xref: /linux/drivers/md/dm.c (revision 7c43185138cf523b0810ffd2c9e18e2ecb356730)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23 
24 #include <trace/events/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 /*
29  * Cookies are numeric values sent with CHANGE and REMOVE
30  * uevents while resuming, removing or renaming the device.
31  */
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
34 
35 static const char *_name = DM_NAME;
36 
37 static unsigned int major = 0;
38 static unsigned int _major = 0;
39 
40 static DEFINE_IDR(_minor_idr);
41 
42 static DEFINE_SPINLOCK(_minor_lock);
43 /*
44  * For bio-based dm.
45  * One of these is allocated per bio.
46  */
47 struct dm_io {
48 	struct mapped_device *md;
49 	int error;
50 	atomic_t io_count;
51 	struct bio *bio;
52 	unsigned long start_time;
53 	spinlock_t endio_lock;
54 };
55 
56 /*
57  * For bio-based dm.
58  * One of these is allocated per target within a bio.  Hopefully
59  * this will be simplified out one day.
60  */
61 struct dm_target_io {
62 	struct dm_io *io;
63 	struct dm_target *ti;
64 	union map_info info;
65 };
66 
67 /*
68  * For request-based dm.
69  * One of these is allocated per request.
70  */
71 struct dm_rq_target_io {
72 	struct mapped_device *md;
73 	struct dm_target *ti;
74 	struct request *orig, clone;
75 	int error;
76 	union map_info info;
77 };
78 
79 /*
80  * For request-based dm.
81  * One of these is allocated per bio.
82  */
83 struct dm_rq_clone_bio_info {
84 	struct bio *orig;
85 	struct dm_rq_target_io *tio;
86 };
87 
88 union map_info *dm_get_mapinfo(struct bio *bio)
89 {
90 	if (bio && bio->bi_private)
91 		return &((struct dm_target_io *)bio->bi_private)->info;
92 	return NULL;
93 }
94 
95 union map_info *dm_get_rq_mapinfo(struct request *rq)
96 {
97 	if (rq && rq->end_io_data)
98 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
99 	return NULL;
100 }
101 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
102 
103 #define MINOR_ALLOCED ((void *)-1)
104 
105 /*
106  * Bits for the md->flags field.
107  */
108 #define DMF_BLOCK_IO_FOR_SUSPEND 0
109 #define DMF_SUSPENDED 1
110 #define DMF_FROZEN 2
111 #define DMF_FREEING 3
112 #define DMF_DELETING 4
113 #define DMF_NOFLUSH_SUSPENDING 5
114 #define DMF_MERGE_IS_OPTIONAL 6
115 
116 /*
117  * Work processed by per-device workqueue.
118  */
119 struct mapped_device {
120 	struct rw_semaphore io_lock;
121 	struct mutex suspend_lock;
122 	rwlock_t map_lock;
123 	atomic_t holders;
124 	atomic_t open_count;
125 
126 	unsigned long flags;
127 
128 	struct request_queue *queue;
129 	unsigned type;
130 	/* Protect queue and type against concurrent access. */
131 	struct mutex type_lock;
132 
133 	struct gendisk *disk;
134 	char name[16];
135 
136 	void *interface_ptr;
137 
138 	/*
139 	 * A list of ios that arrived while we were suspended.
140 	 */
141 	atomic_t pending[2];
142 	wait_queue_head_t wait;
143 	struct work_struct work;
144 	struct bio_list deferred;
145 	spinlock_t deferred_lock;
146 
147 	/*
148 	 * Processing queue (flush)
149 	 */
150 	struct workqueue_struct *wq;
151 
152 	/*
153 	 * The current mapping.
154 	 */
155 	struct dm_table *map;
156 
157 	/*
158 	 * io objects are allocated from here.
159 	 */
160 	mempool_t *io_pool;
161 	mempool_t *tio_pool;
162 
163 	struct bio_set *bs;
164 
165 	/*
166 	 * Event handling.
167 	 */
168 	atomic_t event_nr;
169 	wait_queue_head_t eventq;
170 	atomic_t uevent_seq;
171 	struct list_head uevent_list;
172 	spinlock_t uevent_lock; /* Protect access to uevent_list */
173 
174 	/*
175 	 * freeze/thaw support require holding onto a super block
176 	 */
177 	struct super_block *frozen_sb;
178 	struct block_device *bdev;
179 
180 	/* forced geometry settings */
181 	struct hd_geometry geometry;
182 
183 	/* For saving the address of __make_request for request based dm */
184 	make_request_fn *saved_make_request_fn;
185 
186 	/* sysfs handle */
187 	struct kobject kobj;
188 
189 	/* zero-length flush that will be cloned and submitted to targets */
190 	struct bio flush_bio;
191 };
192 
193 /*
194  * For mempools pre-allocation at the table loading time.
195  */
196 struct dm_md_mempools {
197 	mempool_t *io_pool;
198 	mempool_t *tio_pool;
199 	struct bio_set *bs;
200 };
201 
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_tio_cache;
205 static struct kmem_cache *_rq_tio_cache;
206 static struct kmem_cache *_rq_bio_info_cache;
207 
208 static int __init local_init(void)
209 {
210 	int r = -ENOMEM;
211 
212 	/* allocate a slab for the dm_ios */
213 	_io_cache = KMEM_CACHE(dm_io, 0);
214 	if (!_io_cache)
215 		return r;
216 
217 	/* allocate a slab for the target ios */
218 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
219 	if (!_tio_cache)
220 		goto out_free_io_cache;
221 
222 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
223 	if (!_rq_tio_cache)
224 		goto out_free_tio_cache;
225 
226 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
227 	if (!_rq_bio_info_cache)
228 		goto out_free_rq_tio_cache;
229 
230 	r = dm_uevent_init();
231 	if (r)
232 		goto out_free_rq_bio_info_cache;
233 
234 	_major = major;
235 	r = register_blkdev(_major, _name);
236 	if (r < 0)
237 		goto out_uevent_exit;
238 
239 	if (!_major)
240 		_major = r;
241 
242 	return 0;
243 
244 out_uevent_exit:
245 	dm_uevent_exit();
246 out_free_rq_bio_info_cache:
247 	kmem_cache_destroy(_rq_bio_info_cache);
248 out_free_rq_tio_cache:
249 	kmem_cache_destroy(_rq_tio_cache);
250 out_free_tio_cache:
251 	kmem_cache_destroy(_tio_cache);
252 out_free_io_cache:
253 	kmem_cache_destroy(_io_cache);
254 
255 	return r;
256 }
257 
258 static void local_exit(void)
259 {
260 	kmem_cache_destroy(_rq_bio_info_cache);
261 	kmem_cache_destroy(_rq_tio_cache);
262 	kmem_cache_destroy(_tio_cache);
263 	kmem_cache_destroy(_io_cache);
264 	unregister_blkdev(_major, _name);
265 	dm_uevent_exit();
266 
267 	_major = 0;
268 
269 	DMINFO("cleaned up");
270 }
271 
272 static int (*_inits[])(void) __initdata = {
273 	local_init,
274 	dm_target_init,
275 	dm_linear_init,
276 	dm_stripe_init,
277 	dm_io_init,
278 	dm_kcopyd_init,
279 	dm_interface_init,
280 };
281 
282 static void (*_exits[])(void) = {
283 	local_exit,
284 	dm_target_exit,
285 	dm_linear_exit,
286 	dm_stripe_exit,
287 	dm_io_exit,
288 	dm_kcopyd_exit,
289 	dm_interface_exit,
290 };
291 
292 static int __init dm_init(void)
293 {
294 	const int count = ARRAY_SIZE(_inits);
295 
296 	int r, i;
297 
298 	for (i = 0; i < count; i++) {
299 		r = _inits[i]();
300 		if (r)
301 			goto bad;
302 	}
303 
304 	return 0;
305 
306       bad:
307 	while (i--)
308 		_exits[i]();
309 
310 	return r;
311 }
312 
313 static void __exit dm_exit(void)
314 {
315 	int i = ARRAY_SIZE(_exits);
316 
317 	while (i--)
318 		_exits[i]();
319 
320 	/*
321 	 * Should be empty by this point.
322 	 */
323 	idr_remove_all(&_minor_idr);
324 	idr_destroy(&_minor_idr);
325 }
326 
327 /*
328  * Block device functions
329  */
330 int dm_deleting_md(struct mapped_device *md)
331 {
332 	return test_bit(DMF_DELETING, &md->flags);
333 }
334 
335 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
336 {
337 	struct mapped_device *md;
338 
339 	spin_lock(&_minor_lock);
340 
341 	md = bdev->bd_disk->private_data;
342 	if (!md)
343 		goto out;
344 
345 	if (test_bit(DMF_FREEING, &md->flags) ||
346 	    dm_deleting_md(md)) {
347 		md = NULL;
348 		goto out;
349 	}
350 
351 	dm_get(md);
352 	atomic_inc(&md->open_count);
353 
354 out:
355 	spin_unlock(&_minor_lock);
356 
357 	return md ? 0 : -ENXIO;
358 }
359 
360 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
361 {
362 	struct mapped_device *md = disk->private_data;
363 
364 	spin_lock(&_minor_lock);
365 
366 	atomic_dec(&md->open_count);
367 	dm_put(md);
368 
369 	spin_unlock(&_minor_lock);
370 
371 	return 0;
372 }
373 
374 int dm_open_count(struct mapped_device *md)
375 {
376 	return atomic_read(&md->open_count);
377 }
378 
379 /*
380  * Guarantees nothing is using the device before it's deleted.
381  */
382 int dm_lock_for_deletion(struct mapped_device *md)
383 {
384 	int r = 0;
385 
386 	spin_lock(&_minor_lock);
387 
388 	if (dm_open_count(md))
389 		r = -EBUSY;
390 	else
391 		set_bit(DMF_DELETING, &md->flags);
392 
393 	spin_unlock(&_minor_lock);
394 
395 	return r;
396 }
397 
398 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
399 {
400 	struct mapped_device *md = bdev->bd_disk->private_data;
401 
402 	return dm_get_geometry(md, geo);
403 }
404 
405 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
406 			unsigned int cmd, unsigned long arg)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 	struct dm_table *map = dm_get_live_table(md);
410 	struct dm_target *tgt;
411 	int r = -ENOTTY;
412 
413 	if (!map || !dm_table_get_size(map))
414 		goto out;
415 
416 	/* We only support devices that have a single target */
417 	if (dm_table_get_num_targets(map) != 1)
418 		goto out;
419 
420 	tgt = dm_table_get_target(map, 0);
421 
422 	if (dm_suspended_md(md)) {
423 		r = -EAGAIN;
424 		goto out;
425 	}
426 
427 	if (tgt->type->ioctl)
428 		r = tgt->type->ioctl(tgt, cmd, arg);
429 
430 out:
431 	dm_table_put(map);
432 
433 	return r;
434 }
435 
436 static struct dm_io *alloc_io(struct mapped_device *md)
437 {
438 	return mempool_alloc(md->io_pool, GFP_NOIO);
439 }
440 
441 static void free_io(struct mapped_device *md, struct dm_io *io)
442 {
443 	mempool_free(io, md->io_pool);
444 }
445 
446 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
447 {
448 	mempool_free(tio, md->tio_pool);
449 }
450 
451 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
452 					    gfp_t gfp_mask)
453 {
454 	return mempool_alloc(md->tio_pool, gfp_mask);
455 }
456 
457 static void free_rq_tio(struct dm_rq_target_io *tio)
458 {
459 	mempool_free(tio, tio->md->tio_pool);
460 }
461 
462 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
463 {
464 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
465 }
466 
467 static void free_bio_info(struct dm_rq_clone_bio_info *info)
468 {
469 	mempool_free(info, info->tio->md->io_pool);
470 }
471 
472 static int md_in_flight(struct mapped_device *md)
473 {
474 	return atomic_read(&md->pending[READ]) +
475 	       atomic_read(&md->pending[WRITE]);
476 }
477 
478 static void start_io_acct(struct dm_io *io)
479 {
480 	struct mapped_device *md = io->md;
481 	int cpu;
482 	int rw = bio_data_dir(io->bio);
483 
484 	io->start_time = jiffies;
485 
486 	cpu = part_stat_lock();
487 	part_round_stats(cpu, &dm_disk(md)->part0);
488 	part_stat_unlock();
489 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
490 		atomic_inc_return(&md->pending[rw]));
491 }
492 
493 static void end_io_acct(struct dm_io *io)
494 {
495 	struct mapped_device *md = io->md;
496 	struct bio *bio = io->bio;
497 	unsigned long duration = jiffies - io->start_time;
498 	int pending, cpu;
499 	int rw = bio_data_dir(bio);
500 
501 	cpu = part_stat_lock();
502 	part_round_stats(cpu, &dm_disk(md)->part0);
503 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
504 	part_stat_unlock();
505 
506 	/*
507 	 * After this is decremented the bio must not be touched if it is
508 	 * a flush.
509 	 */
510 	pending = atomic_dec_return(&md->pending[rw]);
511 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
512 	pending += atomic_read(&md->pending[rw^0x1]);
513 
514 	/* nudge anyone waiting on suspend queue */
515 	if (!pending)
516 		wake_up(&md->wait);
517 }
518 
519 /*
520  * Add the bio to the list of deferred io.
521  */
522 static void queue_io(struct mapped_device *md, struct bio *bio)
523 {
524 	unsigned long flags;
525 
526 	spin_lock_irqsave(&md->deferred_lock, flags);
527 	bio_list_add(&md->deferred, bio);
528 	spin_unlock_irqrestore(&md->deferred_lock, flags);
529 	queue_work(md->wq, &md->work);
530 }
531 
532 /*
533  * Everyone (including functions in this file), should use this
534  * function to access the md->map field, and make sure they call
535  * dm_table_put() when finished.
536  */
537 struct dm_table *dm_get_live_table(struct mapped_device *md)
538 {
539 	struct dm_table *t;
540 	unsigned long flags;
541 
542 	read_lock_irqsave(&md->map_lock, flags);
543 	t = md->map;
544 	if (t)
545 		dm_table_get(t);
546 	read_unlock_irqrestore(&md->map_lock, flags);
547 
548 	return t;
549 }
550 
551 /*
552  * Get the geometry associated with a dm device
553  */
554 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
555 {
556 	*geo = md->geometry;
557 
558 	return 0;
559 }
560 
561 /*
562  * Set the geometry of a device.
563  */
564 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
565 {
566 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
567 
568 	if (geo->start > sz) {
569 		DMWARN("Start sector is beyond the geometry limits.");
570 		return -EINVAL;
571 	}
572 
573 	md->geometry = *geo;
574 
575 	return 0;
576 }
577 
578 /*-----------------------------------------------------------------
579  * CRUD START:
580  *   A more elegant soln is in the works that uses the queue
581  *   merge fn, unfortunately there are a couple of changes to
582  *   the block layer that I want to make for this.  So in the
583  *   interests of getting something for people to use I give
584  *   you this clearly demarcated crap.
585  *---------------------------------------------------------------*/
586 
587 static int __noflush_suspending(struct mapped_device *md)
588 {
589 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
590 }
591 
592 /*
593  * Decrements the number of outstanding ios that a bio has been
594  * cloned into, completing the original io if necc.
595  */
596 static void dec_pending(struct dm_io *io, int error)
597 {
598 	unsigned long flags;
599 	int io_error;
600 	struct bio *bio;
601 	struct mapped_device *md = io->md;
602 
603 	/* Push-back supersedes any I/O errors */
604 	if (unlikely(error)) {
605 		spin_lock_irqsave(&io->endio_lock, flags);
606 		if (!(io->error > 0 && __noflush_suspending(md)))
607 			io->error = error;
608 		spin_unlock_irqrestore(&io->endio_lock, flags);
609 	}
610 
611 	if (atomic_dec_and_test(&io->io_count)) {
612 		if (io->error == DM_ENDIO_REQUEUE) {
613 			/*
614 			 * Target requested pushing back the I/O.
615 			 */
616 			spin_lock_irqsave(&md->deferred_lock, flags);
617 			if (__noflush_suspending(md))
618 				bio_list_add_head(&md->deferred, io->bio);
619 			else
620 				/* noflush suspend was interrupted. */
621 				io->error = -EIO;
622 			spin_unlock_irqrestore(&md->deferred_lock, flags);
623 		}
624 
625 		io_error = io->error;
626 		bio = io->bio;
627 		end_io_acct(io);
628 		free_io(md, io);
629 
630 		if (io_error == DM_ENDIO_REQUEUE)
631 			return;
632 
633 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
634 			/*
635 			 * Preflush done for flush with data, reissue
636 			 * without REQ_FLUSH.
637 			 */
638 			bio->bi_rw &= ~REQ_FLUSH;
639 			queue_io(md, bio);
640 		} else {
641 			/* done with normal IO or empty flush */
642 			trace_block_bio_complete(md->queue, bio, io_error);
643 			bio_endio(bio, io_error);
644 		}
645 	}
646 }
647 
648 static void clone_endio(struct bio *bio, int error)
649 {
650 	int r = 0;
651 	struct dm_target_io *tio = bio->bi_private;
652 	struct dm_io *io = tio->io;
653 	struct mapped_device *md = tio->io->md;
654 	dm_endio_fn endio = tio->ti->type->end_io;
655 
656 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
657 		error = -EIO;
658 
659 	if (endio) {
660 		r = endio(tio->ti, bio, error, &tio->info);
661 		if (r < 0 || r == DM_ENDIO_REQUEUE)
662 			/*
663 			 * error and requeue request are handled
664 			 * in dec_pending().
665 			 */
666 			error = r;
667 		else if (r == DM_ENDIO_INCOMPLETE)
668 			/* The target will handle the io */
669 			return;
670 		else if (r) {
671 			DMWARN("unimplemented target endio return value: %d", r);
672 			BUG();
673 		}
674 	}
675 
676 	/*
677 	 * Store md for cleanup instead of tio which is about to get freed.
678 	 */
679 	bio->bi_private = md->bs;
680 
681 	free_tio(md, tio);
682 	bio_put(bio);
683 	dec_pending(io, error);
684 }
685 
686 /*
687  * Partial completion handling for request-based dm
688  */
689 static void end_clone_bio(struct bio *clone, int error)
690 {
691 	struct dm_rq_clone_bio_info *info = clone->bi_private;
692 	struct dm_rq_target_io *tio = info->tio;
693 	struct bio *bio = info->orig;
694 	unsigned int nr_bytes = info->orig->bi_size;
695 
696 	bio_put(clone);
697 
698 	if (tio->error)
699 		/*
700 		 * An error has already been detected on the request.
701 		 * Once error occurred, just let clone->end_io() handle
702 		 * the remainder.
703 		 */
704 		return;
705 	else if (error) {
706 		/*
707 		 * Don't notice the error to the upper layer yet.
708 		 * The error handling decision is made by the target driver,
709 		 * when the request is completed.
710 		 */
711 		tio->error = error;
712 		return;
713 	}
714 
715 	/*
716 	 * I/O for the bio successfully completed.
717 	 * Notice the data completion to the upper layer.
718 	 */
719 
720 	/*
721 	 * bios are processed from the head of the list.
722 	 * So the completing bio should always be rq->bio.
723 	 * If it's not, something wrong is happening.
724 	 */
725 	if (tio->orig->bio != bio)
726 		DMERR("bio completion is going in the middle of the request");
727 
728 	/*
729 	 * Update the original request.
730 	 * Do not use blk_end_request() here, because it may complete
731 	 * the original request before the clone, and break the ordering.
732 	 */
733 	blk_update_request(tio->orig, 0, nr_bytes);
734 }
735 
736 /*
737  * Don't touch any member of the md after calling this function because
738  * the md may be freed in dm_put() at the end of this function.
739  * Or do dm_get() before calling this function and dm_put() later.
740  */
741 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
742 {
743 	atomic_dec(&md->pending[rw]);
744 
745 	/* nudge anyone waiting on suspend queue */
746 	if (!md_in_flight(md))
747 		wake_up(&md->wait);
748 
749 	if (run_queue)
750 		blk_run_queue(md->queue);
751 
752 	/*
753 	 * dm_put() must be at the end of this function. See the comment above
754 	 */
755 	dm_put(md);
756 }
757 
758 static void free_rq_clone(struct request *clone)
759 {
760 	struct dm_rq_target_io *tio = clone->end_io_data;
761 
762 	blk_rq_unprep_clone(clone);
763 	free_rq_tio(tio);
764 }
765 
766 /*
767  * Complete the clone and the original request.
768  * Must be called without queue lock.
769  */
770 static void dm_end_request(struct request *clone, int error)
771 {
772 	int rw = rq_data_dir(clone);
773 	struct dm_rq_target_io *tio = clone->end_io_data;
774 	struct mapped_device *md = tio->md;
775 	struct request *rq = tio->orig;
776 
777 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
778 		rq->errors = clone->errors;
779 		rq->resid_len = clone->resid_len;
780 
781 		if (rq->sense)
782 			/*
783 			 * We are using the sense buffer of the original
784 			 * request.
785 			 * So setting the length of the sense data is enough.
786 			 */
787 			rq->sense_len = clone->sense_len;
788 	}
789 
790 	free_rq_clone(clone);
791 	blk_end_request_all(rq, error);
792 	rq_completed(md, rw, true);
793 }
794 
795 static void dm_unprep_request(struct request *rq)
796 {
797 	struct request *clone = rq->special;
798 
799 	rq->special = NULL;
800 	rq->cmd_flags &= ~REQ_DONTPREP;
801 
802 	free_rq_clone(clone);
803 }
804 
805 /*
806  * Requeue the original request of a clone.
807  */
808 void dm_requeue_unmapped_request(struct request *clone)
809 {
810 	int rw = rq_data_dir(clone);
811 	struct dm_rq_target_io *tio = clone->end_io_data;
812 	struct mapped_device *md = tio->md;
813 	struct request *rq = tio->orig;
814 	struct request_queue *q = rq->q;
815 	unsigned long flags;
816 
817 	dm_unprep_request(rq);
818 
819 	spin_lock_irqsave(q->queue_lock, flags);
820 	blk_requeue_request(q, rq);
821 	spin_unlock_irqrestore(q->queue_lock, flags);
822 
823 	rq_completed(md, rw, 0);
824 }
825 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
826 
827 static void __stop_queue(struct request_queue *q)
828 {
829 	blk_stop_queue(q);
830 }
831 
832 static void stop_queue(struct request_queue *q)
833 {
834 	unsigned long flags;
835 
836 	spin_lock_irqsave(q->queue_lock, flags);
837 	__stop_queue(q);
838 	spin_unlock_irqrestore(q->queue_lock, flags);
839 }
840 
841 static void __start_queue(struct request_queue *q)
842 {
843 	if (blk_queue_stopped(q))
844 		blk_start_queue(q);
845 }
846 
847 static void start_queue(struct request_queue *q)
848 {
849 	unsigned long flags;
850 
851 	spin_lock_irqsave(q->queue_lock, flags);
852 	__start_queue(q);
853 	spin_unlock_irqrestore(q->queue_lock, flags);
854 }
855 
856 static void dm_done(struct request *clone, int error, bool mapped)
857 {
858 	int r = error;
859 	struct dm_rq_target_io *tio = clone->end_io_data;
860 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
861 
862 	if (mapped && rq_end_io)
863 		r = rq_end_io(tio->ti, clone, error, &tio->info);
864 
865 	if (r <= 0)
866 		/* The target wants to complete the I/O */
867 		dm_end_request(clone, r);
868 	else if (r == DM_ENDIO_INCOMPLETE)
869 		/* The target will handle the I/O */
870 		return;
871 	else if (r == DM_ENDIO_REQUEUE)
872 		/* The target wants to requeue the I/O */
873 		dm_requeue_unmapped_request(clone);
874 	else {
875 		DMWARN("unimplemented target endio return value: %d", r);
876 		BUG();
877 	}
878 }
879 
880 /*
881  * Request completion handler for request-based dm
882  */
883 static void dm_softirq_done(struct request *rq)
884 {
885 	bool mapped = true;
886 	struct request *clone = rq->completion_data;
887 	struct dm_rq_target_io *tio = clone->end_io_data;
888 
889 	if (rq->cmd_flags & REQ_FAILED)
890 		mapped = false;
891 
892 	dm_done(clone, tio->error, mapped);
893 }
894 
895 /*
896  * Complete the clone and the original request with the error status
897  * through softirq context.
898  */
899 static void dm_complete_request(struct request *clone, int error)
900 {
901 	struct dm_rq_target_io *tio = clone->end_io_data;
902 	struct request *rq = tio->orig;
903 
904 	tio->error = error;
905 	rq->completion_data = clone;
906 	blk_complete_request(rq);
907 }
908 
909 /*
910  * Complete the not-mapped clone and the original request with the error status
911  * through softirq context.
912  * Target's rq_end_io() function isn't called.
913  * This may be used when the target's map_rq() function fails.
914  */
915 void dm_kill_unmapped_request(struct request *clone, int error)
916 {
917 	struct dm_rq_target_io *tio = clone->end_io_data;
918 	struct request *rq = tio->orig;
919 
920 	rq->cmd_flags |= REQ_FAILED;
921 	dm_complete_request(clone, error);
922 }
923 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
924 
925 /*
926  * Called with the queue lock held
927  */
928 static void end_clone_request(struct request *clone, int error)
929 {
930 	/*
931 	 * For just cleaning up the information of the queue in which
932 	 * the clone was dispatched.
933 	 * The clone is *NOT* freed actually here because it is alloced from
934 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
935 	 */
936 	__blk_put_request(clone->q, clone);
937 
938 	/*
939 	 * Actual request completion is done in a softirq context which doesn't
940 	 * hold the queue lock.  Otherwise, deadlock could occur because:
941 	 *     - another request may be submitted by the upper level driver
942 	 *       of the stacking during the completion
943 	 *     - the submission which requires queue lock may be done
944 	 *       against this queue
945 	 */
946 	dm_complete_request(clone, error);
947 }
948 
949 /*
950  * Return maximum size of I/O possible at the supplied sector up to the current
951  * target boundary.
952  */
953 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
954 {
955 	sector_t target_offset = dm_target_offset(ti, sector);
956 
957 	return ti->len - target_offset;
958 }
959 
960 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
961 {
962 	sector_t len = max_io_len_target_boundary(sector, ti);
963 
964 	/*
965 	 * Does the target need to split even further ?
966 	 */
967 	if (ti->split_io) {
968 		sector_t boundary;
969 		sector_t offset = dm_target_offset(ti, sector);
970 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
971 			   - offset;
972 		if (len > boundary)
973 			len = boundary;
974 	}
975 
976 	return len;
977 }
978 
979 static void __map_bio(struct dm_target *ti, struct bio *clone,
980 		      struct dm_target_io *tio)
981 {
982 	int r;
983 	sector_t sector;
984 	struct mapped_device *md;
985 
986 	clone->bi_end_io = clone_endio;
987 	clone->bi_private = tio;
988 
989 	/*
990 	 * Map the clone.  If r == 0 we don't need to do
991 	 * anything, the target has assumed ownership of
992 	 * this io.
993 	 */
994 	atomic_inc(&tio->io->io_count);
995 	sector = clone->bi_sector;
996 	r = ti->type->map(ti, clone, &tio->info);
997 	if (r == DM_MAPIO_REMAPPED) {
998 		/* the bio has been remapped so dispatch it */
999 
1000 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1001 				      tio->io->bio->bi_bdev->bd_dev, sector);
1002 
1003 		generic_make_request(clone);
1004 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1005 		/* error the io and bail out, or requeue it if needed */
1006 		md = tio->io->md;
1007 		dec_pending(tio->io, r);
1008 		/*
1009 		 * Store bio_set for cleanup.
1010 		 */
1011 		clone->bi_private = md->bs;
1012 		bio_put(clone);
1013 		free_tio(md, tio);
1014 	} else if (r) {
1015 		DMWARN("unimplemented target map return value: %d", r);
1016 		BUG();
1017 	}
1018 }
1019 
1020 struct clone_info {
1021 	struct mapped_device *md;
1022 	struct dm_table *map;
1023 	struct bio *bio;
1024 	struct dm_io *io;
1025 	sector_t sector;
1026 	sector_t sector_count;
1027 	unsigned short idx;
1028 };
1029 
1030 static void dm_bio_destructor(struct bio *bio)
1031 {
1032 	struct bio_set *bs = bio->bi_private;
1033 
1034 	bio_free(bio, bs);
1035 }
1036 
1037 /*
1038  * Creates a little bio that just does part of a bvec.
1039  */
1040 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1041 			      unsigned short idx, unsigned int offset,
1042 			      unsigned int len, struct bio_set *bs)
1043 {
1044 	struct bio *clone;
1045 	struct bio_vec *bv = bio->bi_io_vec + idx;
1046 
1047 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1048 	clone->bi_destructor = dm_bio_destructor;
1049 	*clone->bi_io_vec = *bv;
1050 
1051 	clone->bi_sector = sector;
1052 	clone->bi_bdev = bio->bi_bdev;
1053 	clone->bi_rw = bio->bi_rw;
1054 	clone->bi_vcnt = 1;
1055 	clone->bi_size = to_bytes(len);
1056 	clone->bi_io_vec->bv_offset = offset;
1057 	clone->bi_io_vec->bv_len = clone->bi_size;
1058 	clone->bi_flags |= 1 << BIO_CLONED;
1059 
1060 	if (bio_integrity(bio)) {
1061 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1062 		bio_integrity_trim(clone,
1063 				   bio_sector_offset(bio, idx, offset), len);
1064 	}
1065 
1066 	return clone;
1067 }
1068 
1069 /*
1070  * Creates a bio that consists of range of complete bvecs.
1071  */
1072 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1073 			     unsigned short idx, unsigned short bv_count,
1074 			     unsigned int len, struct bio_set *bs)
1075 {
1076 	struct bio *clone;
1077 
1078 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1079 	__bio_clone(clone, bio);
1080 	clone->bi_destructor = dm_bio_destructor;
1081 	clone->bi_sector = sector;
1082 	clone->bi_idx = idx;
1083 	clone->bi_vcnt = idx + bv_count;
1084 	clone->bi_size = to_bytes(len);
1085 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1086 
1087 	if (bio_integrity(bio)) {
1088 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1089 
1090 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1091 			bio_integrity_trim(clone,
1092 					   bio_sector_offset(bio, idx, 0), len);
1093 	}
1094 
1095 	return clone;
1096 }
1097 
1098 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1099 				      struct dm_target *ti)
1100 {
1101 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1102 
1103 	tio->io = ci->io;
1104 	tio->ti = ti;
1105 	memset(&tio->info, 0, sizeof(tio->info));
1106 
1107 	return tio;
1108 }
1109 
1110 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1111 				   unsigned request_nr, sector_t len)
1112 {
1113 	struct dm_target_io *tio = alloc_tio(ci, ti);
1114 	struct bio *clone;
1115 
1116 	tio->info.target_request_nr = request_nr;
1117 
1118 	/*
1119 	 * Discard requests require the bio's inline iovecs be initialized.
1120 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1121 	 * and discard, so no need for concern about wasted bvec allocations.
1122 	 */
1123 	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1124 	__bio_clone(clone, ci->bio);
1125 	clone->bi_destructor = dm_bio_destructor;
1126 	if (len) {
1127 		clone->bi_sector = ci->sector;
1128 		clone->bi_size = to_bytes(len);
1129 	}
1130 
1131 	__map_bio(ti, clone, tio);
1132 }
1133 
1134 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1135 				    unsigned num_requests, sector_t len)
1136 {
1137 	unsigned request_nr;
1138 
1139 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1140 		__issue_target_request(ci, ti, request_nr, len);
1141 }
1142 
1143 static int __clone_and_map_empty_flush(struct clone_info *ci)
1144 {
1145 	unsigned target_nr = 0;
1146 	struct dm_target *ti;
1147 
1148 	BUG_ON(bio_has_data(ci->bio));
1149 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1150 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1151 
1152 	return 0;
1153 }
1154 
1155 /*
1156  * Perform all io with a single clone.
1157  */
1158 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1159 {
1160 	struct bio *clone, *bio = ci->bio;
1161 	struct dm_target_io *tio;
1162 
1163 	tio = alloc_tio(ci, ti);
1164 	clone = clone_bio(bio, ci->sector, ci->idx,
1165 			  bio->bi_vcnt - ci->idx, ci->sector_count,
1166 			  ci->md->bs);
1167 	__map_bio(ti, clone, tio);
1168 	ci->sector_count = 0;
1169 }
1170 
1171 static int __clone_and_map_discard(struct clone_info *ci)
1172 {
1173 	struct dm_target *ti;
1174 	sector_t len;
1175 
1176 	do {
1177 		ti = dm_table_find_target(ci->map, ci->sector);
1178 		if (!dm_target_is_valid(ti))
1179 			return -EIO;
1180 
1181 		/*
1182 		 * Even though the device advertised discard support,
1183 		 * that does not mean every target supports it, and
1184 		 * reconfiguration might also have changed that since the
1185 		 * check was performed.
1186 		 */
1187 		if (!ti->num_discard_requests)
1188 			return -EOPNOTSUPP;
1189 
1190 		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1191 
1192 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1193 
1194 		ci->sector += len;
1195 	} while (ci->sector_count -= len);
1196 
1197 	return 0;
1198 }
1199 
1200 static int __clone_and_map(struct clone_info *ci)
1201 {
1202 	struct bio *clone, *bio = ci->bio;
1203 	struct dm_target *ti;
1204 	sector_t len = 0, max;
1205 	struct dm_target_io *tio;
1206 
1207 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1208 		return __clone_and_map_discard(ci);
1209 
1210 	ti = dm_table_find_target(ci->map, ci->sector);
1211 	if (!dm_target_is_valid(ti))
1212 		return -EIO;
1213 
1214 	max = max_io_len(ci->sector, ti);
1215 
1216 	if (ci->sector_count <= max) {
1217 		/*
1218 		 * Optimise for the simple case where we can do all of
1219 		 * the remaining io with a single clone.
1220 		 */
1221 		__clone_and_map_simple(ci, ti);
1222 
1223 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1224 		/*
1225 		 * There are some bvecs that don't span targets.
1226 		 * Do as many of these as possible.
1227 		 */
1228 		int i;
1229 		sector_t remaining = max;
1230 		sector_t bv_len;
1231 
1232 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1233 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1234 
1235 			if (bv_len > remaining)
1236 				break;
1237 
1238 			remaining -= bv_len;
1239 			len += bv_len;
1240 		}
1241 
1242 		tio = alloc_tio(ci, ti);
1243 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1244 				  ci->md->bs);
1245 		__map_bio(ti, clone, tio);
1246 
1247 		ci->sector += len;
1248 		ci->sector_count -= len;
1249 		ci->idx = i;
1250 
1251 	} else {
1252 		/*
1253 		 * Handle a bvec that must be split between two or more targets.
1254 		 */
1255 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1256 		sector_t remaining = to_sector(bv->bv_len);
1257 		unsigned int offset = 0;
1258 
1259 		do {
1260 			if (offset) {
1261 				ti = dm_table_find_target(ci->map, ci->sector);
1262 				if (!dm_target_is_valid(ti))
1263 					return -EIO;
1264 
1265 				max = max_io_len(ci->sector, ti);
1266 			}
1267 
1268 			len = min(remaining, max);
1269 
1270 			tio = alloc_tio(ci, ti);
1271 			clone = split_bvec(bio, ci->sector, ci->idx,
1272 					   bv->bv_offset + offset, len,
1273 					   ci->md->bs);
1274 
1275 			__map_bio(ti, clone, tio);
1276 
1277 			ci->sector += len;
1278 			ci->sector_count -= len;
1279 			offset += to_bytes(len);
1280 		} while (remaining -= len);
1281 
1282 		ci->idx++;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 /*
1289  * Split the bio into several clones and submit it to targets.
1290  */
1291 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1292 {
1293 	struct clone_info ci;
1294 	int error = 0;
1295 
1296 	ci.map = dm_get_live_table(md);
1297 	if (unlikely(!ci.map)) {
1298 		bio_io_error(bio);
1299 		return;
1300 	}
1301 
1302 	ci.md = md;
1303 	ci.io = alloc_io(md);
1304 	ci.io->error = 0;
1305 	atomic_set(&ci.io->io_count, 1);
1306 	ci.io->bio = bio;
1307 	ci.io->md = md;
1308 	spin_lock_init(&ci.io->endio_lock);
1309 	ci.sector = bio->bi_sector;
1310 	ci.idx = bio->bi_idx;
1311 
1312 	start_io_acct(ci.io);
1313 	if (bio->bi_rw & REQ_FLUSH) {
1314 		ci.bio = &ci.md->flush_bio;
1315 		ci.sector_count = 0;
1316 		error = __clone_and_map_empty_flush(&ci);
1317 		/* dec_pending submits any data associated with flush */
1318 	} else {
1319 		ci.bio = bio;
1320 		ci.sector_count = bio_sectors(bio);
1321 		while (ci.sector_count && !error)
1322 			error = __clone_and_map(&ci);
1323 	}
1324 
1325 	/* drop the extra reference count */
1326 	dec_pending(ci.io, error);
1327 	dm_table_put(ci.map);
1328 }
1329 /*-----------------------------------------------------------------
1330  * CRUD END
1331  *---------------------------------------------------------------*/
1332 
1333 static int dm_merge_bvec(struct request_queue *q,
1334 			 struct bvec_merge_data *bvm,
1335 			 struct bio_vec *biovec)
1336 {
1337 	struct mapped_device *md = q->queuedata;
1338 	struct dm_table *map = dm_get_live_table(md);
1339 	struct dm_target *ti;
1340 	sector_t max_sectors;
1341 	int max_size = 0;
1342 
1343 	if (unlikely(!map))
1344 		goto out;
1345 
1346 	ti = dm_table_find_target(map, bvm->bi_sector);
1347 	if (!dm_target_is_valid(ti))
1348 		goto out_table;
1349 
1350 	/*
1351 	 * Find maximum amount of I/O that won't need splitting
1352 	 */
1353 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1354 			  (sector_t) BIO_MAX_SECTORS);
1355 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1356 	if (max_size < 0)
1357 		max_size = 0;
1358 
1359 	/*
1360 	 * merge_bvec_fn() returns number of bytes
1361 	 * it can accept at this offset
1362 	 * max is precomputed maximal io size
1363 	 */
1364 	if (max_size && ti->type->merge)
1365 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1366 	/*
1367 	 * If the target doesn't support merge method and some of the devices
1368 	 * provided their merge_bvec method (we know this by looking at
1369 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1370 	 * entries.  So always set max_size to 0, and the code below allows
1371 	 * just one page.
1372 	 */
1373 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1374 
1375 		max_size = 0;
1376 
1377 out_table:
1378 	dm_table_put(map);
1379 
1380 out:
1381 	/*
1382 	 * Always allow an entire first page
1383 	 */
1384 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1385 		max_size = biovec->bv_len;
1386 
1387 	return max_size;
1388 }
1389 
1390 /*
1391  * The request function that just remaps the bio built up by
1392  * dm_merge_bvec.
1393  */
1394 static int _dm_request(struct request_queue *q, struct bio *bio)
1395 {
1396 	int rw = bio_data_dir(bio);
1397 	struct mapped_device *md = q->queuedata;
1398 	int cpu;
1399 
1400 	down_read(&md->io_lock);
1401 
1402 	cpu = part_stat_lock();
1403 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1404 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1405 	part_stat_unlock();
1406 
1407 	/* if we're suspended, we have to queue this io for later */
1408 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1409 		up_read(&md->io_lock);
1410 
1411 		if (bio_rw(bio) != READA)
1412 			queue_io(md, bio);
1413 		else
1414 			bio_io_error(bio);
1415 		return 0;
1416 	}
1417 
1418 	__split_and_process_bio(md, bio);
1419 	up_read(&md->io_lock);
1420 	return 0;
1421 }
1422 
1423 static int dm_make_request(struct request_queue *q, struct bio *bio)
1424 {
1425 	struct mapped_device *md = q->queuedata;
1426 
1427 	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1428 }
1429 
1430 static int dm_request_based(struct mapped_device *md)
1431 {
1432 	return blk_queue_stackable(md->queue);
1433 }
1434 
1435 static int dm_request(struct request_queue *q, struct bio *bio)
1436 {
1437 	struct mapped_device *md = q->queuedata;
1438 
1439 	if (dm_request_based(md))
1440 		return dm_make_request(q, bio);
1441 
1442 	return _dm_request(q, bio);
1443 }
1444 
1445 void dm_dispatch_request(struct request *rq)
1446 {
1447 	int r;
1448 
1449 	if (blk_queue_io_stat(rq->q))
1450 		rq->cmd_flags |= REQ_IO_STAT;
1451 
1452 	rq->start_time = jiffies;
1453 	r = blk_insert_cloned_request(rq->q, rq);
1454 	if (r)
1455 		dm_complete_request(rq, r);
1456 }
1457 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1458 
1459 static void dm_rq_bio_destructor(struct bio *bio)
1460 {
1461 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1462 	struct mapped_device *md = info->tio->md;
1463 
1464 	free_bio_info(info);
1465 	bio_free(bio, md->bs);
1466 }
1467 
1468 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1469 				 void *data)
1470 {
1471 	struct dm_rq_target_io *tio = data;
1472 	struct mapped_device *md = tio->md;
1473 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1474 
1475 	if (!info)
1476 		return -ENOMEM;
1477 
1478 	info->orig = bio_orig;
1479 	info->tio = tio;
1480 	bio->bi_end_io = end_clone_bio;
1481 	bio->bi_private = info;
1482 	bio->bi_destructor = dm_rq_bio_destructor;
1483 
1484 	return 0;
1485 }
1486 
1487 static int setup_clone(struct request *clone, struct request *rq,
1488 		       struct dm_rq_target_io *tio)
1489 {
1490 	int r;
1491 
1492 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1493 			      dm_rq_bio_constructor, tio);
1494 	if (r)
1495 		return r;
1496 
1497 	clone->cmd = rq->cmd;
1498 	clone->cmd_len = rq->cmd_len;
1499 	clone->sense = rq->sense;
1500 	clone->buffer = rq->buffer;
1501 	clone->end_io = end_clone_request;
1502 	clone->end_io_data = tio;
1503 
1504 	return 0;
1505 }
1506 
1507 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1508 				gfp_t gfp_mask)
1509 {
1510 	struct request *clone;
1511 	struct dm_rq_target_io *tio;
1512 
1513 	tio = alloc_rq_tio(md, gfp_mask);
1514 	if (!tio)
1515 		return NULL;
1516 
1517 	tio->md = md;
1518 	tio->ti = NULL;
1519 	tio->orig = rq;
1520 	tio->error = 0;
1521 	memset(&tio->info, 0, sizeof(tio->info));
1522 
1523 	clone = &tio->clone;
1524 	if (setup_clone(clone, rq, tio)) {
1525 		/* -ENOMEM */
1526 		free_rq_tio(tio);
1527 		return NULL;
1528 	}
1529 
1530 	return clone;
1531 }
1532 
1533 /*
1534  * Called with the queue lock held.
1535  */
1536 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1537 {
1538 	struct mapped_device *md = q->queuedata;
1539 	struct request *clone;
1540 
1541 	if (unlikely(rq->special)) {
1542 		DMWARN("Already has something in rq->special.");
1543 		return BLKPREP_KILL;
1544 	}
1545 
1546 	clone = clone_rq(rq, md, GFP_ATOMIC);
1547 	if (!clone)
1548 		return BLKPREP_DEFER;
1549 
1550 	rq->special = clone;
1551 	rq->cmd_flags |= REQ_DONTPREP;
1552 
1553 	return BLKPREP_OK;
1554 }
1555 
1556 /*
1557  * Returns:
1558  * 0  : the request has been processed (not requeued)
1559  * !0 : the request has been requeued
1560  */
1561 static int map_request(struct dm_target *ti, struct request *clone,
1562 		       struct mapped_device *md)
1563 {
1564 	int r, requeued = 0;
1565 	struct dm_rq_target_io *tio = clone->end_io_data;
1566 
1567 	/*
1568 	 * Hold the md reference here for the in-flight I/O.
1569 	 * We can't rely on the reference count by device opener,
1570 	 * because the device may be closed during the request completion
1571 	 * when all bios are completed.
1572 	 * See the comment in rq_completed() too.
1573 	 */
1574 	dm_get(md);
1575 
1576 	tio->ti = ti;
1577 	r = ti->type->map_rq(ti, clone, &tio->info);
1578 	switch (r) {
1579 	case DM_MAPIO_SUBMITTED:
1580 		/* The target has taken the I/O to submit by itself later */
1581 		break;
1582 	case DM_MAPIO_REMAPPED:
1583 		/* The target has remapped the I/O so dispatch it */
1584 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1585 				     blk_rq_pos(tio->orig));
1586 		dm_dispatch_request(clone);
1587 		break;
1588 	case DM_MAPIO_REQUEUE:
1589 		/* The target wants to requeue the I/O */
1590 		dm_requeue_unmapped_request(clone);
1591 		requeued = 1;
1592 		break;
1593 	default:
1594 		if (r > 0) {
1595 			DMWARN("unimplemented target map return value: %d", r);
1596 			BUG();
1597 		}
1598 
1599 		/* The target wants to complete the I/O */
1600 		dm_kill_unmapped_request(clone, r);
1601 		break;
1602 	}
1603 
1604 	return requeued;
1605 }
1606 
1607 /*
1608  * q->request_fn for request-based dm.
1609  * Called with the queue lock held.
1610  */
1611 static void dm_request_fn(struct request_queue *q)
1612 {
1613 	struct mapped_device *md = q->queuedata;
1614 	struct dm_table *map = dm_get_live_table(md);
1615 	struct dm_target *ti;
1616 	struct request *rq, *clone;
1617 	sector_t pos;
1618 
1619 	/*
1620 	 * For suspend, check blk_queue_stopped() and increment
1621 	 * ->pending within a single queue_lock not to increment the
1622 	 * number of in-flight I/Os after the queue is stopped in
1623 	 * dm_suspend().
1624 	 */
1625 	while (!blk_queue_stopped(q)) {
1626 		rq = blk_peek_request(q);
1627 		if (!rq)
1628 			goto delay_and_out;
1629 
1630 		/* always use block 0 to find the target for flushes for now */
1631 		pos = 0;
1632 		if (!(rq->cmd_flags & REQ_FLUSH))
1633 			pos = blk_rq_pos(rq);
1634 
1635 		ti = dm_table_find_target(map, pos);
1636 		BUG_ON(!dm_target_is_valid(ti));
1637 
1638 		if (ti->type->busy && ti->type->busy(ti))
1639 			goto delay_and_out;
1640 
1641 		blk_start_request(rq);
1642 		clone = rq->special;
1643 		atomic_inc(&md->pending[rq_data_dir(clone)]);
1644 
1645 		spin_unlock(q->queue_lock);
1646 		if (map_request(ti, clone, md))
1647 			goto requeued;
1648 
1649 		BUG_ON(!irqs_disabled());
1650 		spin_lock(q->queue_lock);
1651 	}
1652 
1653 	goto out;
1654 
1655 requeued:
1656 	BUG_ON(!irqs_disabled());
1657 	spin_lock(q->queue_lock);
1658 
1659 delay_and_out:
1660 	blk_delay_queue(q, HZ / 10);
1661 out:
1662 	dm_table_put(map);
1663 
1664 	return;
1665 }
1666 
1667 int dm_underlying_device_busy(struct request_queue *q)
1668 {
1669 	return blk_lld_busy(q);
1670 }
1671 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1672 
1673 static int dm_lld_busy(struct request_queue *q)
1674 {
1675 	int r;
1676 	struct mapped_device *md = q->queuedata;
1677 	struct dm_table *map = dm_get_live_table(md);
1678 
1679 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1680 		r = 1;
1681 	else
1682 		r = dm_table_any_busy_target(map);
1683 
1684 	dm_table_put(map);
1685 
1686 	return r;
1687 }
1688 
1689 static int dm_any_congested(void *congested_data, int bdi_bits)
1690 {
1691 	int r = bdi_bits;
1692 	struct mapped_device *md = congested_data;
1693 	struct dm_table *map;
1694 
1695 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1696 		map = dm_get_live_table(md);
1697 		if (map) {
1698 			/*
1699 			 * Request-based dm cares about only own queue for
1700 			 * the query about congestion status of request_queue
1701 			 */
1702 			if (dm_request_based(md))
1703 				r = md->queue->backing_dev_info.state &
1704 				    bdi_bits;
1705 			else
1706 				r = dm_table_any_congested(map, bdi_bits);
1707 
1708 			dm_table_put(map);
1709 		}
1710 	}
1711 
1712 	return r;
1713 }
1714 
1715 /*-----------------------------------------------------------------
1716  * An IDR is used to keep track of allocated minor numbers.
1717  *---------------------------------------------------------------*/
1718 static void free_minor(int minor)
1719 {
1720 	spin_lock(&_minor_lock);
1721 	idr_remove(&_minor_idr, minor);
1722 	spin_unlock(&_minor_lock);
1723 }
1724 
1725 /*
1726  * See if the device with a specific minor # is free.
1727  */
1728 static int specific_minor(int minor)
1729 {
1730 	int r, m;
1731 
1732 	if (minor >= (1 << MINORBITS))
1733 		return -EINVAL;
1734 
1735 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1736 	if (!r)
1737 		return -ENOMEM;
1738 
1739 	spin_lock(&_minor_lock);
1740 
1741 	if (idr_find(&_minor_idr, minor)) {
1742 		r = -EBUSY;
1743 		goto out;
1744 	}
1745 
1746 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1747 	if (r)
1748 		goto out;
1749 
1750 	if (m != minor) {
1751 		idr_remove(&_minor_idr, m);
1752 		r = -EBUSY;
1753 		goto out;
1754 	}
1755 
1756 out:
1757 	spin_unlock(&_minor_lock);
1758 	return r;
1759 }
1760 
1761 static int next_free_minor(int *minor)
1762 {
1763 	int r, m;
1764 
1765 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1766 	if (!r)
1767 		return -ENOMEM;
1768 
1769 	spin_lock(&_minor_lock);
1770 
1771 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1772 	if (r)
1773 		goto out;
1774 
1775 	if (m >= (1 << MINORBITS)) {
1776 		idr_remove(&_minor_idr, m);
1777 		r = -ENOSPC;
1778 		goto out;
1779 	}
1780 
1781 	*minor = m;
1782 
1783 out:
1784 	spin_unlock(&_minor_lock);
1785 	return r;
1786 }
1787 
1788 static const struct block_device_operations dm_blk_dops;
1789 
1790 static void dm_wq_work(struct work_struct *work);
1791 
1792 static void dm_init_md_queue(struct mapped_device *md)
1793 {
1794 	/*
1795 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1796 	 * devices.  The type of this dm device has not been decided yet.
1797 	 * The type is decided at the first table loading time.
1798 	 * To prevent problematic device stacking, clear the queue flag
1799 	 * for request stacking support until then.
1800 	 *
1801 	 * This queue is new, so no concurrency on the queue_flags.
1802 	 */
1803 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1804 
1805 	md->queue->queuedata = md;
1806 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1807 	md->queue->backing_dev_info.congested_data = md;
1808 	blk_queue_make_request(md->queue, dm_request);
1809 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1810 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1811 }
1812 
1813 /*
1814  * Allocate and initialise a blank device with a given minor.
1815  */
1816 static struct mapped_device *alloc_dev(int minor)
1817 {
1818 	int r;
1819 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1820 	void *old_md;
1821 
1822 	if (!md) {
1823 		DMWARN("unable to allocate device, out of memory.");
1824 		return NULL;
1825 	}
1826 
1827 	if (!try_module_get(THIS_MODULE))
1828 		goto bad_module_get;
1829 
1830 	/* get a minor number for the dev */
1831 	if (minor == DM_ANY_MINOR)
1832 		r = next_free_minor(&minor);
1833 	else
1834 		r = specific_minor(minor);
1835 	if (r < 0)
1836 		goto bad_minor;
1837 
1838 	md->type = DM_TYPE_NONE;
1839 	init_rwsem(&md->io_lock);
1840 	mutex_init(&md->suspend_lock);
1841 	mutex_init(&md->type_lock);
1842 	spin_lock_init(&md->deferred_lock);
1843 	rwlock_init(&md->map_lock);
1844 	atomic_set(&md->holders, 1);
1845 	atomic_set(&md->open_count, 0);
1846 	atomic_set(&md->event_nr, 0);
1847 	atomic_set(&md->uevent_seq, 0);
1848 	INIT_LIST_HEAD(&md->uevent_list);
1849 	spin_lock_init(&md->uevent_lock);
1850 
1851 	md->queue = blk_alloc_queue(GFP_KERNEL);
1852 	if (!md->queue)
1853 		goto bad_queue;
1854 
1855 	dm_init_md_queue(md);
1856 
1857 	md->disk = alloc_disk(1);
1858 	if (!md->disk)
1859 		goto bad_disk;
1860 
1861 	atomic_set(&md->pending[0], 0);
1862 	atomic_set(&md->pending[1], 0);
1863 	init_waitqueue_head(&md->wait);
1864 	INIT_WORK(&md->work, dm_wq_work);
1865 	init_waitqueue_head(&md->eventq);
1866 
1867 	md->disk->major = _major;
1868 	md->disk->first_minor = minor;
1869 	md->disk->fops = &dm_blk_dops;
1870 	md->disk->queue = md->queue;
1871 	md->disk->private_data = md;
1872 	sprintf(md->disk->disk_name, "dm-%d", minor);
1873 	add_disk(md->disk);
1874 	format_dev_t(md->name, MKDEV(_major, minor));
1875 
1876 	md->wq = alloc_workqueue("kdmflush",
1877 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1878 	if (!md->wq)
1879 		goto bad_thread;
1880 
1881 	md->bdev = bdget_disk(md->disk, 0);
1882 	if (!md->bdev)
1883 		goto bad_bdev;
1884 
1885 	bio_init(&md->flush_bio);
1886 	md->flush_bio.bi_bdev = md->bdev;
1887 	md->flush_bio.bi_rw = WRITE_FLUSH;
1888 
1889 	/* Populate the mapping, nobody knows we exist yet */
1890 	spin_lock(&_minor_lock);
1891 	old_md = idr_replace(&_minor_idr, md, minor);
1892 	spin_unlock(&_minor_lock);
1893 
1894 	BUG_ON(old_md != MINOR_ALLOCED);
1895 
1896 	return md;
1897 
1898 bad_bdev:
1899 	destroy_workqueue(md->wq);
1900 bad_thread:
1901 	del_gendisk(md->disk);
1902 	put_disk(md->disk);
1903 bad_disk:
1904 	blk_cleanup_queue(md->queue);
1905 bad_queue:
1906 	free_minor(minor);
1907 bad_minor:
1908 	module_put(THIS_MODULE);
1909 bad_module_get:
1910 	kfree(md);
1911 	return NULL;
1912 }
1913 
1914 static void unlock_fs(struct mapped_device *md);
1915 
1916 static void free_dev(struct mapped_device *md)
1917 {
1918 	int minor = MINOR(disk_devt(md->disk));
1919 
1920 	unlock_fs(md);
1921 	bdput(md->bdev);
1922 	destroy_workqueue(md->wq);
1923 	if (md->tio_pool)
1924 		mempool_destroy(md->tio_pool);
1925 	if (md->io_pool)
1926 		mempool_destroy(md->io_pool);
1927 	if (md->bs)
1928 		bioset_free(md->bs);
1929 	blk_integrity_unregister(md->disk);
1930 	del_gendisk(md->disk);
1931 	free_minor(minor);
1932 
1933 	spin_lock(&_minor_lock);
1934 	md->disk->private_data = NULL;
1935 	spin_unlock(&_minor_lock);
1936 
1937 	put_disk(md->disk);
1938 	blk_cleanup_queue(md->queue);
1939 	module_put(THIS_MODULE);
1940 	kfree(md);
1941 }
1942 
1943 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1944 {
1945 	struct dm_md_mempools *p;
1946 
1947 	if (md->io_pool && md->tio_pool && md->bs)
1948 		/* the md already has necessary mempools */
1949 		goto out;
1950 
1951 	p = dm_table_get_md_mempools(t);
1952 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1953 
1954 	md->io_pool = p->io_pool;
1955 	p->io_pool = NULL;
1956 	md->tio_pool = p->tio_pool;
1957 	p->tio_pool = NULL;
1958 	md->bs = p->bs;
1959 	p->bs = NULL;
1960 
1961 out:
1962 	/* mempool bind completed, now no need any mempools in the table */
1963 	dm_table_free_md_mempools(t);
1964 }
1965 
1966 /*
1967  * Bind a table to the device.
1968  */
1969 static void event_callback(void *context)
1970 {
1971 	unsigned long flags;
1972 	LIST_HEAD(uevents);
1973 	struct mapped_device *md = (struct mapped_device *) context;
1974 
1975 	spin_lock_irqsave(&md->uevent_lock, flags);
1976 	list_splice_init(&md->uevent_list, &uevents);
1977 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1978 
1979 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1980 
1981 	atomic_inc(&md->event_nr);
1982 	wake_up(&md->eventq);
1983 }
1984 
1985 /*
1986  * Protected by md->suspend_lock obtained by dm_swap_table().
1987  */
1988 static void __set_size(struct mapped_device *md, sector_t size)
1989 {
1990 	set_capacity(md->disk, size);
1991 
1992 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1993 }
1994 
1995 /*
1996  * Return 1 if the queue has a compulsory merge_bvec_fn function.
1997  *
1998  * If this function returns 0, then the device is either a non-dm
1999  * device without a merge_bvec_fn, or it is a dm device that is
2000  * able to split any bios it receives that are too big.
2001  */
2002 int dm_queue_merge_is_compulsory(struct request_queue *q)
2003 {
2004 	struct mapped_device *dev_md;
2005 
2006 	if (!q->merge_bvec_fn)
2007 		return 0;
2008 
2009 	if (q->make_request_fn == dm_request) {
2010 		dev_md = q->queuedata;
2011 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2012 			return 0;
2013 	}
2014 
2015 	return 1;
2016 }
2017 
2018 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2019 					 struct dm_dev *dev, sector_t start,
2020 					 sector_t len, void *data)
2021 {
2022 	struct block_device *bdev = dev->bdev;
2023 	struct request_queue *q = bdev_get_queue(bdev);
2024 
2025 	return dm_queue_merge_is_compulsory(q);
2026 }
2027 
2028 /*
2029  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2030  * on the properties of the underlying devices.
2031  */
2032 static int dm_table_merge_is_optional(struct dm_table *table)
2033 {
2034 	unsigned i = 0;
2035 	struct dm_target *ti;
2036 
2037 	while (i < dm_table_get_num_targets(table)) {
2038 		ti = dm_table_get_target(table, i++);
2039 
2040 		if (ti->type->iterate_devices &&
2041 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2042 			return 0;
2043 	}
2044 
2045 	return 1;
2046 }
2047 
2048 /*
2049  * Returns old map, which caller must destroy.
2050  */
2051 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2052 			       struct queue_limits *limits)
2053 {
2054 	struct dm_table *old_map;
2055 	struct request_queue *q = md->queue;
2056 	sector_t size;
2057 	unsigned long flags;
2058 	int merge_is_optional;
2059 
2060 	size = dm_table_get_size(t);
2061 
2062 	/*
2063 	 * Wipe any geometry if the size of the table changed.
2064 	 */
2065 	if (size != get_capacity(md->disk))
2066 		memset(&md->geometry, 0, sizeof(md->geometry));
2067 
2068 	__set_size(md, size);
2069 
2070 	dm_table_event_callback(t, event_callback, md);
2071 
2072 	/*
2073 	 * The queue hasn't been stopped yet, if the old table type wasn't
2074 	 * for request-based during suspension.  So stop it to prevent
2075 	 * I/O mapping before resume.
2076 	 * This must be done before setting the queue restrictions,
2077 	 * because request-based dm may be run just after the setting.
2078 	 */
2079 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2080 		stop_queue(q);
2081 
2082 	__bind_mempools(md, t);
2083 
2084 	merge_is_optional = dm_table_merge_is_optional(t);
2085 
2086 	write_lock_irqsave(&md->map_lock, flags);
2087 	old_map = md->map;
2088 	md->map = t;
2089 	dm_table_set_restrictions(t, q, limits);
2090 	if (merge_is_optional)
2091 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2092 	else
2093 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2094 	write_unlock_irqrestore(&md->map_lock, flags);
2095 
2096 	return old_map;
2097 }
2098 
2099 /*
2100  * Returns unbound table for the caller to free.
2101  */
2102 static struct dm_table *__unbind(struct mapped_device *md)
2103 {
2104 	struct dm_table *map = md->map;
2105 	unsigned long flags;
2106 
2107 	if (!map)
2108 		return NULL;
2109 
2110 	dm_table_event_callback(map, NULL, NULL);
2111 	write_lock_irqsave(&md->map_lock, flags);
2112 	md->map = NULL;
2113 	write_unlock_irqrestore(&md->map_lock, flags);
2114 
2115 	return map;
2116 }
2117 
2118 /*
2119  * Constructor for a new device.
2120  */
2121 int dm_create(int minor, struct mapped_device **result)
2122 {
2123 	struct mapped_device *md;
2124 
2125 	md = alloc_dev(minor);
2126 	if (!md)
2127 		return -ENXIO;
2128 
2129 	dm_sysfs_init(md);
2130 
2131 	*result = md;
2132 	return 0;
2133 }
2134 
2135 /*
2136  * Functions to manage md->type.
2137  * All are required to hold md->type_lock.
2138  */
2139 void dm_lock_md_type(struct mapped_device *md)
2140 {
2141 	mutex_lock(&md->type_lock);
2142 }
2143 
2144 void dm_unlock_md_type(struct mapped_device *md)
2145 {
2146 	mutex_unlock(&md->type_lock);
2147 }
2148 
2149 void dm_set_md_type(struct mapped_device *md, unsigned type)
2150 {
2151 	md->type = type;
2152 }
2153 
2154 unsigned dm_get_md_type(struct mapped_device *md)
2155 {
2156 	return md->type;
2157 }
2158 
2159 /*
2160  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2161  */
2162 static int dm_init_request_based_queue(struct mapped_device *md)
2163 {
2164 	struct request_queue *q = NULL;
2165 
2166 	if (md->queue->elevator)
2167 		return 1;
2168 
2169 	/* Fully initialize the queue */
2170 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2171 	if (!q)
2172 		return 0;
2173 
2174 	md->queue = q;
2175 	md->saved_make_request_fn = md->queue->make_request_fn;
2176 	dm_init_md_queue(md);
2177 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2178 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2179 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2180 
2181 	elv_register_queue(md->queue);
2182 
2183 	return 1;
2184 }
2185 
2186 /*
2187  * Setup the DM device's queue based on md's type
2188  */
2189 int dm_setup_md_queue(struct mapped_device *md)
2190 {
2191 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2192 	    !dm_init_request_based_queue(md)) {
2193 		DMWARN("Cannot initialize queue for request-based mapped device");
2194 		return -EINVAL;
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 static struct mapped_device *dm_find_md(dev_t dev)
2201 {
2202 	struct mapped_device *md;
2203 	unsigned minor = MINOR(dev);
2204 
2205 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2206 		return NULL;
2207 
2208 	spin_lock(&_minor_lock);
2209 
2210 	md = idr_find(&_minor_idr, minor);
2211 	if (md && (md == MINOR_ALLOCED ||
2212 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2213 		   dm_deleting_md(md) ||
2214 		   test_bit(DMF_FREEING, &md->flags))) {
2215 		md = NULL;
2216 		goto out;
2217 	}
2218 
2219 out:
2220 	spin_unlock(&_minor_lock);
2221 
2222 	return md;
2223 }
2224 
2225 struct mapped_device *dm_get_md(dev_t dev)
2226 {
2227 	struct mapped_device *md = dm_find_md(dev);
2228 
2229 	if (md)
2230 		dm_get(md);
2231 
2232 	return md;
2233 }
2234 
2235 void *dm_get_mdptr(struct mapped_device *md)
2236 {
2237 	return md->interface_ptr;
2238 }
2239 
2240 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2241 {
2242 	md->interface_ptr = ptr;
2243 }
2244 
2245 void dm_get(struct mapped_device *md)
2246 {
2247 	atomic_inc(&md->holders);
2248 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2249 }
2250 
2251 const char *dm_device_name(struct mapped_device *md)
2252 {
2253 	return md->name;
2254 }
2255 EXPORT_SYMBOL_GPL(dm_device_name);
2256 
2257 static void __dm_destroy(struct mapped_device *md, bool wait)
2258 {
2259 	struct dm_table *map;
2260 
2261 	might_sleep();
2262 
2263 	spin_lock(&_minor_lock);
2264 	map = dm_get_live_table(md);
2265 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2266 	set_bit(DMF_FREEING, &md->flags);
2267 	spin_unlock(&_minor_lock);
2268 
2269 	if (!dm_suspended_md(md)) {
2270 		dm_table_presuspend_targets(map);
2271 		dm_table_postsuspend_targets(map);
2272 	}
2273 
2274 	/*
2275 	 * Rare, but there may be I/O requests still going to complete,
2276 	 * for example.  Wait for all references to disappear.
2277 	 * No one should increment the reference count of the mapped_device,
2278 	 * after the mapped_device state becomes DMF_FREEING.
2279 	 */
2280 	if (wait)
2281 		while (atomic_read(&md->holders))
2282 			msleep(1);
2283 	else if (atomic_read(&md->holders))
2284 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2285 		       dm_device_name(md), atomic_read(&md->holders));
2286 
2287 	dm_sysfs_exit(md);
2288 	dm_table_put(map);
2289 	dm_table_destroy(__unbind(md));
2290 	free_dev(md);
2291 }
2292 
2293 void dm_destroy(struct mapped_device *md)
2294 {
2295 	__dm_destroy(md, true);
2296 }
2297 
2298 void dm_destroy_immediate(struct mapped_device *md)
2299 {
2300 	__dm_destroy(md, false);
2301 }
2302 
2303 void dm_put(struct mapped_device *md)
2304 {
2305 	atomic_dec(&md->holders);
2306 }
2307 EXPORT_SYMBOL_GPL(dm_put);
2308 
2309 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2310 {
2311 	int r = 0;
2312 	DECLARE_WAITQUEUE(wait, current);
2313 
2314 	add_wait_queue(&md->wait, &wait);
2315 
2316 	while (1) {
2317 		set_current_state(interruptible);
2318 
2319 		smp_mb();
2320 		if (!md_in_flight(md))
2321 			break;
2322 
2323 		if (interruptible == TASK_INTERRUPTIBLE &&
2324 		    signal_pending(current)) {
2325 			r = -EINTR;
2326 			break;
2327 		}
2328 
2329 		io_schedule();
2330 	}
2331 	set_current_state(TASK_RUNNING);
2332 
2333 	remove_wait_queue(&md->wait, &wait);
2334 
2335 	return r;
2336 }
2337 
2338 /*
2339  * Process the deferred bios
2340  */
2341 static void dm_wq_work(struct work_struct *work)
2342 {
2343 	struct mapped_device *md = container_of(work, struct mapped_device,
2344 						work);
2345 	struct bio *c;
2346 
2347 	down_read(&md->io_lock);
2348 
2349 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2350 		spin_lock_irq(&md->deferred_lock);
2351 		c = bio_list_pop(&md->deferred);
2352 		spin_unlock_irq(&md->deferred_lock);
2353 
2354 		if (!c)
2355 			break;
2356 
2357 		up_read(&md->io_lock);
2358 
2359 		if (dm_request_based(md))
2360 			generic_make_request(c);
2361 		else
2362 			__split_and_process_bio(md, c);
2363 
2364 		down_read(&md->io_lock);
2365 	}
2366 
2367 	up_read(&md->io_lock);
2368 }
2369 
2370 static void dm_queue_flush(struct mapped_device *md)
2371 {
2372 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2373 	smp_mb__after_clear_bit();
2374 	queue_work(md->wq, &md->work);
2375 }
2376 
2377 /*
2378  * Swap in a new table, returning the old one for the caller to destroy.
2379  */
2380 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2381 {
2382 	struct dm_table *map = ERR_PTR(-EINVAL);
2383 	struct queue_limits limits;
2384 	int r;
2385 
2386 	mutex_lock(&md->suspend_lock);
2387 
2388 	/* device must be suspended */
2389 	if (!dm_suspended_md(md))
2390 		goto out;
2391 
2392 	r = dm_calculate_queue_limits(table, &limits);
2393 	if (r) {
2394 		map = ERR_PTR(r);
2395 		goto out;
2396 	}
2397 
2398 	map = __bind(md, table, &limits);
2399 
2400 out:
2401 	mutex_unlock(&md->suspend_lock);
2402 	return map;
2403 }
2404 
2405 /*
2406  * Functions to lock and unlock any filesystem running on the
2407  * device.
2408  */
2409 static int lock_fs(struct mapped_device *md)
2410 {
2411 	int r;
2412 
2413 	WARN_ON(md->frozen_sb);
2414 
2415 	md->frozen_sb = freeze_bdev(md->bdev);
2416 	if (IS_ERR(md->frozen_sb)) {
2417 		r = PTR_ERR(md->frozen_sb);
2418 		md->frozen_sb = NULL;
2419 		return r;
2420 	}
2421 
2422 	set_bit(DMF_FROZEN, &md->flags);
2423 
2424 	return 0;
2425 }
2426 
2427 static void unlock_fs(struct mapped_device *md)
2428 {
2429 	if (!test_bit(DMF_FROZEN, &md->flags))
2430 		return;
2431 
2432 	thaw_bdev(md->bdev, md->frozen_sb);
2433 	md->frozen_sb = NULL;
2434 	clear_bit(DMF_FROZEN, &md->flags);
2435 }
2436 
2437 /*
2438  * We need to be able to change a mapping table under a mounted
2439  * filesystem.  For example we might want to move some data in
2440  * the background.  Before the table can be swapped with
2441  * dm_bind_table, dm_suspend must be called to flush any in
2442  * flight bios and ensure that any further io gets deferred.
2443  */
2444 /*
2445  * Suspend mechanism in request-based dm.
2446  *
2447  * 1. Flush all I/Os by lock_fs() if needed.
2448  * 2. Stop dispatching any I/O by stopping the request_queue.
2449  * 3. Wait for all in-flight I/Os to be completed or requeued.
2450  *
2451  * To abort suspend, start the request_queue.
2452  */
2453 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2454 {
2455 	struct dm_table *map = NULL;
2456 	int r = 0;
2457 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2458 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2459 
2460 	mutex_lock(&md->suspend_lock);
2461 
2462 	if (dm_suspended_md(md)) {
2463 		r = -EINVAL;
2464 		goto out_unlock;
2465 	}
2466 
2467 	map = dm_get_live_table(md);
2468 
2469 	/*
2470 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471 	 * This flag is cleared before dm_suspend returns.
2472 	 */
2473 	if (noflush)
2474 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2475 
2476 	/* This does not get reverted if there's an error later. */
2477 	dm_table_presuspend_targets(map);
2478 
2479 	/*
2480 	 * Flush I/O to the device.
2481 	 * Any I/O submitted after lock_fs() may not be flushed.
2482 	 * noflush takes precedence over do_lockfs.
2483 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2484 	 */
2485 	if (!noflush && do_lockfs) {
2486 		r = lock_fs(md);
2487 		if (r)
2488 			goto out;
2489 	}
2490 
2491 	/*
2492 	 * Here we must make sure that no processes are submitting requests
2493 	 * to target drivers i.e. no one may be executing
2494 	 * __split_and_process_bio. This is called from dm_request and
2495 	 * dm_wq_work.
2496 	 *
2497 	 * To get all processes out of __split_and_process_bio in dm_request,
2498 	 * we take the write lock. To prevent any process from reentering
2499 	 * __split_and_process_bio from dm_request and quiesce the thread
2500 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2501 	 * flush_workqueue(md->wq).
2502 	 */
2503 	down_write(&md->io_lock);
2504 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2505 	up_write(&md->io_lock);
2506 
2507 	/*
2508 	 * Stop md->queue before flushing md->wq in case request-based
2509 	 * dm defers requests to md->wq from md->queue.
2510 	 */
2511 	if (dm_request_based(md))
2512 		stop_queue(md->queue);
2513 
2514 	flush_workqueue(md->wq);
2515 
2516 	/*
2517 	 * At this point no more requests are entering target request routines.
2518 	 * We call dm_wait_for_completion to wait for all existing requests
2519 	 * to finish.
2520 	 */
2521 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2522 
2523 	down_write(&md->io_lock);
2524 	if (noflush)
2525 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2526 	up_write(&md->io_lock);
2527 
2528 	/* were we interrupted ? */
2529 	if (r < 0) {
2530 		dm_queue_flush(md);
2531 
2532 		if (dm_request_based(md))
2533 			start_queue(md->queue);
2534 
2535 		unlock_fs(md);
2536 		goto out; /* pushback list is already flushed, so skip flush */
2537 	}
2538 
2539 	/*
2540 	 * If dm_wait_for_completion returned 0, the device is completely
2541 	 * quiescent now. There is no request-processing activity. All new
2542 	 * requests are being added to md->deferred list.
2543 	 */
2544 
2545 	set_bit(DMF_SUSPENDED, &md->flags);
2546 
2547 	dm_table_postsuspend_targets(map);
2548 
2549 out:
2550 	dm_table_put(map);
2551 
2552 out_unlock:
2553 	mutex_unlock(&md->suspend_lock);
2554 	return r;
2555 }
2556 
2557 int dm_resume(struct mapped_device *md)
2558 {
2559 	int r = -EINVAL;
2560 	struct dm_table *map = NULL;
2561 
2562 	mutex_lock(&md->suspend_lock);
2563 	if (!dm_suspended_md(md))
2564 		goto out;
2565 
2566 	map = dm_get_live_table(md);
2567 	if (!map || !dm_table_get_size(map))
2568 		goto out;
2569 
2570 	r = dm_table_resume_targets(map);
2571 	if (r)
2572 		goto out;
2573 
2574 	dm_queue_flush(md);
2575 
2576 	/*
2577 	 * Flushing deferred I/Os must be done after targets are resumed
2578 	 * so that mapping of targets can work correctly.
2579 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2580 	 */
2581 	if (dm_request_based(md))
2582 		start_queue(md->queue);
2583 
2584 	unlock_fs(md);
2585 
2586 	clear_bit(DMF_SUSPENDED, &md->flags);
2587 
2588 	r = 0;
2589 out:
2590 	dm_table_put(map);
2591 	mutex_unlock(&md->suspend_lock);
2592 
2593 	return r;
2594 }
2595 
2596 /*-----------------------------------------------------------------
2597  * Event notification.
2598  *---------------------------------------------------------------*/
2599 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2600 		       unsigned cookie)
2601 {
2602 	char udev_cookie[DM_COOKIE_LENGTH];
2603 	char *envp[] = { udev_cookie, NULL };
2604 
2605 	if (!cookie)
2606 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2607 	else {
2608 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2609 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2610 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2611 					  action, envp);
2612 	}
2613 }
2614 
2615 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2616 {
2617 	return atomic_add_return(1, &md->uevent_seq);
2618 }
2619 
2620 uint32_t dm_get_event_nr(struct mapped_device *md)
2621 {
2622 	return atomic_read(&md->event_nr);
2623 }
2624 
2625 int dm_wait_event(struct mapped_device *md, int event_nr)
2626 {
2627 	return wait_event_interruptible(md->eventq,
2628 			(event_nr != atomic_read(&md->event_nr)));
2629 }
2630 
2631 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2632 {
2633 	unsigned long flags;
2634 
2635 	spin_lock_irqsave(&md->uevent_lock, flags);
2636 	list_add(elist, &md->uevent_list);
2637 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2638 }
2639 
2640 /*
2641  * The gendisk is only valid as long as you have a reference
2642  * count on 'md'.
2643  */
2644 struct gendisk *dm_disk(struct mapped_device *md)
2645 {
2646 	return md->disk;
2647 }
2648 
2649 struct kobject *dm_kobject(struct mapped_device *md)
2650 {
2651 	return &md->kobj;
2652 }
2653 
2654 /*
2655  * struct mapped_device should not be exported outside of dm.c
2656  * so use this check to verify that kobj is part of md structure
2657  */
2658 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2659 {
2660 	struct mapped_device *md;
2661 
2662 	md = container_of(kobj, struct mapped_device, kobj);
2663 	if (&md->kobj != kobj)
2664 		return NULL;
2665 
2666 	if (test_bit(DMF_FREEING, &md->flags) ||
2667 	    dm_deleting_md(md))
2668 		return NULL;
2669 
2670 	dm_get(md);
2671 	return md;
2672 }
2673 
2674 int dm_suspended_md(struct mapped_device *md)
2675 {
2676 	return test_bit(DMF_SUSPENDED, &md->flags);
2677 }
2678 
2679 int dm_suspended(struct dm_target *ti)
2680 {
2681 	return dm_suspended_md(dm_table_get_md(ti->table));
2682 }
2683 EXPORT_SYMBOL_GPL(dm_suspended);
2684 
2685 int dm_noflush_suspending(struct dm_target *ti)
2686 {
2687 	return __noflush_suspending(dm_table_get_md(ti->table));
2688 }
2689 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2690 
2691 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2692 {
2693 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2694 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2695 
2696 	if (!pools)
2697 		return NULL;
2698 
2699 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2700 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2701 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2702 	if (!pools->io_pool)
2703 		goto free_pools_and_out;
2704 
2705 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2706 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2707 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2708 	if (!pools->tio_pool)
2709 		goto free_io_pool_and_out;
2710 
2711 	pools->bs = bioset_create(pool_size, 0);
2712 	if (!pools->bs)
2713 		goto free_tio_pool_and_out;
2714 
2715 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2716 		goto free_bioset_and_out;
2717 
2718 	return pools;
2719 
2720 free_bioset_and_out:
2721 	bioset_free(pools->bs);
2722 
2723 free_tio_pool_and_out:
2724 	mempool_destroy(pools->tio_pool);
2725 
2726 free_io_pool_and_out:
2727 	mempool_destroy(pools->io_pool);
2728 
2729 free_pools_and_out:
2730 	kfree(pools);
2731 
2732 	return NULL;
2733 }
2734 
2735 void dm_free_md_mempools(struct dm_md_mempools *pools)
2736 {
2737 	if (!pools)
2738 		return;
2739 
2740 	if (pools->io_pool)
2741 		mempool_destroy(pools->io_pool);
2742 
2743 	if (pools->tio_pool)
2744 		mempool_destroy(pools->tio_pool);
2745 
2746 	if (pools->bs)
2747 		bioset_free(pools->bs);
2748 
2749 	kfree(pools);
2750 }
2751 
2752 static const struct block_device_operations dm_blk_dops = {
2753 	.open = dm_blk_open,
2754 	.release = dm_blk_close,
2755 	.ioctl = dm_blk_ioctl,
2756 	.getgeo = dm_blk_getgeo,
2757 	.owner = THIS_MODULE
2758 };
2759 
2760 EXPORT_SYMBOL(dm_get_mapinfo);
2761 
2762 /*
2763  * module hooks
2764  */
2765 module_init(dm_init);
2766 module_exit(dm_exit);
2767 
2768 module_param(major, uint, 0);
2769 MODULE_PARM_DESC(major, "The major number of the device mapper");
2770 MODULE_DESCRIPTION(DM_NAME " driver");
2771 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772 MODULE_LICENSE("GPL");
2773