1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 /* 53 * For bio-based dm. 54 * One of these is allocated per bio. 55 */ 56 struct dm_io { 57 struct mapped_device *md; 58 int error; 59 atomic_t io_count; 60 struct bio *bio; 61 unsigned long start_time; 62 spinlock_t endio_lock; 63 }; 64 65 /* 66 * For bio-based dm. 67 * One of these is allocated per target within a bio. Hopefully 68 * this will be simplified out one day. 69 */ 70 struct dm_target_io { 71 struct dm_io *io; 72 struct dm_target *ti; 73 union map_info info; 74 }; 75 76 /* 77 * For request-based dm. 78 * One of these is allocated per request. 79 */ 80 struct dm_rq_target_io { 81 struct mapped_device *md; 82 struct dm_target *ti; 83 struct request *orig, clone; 84 int error; 85 union map_info info; 86 }; 87 88 /* 89 * For request-based dm. 90 * One of these is allocated per bio. 91 */ 92 struct dm_rq_clone_bio_info { 93 struct bio *orig; 94 struct dm_rq_target_io *tio; 95 }; 96 97 union map_info *dm_get_mapinfo(struct bio *bio) 98 { 99 if (bio && bio->bi_private) 100 return &((struct dm_target_io *)bio->bi_private)->info; 101 return NULL; 102 } 103 104 union map_info *dm_get_rq_mapinfo(struct request *rq) 105 { 106 if (rq && rq->end_io_data) 107 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 108 return NULL; 109 } 110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 111 112 #define MINOR_ALLOCED ((void *)-1) 113 114 /* 115 * Bits for the md->flags field. 116 */ 117 #define DMF_BLOCK_IO_FOR_SUSPEND 0 118 #define DMF_SUSPENDED 1 119 #define DMF_FROZEN 2 120 #define DMF_FREEING 3 121 #define DMF_DELETING 4 122 #define DMF_NOFLUSH_SUSPENDING 5 123 #define DMF_MERGE_IS_OPTIONAL 6 124 125 /* 126 * Work processed by per-device workqueue. 127 */ 128 struct mapped_device { 129 struct rw_semaphore io_lock; 130 struct mutex suspend_lock; 131 rwlock_t map_lock; 132 atomic_t holders; 133 atomic_t open_count; 134 135 unsigned long flags; 136 137 struct request_queue *queue; 138 unsigned type; 139 /* Protect queue and type against concurrent access. */ 140 struct mutex type_lock; 141 142 struct target_type *immutable_target_type; 143 144 struct gendisk *disk; 145 char name[16]; 146 147 void *interface_ptr; 148 149 /* 150 * A list of ios that arrived while we were suspended. 151 */ 152 atomic_t pending[2]; 153 wait_queue_head_t wait; 154 struct work_struct work; 155 struct bio_list deferred; 156 spinlock_t deferred_lock; 157 158 /* 159 * Processing queue (flush) 160 */ 161 struct workqueue_struct *wq; 162 163 /* 164 * The current mapping. 165 */ 166 struct dm_table *map; 167 168 /* 169 * io objects are allocated from here. 170 */ 171 mempool_t *io_pool; 172 mempool_t *tio_pool; 173 174 struct bio_set *bs; 175 176 /* 177 * Event handling. 178 */ 179 atomic_t event_nr; 180 wait_queue_head_t eventq; 181 atomic_t uevent_seq; 182 struct list_head uevent_list; 183 spinlock_t uevent_lock; /* Protect access to uevent_list */ 184 185 /* 186 * freeze/thaw support require holding onto a super block 187 */ 188 struct super_block *frozen_sb; 189 struct block_device *bdev; 190 191 /* forced geometry settings */ 192 struct hd_geometry geometry; 193 194 /* sysfs handle */ 195 struct kobject kobj; 196 197 /* zero-length flush that will be cloned and submitted to targets */ 198 struct bio flush_bio; 199 }; 200 201 /* 202 * For mempools pre-allocation at the table loading time. 203 */ 204 struct dm_md_mempools { 205 mempool_t *io_pool; 206 mempool_t *tio_pool; 207 struct bio_set *bs; 208 }; 209 210 #define MIN_IOS 256 211 static struct kmem_cache *_io_cache; 212 static struct kmem_cache *_tio_cache; 213 static struct kmem_cache *_rq_tio_cache; 214 static struct kmem_cache *_rq_bio_info_cache; 215 216 static int __init local_init(void) 217 { 218 int r = -ENOMEM; 219 220 /* allocate a slab for the dm_ios */ 221 _io_cache = KMEM_CACHE(dm_io, 0); 222 if (!_io_cache) 223 return r; 224 225 /* allocate a slab for the target ios */ 226 _tio_cache = KMEM_CACHE(dm_target_io, 0); 227 if (!_tio_cache) 228 goto out_free_io_cache; 229 230 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 231 if (!_rq_tio_cache) 232 goto out_free_tio_cache; 233 234 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 235 if (!_rq_bio_info_cache) 236 goto out_free_rq_tio_cache; 237 238 r = dm_uevent_init(); 239 if (r) 240 goto out_free_rq_bio_info_cache; 241 242 _major = major; 243 r = register_blkdev(_major, _name); 244 if (r < 0) 245 goto out_uevent_exit; 246 247 if (!_major) 248 _major = r; 249 250 return 0; 251 252 out_uevent_exit: 253 dm_uevent_exit(); 254 out_free_rq_bio_info_cache: 255 kmem_cache_destroy(_rq_bio_info_cache); 256 out_free_rq_tio_cache: 257 kmem_cache_destroy(_rq_tio_cache); 258 out_free_tio_cache: 259 kmem_cache_destroy(_tio_cache); 260 out_free_io_cache: 261 kmem_cache_destroy(_io_cache); 262 263 return r; 264 } 265 266 static void local_exit(void) 267 { 268 kmem_cache_destroy(_rq_bio_info_cache); 269 kmem_cache_destroy(_rq_tio_cache); 270 kmem_cache_destroy(_tio_cache); 271 kmem_cache_destroy(_io_cache); 272 unregister_blkdev(_major, _name); 273 dm_uevent_exit(); 274 275 _major = 0; 276 277 DMINFO("cleaned up"); 278 } 279 280 static int (*_inits[])(void) __initdata = { 281 local_init, 282 dm_target_init, 283 dm_linear_init, 284 dm_stripe_init, 285 dm_io_init, 286 dm_kcopyd_init, 287 dm_interface_init, 288 }; 289 290 static void (*_exits[])(void) = { 291 local_exit, 292 dm_target_exit, 293 dm_linear_exit, 294 dm_stripe_exit, 295 dm_io_exit, 296 dm_kcopyd_exit, 297 dm_interface_exit, 298 }; 299 300 static int __init dm_init(void) 301 { 302 const int count = ARRAY_SIZE(_inits); 303 304 int r, i; 305 306 for (i = 0; i < count; i++) { 307 r = _inits[i](); 308 if (r) 309 goto bad; 310 } 311 312 return 0; 313 314 bad: 315 while (i--) 316 _exits[i](); 317 318 return r; 319 } 320 321 static void __exit dm_exit(void) 322 { 323 int i = ARRAY_SIZE(_exits); 324 325 while (i--) 326 _exits[i](); 327 328 /* 329 * Should be empty by this point. 330 */ 331 idr_remove_all(&_minor_idr); 332 idr_destroy(&_minor_idr); 333 } 334 335 /* 336 * Block device functions 337 */ 338 int dm_deleting_md(struct mapped_device *md) 339 { 340 return test_bit(DMF_DELETING, &md->flags); 341 } 342 343 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 344 { 345 struct mapped_device *md; 346 347 spin_lock(&_minor_lock); 348 349 md = bdev->bd_disk->private_data; 350 if (!md) 351 goto out; 352 353 if (test_bit(DMF_FREEING, &md->flags) || 354 dm_deleting_md(md)) { 355 md = NULL; 356 goto out; 357 } 358 359 dm_get(md); 360 atomic_inc(&md->open_count); 361 362 out: 363 spin_unlock(&_minor_lock); 364 365 return md ? 0 : -ENXIO; 366 } 367 368 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 369 { 370 struct mapped_device *md = disk->private_data; 371 372 spin_lock(&_minor_lock); 373 374 atomic_dec(&md->open_count); 375 dm_put(md); 376 377 spin_unlock(&_minor_lock); 378 379 return 0; 380 } 381 382 int dm_open_count(struct mapped_device *md) 383 { 384 return atomic_read(&md->open_count); 385 } 386 387 /* 388 * Guarantees nothing is using the device before it's deleted. 389 */ 390 int dm_lock_for_deletion(struct mapped_device *md) 391 { 392 int r = 0; 393 394 spin_lock(&_minor_lock); 395 396 if (dm_open_count(md)) 397 r = -EBUSY; 398 else 399 set_bit(DMF_DELETING, &md->flags); 400 401 spin_unlock(&_minor_lock); 402 403 return r; 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 414 unsigned int cmd, unsigned long arg) 415 { 416 struct mapped_device *md = bdev->bd_disk->private_data; 417 struct dm_table *map = dm_get_live_table(md); 418 struct dm_target *tgt; 419 int r = -ENOTTY; 420 421 if (!map || !dm_table_get_size(map)) 422 goto out; 423 424 /* We only support devices that have a single target */ 425 if (dm_table_get_num_targets(map) != 1) 426 goto out; 427 428 tgt = dm_table_get_target(map, 0); 429 430 if (dm_suspended_md(md)) { 431 r = -EAGAIN; 432 goto out; 433 } 434 435 if (tgt->type->ioctl) 436 r = tgt->type->ioctl(tgt, cmd, arg); 437 438 out: 439 dm_table_put(map); 440 441 return r; 442 } 443 444 static struct dm_io *alloc_io(struct mapped_device *md) 445 { 446 return mempool_alloc(md->io_pool, GFP_NOIO); 447 } 448 449 static void free_io(struct mapped_device *md, struct dm_io *io) 450 { 451 mempool_free(io, md->io_pool); 452 } 453 454 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 455 { 456 mempool_free(tio, md->tio_pool); 457 } 458 459 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 460 gfp_t gfp_mask) 461 { 462 return mempool_alloc(md->tio_pool, gfp_mask); 463 } 464 465 static void free_rq_tio(struct dm_rq_target_io *tio) 466 { 467 mempool_free(tio, tio->md->tio_pool); 468 } 469 470 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md) 471 { 472 return mempool_alloc(md->io_pool, GFP_ATOMIC); 473 } 474 475 static void free_bio_info(struct dm_rq_clone_bio_info *info) 476 { 477 mempool_free(info, info->tio->md->io_pool); 478 } 479 480 static int md_in_flight(struct mapped_device *md) 481 { 482 return atomic_read(&md->pending[READ]) + 483 atomic_read(&md->pending[WRITE]); 484 } 485 486 static void start_io_acct(struct dm_io *io) 487 { 488 struct mapped_device *md = io->md; 489 int cpu; 490 int rw = bio_data_dir(io->bio); 491 492 io->start_time = jiffies; 493 494 cpu = part_stat_lock(); 495 part_round_stats(cpu, &dm_disk(md)->part0); 496 part_stat_unlock(); 497 atomic_set(&dm_disk(md)->part0.in_flight[rw], 498 atomic_inc_return(&md->pending[rw])); 499 } 500 501 static void end_io_acct(struct dm_io *io) 502 { 503 struct mapped_device *md = io->md; 504 struct bio *bio = io->bio; 505 unsigned long duration = jiffies - io->start_time; 506 int pending, cpu; 507 int rw = bio_data_dir(bio); 508 509 cpu = part_stat_lock(); 510 part_round_stats(cpu, &dm_disk(md)->part0); 511 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 512 part_stat_unlock(); 513 514 /* 515 * After this is decremented the bio must not be touched if it is 516 * a flush. 517 */ 518 pending = atomic_dec_return(&md->pending[rw]); 519 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 520 pending += atomic_read(&md->pending[rw^0x1]); 521 522 /* nudge anyone waiting on suspend queue */ 523 if (!pending) 524 wake_up(&md->wait); 525 } 526 527 /* 528 * Add the bio to the list of deferred io. 529 */ 530 static void queue_io(struct mapped_device *md, struct bio *bio) 531 { 532 unsigned long flags; 533 534 spin_lock_irqsave(&md->deferred_lock, flags); 535 bio_list_add(&md->deferred, bio); 536 spin_unlock_irqrestore(&md->deferred_lock, flags); 537 queue_work(md->wq, &md->work); 538 } 539 540 /* 541 * Everyone (including functions in this file), should use this 542 * function to access the md->map field, and make sure they call 543 * dm_table_put() when finished. 544 */ 545 struct dm_table *dm_get_live_table(struct mapped_device *md) 546 { 547 struct dm_table *t; 548 unsigned long flags; 549 550 read_lock_irqsave(&md->map_lock, flags); 551 t = md->map; 552 if (t) 553 dm_table_get(t); 554 read_unlock_irqrestore(&md->map_lock, flags); 555 556 return t; 557 } 558 559 /* 560 * Get the geometry associated with a dm device 561 */ 562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 563 { 564 *geo = md->geometry; 565 566 return 0; 567 } 568 569 /* 570 * Set the geometry of a device. 571 */ 572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 573 { 574 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 575 576 if (geo->start > sz) { 577 DMWARN("Start sector is beyond the geometry limits."); 578 return -EINVAL; 579 } 580 581 md->geometry = *geo; 582 583 return 0; 584 } 585 586 /*----------------------------------------------------------------- 587 * CRUD START: 588 * A more elegant soln is in the works that uses the queue 589 * merge fn, unfortunately there are a couple of changes to 590 * the block layer that I want to make for this. So in the 591 * interests of getting something for people to use I give 592 * you this clearly demarcated crap. 593 *---------------------------------------------------------------*/ 594 595 static int __noflush_suspending(struct mapped_device *md) 596 { 597 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 598 } 599 600 /* 601 * Decrements the number of outstanding ios that a bio has been 602 * cloned into, completing the original io if necc. 603 */ 604 static void dec_pending(struct dm_io *io, int error) 605 { 606 unsigned long flags; 607 int io_error; 608 struct bio *bio; 609 struct mapped_device *md = io->md; 610 611 /* Push-back supersedes any I/O errors */ 612 if (unlikely(error)) { 613 spin_lock_irqsave(&io->endio_lock, flags); 614 if (!(io->error > 0 && __noflush_suspending(md))) 615 io->error = error; 616 spin_unlock_irqrestore(&io->endio_lock, flags); 617 } 618 619 if (atomic_dec_and_test(&io->io_count)) { 620 if (io->error == DM_ENDIO_REQUEUE) { 621 /* 622 * Target requested pushing back the I/O. 623 */ 624 spin_lock_irqsave(&md->deferred_lock, flags); 625 if (__noflush_suspending(md)) 626 bio_list_add_head(&md->deferred, io->bio); 627 else 628 /* noflush suspend was interrupted. */ 629 io->error = -EIO; 630 spin_unlock_irqrestore(&md->deferred_lock, flags); 631 } 632 633 io_error = io->error; 634 bio = io->bio; 635 end_io_acct(io); 636 free_io(md, io); 637 638 if (io_error == DM_ENDIO_REQUEUE) 639 return; 640 641 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 642 /* 643 * Preflush done for flush with data, reissue 644 * without REQ_FLUSH. 645 */ 646 bio->bi_rw &= ~REQ_FLUSH; 647 queue_io(md, bio); 648 } else { 649 /* done with normal IO or empty flush */ 650 trace_block_bio_complete(md->queue, bio, io_error); 651 bio_endio(bio, io_error); 652 } 653 } 654 } 655 656 static void clone_endio(struct bio *bio, int error) 657 { 658 int r = 0; 659 struct dm_target_io *tio = bio->bi_private; 660 struct dm_io *io = tio->io; 661 struct mapped_device *md = tio->io->md; 662 dm_endio_fn endio = tio->ti->type->end_io; 663 664 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 665 error = -EIO; 666 667 if (endio) { 668 r = endio(tio->ti, bio, error, &tio->info); 669 if (r < 0 || r == DM_ENDIO_REQUEUE) 670 /* 671 * error and requeue request are handled 672 * in dec_pending(). 673 */ 674 error = r; 675 else if (r == DM_ENDIO_INCOMPLETE) 676 /* The target will handle the io */ 677 return; 678 else if (r) { 679 DMWARN("unimplemented target endio return value: %d", r); 680 BUG(); 681 } 682 } 683 684 /* 685 * Store md for cleanup instead of tio which is about to get freed. 686 */ 687 bio->bi_private = md->bs; 688 689 free_tio(md, tio); 690 bio_put(bio); 691 dec_pending(io, error); 692 } 693 694 /* 695 * Partial completion handling for request-based dm 696 */ 697 static void end_clone_bio(struct bio *clone, int error) 698 { 699 struct dm_rq_clone_bio_info *info = clone->bi_private; 700 struct dm_rq_target_io *tio = info->tio; 701 struct bio *bio = info->orig; 702 unsigned int nr_bytes = info->orig->bi_size; 703 704 bio_put(clone); 705 706 if (tio->error) 707 /* 708 * An error has already been detected on the request. 709 * Once error occurred, just let clone->end_io() handle 710 * the remainder. 711 */ 712 return; 713 else if (error) { 714 /* 715 * Don't notice the error to the upper layer yet. 716 * The error handling decision is made by the target driver, 717 * when the request is completed. 718 */ 719 tio->error = error; 720 return; 721 } 722 723 /* 724 * I/O for the bio successfully completed. 725 * Notice the data completion to the upper layer. 726 */ 727 728 /* 729 * bios are processed from the head of the list. 730 * So the completing bio should always be rq->bio. 731 * If it's not, something wrong is happening. 732 */ 733 if (tio->orig->bio != bio) 734 DMERR("bio completion is going in the middle of the request"); 735 736 /* 737 * Update the original request. 738 * Do not use blk_end_request() here, because it may complete 739 * the original request before the clone, and break the ordering. 740 */ 741 blk_update_request(tio->orig, 0, nr_bytes); 742 } 743 744 /* 745 * Don't touch any member of the md after calling this function because 746 * the md may be freed in dm_put() at the end of this function. 747 * Or do dm_get() before calling this function and dm_put() later. 748 */ 749 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 750 { 751 atomic_dec(&md->pending[rw]); 752 753 /* nudge anyone waiting on suspend queue */ 754 if (!md_in_flight(md)) 755 wake_up(&md->wait); 756 757 if (run_queue) 758 blk_run_queue(md->queue); 759 760 /* 761 * dm_put() must be at the end of this function. See the comment above 762 */ 763 dm_put(md); 764 } 765 766 static void free_rq_clone(struct request *clone) 767 { 768 struct dm_rq_target_io *tio = clone->end_io_data; 769 770 blk_rq_unprep_clone(clone); 771 free_rq_tio(tio); 772 } 773 774 /* 775 * Complete the clone and the original request. 776 * Must be called without queue lock. 777 */ 778 static void dm_end_request(struct request *clone, int error) 779 { 780 int rw = rq_data_dir(clone); 781 struct dm_rq_target_io *tio = clone->end_io_data; 782 struct mapped_device *md = tio->md; 783 struct request *rq = tio->orig; 784 785 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 786 rq->errors = clone->errors; 787 rq->resid_len = clone->resid_len; 788 789 if (rq->sense) 790 /* 791 * We are using the sense buffer of the original 792 * request. 793 * So setting the length of the sense data is enough. 794 */ 795 rq->sense_len = clone->sense_len; 796 } 797 798 free_rq_clone(clone); 799 blk_end_request_all(rq, error); 800 rq_completed(md, rw, true); 801 } 802 803 static void dm_unprep_request(struct request *rq) 804 { 805 struct request *clone = rq->special; 806 807 rq->special = NULL; 808 rq->cmd_flags &= ~REQ_DONTPREP; 809 810 free_rq_clone(clone); 811 } 812 813 /* 814 * Requeue the original request of a clone. 815 */ 816 void dm_requeue_unmapped_request(struct request *clone) 817 { 818 int rw = rq_data_dir(clone); 819 struct dm_rq_target_io *tio = clone->end_io_data; 820 struct mapped_device *md = tio->md; 821 struct request *rq = tio->orig; 822 struct request_queue *q = rq->q; 823 unsigned long flags; 824 825 dm_unprep_request(rq); 826 827 spin_lock_irqsave(q->queue_lock, flags); 828 blk_requeue_request(q, rq); 829 spin_unlock_irqrestore(q->queue_lock, flags); 830 831 rq_completed(md, rw, 0); 832 } 833 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 834 835 static void __stop_queue(struct request_queue *q) 836 { 837 blk_stop_queue(q); 838 } 839 840 static void stop_queue(struct request_queue *q) 841 { 842 unsigned long flags; 843 844 spin_lock_irqsave(q->queue_lock, flags); 845 __stop_queue(q); 846 spin_unlock_irqrestore(q->queue_lock, flags); 847 } 848 849 static void __start_queue(struct request_queue *q) 850 { 851 if (blk_queue_stopped(q)) 852 blk_start_queue(q); 853 } 854 855 static void start_queue(struct request_queue *q) 856 { 857 unsigned long flags; 858 859 spin_lock_irqsave(q->queue_lock, flags); 860 __start_queue(q); 861 spin_unlock_irqrestore(q->queue_lock, flags); 862 } 863 864 static void dm_done(struct request *clone, int error, bool mapped) 865 { 866 int r = error; 867 struct dm_rq_target_io *tio = clone->end_io_data; 868 dm_request_endio_fn rq_end_io = NULL; 869 870 if (tio->ti) { 871 rq_end_io = tio->ti->type->rq_end_io; 872 873 if (mapped && rq_end_io) 874 r = rq_end_io(tio->ti, clone, error, &tio->info); 875 } 876 877 if (r <= 0) 878 /* The target wants to complete the I/O */ 879 dm_end_request(clone, r); 880 else if (r == DM_ENDIO_INCOMPLETE) 881 /* The target will handle the I/O */ 882 return; 883 else if (r == DM_ENDIO_REQUEUE) 884 /* The target wants to requeue the I/O */ 885 dm_requeue_unmapped_request(clone); 886 else { 887 DMWARN("unimplemented target endio return value: %d", r); 888 BUG(); 889 } 890 } 891 892 /* 893 * Request completion handler for request-based dm 894 */ 895 static void dm_softirq_done(struct request *rq) 896 { 897 bool mapped = true; 898 struct request *clone = rq->completion_data; 899 struct dm_rq_target_io *tio = clone->end_io_data; 900 901 if (rq->cmd_flags & REQ_FAILED) 902 mapped = false; 903 904 dm_done(clone, tio->error, mapped); 905 } 906 907 /* 908 * Complete the clone and the original request with the error status 909 * through softirq context. 910 */ 911 static void dm_complete_request(struct request *clone, int error) 912 { 913 struct dm_rq_target_io *tio = clone->end_io_data; 914 struct request *rq = tio->orig; 915 916 tio->error = error; 917 rq->completion_data = clone; 918 blk_complete_request(rq); 919 } 920 921 /* 922 * Complete the not-mapped clone and the original request with the error status 923 * through softirq context. 924 * Target's rq_end_io() function isn't called. 925 * This may be used when the target's map_rq() function fails. 926 */ 927 void dm_kill_unmapped_request(struct request *clone, int error) 928 { 929 struct dm_rq_target_io *tio = clone->end_io_data; 930 struct request *rq = tio->orig; 931 932 rq->cmd_flags |= REQ_FAILED; 933 dm_complete_request(clone, error); 934 } 935 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 936 937 /* 938 * Called with the queue lock held 939 */ 940 static void end_clone_request(struct request *clone, int error) 941 { 942 /* 943 * For just cleaning up the information of the queue in which 944 * the clone was dispatched. 945 * The clone is *NOT* freed actually here because it is alloced from 946 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 947 */ 948 __blk_put_request(clone->q, clone); 949 950 /* 951 * Actual request completion is done in a softirq context which doesn't 952 * hold the queue lock. Otherwise, deadlock could occur because: 953 * - another request may be submitted by the upper level driver 954 * of the stacking during the completion 955 * - the submission which requires queue lock may be done 956 * against this queue 957 */ 958 dm_complete_request(clone, error); 959 } 960 961 /* 962 * Return maximum size of I/O possible at the supplied sector up to the current 963 * target boundary. 964 */ 965 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 966 { 967 sector_t target_offset = dm_target_offset(ti, sector); 968 969 return ti->len - target_offset; 970 } 971 972 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 973 { 974 sector_t len = max_io_len_target_boundary(sector, ti); 975 sector_t offset, max_len; 976 977 /* 978 * Does the target need to split even further? 979 */ 980 if (ti->max_io_len) { 981 offset = dm_target_offset(ti, sector); 982 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 983 max_len = sector_div(offset, ti->max_io_len); 984 else 985 max_len = offset & (ti->max_io_len - 1); 986 max_len = ti->max_io_len - max_len; 987 988 if (len > max_len) 989 len = max_len; 990 } 991 992 return len; 993 } 994 995 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 996 { 997 if (len > UINT_MAX) { 998 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 999 (unsigned long long)len, UINT_MAX); 1000 ti->error = "Maximum size of target IO is too large"; 1001 return -EINVAL; 1002 } 1003 1004 ti->max_io_len = (uint32_t) len; 1005 1006 return 0; 1007 } 1008 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1009 1010 static void __map_bio(struct dm_target *ti, struct bio *clone, 1011 struct dm_target_io *tio) 1012 { 1013 int r; 1014 sector_t sector; 1015 struct mapped_device *md; 1016 1017 clone->bi_end_io = clone_endio; 1018 clone->bi_private = tio; 1019 1020 /* 1021 * Map the clone. If r == 0 we don't need to do 1022 * anything, the target has assumed ownership of 1023 * this io. 1024 */ 1025 atomic_inc(&tio->io->io_count); 1026 sector = clone->bi_sector; 1027 r = ti->type->map(ti, clone, &tio->info); 1028 if (r == DM_MAPIO_REMAPPED) { 1029 /* the bio has been remapped so dispatch it */ 1030 1031 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1032 tio->io->bio->bi_bdev->bd_dev, sector); 1033 1034 generic_make_request(clone); 1035 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1036 /* error the io and bail out, or requeue it if needed */ 1037 md = tio->io->md; 1038 dec_pending(tio->io, r); 1039 /* 1040 * Store bio_set for cleanup. 1041 */ 1042 clone->bi_end_io = NULL; 1043 clone->bi_private = md->bs; 1044 bio_put(clone); 1045 free_tio(md, tio); 1046 } else if (r) { 1047 DMWARN("unimplemented target map return value: %d", r); 1048 BUG(); 1049 } 1050 } 1051 1052 struct clone_info { 1053 struct mapped_device *md; 1054 struct dm_table *map; 1055 struct bio *bio; 1056 struct dm_io *io; 1057 sector_t sector; 1058 sector_t sector_count; 1059 unsigned short idx; 1060 }; 1061 1062 static void dm_bio_destructor(struct bio *bio) 1063 { 1064 struct bio_set *bs = bio->bi_private; 1065 1066 bio_free(bio, bs); 1067 } 1068 1069 /* 1070 * Creates a little bio that just does part of a bvec. 1071 */ 1072 static struct bio *split_bvec(struct bio *bio, sector_t sector, 1073 unsigned short idx, unsigned int offset, 1074 unsigned int len, struct bio_set *bs) 1075 { 1076 struct bio *clone; 1077 struct bio_vec *bv = bio->bi_io_vec + idx; 1078 1079 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 1080 clone->bi_destructor = dm_bio_destructor; 1081 *clone->bi_io_vec = *bv; 1082 1083 clone->bi_sector = sector; 1084 clone->bi_bdev = bio->bi_bdev; 1085 clone->bi_rw = bio->bi_rw; 1086 clone->bi_vcnt = 1; 1087 clone->bi_size = to_bytes(len); 1088 clone->bi_io_vec->bv_offset = offset; 1089 clone->bi_io_vec->bv_len = clone->bi_size; 1090 clone->bi_flags |= 1 << BIO_CLONED; 1091 1092 if (bio_integrity(bio)) { 1093 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1094 bio_integrity_trim(clone, 1095 bio_sector_offset(bio, idx, offset), len); 1096 } 1097 1098 return clone; 1099 } 1100 1101 /* 1102 * Creates a bio that consists of range of complete bvecs. 1103 */ 1104 static struct bio *clone_bio(struct bio *bio, sector_t sector, 1105 unsigned short idx, unsigned short bv_count, 1106 unsigned int len, struct bio_set *bs) 1107 { 1108 struct bio *clone; 1109 1110 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 1111 __bio_clone(clone, bio); 1112 clone->bi_destructor = dm_bio_destructor; 1113 clone->bi_sector = sector; 1114 clone->bi_idx = idx; 1115 clone->bi_vcnt = idx + bv_count; 1116 clone->bi_size = to_bytes(len); 1117 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 1118 1119 if (bio_integrity(bio)) { 1120 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1121 1122 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1123 bio_integrity_trim(clone, 1124 bio_sector_offset(bio, idx, 0), len); 1125 } 1126 1127 return clone; 1128 } 1129 1130 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1131 struct dm_target *ti) 1132 { 1133 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO); 1134 1135 tio->io = ci->io; 1136 tio->ti = ti; 1137 memset(&tio->info, 0, sizeof(tio->info)); 1138 1139 return tio; 1140 } 1141 1142 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti, 1143 unsigned request_nr, sector_t len) 1144 { 1145 struct dm_target_io *tio = alloc_tio(ci, ti); 1146 struct bio *clone; 1147 1148 tio->info.target_request_nr = request_nr; 1149 1150 /* 1151 * Discard requests require the bio's inline iovecs be initialized. 1152 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1153 * and discard, so no need for concern about wasted bvec allocations. 1154 */ 1155 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs); 1156 __bio_clone(clone, ci->bio); 1157 clone->bi_destructor = dm_bio_destructor; 1158 if (len) { 1159 clone->bi_sector = ci->sector; 1160 clone->bi_size = to_bytes(len); 1161 } 1162 1163 __map_bio(ti, clone, tio); 1164 } 1165 1166 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti, 1167 unsigned num_requests, sector_t len) 1168 { 1169 unsigned request_nr; 1170 1171 for (request_nr = 0; request_nr < num_requests; request_nr++) 1172 __issue_target_request(ci, ti, request_nr, len); 1173 } 1174 1175 static int __clone_and_map_empty_flush(struct clone_info *ci) 1176 { 1177 unsigned target_nr = 0; 1178 struct dm_target *ti; 1179 1180 BUG_ON(bio_has_data(ci->bio)); 1181 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1182 __issue_target_requests(ci, ti, ti->num_flush_requests, 0); 1183 1184 return 0; 1185 } 1186 1187 /* 1188 * Perform all io with a single clone. 1189 */ 1190 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti) 1191 { 1192 struct bio *clone, *bio = ci->bio; 1193 struct dm_target_io *tio; 1194 1195 tio = alloc_tio(ci, ti); 1196 clone = clone_bio(bio, ci->sector, ci->idx, 1197 bio->bi_vcnt - ci->idx, ci->sector_count, 1198 ci->md->bs); 1199 __map_bio(ti, clone, tio); 1200 ci->sector_count = 0; 1201 } 1202 1203 static int __clone_and_map_discard(struct clone_info *ci) 1204 { 1205 struct dm_target *ti; 1206 sector_t len; 1207 1208 do { 1209 ti = dm_table_find_target(ci->map, ci->sector); 1210 if (!dm_target_is_valid(ti)) 1211 return -EIO; 1212 1213 /* 1214 * Even though the device advertised discard support, 1215 * that does not mean every target supports it, and 1216 * reconfiguration might also have changed that since the 1217 * check was performed. 1218 */ 1219 if (!ti->num_discard_requests) 1220 return -EOPNOTSUPP; 1221 1222 if (!ti->split_discard_requests) 1223 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1224 else 1225 len = min(ci->sector_count, max_io_len(ci->sector, ti)); 1226 1227 __issue_target_requests(ci, ti, ti->num_discard_requests, len); 1228 1229 ci->sector += len; 1230 } while (ci->sector_count -= len); 1231 1232 return 0; 1233 } 1234 1235 static int __clone_and_map(struct clone_info *ci) 1236 { 1237 struct bio *clone, *bio = ci->bio; 1238 struct dm_target *ti; 1239 sector_t len = 0, max; 1240 struct dm_target_io *tio; 1241 1242 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1243 return __clone_and_map_discard(ci); 1244 1245 ti = dm_table_find_target(ci->map, ci->sector); 1246 if (!dm_target_is_valid(ti)) 1247 return -EIO; 1248 1249 max = max_io_len(ci->sector, ti); 1250 1251 if (ci->sector_count <= max) { 1252 /* 1253 * Optimise for the simple case where we can do all of 1254 * the remaining io with a single clone. 1255 */ 1256 __clone_and_map_simple(ci, ti); 1257 1258 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1259 /* 1260 * There are some bvecs that don't span targets. 1261 * Do as many of these as possible. 1262 */ 1263 int i; 1264 sector_t remaining = max; 1265 sector_t bv_len; 1266 1267 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1268 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1269 1270 if (bv_len > remaining) 1271 break; 1272 1273 remaining -= bv_len; 1274 len += bv_len; 1275 } 1276 1277 tio = alloc_tio(ci, ti); 1278 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 1279 ci->md->bs); 1280 __map_bio(ti, clone, tio); 1281 1282 ci->sector += len; 1283 ci->sector_count -= len; 1284 ci->idx = i; 1285 1286 } else { 1287 /* 1288 * Handle a bvec that must be split between two or more targets. 1289 */ 1290 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1291 sector_t remaining = to_sector(bv->bv_len); 1292 unsigned int offset = 0; 1293 1294 do { 1295 if (offset) { 1296 ti = dm_table_find_target(ci->map, ci->sector); 1297 if (!dm_target_is_valid(ti)) 1298 return -EIO; 1299 1300 max = max_io_len(ci->sector, ti); 1301 } 1302 1303 len = min(remaining, max); 1304 1305 tio = alloc_tio(ci, ti); 1306 clone = split_bvec(bio, ci->sector, ci->idx, 1307 bv->bv_offset + offset, len, 1308 ci->md->bs); 1309 1310 __map_bio(ti, clone, tio); 1311 1312 ci->sector += len; 1313 ci->sector_count -= len; 1314 offset += to_bytes(len); 1315 } while (remaining -= len); 1316 1317 ci->idx++; 1318 } 1319 1320 return 0; 1321 } 1322 1323 /* 1324 * Split the bio into several clones and submit it to targets. 1325 */ 1326 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1327 { 1328 struct clone_info ci; 1329 int error = 0; 1330 1331 ci.map = dm_get_live_table(md); 1332 if (unlikely(!ci.map)) { 1333 bio_io_error(bio); 1334 return; 1335 } 1336 1337 ci.md = md; 1338 ci.io = alloc_io(md); 1339 ci.io->error = 0; 1340 atomic_set(&ci.io->io_count, 1); 1341 ci.io->bio = bio; 1342 ci.io->md = md; 1343 spin_lock_init(&ci.io->endio_lock); 1344 ci.sector = bio->bi_sector; 1345 ci.idx = bio->bi_idx; 1346 1347 start_io_acct(ci.io); 1348 if (bio->bi_rw & REQ_FLUSH) { 1349 ci.bio = &ci.md->flush_bio; 1350 ci.sector_count = 0; 1351 error = __clone_and_map_empty_flush(&ci); 1352 /* dec_pending submits any data associated with flush */ 1353 } else { 1354 ci.bio = bio; 1355 ci.sector_count = bio_sectors(bio); 1356 while (ci.sector_count && !error) 1357 error = __clone_and_map(&ci); 1358 } 1359 1360 /* drop the extra reference count */ 1361 dec_pending(ci.io, error); 1362 dm_table_put(ci.map); 1363 } 1364 /*----------------------------------------------------------------- 1365 * CRUD END 1366 *---------------------------------------------------------------*/ 1367 1368 static int dm_merge_bvec(struct request_queue *q, 1369 struct bvec_merge_data *bvm, 1370 struct bio_vec *biovec) 1371 { 1372 struct mapped_device *md = q->queuedata; 1373 struct dm_table *map = dm_get_live_table(md); 1374 struct dm_target *ti; 1375 sector_t max_sectors; 1376 int max_size = 0; 1377 1378 if (unlikely(!map)) 1379 goto out; 1380 1381 ti = dm_table_find_target(map, bvm->bi_sector); 1382 if (!dm_target_is_valid(ti)) 1383 goto out_table; 1384 1385 /* 1386 * Find maximum amount of I/O that won't need splitting 1387 */ 1388 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1389 (sector_t) BIO_MAX_SECTORS); 1390 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1391 if (max_size < 0) 1392 max_size = 0; 1393 1394 /* 1395 * merge_bvec_fn() returns number of bytes 1396 * it can accept at this offset 1397 * max is precomputed maximal io size 1398 */ 1399 if (max_size && ti->type->merge) 1400 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1401 /* 1402 * If the target doesn't support merge method and some of the devices 1403 * provided their merge_bvec method (we know this by looking at 1404 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1405 * entries. So always set max_size to 0, and the code below allows 1406 * just one page. 1407 */ 1408 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1409 1410 max_size = 0; 1411 1412 out_table: 1413 dm_table_put(map); 1414 1415 out: 1416 /* 1417 * Always allow an entire first page 1418 */ 1419 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1420 max_size = biovec->bv_len; 1421 1422 return max_size; 1423 } 1424 1425 /* 1426 * The request function that just remaps the bio built up by 1427 * dm_merge_bvec. 1428 */ 1429 static void _dm_request(struct request_queue *q, struct bio *bio) 1430 { 1431 int rw = bio_data_dir(bio); 1432 struct mapped_device *md = q->queuedata; 1433 int cpu; 1434 1435 down_read(&md->io_lock); 1436 1437 cpu = part_stat_lock(); 1438 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1439 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1440 part_stat_unlock(); 1441 1442 /* if we're suspended, we have to queue this io for later */ 1443 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1444 up_read(&md->io_lock); 1445 1446 if (bio_rw(bio) != READA) 1447 queue_io(md, bio); 1448 else 1449 bio_io_error(bio); 1450 return; 1451 } 1452 1453 __split_and_process_bio(md, bio); 1454 up_read(&md->io_lock); 1455 return; 1456 } 1457 1458 static int dm_request_based(struct mapped_device *md) 1459 { 1460 return blk_queue_stackable(md->queue); 1461 } 1462 1463 static void dm_request(struct request_queue *q, struct bio *bio) 1464 { 1465 struct mapped_device *md = q->queuedata; 1466 1467 if (dm_request_based(md)) 1468 blk_queue_bio(q, bio); 1469 else 1470 _dm_request(q, bio); 1471 } 1472 1473 void dm_dispatch_request(struct request *rq) 1474 { 1475 int r; 1476 1477 if (blk_queue_io_stat(rq->q)) 1478 rq->cmd_flags |= REQ_IO_STAT; 1479 1480 rq->start_time = jiffies; 1481 r = blk_insert_cloned_request(rq->q, rq); 1482 if (r) 1483 dm_complete_request(rq, r); 1484 } 1485 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1486 1487 static void dm_rq_bio_destructor(struct bio *bio) 1488 { 1489 struct dm_rq_clone_bio_info *info = bio->bi_private; 1490 struct mapped_device *md = info->tio->md; 1491 1492 free_bio_info(info); 1493 bio_free(bio, md->bs); 1494 } 1495 1496 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1497 void *data) 1498 { 1499 struct dm_rq_target_io *tio = data; 1500 struct mapped_device *md = tio->md; 1501 struct dm_rq_clone_bio_info *info = alloc_bio_info(md); 1502 1503 if (!info) 1504 return -ENOMEM; 1505 1506 info->orig = bio_orig; 1507 info->tio = tio; 1508 bio->bi_end_io = end_clone_bio; 1509 bio->bi_private = info; 1510 bio->bi_destructor = dm_rq_bio_destructor; 1511 1512 return 0; 1513 } 1514 1515 static int setup_clone(struct request *clone, struct request *rq, 1516 struct dm_rq_target_io *tio) 1517 { 1518 int r; 1519 1520 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1521 dm_rq_bio_constructor, tio); 1522 if (r) 1523 return r; 1524 1525 clone->cmd = rq->cmd; 1526 clone->cmd_len = rq->cmd_len; 1527 clone->sense = rq->sense; 1528 clone->buffer = rq->buffer; 1529 clone->end_io = end_clone_request; 1530 clone->end_io_data = tio; 1531 1532 return 0; 1533 } 1534 1535 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1536 gfp_t gfp_mask) 1537 { 1538 struct request *clone; 1539 struct dm_rq_target_io *tio; 1540 1541 tio = alloc_rq_tio(md, gfp_mask); 1542 if (!tio) 1543 return NULL; 1544 1545 tio->md = md; 1546 tio->ti = NULL; 1547 tio->orig = rq; 1548 tio->error = 0; 1549 memset(&tio->info, 0, sizeof(tio->info)); 1550 1551 clone = &tio->clone; 1552 if (setup_clone(clone, rq, tio)) { 1553 /* -ENOMEM */ 1554 free_rq_tio(tio); 1555 return NULL; 1556 } 1557 1558 return clone; 1559 } 1560 1561 /* 1562 * Called with the queue lock held. 1563 */ 1564 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1565 { 1566 struct mapped_device *md = q->queuedata; 1567 struct request *clone; 1568 1569 if (unlikely(rq->special)) { 1570 DMWARN("Already has something in rq->special."); 1571 return BLKPREP_KILL; 1572 } 1573 1574 clone = clone_rq(rq, md, GFP_ATOMIC); 1575 if (!clone) 1576 return BLKPREP_DEFER; 1577 1578 rq->special = clone; 1579 rq->cmd_flags |= REQ_DONTPREP; 1580 1581 return BLKPREP_OK; 1582 } 1583 1584 /* 1585 * Returns: 1586 * 0 : the request has been processed (not requeued) 1587 * !0 : the request has been requeued 1588 */ 1589 static int map_request(struct dm_target *ti, struct request *clone, 1590 struct mapped_device *md) 1591 { 1592 int r, requeued = 0; 1593 struct dm_rq_target_io *tio = clone->end_io_data; 1594 1595 tio->ti = ti; 1596 r = ti->type->map_rq(ti, clone, &tio->info); 1597 switch (r) { 1598 case DM_MAPIO_SUBMITTED: 1599 /* The target has taken the I/O to submit by itself later */ 1600 break; 1601 case DM_MAPIO_REMAPPED: 1602 /* The target has remapped the I/O so dispatch it */ 1603 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1604 blk_rq_pos(tio->orig)); 1605 dm_dispatch_request(clone); 1606 break; 1607 case DM_MAPIO_REQUEUE: 1608 /* The target wants to requeue the I/O */ 1609 dm_requeue_unmapped_request(clone); 1610 requeued = 1; 1611 break; 1612 default: 1613 if (r > 0) { 1614 DMWARN("unimplemented target map return value: %d", r); 1615 BUG(); 1616 } 1617 1618 /* The target wants to complete the I/O */ 1619 dm_kill_unmapped_request(clone, r); 1620 break; 1621 } 1622 1623 return requeued; 1624 } 1625 1626 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1627 { 1628 struct request *clone; 1629 1630 blk_start_request(orig); 1631 clone = orig->special; 1632 atomic_inc(&md->pending[rq_data_dir(clone)]); 1633 1634 /* 1635 * Hold the md reference here for the in-flight I/O. 1636 * We can't rely on the reference count by device opener, 1637 * because the device may be closed during the request completion 1638 * when all bios are completed. 1639 * See the comment in rq_completed() too. 1640 */ 1641 dm_get(md); 1642 1643 return clone; 1644 } 1645 1646 /* 1647 * q->request_fn for request-based dm. 1648 * Called with the queue lock held. 1649 */ 1650 static void dm_request_fn(struct request_queue *q) 1651 { 1652 struct mapped_device *md = q->queuedata; 1653 struct dm_table *map = dm_get_live_table(md); 1654 struct dm_target *ti; 1655 struct request *rq, *clone; 1656 sector_t pos; 1657 1658 /* 1659 * For suspend, check blk_queue_stopped() and increment 1660 * ->pending within a single queue_lock not to increment the 1661 * number of in-flight I/Os after the queue is stopped in 1662 * dm_suspend(). 1663 */ 1664 while (!blk_queue_stopped(q)) { 1665 rq = blk_peek_request(q); 1666 if (!rq) 1667 goto delay_and_out; 1668 1669 /* always use block 0 to find the target for flushes for now */ 1670 pos = 0; 1671 if (!(rq->cmd_flags & REQ_FLUSH)) 1672 pos = blk_rq_pos(rq); 1673 1674 ti = dm_table_find_target(map, pos); 1675 if (!dm_target_is_valid(ti)) { 1676 /* 1677 * Must perform setup, that dm_done() requires, 1678 * before calling dm_kill_unmapped_request 1679 */ 1680 DMERR_LIMIT("request attempted access beyond the end of device"); 1681 clone = dm_start_request(md, rq); 1682 dm_kill_unmapped_request(clone, -EIO); 1683 continue; 1684 } 1685 1686 if (ti->type->busy && ti->type->busy(ti)) 1687 goto delay_and_out; 1688 1689 clone = dm_start_request(md, rq); 1690 1691 spin_unlock(q->queue_lock); 1692 if (map_request(ti, clone, md)) 1693 goto requeued; 1694 1695 BUG_ON(!irqs_disabled()); 1696 spin_lock(q->queue_lock); 1697 } 1698 1699 goto out; 1700 1701 requeued: 1702 BUG_ON(!irqs_disabled()); 1703 spin_lock(q->queue_lock); 1704 1705 delay_and_out: 1706 blk_delay_queue(q, HZ / 10); 1707 out: 1708 dm_table_put(map); 1709 } 1710 1711 int dm_underlying_device_busy(struct request_queue *q) 1712 { 1713 return blk_lld_busy(q); 1714 } 1715 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1716 1717 static int dm_lld_busy(struct request_queue *q) 1718 { 1719 int r; 1720 struct mapped_device *md = q->queuedata; 1721 struct dm_table *map = dm_get_live_table(md); 1722 1723 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1724 r = 1; 1725 else 1726 r = dm_table_any_busy_target(map); 1727 1728 dm_table_put(map); 1729 1730 return r; 1731 } 1732 1733 static int dm_any_congested(void *congested_data, int bdi_bits) 1734 { 1735 int r = bdi_bits; 1736 struct mapped_device *md = congested_data; 1737 struct dm_table *map; 1738 1739 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1740 map = dm_get_live_table(md); 1741 if (map) { 1742 /* 1743 * Request-based dm cares about only own queue for 1744 * the query about congestion status of request_queue 1745 */ 1746 if (dm_request_based(md)) 1747 r = md->queue->backing_dev_info.state & 1748 bdi_bits; 1749 else 1750 r = dm_table_any_congested(map, bdi_bits); 1751 1752 dm_table_put(map); 1753 } 1754 } 1755 1756 return r; 1757 } 1758 1759 /*----------------------------------------------------------------- 1760 * An IDR is used to keep track of allocated minor numbers. 1761 *---------------------------------------------------------------*/ 1762 static void free_minor(int minor) 1763 { 1764 spin_lock(&_minor_lock); 1765 idr_remove(&_minor_idr, minor); 1766 spin_unlock(&_minor_lock); 1767 } 1768 1769 /* 1770 * See if the device with a specific minor # is free. 1771 */ 1772 static int specific_minor(int minor) 1773 { 1774 int r, m; 1775 1776 if (minor >= (1 << MINORBITS)) 1777 return -EINVAL; 1778 1779 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1780 if (!r) 1781 return -ENOMEM; 1782 1783 spin_lock(&_minor_lock); 1784 1785 if (idr_find(&_minor_idr, minor)) { 1786 r = -EBUSY; 1787 goto out; 1788 } 1789 1790 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1791 if (r) 1792 goto out; 1793 1794 if (m != minor) { 1795 idr_remove(&_minor_idr, m); 1796 r = -EBUSY; 1797 goto out; 1798 } 1799 1800 out: 1801 spin_unlock(&_minor_lock); 1802 return r; 1803 } 1804 1805 static int next_free_minor(int *minor) 1806 { 1807 int r, m; 1808 1809 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1810 if (!r) 1811 return -ENOMEM; 1812 1813 spin_lock(&_minor_lock); 1814 1815 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1816 if (r) 1817 goto out; 1818 1819 if (m >= (1 << MINORBITS)) { 1820 idr_remove(&_minor_idr, m); 1821 r = -ENOSPC; 1822 goto out; 1823 } 1824 1825 *minor = m; 1826 1827 out: 1828 spin_unlock(&_minor_lock); 1829 return r; 1830 } 1831 1832 static const struct block_device_operations dm_blk_dops; 1833 1834 static void dm_wq_work(struct work_struct *work); 1835 1836 static void dm_init_md_queue(struct mapped_device *md) 1837 { 1838 /* 1839 * Request-based dm devices cannot be stacked on top of bio-based dm 1840 * devices. The type of this dm device has not been decided yet. 1841 * The type is decided at the first table loading time. 1842 * To prevent problematic device stacking, clear the queue flag 1843 * for request stacking support until then. 1844 * 1845 * This queue is new, so no concurrency on the queue_flags. 1846 */ 1847 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1848 1849 md->queue->queuedata = md; 1850 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1851 md->queue->backing_dev_info.congested_data = md; 1852 blk_queue_make_request(md->queue, dm_request); 1853 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1854 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1855 } 1856 1857 /* 1858 * Allocate and initialise a blank device with a given minor. 1859 */ 1860 static struct mapped_device *alloc_dev(int minor) 1861 { 1862 int r; 1863 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1864 void *old_md; 1865 1866 if (!md) { 1867 DMWARN("unable to allocate device, out of memory."); 1868 return NULL; 1869 } 1870 1871 if (!try_module_get(THIS_MODULE)) 1872 goto bad_module_get; 1873 1874 /* get a minor number for the dev */ 1875 if (minor == DM_ANY_MINOR) 1876 r = next_free_minor(&minor); 1877 else 1878 r = specific_minor(minor); 1879 if (r < 0) 1880 goto bad_minor; 1881 1882 md->type = DM_TYPE_NONE; 1883 init_rwsem(&md->io_lock); 1884 mutex_init(&md->suspend_lock); 1885 mutex_init(&md->type_lock); 1886 spin_lock_init(&md->deferred_lock); 1887 rwlock_init(&md->map_lock); 1888 atomic_set(&md->holders, 1); 1889 atomic_set(&md->open_count, 0); 1890 atomic_set(&md->event_nr, 0); 1891 atomic_set(&md->uevent_seq, 0); 1892 INIT_LIST_HEAD(&md->uevent_list); 1893 spin_lock_init(&md->uevent_lock); 1894 1895 md->queue = blk_alloc_queue(GFP_KERNEL); 1896 if (!md->queue) 1897 goto bad_queue; 1898 1899 dm_init_md_queue(md); 1900 1901 md->disk = alloc_disk(1); 1902 if (!md->disk) 1903 goto bad_disk; 1904 1905 atomic_set(&md->pending[0], 0); 1906 atomic_set(&md->pending[1], 0); 1907 init_waitqueue_head(&md->wait); 1908 INIT_WORK(&md->work, dm_wq_work); 1909 init_waitqueue_head(&md->eventq); 1910 1911 md->disk->major = _major; 1912 md->disk->first_minor = minor; 1913 md->disk->fops = &dm_blk_dops; 1914 md->disk->queue = md->queue; 1915 md->disk->private_data = md; 1916 sprintf(md->disk->disk_name, "dm-%d", minor); 1917 add_disk(md->disk); 1918 format_dev_t(md->name, MKDEV(_major, minor)); 1919 1920 md->wq = alloc_workqueue("kdmflush", 1921 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1922 if (!md->wq) 1923 goto bad_thread; 1924 1925 md->bdev = bdget_disk(md->disk, 0); 1926 if (!md->bdev) 1927 goto bad_bdev; 1928 1929 bio_init(&md->flush_bio); 1930 md->flush_bio.bi_bdev = md->bdev; 1931 md->flush_bio.bi_rw = WRITE_FLUSH; 1932 1933 /* Populate the mapping, nobody knows we exist yet */ 1934 spin_lock(&_minor_lock); 1935 old_md = idr_replace(&_minor_idr, md, minor); 1936 spin_unlock(&_minor_lock); 1937 1938 BUG_ON(old_md != MINOR_ALLOCED); 1939 1940 return md; 1941 1942 bad_bdev: 1943 destroy_workqueue(md->wq); 1944 bad_thread: 1945 del_gendisk(md->disk); 1946 put_disk(md->disk); 1947 bad_disk: 1948 blk_cleanup_queue(md->queue); 1949 bad_queue: 1950 free_minor(minor); 1951 bad_minor: 1952 module_put(THIS_MODULE); 1953 bad_module_get: 1954 kfree(md); 1955 return NULL; 1956 } 1957 1958 static void unlock_fs(struct mapped_device *md); 1959 1960 static void free_dev(struct mapped_device *md) 1961 { 1962 int minor = MINOR(disk_devt(md->disk)); 1963 1964 unlock_fs(md); 1965 bdput(md->bdev); 1966 destroy_workqueue(md->wq); 1967 if (md->tio_pool) 1968 mempool_destroy(md->tio_pool); 1969 if (md->io_pool) 1970 mempool_destroy(md->io_pool); 1971 if (md->bs) 1972 bioset_free(md->bs); 1973 blk_integrity_unregister(md->disk); 1974 del_gendisk(md->disk); 1975 free_minor(minor); 1976 1977 spin_lock(&_minor_lock); 1978 md->disk->private_data = NULL; 1979 spin_unlock(&_minor_lock); 1980 1981 put_disk(md->disk); 1982 blk_cleanup_queue(md->queue); 1983 module_put(THIS_MODULE); 1984 kfree(md); 1985 } 1986 1987 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1988 { 1989 struct dm_md_mempools *p; 1990 1991 if (md->io_pool && md->tio_pool && md->bs) 1992 /* the md already has necessary mempools */ 1993 goto out; 1994 1995 p = dm_table_get_md_mempools(t); 1996 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1997 1998 md->io_pool = p->io_pool; 1999 p->io_pool = NULL; 2000 md->tio_pool = p->tio_pool; 2001 p->tio_pool = NULL; 2002 md->bs = p->bs; 2003 p->bs = NULL; 2004 2005 out: 2006 /* mempool bind completed, now no need any mempools in the table */ 2007 dm_table_free_md_mempools(t); 2008 } 2009 2010 /* 2011 * Bind a table to the device. 2012 */ 2013 static void event_callback(void *context) 2014 { 2015 unsigned long flags; 2016 LIST_HEAD(uevents); 2017 struct mapped_device *md = (struct mapped_device *) context; 2018 2019 spin_lock_irqsave(&md->uevent_lock, flags); 2020 list_splice_init(&md->uevent_list, &uevents); 2021 spin_unlock_irqrestore(&md->uevent_lock, flags); 2022 2023 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2024 2025 atomic_inc(&md->event_nr); 2026 wake_up(&md->eventq); 2027 } 2028 2029 /* 2030 * Protected by md->suspend_lock obtained by dm_swap_table(). 2031 */ 2032 static void __set_size(struct mapped_device *md, sector_t size) 2033 { 2034 set_capacity(md->disk, size); 2035 2036 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2037 } 2038 2039 /* 2040 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2041 * 2042 * If this function returns 0, then the device is either a non-dm 2043 * device without a merge_bvec_fn, or it is a dm device that is 2044 * able to split any bios it receives that are too big. 2045 */ 2046 int dm_queue_merge_is_compulsory(struct request_queue *q) 2047 { 2048 struct mapped_device *dev_md; 2049 2050 if (!q->merge_bvec_fn) 2051 return 0; 2052 2053 if (q->make_request_fn == dm_request) { 2054 dev_md = q->queuedata; 2055 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2056 return 0; 2057 } 2058 2059 return 1; 2060 } 2061 2062 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2063 struct dm_dev *dev, sector_t start, 2064 sector_t len, void *data) 2065 { 2066 struct block_device *bdev = dev->bdev; 2067 struct request_queue *q = bdev_get_queue(bdev); 2068 2069 return dm_queue_merge_is_compulsory(q); 2070 } 2071 2072 /* 2073 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2074 * on the properties of the underlying devices. 2075 */ 2076 static int dm_table_merge_is_optional(struct dm_table *table) 2077 { 2078 unsigned i = 0; 2079 struct dm_target *ti; 2080 2081 while (i < dm_table_get_num_targets(table)) { 2082 ti = dm_table_get_target(table, i++); 2083 2084 if (ti->type->iterate_devices && 2085 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2086 return 0; 2087 } 2088 2089 return 1; 2090 } 2091 2092 /* 2093 * Returns old map, which caller must destroy. 2094 */ 2095 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2096 struct queue_limits *limits) 2097 { 2098 struct dm_table *old_map; 2099 struct request_queue *q = md->queue; 2100 sector_t size; 2101 unsigned long flags; 2102 int merge_is_optional; 2103 2104 size = dm_table_get_size(t); 2105 2106 /* 2107 * Wipe any geometry if the size of the table changed. 2108 */ 2109 if (size != get_capacity(md->disk)) 2110 memset(&md->geometry, 0, sizeof(md->geometry)); 2111 2112 __set_size(md, size); 2113 2114 dm_table_event_callback(t, event_callback, md); 2115 2116 /* 2117 * The queue hasn't been stopped yet, if the old table type wasn't 2118 * for request-based during suspension. So stop it to prevent 2119 * I/O mapping before resume. 2120 * This must be done before setting the queue restrictions, 2121 * because request-based dm may be run just after the setting. 2122 */ 2123 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2124 stop_queue(q); 2125 2126 __bind_mempools(md, t); 2127 2128 merge_is_optional = dm_table_merge_is_optional(t); 2129 2130 write_lock_irqsave(&md->map_lock, flags); 2131 old_map = md->map; 2132 md->map = t; 2133 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2134 2135 dm_table_set_restrictions(t, q, limits); 2136 if (merge_is_optional) 2137 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2138 else 2139 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2140 write_unlock_irqrestore(&md->map_lock, flags); 2141 2142 return old_map; 2143 } 2144 2145 /* 2146 * Returns unbound table for the caller to free. 2147 */ 2148 static struct dm_table *__unbind(struct mapped_device *md) 2149 { 2150 struct dm_table *map = md->map; 2151 unsigned long flags; 2152 2153 if (!map) 2154 return NULL; 2155 2156 dm_table_event_callback(map, NULL, NULL); 2157 write_lock_irqsave(&md->map_lock, flags); 2158 md->map = NULL; 2159 write_unlock_irqrestore(&md->map_lock, flags); 2160 2161 return map; 2162 } 2163 2164 /* 2165 * Constructor for a new device. 2166 */ 2167 int dm_create(int minor, struct mapped_device **result) 2168 { 2169 struct mapped_device *md; 2170 2171 md = alloc_dev(minor); 2172 if (!md) 2173 return -ENXIO; 2174 2175 dm_sysfs_init(md); 2176 2177 *result = md; 2178 return 0; 2179 } 2180 2181 /* 2182 * Functions to manage md->type. 2183 * All are required to hold md->type_lock. 2184 */ 2185 void dm_lock_md_type(struct mapped_device *md) 2186 { 2187 mutex_lock(&md->type_lock); 2188 } 2189 2190 void dm_unlock_md_type(struct mapped_device *md) 2191 { 2192 mutex_unlock(&md->type_lock); 2193 } 2194 2195 void dm_set_md_type(struct mapped_device *md, unsigned type) 2196 { 2197 md->type = type; 2198 } 2199 2200 unsigned dm_get_md_type(struct mapped_device *md) 2201 { 2202 return md->type; 2203 } 2204 2205 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2206 { 2207 return md->immutable_target_type; 2208 } 2209 2210 /* 2211 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2212 */ 2213 static int dm_init_request_based_queue(struct mapped_device *md) 2214 { 2215 struct request_queue *q = NULL; 2216 2217 if (md->queue->elevator) 2218 return 1; 2219 2220 /* Fully initialize the queue */ 2221 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2222 if (!q) 2223 return 0; 2224 2225 md->queue = q; 2226 dm_init_md_queue(md); 2227 blk_queue_softirq_done(md->queue, dm_softirq_done); 2228 blk_queue_prep_rq(md->queue, dm_prep_fn); 2229 blk_queue_lld_busy(md->queue, dm_lld_busy); 2230 2231 elv_register_queue(md->queue); 2232 2233 return 1; 2234 } 2235 2236 /* 2237 * Setup the DM device's queue based on md's type 2238 */ 2239 int dm_setup_md_queue(struct mapped_device *md) 2240 { 2241 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2242 !dm_init_request_based_queue(md)) { 2243 DMWARN("Cannot initialize queue for request-based mapped device"); 2244 return -EINVAL; 2245 } 2246 2247 return 0; 2248 } 2249 2250 static struct mapped_device *dm_find_md(dev_t dev) 2251 { 2252 struct mapped_device *md; 2253 unsigned minor = MINOR(dev); 2254 2255 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2256 return NULL; 2257 2258 spin_lock(&_minor_lock); 2259 2260 md = idr_find(&_minor_idr, minor); 2261 if (md && (md == MINOR_ALLOCED || 2262 (MINOR(disk_devt(dm_disk(md))) != minor) || 2263 dm_deleting_md(md) || 2264 test_bit(DMF_FREEING, &md->flags))) { 2265 md = NULL; 2266 goto out; 2267 } 2268 2269 out: 2270 spin_unlock(&_minor_lock); 2271 2272 return md; 2273 } 2274 2275 struct mapped_device *dm_get_md(dev_t dev) 2276 { 2277 struct mapped_device *md = dm_find_md(dev); 2278 2279 if (md) 2280 dm_get(md); 2281 2282 return md; 2283 } 2284 EXPORT_SYMBOL_GPL(dm_get_md); 2285 2286 void *dm_get_mdptr(struct mapped_device *md) 2287 { 2288 return md->interface_ptr; 2289 } 2290 2291 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2292 { 2293 md->interface_ptr = ptr; 2294 } 2295 2296 void dm_get(struct mapped_device *md) 2297 { 2298 atomic_inc(&md->holders); 2299 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2300 } 2301 2302 const char *dm_device_name(struct mapped_device *md) 2303 { 2304 return md->name; 2305 } 2306 EXPORT_SYMBOL_GPL(dm_device_name); 2307 2308 static void __dm_destroy(struct mapped_device *md, bool wait) 2309 { 2310 struct dm_table *map; 2311 2312 might_sleep(); 2313 2314 spin_lock(&_minor_lock); 2315 map = dm_get_live_table(md); 2316 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2317 set_bit(DMF_FREEING, &md->flags); 2318 spin_unlock(&_minor_lock); 2319 2320 if (!dm_suspended_md(md)) { 2321 dm_table_presuspend_targets(map); 2322 dm_table_postsuspend_targets(map); 2323 } 2324 2325 /* 2326 * Rare, but there may be I/O requests still going to complete, 2327 * for example. Wait for all references to disappear. 2328 * No one should increment the reference count of the mapped_device, 2329 * after the mapped_device state becomes DMF_FREEING. 2330 */ 2331 if (wait) 2332 while (atomic_read(&md->holders)) 2333 msleep(1); 2334 else if (atomic_read(&md->holders)) 2335 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2336 dm_device_name(md), atomic_read(&md->holders)); 2337 2338 dm_sysfs_exit(md); 2339 dm_table_put(map); 2340 dm_table_destroy(__unbind(md)); 2341 free_dev(md); 2342 } 2343 2344 void dm_destroy(struct mapped_device *md) 2345 { 2346 __dm_destroy(md, true); 2347 } 2348 2349 void dm_destroy_immediate(struct mapped_device *md) 2350 { 2351 __dm_destroy(md, false); 2352 } 2353 2354 void dm_put(struct mapped_device *md) 2355 { 2356 atomic_dec(&md->holders); 2357 } 2358 EXPORT_SYMBOL_GPL(dm_put); 2359 2360 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2361 { 2362 int r = 0; 2363 DECLARE_WAITQUEUE(wait, current); 2364 2365 add_wait_queue(&md->wait, &wait); 2366 2367 while (1) { 2368 set_current_state(interruptible); 2369 2370 if (!md_in_flight(md)) 2371 break; 2372 2373 if (interruptible == TASK_INTERRUPTIBLE && 2374 signal_pending(current)) { 2375 r = -EINTR; 2376 break; 2377 } 2378 2379 io_schedule(); 2380 } 2381 set_current_state(TASK_RUNNING); 2382 2383 remove_wait_queue(&md->wait, &wait); 2384 2385 return r; 2386 } 2387 2388 /* 2389 * Process the deferred bios 2390 */ 2391 static void dm_wq_work(struct work_struct *work) 2392 { 2393 struct mapped_device *md = container_of(work, struct mapped_device, 2394 work); 2395 struct bio *c; 2396 2397 down_read(&md->io_lock); 2398 2399 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2400 spin_lock_irq(&md->deferred_lock); 2401 c = bio_list_pop(&md->deferred); 2402 spin_unlock_irq(&md->deferred_lock); 2403 2404 if (!c) 2405 break; 2406 2407 up_read(&md->io_lock); 2408 2409 if (dm_request_based(md)) 2410 generic_make_request(c); 2411 else 2412 __split_and_process_bio(md, c); 2413 2414 down_read(&md->io_lock); 2415 } 2416 2417 up_read(&md->io_lock); 2418 } 2419 2420 static void dm_queue_flush(struct mapped_device *md) 2421 { 2422 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2423 smp_mb__after_clear_bit(); 2424 queue_work(md->wq, &md->work); 2425 } 2426 2427 /* 2428 * Swap in a new table, returning the old one for the caller to destroy. 2429 */ 2430 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2431 { 2432 struct dm_table *live_map, *map = ERR_PTR(-EINVAL); 2433 struct queue_limits limits; 2434 int r; 2435 2436 mutex_lock(&md->suspend_lock); 2437 2438 /* device must be suspended */ 2439 if (!dm_suspended_md(md)) 2440 goto out; 2441 2442 /* 2443 * If the new table has no data devices, retain the existing limits. 2444 * This helps multipath with queue_if_no_path if all paths disappear, 2445 * then new I/O is queued based on these limits, and then some paths 2446 * reappear. 2447 */ 2448 if (dm_table_has_no_data_devices(table)) { 2449 live_map = dm_get_live_table(md); 2450 if (live_map) 2451 limits = md->queue->limits; 2452 dm_table_put(live_map); 2453 } 2454 2455 r = dm_calculate_queue_limits(table, &limits); 2456 if (r) { 2457 map = ERR_PTR(r); 2458 goto out; 2459 } 2460 2461 map = __bind(md, table, &limits); 2462 2463 out: 2464 mutex_unlock(&md->suspend_lock); 2465 return map; 2466 } 2467 2468 /* 2469 * Functions to lock and unlock any filesystem running on the 2470 * device. 2471 */ 2472 static int lock_fs(struct mapped_device *md) 2473 { 2474 int r; 2475 2476 WARN_ON(md->frozen_sb); 2477 2478 md->frozen_sb = freeze_bdev(md->bdev); 2479 if (IS_ERR(md->frozen_sb)) { 2480 r = PTR_ERR(md->frozen_sb); 2481 md->frozen_sb = NULL; 2482 return r; 2483 } 2484 2485 set_bit(DMF_FROZEN, &md->flags); 2486 2487 return 0; 2488 } 2489 2490 static void unlock_fs(struct mapped_device *md) 2491 { 2492 if (!test_bit(DMF_FROZEN, &md->flags)) 2493 return; 2494 2495 thaw_bdev(md->bdev, md->frozen_sb); 2496 md->frozen_sb = NULL; 2497 clear_bit(DMF_FROZEN, &md->flags); 2498 } 2499 2500 /* 2501 * We need to be able to change a mapping table under a mounted 2502 * filesystem. For example we might want to move some data in 2503 * the background. Before the table can be swapped with 2504 * dm_bind_table, dm_suspend must be called to flush any in 2505 * flight bios and ensure that any further io gets deferred. 2506 */ 2507 /* 2508 * Suspend mechanism in request-based dm. 2509 * 2510 * 1. Flush all I/Os by lock_fs() if needed. 2511 * 2. Stop dispatching any I/O by stopping the request_queue. 2512 * 3. Wait for all in-flight I/Os to be completed or requeued. 2513 * 2514 * To abort suspend, start the request_queue. 2515 */ 2516 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2517 { 2518 struct dm_table *map = NULL; 2519 int r = 0; 2520 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2521 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2522 2523 mutex_lock(&md->suspend_lock); 2524 2525 if (dm_suspended_md(md)) { 2526 r = -EINVAL; 2527 goto out_unlock; 2528 } 2529 2530 map = dm_get_live_table(md); 2531 2532 /* 2533 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2534 * This flag is cleared before dm_suspend returns. 2535 */ 2536 if (noflush) 2537 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2538 2539 /* This does not get reverted if there's an error later. */ 2540 dm_table_presuspend_targets(map); 2541 2542 /* 2543 * Flush I/O to the device. 2544 * Any I/O submitted after lock_fs() may not be flushed. 2545 * noflush takes precedence over do_lockfs. 2546 * (lock_fs() flushes I/Os and waits for them to complete.) 2547 */ 2548 if (!noflush && do_lockfs) { 2549 r = lock_fs(md); 2550 if (r) 2551 goto out; 2552 } 2553 2554 /* 2555 * Here we must make sure that no processes are submitting requests 2556 * to target drivers i.e. no one may be executing 2557 * __split_and_process_bio. This is called from dm_request and 2558 * dm_wq_work. 2559 * 2560 * To get all processes out of __split_and_process_bio in dm_request, 2561 * we take the write lock. To prevent any process from reentering 2562 * __split_and_process_bio from dm_request and quiesce the thread 2563 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2564 * flush_workqueue(md->wq). 2565 */ 2566 down_write(&md->io_lock); 2567 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2568 up_write(&md->io_lock); 2569 2570 /* 2571 * Stop md->queue before flushing md->wq in case request-based 2572 * dm defers requests to md->wq from md->queue. 2573 */ 2574 if (dm_request_based(md)) 2575 stop_queue(md->queue); 2576 2577 flush_workqueue(md->wq); 2578 2579 /* 2580 * At this point no more requests are entering target request routines. 2581 * We call dm_wait_for_completion to wait for all existing requests 2582 * to finish. 2583 */ 2584 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2585 2586 down_write(&md->io_lock); 2587 if (noflush) 2588 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2589 up_write(&md->io_lock); 2590 2591 /* were we interrupted ? */ 2592 if (r < 0) { 2593 dm_queue_flush(md); 2594 2595 if (dm_request_based(md)) 2596 start_queue(md->queue); 2597 2598 unlock_fs(md); 2599 goto out; /* pushback list is already flushed, so skip flush */ 2600 } 2601 2602 /* 2603 * If dm_wait_for_completion returned 0, the device is completely 2604 * quiescent now. There is no request-processing activity. All new 2605 * requests are being added to md->deferred list. 2606 */ 2607 2608 set_bit(DMF_SUSPENDED, &md->flags); 2609 2610 dm_table_postsuspend_targets(map); 2611 2612 out: 2613 dm_table_put(map); 2614 2615 out_unlock: 2616 mutex_unlock(&md->suspend_lock); 2617 return r; 2618 } 2619 2620 int dm_resume(struct mapped_device *md) 2621 { 2622 int r = -EINVAL; 2623 struct dm_table *map = NULL; 2624 2625 mutex_lock(&md->suspend_lock); 2626 if (!dm_suspended_md(md)) 2627 goto out; 2628 2629 map = dm_get_live_table(md); 2630 if (!map || !dm_table_get_size(map)) 2631 goto out; 2632 2633 r = dm_table_resume_targets(map); 2634 if (r) 2635 goto out; 2636 2637 dm_queue_flush(md); 2638 2639 /* 2640 * Flushing deferred I/Os must be done after targets are resumed 2641 * so that mapping of targets can work correctly. 2642 * Request-based dm is queueing the deferred I/Os in its request_queue. 2643 */ 2644 if (dm_request_based(md)) 2645 start_queue(md->queue); 2646 2647 unlock_fs(md); 2648 2649 clear_bit(DMF_SUSPENDED, &md->flags); 2650 2651 r = 0; 2652 out: 2653 dm_table_put(map); 2654 mutex_unlock(&md->suspend_lock); 2655 2656 return r; 2657 } 2658 2659 /*----------------------------------------------------------------- 2660 * Event notification. 2661 *---------------------------------------------------------------*/ 2662 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2663 unsigned cookie) 2664 { 2665 char udev_cookie[DM_COOKIE_LENGTH]; 2666 char *envp[] = { udev_cookie, NULL }; 2667 2668 if (!cookie) 2669 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2670 else { 2671 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2672 DM_COOKIE_ENV_VAR_NAME, cookie); 2673 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2674 action, envp); 2675 } 2676 } 2677 2678 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2679 { 2680 return atomic_add_return(1, &md->uevent_seq); 2681 } 2682 2683 uint32_t dm_get_event_nr(struct mapped_device *md) 2684 { 2685 return atomic_read(&md->event_nr); 2686 } 2687 2688 int dm_wait_event(struct mapped_device *md, int event_nr) 2689 { 2690 return wait_event_interruptible(md->eventq, 2691 (event_nr != atomic_read(&md->event_nr))); 2692 } 2693 2694 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2695 { 2696 unsigned long flags; 2697 2698 spin_lock_irqsave(&md->uevent_lock, flags); 2699 list_add(elist, &md->uevent_list); 2700 spin_unlock_irqrestore(&md->uevent_lock, flags); 2701 } 2702 2703 /* 2704 * The gendisk is only valid as long as you have a reference 2705 * count on 'md'. 2706 */ 2707 struct gendisk *dm_disk(struct mapped_device *md) 2708 { 2709 return md->disk; 2710 } 2711 2712 struct kobject *dm_kobject(struct mapped_device *md) 2713 { 2714 return &md->kobj; 2715 } 2716 2717 /* 2718 * struct mapped_device should not be exported outside of dm.c 2719 * so use this check to verify that kobj is part of md structure 2720 */ 2721 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2722 { 2723 struct mapped_device *md; 2724 2725 md = container_of(kobj, struct mapped_device, kobj); 2726 if (&md->kobj != kobj) 2727 return NULL; 2728 2729 if (test_bit(DMF_FREEING, &md->flags) || 2730 dm_deleting_md(md)) 2731 return NULL; 2732 2733 dm_get(md); 2734 return md; 2735 } 2736 2737 int dm_suspended_md(struct mapped_device *md) 2738 { 2739 return test_bit(DMF_SUSPENDED, &md->flags); 2740 } 2741 2742 int dm_suspended(struct dm_target *ti) 2743 { 2744 return dm_suspended_md(dm_table_get_md(ti->table)); 2745 } 2746 EXPORT_SYMBOL_GPL(dm_suspended); 2747 2748 int dm_noflush_suspending(struct dm_target *ti) 2749 { 2750 return __noflush_suspending(dm_table_get_md(ti->table)); 2751 } 2752 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2753 2754 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity) 2755 { 2756 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2757 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS; 2758 2759 if (!pools) 2760 return NULL; 2761 2762 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2763 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2764 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2765 if (!pools->io_pool) 2766 goto free_pools_and_out; 2767 2768 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ? 2769 mempool_create_slab_pool(MIN_IOS, _tio_cache) : 2770 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2771 if (!pools->tio_pool) 2772 goto free_io_pool_and_out; 2773 2774 pools->bs = bioset_create(pool_size, 0); 2775 if (!pools->bs) 2776 goto free_tio_pool_and_out; 2777 2778 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2779 goto free_bioset_and_out; 2780 2781 return pools; 2782 2783 free_bioset_and_out: 2784 bioset_free(pools->bs); 2785 2786 free_tio_pool_and_out: 2787 mempool_destroy(pools->tio_pool); 2788 2789 free_io_pool_and_out: 2790 mempool_destroy(pools->io_pool); 2791 2792 free_pools_and_out: 2793 kfree(pools); 2794 2795 return NULL; 2796 } 2797 2798 void dm_free_md_mempools(struct dm_md_mempools *pools) 2799 { 2800 if (!pools) 2801 return; 2802 2803 if (pools->io_pool) 2804 mempool_destroy(pools->io_pool); 2805 2806 if (pools->tio_pool) 2807 mempool_destroy(pools->tio_pool); 2808 2809 if (pools->bs) 2810 bioset_free(pools->bs); 2811 2812 kfree(pools); 2813 } 2814 2815 static const struct block_device_operations dm_blk_dops = { 2816 .open = dm_blk_open, 2817 .release = dm_blk_close, 2818 .ioctl = dm_blk_ioctl, 2819 .getgeo = dm_blk_getgeo, 2820 .owner = THIS_MODULE 2821 }; 2822 2823 EXPORT_SYMBOL(dm_get_mapinfo); 2824 2825 /* 2826 * module hooks 2827 */ 2828 module_init(dm_init); 2829 module_exit(dm_exit); 2830 2831 module_param(major, uint, 0); 2832 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2833 MODULE_DESCRIPTION(DM_NAME " driver"); 2834 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2835 MODULE_LICENSE("GPL"); 2836