xref: /linux/drivers/md/dm.c (revision 90eea4086d5ed31936889a44d536bf77afa4ca8a)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set bs;
152 	struct bio_set io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 /*
162  * Bio-based DM's mempools' reserved IOs set by the user.
163  */
164 #define RESERVED_BIO_BASED_IOS		16
165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
166 
167 static int __dm_get_module_param_int(int *module_param, int min, int max)
168 {
169 	int param = READ_ONCE(*module_param);
170 	int modified_param = 0;
171 	bool modified = true;
172 
173 	if (param < min)
174 		modified_param = min;
175 	else if (param > max)
176 		modified_param = max;
177 	else
178 		modified = false;
179 
180 	if (modified) {
181 		(void)cmpxchg(module_param, param, modified_param);
182 		param = modified_param;
183 	}
184 
185 	return param;
186 }
187 
188 unsigned __dm_get_module_param(unsigned *module_param,
189 			       unsigned def, unsigned max)
190 {
191 	unsigned param = READ_ONCE(*module_param);
192 	unsigned modified_param = 0;
193 
194 	if (!param)
195 		modified_param = def;
196 	else if (param > max)
197 		modified_param = max;
198 
199 	if (modified_param) {
200 		(void)cmpxchg(module_param, param, modified_param);
201 		param = modified_param;
202 	}
203 
204 	return param;
205 }
206 
207 unsigned dm_get_reserved_bio_based_ios(void)
208 {
209 	return __dm_get_module_param(&reserved_bio_based_ios,
210 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
211 }
212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
213 
214 static unsigned dm_get_numa_node(void)
215 {
216 	return __dm_get_module_param_int(&dm_numa_node,
217 					 DM_NUMA_NODE, num_online_nodes() - 1);
218 }
219 
220 static int __init local_init(void)
221 {
222 	int r;
223 
224 	r = dm_uevent_init();
225 	if (r)
226 		return r;
227 
228 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
229 	if (!deferred_remove_workqueue) {
230 		r = -ENOMEM;
231 		goto out_uevent_exit;
232 	}
233 
234 	_major = major;
235 	r = register_blkdev(_major, _name);
236 	if (r < 0)
237 		goto out_free_workqueue;
238 
239 	if (!_major)
240 		_major = r;
241 
242 	return 0;
243 
244 out_free_workqueue:
245 	destroy_workqueue(deferred_remove_workqueue);
246 out_uevent_exit:
247 	dm_uevent_exit();
248 
249 	return r;
250 }
251 
252 static void local_exit(void)
253 {
254 	flush_scheduled_work();
255 	destroy_workqueue(deferred_remove_workqueue);
256 
257 	unregister_blkdev(_major, _name);
258 	dm_uevent_exit();
259 
260 	_major = 0;
261 
262 	DMINFO("cleaned up");
263 }
264 
265 static int (*_inits[])(void) __initdata = {
266 	local_init,
267 	dm_target_init,
268 	dm_linear_init,
269 	dm_stripe_init,
270 	dm_io_init,
271 	dm_kcopyd_init,
272 	dm_interface_init,
273 	dm_statistics_init,
274 };
275 
276 static void (*_exits[])(void) = {
277 	local_exit,
278 	dm_target_exit,
279 	dm_linear_exit,
280 	dm_stripe_exit,
281 	dm_io_exit,
282 	dm_kcopyd_exit,
283 	dm_interface_exit,
284 	dm_statistics_exit,
285 };
286 
287 static int __init dm_init(void)
288 {
289 	const int count = ARRAY_SIZE(_inits);
290 
291 	int r, i;
292 
293 	for (i = 0; i < count; i++) {
294 		r = _inits[i]();
295 		if (r)
296 			goto bad;
297 	}
298 
299 	return 0;
300 
301       bad:
302 	while (i--)
303 		_exits[i]();
304 
305 	return r;
306 }
307 
308 static void __exit dm_exit(void)
309 {
310 	int i = ARRAY_SIZE(_exits);
311 
312 	while (i--)
313 		_exits[i]();
314 
315 	/*
316 	 * Should be empty by this point.
317 	 */
318 	idr_destroy(&_minor_idr);
319 }
320 
321 /*
322  * Block device functions
323  */
324 int dm_deleting_md(struct mapped_device *md)
325 {
326 	return test_bit(DMF_DELETING, &md->flags);
327 }
328 
329 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
330 {
331 	struct mapped_device *md;
332 
333 	spin_lock(&_minor_lock);
334 
335 	md = bdev->bd_disk->private_data;
336 	if (!md)
337 		goto out;
338 
339 	if (test_bit(DMF_FREEING, &md->flags) ||
340 	    dm_deleting_md(md)) {
341 		md = NULL;
342 		goto out;
343 	}
344 
345 	dm_get(md);
346 	atomic_inc(&md->open_count);
347 out:
348 	spin_unlock(&_minor_lock);
349 
350 	return md ? 0 : -ENXIO;
351 }
352 
353 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
354 {
355 	struct mapped_device *md;
356 
357 	spin_lock(&_minor_lock);
358 
359 	md = disk->private_data;
360 	if (WARN_ON(!md))
361 		goto out;
362 
363 	if (atomic_dec_and_test(&md->open_count) &&
364 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
365 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
366 
367 	dm_put(md);
368 out:
369 	spin_unlock(&_minor_lock);
370 }
371 
372 int dm_open_count(struct mapped_device *md)
373 {
374 	return atomic_read(&md->open_count);
375 }
376 
377 /*
378  * Guarantees nothing is using the device before it's deleted.
379  */
380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
381 {
382 	int r = 0;
383 
384 	spin_lock(&_minor_lock);
385 
386 	if (dm_open_count(md)) {
387 		r = -EBUSY;
388 		if (mark_deferred)
389 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
390 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
391 		r = -EEXIST;
392 	else
393 		set_bit(DMF_DELETING, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 int dm_cancel_deferred_remove(struct mapped_device *md)
401 {
402 	int r = 0;
403 
404 	spin_lock(&_minor_lock);
405 
406 	if (test_bit(DMF_DELETING, &md->flags))
407 		r = -EBUSY;
408 	else
409 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
410 
411 	spin_unlock(&_minor_lock);
412 
413 	return r;
414 }
415 
416 static void do_deferred_remove(struct work_struct *w)
417 {
418 	dm_deferred_remove();
419 }
420 
421 sector_t dm_get_size(struct mapped_device *md)
422 {
423 	return get_capacity(md->disk);
424 }
425 
426 struct request_queue *dm_get_md_queue(struct mapped_device *md)
427 {
428 	return md->queue;
429 }
430 
431 struct dm_stats *dm_get_stats(struct mapped_device *md)
432 {
433 	return &md->stats;
434 }
435 
436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
437 {
438 	struct mapped_device *md = bdev->bd_disk->private_data;
439 
440 	return dm_get_geometry(md, geo);
441 }
442 
443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
444 			       struct blk_zone *zones, unsigned int *nr_zones,
445 			       gfp_t gfp_mask)
446 {
447 #ifdef CONFIG_BLK_DEV_ZONED
448 	struct mapped_device *md = disk->private_data;
449 	struct dm_target *tgt;
450 	struct dm_table *map;
451 	int srcu_idx, ret;
452 
453 	if (dm_suspended_md(md))
454 		return -EAGAIN;
455 
456 	map = dm_get_live_table(md, &srcu_idx);
457 	if (!map)
458 		return -EIO;
459 
460 	tgt = dm_table_find_target(map, sector);
461 	if (!dm_target_is_valid(tgt)) {
462 		ret = -EIO;
463 		goto out;
464 	}
465 
466 	/*
467 	 * If we are executing this, we already know that the block device
468 	 * is a zoned device and so each target should have support for that
469 	 * type of drive. A missing report_zones method means that the target
470 	 * driver has a problem.
471 	 */
472 	if (WARN_ON(!tgt->type->report_zones)) {
473 		ret = -EIO;
474 		goto out;
475 	}
476 
477 	/*
478 	 * blkdev_report_zones() will loop and call this again to cover all the
479 	 * zones of the target, eventually moving on to the next target.
480 	 * So there is no need to loop here trying to fill the entire array
481 	 * of zones.
482 	 */
483 	ret = tgt->type->report_zones(tgt, sector, zones,
484 				      nr_zones, gfp_mask);
485 
486 out:
487 	dm_put_live_table(md, srcu_idx);
488 	return ret;
489 #else
490 	return -ENOTSUPP;
491 #endif
492 }
493 
494 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
495 			    struct block_device **bdev)
496 	__acquires(md->io_barrier)
497 {
498 	struct dm_target *tgt;
499 	struct dm_table *map;
500 	int r;
501 
502 retry:
503 	r = -ENOTTY;
504 	map = dm_get_live_table(md, srcu_idx);
505 	if (!map || !dm_table_get_size(map))
506 		return r;
507 
508 	/* We only support devices that have a single target */
509 	if (dm_table_get_num_targets(map) != 1)
510 		return r;
511 
512 	tgt = dm_table_get_target(map, 0);
513 	if (!tgt->type->prepare_ioctl)
514 		return r;
515 
516 	if (dm_suspended_md(md))
517 		return -EAGAIN;
518 
519 	r = tgt->type->prepare_ioctl(tgt, bdev);
520 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
521 		dm_put_live_table(md, *srcu_idx);
522 		msleep(10);
523 		goto retry;
524 	}
525 
526 	return r;
527 }
528 
529 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
530 	__releases(md->io_barrier)
531 {
532 	dm_put_live_table(md, srcu_idx);
533 }
534 
535 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
536 			unsigned int cmd, unsigned long arg)
537 {
538 	struct mapped_device *md = bdev->bd_disk->private_data;
539 	int r, srcu_idx;
540 
541 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
542 	if (r < 0)
543 		goto out;
544 
545 	if (r > 0) {
546 		/*
547 		 * Target determined this ioctl is being issued against a
548 		 * subset of the parent bdev; require extra privileges.
549 		 */
550 		if (!capable(CAP_SYS_RAWIO)) {
551 			DMWARN_LIMIT(
552 	"%s: sending ioctl %x to DM device without required privilege.",
553 				current->comm, cmd);
554 			r = -ENOIOCTLCMD;
555 			goto out;
556 		}
557 	}
558 
559 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
560 out:
561 	dm_unprepare_ioctl(md, srcu_idx);
562 	return r;
563 }
564 
565 static void start_io_acct(struct dm_io *io);
566 
567 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
568 {
569 	struct dm_io *io;
570 	struct dm_target_io *tio;
571 	struct bio *clone;
572 
573 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
574 	if (!clone)
575 		return NULL;
576 
577 	tio = container_of(clone, struct dm_target_io, clone);
578 	tio->inside_dm_io = true;
579 	tio->io = NULL;
580 
581 	io = container_of(tio, struct dm_io, tio);
582 	io->magic = DM_IO_MAGIC;
583 	io->status = 0;
584 	atomic_set(&io->io_count, 1);
585 	io->orig_bio = bio;
586 	io->md = md;
587 	spin_lock_init(&io->endio_lock);
588 
589 	start_io_acct(io);
590 
591 	return io;
592 }
593 
594 static void free_io(struct mapped_device *md, struct dm_io *io)
595 {
596 	bio_put(&io->tio.clone);
597 }
598 
599 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
600 				      unsigned target_bio_nr, gfp_t gfp_mask)
601 {
602 	struct dm_target_io *tio;
603 
604 	if (!ci->io->tio.io) {
605 		/* the dm_target_io embedded in ci->io is available */
606 		tio = &ci->io->tio;
607 	} else {
608 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
609 		if (!clone)
610 			return NULL;
611 
612 		tio = container_of(clone, struct dm_target_io, clone);
613 		tio->inside_dm_io = false;
614 	}
615 
616 	tio->magic = DM_TIO_MAGIC;
617 	tio->io = ci->io;
618 	tio->ti = ti;
619 	tio->target_bio_nr = target_bio_nr;
620 
621 	return tio;
622 }
623 
624 static void free_tio(struct dm_target_io *tio)
625 {
626 	if (tio->inside_dm_io)
627 		return;
628 	bio_put(&tio->clone);
629 }
630 
631 static bool md_in_flight_bios(struct mapped_device *md)
632 {
633 	int cpu;
634 	struct hd_struct *part = &dm_disk(md)->part0;
635 	long sum = 0;
636 
637 	for_each_possible_cpu(cpu) {
638 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
639 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
640 	}
641 
642 	return sum != 0;
643 }
644 
645 static bool md_in_flight(struct mapped_device *md)
646 {
647 	if (queue_is_mq(md->queue))
648 		return blk_mq_queue_inflight(md->queue);
649 	else
650 		return md_in_flight_bios(md);
651 }
652 
653 static void start_io_acct(struct dm_io *io)
654 {
655 	struct mapped_device *md = io->md;
656 	struct bio *bio = io->orig_bio;
657 
658 	io->start_time = jiffies;
659 
660 	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
661 			      &dm_disk(md)->part0);
662 
663 	if (unlikely(dm_stats_used(&md->stats)))
664 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
665 				    bio->bi_iter.bi_sector, bio_sectors(bio),
666 				    false, 0, &io->stats_aux);
667 }
668 
669 static void end_io_acct(struct dm_io *io)
670 {
671 	struct mapped_device *md = io->md;
672 	struct bio *bio = io->orig_bio;
673 	unsigned long duration = jiffies - io->start_time;
674 
675 	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
676 			    io->start_time);
677 
678 	if (unlikely(dm_stats_used(&md->stats)))
679 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
680 				    bio->bi_iter.bi_sector, bio_sectors(bio),
681 				    true, duration, &io->stats_aux);
682 
683 	/* nudge anyone waiting on suspend queue */
684 	if (unlikely(wq_has_sleeper(&md->wait)))
685 		wake_up(&md->wait);
686 }
687 
688 /*
689  * Add the bio to the list of deferred io.
690  */
691 static void queue_io(struct mapped_device *md, struct bio *bio)
692 {
693 	unsigned long flags;
694 
695 	spin_lock_irqsave(&md->deferred_lock, flags);
696 	bio_list_add(&md->deferred, bio);
697 	spin_unlock_irqrestore(&md->deferred_lock, flags);
698 	queue_work(md->wq, &md->work);
699 }
700 
701 /*
702  * Everyone (including functions in this file), should use this
703  * function to access the md->map field, and make sure they call
704  * dm_put_live_table() when finished.
705  */
706 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
707 {
708 	*srcu_idx = srcu_read_lock(&md->io_barrier);
709 
710 	return srcu_dereference(md->map, &md->io_barrier);
711 }
712 
713 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
714 {
715 	srcu_read_unlock(&md->io_barrier, srcu_idx);
716 }
717 
718 void dm_sync_table(struct mapped_device *md)
719 {
720 	synchronize_srcu(&md->io_barrier);
721 	synchronize_rcu_expedited();
722 }
723 
724 /*
725  * A fast alternative to dm_get_live_table/dm_put_live_table.
726  * The caller must not block between these two functions.
727  */
728 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
729 {
730 	rcu_read_lock();
731 	return rcu_dereference(md->map);
732 }
733 
734 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
735 {
736 	rcu_read_unlock();
737 }
738 
739 static char *_dm_claim_ptr = "I belong to device-mapper";
740 
741 /*
742  * Open a table device so we can use it as a map destination.
743  */
744 static int open_table_device(struct table_device *td, dev_t dev,
745 			     struct mapped_device *md)
746 {
747 	struct block_device *bdev;
748 
749 	int r;
750 
751 	BUG_ON(td->dm_dev.bdev);
752 
753 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
754 	if (IS_ERR(bdev))
755 		return PTR_ERR(bdev);
756 
757 	r = bd_link_disk_holder(bdev, dm_disk(md));
758 	if (r) {
759 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
760 		return r;
761 	}
762 
763 	td->dm_dev.bdev = bdev;
764 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
765 	return 0;
766 }
767 
768 /*
769  * Close a table device that we've been using.
770  */
771 static void close_table_device(struct table_device *td, struct mapped_device *md)
772 {
773 	if (!td->dm_dev.bdev)
774 		return;
775 
776 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
777 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
778 	put_dax(td->dm_dev.dax_dev);
779 	td->dm_dev.bdev = NULL;
780 	td->dm_dev.dax_dev = NULL;
781 }
782 
783 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
784 					      fmode_t mode)
785 {
786 	struct table_device *td;
787 
788 	list_for_each_entry(td, l, list)
789 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
790 			return td;
791 
792 	return NULL;
793 }
794 
795 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
796 			struct dm_dev **result)
797 {
798 	int r;
799 	struct table_device *td;
800 
801 	mutex_lock(&md->table_devices_lock);
802 	td = find_table_device(&md->table_devices, dev, mode);
803 	if (!td) {
804 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
805 		if (!td) {
806 			mutex_unlock(&md->table_devices_lock);
807 			return -ENOMEM;
808 		}
809 
810 		td->dm_dev.mode = mode;
811 		td->dm_dev.bdev = NULL;
812 
813 		if ((r = open_table_device(td, dev, md))) {
814 			mutex_unlock(&md->table_devices_lock);
815 			kfree(td);
816 			return r;
817 		}
818 
819 		format_dev_t(td->dm_dev.name, dev);
820 
821 		refcount_set(&td->count, 1);
822 		list_add(&td->list, &md->table_devices);
823 	} else {
824 		refcount_inc(&td->count);
825 	}
826 	mutex_unlock(&md->table_devices_lock);
827 
828 	*result = &td->dm_dev;
829 	return 0;
830 }
831 EXPORT_SYMBOL_GPL(dm_get_table_device);
832 
833 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
834 {
835 	struct table_device *td = container_of(d, struct table_device, dm_dev);
836 
837 	mutex_lock(&md->table_devices_lock);
838 	if (refcount_dec_and_test(&td->count)) {
839 		close_table_device(td, md);
840 		list_del(&td->list);
841 		kfree(td);
842 	}
843 	mutex_unlock(&md->table_devices_lock);
844 }
845 EXPORT_SYMBOL(dm_put_table_device);
846 
847 static void free_table_devices(struct list_head *devices)
848 {
849 	struct list_head *tmp, *next;
850 
851 	list_for_each_safe(tmp, next, devices) {
852 		struct table_device *td = list_entry(tmp, struct table_device, list);
853 
854 		DMWARN("dm_destroy: %s still exists with %d references",
855 		       td->dm_dev.name, refcount_read(&td->count));
856 		kfree(td);
857 	}
858 }
859 
860 /*
861  * Get the geometry associated with a dm device
862  */
863 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
864 {
865 	*geo = md->geometry;
866 
867 	return 0;
868 }
869 
870 /*
871  * Set the geometry of a device.
872  */
873 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
874 {
875 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
876 
877 	if (geo->start > sz) {
878 		DMWARN("Start sector is beyond the geometry limits.");
879 		return -EINVAL;
880 	}
881 
882 	md->geometry = *geo;
883 
884 	return 0;
885 }
886 
887 static int __noflush_suspending(struct mapped_device *md)
888 {
889 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
890 }
891 
892 /*
893  * Decrements the number of outstanding ios that a bio has been
894  * cloned into, completing the original io if necc.
895  */
896 static void dec_pending(struct dm_io *io, blk_status_t error)
897 {
898 	unsigned long flags;
899 	blk_status_t io_error;
900 	struct bio *bio;
901 	struct mapped_device *md = io->md;
902 
903 	/* Push-back supersedes any I/O errors */
904 	if (unlikely(error)) {
905 		spin_lock_irqsave(&io->endio_lock, flags);
906 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
907 			io->status = error;
908 		spin_unlock_irqrestore(&io->endio_lock, flags);
909 	}
910 
911 	if (atomic_dec_and_test(&io->io_count)) {
912 		if (io->status == BLK_STS_DM_REQUEUE) {
913 			/*
914 			 * Target requested pushing back the I/O.
915 			 */
916 			spin_lock_irqsave(&md->deferred_lock, flags);
917 			if (__noflush_suspending(md))
918 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
919 				bio_list_add_head(&md->deferred, io->orig_bio);
920 			else
921 				/* noflush suspend was interrupted. */
922 				io->status = BLK_STS_IOERR;
923 			spin_unlock_irqrestore(&md->deferred_lock, flags);
924 		}
925 
926 		io_error = io->status;
927 		bio = io->orig_bio;
928 		end_io_acct(io);
929 		free_io(md, io);
930 
931 		if (io_error == BLK_STS_DM_REQUEUE)
932 			return;
933 
934 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
935 			/*
936 			 * Preflush done for flush with data, reissue
937 			 * without REQ_PREFLUSH.
938 			 */
939 			bio->bi_opf &= ~REQ_PREFLUSH;
940 			queue_io(md, bio);
941 		} else {
942 			/* done with normal IO or empty flush */
943 			if (io_error)
944 				bio->bi_status = io_error;
945 			bio_endio(bio);
946 		}
947 	}
948 }
949 
950 void disable_discard(struct mapped_device *md)
951 {
952 	struct queue_limits *limits = dm_get_queue_limits(md);
953 
954 	/* device doesn't really support DISCARD, disable it */
955 	limits->max_discard_sectors = 0;
956 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
957 }
958 
959 void disable_write_same(struct mapped_device *md)
960 {
961 	struct queue_limits *limits = dm_get_queue_limits(md);
962 
963 	/* device doesn't really support WRITE SAME, disable it */
964 	limits->max_write_same_sectors = 0;
965 }
966 
967 void disable_write_zeroes(struct mapped_device *md)
968 {
969 	struct queue_limits *limits = dm_get_queue_limits(md);
970 
971 	/* device doesn't really support WRITE ZEROES, disable it */
972 	limits->max_write_zeroes_sectors = 0;
973 }
974 
975 static void clone_endio(struct bio *bio)
976 {
977 	blk_status_t error = bio->bi_status;
978 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
979 	struct dm_io *io = tio->io;
980 	struct mapped_device *md = tio->io->md;
981 	dm_endio_fn endio = tio->ti->type->end_io;
982 
983 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
984 		if (bio_op(bio) == REQ_OP_DISCARD &&
985 		    !bio->bi_disk->queue->limits.max_discard_sectors)
986 			disable_discard(md);
987 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
988 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
989 			disable_write_same(md);
990 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
991 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
992 			disable_write_zeroes(md);
993 	}
994 
995 	if (endio) {
996 		int r = endio(tio->ti, bio, &error);
997 		switch (r) {
998 		case DM_ENDIO_REQUEUE:
999 			error = BLK_STS_DM_REQUEUE;
1000 			/*FALLTHRU*/
1001 		case DM_ENDIO_DONE:
1002 			break;
1003 		case DM_ENDIO_INCOMPLETE:
1004 			/* The target will handle the io */
1005 			return;
1006 		default:
1007 			DMWARN("unimplemented target endio return value: %d", r);
1008 			BUG();
1009 		}
1010 	}
1011 
1012 	free_tio(tio);
1013 	dec_pending(io, error);
1014 }
1015 
1016 /*
1017  * Return maximum size of I/O possible at the supplied sector up to the current
1018  * target boundary.
1019  */
1020 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1021 {
1022 	sector_t target_offset = dm_target_offset(ti, sector);
1023 
1024 	return ti->len - target_offset;
1025 }
1026 
1027 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1028 {
1029 	sector_t len = max_io_len_target_boundary(sector, ti);
1030 	sector_t offset, max_len;
1031 
1032 	/*
1033 	 * Does the target need to split even further?
1034 	 */
1035 	if (ti->max_io_len) {
1036 		offset = dm_target_offset(ti, sector);
1037 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1038 			max_len = sector_div(offset, ti->max_io_len);
1039 		else
1040 			max_len = offset & (ti->max_io_len - 1);
1041 		max_len = ti->max_io_len - max_len;
1042 
1043 		if (len > max_len)
1044 			len = max_len;
1045 	}
1046 
1047 	return len;
1048 }
1049 
1050 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1051 {
1052 	if (len > UINT_MAX) {
1053 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1054 		      (unsigned long long)len, UINT_MAX);
1055 		ti->error = "Maximum size of target IO is too large";
1056 		return -EINVAL;
1057 	}
1058 
1059 	ti->max_io_len = (uint32_t) len;
1060 
1061 	return 0;
1062 }
1063 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1064 
1065 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1066 						sector_t sector, int *srcu_idx)
1067 	__acquires(md->io_barrier)
1068 {
1069 	struct dm_table *map;
1070 	struct dm_target *ti;
1071 
1072 	map = dm_get_live_table(md, srcu_idx);
1073 	if (!map)
1074 		return NULL;
1075 
1076 	ti = dm_table_find_target(map, sector);
1077 	if (!dm_target_is_valid(ti))
1078 		return NULL;
1079 
1080 	return ti;
1081 }
1082 
1083 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1084 				 long nr_pages, void **kaddr, pfn_t *pfn)
1085 {
1086 	struct mapped_device *md = dax_get_private(dax_dev);
1087 	sector_t sector = pgoff * PAGE_SECTORS;
1088 	struct dm_target *ti;
1089 	long len, ret = -EIO;
1090 	int srcu_idx;
1091 
1092 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1093 
1094 	if (!ti)
1095 		goto out;
1096 	if (!ti->type->direct_access)
1097 		goto out;
1098 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1099 	if (len < 1)
1100 		goto out;
1101 	nr_pages = min(len, nr_pages);
1102 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1103 
1104  out:
1105 	dm_put_live_table(md, srcu_idx);
1106 
1107 	return ret;
1108 }
1109 
1110 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1111 				    void *addr, size_t bytes, struct iov_iter *i)
1112 {
1113 	struct mapped_device *md = dax_get_private(dax_dev);
1114 	sector_t sector = pgoff * PAGE_SECTORS;
1115 	struct dm_target *ti;
1116 	long ret = 0;
1117 	int srcu_idx;
1118 
1119 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1120 
1121 	if (!ti)
1122 		goto out;
1123 	if (!ti->type->dax_copy_from_iter) {
1124 		ret = copy_from_iter(addr, bytes, i);
1125 		goto out;
1126 	}
1127 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1128  out:
1129 	dm_put_live_table(md, srcu_idx);
1130 
1131 	return ret;
1132 }
1133 
1134 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1135 		void *addr, size_t bytes, struct iov_iter *i)
1136 {
1137 	struct mapped_device *md = dax_get_private(dax_dev);
1138 	sector_t sector = pgoff * PAGE_SECTORS;
1139 	struct dm_target *ti;
1140 	long ret = 0;
1141 	int srcu_idx;
1142 
1143 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1144 
1145 	if (!ti)
1146 		goto out;
1147 	if (!ti->type->dax_copy_to_iter) {
1148 		ret = copy_to_iter(addr, bytes, i);
1149 		goto out;
1150 	}
1151 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1152  out:
1153 	dm_put_live_table(md, srcu_idx);
1154 
1155 	return ret;
1156 }
1157 
1158 /*
1159  * A target may call dm_accept_partial_bio only from the map routine.  It is
1160  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1161  *
1162  * dm_accept_partial_bio informs the dm that the target only wants to process
1163  * additional n_sectors sectors of the bio and the rest of the data should be
1164  * sent in a next bio.
1165  *
1166  * A diagram that explains the arithmetics:
1167  * +--------------------+---------------+-------+
1168  * |         1          |       2       |   3   |
1169  * +--------------------+---------------+-------+
1170  *
1171  * <-------------- *tio->len_ptr --------------->
1172  *                      <------- bi_size ------->
1173  *                      <-- n_sectors -->
1174  *
1175  * Region 1 was already iterated over with bio_advance or similar function.
1176  *	(it may be empty if the target doesn't use bio_advance)
1177  * Region 2 is the remaining bio size that the target wants to process.
1178  *	(it may be empty if region 1 is non-empty, although there is no reason
1179  *	 to make it empty)
1180  * The target requires that region 3 is to be sent in the next bio.
1181  *
1182  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1183  * the partially processed part (the sum of regions 1+2) must be the same for all
1184  * copies of the bio.
1185  */
1186 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1187 {
1188 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1189 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1190 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1191 	BUG_ON(bi_size > *tio->len_ptr);
1192 	BUG_ON(n_sectors > bi_size);
1193 	*tio->len_ptr -= bi_size - n_sectors;
1194 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1195 }
1196 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1197 
1198 /*
1199  * The zone descriptors obtained with a zone report indicate
1200  * zone positions within the underlying device of the target. The zone
1201  * descriptors must be remapped to match their position within the dm device.
1202  * The caller target should obtain the zones information using
1203  * blkdev_report_zones() to ensure that remapping for partition offset is
1204  * already handled.
1205  */
1206 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1207 			  struct blk_zone *zones, unsigned int *nr_zones)
1208 {
1209 #ifdef CONFIG_BLK_DEV_ZONED
1210 	struct blk_zone *zone;
1211 	unsigned int nrz = *nr_zones;
1212 	int i;
1213 
1214 	/*
1215 	 * Remap the start sector and write pointer position of the zones in
1216 	 * the array. Since we may have obtained from the target underlying
1217 	 * device more zones that the target size, also adjust the number
1218 	 * of zones.
1219 	 */
1220 	for (i = 0; i < nrz; i++) {
1221 		zone = zones + i;
1222 		if (zone->start >= start + ti->len) {
1223 			memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1224 			break;
1225 		}
1226 
1227 		zone->start = zone->start + ti->begin - start;
1228 		if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1229 			continue;
1230 
1231 		if (zone->cond == BLK_ZONE_COND_FULL)
1232 			zone->wp = zone->start + zone->len;
1233 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
1234 			zone->wp = zone->start;
1235 		else
1236 			zone->wp = zone->wp + ti->begin - start;
1237 	}
1238 
1239 	*nr_zones = i;
1240 #else /* !CONFIG_BLK_DEV_ZONED */
1241 	*nr_zones = 0;
1242 #endif
1243 }
1244 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1245 
1246 static blk_qc_t __map_bio(struct dm_target_io *tio)
1247 {
1248 	int r;
1249 	sector_t sector;
1250 	struct bio *clone = &tio->clone;
1251 	struct dm_io *io = tio->io;
1252 	struct mapped_device *md = io->md;
1253 	struct dm_target *ti = tio->ti;
1254 	blk_qc_t ret = BLK_QC_T_NONE;
1255 
1256 	clone->bi_end_io = clone_endio;
1257 
1258 	/*
1259 	 * Map the clone.  If r == 0 we don't need to do
1260 	 * anything, the target has assumed ownership of
1261 	 * this io.
1262 	 */
1263 	atomic_inc(&io->io_count);
1264 	sector = clone->bi_iter.bi_sector;
1265 
1266 	r = ti->type->map(ti, clone);
1267 	switch (r) {
1268 	case DM_MAPIO_SUBMITTED:
1269 		break;
1270 	case DM_MAPIO_REMAPPED:
1271 		/* the bio has been remapped so dispatch it */
1272 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1273 				      bio_dev(io->orig_bio), sector);
1274 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1275 			ret = direct_make_request(clone);
1276 		else
1277 			ret = generic_make_request(clone);
1278 		break;
1279 	case DM_MAPIO_KILL:
1280 		free_tio(tio);
1281 		dec_pending(io, BLK_STS_IOERR);
1282 		break;
1283 	case DM_MAPIO_REQUEUE:
1284 		free_tio(tio);
1285 		dec_pending(io, BLK_STS_DM_REQUEUE);
1286 		break;
1287 	default:
1288 		DMWARN("unimplemented target map return value: %d", r);
1289 		BUG();
1290 	}
1291 
1292 	return ret;
1293 }
1294 
1295 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1296 {
1297 	bio->bi_iter.bi_sector = sector;
1298 	bio->bi_iter.bi_size = to_bytes(len);
1299 }
1300 
1301 /*
1302  * Creates a bio that consists of range of complete bvecs.
1303  */
1304 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1305 		     sector_t sector, unsigned len)
1306 {
1307 	struct bio *clone = &tio->clone;
1308 
1309 	__bio_clone_fast(clone, bio);
1310 
1311 	if (bio_integrity(bio)) {
1312 		int r;
1313 
1314 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1315 			     !dm_target_passes_integrity(tio->ti->type))) {
1316 			DMWARN("%s: the target %s doesn't support integrity data.",
1317 				dm_device_name(tio->io->md),
1318 				tio->ti->type->name);
1319 			return -EIO;
1320 		}
1321 
1322 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1323 		if (r < 0)
1324 			return r;
1325 	}
1326 
1327 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1328 	clone->bi_iter.bi_size = to_bytes(len);
1329 
1330 	if (bio_integrity(bio))
1331 		bio_integrity_trim(clone);
1332 
1333 	return 0;
1334 }
1335 
1336 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1337 				struct dm_target *ti, unsigned num_bios)
1338 {
1339 	struct dm_target_io *tio;
1340 	int try;
1341 
1342 	if (!num_bios)
1343 		return;
1344 
1345 	if (num_bios == 1) {
1346 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1347 		bio_list_add(blist, &tio->clone);
1348 		return;
1349 	}
1350 
1351 	for (try = 0; try < 2; try++) {
1352 		int bio_nr;
1353 		struct bio *bio;
1354 
1355 		if (try)
1356 			mutex_lock(&ci->io->md->table_devices_lock);
1357 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1358 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1359 			if (!tio)
1360 				break;
1361 
1362 			bio_list_add(blist, &tio->clone);
1363 		}
1364 		if (try)
1365 			mutex_unlock(&ci->io->md->table_devices_lock);
1366 		if (bio_nr == num_bios)
1367 			return;
1368 
1369 		while ((bio = bio_list_pop(blist))) {
1370 			tio = container_of(bio, struct dm_target_io, clone);
1371 			free_tio(tio);
1372 		}
1373 	}
1374 }
1375 
1376 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1377 					   struct dm_target_io *tio, unsigned *len)
1378 {
1379 	struct bio *clone = &tio->clone;
1380 
1381 	tio->len_ptr = len;
1382 
1383 	__bio_clone_fast(clone, ci->bio);
1384 	if (len)
1385 		bio_setup_sector(clone, ci->sector, *len);
1386 
1387 	return __map_bio(tio);
1388 }
1389 
1390 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1391 				  unsigned num_bios, unsigned *len)
1392 {
1393 	struct bio_list blist = BIO_EMPTY_LIST;
1394 	struct bio *bio;
1395 	struct dm_target_io *tio;
1396 
1397 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1398 
1399 	while ((bio = bio_list_pop(&blist))) {
1400 		tio = container_of(bio, struct dm_target_io, clone);
1401 		(void) __clone_and_map_simple_bio(ci, tio, len);
1402 	}
1403 }
1404 
1405 static int __send_empty_flush(struct clone_info *ci)
1406 {
1407 	unsigned target_nr = 0;
1408 	struct dm_target *ti;
1409 
1410 	/*
1411 	 * Empty flush uses a statically initialized bio, as the base for
1412 	 * cloning.  However, blkg association requires that a bdev is
1413 	 * associated with a gendisk, which doesn't happen until the bdev is
1414 	 * opened.  So, blkg association is done at issue time of the flush
1415 	 * rather than when the device is created in alloc_dev().
1416 	 */
1417 	bio_set_dev(ci->bio, ci->io->md->bdev);
1418 
1419 	BUG_ON(bio_has_data(ci->bio));
1420 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1421 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1422 
1423 	bio_disassociate_blkg(ci->bio);
1424 
1425 	return 0;
1426 }
1427 
1428 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1429 				    sector_t sector, unsigned *len)
1430 {
1431 	struct bio *bio = ci->bio;
1432 	struct dm_target_io *tio;
1433 	int r;
1434 
1435 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1436 	tio->len_ptr = len;
1437 	r = clone_bio(tio, bio, sector, *len);
1438 	if (r < 0) {
1439 		free_tio(tio);
1440 		return r;
1441 	}
1442 	(void) __map_bio(tio);
1443 
1444 	return 0;
1445 }
1446 
1447 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1448 
1449 static unsigned get_num_discard_bios(struct dm_target *ti)
1450 {
1451 	return ti->num_discard_bios;
1452 }
1453 
1454 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1455 {
1456 	return ti->num_secure_erase_bios;
1457 }
1458 
1459 static unsigned get_num_write_same_bios(struct dm_target *ti)
1460 {
1461 	return ti->num_write_same_bios;
1462 }
1463 
1464 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1465 {
1466 	return ti->num_write_zeroes_bios;
1467 }
1468 
1469 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1470 				       unsigned num_bios)
1471 {
1472 	unsigned len;
1473 
1474 	/*
1475 	 * Even though the device advertised support for this type of
1476 	 * request, that does not mean every target supports it, and
1477 	 * reconfiguration might also have changed that since the
1478 	 * check was performed.
1479 	 */
1480 	if (!num_bios)
1481 		return -EOPNOTSUPP;
1482 
1483 	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1484 
1485 	__send_duplicate_bios(ci, ti, num_bios, &len);
1486 
1487 	ci->sector += len;
1488 	ci->sector_count -= len;
1489 
1490 	return 0;
1491 }
1492 
1493 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1494 {
1495 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1496 }
1497 
1498 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1499 {
1500 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1501 }
1502 
1503 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1504 {
1505 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1506 }
1507 
1508 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1509 {
1510 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1511 }
1512 
1513 static bool is_abnormal_io(struct bio *bio)
1514 {
1515 	bool r = false;
1516 
1517 	switch (bio_op(bio)) {
1518 	case REQ_OP_DISCARD:
1519 	case REQ_OP_SECURE_ERASE:
1520 	case REQ_OP_WRITE_SAME:
1521 	case REQ_OP_WRITE_ZEROES:
1522 		r = true;
1523 		break;
1524 	}
1525 
1526 	return r;
1527 }
1528 
1529 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1530 				  int *result)
1531 {
1532 	struct bio *bio = ci->bio;
1533 
1534 	if (bio_op(bio) == REQ_OP_DISCARD)
1535 		*result = __send_discard(ci, ti);
1536 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1537 		*result = __send_secure_erase(ci, ti);
1538 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1539 		*result = __send_write_same(ci, ti);
1540 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1541 		*result = __send_write_zeroes(ci, ti);
1542 	else
1543 		return false;
1544 
1545 	return true;
1546 }
1547 
1548 /*
1549  * Select the correct strategy for processing a non-flush bio.
1550  */
1551 static int __split_and_process_non_flush(struct clone_info *ci)
1552 {
1553 	struct dm_target *ti;
1554 	unsigned len;
1555 	int r;
1556 
1557 	ti = dm_table_find_target(ci->map, ci->sector);
1558 	if (!dm_target_is_valid(ti))
1559 		return -EIO;
1560 
1561 	if (__process_abnormal_io(ci, ti, &r))
1562 		return r;
1563 
1564 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1565 
1566 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1567 	if (r < 0)
1568 		return r;
1569 
1570 	ci->sector += len;
1571 	ci->sector_count -= len;
1572 
1573 	return 0;
1574 }
1575 
1576 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1577 			    struct dm_table *map, struct bio *bio)
1578 {
1579 	ci->map = map;
1580 	ci->io = alloc_io(md, bio);
1581 	ci->sector = bio->bi_iter.bi_sector;
1582 }
1583 
1584 #define __dm_part_stat_sub(part, field, subnd)	\
1585 	(part_stat_get(part, field) -= (subnd))
1586 
1587 /*
1588  * Entry point to split a bio into clones and submit them to the targets.
1589  */
1590 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1591 					struct dm_table *map, struct bio *bio)
1592 {
1593 	struct clone_info ci;
1594 	blk_qc_t ret = BLK_QC_T_NONE;
1595 	int error = 0;
1596 
1597 	init_clone_info(&ci, md, map, bio);
1598 
1599 	if (bio->bi_opf & REQ_PREFLUSH) {
1600 		struct bio flush_bio;
1601 
1602 		/*
1603 		 * Use an on-stack bio for this, it's safe since we don't
1604 		 * need to reference it after submit. It's just used as
1605 		 * the basis for the clone(s).
1606 		 */
1607 		bio_init(&flush_bio, NULL, 0);
1608 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1609 		ci.bio = &flush_bio;
1610 		ci.sector_count = 0;
1611 		error = __send_empty_flush(&ci);
1612 		/* dec_pending submits any data associated with flush */
1613 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1614 		ci.bio = bio;
1615 		ci.sector_count = 0;
1616 		error = __split_and_process_non_flush(&ci);
1617 	} else {
1618 		ci.bio = bio;
1619 		ci.sector_count = bio_sectors(bio);
1620 		while (ci.sector_count && !error) {
1621 			error = __split_and_process_non_flush(&ci);
1622 			if (current->bio_list && ci.sector_count && !error) {
1623 				/*
1624 				 * Remainder must be passed to generic_make_request()
1625 				 * so that it gets handled *after* bios already submitted
1626 				 * have been completely processed.
1627 				 * We take a clone of the original to store in
1628 				 * ci.io->orig_bio to be used by end_io_acct() and
1629 				 * for dec_pending to use for completion handling.
1630 				 */
1631 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1632 							  GFP_NOIO, &md->queue->bio_split);
1633 				ci.io->orig_bio = b;
1634 
1635 				/*
1636 				 * Adjust IO stats for each split, otherwise upon queue
1637 				 * reentry there will be redundant IO accounting.
1638 				 * NOTE: this is a stop-gap fix, a proper fix involves
1639 				 * significant refactoring of DM core's bio splitting
1640 				 * (by eliminating DM's splitting and just using bio_split)
1641 				 */
1642 				part_stat_lock();
1643 				__dm_part_stat_sub(&dm_disk(md)->part0,
1644 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1645 				part_stat_unlock();
1646 
1647 				bio_chain(b, bio);
1648 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1649 				ret = generic_make_request(bio);
1650 				break;
1651 			}
1652 		}
1653 	}
1654 
1655 	/* drop the extra reference count */
1656 	dec_pending(ci.io, errno_to_blk_status(error));
1657 	return ret;
1658 }
1659 
1660 /*
1661  * Optimized variant of __split_and_process_bio that leverages the
1662  * fact that targets that use it do _not_ have a need to split bios.
1663  */
1664 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1665 			      struct bio *bio, struct dm_target *ti)
1666 {
1667 	struct clone_info ci;
1668 	blk_qc_t ret = BLK_QC_T_NONE;
1669 	int error = 0;
1670 
1671 	init_clone_info(&ci, md, map, bio);
1672 
1673 	if (bio->bi_opf & REQ_PREFLUSH) {
1674 		struct bio flush_bio;
1675 
1676 		/*
1677 		 * Use an on-stack bio for this, it's safe since we don't
1678 		 * need to reference it after submit. It's just used as
1679 		 * the basis for the clone(s).
1680 		 */
1681 		bio_init(&flush_bio, NULL, 0);
1682 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1683 		ci.bio = &flush_bio;
1684 		ci.sector_count = 0;
1685 		error = __send_empty_flush(&ci);
1686 		/* dec_pending submits any data associated with flush */
1687 	} else {
1688 		struct dm_target_io *tio;
1689 
1690 		ci.bio = bio;
1691 		ci.sector_count = bio_sectors(bio);
1692 		if (__process_abnormal_io(&ci, ti, &error))
1693 			goto out;
1694 
1695 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1696 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1697 	}
1698 out:
1699 	/* drop the extra reference count */
1700 	dec_pending(ci.io, errno_to_blk_status(error));
1701 	return ret;
1702 }
1703 
1704 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1705 {
1706 	unsigned len, sector_count;
1707 
1708 	sector_count = bio_sectors(*bio);
1709 	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1710 
1711 	if (sector_count > len) {
1712 		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1713 
1714 		bio_chain(split, *bio);
1715 		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1716 		generic_make_request(*bio);
1717 		*bio = split;
1718 	}
1719 }
1720 
1721 static blk_qc_t dm_process_bio(struct mapped_device *md,
1722 			       struct dm_table *map, struct bio *bio)
1723 {
1724 	blk_qc_t ret = BLK_QC_T_NONE;
1725 	struct dm_target *ti = md->immutable_target;
1726 
1727 	if (unlikely(!map)) {
1728 		bio_io_error(bio);
1729 		return ret;
1730 	}
1731 
1732 	if (!ti) {
1733 		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1734 		if (unlikely(!ti || !dm_target_is_valid(ti))) {
1735 			bio_io_error(bio);
1736 			return ret;
1737 		}
1738 	}
1739 
1740 	/*
1741 	 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1742 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1743 	 * won't be imposed.
1744 	 */
1745 	if (current->bio_list) {
1746 		blk_queue_split(md->queue, &bio);
1747 		if (!is_abnormal_io(bio))
1748 			dm_queue_split(md, ti, &bio);
1749 	}
1750 
1751 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1752 		return __process_bio(md, map, bio, ti);
1753 	else
1754 		return __split_and_process_bio(md, map, bio);
1755 }
1756 
1757 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1758 {
1759 	struct mapped_device *md = q->queuedata;
1760 	blk_qc_t ret = BLK_QC_T_NONE;
1761 	int srcu_idx;
1762 	struct dm_table *map;
1763 
1764 	map = dm_get_live_table(md, &srcu_idx);
1765 
1766 	/* if we're suspended, we have to queue this io for later */
1767 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1768 		dm_put_live_table(md, srcu_idx);
1769 
1770 		if (!(bio->bi_opf & REQ_RAHEAD))
1771 			queue_io(md, bio);
1772 		else
1773 			bio_io_error(bio);
1774 		return ret;
1775 	}
1776 
1777 	ret = dm_process_bio(md, map, bio);
1778 
1779 	dm_put_live_table(md, srcu_idx);
1780 	return ret;
1781 }
1782 
1783 static int dm_any_congested(void *congested_data, int bdi_bits)
1784 {
1785 	int r = bdi_bits;
1786 	struct mapped_device *md = congested_data;
1787 	struct dm_table *map;
1788 
1789 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1790 		if (dm_request_based(md)) {
1791 			/*
1792 			 * With request-based DM we only need to check the
1793 			 * top-level queue for congestion.
1794 			 */
1795 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1796 		} else {
1797 			map = dm_get_live_table_fast(md);
1798 			if (map)
1799 				r = dm_table_any_congested(map, bdi_bits);
1800 			dm_put_live_table_fast(md);
1801 		}
1802 	}
1803 
1804 	return r;
1805 }
1806 
1807 /*-----------------------------------------------------------------
1808  * An IDR is used to keep track of allocated minor numbers.
1809  *---------------------------------------------------------------*/
1810 static void free_minor(int minor)
1811 {
1812 	spin_lock(&_minor_lock);
1813 	idr_remove(&_minor_idr, minor);
1814 	spin_unlock(&_minor_lock);
1815 }
1816 
1817 /*
1818  * See if the device with a specific minor # is free.
1819  */
1820 static int specific_minor(int minor)
1821 {
1822 	int r;
1823 
1824 	if (minor >= (1 << MINORBITS))
1825 		return -EINVAL;
1826 
1827 	idr_preload(GFP_KERNEL);
1828 	spin_lock(&_minor_lock);
1829 
1830 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1831 
1832 	spin_unlock(&_minor_lock);
1833 	idr_preload_end();
1834 	if (r < 0)
1835 		return r == -ENOSPC ? -EBUSY : r;
1836 	return 0;
1837 }
1838 
1839 static int next_free_minor(int *minor)
1840 {
1841 	int r;
1842 
1843 	idr_preload(GFP_KERNEL);
1844 	spin_lock(&_minor_lock);
1845 
1846 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1847 
1848 	spin_unlock(&_minor_lock);
1849 	idr_preload_end();
1850 	if (r < 0)
1851 		return r;
1852 	*minor = r;
1853 	return 0;
1854 }
1855 
1856 static const struct block_device_operations dm_blk_dops;
1857 static const struct dax_operations dm_dax_ops;
1858 
1859 static void dm_wq_work(struct work_struct *work);
1860 
1861 static void dm_init_normal_md_queue(struct mapped_device *md)
1862 {
1863 	/*
1864 	 * Initialize aspects of queue that aren't relevant for blk-mq
1865 	 */
1866 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1867 }
1868 
1869 static void cleanup_mapped_device(struct mapped_device *md)
1870 {
1871 	if (md->wq)
1872 		destroy_workqueue(md->wq);
1873 	bioset_exit(&md->bs);
1874 	bioset_exit(&md->io_bs);
1875 
1876 	if (md->dax_dev) {
1877 		kill_dax(md->dax_dev);
1878 		put_dax(md->dax_dev);
1879 		md->dax_dev = NULL;
1880 	}
1881 
1882 	if (md->disk) {
1883 		spin_lock(&_minor_lock);
1884 		md->disk->private_data = NULL;
1885 		spin_unlock(&_minor_lock);
1886 		del_gendisk(md->disk);
1887 		put_disk(md->disk);
1888 	}
1889 
1890 	if (md->queue)
1891 		blk_cleanup_queue(md->queue);
1892 
1893 	cleanup_srcu_struct(&md->io_barrier);
1894 
1895 	if (md->bdev) {
1896 		bdput(md->bdev);
1897 		md->bdev = NULL;
1898 	}
1899 
1900 	mutex_destroy(&md->suspend_lock);
1901 	mutex_destroy(&md->type_lock);
1902 	mutex_destroy(&md->table_devices_lock);
1903 
1904 	dm_mq_cleanup_mapped_device(md);
1905 }
1906 
1907 /*
1908  * Allocate and initialise a blank device with a given minor.
1909  */
1910 static struct mapped_device *alloc_dev(int minor)
1911 {
1912 	int r, numa_node_id = dm_get_numa_node();
1913 	struct mapped_device *md;
1914 	void *old_md;
1915 
1916 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1917 	if (!md) {
1918 		DMWARN("unable to allocate device, out of memory.");
1919 		return NULL;
1920 	}
1921 
1922 	if (!try_module_get(THIS_MODULE))
1923 		goto bad_module_get;
1924 
1925 	/* get a minor number for the dev */
1926 	if (minor == DM_ANY_MINOR)
1927 		r = next_free_minor(&minor);
1928 	else
1929 		r = specific_minor(minor);
1930 	if (r < 0)
1931 		goto bad_minor;
1932 
1933 	r = init_srcu_struct(&md->io_barrier);
1934 	if (r < 0)
1935 		goto bad_io_barrier;
1936 
1937 	md->numa_node_id = numa_node_id;
1938 	md->init_tio_pdu = false;
1939 	md->type = DM_TYPE_NONE;
1940 	mutex_init(&md->suspend_lock);
1941 	mutex_init(&md->type_lock);
1942 	mutex_init(&md->table_devices_lock);
1943 	spin_lock_init(&md->deferred_lock);
1944 	atomic_set(&md->holders, 1);
1945 	atomic_set(&md->open_count, 0);
1946 	atomic_set(&md->event_nr, 0);
1947 	atomic_set(&md->uevent_seq, 0);
1948 	INIT_LIST_HEAD(&md->uevent_list);
1949 	INIT_LIST_HEAD(&md->table_devices);
1950 	spin_lock_init(&md->uevent_lock);
1951 
1952 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1953 	if (!md->queue)
1954 		goto bad;
1955 	md->queue->queuedata = md;
1956 	md->queue->backing_dev_info->congested_data = md;
1957 
1958 	md->disk = alloc_disk_node(1, md->numa_node_id);
1959 	if (!md->disk)
1960 		goto bad;
1961 
1962 	init_waitqueue_head(&md->wait);
1963 	INIT_WORK(&md->work, dm_wq_work);
1964 	init_waitqueue_head(&md->eventq);
1965 	init_completion(&md->kobj_holder.completion);
1966 
1967 	md->disk->major = _major;
1968 	md->disk->first_minor = minor;
1969 	md->disk->fops = &dm_blk_dops;
1970 	md->disk->queue = md->queue;
1971 	md->disk->private_data = md;
1972 	sprintf(md->disk->disk_name, "dm-%d", minor);
1973 
1974 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1975 		md->dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1976 		if (!md->dax_dev)
1977 			goto bad;
1978 	}
1979 
1980 	add_disk_no_queue_reg(md->disk);
1981 	format_dev_t(md->name, MKDEV(_major, minor));
1982 
1983 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1984 	if (!md->wq)
1985 		goto bad;
1986 
1987 	md->bdev = bdget_disk(md->disk, 0);
1988 	if (!md->bdev)
1989 		goto bad;
1990 
1991 	dm_stats_init(&md->stats);
1992 
1993 	/* Populate the mapping, nobody knows we exist yet */
1994 	spin_lock(&_minor_lock);
1995 	old_md = idr_replace(&_minor_idr, md, minor);
1996 	spin_unlock(&_minor_lock);
1997 
1998 	BUG_ON(old_md != MINOR_ALLOCED);
1999 
2000 	return md;
2001 
2002 bad:
2003 	cleanup_mapped_device(md);
2004 bad_io_barrier:
2005 	free_minor(minor);
2006 bad_minor:
2007 	module_put(THIS_MODULE);
2008 bad_module_get:
2009 	kvfree(md);
2010 	return NULL;
2011 }
2012 
2013 static void unlock_fs(struct mapped_device *md);
2014 
2015 static void free_dev(struct mapped_device *md)
2016 {
2017 	int minor = MINOR(disk_devt(md->disk));
2018 
2019 	unlock_fs(md);
2020 
2021 	cleanup_mapped_device(md);
2022 
2023 	free_table_devices(&md->table_devices);
2024 	dm_stats_cleanup(&md->stats);
2025 	free_minor(minor);
2026 
2027 	module_put(THIS_MODULE);
2028 	kvfree(md);
2029 }
2030 
2031 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2032 {
2033 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2034 	int ret = 0;
2035 
2036 	if (dm_table_bio_based(t)) {
2037 		/*
2038 		 * The md may already have mempools that need changing.
2039 		 * If so, reload bioset because front_pad may have changed
2040 		 * because a different table was loaded.
2041 		 */
2042 		bioset_exit(&md->bs);
2043 		bioset_exit(&md->io_bs);
2044 
2045 	} else if (bioset_initialized(&md->bs)) {
2046 		/*
2047 		 * There's no need to reload with request-based dm
2048 		 * because the size of front_pad doesn't change.
2049 		 * Note for future: If you are to reload bioset,
2050 		 * prep-ed requests in the queue may refer
2051 		 * to bio from the old bioset, so you must walk
2052 		 * through the queue to unprep.
2053 		 */
2054 		goto out;
2055 	}
2056 
2057 	BUG_ON(!p ||
2058 	       bioset_initialized(&md->bs) ||
2059 	       bioset_initialized(&md->io_bs));
2060 
2061 	ret = bioset_init_from_src(&md->bs, &p->bs);
2062 	if (ret)
2063 		goto out;
2064 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2065 	if (ret)
2066 		bioset_exit(&md->bs);
2067 out:
2068 	/* mempool bind completed, no longer need any mempools in the table */
2069 	dm_table_free_md_mempools(t);
2070 	return ret;
2071 }
2072 
2073 /*
2074  * Bind a table to the device.
2075  */
2076 static void event_callback(void *context)
2077 {
2078 	unsigned long flags;
2079 	LIST_HEAD(uevents);
2080 	struct mapped_device *md = (struct mapped_device *) context;
2081 
2082 	spin_lock_irqsave(&md->uevent_lock, flags);
2083 	list_splice_init(&md->uevent_list, &uevents);
2084 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2085 
2086 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2087 
2088 	atomic_inc(&md->event_nr);
2089 	wake_up(&md->eventq);
2090 	dm_issue_global_event();
2091 }
2092 
2093 /*
2094  * Protected by md->suspend_lock obtained by dm_swap_table().
2095  */
2096 static void __set_size(struct mapped_device *md, sector_t size)
2097 {
2098 	lockdep_assert_held(&md->suspend_lock);
2099 
2100 	set_capacity(md->disk, size);
2101 
2102 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2103 }
2104 
2105 /*
2106  * Returns old map, which caller must destroy.
2107  */
2108 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2109 			       struct queue_limits *limits)
2110 {
2111 	struct dm_table *old_map;
2112 	struct request_queue *q = md->queue;
2113 	bool request_based = dm_table_request_based(t);
2114 	sector_t size;
2115 	int ret;
2116 
2117 	lockdep_assert_held(&md->suspend_lock);
2118 
2119 	size = dm_table_get_size(t);
2120 
2121 	/*
2122 	 * Wipe any geometry if the size of the table changed.
2123 	 */
2124 	if (size != dm_get_size(md))
2125 		memset(&md->geometry, 0, sizeof(md->geometry));
2126 
2127 	__set_size(md, size);
2128 
2129 	dm_table_event_callback(t, event_callback, md);
2130 
2131 	/*
2132 	 * The queue hasn't been stopped yet, if the old table type wasn't
2133 	 * for request-based during suspension.  So stop it to prevent
2134 	 * I/O mapping before resume.
2135 	 * This must be done before setting the queue restrictions,
2136 	 * because request-based dm may be run just after the setting.
2137 	 */
2138 	if (request_based)
2139 		dm_stop_queue(q);
2140 
2141 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2142 		/*
2143 		 * Leverage the fact that request-based DM targets and
2144 		 * NVMe bio based targets are immutable singletons
2145 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2146 		 *   and __process_bio.
2147 		 */
2148 		md->immutable_target = dm_table_get_immutable_target(t);
2149 	}
2150 
2151 	ret = __bind_mempools(md, t);
2152 	if (ret) {
2153 		old_map = ERR_PTR(ret);
2154 		goto out;
2155 	}
2156 
2157 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2158 	rcu_assign_pointer(md->map, (void *)t);
2159 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2160 
2161 	dm_table_set_restrictions(t, q, limits);
2162 	if (old_map)
2163 		dm_sync_table(md);
2164 
2165 out:
2166 	return old_map;
2167 }
2168 
2169 /*
2170  * Returns unbound table for the caller to free.
2171  */
2172 static struct dm_table *__unbind(struct mapped_device *md)
2173 {
2174 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2175 
2176 	if (!map)
2177 		return NULL;
2178 
2179 	dm_table_event_callback(map, NULL, NULL);
2180 	RCU_INIT_POINTER(md->map, NULL);
2181 	dm_sync_table(md);
2182 
2183 	return map;
2184 }
2185 
2186 /*
2187  * Constructor for a new device.
2188  */
2189 int dm_create(int minor, struct mapped_device **result)
2190 {
2191 	int r;
2192 	struct mapped_device *md;
2193 
2194 	md = alloc_dev(minor);
2195 	if (!md)
2196 		return -ENXIO;
2197 
2198 	r = dm_sysfs_init(md);
2199 	if (r) {
2200 		free_dev(md);
2201 		return r;
2202 	}
2203 
2204 	*result = md;
2205 	return 0;
2206 }
2207 
2208 /*
2209  * Functions to manage md->type.
2210  * All are required to hold md->type_lock.
2211  */
2212 void dm_lock_md_type(struct mapped_device *md)
2213 {
2214 	mutex_lock(&md->type_lock);
2215 }
2216 
2217 void dm_unlock_md_type(struct mapped_device *md)
2218 {
2219 	mutex_unlock(&md->type_lock);
2220 }
2221 
2222 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2223 {
2224 	BUG_ON(!mutex_is_locked(&md->type_lock));
2225 	md->type = type;
2226 }
2227 
2228 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2229 {
2230 	return md->type;
2231 }
2232 
2233 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2234 {
2235 	return md->immutable_target_type;
2236 }
2237 
2238 /*
2239  * The queue_limits are only valid as long as you have a reference
2240  * count on 'md'.
2241  */
2242 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2243 {
2244 	BUG_ON(!atomic_read(&md->holders));
2245 	return &md->queue->limits;
2246 }
2247 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2248 
2249 /*
2250  * Setup the DM device's queue based on md's type
2251  */
2252 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2253 {
2254 	int r;
2255 	struct queue_limits limits;
2256 	enum dm_queue_mode type = dm_get_md_type(md);
2257 
2258 	switch (type) {
2259 	case DM_TYPE_REQUEST_BASED:
2260 		r = dm_mq_init_request_queue(md, t);
2261 		if (r) {
2262 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2263 			return r;
2264 		}
2265 		break;
2266 	case DM_TYPE_BIO_BASED:
2267 	case DM_TYPE_DAX_BIO_BASED:
2268 	case DM_TYPE_NVME_BIO_BASED:
2269 		dm_init_normal_md_queue(md);
2270 		blk_queue_make_request(md->queue, dm_make_request);
2271 		break;
2272 	case DM_TYPE_NONE:
2273 		WARN_ON_ONCE(true);
2274 		break;
2275 	}
2276 
2277 	r = dm_calculate_queue_limits(t, &limits);
2278 	if (r) {
2279 		DMERR("Cannot calculate initial queue limits");
2280 		return r;
2281 	}
2282 	dm_table_set_restrictions(t, md->queue, &limits);
2283 	blk_register_queue(md->disk);
2284 
2285 	return 0;
2286 }
2287 
2288 struct mapped_device *dm_get_md(dev_t dev)
2289 {
2290 	struct mapped_device *md;
2291 	unsigned minor = MINOR(dev);
2292 
2293 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2294 		return NULL;
2295 
2296 	spin_lock(&_minor_lock);
2297 
2298 	md = idr_find(&_minor_idr, minor);
2299 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2300 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2301 		md = NULL;
2302 		goto out;
2303 	}
2304 	dm_get(md);
2305 out:
2306 	spin_unlock(&_minor_lock);
2307 
2308 	return md;
2309 }
2310 EXPORT_SYMBOL_GPL(dm_get_md);
2311 
2312 void *dm_get_mdptr(struct mapped_device *md)
2313 {
2314 	return md->interface_ptr;
2315 }
2316 
2317 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2318 {
2319 	md->interface_ptr = ptr;
2320 }
2321 
2322 void dm_get(struct mapped_device *md)
2323 {
2324 	atomic_inc(&md->holders);
2325 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2326 }
2327 
2328 int dm_hold(struct mapped_device *md)
2329 {
2330 	spin_lock(&_minor_lock);
2331 	if (test_bit(DMF_FREEING, &md->flags)) {
2332 		spin_unlock(&_minor_lock);
2333 		return -EBUSY;
2334 	}
2335 	dm_get(md);
2336 	spin_unlock(&_minor_lock);
2337 	return 0;
2338 }
2339 EXPORT_SYMBOL_GPL(dm_hold);
2340 
2341 const char *dm_device_name(struct mapped_device *md)
2342 {
2343 	return md->name;
2344 }
2345 EXPORT_SYMBOL_GPL(dm_device_name);
2346 
2347 static void __dm_destroy(struct mapped_device *md, bool wait)
2348 {
2349 	struct dm_table *map;
2350 	int srcu_idx;
2351 
2352 	might_sleep();
2353 
2354 	spin_lock(&_minor_lock);
2355 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2356 	set_bit(DMF_FREEING, &md->flags);
2357 	spin_unlock(&_minor_lock);
2358 
2359 	blk_set_queue_dying(md->queue);
2360 
2361 	/*
2362 	 * Take suspend_lock so that presuspend and postsuspend methods
2363 	 * do not race with internal suspend.
2364 	 */
2365 	mutex_lock(&md->suspend_lock);
2366 	map = dm_get_live_table(md, &srcu_idx);
2367 	if (!dm_suspended_md(md)) {
2368 		dm_table_presuspend_targets(map);
2369 		dm_table_postsuspend_targets(map);
2370 	}
2371 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2372 	dm_put_live_table(md, srcu_idx);
2373 	mutex_unlock(&md->suspend_lock);
2374 
2375 	/*
2376 	 * Rare, but there may be I/O requests still going to complete,
2377 	 * for example.  Wait for all references to disappear.
2378 	 * No one should increment the reference count of the mapped_device,
2379 	 * after the mapped_device state becomes DMF_FREEING.
2380 	 */
2381 	if (wait)
2382 		while (atomic_read(&md->holders))
2383 			msleep(1);
2384 	else if (atomic_read(&md->holders))
2385 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2386 		       dm_device_name(md), atomic_read(&md->holders));
2387 
2388 	dm_sysfs_exit(md);
2389 	dm_table_destroy(__unbind(md));
2390 	free_dev(md);
2391 }
2392 
2393 void dm_destroy(struct mapped_device *md)
2394 {
2395 	__dm_destroy(md, true);
2396 }
2397 
2398 void dm_destroy_immediate(struct mapped_device *md)
2399 {
2400 	__dm_destroy(md, false);
2401 }
2402 
2403 void dm_put(struct mapped_device *md)
2404 {
2405 	atomic_dec(&md->holders);
2406 }
2407 EXPORT_SYMBOL_GPL(dm_put);
2408 
2409 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2410 {
2411 	int r = 0;
2412 	DEFINE_WAIT(wait);
2413 
2414 	while (1) {
2415 		prepare_to_wait(&md->wait, &wait, task_state);
2416 
2417 		if (!md_in_flight(md))
2418 			break;
2419 
2420 		if (signal_pending_state(task_state, current)) {
2421 			r = -EINTR;
2422 			break;
2423 		}
2424 
2425 		io_schedule();
2426 	}
2427 	finish_wait(&md->wait, &wait);
2428 
2429 	return r;
2430 }
2431 
2432 /*
2433  * Process the deferred bios
2434  */
2435 static void dm_wq_work(struct work_struct *work)
2436 {
2437 	struct mapped_device *md = container_of(work, struct mapped_device,
2438 						work);
2439 	struct bio *c;
2440 	int srcu_idx;
2441 	struct dm_table *map;
2442 
2443 	map = dm_get_live_table(md, &srcu_idx);
2444 
2445 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2446 		spin_lock_irq(&md->deferred_lock);
2447 		c = bio_list_pop(&md->deferred);
2448 		spin_unlock_irq(&md->deferred_lock);
2449 
2450 		if (!c)
2451 			break;
2452 
2453 		if (dm_request_based(md))
2454 			(void) generic_make_request(c);
2455 		else
2456 			(void) dm_process_bio(md, map, c);
2457 	}
2458 
2459 	dm_put_live_table(md, srcu_idx);
2460 }
2461 
2462 static void dm_queue_flush(struct mapped_device *md)
2463 {
2464 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2465 	smp_mb__after_atomic();
2466 	queue_work(md->wq, &md->work);
2467 }
2468 
2469 /*
2470  * Swap in a new table, returning the old one for the caller to destroy.
2471  */
2472 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2473 {
2474 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2475 	struct queue_limits limits;
2476 	int r;
2477 
2478 	mutex_lock(&md->suspend_lock);
2479 
2480 	/* device must be suspended */
2481 	if (!dm_suspended_md(md))
2482 		goto out;
2483 
2484 	/*
2485 	 * If the new table has no data devices, retain the existing limits.
2486 	 * This helps multipath with queue_if_no_path if all paths disappear,
2487 	 * then new I/O is queued based on these limits, and then some paths
2488 	 * reappear.
2489 	 */
2490 	if (dm_table_has_no_data_devices(table)) {
2491 		live_map = dm_get_live_table_fast(md);
2492 		if (live_map)
2493 			limits = md->queue->limits;
2494 		dm_put_live_table_fast(md);
2495 	}
2496 
2497 	if (!live_map) {
2498 		r = dm_calculate_queue_limits(table, &limits);
2499 		if (r) {
2500 			map = ERR_PTR(r);
2501 			goto out;
2502 		}
2503 	}
2504 
2505 	map = __bind(md, table, &limits);
2506 	dm_issue_global_event();
2507 
2508 out:
2509 	mutex_unlock(&md->suspend_lock);
2510 	return map;
2511 }
2512 
2513 /*
2514  * Functions to lock and unlock any filesystem running on the
2515  * device.
2516  */
2517 static int lock_fs(struct mapped_device *md)
2518 {
2519 	int r;
2520 
2521 	WARN_ON(md->frozen_sb);
2522 
2523 	md->frozen_sb = freeze_bdev(md->bdev);
2524 	if (IS_ERR(md->frozen_sb)) {
2525 		r = PTR_ERR(md->frozen_sb);
2526 		md->frozen_sb = NULL;
2527 		return r;
2528 	}
2529 
2530 	set_bit(DMF_FROZEN, &md->flags);
2531 
2532 	return 0;
2533 }
2534 
2535 static void unlock_fs(struct mapped_device *md)
2536 {
2537 	if (!test_bit(DMF_FROZEN, &md->flags))
2538 		return;
2539 
2540 	thaw_bdev(md->bdev, md->frozen_sb);
2541 	md->frozen_sb = NULL;
2542 	clear_bit(DMF_FROZEN, &md->flags);
2543 }
2544 
2545 /*
2546  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2547  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2548  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2549  *
2550  * If __dm_suspend returns 0, the device is completely quiescent
2551  * now. There is no request-processing activity. All new requests
2552  * are being added to md->deferred list.
2553  */
2554 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2555 			unsigned suspend_flags, long task_state,
2556 			int dmf_suspended_flag)
2557 {
2558 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2559 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2560 	int r;
2561 
2562 	lockdep_assert_held(&md->suspend_lock);
2563 
2564 	/*
2565 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2566 	 * This flag is cleared before dm_suspend returns.
2567 	 */
2568 	if (noflush)
2569 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2570 	else
2571 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2572 
2573 	/*
2574 	 * This gets reverted if there's an error later and the targets
2575 	 * provide the .presuspend_undo hook.
2576 	 */
2577 	dm_table_presuspend_targets(map);
2578 
2579 	/*
2580 	 * Flush I/O to the device.
2581 	 * Any I/O submitted after lock_fs() may not be flushed.
2582 	 * noflush takes precedence over do_lockfs.
2583 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2584 	 */
2585 	if (!noflush && do_lockfs) {
2586 		r = lock_fs(md);
2587 		if (r) {
2588 			dm_table_presuspend_undo_targets(map);
2589 			return r;
2590 		}
2591 	}
2592 
2593 	/*
2594 	 * Here we must make sure that no processes are submitting requests
2595 	 * to target drivers i.e. no one may be executing
2596 	 * __split_and_process_bio. This is called from dm_request and
2597 	 * dm_wq_work.
2598 	 *
2599 	 * To get all processes out of __split_and_process_bio in dm_request,
2600 	 * we take the write lock. To prevent any process from reentering
2601 	 * __split_and_process_bio from dm_request and quiesce the thread
2602 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2603 	 * flush_workqueue(md->wq).
2604 	 */
2605 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2606 	if (map)
2607 		synchronize_srcu(&md->io_barrier);
2608 
2609 	/*
2610 	 * Stop md->queue before flushing md->wq in case request-based
2611 	 * dm defers requests to md->wq from md->queue.
2612 	 */
2613 	if (dm_request_based(md))
2614 		dm_stop_queue(md->queue);
2615 
2616 	flush_workqueue(md->wq);
2617 
2618 	/*
2619 	 * At this point no more requests are entering target request routines.
2620 	 * We call dm_wait_for_completion to wait for all existing requests
2621 	 * to finish.
2622 	 */
2623 	r = dm_wait_for_completion(md, task_state);
2624 	if (!r)
2625 		set_bit(dmf_suspended_flag, &md->flags);
2626 
2627 	if (noflush)
2628 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2629 	if (map)
2630 		synchronize_srcu(&md->io_barrier);
2631 
2632 	/* were we interrupted ? */
2633 	if (r < 0) {
2634 		dm_queue_flush(md);
2635 
2636 		if (dm_request_based(md))
2637 			dm_start_queue(md->queue);
2638 
2639 		unlock_fs(md);
2640 		dm_table_presuspend_undo_targets(map);
2641 		/* pushback list is already flushed, so skip flush */
2642 	}
2643 
2644 	return r;
2645 }
2646 
2647 /*
2648  * We need to be able to change a mapping table under a mounted
2649  * filesystem.  For example we might want to move some data in
2650  * the background.  Before the table can be swapped with
2651  * dm_bind_table, dm_suspend must be called to flush any in
2652  * flight bios and ensure that any further io gets deferred.
2653  */
2654 /*
2655  * Suspend mechanism in request-based dm.
2656  *
2657  * 1. Flush all I/Os by lock_fs() if needed.
2658  * 2. Stop dispatching any I/O by stopping the request_queue.
2659  * 3. Wait for all in-flight I/Os to be completed or requeued.
2660  *
2661  * To abort suspend, start the request_queue.
2662  */
2663 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2664 {
2665 	struct dm_table *map = NULL;
2666 	int r = 0;
2667 
2668 retry:
2669 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2670 
2671 	if (dm_suspended_md(md)) {
2672 		r = -EINVAL;
2673 		goto out_unlock;
2674 	}
2675 
2676 	if (dm_suspended_internally_md(md)) {
2677 		/* already internally suspended, wait for internal resume */
2678 		mutex_unlock(&md->suspend_lock);
2679 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2680 		if (r)
2681 			return r;
2682 		goto retry;
2683 	}
2684 
2685 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2686 
2687 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2688 	if (r)
2689 		goto out_unlock;
2690 
2691 	dm_table_postsuspend_targets(map);
2692 
2693 out_unlock:
2694 	mutex_unlock(&md->suspend_lock);
2695 	return r;
2696 }
2697 
2698 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2699 {
2700 	if (map) {
2701 		int r = dm_table_resume_targets(map);
2702 		if (r)
2703 			return r;
2704 	}
2705 
2706 	dm_queue_flush(md);
2707 
2708 	/*
2709 	 * Flushing deferred I/Os must be done after targets are resumed
2710 	 * so that mapping of targets can work correctly.
2711 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2712 	 */
2713 	if (dm_request_based(md))
2714 		dm_start_queue(md->queue);
2715 
2716 	unlock_fs(md);
2717 
2718 	return 0;
2719 }
2720 
2721 int dm_resume(struct mapped_device *md)
2722 {
2723 	int r;
2724 	struct dm_table *map = NULL;
2725 
2726 retry:
2727 	r = -EINVAL;
2728 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2729 
2730 	if (!dm_suspended_md(md))
2731 		goto out;
2732 
2733 	if (dm_suspended_internally_md(md)) {
2734 		/* already internally suspended, wait for internal resume */
2735 		mutex_unlock(&md->suspend_lock);
2736 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2737 		if (r)
2738 			return r;
2739 		goto retry;
2740 	}
2741 
2742 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2743 	if (!map || !dm_table_get_size(map))
2744 		goto out;
2745 
2746 	r = __dm_resume(md, map);
2747 	if (r)
2748 		goto out;
2749 
2750 	clear_bit(DMF_SUSPENDED, &md->flags);
2751 out:
2752 	mutex_unlock(&md->suspend_lock);
2753 
2754 	return r;
2755 }
2756 
2757 /*
2758  * Internal suspend/resume works like userspace-driven suspend. It waits
2759  * until all bios finish and prevents issuing new bios to the target drivers.
2760  * It may be used only from the kernel.
2761  */
2762 
2763 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2764 {
2765 	struct dm_table *map = NULL;
2766 
2767 	lockdep_assert_held(&md->suspend_lock);
2768 
2769 	if (md->internal_suspend_count++)
2770 		return; /* nested internal suspend */
2771 
2772 	if (dm_suspended_md(md)) {
2773 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2774 		return; /* nest suspend */
2775 	}
2776 
2777 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2778 
2779 	/*
2780 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2781 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2782 	 * would require changing .presuspend to return an error -- avoid this
2783 	 * until there is a need for more elaborate variants of internal suspend.
2784 	 */
2785 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2786 			    DMF_SUSPENDED_INTERNALLY);
2787 
2788 	dm_table_postsuspend_targets(map);
2789 }
2790 
2791 static void __dm_internal_resume(struct mapped_device *md)
2792 {
2793 	BUG_ON(!md->internal_suspend_count);
2794 
2795 	if (--md->internal_suspend_count)
2796 		return; /* resume from nested internal suspend */
2797 
2798 	if (dm_suspended_md(md))
2799 		goto done; /* resume from nested suspend */
2800 
2801 	/*
2802 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2803 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2804 	 */
2805 	(void) __dm_resume(md, NULL);
2806 
2807 done:
2808 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2809 	smp_mb__after_atomic();
2810 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2811 }
2812 
2813 void dm_internal_suspend_noflush(struct mapped_device *md)
2814 {
2815 	mutex_lock(&md->suspend_lock);
2816 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2817 	mutex_unlock(&md->suspend_lock);
2818 }
2819 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2820 
2821 void dm_internal_resume(struct mapped_device *md)
2822 {
2823 	mutex_lock(&md->suspend_lock);
2824 	__dm_internal_resume(md);
2825 	mutex_unlock(&md->suspend_lock);
2826 }
2827 EXPORT_SYMBOL_GPL(dm_internal_resume);
2828 
2829 /*
2830  * Fast variants of internal suspend/resume hold md->suspend_lock,
2831  * which prevents interaction with userspace-driven suspend.
2832  */
2833 
2834 void dm_internal_suspend_fast(struct mapped_device *md)
2835 {
2836 	mutex_lock(&md->suspend_lock);
2837 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2838 		return;
2839 
2840 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2841 	synchronize_srcu(&md->io_barrier);
2842 	flush_workqueue(md->wq);
2843 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2844 }
2845 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2846 
2847 void dm_internal_resume_fast(struct mapped_device *md)
2848 {
2849 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2850 		goto done;
2851 
2852 	dm_queue_flush(md);
2853 
2854 done:
2855 	mutex_unlock(&md->suspend_lock);
2856 }
2857 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2858 
2859 /*-----------------------------------------------------------------
2860  * Event notification.
2861  *---------------------------------------------------------------*/
2862 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2863 		       unsigned cookie)
2864 {
2865 	char udev_cookie[DM_COOKIE_LENGTH];
2866 	char *envp[] = { udev_cookie, NULL };
2867 
2868 	if (!cookie)
2869 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2870 	else {
2871 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2872 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2873 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2874 					  action, envp);
2875 	}
2876 }
2877 
2878 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2879 {
2880 	return atomic_add_return(1, &md->uevent_seq);
2881 }
2882 
2883 uint32_t dm_get_event_nr(struct mapped_device *md)
2884 {
2885 	return atomic_read(&md->event_nr);
2886 }
2887 
2888 int dm_wait_event(struct mapped_device *md, int event_nr)
2889 {
2890 	return wait_event_interruptible(md->eventq,
2891 			(event_nr != atomic_read(&md->event_nr)));
2892 }
2893 
2894 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2895 {
2896 	unsigned long flags;
2897 
2898 	spin_lock_irqsave(&md->uevent_lock, flags);
2899 	list_add(elist, &md->uevent_list);
2900 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2901 }
2902 
2903 /*
2904  * The gendisk is only valid as long as you have a reference
2905  * count on 'md'.
2906  */
2907 struct gendisk *dm_disk(struct mapped_device *md)
2908 {
2909 	return md->disk;
2910 }
2911 EXPORT_SYMBOL_GPL(dm_disk);
2912 
2913 struct kobject *dm_kobject(struct mapped_device *md)
2914 {
2915 	return &md->kobj_holder.kobj;
2916 }
2917 
2918 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2919 {
2920 	struct mapped_device *md;
2921 
2922 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2923 
2924 	spin_lock(&_minor_lock);
2925 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2926 		md = NULL;
2927 		goto out;
2928 	}
2929 	dm_get(md);
2930 out:
2931 	spin_unlock(&_minor_lock);
2932 
2933 	return md;
2934 }
2935 
2936 int dm_suspended_md(struct mapped_device *md)
2937 {
2938 	return test_bit(DMF_SUSPENDED, &md->flags);
2939 }
2940 
2941 int dm_suspended_internally_md(struct mapped_device *md)
2942 {
2943 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2944 }
2945 
2946 int dm_test_deferred_remove_flag(struct mapped_device *md)
2947 {
2948 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2949 }
2950 
2951 int dm_suspended(struct dm_target *ti)
2952 {
2953 	return dm_suspended_md(dm_table_get_md(ti->table));
2954 }
2955 EXPORT_SYMBOL_GPL(dm_suspended);
2956 
2957 int dm_noflush_suspending(struct dm_target *ti)
2958 {
2959 	return __noflush_suspending(dm_table_get_md(ti->table));
2960 }
2961 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2962 
2963 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2964 					    unsigned integrity, unsigned per_io_data_size,
2965 					    unsigned min_pool_size)
2966 {
2967 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2968 	unsigned int pool_size = 0;
2969 	unsigned int front_pad, io_front_pad;
2970 	int ret;
2971 
2972 	if (!pools)
2973 		return NULL;
2974 
2975 	switch (type) {
2976 	case DM_TYPE_BIO_BASED:
2977 	case DM_TYPE_DAX_BIO_BASED:
2978 	case DM_TYPE_NVME_BIO_BASED:
2979 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2980 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2981 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2982 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2983 		if (ret)
2984 			goto out;
2985 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2986 			goto out;
2987 		break;
2988 	case DM_TYPE_REQUEST_BASED:
2989 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2990 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2991 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2992 		break;
2993 	default:
2994 		BUG();
2995 	}
2996 
2997 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2998 	if (ret)
2999 		goto out;
3000 
3001 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3002 		goto out;
3003 
3004 	return pools;
3005 
3006 out:
3007 	dm_free_md_mempools(pools);
3008 
3009 	return NULL;
3010 }
3011 
3012 void dm_free_md_mempools(struct dm_md_mempools *pools)
3013 {
3014 	if (!pools)
3015 		return;
3016 
3017 	bioset_exit(&pools->bs);
3018 	bioset_exit(&pools->io_bs);
3019 
3020 	kfree(pools);
3021 }
3022 
3023 struct dm_pr {
3024 	u64	old_key;
3025 	u64	new_key;
3026 	u32	flags;
3027 	bool	fail_early;
3028 };
3029 
3030 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3031 		      void *data)
3032 {
3033 	struct mapped_device *md = bdev->bd_disk->private_data;
3034 	struct dm_table *table;
3035 	struct dm_target *ti;
3036 	int ret = -ENOTTY, srcu_idx;
3037 
3038 	table = dm_get_live_table(md, &srcu_idx);
3039 	if (!table || !dm_table_get_size(table))
3040 		goto out;
3041 
3042 	/* We only support devices that have a single target */
3043 	if (dm_table_get_num_targets(table) != 1)
3044 		goto out;
3045 	ti = dm_table_get_target(table, 0);
3046 
3047 	ret = -EINVAL;
3048 	if (!ti->type->iterate_devices)
3049 		goto out;
3050 
3051 	ret = ti->type->iterate_devices(ti, fn, data);
3052 out:
3053 	dm_put_live_table(md, srcu_idx);
3054 	return ret;
3055 }
3056 
3057 /*
3058  * For register / unregister we need to manually call out to every path.
3059  */
3060 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3061 			    sector_t start, sector_t len, void *data)
3062 {
3063 	struct dm_pr *pr = data;
3064 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3065 
3066 	if (!ops || !ops->pr_register)
3067 		return -EOPNOTSUPP;
3068 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3069 }
3070 
3071 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3072 			  u32 flags)
3073 {
3074 	struct dm_pr pr = {
3075 		.old_key	= old_key,
3076 		.new_key	= new_key,
3077 		.flags		= flags,
3078 		.fail_early	= true,
3079 	};
3080 	int ret;
3081 
3082 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3083 	if (ret && new_key) {
3084 		/* unregister all paths if we failed to register any path */
3085 		pr.old_key = new_key;
3086 		pr.new_key = 0;
3087 		pr.flags = 0;
3088 		pr.fail_early = false;
3089 		dm_call_pr(bdev, __dm_pr_register, &pr);
3090 	}
3091 
3092 	return ret;
3093 }
3094 
3095 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3096 			 u32 flags)
3097 {
3098 	struct mapped_device *md = bdev->bd_disk->private_data;
3099 	const struct pr_ops *ops;
3100 	int r, srcu_idx;
3101 
3102 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3103 	if (r < 0)
3104 		goto out;
3105 
3106 	ops = bdev->bd_disk->fops->pr_ops;
3107 	if (ops && ops->pr_reserve)
3108 		r = ops->pr_reserve(bdev, key, type, flags);
3109 	else
3110 		r = -EOPNOTSUPP;
3111 out:
3112 	dm_unprepare_ioctl(md, srcu_idx);
3113 	return r;
3114 }
3115 
3116 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3117 {
3118 	struct mapped_device *md = bdev->bd_disk->private_data;
3119 	const struct pr_ops *ops;
3120 	int r, srcu_idx;
3121 
3122 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3123 	if (r < 0)
3124 		goto out;
3125 
3126 	ops = bdev->bd_disk->fops->pr_ops;
3127 	if (ops && ops->pr_release)
3128 		r = ops->pr_release(bdev, key, type);
3129 	else
3130 		r = -EOPNOTSUPP;
3131 out:
3132 	dm_unprepare_ioctl(md, srcu_idx);
3133 	return r;
3134 }
3135 
3136 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3137 			 enum pr_type type, bool abort)
3138 {
3139 	struct mapped_device *md = bdev->bd_disk->private_data;
3140 	const struct pr_ops *ops;
3141 	int r, srcu_idx;
3142 
3143 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3144 	if (r < 0)
3145 		goto out;
3146 
3147 	ops = bdev->bd_disk->fops->pr_ops;
3148 	if (ops && ops->pr_preempt)
3149 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3150 	else
3151 		r = -EOPNOTSUPP;
3152 out:
3153 	dm_unprepare_ioctl(md, srcu_idx);
3154 	return r;
3155 }
3156 
3157 static int dm_pr_clear(struct block_device *bdev, u64 key)
3158 {
3159 	struct mapped_device *md = bdev->bd_disk->private_data;
3160 	const struct pr_ops *ops;
3161 	int r, srcu_idx;
3162 
3163 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3164 	if (r < 0)
3165 		goto out;
3166 
3167 	ops = bdev->bd_disk->fops->pr_ops;
3168 	if (ops && ops->pr_clear)
3169 		r = ops->pr_clear(bdev, key);
3170 	else
3171 		r = -EOPNOTSUPP;
3172 out:
3173 	dm_unprepare_ioctl(md, srcu_idx);
3174 	return r;
3175 }
3176 
3177 static const struct pr_ops dm_pr_ops = {
3178 	.pr_register	= dm_pr_register,
3179 	.pr_reserve	= dm_pr_reserve,
3180 	.pr_release	= dm_pr_release,
3181 	.pr_preempt	= dm_pr_preempt,
3182 	.pr_clear	= dm_pr_clear,
3183 };
3184 
3185 static const struct block_device_operations dm_blk_dops = {
3186 	.open = dm_blk_open,
3187 	.release = dm_blk_close,
3188 	.ioctl = dm_blk_ioctl,
3189 	.getgeo = dm_blk_getgeo,
3190 	.report_zones = dm_blk_report_zones,
3191 	.pr_ops = &dm_pr_ops,
3192 	.owner = THIS_MODULE
3193 };
3194 
3195 static const struct dax_operations dm_dax_ops = {
3196 	.direct_access = dm_dax_direct_access,
3197 	.copy_from_iter = dm_dax_copy_from_iter,
3198 	.copy_to_iter = dm_dax_copy_to_iter,
3199 };
3200 
3201 /*
3202  * module hooks
3203  */
3204 module_init(dm_init);
3205 module_exit(dm_exit);
3206 
3207 module_param(major, uint, 0);
3208 MODULE_PARM_DESC(major, "The major number of the device mapper");
3209 
3210 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3211 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3212 
3213 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3214 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3215 
3216 MODULE_DESCRIPTION(DM_NAME " driver");
3217 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3218 MODULE_LICENSE("GPL");
3219