 1727 if (unlikely(!map)) { 1728 bio_io_error(bio); 1729 return ret; 1730 } 1731 1732 if (!ti) { 1733 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1734 if (unlikely(!ti || !dm_target_is_valid(ti))) { 1735 bio_io_error(bio); 1736 return ret; 1737 } 1738 } 1739 1740 /* 1741 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1742 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1743 * won't be imposed. 1744 */ 1745 if (current->bio_list) { 1746 blk_queue_split(md->queue, &bio); 1747 if (!is_abnormal_io(bio)) 1748 dm_queue_split(md, ti, &bio); 1749 } 1750 1751 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1752 return __process_bio(md, map, bio, ti); 1753 else 1754 return __split_and_process_bio(md, map, bio); 1755 } 1756 1757 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1758 { 1759 struct mapped_device *md = q->queuedata; 1760 blk_qc_t ret = BLK_QC_T_NONE; 1761 int srcu_idx; 1762 struct dm_table *map; 1763 1764 map = dm_get_live_table(md, &srcu_idx); 1765 1766 /* if we're suspended, we have to queue this io for later */ 1767 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1768 dm_put_live_table(md, srcu_idx); 1769 1770 if (!(bio->bi_opf & REQ_RAHEAD)) 1771 queue_io(md, bio); 1772 else 1773 bio_io_error(bio); 1774 return ret; 1775 } 1776 1777 ret = dm_process_bio(md, map, bio); 1778 1779 dm_put_live_table(md, srcu_idx); 1780 return ret; 1781 } 1782 1783 static int dm_any_congested(void *congested_data, int bdi_bits) 1784 { 1785 int r = bdi_bits; 1786 struct mapped_device *md = congested_data; 1787 struct dm_table *map; 1788 1789 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1790 if (dm_request_based(md)) { 1791 /* 1792 * With request-based DM we only need to check the 1793 * top-level queue for congestion. 1794 */ 1795 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1796 } else { 1797 map = dm_get_live_table_fast(md); 1798 if (map) 1799 r = dm_table_any_congested(map, bdi_bits); 1800 dm_put_live_table_fast(md); 1801 } 1802 } 1803 1804 return r; 1805 } 1806 1807 /*----------------------------------------------------------------- 1808 * An IDR is used to keep track of allocated minor numbers. 1809 *---------------------------------------------------------------*/ 1810 static void free_minor(int minor) 1811 { 1812 spin_lock(&_minor_lock); 1813 idr_remove(&_minor_idr, minor); 1814 spin_unlock(&_minor_lock); 1815 } 1816 1817 /* 1818 * See if the device with a specific minor # is free. 1819 */ 1820 static int specific_minor(int minor) 1821 { 1822 int r; 1823 1824 if (minor >= (1 << MINORBITS)) 1825 return -EINVAL; 1826 1827 idr_preload(GFP_KERNEL); 1828 spin_lock(&_minor_lock); 1829 1830 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1831 1832 spin_unlock(&_minor_lock); 1833 idr_preload_end(); 1834 if (r < 0) 1835 return r == -ENOSPC ? -EBUSY : r; 1836 return 0; 1837 } 1838 1839 static int next_free_minor(int *minor) 1840 { 1841 int r; 1842 1843 idr_preload(GFP_KERNEL); 1844 spin_lock(&_minor_lock); 1845 1846 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1847 1848 spin_unlock(&_minor_lock); 1849 idr_preload_end(); 1850 if (r < 0) 1851 return r; 1852 *minor = r; 1853 return 0; 1854 } 1855 1856 static const struct block_device_operations dm_blk_dops; 1857 static const struct dax_operations dm_dax_ops; 1858 1859 static void dm_wq_work(struct work_struct *work); 1860 1861 static void dm_init_normal_md_queue(struct mapped_device *md) 1862 { 1863 /* 1864 * Initialize aspects of queue that aren't relevant for blk-mq 1865 */ 1866 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1867 } 1868 1869 static void cleanup_mapped_device(struct mapped_device *md) 1870 { 1871 if (md->wq) 1872 destroy_workqueue(md->wq); 1873 bioset_exit(&md->bs); 1874 bioset_exit(&md->io_bs); 1875 1876 if (md->dax_dev) { 1877 kill_dax(md->dax_dev); 1878 put_dax(md->dax_dev); 1879 md->dax_dev = NULL; 1880 } 1881 1882 if (md->disk) { 1883 spin_lock(&_minor_lock); 1884 md->disk->private_data = NULL; 1885 spin_unlock(&_minor_lock); 1886 del_gendisk(md->disk); 1887 put_disk(md->disk); 1888 } 1889 1890 if (md->queue) 1891 blk_cleanup_queue(md->queue); 1892 1893 cleanup_srcu_struct(&md->io_barrier); 1894 1895 if (md->bdev) { 1896 bdput(md->bdev); 1897 md->bdev = NULL; 1898 } 1899 1900 mutex_destroy(&md->suspend_lock); 1901 mutex_destroy(&md->type_lock); 1902 mutex_destroy(&md->table_devices_lock); 1903 1904 dm_mq_cleanup_mapped_device(md); 1905 } 1906 1907 /* 1908 * Allocate and initialise a blank device with a given minor. 1909 */ 1910 static struct mapped_device *alloc_dev(int minor) 1911 { 1912 int r, numa_node_id = dm_get_numa_node(); 1913 struct mapped_device *md; 1914 void *old_md; 1915 1916 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1917 if (!md) { 1918 DMWARN("unable to allocate device, out of memory."); 1919 return NULL; 1920 } 1921 1922 if (!try_module_get(THIS_MODULE)) 1923 goto bad_module_get; 1924 1925 /* get a minor number for the dev */ 1926 if (minor == DM_ANY_MINOR) 1927 r = next_free_minor(&minor); 1928 else 1929 r = specific_minor(minor); 1930 if (r < 0) 1931 goto bad_minor; 1932 1933 r = init_srcu_struct(&md->io_barrier); 1934 if (r < 0) 1935 goto bad_io_barrier; 1936 1937 md->numa_node_id = numa_node_id; 1938 md->init_tio_pdu = false; 1939 md->type = DM_TYPE_NONE; 1940 mutex_init(&md->suspend_lock); 1941 mutex_init(&md->type_lock); 1942 mutex_init(&md->table_devices_lock); 1943 spin_lock_init(&md->deferred_lock); 1944 atomic_set(&md->holders, 1); 1945 atomic_set(&md->open_count, 0); 1946 atomic_set(&md->event_nr, 0); 1947 atomic_set(&md->uevent_seq, 0); 1948 INIT_LIST_HEAD(&md->uevent_list); 1949 INIT_LIST_HEAD(&md->table_devices); 1950 spin_lock_init(&md->uevent_lock); 1951 1952 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1953 if (!md->queue) 1954 goto bad; 1955 md->queue->queuedata = md; 1956 md->queue->backing_dev_info->congested_data = md; 1957 1958 md->disk = alloc_disk_node(1, md->numa_node_id); 1959 if (!md->disk) 1960 goto bad; 1961 1962 init_waitqueue_head(&md->wait); 1963 INIT_WORK(&md->work, dm_wq_work); 1964 init_waitqueue_head(&md->eventq); 1965 init_completion(&md->kobj_holder.completion); 1966 1967 md->disk->major = _major; 1968 md->disk->first_minor = minor; 1969 md->disk->fops = &dm_blk_dops; 1970 md->disk->queue = md->queue; 1971 md->disk->private_data = md; 1972 sprintf(md->disk->disk_name, "dm-%d", minor); 1973 1974 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1975 md->dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1976 if (!md->dax_dev) 1977 goto bad; 1978 } 1979 1980 add_disk_no_queue_reg(md->disk); 1981 format_dev_t(md->name, MKDEV(_major, minor)); 1982 1983 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1984 if (!md->wq) 1985 goto bad; 1986 1987 md->bdev = bdget_disk(md->disk, 0); 1988 if (!md->bdev) 1989 goto bad; 1990 1991 dm_stats_init(&md->stats); 1992 1993 /* Populate the mapping, nobody knows we exist yet */ 1994 spin_lock(&_minor_lock); 1995 old_md = idr_replace(&_minor_idr, md, minor); 1996 spin_unlock(&_minor_lock); 1997 1998 BUG_ON(old_md != MINOR_ALLOCED); 1999 2000 return md; 2001 2002 bad: 2003 cleanup_mapped_device(md); 2004 bad_io_barrier: 2005 free_minor(minor); 2006 bad_minor: 2007 module_put(THIS_MODULE); 2008 bad_module_get: 2009 kvfree(md); 2010 return NULL; 2011 } 2012 2013 static void unlock_fs(struct mapped_device *md); 2014 2015 static void free_dev(struct mapped_device *md) 2016 { 2017 int minor = MINOR(disk_devt(md->disk)); 2018 2019 unlock_fs(md); 2020 2021 cleanup_mapped_device(md); 2022 2023 free_table_devices(&md->table_devices); 2024 dm_stats_cleanup(&md->stats); 2025 free_minor(minor); 2026 2027 module_put(THIS_MODULE); 2028 kvfree(md); 2029 } 2030 2031 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2032 { 2033 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2034 int ret = 0; 2035 2036 if (dm_table_bio_based(t)) { 2037 /* 2038 * The md may already have mempools that need changing. 2039 * If so, reload bioset because front_pad may have changed 2040 * because a different table was loaded. 2041 */ 2042 bioset_exit(&md->bs); 2043 bioset_exit(&md->io_bs); 2044 2045 } else if (bioset_initialized(&md->bs)) { 2046 /* 2047 * There's no need to reload with request-based dm 2048 * because the size of front_pad doesn't change. 2049 * Note for future: If you are to reload bioset, 2050 * prep-ed requests in the queue may refer 2051 * to bio from the old bioset, so you must walk 2052 * through the queue to unprep. 2053 */ 2054 goto out; 2055 } 2056 2057 BUG_ON(!p || 2058 bioset_initialized(&md->bs) || 2059 bioset_initialized(&md->io_bs)); 2060 2061 ret = bioset_init_from_src(&md->bs, &p->bs); 2062 if (ret) 2063 goto out; 2064 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2065 if (ret) 2066 bioset_exit(&md->bs); 2067 out: 2068 /* mempool bind completed, no longer need any mempools in the table */ 2069 dm_table_free_md_mempools(t); 2070 return ret; 2071 } 2072 2073 /* 2074 * Bind a table to the device. 2075 */ 2076 static void event_callback(void *context) 2077 { 2078 unsigned long flags; 2079 LIST_HEAD(uevents); 2080 struct mapped_device *md = (struct mapped_device *) context; 2081 2082 spin_lock_irqsave(&md->uevent_lock, flags); 2083 list_splice_init(&md->uevent_list, &uevents); 2084 spin_unlock_irqrestore(&md->uevent_lock, flags); 2085 2086 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2087 2088 atomic_inc(&md->event_nr); 2089 wake_up(&md->eventq); 2090 dm_issue_global_event(); 2091 } 2092 2093 /* 2094 * Protected by md->suspend_lock obtained by dm_swap_table(). 2095 */ 2096 static void __set_size(struct mapped_device *md, sector_t size) 2097 { 2098 lockdep_assert_held(&md->suspend_lock); 2099 2100 set_capacity(md->disk, size); 2101 2102 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2103 } 2104 2105 /* 2106 * Returns old map, which caller must destroy. 2107 */ 2108 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2109 struct queue_limits *limits) 2110 { 2111 struct dm_table *old_map; 2112 struct request_queue *q = md->queue; 2113 bool request_based = dm_table_request_based(t); 2114 sector_t size; 2115 int ret; 2116 2117 lockdep_assert_held(&md->suspend_lock); 2118 2119 size = dm_table_get_size(t); 2120 2121 /* 2122 * Wipe any geometry if the size of the table changed. 2123 */ 2124 if (size != dm_get_size(md)) 2125 memset(&md->geometry, 0, sizeof(md->geometry)); 2126 2127 __set_size(md, size); 2128 2129 dm_table_event_callback(t, event_callback, md); 2130 2131 /* 2132 * The queue hasn't been stopped yet, if the old table type wasn't 2133 * for request-based during suspension. So stop it to prevent 2134 * I/O mapping before resume. 2135 * This must be done before setting the queue restrictions, 2136 * because request-based dm may be run just after the setting. 2137 */ 2138 if (request_based) 2139 dm_stop_queue(q); 2140 2141 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2142 /* 2143 * Leverage the fact that request-based DM targets and 2144 * NVMe bio based targets are immutable singletons 2145 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2146 * and __process_bio. 2147 */ 2148 md->immutable_target = dm_table_get_immutable_target(t); 2149 } 2150 2151 ret = __bind_mempools(md, t); 2152 if (ret) { 2153 old_map = ERR_PTR(ret); 2154 goto out; 2155 } 2156 2157 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2158 rcu_assign_pointer(md->map, (void *)t); 2159 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2160 2161 dm_table_set_restrictions(t, q, limits); 2162 if (old_map) 2163 dm_sync_table(md); 2164 2165 out: 2166 return old_map; 2167 } 2168 2169 /* 2170 * Returns unbound table for the caller to free. 2171 */ 2172 static struct dm_table *__unbind(struct mapped_device *md) 2173 { 2174 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2175 2176 if (!map) 2177 return NULL; 2178 2179 dm_table_event_callback(map, NULL, NULL); 2180 RCU_INIT_POINTER(md->map, NULL); 2181 dm_sync_table(md); 2182 2183 return map; 2184 } 2185 2186 /* 2187 * Constructor for a new device. 2188 */ 2189 int dm_create(int minor, struct mapped_device **result) 2190 { 2191 int r; 2192 struct mapped_device *md; 2193 2194 md = alloc_dev(minor); 2195 if (!md) 2196 return -ENXIO; 2197 2198 r = dm_sysfs_init(md); 2199 if (r) { 2200 free_dev(md); 2201 return r; 2202 } 2203 2204 *result = md; 2205 return 0; 2206 } 2207 2208 /* 2209 * Functions to manage md->type. 2210 * All are required to hold md->type_lock. 2211 */ 2212 void dm_lock_md_type(struct mapped_device *md) 2213 { 2214 mutex_lock(&md->type_lock); 2215 } 2216 2217 void dm_unlock_md_type(struct mapped_device *md) 2218 { 2219 mutex_unlock(&md->type_lock); 2220 } 2221 2222 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2223 { 2224 BUG_ON(!mutex_is_locked(&md->type_lock)); 2225 md->type = type; 2226 } 2227 2228 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2229 { 2230 return md->type; 2231 } 2232 2233 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2234 { 2235 return md->immutable_target_type; 2236 } 2237 2238 /* 2239 * The queue_limits are only valid as long as you have a reference 2240 * count on 'md'. 2241 */ 2242 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2243 { 2244 BUG_ON(!atomic_read(&md->holders)); 2245 return &md->queue->limits; 2246 } 2247 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2248 2249 /* 2250 * Setup the DM device's queue based on md's type 2251 */ 2252 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2253 { 2254 int r; 2255 struct queue_limits limits; 2256 enum dm_queue_mode type = dm_get_md_type(md); 2257 2258 switch (type) { 2259 case DM_TYPE_REQUEST_BASED: 2260 r = dm_mq_init_request_queue(md, t); 2261 if (r) { 2262 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2263 return r; 2264 } 2265 break; 2266 case DM_TYPE_BIO_BASED: 2267 case DM_TYPE_DAX_BIO_BASED: 2268 case DM_TYPE_NVME_BIO_BASED: 2269 dm_init_normal_md_queue(md); 2270 blk_queue_make_request(md->queue, dm_make_request); 2271 break; 2272 case DM_TYPE_NONE: 2273 WARN_ON_ONCE(true); 2274 break; 2275 } 2276 2277 r = dm_calculate_queue_limits(t, &limits); 2278 if (r) { 2279 DMERR("Cannot calculate initial queue limits"); 2280 return r; 2281 } 2282 dm_table_set_restrictions(t, md->queue, &limits); 2283 blk_register_queue(md->disk); 2284 2285 return 0; 2286 } 2287 2288 struct mapped_device *dm_get_md(dev_t dev) 2289 { 2290 struct mapped_device *md; 2291 unsigned minor = MINOR(dev); 2292 2293 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2294 return NULL; 2295 2296 spin_lock(&_minor_lock); 2297 2298 md = idr_find(&_minor_idr, minor); 2299 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2300 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2301 md = NULL; 2302 goto out; 2303 } 2304 dm_get(md); 2305 out: 2306 spin_unlock(&_minor_lock); 2307 2308 return md; 2309 } 2310 EXPORT_SYMBOL_GPL(dm_get_md); 2311 2312 void *dm_get_mdptr(struct mapped_device *md) 2313 { 2314 return md->interface_ptr; 2315 } 2316 2317 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2318 { 2319 md->interface_ptr = ptr; 2320 } 2321 2322 void dm_get(struct mapped_device *md) 2323 { 2324 atomic_inc(&md->holders); 2325 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2326 } 2327 2328 int dm_hold(struct mapped_device *md) 2329 { 2330 spin_lock(&_minor_lock); 2331 if (test_bit(DMF_FREEING, &md->flags)) { 2332 spin_unlock(&_minor_lock); 2333 return -EBUSY; 2334 } 2335 dm_get(md); 2336 spin_unlock(&_minor_lock); 2337 return 0; 2338 } 2339 EXPORT_SYMBOL_GPL(dm_hold); 2340 2341 const char *dm_device_name(struct mapped_device *md) 2342 { 2343 return md->name; 2344 } 2345 EXPORT_SYMBOL_GPL(dm_device_name); 2346 2347 static void __dm_destroy(struct mapped_device *md, bool wait) 2348 { 2349 struct dm_table *map; 2350 int srcu_idx; 2351 2352 might_sleep(); 2353 2354 spin_lock(&_minor_lock); 2355 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2356 set_bit(DMF_FREEING, &md->flags); 2357 spin_unlock(&_minor_lock); 2358 2359 blk_set_queue_dying(md->queue); 2360 2361 /* 2362 * Take suspend_lock so that presuspend and postsuspend methods 2363 * do not race with internal suspend. 2364 */ 2365 mutex_lock(&md->suspend_lock); 2366 map = dm_get_live_table(md, &srcu_idx); 2367 if (!dm_suspended_md(md)) { 2368 dm_table_presuspend_targets(map); 2369 dm_table_postsuspend_targets(map); 2370 } 2371 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2372 dm_put_live_table(md, srcu_idx); 2373 mutex_unlock(&md->suspend_lock); 2374 2375 /* 2376 * Rare, but there may be I/O requests still going to complete, 2377 * for example. Wait for all references to disappear. 2378 * No one should increment the reference count of the mapped_device, 2379 * after the mapped_device state becomes DMF_FREEING. 2380 */ 2381 if (wait) 2382 while (atomic_read(&md->holders)) 2383 msleep(1); 2384 else if (atomic_read(&md->holders)) 2385 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2386 dm_device_name(md), atomic_read(&md->holders)); 2387 2388 dm_sysfs_exit(md); 2389 dm_table_destroy(__unbind(md)); 2390 free_dev(md); 2391 } 2392 2393 void dm_destroy(struct mapped_device *md) 2394 { 2395 __dm_destroy(md, true); 2396 } 2397 2398 void dm_destroy_immediate(struct mapped_device *md) 2399 { 2400 __dm_destroy(md, false); 2401 } 2402 2403 void dm_put(struct mapped_device *md) 2404 { 2405 atomic_dec(&md->holders); 2406 } 2407 EXPORT_SYMBOL_GPL(dm_put); 2408 2409 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2410 { 2411 int r = 0; 2412 DEFINE_WAIT(wait); 2413 2414 while (1) { 2415 prepare_to_wait(&md->wait, &wait, task_state); 2416 2417 if (!md_in_flight(md)) 2418 break; 2419 2420 if (signal_pending_state(task_state, current)) { 2421 r = -EINTR; 2422 break; 2423 } 2424 2425 io_schedule(); 2426 } 2427 finish_wait(&md->wait, &wait); 2428 2429 return r; 2430 } 2431 2432 /* 2433 * Process the deferred bios 2434 */ 2435 static void dm_wq_work(struct work_struct *work) 2436 { 2437 struct mapped_device *md = container_of(work, struct mapped_device, 2438 work); 2439 struct bio *c; 2440 int srcu_idx; 2441 struct dm_table *map; 2442 2443 map = dm_get_live_table(md, &srcu_idx); 2444 2445 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2446 spin_lock_irq(&md->deferred_lock); 2447 c = bio_list_pop(&md->deferred); 2448 spin_unlock_irq(&md->deferred_lock); 2449 2450 if (!c) 2451 break; 2452 2453 if (dm_request_based(md)) 2454 (void) generic_make_request(c); 2455 else 2456 (void) dm_process_bio(md, map, c); 2457 } 2458 2459 dm_put_live_table(md, srcu_idx); 2460 } 2461 2462 static void dm_queue_flush(struct mapped_device *md) 2463 { 2464 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2465 smp_mb__after_atomic(); 2466 queue_work(md->wq, &md->work); 2467 } 2468 2469 /* 2470 * Swap in a new table, returning the old one for the caller to destroy. 2471 */ 2472 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2473 { 2474 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2475 struct queue_limits limits; 2476 int r; 2477 2478 mutex_lock(&md->suspend_lock); 2479 2480 /* device must be suspended */ 2481 if (!dm_suspended_md(md)) 2482 goto out; 2483 2484 /* 2485 * If the new table has no data devices, retain the existing limits. 2486 * This helps multipath with queue_if_no_path if all paths disappear, 2487 * then new I/O is queued based on these limits, and then some paths 2488 * reappear. 2489 */ 2490 if (dm_table_has_no_data_devices(table)) { 2491 live_map = dm_get_live_table_fast(md); 2492 if (live_map) 2493 limits = md->queue->limits; 2494 dm_put_live_table_fast(md); 2495 } 2496 2497 if (!live_map) { 2498 r = dm_calculate_queue_limits(table, &limits); 2499 if (r) { 2500 map = ERR_PTR(r); 2501 goto out; 2502 } 2503 } 2504 2505 map = __bind(md, table, &limits); 2506 dm_issue_global_event(); 2507 2508 out: 2509 mutex_unlock(&md->suspend_lock); 2510 return map; 2511 } 2512 2513 /* 2514 * Functions to lock and unlock any filesystem running on the 2515 * device. 2516 */ 2517 static int lock_fs(struct mapped_device *md) 2518 { 2519 int r; 2520 2521 WARN_ON(md->frozen_sb); 2522 2523 md->frozen_sb = freeze_bdev(md->bdev); 2524 if (IS_ERR(md->frozen_sb)) { 2525 r = PTR_ERR(md->frozen_sb); 2526 md->frozen_sb = NULL; 2527 return r; 2528 } 2529 2530 set_bit(DMF_FROZEN, &md->flags); 2531 2532 return 0; 2533 } 2534 2535 static void unlock_fs(struct mapped_device *md) 2536 { 2537 if (!test_bit(DMF_FROZEN, &md->flags)) 2538 return; 2539 2540 thaw_bdev(md->bdev, md->frozen_sb); 2541 md->frozen_sb = NULL; 2542 clear_bit(DMF_FROZEN, &md->flags); 2543 } 2544 2545 /* 2546 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2547 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2548 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2549 * 2550 * If __dm_suspend returns 0, the device is completely quiescent 2551 * now. There is no request-processing activity. All new requests 2552 * are being added to md->deferred list. 2553 */ 2554 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2555 unsigned suspend_flags, long task_state, 2556 int dmf_suspended_flag) 2557 { 2558 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2559 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2560 int r; 2561 2562 lockdep_assert_held(&md->suspend_lock); 2563 2564 /* 2565 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2566 * This flag is cleared before dm_suspend returns. 2567 */ 2568 if (noflush) 2569 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2570 else 2571 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2572 2573 /* 2574 * This gets reverted if there's an error later and the targets 2575 * provide the .presuspend_undo hook. 2576 */ 2577 dm_table_presuspend_targets(map); 2578 2579 /* 2580 * Flush I/O to the device. 2581 * Any I/O submitted after lock_fs() may not be flushed. 2582 * noflush takes precedence over do_lockfs. 2583 * (lock_fs() flushes I/Os and waits for them to complete.) 2584 */ 2585 if (!noflush && do_lockfs) { 2586 r = lock_fs(md); 2587 if (r) { 2588 dm_table_presuspend_undo_targets(map); 2589 return r; 2590 } 2591 } 2592 2593 /* 2594 * Here we must make sure that no processes are submitting requests 2595 * to target drivers i.e. no one may be executing 2596 * __split_and_process_bio. This is called from dm_request and 2597 * dm_wq_work. 2598 * 2599 * To get all processes out of __split_and_process_bio in dm_request, 2600 * we take the write lock. To prevent any process from reentering 2601 * __split_and_process_bio from dm_request and quiesce the thread 2602 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2603 * flush_workqueue(md->wq). 2604 */ 2605 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2606 if (map) 2607 synchronize_srcu(&md->io_barrier); 2608 2609 /* 2610 * Stop md->queue before flushing md->wq in case request-based 2611 * dm defers requests to md->wq from md->queue. 2612 */ 2613 if (dm_request_based(md)) 2614 dm_stop_queue(md->queue); 2615 2616 flush_workqueue(md->wq); 2617 2618 /* 2619 * At this point no more requests are entering target request routines. 2620 * We call dm_wait_for_completion to wait for all existing requests 2621 * to finish. 2622 */ 2623 r = dm_wait_for_completion(md, task_state); 2624 if (!r) 2625 set_bit(dmf_suspended_flag, &md->flags); 2626 2627 if (noflush) 2628 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2629 if (map) 2630 synchronize_srcu(&md->io_barrier); 2631 2632 /* were we interrupted ? */ 2633 if (r < 0) { 2634 dm_queue_flush(md); 2635 2636 if (dm_request_based(md)) 2637 dm_start_queue(md->queue); 2638 2639 unlock_fs(md); 2640 dm_table_presuspend_undo_targets(map); 2641 /* pushback list is already flushed, so skip flush */ 2642 } 2643 2644 return r; 2645 } 2646 2647 /* 2648 * We need to be able to change a mapping table under a mounted 2649 * filesystem. For example we might want to move some data in 2650 * the background. Before the table can be swapped with 2651 * dm_bind_table, dm_suspend must be called to flush any in 2652 * flight bios and ensure that any further io gets deferred. 2653 */ 2654 /* 2655 * Suspend mechanism in request-based dm. 2656 * 2657 * 1. Flush all I/Os by lock_fs() if needed. 2658 * 2. Stop dispatching any I/O by stopping the request_queue. 2659 * 3. Wait for all in-flight I/Os to be completed or requeued. 2660 * 2661 * To abort suspend, start the request_queue. 2662 */ 2663 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2664 { 2665 struct dm_table *map = NULL; 2666 int r = 0; 2667 2668 retry: 2669 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2670 2671 if (dm_suspended_md(md)) { 2672 r = -EINVAL; 2673 goto out_unlock; 2674 } 2675 2676 if (dm_suspended_internally_md(md)) { 2677 /* already internally suspended, wait for internal resume */ 2678 mutex_unlock(&md->suspend_lock); 2679 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2680 if (r) 2681 return r; 2682 goto retry; 2683 } 2684 2685 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2686 2687 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2688 if (r) 2689 goto out_unlock; 2690 2691 dm_table_postsuspend_targets(map); 2692 2693 out_unlock: 2694 mutex_unlock(&md->suspend_lock); 2695 return r; 2696 } 2697 2698 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2699 { 2700 if (map) { 2701 int r = dm_table_resume_targets(map); 2702 if (r) 2703 return r; 2704 } 2705 2706 dm_queue_flush(md); 2707 2708 /* 2709 * Flushing deferred I/Os must be done after targets are resumed 2710 * so that mapping of targets can work correctly. 2711 * Request-based dm is queueing the deferred I/Os in its request_queue. 2712 */ 2713 if (dm_request_based(md)) 2714 dm_start_queue(md->queue); 2715 2716 unlock_fs(md); 2717 2718 return 0; 2719 } 2720 2721 int dm_resume(struct mapped_device *md) 2722 { 2723 int r; 2724 struct dm_table *map = NULL; 2725 2726 retry: 2727 r = -EINVAL; 2728 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2729 2730 if (!dm_suspended_md(md)) 2731 goto out; 2732 2733 if (dm_suspended_internally_md(md)) { 2734 /* already internally suspended, wait for internal resume */ 2735 mutex_unlock(&md->suspend_lock); 2736 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2737 if (r) 2738 return r; 2739 goto retry; 2740 } 2741 2742 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2743 if (!map || !dm_table_get_size(map)) 2744 goto out; 2745 2746 r = __dm_resume(md, map); 2747 if (r) 2748 goto out; 2749 2750 clear_bit(DMF_SUSPENDED, &md->flags); 2751 out: 2752 mutex_unlock(&md->suspend_lock); 2753 2754 return r; 2755 } 2756 2757 /* 2758 * Internal suspend/resume works like userspace-driven suspend. It waits 2759 * until all bios finish and prevents issuing new bios to the target drivers. 2760 * It may be used only from the kernel. 2761 */ 2762 2763 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2764 { 2765 struct dm_table *map = NULL; 2766 2767 lockdep_assert_held(&md->suspend_lock); 2768 2769 if (md->internal_suspend_count++) 2770 return; /* nested internal suspend */ 2771 2772 if (dm_suspended_md(md)) { 2773 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2774 return; /* nest suspend */ 2775 } 2776 2777 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2778 2779 /* 2780 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2781 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2782 * would require changing .presuspend to return an error -- avoid this 2783 * until there is a need for more elaborate variants of internal suspend. 2784 */ 2785 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2786 DMF_SUSPENDED_INTERNALLY); 2787 2788 dm_table_postsuspend_targets(map); 2789 } 2790 2791 static void __dm_internal_resume(struct mapped_device *md) 2792 { 2793 BUG_ON(!md->internal_suspend_count); 2794 2795 if (--md->internal_suspend_count) 2796 return; /* resume from nested internal suspend */ 2797 2798 if (dm_suspended_md(md)) 2799 goto done; /* resume from nested suspend */ 2800 2801 /* 2802 * NOTE: existing callers don't need to call dm_table_resume_targets 2803 * (which may fail -- so best to avoid it for now by passing NULL map) 2804 */ 2805 (void) __dm_resume(md, NULL); 2806 2807 done: 2808 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2809 smp_mb__after_atomic(); 2810 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2811 } 2812 2813 void dm_internal_suspend_noflush(struct mapped_device *md) 2814 { 2815 mutex_lock(&md->suspend_lock); 2816 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2817 mutex_unlock(&md->suspend_lock); 2818 } 2819 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2820 2821 void dm_internal_resume(struct mapped_device *md) 2822 { 2823 mutex_lock(&md->suspend_lock); 2824 __dm_internal_resume(md); 2825 mutex_unlock(&md->suspend_lock); 2826 } 2827 EXPORT_SYMBOL_GPL(dm_internal_resume); 2828 2829 /* 2830 * Fast variants of internal suspend/resume hold md->suspend_lock, 2831 * which prevents interaction with userspace-driven suspend. 2832 */ 2833 2834 void dm_internal_suspend_fast(struct mapped_device *md) 2835 { 2836 mutex_lock(&md->suspend_lock); 2837 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2838 return; 2839 2840 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2841 synchronize_srcu(&md->io_barrier); 2842 flush_workqueue(md->wq); 2843 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2844 } 2845 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2846 2847 void dm_internal_resume_fast(struct mapped_device *md) 2848 { 2849 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2850 goto done; 2851 2852 dm_queue_flush(md); 2853 2854 done: 2855 mutex_unlock(&md->suspend_lock); 2856 } 2857 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2858 2859 /*----------------------------------------------------------------- 2860 * Event notification. 2861 *---------------------------------------------------------------*/ 2862 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2863 unsigned cookie) 2864 { 2865 char udev_cookie[DM_COOKIE_LENGTH]; 2866 char *envp[] = { udev_cookie, NULL }; 2867 2868 if (!cookie) 2869 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2870 else { 2871 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2872 DM_COOKIE_ENV_VAR_NAME, cookie); 2873 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2874 action, envp); 2875 } 2876 } 2877 2878 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2879 { 2880 return atomic_add_return(1, &md->uevent_seq); 2881 } 2882 2883 uint32_t dm_get_event_nr(struct mapped_device *md) 2884 { 2885 return atomic_read(&md->event_nr); 2886 } 2887 2888 int dm_wait_event(struct mapped_device *md, int event_nr) 2889 { 2890 return wait_event_interruptible(md->eventq, 2891 (event_nr != atomic_read(&md->event_nr))); 2892 } 2893 2894 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2895 { 2896 unsigned long flags; 2897 2898 spin_lock_irqsave(&md->uevent_lock, flags); 2899 list_add(elist, &md->uevent_list); 2900 spin_unlock_irqrestore(&md->uevent_lock, flags); 2901 } 2902 2903 /* 2904 * The gendisk is only valid as long as you have a reference 2905 * count on 'md'. 2906 */ 2907 struct gendisk *dm_disk(struct mapped_device *md) 2908 { 2909 return md->disk; 2910 } 2911 EXPORT_SYMBOL_GPL(dm_disk); 2912 2913 struct kobject *dm_kobject(struct mapped_device *md) 2914 { 2915 return &md->kobj_holder.kobj; 2916 } 2917 2918 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2919 { 2920 struct mapped_device *md; 2921 2922 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2923 2924 spin_lock(&_minor_lock); 2925 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2926 md = NULL; 2927 goto out; 2928 } 2929 dm_get(md); 2930 out: 2931 spin_unlock(&_minor_lock); 2932 2933 return md; 2934 } 2935 2936 int dm_suspended_md(struct mapped_device *md) 2937 { 2938 return test_bit(DMF_SUSPENDED, &md->flags); 2939 } 2940 2941 int dm_suspended_internally_md(struct mapped_device *md) 2942 { 2943 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2944 } 2945 2946 int dm_test_deferred_remove_flag(struct mapped_device *md) 2947 { 2948 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2949 } 2950 2951 int dm_suspended(struct dm_target *ti) 2952 { 2953 return dm_suspended_md(dm_table_get_md(ti->table)); 2954 } 2955 EXPORT_SYMBOL_GPL(dm_suspended); 2956 2957 int dm_noflush_suspending(struct dm_target *ti) 2958 { 2959 return __noflush_suspending(dm_table_get_md(ti->table)); 2960 } 2961 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2962 2963 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2964 unsigned integrity, unsigned per_io_data_size, 2965 unsigned min_pool_size) 2966 { 2967 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2968 unsigned int pool_size = 0; 2969 unsigned int front_pad, io_front_pad; 2970 int ret; 2971 2972 if (!pools) 2973 return NULL; 2974 2975 switch (type) { 2976 case DM_TYPE_BIO_BASED: 2977 case DM_TYPE_DAX_BIO_BASED: 2978 case DM_TYPE_NVME_BIO_BASED: 2979 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2980 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2981 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2982 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2983 if (ret) 2984 goto out; 2985 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2986 goto out; 2987 break; 2988 case DM_TYPE_REQUEST_BASED: 2989 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2990 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2991 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2992 break; 2993 default: 2994 BUG(); 2995 } 2996 2997 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2998 if (ret) 2999 goto out; 3000 3001 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3002 goto out; 3003 3004 return pools; 3005 3006 out: 3007 dm_free_md_mempools(pools); 3008 3009 return NULL; 3010 } 3011 3012 void dm_free_md_mempools(struct dm_md_mempools *pools) 3013 { 3014 if (!pools) 3015 return; 3016 3017 bioset_exit(&pools->bs); 3018 bioset_exit(&pools->io_bs); 3019 3020 kfree(pools); 3021 } 3022 3023 struct dm_pr { 3024 u64 old_key; 3025 u64 new_key; 3026 u32 flags; 3027 bool fail_early; 3028 }; 3029 3030 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3031 void *data) 3032 { 3033 struct mapped_device *md = bdev->bd_disk->private_data; 3034 struct dm_table *table; 3035 struct dm_target *ti; 3036 int ret = -ENOTTY, srcu_idx; 3037 3038 table = dm_get_live_table(md, &srcu_idx); 3039 if (!table || !dm_table_get_size(table)) 3040 goto out; 3041 3042 /* We only support devices that have a single target */ 3043 if (dm_table_get_num_targets(table) != 1) 3044 goto out; 3045 ti = dm_table_get_target(table, 0); 3046 3047 ret = -EINVAL; 3048 if (!ti->type->iterate_devices) 3049 goto out; 3050 3051 ret = ti->type->iterate_devices(ti, fn, data); 3052 out: 3053 dm_put_live_table(md, srcu_idx); 3054 return ret; 3055 } 3056 3057 /* 3058 * For register / unregister we need to manually call out to every path. 3059 */ 3060 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3061 sector_t start, sector_t len, void *data) 3062 { 3063 struct dm_pr *pr = data; 3064 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3065 3066 if (!ops || !ops->pr_register) 3067 return -EOPNOTSUPP; 3068 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3069 } 3070 3071 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3072 u32 flags) 3073 { 3074 struct dm_pr pr = { 3075 .old_key = old_key, 3076 .new_key = new_key, 3077 .flags = flags, 3078 .fail_early = true, 3079 }; 3080 int ret; 3081 3082 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3083 if (ret && new_key) { 3084 /* unregister all paths if we failed to register any path */ 3085 pr.old_key = new_key; 3086 pr.new_key = 0; 3087 pr.flags = 0; 3088 pr.fail_early = false; 3089 dm_call_pr(bdev, __dm_pr_register, &pr); 3090 } 3091 3092 return ret; 3093 } 3094 3095 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3096 u32 flags) 3097 { 3098 struct mapped_device *md = bdev->bd_disk->private_data; 3099 const struct pr_ops *ops; 3100 int r, srcu_idx; 3101 3102 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3103 if (r < 0) 3104 goto out; 3105 3106 ops = bdev->bd_disk->fops->pr_ops; 3107 if (ops && ops->pr_reserve) 3108 r = ops->pr_reserve(bdev, key, type, flags); 3109 else 3110 r = -EOPNOTSUPP; 3111 out: 3112 dm_unprepare_ioctl(md, srcu_idx); 3113 return r; 3114 } 3115 3116 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3117 { 3118 struct mapped_device *md = bdev->bd_disk->private_data; 3119 const struct pr_ops *ops; 3120 int r, srcu_idx; 3121 3122 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3123 if (r < 0) 3124 goto out; 3125 3126 ops = bdev->bd_disk->fops->pr_ops; 3127 if (ops && ops->pr_release) 3128 r = ops->pr_release(bdev, key, type); 3129 else 3130 r = -EOPNOTSUPP; 3131 out: 3132 dm_unprepare_ioctl(md, srcu_idx); 3133 return r; 3134 } 3135 3136 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3137 enum pr_type type, bool abort) 3138 { 3139 struct mapped_device *md = bdev->bd_disk->private_data; 3140 const struct pr_ops *ops; 3141 int r, srcu_idx; 3142 3143 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3144 if (r < 0) 3145 goto out; 3146 3147 ops = bdev->bd_disk->fops->pr_ops; 3148 if (ops && ops->pr_preempt) 3149 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3150 else 3151 r = -EOPNOTSUPP; 3152 out: 3153 dm_unprepare_ioctl(md, srcu_idx); 3154 return r; 3155 } 3156 3157 static int dm_pr_clear(struct block_device *bdev, u64 key) 3158 { 3159 struct mapped_device *md = bdev->bd_disk->private_data; 3160 const struct pr_ops *ops; 3161 int r, srcu_idx; 3162 3163 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3164 if (r < 0) 3165 goto out; 3166 3167 ops = bdev->bd_disk->fops->pr_ops; 3168 if (ops && ops->pr_clear) 3169 r = ops->pr_clear(bdev, key); 3170 else 3171 r = -EOPNOTSUPP; 3172 out: 3173 dm_unprepare_ioctl(md, srcu_idx); 3174 return r; 3175 } 3176 3177 static const struct pr_ops dm_pr_ops = { 3178 .pr_register = dm_pr_register, 3179 .pr_reserve = dm_pr_reserve, 3180 .pr_release = dm_pr_release, 3181 .pr_preempt = dm_pr_preempt, 3182 .pr_clear = dm_pr_clear, 3183 }; 3184 3185 static const struct block_device_operations dm_blk_dops = { 3186 .open = dm_blk_open, 3187 .release = dm_blk_close, 3188 .ioctl = dm_blk_ioctl, 3189 .getgeo = dm_blk_getgeo, 3190 .report_zones = dm_blk_report_zones, 3191 .pr_ops = &dm_pr_ops, 3192 .owner = THIS_MODULE 3193 }; 3194 3195 static const struct dax_operations dm_dax_ops = { 3196 .direct_access = dm_dax_direct_access, 3197 .copy_from_iter = dm_dax_copy_from_iter, 3198 .copy_to_iter = dm_dax_copy_to_iter, 3199 }; 3200 3201 /* 3202 * module hooks 3203 */ 3204 module_init(dm_init); 3205 module_exit(dm_exit); 3206 3207 module_param(major, uint, 0); 3208 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3209 3210 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3211 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3212 3213 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3214 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3215 3216 MODULE_DESCRIPTION(DM_NAME " driver"); 3217 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3218 MODULE_LICENSE("GPL"); 3219