xref: /linux/drivers/md/dm.c (revision 7c94fe4a012e6d0858b9a80cbc18b7ee788f572d)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per target within a bio.  Hopefully
68  * this will be simplified out one day.
69  */
70 struct dm_target_io {
71 	struct dm_io *io;
72 	struct dm_target *ti;
73 	union map_info info;
74 };
75 
76 /*
77  * For request-based dm.
78  * One of these is allocated per request.
79  */
80 struct dm_rq_target_io {
81 	struct mapped_device *md;
82 	struct dm_target *ti;
83 	struct request *orig, clone;
84 	int error;
85 	union map_info info;
86 };
87 
88 /*
89  * For request-based dm.
90  * One of these is allocated per bio.
91  */
92 struct dm_rq_clone_bio_info {
93 	struct bio *orig;
94 	struct dm_rq_target_io *tio;
95 };
96 
97 union map_info *dm_get_mapinfo(struct bio *bio)
98 {
99 	if (bio && bio->bi_private)
100 		return &((struct dm_target_io *)bio->bi_private)->info;
101 	return NULL;
102 }
103 
104 union map_info *dm_get_rq_mapinfo(struct request *rq)
105 {
106 	if (rq && rq->end_io_data)
107 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 	return NULL;
109 }
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
111 
112 #define MINOR_ALLOCED ((void *)-1)
113 
114 /*
115  * Bits for the md->flags field.
116  */
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
119 #define DMF_FROZEN 2
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
124 
125 /*
126  * Work processed by per-device workqueue.
127  */
128 struct mapped_device {
129 	struct rw_semaphore io_lock;
130 	struct mutex suspend_lock;
131 	rwlock_t map_lock;
132 	atomic_t holders;
133 	atomic_t open_count;
134 
135 	unsigned long flags;
136 
137 	struct request_queue *queue;
138 	unsigned type;
139 	/* Protect queue and type against concurrent access. */
140 	struct mutex type_lock;
141 
142 	struct target_type *immutable_target_type;
143 
144 	struct gendisk *disk;
145 	char name[16];
146 
147 	void *interface_ptr;
148 
149 	/*
150 	 * A list of ios that arrived while we were suspended.
151 	 */
152 	atomic_t pending[2];
153 	wait_queue_head_t wait;
154 	struct work_struct work;
155 	struct bio_list deferred;
156 	spinlock_t deferred_lock;
157 
158 	/*
159 	 * Processing queue (flush)
160 	 */
161 	struct workqueue_struct *wq;
162 
163 	/*
164 	 * The current mapping.
165 	 */
166 	struct dm_table *map;
167 
168 	/*
169 	 * io objects are allocated from here.
170 	 */
171 	mempool_t *io_pool;
172 	mempool_t *tio_pool;
173 
174 	struct bio_set *bs;
175 
176 	/*
177 	 * Event handling.
178 	 */
179 	atomic_t event_nr;
180 	wait_queue_head_t eventq;
181 	atomic_t uevent_seq;
182 	struct list_head uevent_list;
183 	spinlock_t uevent_lock; /* Protect access to uevent_list */
184 
185 	/*
186 	 * freeze/thaw support require holding onto a super block
187 	 */
188 	struct super_block *frozen_sb;
189 	struct block_device *bdev;
190 
191 	/* forced geometry settings */
192 	struct hd_geometry geometry;
193 
194 	/* sysfs handle */
195 	struct kobject kobj;
196 
197 	/* zero-length flush that will be cloned and submitted to targets */
198 	struct bio flush_bio;
199 };
200 
201 /*
202  * For mempools pre-allocation at the table loading time.
203  */
204 struct dm_md_mempools {
205 	mempool_t *io_pool;
206 	mempool_t *tio_pool;
207 	struct bio_set *bs;
208 };
209 
210 #define MIN_IOS 256
211 static struct kmem_cache *_io_cache;
212 static struct kmem_cache *_tio_cache;
213 static struct kmem_cache *_rq_tio_cache;
214 static struct kmem_cache *_rq_bio_info_cache;
215 
216 static int __init local_init(void)
217 {
218 	int r = -ENOMEM;
219 
220 	/* allocate a slab for the dm_ios */
221 	_io_cache = KMEM_CACHE(dm_io, 0);
222 	if (!_io_cache)
223 		return r;
224 
225 	/* allocate a slab for the target ios */
226 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
227 	if (!_tio_cache)
228 		goto out_free_io_cache;
229 
230 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 	if (!_rq_tio_cache)
232 		goto out_free_tio_cache;
233 
234 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
235 	if (!_rq_bio_info_cache)
236 		goto out_free_rq_tio_cache;
237 
238 	r = dm_uevent_init();
239 	if (r)
240 		goto out_free_rq_bio_info_cache;
241 
242 	_major = major;
243 	r = register_blkdev(_major, _name);
244 	if (r < 0)
245 		goto out_uevent_exit;
246 
247 	if (!_major)
248 		_major = r;
249 
250 	return 0;
251 
252 out_uevent_exit:
253 	dm_uevent_exit();
254 out_free_rq_bio_info_cache:
255 	kmem_cache_destroy(_rq_bio_info_cache);
256 out_free_rq_tio_cache:
257 	kmem_cache_destroy(_rq_tio_cache);
258 out_free_tio_cache:
259 	kmem_cache_destroy(_tio_cache);
260 out_free_io_cache:
261 	kmem_cache_destroy(_io_cache);
262 
263 	return r;
264 }
265 
266 static void local_exit(void)
267 {
268 	kmem_cache_destroy(_rq_bio_info_cache);
269 	kmem_cache_destroy(_rq_tio_cache);
270 	kmem_cache_destroy(_tio_cache);
271 	kmem_cache_destroy(_io_cache);
272 	unregister_blkdev(_major, _name);
273 	dm_uevent_exit();
274 
275 	_major = 0;
276 
277 	DMINFO("cleaned up");
278 }
279 
280 static int (*_inits[])(void) __initdata = {
281 	local_init,
282 	dm_target_init,
283 	dm_linear_init,
284 	dm_stripe_init,
285 	dm_io_init,
286 	dm_kcopyd_init,
287 	dm_interface_init,
288 };
289 
290 static void (*_exits[])(void) = {
291 	local_exit,
292 	dm_target_exit,
293 	dm_linear_exit,
294 	dm_stripe_exit,
295 	dm_io_exit,
296 	dm_kcopyd_exit,
297 	dm_interface_exit,
298 };
299 
300 static int __init dm_init(void)
301 {
302 	const int count = ARRAY_SIZE(_inits);
303 
304 	int r, i;
305 
306 	for (i = 0; i < count; i++) {
307 		r = _inits[i]();
308 		if (r)
309 			goto bad;
310 	}
311 
312 	return 0;
313 
314       bad:
315 	while (i--)
316 		_exits[i]();
317 
318 	return r;
319 }
320 
321 static void __exit dm_exit(void)
322 {
323 	int i = ARRAY_SIZE(_exits);
324 
325 	while (i--)
326 		_exits[i]();
327 
328 	/*
329 	 * Should be empty by this point.
330 	 */
331 	idr_remove_all(&_minor_idr);
332 	idr_destroy(&_minor_idr);
333 }
334 
335 /*
336  * Block device functions
337  */
338 int dm_deleting_md(struct mapped_device *md)
339 {
340 	return test_bit(DMF_DELETING, &md->flags);
341 }
342 
343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = bdev->bd_disk->private_data;
350 	if (!md)
351 		goto out;
352 
353 	if (test_bit(DMF_FREEING, &md->flags) ||
354 	    dm_deleting_md(md)) {
355 		md = NULL;
356 		goto out;
357 	}
358 
359 	dm_get(md);
360 	atomic_inc(&md->open_count);
361 
362 out:
363 	spin_unlock(&_minor_lock);
364 
365 	return md ? 0 : -ENXIO;
366 }
367 
368 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
369 {
370 	struct mapped_device *md = disk->private_data;
371 
372 	spin_lock(&_minor_lock);
373 
374 	atomic_dec(&md->open_count);
375 	dm_put(md);
376 
377 	spin_unlock(&_minor_lock);
378 
379 	return 0;
380 }
381 
382 int dm_open_count(struct mapped_device *md)
383 {
384 	return atomic_read(&md->open_count);
385 }
386 
387 /*
388  * Guarantees nothing is using the device before it's deleted.
389  */
390 int dm_lock_for_deletion(struct mapped_device *md)
391 {
392 	int r = 0;
393 
394 	spin_lock(&_minor_lock);
395 
396 	if (dm_open_count(md))
397 		r = -EBUSY;
398 	else
399 		set_bit(DMF_DELETING, &md->flags);
400 
401 	spin_unlock(&_minor_lock);
402 
403 	return r;
404 }
405 
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
413 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
414 			unsigned int cmd, unsigned long arg)
415 {
416 	struct mapped_device *md = bdev->bd_disk->private_data;
417 	struct dm_table *map = dm_get_live_table(md);
418 	struct dm_target *tgt;
419 	int r = -ENOTTY;
420 
421 	if (!map || !dm_table_get_size(map))
422 		goto out;
423 
424 	/* We only support devices that have a single target */
425 	if (dm_table_get_num_targets(map) != 1)
426 		goto out;
427 
428 	tgt = dm_table_get_target(map, 0);
429 
430 	if (dm_suspended_md(md)) {
431 		r = -EAGAIN;
432 		goto out;
433 	}
434 
435 	if (tgt->type->ioctl)
436 		r = tgt->type->ioctl(tgt, cmd, arg);
437 
438 out:
439 	dm_table_put(map);
440 
441 	return r;
442 }
443 
444 static struct dm_io *alloc_io(struct mapped_device *md)
445 {
446 	return mempool_alloc(md->io_pool, GFP_NOIO);
447 }
448 
449 static void free_io(struct mapped_device *md, struct dm_io *io)
450 {
451 	mempool_free(io, md->io_pool);
452 }
453 
454 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
455 {
456 	mempool_free(tio, md->tio_pool);
457 }
458 
459 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
460 					    gfp_t gfp_mask)
461 {
462 	return mempool_alloc(md->tio_pool, gfp_mask);
463 }
464 
465 static void free_rq_tio(struct dm_rq_target_io *tio)
466 {
467 	mempool_free(tio, tio->md->tio_pool);
468 }
469 
470 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
471 {
472 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
473 }
474 
475 static void free_bio_info(struct dm_rq_clone_bio_info *info)
476 {
477 	mempool_free(info, info->tio->md->io_pool);
478 }
479 
480 static int md_in_flight(struct mapped_device *md)
481 {
482 	return atomic_read(&md->pending[READ]) +
483 	       atomic_read(&md->pending[WRITE]);
484 }
485 
486 static void start_io_acct(struct dm_io *io)
487 {
488 	struct mapped_device *md = io->md;
489 	int cpu;
490 	int rw = bio_data_dir(io->bio);
491 
492 	io->start_time = jiffies;
493 
494 	cpu = part_stat_lock();
495 	part_round_stats(cpu, &dm_disk(md)->part0);
496 	part_stat_unlock();
497 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 		atomic_inc_return(&md->pending[rw]));
499 }
500 
501 static void end_io_acct(struct dm_io *io)
502 {
503 	struct mapped_device *md = io->md;
504 	struct bio *bio = io->bio;
505 	unsigned long duration = jiffies - io->start_time;
506 	int pending, cpu;
507 	int rw = bio_data_dir(bio);
508 
509 	cpu = part_stat_lock();
510 	part_round_stats(cpu, &dm_disk(md)->part0);
511 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 	part_stat_unlock();
513 
514 	/*
515 	 * After this is decremented the bio must not be touched if it is
516 	 * a flush.
517 	 */
518 	pending = atomic_dec_return(&md->pending[rw]);
519 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 	pending += atomic_read(&md->pending[rw^0x1]);
521 
522 	/* nudge anyone waiting on suspend queue */
523 	if (!pending)
524 		wake_up(&md->wait);
525 }
526 
527 /*
528  * Add the bio to the list of deferred io.
529  */
530 static void queue_io(struct mapped_device *md, struct bio *bio)
531 {
532 	unsigned long flags;
533 
534 	spin_lock_irqsave(&md->deferred_lock, flags);
535 	bio_list_add(&md->deferred, bio);
536 	spin_unlock_irqrestore(&md->deferred_lock, flags);
537 	queue_work(md->wq, &md->work);
538 }
539 
540 /*
541  * Everyone (including functions in this file), should use this
542  * function to access the md->map field, and make sure they call
543  * dm_table_put() when finished.
544  */
545 struct dm_table *dm_get_live_table(struct mapped_device *md)
546 {
547 	struct dm_table *t;
548 	unsigned long flags;
549 
550 	read_lock_irqsave(&md->map_lock, flags);
551 	t = md->map;
552 	if (t)
553 		dm_table_get(t);
554 	read_unlock_irqrestore(&md->map_lock, flags);
555 
556 	return t;
557 }
558 
559 /*
560  * Get the geometry associated with a dm device
561  */
562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563 {
564 	*geo = md->geometry;
565 
566 	return 0;
567 }
568 
569 /*
570  * Set the geometry of a device.
571  */
572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573 {
574 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575 
576 	if (geo->start > sz) {
577 		DMWARN("Start sector is beyond the geometry limits.");
578 		return -EINVAL;
579 	}
580 
581 	md->geometry = *geo;
582 
583 	return 0;
584 }
585 
586 /*-----------------------------------------------------------------
587  * CRUD START:
588  *   A more elegant soln is in the works that uses the queue
589  *   merge fn, unfortunately there are a couple of changes to
590  *   the block layer that I want to make for this.  So in the
591  *   interests of getting something for people to use I give
592  *   you this clearly demarcated crap.
593  *---------------------------------------------------------------*/
594 
595 static int __noflush_suspending(struct mapped_device *md)
596 {
597 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
598 }
599 
600 /*
601  * Decrements the number of outstanding ios that a bio has been
602  * cloned into, completing the original io if necc.
603  */
604 static void dec_pending(struct dm_io *io, int error)
605 {
606 	unsigned long flags;
607 	int io_error;
608 	struct bio *bio;
609 	struct mapped_device *md = io->md;
610 
611 	/* Push-back supersedes any I/O errors */
612 	if (unlikely(error)) {
613 		spin_lock_irqsave(&io->endio_lock, flags);
614 		if (!(io->error > 0 && __noflush_suspending(md)))
615 			io->error = error;
616 		spin_unlock_irqrestore(&io->endio_lock, flags);
617 	}
618 
619 	if (atomic_dec_and_test(&io->io_count)) {
620 		if (io->error == DM_ENDIO_REQUEUE) {
621 			/*
622 			 * Target requested pushing back the I/O.
623 			 */
624 			spin_lock_irqsave(&md->deferred_lock, flags);
625 			if (__noflush_suspending(md))
626 				bio_list_add_head(&md->deferred, io->bio);
627 			else
628 				/* noflush suspend was interrupted. */
629 				io->error = -EIO;
630 			spin_unlock_irqrestore(&md->deferred_lock, flags);
631 		}
632 
633 		io_error = io->error;
634 		bio = io->bio;
635 		end_io_acct(io);
636 		free_io(md, io);
637 
638 		if (io_error == DM_ENDIO_REQUEUE)
639 			return;
640 
641 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 			/*
643 			 * Preflush done for flush with data, reissue
644 			 * without REQ_FLUSH.
645 			 */
646 			bio->bi_rw &= ~REQ_FLUSH;
647 			queue_io(md, bio);
648 		} else {
649 			/* done with normal IO or empty flush */
650 			trace_block_bio_complete(md->queue, bio, io_error);
651 			bio_endio(bio, io_error);
652 		}
653 	}
654 }
655 
656 static void clone_endio(struct bio *bio, int error)
657 {
658 	int r = 0;
659 	struct dm_target_io *tio = bio->bi_private;
660 	struct dm_io *io = tio->io;
661 	struct mapped_device *md = tio->io->md;
662 	dm_endio_fn endio = tio->ti->type->end_io;
663 
664 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 		error = -EIO;
666 
667 	if (endio) {
668 		r = endio(tio->ti, bio, error, &tio->info);
669 		if (r < 0 || r == DM_ENDIO_REQUEUE)
670 			/*
671 			 * error and requeue request are handled
672 			 * in dec_pending().
673 			 */
674 			error = r;
675 		else if (r == DM_ENDIO_INCOMPLETE)
676 			/* The target will handle the io */
677 			return;
678 		else if (r) {
679 			DMWARN("unimplemented target endio return value: %d", r);
680 			BUG();
681 		}
682 	}
683 
684 	/*
685 	 * Store md for cleanup instead of tio which is about to get freed.
686 	 */
687 	bio->bi_private = md->bs;
688 
689 	free_tio(md, tio);
690 	bio_put(bio);
691 	dec_pending(io, error);
692 }
693 
694 /*
695  * Partial completion handling for request-based dm
696  */
697 static void end_clone_bio(struct bio *clone, int error)
698 {
699 	struct dm_rq_clone_bio_info *info = clone->bi_private;
700 	struct dm_rq_target_io *tio = info->tio;
701 	struct bio *bio = info->orig;
702 	unsigned int nr_bytes = info->orig->bi_size;
703 
704 	bio_put(clone);
705 
706 	if (tio->error)
707 		/*
708 		 * An error has already been detected on the request.
709 		 * Once error occurred, just let clone->end_io() handle
710 		 * the remainder.
711 		 */
712 		return;
713 	else if (error) {
714 		/*
715 		 * Don't notice the error to the upper layer yet.
716 		 * The error handling decision is made by the target driver,
717 		 * when the request is completed.
718 		 */
719 		tio->error = error;
720 		return;
721 	}
722 
723 	/*
724 	 * I/O for the bio successfully completed.
725 	 * Notice the data completion to the upper layer.
726 	 */
727 
728 	/*
729 	 * bios are processed from the head of the list.
730 	 * So the completing bio should always be rq->bio.
731 	 * If it's not, something wrong is happening.
732 	 */
733 	if (tio->orig->bio != bio)
734 		DMERR("bio completion is going in the middle of the request");
735 
736 	/*
737 	 * Update the original request.
738 	 * Do not use blk_end_request() here, because it may complete
739 	 * the original request before the clone, and break the ordering.
740 	 */
741 	blk_update_request(tio->orig, 0, nr_bytes);
742 }
743 
744 /*
745  * Don't touch any member of the md after calling this function because
746  * the md may be freed in dm_put() at the end of this function.
747  * Or do dm_get() before calling this function and dm_put() later.
748  */
749 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
750 {
751 	atomic_dec(&md->pending[rw]);
752 
753 	/* nudge anyone waiting on suspend queue */
754 	if (!md_in_flight(md))
755 		wake_up(&md->wait);
756 
757 	if (run_queue)
758 		blk_run_queue(md->queue);
759 
760 	/*
761 	 * dm_put() must be at the end of this function. See the comment above
762 	 */
763 	dm_put(md);
764 }
765 
766 static void free_rq_clone(struct request *clone)
767 {
768 	struct dm_rq_target_io *tio = clone->end_io_data;
769 
770 	blk_rq_unprep_clone(clone);
771 	free_rq_tio(tio);
772 }
773 
774 /*
775  * Complete the clone and the original request.
776  * Must be called without queue lock.
777  */
778 static void dm_end_request(struct request *clone, int error)
779 {
780 	int rw = rq_data_dir(clone);
781 	struct dm_rq_target_io *tio = clone->end_io_data;
782 	struct mapped_device *md = tio->md;
783 	struct request *rq = tio->orig;
784 
785 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
786 		rq->errors = clone->errors;
787 		rq->resid_len = clone->resid_len;
788 
789 		if (rq->sense)
790 			/*
791 			 * We are using the sense buffer of the original
792 			 * request.
793 			 * So setting the length of the sense data is enough.
794 			 */
795 			rq->sense_len = clone->sense_len;
796 	}
797 
798 	free_rq_clone(clone);
799 	blk_end_request_all(rq, error);
800 	rq_completed(md, rw, true);
801 }
802 
803 static void dm_unprep_request(struct request *rq)
804 {
805 	struct request *clone = rq->special;
806 
807 	rq->special = NULL;
808 	rq->cmd_flags &= ~REQ_DONTPREP;
809 
810 	free_rq_clone(clone);
811 }
812 
813 /*
814  * Requeue the original request of a clone.
815  */
816 void dm_requeue_unmapped_request(struct request *clone)
817 {
818 	int rw = rq_data_dir(clone);
819 	struct dm_rq_target_io *tio = clone->end_io_data;
820 	struct mapped_device *md = tio->md;
821 	struct request *rq = tio->orig;
822 	struct request_queue *q = rq->q;
823 	unsigned long flags;
824 
825 	dm_unprep_request(rq);
826 
827 	spin_lock_irqsave(q->queue_lock, flags);
828 	blk_requeue_request(q, rq);
829 	spin_unlock_irqrestore(q->queue_lock, flags);
830 
831 	rq_completed(md, rw, 0);
832 }
833 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
834 
835 static void __stop_queue(struct request_queue *q)
836 {
837 	blk_stop_queue(q);
838 }
839 
840 static void stop_queue(struct request_queue *q)
841 {
842 	unsigned long flags;
843 
844 	spin_lock_irqsave(q->queue_lock, flags);
845 	__stop_queue(q);
846 	spin_unlock_irqrestore(q->queue_lock, flags);
847 }
848 
849 static void __start_queue(struct request_queue *q)
850 {
851 	if (blk_queue_stopped(q))
852 		blk_start_queue(q);
853 }
854 
855 static void start_queue(struct request_queue *q)
856 {
857 	unsigned long flags;
858 
859 	spin_lock_irqsave(q->queue_lock, flags);
860 	__start_queue(q);
861 	spin_unlock_irqrestore(q->queue_lock, flags);
862 }
863 
864 static void dm_done(struct request *clone, int error, bool mapped)
865 {
866 	int r = error;
867 	struct dm_rq_target_io *tio = clone->end_io_data;
868 	dm_request_endio_fn rq_end_io = NULL;
869 
870 	if (tio->ti) {
871 		rq_end_io = tio->ti->type->rq_end_io;
872 
873 		if (mapped && rq_end_io)
874 			r = rq_end_io(tio->ti, clone, error, &tio->info);
875 	}
876 
877 	if (r <= 0)
878 		/* The target wants to complete the I/O */
879 		dm_end_request(clone, r);
880 	else if (r == DM_ENDIO_INCOMPLETE)
881 		/* The target will handle the I/O */
882 		return;
883 	else if (r == DM_ENDIO_REQUEUE)
884 		/* The target wants to requeue the I/O */
885 		dm_requeue_unmapped_request(clone);
886 	else {
887 		DMWARN("unimplemented target endio return value: %d", r);
888 		BUG();
889 	}
890 }
891 
892 /*
893  * Request completion handler for request-based dm
894  */
895 static void dm_softirq_done(struct request *rq)
896 {
897 	bool mapped = true;
898 	struct request *clone = rq->completion_data;
899 	struct dm_rq_target_io *tio = clone->end_io_data;
900 
901 	if (rq->cmd_flags & REQ_FAILED)
902 		mapped = false;
903 
904 	dm_done(clone, tio->error, mapped);
905 }
906 
907 /*
908  * Complete the clone and the original request with the error status
909  * through softirq context.
910  */
911 static void dm_complete_request(struct request *clone, int error)
912 {
913 	struct dm_rq_target_io *tio = clone->end_io_data;
914 	struct request *rq = tio->orig;
915 
916 	tio->error = error;
917 	rq->completion_data = clone;
918 	blk_complete_request(rq);
919 }
920 
921 /*
922  * Complete the not-mapped clone and the original request with the error status
923  * through softirq context.
924  * Target's rq_end_io() function isn't called.
925  * This may be used when the target's map_rq() function fails.
926  */
927 void dm_kill_unmapped_request(struct request *clone, int error)
928 {
929 	struct dm_rq_target_io *tio = clone->end_io_data;
930 	struct request *rq = tio->orig;
931 
932 	rq->cmd_flags |= REQ_FAILED;
933 	dm_complete_request(clone, error);
934 }
935 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
936 
937 /*
938  * Called with the queue lock held
939  */
940 static void end_clone_request(struct request *clone, int error)
941 {
942 	/*
943 	 * For just cleaning up the information of the queue in which
944 	 * the clone was dispatched.
945 	 * The clone is *NOT* freed actually here because it is alloced from
946 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
947 	 */
948 	__blk_put_request(clone->q, clone);
949 
950 	/*
951 	 * Actual request completion is done in a softirq context which doesn't
952 	 * hold the queue lock.  Otherwise, deadlock could occur because:
953 	 *     - another request may be submitted by the upper level driver
954 	 *       of the stacking during the completion
955 	 *     - the submission which requires queue lock may be done
956 	 *       against this queue
957 	 */
958 	dm_complete_request(clone, error);
959 }
960 
961 /*
962  * Return maximum size of I/O possible at the supplied sector up to the current
963  * target boundary.
964  */
965 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
966 {
967 	sector_t target_offset = dm_target_offset(ti, sector);
968 
969 	return ti->len - target_offset;
970 }
971 
972 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
973 {
974 	sector_t len = max_io_len_target_boundary(sector, ti);
975 	sector_t offset, max_len;
976 
977 	/*
978 	 * Does the target need to split even further?
979 	 */
980 	if (ti->max_io_len) {
981 		offset = dm_target_offset(ti, sector);
982 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
983 			max_len = sector_div(offset, ti->max_io_len);
984 		else
985 			max_len = offset & (ti->max_io_len - 1);
986 		max_len = ti->max_io_len - max_len;
987 
988 		if (len > max_len)
989 			len = max_len;
990 	}
991 
992 	return len;
993 }
994 
995 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
996 {
997 	if (len > UINT_MAX) {
998 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
999 		      (unsigned long long)len, UINT_MAX);
1000 		ti->error = "Maximum size of target IO is too large";
1001 		return -EINVAL;
1002 	}
1003 
1004 	ti->max_io_len = (uint32_t) len;
1005 
1006 	return 0;
1007 }
1008 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1009 
1010 static void __map_bio(struct dm_target *ti, struct bio *clone,
1011 		      struct dm_target_io *tio)
1012 {
1013 	int r;
1014 	sector_t sector;
1015 	struct mapped_device *md;
1016 
1017 	clone->bi_end_io = clone_endio;
1018 	clone->bi_private = tio;
1019 
1020 	/*
1021 	 * Map the clone.  If r == 0 we don't need to do
1022 	 * anything, the target has assumed ownership of
1023 	 * this io.
1024 	 */
1025 	atomic_inc(&tio->io->io_count);
1026 	sector = clone->bi_sector;
1027 	r = ti->type->map(ti, clone, &tio->info);
1028 	if (r == DM_MAPIO_REMAPPED) {
1029 		/* the bio has been remapped so dispatch it */
1030 
1031 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1032 				      tio->io->bio->bi_bdev->bd_dev, sector);
1033 
1034 		generic_make_request(clone);
1035 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1036 		/* error the io and bail out, or requeue it if needed */
1037 		md = tio->io->md;
1038 		dec_pending(tio->io, r);
1039 		/*
1040 		 * Store bio_set for cleanup.
1041 		 */
1042 		clone->bi_end_io = NULL;
1043 		clone->bi_private = md->bs;
1044 		bio_put(clone);
1045 		free_tio(md, tio);
1046 	} else if (r) {
1047 		DMWARN("unimplemented target map return value: %d", r);
1048 		BUG();
1049 	}
1050 }
1051 
1052 struct clone_info {
1053 	struct mapped_device *md;
1054 	struct dm_table *map;
1055 	struct bio *bio;
1056 	struct dm_io *io;
1057 	sector_t sector;
1058 	sector_t sector_count;
1059 	unsigned short idx;
1060 };
1061 
1062 static void dm_bio_destructor(struct bio *bio)
1063 {
1064 	struct bio_set *bs = bio->bi_private;
1065 
1066 	bio_free(bio, bs);
1067 }
1068 
1069 /*
1070  * Creates a little bio that just does part of a bvec.
1071  */
1072 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1073 			      unsigned short idx, unsigned int offset,
1074 			      unsigned int len, struct bio_set *bs)
1075 {
1076 	struct bio *clone;
1077 	struct bio_vec *bv = bio->bi_io_vec + idx;
1078 
1079 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1080 	clone->bi_destructor = dm_bio_destructor;
1081 	*clone->bi_io_vec = *bv;
1082 
1083 	clone->bi_sector = sector;
1084 	clone->bi_bdev = bio->bi_bdev;
1085 	clone->bi_rw = bio->bi_rw;
1086 	clone->bi_vcnt = 1;
1087 	clone->bi_size = to_bytes(len);
1088 	clone->bi_io_vec->bv_offset = offset;
1089 	clone->bi_io_vec->bv_len = clone->bi_size;
1090 	clone->bi_flags |= 1 << BIO_CLONED;
1091 
1092 	if (bio_integrity(bio)) {
1093 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1094 		bio_integrity_trim(clone,
1095 				   bio_sector_offset(bio, idx, offset), len);
1096 	}
1097 
1098 	return clone;
1099 }
1100 
1101 /*
1102  * Creates a bio that consists of range of complete bvecs.
1103  */
1104 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1105 			     unsigned short idx, unsigned short bv_count,
1106 			     unsigned int len, struct bio_set *bs)
1107 {
1108 	struct bio *clone;
1109 
1110 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1111 	__bio_clone(clone, bio);
1112 	clone->bi_destructor = dm_bio_destructor;
1113 	clone->bi_sector = sector;
1114 	clone->bi_idx = idx;
1115 	clone->bi_vcnt = idx + bv_count;
1116 	clone->bi_size = to_bytes(len);
1117 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1118 
1119 	if (bio_integrity(bio)) {
1120 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1121 
1122 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1123 			bio_integrity_trim(clone,
1124 					   bio_sector_offset(bio, idx, 0), len);
1125 	}
1126 
1127 	return clone;
1128 }
1129 
1130 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1131 				      struct dm_target *ti)
1132 {
1133 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1134 
1135 	tio->io = ci->io;
1136 	tio->ti = ti;
1137 	memset(&tio->info, 0, sizeof(tio->info));
1138 
1139 	return tio;
1140 }
1141 
1142 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1143 				   unsigned request_nr, sector_t len)
1144 {
1145 	struct dm_target_io *tio = alloc_tio(ci, ti);
1146 	struct bio *clone;
1147 
1148 	tio->info.target_request_nr = request_nr;
1149 
1150 	/*
1151 	 * Discard requests require the bio's inline iovecs be initialized.
1152 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1153 	 * and discard, so no need for concern about wasted bvec allocations.
1154 	 */
1155 	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1156 	__bio_clone(clone, ci->bio);
1157 	clone->bi_destructor = dm_bio_destructor;
1158 	if (len) {
1159 		clone->bi_sector = ci->sector;
1160 		clone->bi_size = to_bytes(len);
1161 	}
1162 
1163 	__map_bio(ti, clone, tio);
1164 }
1165 
1166 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1167 				    unsigned num_requests, sector_t len)
1168 {
1169 	unsigned request_nr;
1170 
1171 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1172 		__issue_target_request(ci, ti, request_nr, len);
1173 }
1174 
1175 static int __clone_and_map_empty_flush(struct clone_info *ci)
1176 {
1177 	unsigned target_nr = 0;
1178 	struct dm_target *ti;
1179 
1180 	BUG_ON(bio_has_data(ci->bio));
1181 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1182 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1183 
1184 	return 0;
1185 }
1186 
1187 /*
1188  * Perform all io with a single clone.
1189  */
1190 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1191 {
1192 	struct bio *clone, *bio = ci->bio;
1193 	struct dm_target_io *tio;
1194 
1195 	tio = alloc_tio(ci, ti);
1196 	clone = clone_bio(bio, ci->sector, ci->idx,
1197 			  bio->bi_vcnt - ci->idx, ci->sector_count,
1198 			  ci->md->bs);
1199 	__map_bio(ti, clone, tio);
1200 	ci->sector_count = 0;
1201 }
1202 
1203 static int __clone_and_map_discard(struct clone_info *ci)
1204 {
1205 	struct dm_target *ti;
1206 	sector_t len;
1207 
1208 	do {
1209 		ti = dm_table_find_target(ci->map, ci->sector);
1210 		if (!dm_target_is_valid(ti))
1211 			return -EIO;
1212 
1213 		/*
1214 		 * Even though the device advertised discard support,
1215 		 * that does not mean every target supports it, and
1216 		 * reconfiguration might also have changed that since the
1217 		 * check was performed.
1218 		 */
1219 		if (!ti->num_discard_requests)
1220 			return -EOPNOTSUPP;
1221 
1222 		if (!ti->split_discard_requests)
1223 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1224 		else
1225 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1226 
1227 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1228 
1229 		ci->sector += len;
1230 	} while (ci->sector_count -= len);
1231 
1232 	return 0;
1233 }
1234 
1235 static int __clone_and_map(struct clone_info *ci)
1236 {
1237 	struct bio *clone, *bio = ci->bio;
1238 	struct dm_target *ti;
1239 	sector_t len = 0, max;
1240 	struct dm_target_io *tio;
1241 
1242 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1243 		return __clone_and_map_discard(ci);
1244 
1245 	ti = dm_table_find_target(ci->map, ci->sector);
1246 	if (!dm_target_is_valid(ti))
1247 		return -EIO;
1248 
1249 	max = max_io_len(ci->sector, ti);
1250 
1251 	if (ci->sector_count <= max) {
1252 		/*
1253 		 * Optimise for the simple case where we can do all of
1254 		 * the remaining io with a single clone.
1255 		 */
1256 		__clone_and_map_simple(ci, ti);
1257 
1258 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1259 		/*
1260 		 * There are some bvecs that don't span targets.
1261 		 * Do as many of these as possible.
1262 		 */
1263 		int i;
1264 		sector_t remaining = max;
1265 		sector_t bv_len;
1266 
1267 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1268 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1269 
1270 			if (bv_len > remaining)
1271 				break;
1272 
1273 			remaining -= bv_len;
1274 			len += bv_len;
1275 		}
1276 
1277 		tio = alloc_tio(ci, ti);
1278 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1279 				  ci->md->bs);
1280 		__map_bio(ti, clone, tio);
1281 
1282 		ci->sector += len;
1283 		ci->sector_count -= len;
1284 		ci->idx = i;
1285 
1286 	} else {
1287 		/*
1288 		 * Handle a bvec that must be split between two or more targets.
1289 		 */
1290 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1291 		sector_t remaining = to_sector(bv->bv_len);
1292 		unsigned int offset = 0;
1293 
1294 		do {
1295 			if (offset) {
1296 				ti = dm_table_find_target(ci->map, ci->sector);
1297 				if (!dm_target_is_valid(ti))
1298 					return -EIO;
1299 
1300 				max = max_io_len(ci->sector, ti);
1301 			}
1302 
1303 			len = min(remaining, max);
1304 
1305 			tio = alloc_tio(ci, ti);
1306 			clone = split_bvec(bio, ci->sector, ci->idx,
1307 					   bv->bv_offset + offset, len,
1308 					   ci->md->bs);
1309 
1310 			__map_bio(ti, clone, tio);
1311 
1312 			ci->sector += len;
1313 			ci->sector_count -= len;
1314 			offset += to_bytes(len);
1315 		} while (remaining -= len);
1316 
1317 		ci->idx++;
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 /*
1324  * Split the bio into several clones and submit it to targets.
1325  */
1326 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1327 {
1328 	struct clone_info ci;
1329 	int error = 0;
1330 
1331 	ci.map = dm_get_live_table(md);
1332 	if (unlikely(!ci.map)) {
1333 		bio_io_error(bio);
1334 		return;
1335 	}
1336 
1337 	ci.md = md;
1338 	ci.io = alloc_io(md);
1339 	ci.io->error = 0;
1340 	atomic_set(&ci.io->io_count, 1);
1341 	ci.io->bio = bio;
1342 	ci.io->md = md;
1343 	spin_lock_init(&ci.io->endio_lock);
1344 	ci.sector = bio->bi_sector;
1345 	ci.idx = bio->bi_idx;
1346 
1347 	start_io_acct(ci.io);
1348 	if (bio->bi_rw & REQ_FLUSH) {
1349 		ci.bio = &ci.md->flush_bio;
1350 		ci.sector_count = 0;
1351 		error = __clone_and_map_empty_flush(&ci);
1352 		/* dec_pending submits any data associated with flush */
1353 	} else {
1354 		ci.bio = bio;
1355 		ci.sector_count = bio_sectors(bio);
1356 		while (ci.sector_count && !error)
1357 			error = __clone_and_map(&ci);
1358 	}
1359 
1360 	/* drop the extra reference count */
1361 	dec_pending(ci.io, error);
1362 	dm_table_put(ci.map);
1363 }
1364 /*-----------------------------------------------------------------
1365  * CRUD END
1366  *---------------------------------------------------------------*/
1367 
1368 static int dm_merge_bvec(struct request_queue *q,
1369 			 struct bvec_merge_data *bvm,
1370 			 struct bio_vec *biovec)
1371 {
1372 	struct mapped_device *md = q->queuedata;
1373 	struct dm_table *map = dm_get_live_table(md);
1374 	struct dm_target *ti;
1375 	sector_t max_sectors;
1376 	int max_size = 0;
1377 
1378 	if (unlikely(!map))
1379 		goto out;
1380 
1381 	ti = dm_table_find_target(map, bvm->bi_sector);
1382 	if (!dm_target_is_valid(ti))
1383 		goto out_table;
1384 
1385 	/*
1386 	 * Find maximum amount of I/O that won't need splitting
1387 	 */
1388 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1389 			  (sector_t) BIO_MAX_SECTORS);
1390 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1391 	if (max_size < 0)
1392 		max_size = 0;
1393 
1394 	/*
1395 	 * merge_bvec_fn() returns number of bytes
1396 	 * it can accept at this offset
1397 	 * max is precomputed maximal io size
1398 	 */
1399 	if (max_size && ti->type->merge)
1400 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1401 	/*
1402 	 * If the target doesn't support merge method and some of the devices
1403 	 * provided their merge_bvec method (we know this by looking at
1404 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1405 	 * entries.  So always set max_size to 0, and the code below allows
1406 	 * just one page.
1407 	 */
1408 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1409 
1410 		max_size = 0;
1411 
1412 out_table:
1413 	dm_table_put(map);
1414 
1415 out:
1416 	/*
1417 	 * Always allow an entire first page
1418 	 */
1419 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1420 		max_size = biovec->bv_len;
1421 
1422 	return max_size;
1423 }
1424 
1425 /*
1426  * The request function that just remaps the bio built up by
1427  * dm_merge_bvec.
1428  */
1429 static void _dm_request(struct request_queue *q, struct bio *bio)
1430 {
1431 	int rw = bio_data_dir(bio);
1432 	struct mapped_device *md = q->queuedata;
1433 	int cpu;
1434 
1435 	down_read(&md->io_lock);
1436 
1437 	cpu = part_stat_lock();
1438 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1439 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1440 	part_stat_unlock();
1441 
1442 	/* if we're suspended, we have to queue this io for later */
1443 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1444 		up_read(&md->io_lock);
1445 
1446 		if (bio_rw(bio) != READA)
1447 			queue_io(md, bio);
1448 		else
1449 			bio_io_error(bio);
1450 		return;
1451 	}
1452 
1453 	__split_and_process_bio(md, bio);
1454 	up_read(&md->io_lock);
1455 	return;
1456 }
1457 
1458 static int dm_request_based(struct mapped_device *md)
1459 {
1460 	return blk_queue_stackable(md->queue);
1461 }
1462 
1463 static void dm_request(struct request_queue *q, struct bio *bio)
1464 {
1465 	struct mapped_device *md = q->queuedata;
1466 
1467 	if (dm_request_based(md))
1468 		blk_queue_bio(q, bio);
1469 	else
1470 		_dm_request(q, bio);
1471 }
1472 
1473 void dm_dispatch_request(struct request *rq)
1474 {
1475 	int r;
1476 
1477 	if (blk_queue_io_stat(rq->q))
1478 		rq->cmd_flags |= REQ_IO_STAT;
1479 
1480 	rq->start_time = jiffies;
1481 	r = blk_insert_cloned_request(rq->q, rq);
1482 	if (r)
1483 		dm_complete_request(rq, r);
1484 }
1485 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1486 
1487 static void dm_rq_bio_destructor(struct bio *bio)
1488 {
1489 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1490 	struct mapped_device *md = info->tio->md;
1491 
1492 	free_bio_info(info);
1493 	bio_free(bio, md->bs);
1494 }
1495 
1496 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1497 				 void *data)
1498 {
1499 	struct dm_rq_target_io *tio = data;
1500 	struct mapped_device *md = tio->md;
1501 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1502 
1503 	if (!info)
1504 		return -ENOMEM;
1505 
1506 	info->orig = bio_orig;
1507 	info->tio = tio;
1508 	bio->bi_end_io = end_clone_bio;
1509 	bio->bi_private = info;
1510 	bio->bi_destructor = dm_rq_bio_destructor;
1511 
1512 	return 0;
1513 }
1514 
1515 static int setup_clone(struct request *clone, struct request *rq,
1516 		       struct dm_rq_target_io *tio)
1517 {
1518 	int r;
1519 
1520 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1521 			      dm_rq_bio_constructor, tio);
1522 	if (r)
1523 		return r;
1524 
1525 	clone->cmd = rq->cmd;
1526 	clone->cmd_len = rq->cmd_len;
1527 	clone->sense = rq->sense;
1528 	clone->buffer = rq->buffer;
1529 	clone->end_io = end_clone_request;
1530 	clone->end_io_data = tio;
1531 
1532 	return 0;
1533 }
1534 
1535 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1536 				gfp_t gfp_mask)
1537 {
1538 	struct request *clone;
1539 	struct dm_rq_target_io *tio;
1540 
1541 	tio = alloc_rq_tio(md, gfp_mask);
1542 	if (!tio)
1543 		return NULL;
1544 
1545 	tio->md = md;
1546 	tio->ti = NULL;
1547 	tio->orig = rq;
1548 	tio->error = 0;
1549 	memset(&tio->info, 0, sizeof(tio->info));
1550 
1551 	clone = &tio->clone;
1552 	if (setup_clone(clone, rq, tio)) {
1553 		/* -ENOMEM */
1554 		free_rq_tio(tio);
1555 		return NULL;
1556 	}
1557 
1558 	return clone;
1559 }
1560 
1561 /*
1562  * Called with the queue lock held.
1563  */
1564 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1565 {
1566 	struct mapped_device *md = q->queuedata;
1567 	struct request *clone;
1568 
1569 	if (unlikely(rq->special)) {
1570 		DMWARN("Already has something in rq->special.");
1571 		return BLKPREP_KILL;
1572 	}
1573 
1574 	clone = clone_rq(rq, md, GFP_ATOMIC);
1575 	if (!clone)
1576 		return BLKPREP_DEFER;
1577 
1578 	rq->special = clone;
1579 	rq->cmd_flags |= REQ_DONTPREP;
1580 
1581 	return BLKPREP_OK;
1582 }
1583 
1584 /*
1585  * Returns:
1586  * 0  : the request has been processed (not requeued)
1587  * !0 : the request has been requeued
1588  */
1589 static int map_request(struct dm_target *ti, struct request *clone,
1590 		       struct mapped_device *md)
1591 {
1592 	int r, requeued = 0;
1593 	struct dm_rq_target_io *tio = clone->end_io_data;
1594 
1595 	tio->ti = ti;
1596 	r = ti->type->map_rq(ti, clone, &tio->info);
1597 	switch (r) {
1598 	case DM_MAPIO_SUBMITTED:
1599 		/* The target has taken the I/O to submit by itself later */
1600 		break;
1601 	case DM_MAPIO_REMAPPED:
1602 		/* The target has remapped the I/O so dispatch it */
1603 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1604 				     blk_rq_pos(tio->orig));
1605 		dm_dispatch_request(clone);
1606 		break;
1607 	case DM_MAPIO_REQUEUE:
1608 		/* The target wants to requeue the I/O */
1609 		dm_requeue_unmapped_request(clone);
1610 		requeued = 1;
1611 		break;
1612 	default:
1613 		if (r > 0) {
1614 			DMWARN("unimplemented target map return value: %d", r);
1615 			BUG();
1616 		}
1617 
1618 		/* The target wants to complete the I/O */
1619 		dm_kill_unmapped_request(clone, r);
1620 		break;
1621 	}
1622 
1623 	return requeued;
1624 }
1625 
1626 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1627 {
1628 	struct request *clone;
1629 
1630 	blk_start_request(orig);
1631 	clone = orig->special;
1632 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1633 
1634 	/*
1635 	 * Hold the md reference here for the in-flight I/O.
1636 	 * We can't rely on the reference count by device opener,
1637 	 * because the device may be closed during the request completion
1638 	 * when all bios are completed.
1639 	 * See the comment in rq_completed() too.
1640 	 */
1641 	dm_get(md);
1642 
1643 	return clone;
1644 }
1645 
1646 /*
1647  * q->request_fn for request-based dm.
1648  * Called with the queue lock held.
1649  */
1650 static void dm_request_fn(struct request_queue *q)
1651 {
1652 	struct mapped_device *md = q->queuedata;
1653 	struct dm_table *map = dm_get_live_table(md);
1654 	struct dm_target *ti;
1655 	struct request *rq, *clone;
1656 	sector_t pos;
1657 
1658 	/*
1659 	 * For suspend, check blk_queue_stopped() and increment
1660 	 * ->pending within a single queue_lock not to increment the
1661 	 * number of in-flight I/Os after the queue is stopped in
1662 	 * dm_suspend().
1663 	 */
1664 	while (!blk_queue_stopped(q)) {
1665 		rq = blk_peek_request(q);
1666 		if (!rq)
1667 			goto delay_and_out;
1668 
1669 		/* always use block 0 to find the target for flushes for now */
1670 		pos = 0;
1671 		if (!(rq->cmd_flags & REQ_FLUSH))
1672 			pos = blk_rq_pos(rq);
1673 
1674 		ti = dm_table_find_target(map, pos);
1675 		if (!dm_target_is_valid(ti)) {
1676 			/*
1677 			 * Must perform setup, that dm_done() requires,
1678 			 * before calling dm_kill_unmapped_request
1679 			 */
1680 			DMERR_LIMIT("request attempted access beyond the end of device");
1681 			clone = dm_start_request(md, rq);
1682 			dm_kill_unmapped_request(clone, -EIO);
1683 			continue;
1684 		}
1685 
1686 		if (ti->type->busy && ti->type->busy(ti))
1687 			goto delay_and_out;
1688 
1689 		clone = dm_start_request(md, rq);
1690 
1691 		spin_unlock(q->queue_lock);
1692 		if (map_request(ti, clone, md))
1693 			goto requeued;
1694 
1695 		BUG_ON(!irqs_disabled());
1696 		spin_lock(q->queue_lock);
1697 	}
1698 
1699 	goto out;
1700 
1701 requeued:
1702 	BUG_ON(!irqs_disabled());
1703 	spin_lock(q->queue_lock);
1704 
1705 delay_and_out:
1706 	blk_delay_queue(q, HZ / 10);
1707 out:
1708 	dm_table_put(map);
1709 }
1710 
1711 int dm_underlying_device_busy(struct request_queue *q)
1712 {
1713 	return blk_lld_busy(q);
1714 }
1715 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1716 
1717 static int dm_lld_busy(struct request_queue *q)
1718 {
1719 	int r;
1720 	struct mapped_device *md = q->queuedata;
1721 	struct dm_table *map = dm_get_live_table(md);
1722 
1723 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1724 		r = 1;
1725 	else
1726 		r = dm_table_any_busy_target(map);
1727 
1728 	dm_table_put(map);
1729 
1730 	return r;
1731 }
1732 
1733 static int dm_any_congested(void *congested_data, int bdi_bits)
1734 {
1735 	int r = bdi_bits;
1736 	struct mapped_device *md = congested_data;
1737 	struct dm_table *map;
1738 
1739 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1740 		map = dm_get_live_table(md);
1741 		if (map) {
1742 			/*
1743 			 * Request-based dm cares about only own queue for
1744 			 * the query about congestion status of request_queue
1745 			 */
1746 			if (dm_request_based(md))
1747 				r = md->queue->backing_dev_info.state &
1748 				    bdi_bits;
1749 			else
1750 				r = dm_table_any_congested(map, bdi_bits);
1751 
1752 			dm_table_put(map);
1753 		}
1754 	}
1755 
1756 	return r;
1757 }
1758 
1759 /*-----------------------------------------------------------------
1760  * An IDR is used to keep track of allocated minor numbers.
1761  *---------------------------------------------------------------*/
1762 static void free_minor(int minor)
1763 {
1764 	spin_lock(&_minor_lock);
1765 	idr_remove(&_minor_idr, minor);
1766 	spin_unlock(&_minor_lock);
1767 }
1768 
1769 /*
1770  * See if the device with a specific minor # is free.
1771  */
1772 static int specific_minor(int minor)
1773 {
1774 	int r, m;
1775 
1776 	if (minor >= (1 << MINORBITS))
1777 		return -EINVAL;
1778 
1779 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1780 	if (!r)
1781 		return -ENOMEM;
1782 
1783 	spin_lock(&_minor_lock);
1784 
1785 	if (idr_find(&_minor_idr, minor)) {
1786 		r = -EBUSY;
1787 		goto out;
1788 	}
1789 
1790 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1791 	if (r)
1792 		goto out;
1793 
1794 	if (m != minor) {
1795 		idr_remove(&_minor_idr, m);
1796 		r = -EBUSY;
1797 		goto out;
1798 	}
1799 
1800 out:
1801 	spin_unlock(&_minor_lock);
1802 	return r;
1803 }
1804 
1805 static int next_free_minor(int *minor)
1806 {
1807 	int r, m;
1808 
1809 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1810 	if (!r)
1811 		return -ENOMEM;
1812 
1813 	spin_lock(&_minor_lock);
1814 
1815 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1816 	if (r)
1817 		goto out;
1818 
1819 	if (m >= (1 << MINORBITS)) {
1820 		idr_remove(&_minor_idr, m);
1821 		r = -ENOSPC;
1822 		goto out;
1823 	}
1824 
1825 	*minor = m;
1826 
1827 out:
1828 	spin_unlock(&_minor_lock);
1829 	return r;
1830 }
1831 
1832 static const struct block_device_operations dm_blk_dops;
1833 
1834 static void dm_wq_work(struct work_struct *work);
1835 
1836 static void dm_init_md_queue(struct mapped_device *md)
1837 {
1838 	/*
1839 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1840 	 * devices.  The type of this dm device has not been decided yet.
1841 	 * The type is decided at the first table loading time.
1842 	 * To prevent problematic device stacking, clear the queue flag
1843 	 * for request stacking support until then.
1844 	 *
1845 	 * This queue is new, so no concurrency on the queue_flags.
1846 	 */
1847 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1848 
1849 	md->queue->queuedata = md;
1850 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1851 	md->queue->backing_dev_info.congested_data = md;
1852 	blk_queue_make_request(md->queue, dm_request);
1853 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1854 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1855 }
1856 
1857 /*
1858  * Allocate and initialise a blank device with a given minor.
1859  */
1860 static struct mapped_device *alloc_dev(int minor)
1861 {
1862 	int r;
1863 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1864 	void *old_md;
1865 
1866 	if (!md) {
1867 		DMWARN("unable to allocate device, out of memory.");
1868 		return NULL;
1869 	}
1870 
1871 	if (!try_module_get(THIS_MODULE))
1872 		goto bad_module_get;
1873 
1874 	/* get a minor number for the dev */
1875 	if (minor == DM_ANY_MINOR)
1876 		r = next_free_minor(&minor);
1877 	else
1878 		r = specific_minor(minor);
1879 	if (r < 0)
1880 		goto bad_minor;
1881 
1882 	md->type = DM_TYPE_NONE;
1883 	init_rwsem(&md->io_lock);
1884 	mutex_init(&md->suspend_lock);
1885 	mutex_init(&md->type_lock);
1886 	spin_lock_init(&md->deferred_lock);
1887 	rwlock_init(&md->map_lock);
1888 	atomic_set(&md->holders, 1);
1889 	atomic_set(&md->open_count, 0);
1890 	atomic_set(&md->event_nr, 0);
1891 	atomic_set(&md->uevent_seq, 0);
1892 	INIT_LIST_HEAD(&md->uevent_list);
1893 	spin_lock_init(&md->uevent_lock);
1894 
1895 	md->queue = blk_alloc_queue(GFP_KERNEL);
1896 	if (!md->queue)
1897 		goto bad_queue;
1898 
1899 	dm_init_md_queue(md);
1900 
1901 	md->disk = alloc_disk(1);
1902 	if (!md->disk)
1903 		goto bad_disk;
1904 
1905 	atomic_set(&md->pending[0], 0);
1906 	atomic_set(&md->pending[1], 0);
1907 	init_waitqueue_head(&md->wait);
1908 	INIT_WORK(&md->work, dm_wq_work);
1909 	init_waitqueue_head(&md->eventq);
1910 
1911 	md->disk->major = _major;
1912 	md->disk->first_minor = minor;
1913 	md->disk->fops = &dm_blk_dops;
1914 	md->disk->queue = md->queue;
1915 	md->disk->private_data = md;
1916 	sprintf(md->disk->disk_name, "dm-%d", minor);
1917 	add_disk(md->disk);
1918 	format_dev_t(md->name, MKDEV(_major, minor));
1919 
1920 	md->wq = alloc_workqueue("kdmflush",
1921 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1922 	if (!md->wq)
1923 		goto bad_thread;
1924 
1925 	md->bdev = bdget_disk(md->disk, 0);
1926 	if (!md->bdev)
1927 		goto bad_bdev;
1928 
1929 	bio_init(&md->flush_bio);
1930 	md->flush_bio.bi_bdev = md->bdev;
1931 	md->flush_bio.bi_rw = WRITE_FLUSH;
1932 
1933 	/* Populate the mapping, nobody knows we exist yet */
1934 	spin_lock(&_minor_lock);
1935 	old_md = idr_replace(&_minor_idr, md, minor);
1936 	spin_unlock(&_minor_lock);
1937 
1938 	BUG_ON(old_md != MINOR_ALLOCED);
1939 
1940 	return md;
1941 
1942 bad_bdev:
1943 	destroy_workqueue(md->wq);
1944 bad_thread:
1945 	del_gendisk(md->disk);
1946 	put_disk(md->disk);
1947 bad_disk:
1948 	blk_cleanup_queue(md->queue);
1949 bad_queue:
1950 	free_minor(minor);
1951 bad_minor:
1952 	module_put(THIS_MODULE);
1953 bad_module_get:
1954 	kfree(md);
1955 	return NULL;
1956 }
1957 
1958 static void unlock_fs(struct mapped_device *md);
1959 
1960 static void free_dev(struct mapped_device *md)
1961 {
1962 	int minor = MINOR(disk_devt(md->disk));
1963 
1964 	unlock_fs(md);
1965 	bdput(md->bdev);
1966 	destroy_workqueue(md->wq);
1967 	if (md->tio_pool)
1968 		mempool_destroy(md->tio_pool);
1969 	if (md->io_pool)
1970 		mempool_destroy(md->io_pool);
1971 	if (md->bs)
1972 		bioset_free(md->bs);
1973 	blk_integrity_unregister(md->disk);
1974 	del_gendisk(md->disk);
1975 	free_minor(minor);
1976 
1977 	spin_lock(&_minor_lock);
1978 	md->disk->private_data = NULL;
1979 	spin_unlock(&_minor_lock);
1980 
1981 	put_disk(md->disk);
1982 	blk_cleanup_queue(md->queue);
1983 	module_put(THIS_MODULE);
1984 	kfree(md);
1985 }
1986 
1987 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1988 {
1989 	struct dm_md_mempools *p;
1990 
1991 	if (md->io_pool && md->tio_pool && md->bs)
1992 		/* the md already has necessary mempools */
1993 		goto out;
1994 
1995 	p = dm_table_get_md_mempools(t);
1996 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1997 
1998 	md->io_pool = p->io_pool;
1999 	p->io_pool = NULL;
2000 	md->tio_pool = p->tio_pool;
2001 	p->tio_pool = NULL;
2002 	md->bs = p->bs;
2003 	p->bs = NULL;
2004 
2005 out:
2006 	/* mempool bind completed, now no need any mempools in the table */
2007 	dm_table_free_md_mempools(t);
2008 }
2009 
2010 /*
2011  * Bind a table to the device.
2012  */
2013 static void event_callback(void *context)
2014 {
2015 	unsigned long flags;
2016 	LIST_HEAD(uevents);
2017 	struct mapped_device *md = (struct mapped_device *) context;
2018 
2019 	spin_lock_irqsave(&md->uevent_lock, flags);
2020 	list_splice_init(&md->uevent_list, &uevents);
2021 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2022 
2023 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2024 
2025 	atomic_inc(&md->event_nr);
2026 	wake_up(&md->eventq);
2027 }
2028 
2029 /*
2030  * Protected by md->suspend_lock obtained by dm_swap_table().
2031  */
2032 static void __set_size(struct mapped_device *md, sector_t size)
2033 {
2034 	set_capacity(md->disk, size);
2035 
2036 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2037 }
2038 
2039 /*
2040  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2041  *
2042  * If this function returns 0, then the device is either a non-dm
2043  * device without a merge_bvec_fn, or it is a dm device that is
2044  * able to split any bios it receives that are too big.
2045  */
2046 int dm_queue_merge_is_compulsory(struct request_queue *q)
2047 {
2048 	struct mapped_device *dev_md;
2049 
2050 	if (!q->merge_bvec_fn)
2051 		return 0;
2052 
2053 	if (q->make_request_fn == dm_request) {
2054 		dev_md = q->queuedata;
2055 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2056 			return 0;
2057 	}
2058 
2059 	return 1;
2060 }
2061 
2062 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2063 					 struct dm_dev *dev, sector_t start,
2064 					 sector_t len, void *data)
2065 {
2066 	struct block_device *bdev = dev->bdev;
2067 	struct request_queue *q = bdev_get_queue(bdev);
2068 
2069 	return dm_queue_merge_is_compulsory(q);
2070 }
2071 
2072 /*
2073  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2074  * on the properties of the underlying devices.
2075  */
2076 static int dm_table_merge_is_optional(struct dm_table *table)
2077 {
2078 	unsigned i = 0;
2079 	struct dm_target *ti;
2080 
2081 	while (i < dm_table_get_num_targets(table)) {
2082 		ti = dm_table_get_target(table, i++);
2083 
2084 		if (ti->type->iterate_devices &&
2085 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2086 			return 0;
2087 	}
2088 
2089 	return 1;
2090 }
2091 
2092 /*
2093  * Returns old map, which caller must destroy.
2094  */
2095 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2096 			       struct queue_limits *limits)
2097 {
2098 	struct dm_table *old_map;
2099 	struct request_queue *q = md->queue;
2100 	sector_t size;
2101 	unsigned long flags;
2102 	int merge_is_optional;
2103 
2104 	size = dm_table_get_size(t);
2105 
2106 	/*
2107 	 * Wipe any geometry if the size of the table changed.
2108 	 */
2109 	if (size != get_capacity(md->disk))
2110 		memset(&md->geometry, 0, sizeof(md->geometry));
2111 
2112 	__set_size(md, size);
2113 
2114 	dm_table_event_callback(t, event_callback, md);
2115 
2116 	/*
2117 	 * The queue hasn't been stopped yet, if the old table type wasn't
2118 	 * for request-based during suspension.  So stop it to prevent
2119 	 * I/O mapping before resume.
2120 	 * This must be done before setting the queue restrictions,
2121 	 * because request-based dm may be run just after the setting.
2122 	 */
2123 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2124 		stop_queue(q);
2125 
2126 	__bind_mempools(md, t);
2127 
2128 	merge_is_optional = dm_table_merge_is_optional(t);
2129 
2130 	write_lock_irqsave(&md->map_lock, flags);
2131 	old_map = md->map;
2132 	md->map = t;
2133 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2134 
2135 	dm_table_set_restrictions(t, q, limits);
2136 	if (merge_is_optional)
2137 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2138 	else
2139 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2140 	write_unlock_irqrestore(&md->map_lock, flags);
2141 
2142 	return old_map;
2143 }
2144 
2145 /*
2146  * Returns unbound table for the caller to free.
2147  */
2148 static struct dm_table *__unbind(struct mapped_device *md)
2149 {
2150 	struct dm_table *map = md->map;
2151 	unsigned long flags;
2152 
2153 	if (!map)
2154 		return NULL;
2155 
2156 	dm_table_event_callback(map, NULL, NULL);
2157 	write_lock_irqsave(&md->map_lock, flags);
2158 	md->map = NULL;
2159 	write_unlock_irqrestore(&md->map_lock, flags);
2160 
2161 	return map;
2162 }
2163 
2164 /*
2165  * Constructor for a new device.
2166  */
2167 int dm_create(int minor, struct mapped_device **result)
2168 {
2169 	struct mapped_device *md;
2170 
2171 	md = alloc_dev(minor);
2172 	if (!md)
2173 		return -ENXIO;
2174 
2175 	dm_sysfs_init(md);
2176 
2177 	*result = md;
2178 	return 0;
2179 }
2180 
2181 /*
2182  * Functions to manage md->type.
2183  * All are required to hold md->type_lock.
2184  */
2185 void dm_lock_md_type(struct mapped_device *md)
2186 {
2187 	mutex_lock(&md->type_lock);
2188 }
2189 
2190 void dm_unlock_md_type(struct mapped_device *md)
2191 {
2192 	mutex_unlock(&md->type_lock);
2193 }
2194 
2195 void dm_set_md_type(struct mapped_device *md, unsigned type)
2196 {
2197 	md->type = type;
2198 }
2199 
2200 unsigned dm_get_md_type(struct mapped_device *md)
2201 {
2202 	return md->type;
2203 }
2204 
2205 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2206 {
2207 	return md->immutable_target_type;
2208 }
2209 
2210 /*
2211  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2212  */
2213 static int dm_init_request_based_queue(struct mapped_device *md)
2214 {
2215 	struct request_queue *q = NULL;
2216 
2217 	if (md->queue->elevator)
2218 		return 1;
2219 
2220 	/* Fully initialize the queue */
2221 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2222 	if (!q)
2223 		return 0;
2224 
2225 	md->queue = q;
2226 	dm_init_md_queue(md);
2227 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2228 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2229 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2230 
2231 	elv_register_queue(md->queue);
2232 
2233 	return 1;
2234 }
2235 
2236 /*
2237  * Setup the DM device's queue based on md's type
2238  */
2239 int dm_setup_md_queue(struct mapped_device *md)
2240 {
2241 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2242 	    !dm_init_request_based_queue(md)) {
2243 		DMWARN("Cannot initialize queue for request-based mapped device");
2244 		return -EINVAL;
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 static struct mapped_device *dm_find_md(dev_t dev)
2251 {
2252 	struct mapped_device *md;
2253 	unsigned minor = MINOR(dev);
2254 
2255 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2256 		return NULL;
2257 
2258 	spin_lock(&_minor_lock);
2259 
2260 	md = idr_find(&_minor_idr, minor);
2261 	if (md && (md == MINOR_ALLOCED ||
2262 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2263 		   dm_deleting_md(md) ||
2264 		   test_bit(DMF_FREEING, &md->flags))) {
2265 		md = NULL;
2266 		goto out;
2267 	}
2268 
2269 out:
2270 	spin_unlock(&_minor_lock);
2271 
2272 	return md;
2273 }
2274 
2275 struct mapped_device *dm_get_md(dev_t dev)
2276 {
2277 	struct mapped_device *md = dm_find_md(dev);
2278 
2279 	if (md)
2280 		dm_get(md);
2281 
2282 	return md;
2283 }
2284 EXPORT_SYMBOL_GPL(dm_get_md);
2285 
2286 void *dm_get_mdptr(struct mapped_device *md)
2287 {
2288 	return md->interface_ptr;
2289 }
2290 
2291 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2292 {
2293 	md->interface_ptr = ptr;
2294 }
2295 
2296 void dm_get(struct mapped_device *md)
2297 {
2298 	atomic_inc(&md->holders);
2299 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2300 }
2301 
2302 const char *dm_device_name(struct mapped_device *md)
2303 {
2304 	return md->name;
2305 }
2306 EXPORT_SYMBOL_GPL(dm_device_name);
2307 
2308 static void __dm_destroy(struct mapped_device *md, bool wait)
2309 {
2310 	struct dm_table *map;
2311 
2312 	might_sleep();
2313 
2314 	spin_lock(&_minor_lock);
2315 	map = dm_get_live_table(md);
2316 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2317 	set_bit(DMF_FREEING, &md->flags);
2318 	spin_unlock(&_minor_lock);
2319 
2320 	if (!dm_suspended_md(md)) {
2321 		dm_table_presuspend_targets(map);
2322 		dm_table_postsuspend_targets(map);
2323 	}
2324 
2325 	/*
2326 	 * Rare, but there may be I/O requests still going to complete,
2327 	 * for example.  Wait for all references to disappear.
2328 	 * No one should increment the reference count of the mapped_device,
2329 	 * after the mapped_device state becomes DMF_FREEING.
2330 	 */
2331 	if (wait)
2332 		while (atomic_read(&md->holders))
2333 			msleep(1);
2334 	else if (atomic_read(&md->holders))
2335 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2336 		       dm_device_name(md), atomic_read(&md->holders));
2337 
2338 	dm_sysfs_exit(md);
2339 	dm_table_put(map);
2340 	dm_table_destroy(__unbind(md));
2341 	free_dev(md);
2342 }
2343 
2344 void dm_destroy(struct mapped_device *md)
2345 {
2346 	__dm_destroy(md, true);
2347 }
2348 
2349 void dm_destroy_immediate(struct mapped_device *md)
2350 {
2351 	__dm_destroy(md, false);
2352 }
2353 
2354 void dm_put(struct mapped_device *md)
2355 {
2356 	atomic_dec(&md->holders);
2357 }
2358 EXPORT_SYMBOL_GPL(dm_put);
2359 
2360 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2361 {
2362 	int r = 0;
2363 	DECLARE_WAITQUEUE(wait, current);
2364 
2365 	add_wait_queue(&md->wait, &wait);
2366 
2367 	while (1) {
2368 		set_current_state(interruptible);
2369 
2370 		if (!md_in_flight(md))
2371 			break;
2372 
2373 		if (interruptible == TASK_INTERRUPTIBLE &&
2374 		    signal_pending(current)) {
2375 			r = -EINTR;
2376 			break;
2377 		}
2378 
2379 		io_schedule();
2380 	}
2381 	set_current_state(TASK_RUNNING);
2382 
2383 	remove_wait_queue(&md->wait, &wait);
2384 
2385 	return r;
2386 }
2387 
2388 /*
2389  * Process the deferred bios
2390  */
2391 static void dm_wq_work(struct work_struct *work)
2392 {
2393 	struct mapped_device *md = container_of(work, struct mapped_device,
2394 						work);
2395 	struct bio *c;
2396 
2397 	down_read(&md->io_lock);
2398 
2399 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2400 		spin_lock_irq(&md->deferred_lock);
2401 		c = bio_list_pop(&md->deferred);
2402 		spin_unlock_irq(&md->deferred_lock);
2403 
2404 		if (!c)
2405 			break;
2406 
2407 		up_read(&md->io_lock);
2408 
2409 		if (dm_request_based(md))
2410 			generic_make_request(c);
2411 		else
2412 			__split_and_process_bio(md, c);
2413 
2414 		down_read(&md->io_lock);
2415 	}
2416 
2417 	up_read(&md->io_lock);
2418 }
2419 
2420 static void dm_queue_flush(struct mapped_device *md)
2421 {
2422 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2423 	smp_mb__after_clear_bit();
2424 	queue_work(md->wq, &md->work);
2425 }
2426 
2427 /*
2428  * Swap in a new table, returning the old one for the caller to destroy.
2429  */
2430 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2431 {
2432 	struct dm_table *live_map, *map = ERR_PTR(-EINVAL);
2433 	struct queue_limits limits;
2434 	int r;
2435 
2436 	mutex_lock(&md->suspend_lock);
2437 
2438 	/* device must be suspended */
2439 	if (!dm_suspended_md(md))
2440 		goto out;
2441 
2442 	/*
2443 	 * If the new table has no data devices, retain the existing limits.
2444 	 * This helps multipath with queue_if_no_path if all paths disappear,
2445 	 * then new I/O is queued based on these limits, and then some paths
2446 	 * reappear.
2447 	 */
2448 	if (dm_table_has_no_data_devices(table)) {
2449 		live_map = dm_get_live_table(md);
2450 		if (live_map)
2451 			limits = md->queue->limits;
2452 		dm_table_put(live_map);
2453 	}
2454 
2455 	r = dm_calculate_queue_limits(table, &limits);
2456 	if (r) {
2457 		map = ERR_PTR(r);
2458 		goto out;
2459 	}
2460 
2461 	map = __bind(md, table, &limits);
2462 
2463 out:
2464 	mutex_unlock(&md->suspend_lock);
2465 	return map;
2466 }
2467 
2468 /*
2469  * Functions to lock and unlock any filesystem running on the
2470  * device.
2471  */
2472 static int lock_fs(struct mapped_device *md)
2473 {
2474 	int r;
2475 
2476 	WARN_ON(md->frozen_sb);
2477 
2478 	md->frozen_sb = freeze_bdev(md->bdev);
2479 	if (IS_ERR(md->frozen_sb)) {
2480 		r = PTR_ERR(md->frozen_sb);
2481 		md->frozen_sb = NULL;
2482 		return r;
2483 	}
2484 
2485 	set_bit(DMF_FROZEN, &md->flags);
2486 
2487 	return 0;
2488 }
2489 
2490 static void unlock_fs(struct mapped_device *md)
2491 {
2492 	if (!test_bit(DMF_FROZEN, &md->flags))
2493 		return;
2494 
2495 	thaw_bdev(md->bdev, md->frozen_sb);
2496 	md->frozen_sb = NULL;
2497 	clear_bit(DMF_FROZEN, &md->flags);
2498 }
2499 
2500 /*
2501  * We need to be able to change a mapping table under a mounted
2502  * filesystem.  For example we might want to move some data in
2503  * the background.  Before the table can be swapped with
2504  * dm_bind_table, dm_suspend must be called to flush any in
2505  * flight bios and ensure that any further io gets deferred.
2506  */
2507 /*
2508  * Suspend mechanism in request-based dm.
2509  *
2510  * 1. Flush all I/Os by lock_fs() if needed.
2511  * 2. Stop dispatching any I/O by stopping the request_queue.
2512  * 3. Wait for all in-flight I/Os to be completed or requeued.
2513  *
2514  * To abort suspend, start the request_queue.
2515  */
2516 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2517 {
2518 	struct dm_table *map = NULL;
2519 	int r = 0;
2520 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2521 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2522 
2523 	mutex_lock(&md->suspend_lock);
2524 
2525 	if (dm_suspended_md(md)) {
2526 		r = -EINVAL;
2527 		goto out_unlock;
2528 	}
2529 
2530 	map = dm_get_live_table(md);
2531 
2532 	/*
2533 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2534 	 * This flag is cleared before dm_suspend returns.
2535 	 */
2536 	if (noflush)
2537 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2538 
2539 	/* This does not get reverted if there's an error later. */
2540 	dm_table_presuspend_targets(map);
2541 
2542 	/*
2543 	 * Flush I/O to the device.
2544 	 * Any I/O submitted after lock_fs() may not be flushed.
2545 	 * noflush takes precedence over do_lockfs.
2546 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2547 	 */
2548 	if (!noflush && do_lockfs) {
2549 		r = lock_fs(md);
2550 		if (r)
2551 			goto out;
2552 	}
2553 
2554 	/*
2555 	 * Here we must make sure that no processes are submitting requests
2556 	 * to target drivers i.e. no one may be executing
2557 	 * __split_and_process_bio. This is called from dm_request and
2558 	 * dm_wq_work.
2559 	 *
2560 	 * To get all processes out of __split_and_process_bio in dm_request,
2561 	 * we take the write lock. To prevent any process from reentering
2562 	 * __split_and_process_bio from dm_request and quiesce the thread
2563 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2564 	 * flush_workqueue(md->wq).
2565 	 */
2566 	down_write(&md->io_lock);
2567 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2568 	up_write(&md->io_lock);
2569 
2570 	/*
2571 	 * Stop md->queue before flushing md->wq in case request-based
2572 	 * dm defers requests to md->wq from md->queue.
2573 	 */
2574 	if (dm_request_based(md))
2575 		stop_queue(md->queue);
2576 
2577 	flush_workqueue(md->wq);
2578 
2579 	/*
2580 	 * At this point no more requests are entering target request routines.
2581 	 * We call dm_wait_for_completion to wait for all existing requests
2582 	 * to finish.
2583 	 */
2584 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2585 
2586 	down_write(&md->io_lock);
2587 	if (noflush)
2588 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2589 	up_write(&md->io_lock);
2590 
2591 	/* were we interrupted ? */
2592 	if (r < 0) {
2593 		dm_queue_flush(md);
2594 
2595 		if (dm_request_based(md))
2596 			start_queue(md->queue);
2597 
2598 		unlock_fs(md);
2599 		goto out; /* pushback list is already flushed, so skip flush */
2600 	}
2601 
2602 	/*
2603 	 * If dm_wait_for_completion returned 0, the device is completely
2604 	 * quiescent now. There is no request-processing activity. All new
2605 	 * requests are being added to md->deferred list.
2606 	 */
2607 
2608 	set_bit(DMF_SUSPENDED, &md->flags);
2609 
2610 	dm_table_postsuspend_targets(map);
2611 
2612 out:
2613 	dm_table_put(map);
2614 
2615 out_unlock:
2616 	mutex_unlock(&md->suspend_lock);
2617 	return r;
2618 }
2619 
2620 int dm_resume(struct mapped_device *md)
2621 {
2622 	int r = -EINVAL;
2623 	struct dm_table *map = NULL;
2624 
2625 	mutex_lock(&md->suspend_lock);
2626 	if (!dm_suspended_md(md))
2627 		goto out;
2628 
2629 	map = dm_get_live_table(md);
2630 	if (!map || !dm_table_get_size(map))
2631 		goto out;
2632 
2633 	r = dm_table_resume_targets(map);
2634 	if (r)
2635 		goto out;
2636 
2637 	dm_queue_flush(md);
2638 
2639 	/*
2640 	 * Flushing deferred I/Os must be done after targets are resumed
2641 	 * so that mapping of targets can work correctly.
2642 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2643 	 */
2644 	if (dm_request_based(md))
2645 		start_queue(md->queue);
2646 
2647 	unlock_fs(md);
2648 
2649 	clear_bit(DMF_SUSPENDED, &md->flags);
2650 
2651 	r = 0;
2652 out:
2653 	dm_table_put(map);
2654 	mutex_unlock(&md->suspend_lock);
2655 
2656 	return r;
2657 }
2658 
2659 /*-----------------------------------------------------------------
2660  * Event notification.
2661  *---------------------------------------------------------------*/
2662 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2663 		       unsigned cookie)
2664 {
2665 	char udev_cookie[DM_COOKIE_LENGTH];
2666 	char *envp[] = { udev_cookie, NULL };
2667 
2668 	if (!cookie)
2669 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2670 	else {
2671 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2672 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2673 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2674 					  action, envp);
2675 	}
2676 }
2677 
2678 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2679 {
2680 	return atomic_add_return(1, &md->uevent_seq);
2681 }
2682 
2683 uint32_t dm_get_event_nr(struct mapped_device *md)
2684 {
2685 	return atomic_read(&md->event_nr);
2686 }
2687 
2688 int dm_wait_event(struct mapped_device *md, int event_nr)
2689 {
2690 	return wait_event_interruptible(md->eventq,
2691 			(event_nr != atomic_read(&md->event_nr)));
2692 }
2693 
2694 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2695 {
2696 	unsigned long flags;
2697 
2698 	spin_lock_irqsave(&md->uevent_lock, flags);
2699 	list_add(elist, &md->uevent_list);
2700 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2701 }
2702 
2703 /*
2704  * The gendisk is only valid as long as you have a reference
2705  * count on 'md'.
2706  */
2707 struct gendisk *dm_disk(struct mapped_device *md)
2708 {
2709 	return md->disk;
2710 }
2711 
2712 struct kobject *dm_kobject(struct mapped_device *md)
2713 {
2714 	return &md->kobj;
2715 }
2716 
2717 /*
2718  * struct mapped_device should not be exported outside of dm.c
2719  * so use this check to verify that kobj is part of md structure
2720  */
2721 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2722 {
2723 	struct mapped_device *md;
2724 
2725 	md = container_of(kobj, struct mapped_device, kobj);
2726 	if (&md->kobj != kobj)
2727 		return NULL;
2728 
2729 	if (test_bit(DMF_FREEING, &md->flags) ||
2730 	    dm_deleting_md(md))
2731 		return NULL;
2732 
2733 	dm_get(md);
2734 	return md;
2735 }
2736 
2737 int dm_suspended_md(struct mapped_device *md)
2738 {
2739 	return test_bit(DMF_SUSPENDED, &md->flags);
2740 }
2741 
2742 int dm_suspended(struct dm_target *ti)
2743 {
2744 	return dm_suspended_md(dm_table_get_md(ti->table));
2745 }
2746 EXPORT_SYMBOL_GPL(dm_suspended);
2747 
2748 int dm_noflush_suspending(struct dm_target *ti)
2749 {
2750 	return __noflush_suspending(dm_table_get_md(ti->table));
2751 }
2752 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2753 
2754 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2755 {
2756 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2757 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2758 
2759 	if (!pools)
2760 		return NULL;
2761 
2762 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2763 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2764 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2765 	if (!pools->io_pool)
2766 		goto free_pools_and_out;
2767 
2768 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2769 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2770 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2771 	if (!pools->tio_pool)
2772 		goto free_io_pool_and_out;
2773 
2774 	pools->bs = bioset_create(pool_size, 0);
2775 	if (!pools->bs)
2776 		goto free_tio_pool_and_out;
2777 
2778 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2779 		goto free_bioset_and_out;
2780 
2781 	return pools;
2782 
2783 free_bioset_and_out:
2784 	bioset_free(pools->bs);
2785 
2786 free_tio_pool_and_out:
2787 	mempool_destroy(pools->tio_pool);
2788 
2789 free_io_pool_and_out:
2790 	mempool_destroy(pools->io_pool);
2791 
2792 free_pools_and_out:
2793 	kfree(pools);
2794 
2795 	return NULL;
2796 }
2797 
2798 void dm_free_md_mempools(struct dm_md_mempools *pools)
2799 {
2800 	if (!pools)
2801 		return;
2802 
2803 	if (pools->io_pool)
2804 		mempool_destroy(pools->io_pool);
2805 
2806 	if (pools->tio_pool)
2807 		mempool_destroy(pools->tio_pool);
2808 
2809 	if (pools->bs)
2810 		bioset_free(pools->bs);
2811 
2812 	kfree(pools);
2813 }
2814 
2815 static const struct block_device_operations dm_blk_dops = {
2816 	.open = dm_blk_open,
2817 	.release = dm_blk_close,
2818 	.ioctl = dm_blk_ioctl,
2819 	.getgeo = dm_blk_getgeo,
2820 	.owner = THIS_MODULE
2821 };
2822 
2823 EXPORT_SYMBOL(dm_get_mapinfo);
2824 
2825 /*
2826  * module hooks
2827  */
2828 module_init(dm_init);
2829 module_exit(dm_exit);
2830 
2831 module_param(major, uint, 0);
2832 MODULE_PARM_DESC(major, "The major number of the device mapper");
2833 MODULE_DESCRIPTION(DM_NAME " driver");
2834 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2835 MODULE_LICENSE("GPL");
2836