1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 /* 44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 45 * dm_io into one list, and reuse bio->bi_private as the list head. Before 46 * ending this fs bio, we will recover its ->bi_private. 47 */ 48 #define REQ_DM_POLL_LIST REQ_DRV 49 50 static const char *_name = DM_NAME; 51 52 static unsigned int major = 0; 53 static unsigned int _major = 0; 54 55 static DEFINE_IDR(_minor_idr); 56 57 static DEFINE_SPINLOCK(_minor_lock); 58 59 static void do_deferred_remove(struct work_struct *w); 60 61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 62 63 static struct workqueue_struct *deferred_remove_workqueue; 64 65 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 67 68 void dm_issue_global_event(void) 69 { 70 atomic_inc(&dm_global_event_nr); 71 wake_up(&dm_global_eventq); 72 } 73 74 DEFINE_STATIC_KEY_FALSE(stats_enabled); 75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 76 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 77 78 /* 79 * One of these is allocated (on-stack) per original bio. 80 */ 81 struct clone_info { 82 struct dm_table *map; 83 struct bio *bio; 84 struct dm_io *io; 85 sector_t sector; 86 unsigned sector_count; 87 bool is_abnormal_io:1; 88 bool submit_as_polled:1; 89 }; 90 91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 92 #define DM_IO_BIO_OFFSET \ 93 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 94 95 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 96 { 97 return container_of(clone, struct dm_target_io, clone); 98 } 99 100 void *dm_per_bio_data(struct bio *bio, size_t data_size) 101 { 102 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 103 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 104 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 105 } 106 EXPORT_SYMBOL_GPL(dm_per_bio_data); 107 108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 109 { 110 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 111 if (io->magic == DM_IO_MAGIC) 112 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 113 BUG_ON(io->magic != DM_TIO_MAGIC); 114 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 115 } 116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 117 118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 119 { 120 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 123 124 #define MINOR_ALLOCED ((void *)-1) 125 126 #define DM_NUMA_NODE NUMA_NO_NODE 127 static int dm_numa_node = DM_NUMA_NODE; 128 129 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 130 static int swap_bios = DEFAULT_SWAP_BIOS; 131 static int get_swap_bios(void) 132 { 133 int latch = READ_ONCE(swap_bios); 134 if (unlikely(latch <= 0)) 135 latch = DEFAULT_SWAP_BIOS; 136 return latch; 137 } 138 139 struct table_device { 140 struct list_head list; 141 refcount_t count; 142 struct dm_dev dm_dev; 143 }; 144 145 /* 146 * Bio-based DM's mempools' reserved IOs set by the user. 147 */ 148 #define RESERVED_BIO_BASED_IOS 16 149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 150 151 static int __dm_get_module_param_int(int *module_param, int min, int max) 152 { 153 int param = READ_ONCE(*module_param); 154 int modified_param = 0; 155 bool modified = true; 156 157 if (param < min) 158 modified_param = min; 159 else if (param > max) 160 modified_param = max; 161 else 162 modified = false; 163 164 if (modified) { 165 (void)cmpxchg(module_param, param, modified_param); 166 param = modified_param; 167 } 168 169 return param; 170 } 171 172 unsigned __dm_get_module_param(unsigned *module_param, 173 unsigned def, unsigned max) 174 { 175 unsigned param = READ_ONCE(*module_param); 176 unsigned modified_param = 0; 177 178 if (!param) 179 modified_param = def; 180 else if (param > max) 181 modified_param = max; 182 183 if (modified_param) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned dm_get_reserved_bio_based_ios(void) 192 { 193 return __dm_get_module_param(&reserved_bio_based_ios, 194 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 195 } 196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 197 198 static unsigned dm_get_numa_node(void) 199 { 200 return __dm_get_module_param_int(&dm_numa_node, 201 DM_NUMA_NODE, num_online_nodes() - 1); 202 } 203 204 static int __init local_init(void) 205 { 206 int r; 207 208 r = dm_uevent_init(); 209 if (r) 210 return r; 211 212 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 213 if (!deferred_remove_workqueue) { 214 r = -ENOMEM; 215 goto out_uevent_exit; 216 } 217 218 _major = major; 219 r = register_blkdev(_major, _name); 220 if (r < 0) 221 goto out_free_workqueue; 222 223 if (!_major) 224 _major = r; 225 226 return 0; 227 228 out_free_workqueue: 229 destroy_workqueue(deferred_remove_workqueue); 230 out_uevent_exit: 231 dm_uevent_exit(); 232 233 return r; 234 } 235 236 static void local_exit(void) 237 { 238 flush_scheduled_work(); 239 destroy_workqueue(deferred_remove_workqueue); 240 241 unregister_blkdev(_major, _name); 242 dm_uevent_exit(); 243 244 _major = 0; 245 246 DMINFO("cleaned up"); 247 } 248 249 static int (*_inits[])(void) __initdata = { 250 local_init, 251 dm_target_init, 252 dm_linear_init, 253 dm_stripe_init, 254 dm_io_init, 255 dm_kcopyd_init, 256 dm_interface_init, 257 dm_statistics_init, 258 }; 259 260 static void (*_exits[])(void) = { 261 local_exit, 262 dm_target_exit, 263 dm_linear_exit, 264 dm_stripe_exit, 265 dm_io_exit, 266 dm_kcopyd_exit, 267 dm_interface_exit, 268 dm_statistics_exit, 269 }; 270 271 static int __init dm_init(void) 272 { 273 const int count = ARRAY_SIZE(_inits); 274 int r, i; 275 276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 277 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 278 " Duplicate IMA measurements will not be recorded in the IMA log."); 279 #endif 280 281 for (i = 0; i < count; i++) { 282 r = _inits[i](); 283 if (r) 284 goto bad; 285 } 286 287 return 0; 288 bad: 289 while (i--) 290 _exits[i](); 291 292 return r; 293 } 294 295 static void __exit dm_exit(void) 296 { 297 int i = ARRAY_SIZE(_exits); 298 299 while (i--) 300 _exits[i](); 301 302 /* 303 * Should be empty by this point. 304 */ 305 idr_destroy(&_minor_idr); 306 } 307 308 /* 309 * Block device functions 310 */ 311 int dm_deleting_md(struct mapped_device *md) 312 { 313 return test_bit(DMF_DELETING, &md->flags); 314 } 315 316 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 317 { 318 struct mapped_device *md; 319 320 spin_lock(&_minor_lock); 321 322 md = bdev->bd_disk->private_data; 323 if (!md) 324 goto out; 325 326 if (test_bit(DMF_FREEING, &md->flags) || 327 dm_deleting_md(md)) { 328 md = NULL; 329 goto out; 330 } 331 332 dm_get(md); 333 atomic_inc(&md->open_count); 334 out: 335 spin_unlock(&_minor_lock); 336 337 return md ? 0 : -ENXIO; 338 } 339 340 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 341 { 342 struct mapped_device *md; 343 344 spin_lock(&_minor_lock); 345 346 md = disk->private_data; 347 if (WARN_ON(!md)) 348 goto out; 349 350 if (atomic_dec_and_test(&md->open_count) && 351 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 352 queue_work(deferred_remove_workqueue, &deferred_remove_work); 353 354 dm_put(md); 355 out: 356 spin_unlock(&_minor_lock); 357 } 358 359 int dm_open_count(struct mapped_device *md) 360 { 361 return atomic_read(&md->open_count); 362 } 363 364 /* 365 * Guarantees nothing is using the device before it's deleted. 366 */ 367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 368 { 369 int r = 0; 370 371 spin_lock(&_minor_lock); 372 373 if (dm_open_count(md)) { 374 r = -EBUSY; 375 if (mark_deferred) 376 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 377 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 378 r = -EEXIST; 379 else 380 set_bit(DMF_DELETING, &md->flags); 381 382 spin_unlock(&_minor_lock); 383 384 return r; 385 } 386 387 int dm_cancel_deferred_remove(struct mapped_device *md) 388 { 389 int r = 0; 390 391 spin_lock(&_minor_lock); 392 393 if (test_bit(DMF_DELETING, &md->flags)) 394 r = -EBUSY; 395 else 396 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 397 398 spin_unlock(&_minor_lock); 399 400 return r; 401 } 402 403 static void do_deferred_remove(struct work_struct *w) 404 { 405 dm_deferred_remove(); 406 } 407 408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 409 { 410 struct mapped_device *md = bdev->bd_disk->private_data; 411 412 return dm_get_geometry(md, geo); 413 } 414 415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 416 struct block_device **bdev) 417 { 418 struct dm_target *tgt; 419 struct dm_table *map; 420 int r; 421 422 retry: 423 r = -ENOTTY; 424 map = dm_get_live_table(md, srcu_idx); 425 if (!map || !dm_table_get_size(map)) 426 return r; 427 428 /* We only support devices that have a single target */ 429 if (dm_table_get_num_targets(map) != 1) 430 return r; 431 432 tgt = dm_table_get_target(map, 0); 433 if (!tgt->type->prepare_ioctl) 434 return r; 435 436 if (dm_suspended_md(md)) 437 return -EAGAIN; 438 439 r = tgt->type->prepare_ioctl(tgt, bdev); 440 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 441 dm_put_live_table(md, *srcu_idx); 442 msleep(10); 443 goto retry; 444 } 445 446 return r; 447 } 448 449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 450 { 451 dm_put_live_table(md, srcu_idx); 452 } 453 454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 455 unsigned int cmd, unsigned long arg) 456 { 457 struct mapped_device *md = bdev->bd_disk->private_data; 458 int r, srcu_idx; 459 460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 461 if (r < 0) 462 goto out; 463 464 if (r > 0) { 465 /* 466 * Target determined this ioctl is being issued against a 467 * subset of the parent bdev; require extra privileges. 468 */ 469 if (!capable(CAP_SYS_RAWIO)) { 470 DMDEBUG_LIMIT( 471 "%s: sending ioctl %x to DM device without required privilege.", 472 current->comm, cmd); 473 r = -ENOIOCTLCMD; 474 goto out; 475 } 476 } 477 478 if (!bdev->bd_disk->fops->ioctl) 479 r = -ENOTTY; 480 else 481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 482 out: 483 dm_unprepare_ioctl(md, srcu_idx); 484 return r; 485 } 486 487 u64 dm_start_time_ns_from_clone(struct bio *bio) 488 { 489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 490 } 491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 492 493 static bool bio_is_flush_with_data(struct bio *bio) 494 { 495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 496 } 497 498 static void dm_io_acct(struct dm_io *io, bool end) 499 { 500 struct dm_stats_aux *stats_aux = &io->stats_aux; 501 unsigned long start_time = io->start_time; 502 struct mapped_device *md = io->md; 503 struct bio *bio = io->orig_bio; 504 unsigned int sectors; 505 506 /* 507 * If REQ_PREFLUSH set, don't account payload, it will be 508 * submitted (and accounted) after this flush completes. 509 */ 510 if (bio_is_flush_with_data(bio)) 511 sectors = 0; 512 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT)))) 513 sectors = bio_sectors(bio); 514 else 515 sectors = io->sectors; 516 517 if (!end) 518 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio), 519 start_time); 520 else 521 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time); 522 523 if (static_branch_unlikely(&stats_enabled) && 524 unlikely(dm_stats_used(&md->stats))) { 525 sector_t sector; 526 527 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT))) 528 sector = bio->bi_iter.bi_sector; 529 else 530 sector = bio_end_sector(bio) - io->sector_offset; 531 532 dm_stats_account_io(&md->stats, bio_data_dir(bio), 533 sector, sectors, 534 end, start_time, stats_aux); 535 } 536 } 537 538 static void __dm_start_io_acct(struct dm_io *io) 539 { 540 dm_io_acct(io, false); 541 } 542 543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 544 { 545 /* 546 * Ensure IO accounting is only ever started once. 547 */ 548 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 549 return; 550 551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 553 dm_io_set_flag(io, DM_IO_ACCOUNTED); 554 } else { 555 unsigned long flags; 556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 557 spin_lock_irqsave(&io->lock, flags); 558 dm_io_set_flag(io, DM_IO_ACCOUNTED); 559 spin_unlock_irqrestore(&io->lock, flags); 560 } 561 562 __dm_start_io_acct(io); 563 } 564 565 static void dm_end_io_acct(struct dm_io *io) 566 { 567 dm_io_acct(io, true); 568 } 569 570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 571 { 572 struct dm_io *io; 573 struct dm_target_io *tio; 574 struct bio *clone; 575 576 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 577 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 578 clone->bi_bdev = md->disk->part0; 579 580 tio = clone_to_tio(clone); 581 tio->flags = 0; 582 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 583 tio->io = NULL; 584 585 io = container_of(tio, struct dm_io, tio); 586 io->magic = DM_IO_MAGIC; 587 io->status = BLK_STS_OK; 588 589 /* one ref is for submission, the other is for completion */ 590 atomic_set(&io->io_count, 2); 591 this_cpu_inc(*md->pending_io); 592 io->orig_bio = bio; 593 io->md = md; 594 spin_lock_init(&io->lock); 595 io->start_time = jiffies; 596 io->flags = 0; 597 598 if (static_branch_unlikely(&stats_enabled)) 599 dm_stats_record_start(&md->stats, &io->stats_aux); 600 601 return io; 602 } 603 604 static void free_io(struct dm_io *io) 605 { 606 bio_put(&io->tio.clone); 607 } 608 609 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 610 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 611 { 612 struct dm_target_io *tio; 613 struct bio *clone; 614 615 if (!ci->io->tio.io) { 616 /* the dm_target_io embedded in ci->io is available */ 617 tio = &ci->io->tio; 618 /* alloc_io() already initialized embedded clone */ 619 clone = &tio->clone; 620 } else { 621 struct mapped_device *md = ci->io->md; 622 623 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 624 &md->mempools->bs); 625 if (!clone) 626 return NULL; 627 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 628 clone->bi_bdev = md->disk->part0; 629 630 /* REQ_DM_POLL_LIST shouldn't be inherited */ 631 clone->bi_opf &= ~REQ_DM_POLL_LIST; 632 633 tio = clone_to_tio(clone); 634 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 635 } 636 637 tio->magic = DM_TIO_MAGIC; 638 tio->io = ci->io; 639 tio->ti = ti; 640 tio->target_bio_nr = target_bio_nr; 641 tio->len_ptr = len; 642 tio->old_sector = 0; 643 644 if (len) { 645 clone->bi_iter.bi_size = to_bytes(*len); 646 if (bio_integrity(clone)) 647 bio_integrity_trim(clone); 648 } 649 650 return clone; 651 } 652 653 static void free_tio(struct bio *clone) 654 { 655 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 656 return; 657 bio_put(clone); 658 } 659 660 /* 661 * Add the bio to the list of deferred io. 662 */ 663 static void queue_io(struct mapped_device *md, struct bio *bio) 664 { 665 unsigned long flags; 666 667 spin_lock_irqsave(&md->deferred_lock, flags); 668 bio_list_add(&md->deferred, bio); 669 spin_unlock_irqrestore(&md->deferred_lock, flags); 670 queue_work(md->wq, &md->work); 671 } 672 673 /* 674 * Everyone (including functions in this file), should use this 675 * function to access the md->map field, and make sure they call 676 * dm_put_live_table() when finished. 677 */ 678 struct dm_table *dm_get_live_table(struct mapped_device *md, 679 int *srcu_idx) __acquires(md->io_barrier) 680 { 681 *srcu_idx = srcu_read_lock(&md->io_barrier); 682 683 return srcu_dereference(md->map, &md->io_barrier); 684 } 685 686 void dm_put_live_table(struct mapped_device *md, 687 int srcu_idx) __releases(md->io_barrier) 688 { 689 srcu_read_unlock(&md->io_barrier, srcu_idx); 690 } 691 692 void dm_sync_table(struct mapped_device *md) 693 { 694 synchronize_srcu(&md->io_barrier); 695 synchronize_rcu_expedited(); 696 } 697 698 /* 699 * A fast alternative to dm_get_live_table/dm_put_live_table. 700 * The caller must not block between these two functions. 701 */ 702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 703 { 704 rcu_read_lock(); 705 return rcu_dereference(md->map); 706 } 707 708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 709 { 710 rcu_read_unlock(); 711 } 712 713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 714 int *srcu_idx, struct bio *bio) 715 { 716 if (bio->bi_opf & REQ_NOWAIT) 717 return dm_get_live_table_fast(md); 718 else 719 return dm_get_live_table(md, srcu_idx); 720 } 721 722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 723 struct bio *bio) 724 { 725 if (bio->bi_opf & REQ_NOWAIT) 726 dm_put_live_table_fast(md); 727 else 728 dm_put_live_table(md, srcu_idx); 729 } 730 731 static char *_dm_claim_ptr = "I belong to device-mapper"; 732 733 /* 734 * Open a table device so we can use it as a map destination. 735 */ 736 static int open_table_device(struct table_device *td, dev_t dev, 737 struct mapped_device *md) 738 { 739 struct block_device *bdev; 740 u64 part_off; 741 int r; 742 743 BUG_ON(td->dm_dev.bdev); 744 745 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 746 if (IS_ERR(bdev)) 747 return PTR_ERR(bdev); 748 749 r = bd_link_disk_holder(bdev, dm_disk(md)); 750 if (r) { 751 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 752 return r; 753 } 754 755 td->dm_dev.bdev = bdev; 756 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 757 return 0; 758 } 759 760 /* 761 * Close a table device that we've been using. 762 */ 763 static void close_table_device(struct table_device *td, struct mapped_device *md) 764 { 765 if (!td->dm_dev.bdev) 766 return; 767 768 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 769 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 770 put_dax(td->dm_dev.dax_dev); 771 td->dm_dev.bdev = NULL; 772 td->dm_dev.dax_dev = NULL; 773 } 774 775 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 776 fmode_t mode) 777 { 778 struct table_device *td; 779 780 list_for_each_entry(td, l, list) 781 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 782 return td; 783 784 return NULL; 785 } 786 787 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 788 struct dm_dev **result) 789 { 790 int r; 791 struct table_device *td; 792 793 mutex_lock(&md->table_devices_lock); 794 td = find_table_device(&md->table_devices, dev, mode); 795 if (!td) { 796 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 797 if (!td) { 798 mutex_unlock(&md->table_devices_lock); 799 return -ENOMEM; 800 } 801 802 td->dm_dev.mode = mode; 803 td->dm_dev.bdev = NULL; 804 805 if ((r = open_table_device(td, dev, md))) { 806 mutex_unlock(&md->table_devices_lock); 807 kfree(td); 808 return r; 809 } 810 811 format_dev_t(td->dm_dev.name, dev); 812 813 refcount_set(&td->count, 1); 814 list_add(&td->list, &md->table_devices); 815 } else { 816 refcount_inc(&td->count); 817 } 818 mutex_unlock(&md->table_devices_lock); 819 820 *result = &td->dm_dev; 821 return 0; 822 } 823 824 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 825 { 826 struct table_device *td = container_of(d, struct table_device, dm_dev); 827 828 mutex_lock(&md->table_devices_lock); 829 if (refcount_dec_and_test(&td->count)) { 830 close_table_device(td, md); 831 list_del(&td->list); 832 kfree(td); 833 } 834 mutex_unlock(&md->table_devices_lock); 835 } 836 837 static void free_table_devices(struct list_head *devices) 838 { 839 struct list_head *tmp, *next; 840 841 list_for_each_safe(tmp, next, devices) { 842 struct table_device *td = list_entry(tmp, struct table_device, list); 843 844 DMWARN("dm_destroy: %s still exists with %d references", 845 td->dm_dev.name, refcount_read(&td->count)); 846 kfree(td); 847 } 848 } 849 850 /* 851 * Get the geometry associated with a dm device 852 */ 853 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 854 { 855 *geo = md->geometry; 856 857 return 0; 858 } 859 860 /* 861 * Set the geometry of a device. 862 */ 863 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 864 { 865 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 866 867 if (geo->start > sz) { 868 DMWARN("Start sector is beyond the geometry limits."); 869 return -EINVAL; 870 } 871 872 md->geometry = *geo; 873 874 return 0; 875 } 876 877 static int __noflush_suspending(struct mapped_device *md) 878 { 879 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 880 } 881 882 static void dm_io_complete(struct dm_io *io) 883 { 884 blk_status_t io_error; 885 struct mapped_device *md = io->md; 886 struct bio *bio = io->orig_bio; 887 888 if (io->status == BLK_STS_DM_REQUEUE) { 889 unsigned long flags; 890 /* 891 * Target requested pushing back the I/O. 892 */ 893 spin_lock_irqsave(&md->deferred_lock, flags); 894 if (__noflush_suspending(md) && 895 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 896 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 897 bio_list_add_head(&md->deferred, bio); 898 } else { 899 /* 900 * noflush suspend was interrupted or this is 901 * a write to a zoned target. 902 */ 903 io->status = BLK_STS_IOERR; 904 } 905 spin_unlock_irqrestore(&md->deferred_lock, flags); 906 } 907 908 io_error = io->status; 909 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 910 dm_end_io_acct(io); 911 else if (!io_error) { 912 /* 913 * Must handle target that DM_MAPIO_SUBMITTED only to 914 * then bio_endio() rather than dm_submit_bio_remap() 915 */ 916 __dm_start_io_acct(io); 917 dm_end_io_acct(io); 918 } 919 free_io(io); 920 smp_wmb(); 921 this_cpu_dec(*md->pending_io); 922 923 /* nudge anyone waiting on suspend queue */ 924 if (unlikely(wq_has_sleeper(&md->wait))) 925 wake_up(&md->wait); 926 927 if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) { 928 if (bio->bi_opf & REQ_POLLED) { 929 /* 930 * Upper layer won't help us poll split bio (io->orig_bio 931 * may only reflect a subset of the pre-split original) 932 * so clear REQ_POLLED in case of requeue. 933 */ 934 bio_clear_polled(bio); 935 if (io_error == BLK_STS_AGAIN) { 936 /* io_uring doesn't handle BLK_STS_AGAIN (yet) */ 937 queue_io(md, bio); 938 } 939 } 940 return; 941 } 942 943 if (bio_is_flush_with_data(bio)) { 944 /* 945 * Preflush done for flush with data, reissue 946 * without REQ_PREFLUSH. 947 */ 948 bio->bi_opf &= ~REQ_PREFLUSH; 949 queue_io(md, bio); 950 } else { 951 /* done with normal IO or empty flush */ 952 if (io_error) 953 bio->bi_status = io_error; 954 bio_endio(bio); 955 } 956 } 957 958 /* 959 * Decrements the number of outstanding ios that a bio has been 960 * cloned into, completing the original io if necc. 961 */ 962 static inline void __dm_io_dec_pending(struct dm_io *io) 963 { 964 if (atomic_dec_and_test(&io->io_count)) 965 dm_io_complete(io); 966 } 967 968 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 969 { 970 unsigned long flags; 971 972 /* Push-back supersedes any I/O errors */ 973 spin_lock_irqsave(&io->lock, flags); 974 if (!(io->status == BLK_STS_DM_REQUEUE && 975 __noflush_suspending(io->md))) { 976 io->status = error; 977 } 978 spin_unlock_irqrestore(&io->lock, flags); 979 } 980 981 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 982 { 983 if (unlikely(error)) 984 dm_io_set_error(io, error); 985 986 __dm_io_dec_pending(io); 987 } 988 989 void disable_discard(struct mapped_device *md) 990 { 991 struct queue_limits *limits = dm_get_queue_limits(md); 992 993 /* device doesn't really support DISCARD, disable it */ 994 limits->max_discard_sectors = 0; 995 } 996 997 void disable_write_zeroes(struct mapped_device *md) 998 { 999 struct queue_limits *limits = dm_get_queue_limits(md); 1000 1001 /* device doesn't really support WRITE ZEROES, disable it */ 1002 limits->max_write_zeroes_sectors = 0; 1003 } 1004 1005 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1006 { 1007 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1008 } 1009 1010 static void clone_endio(struct bio *bio) 1011 { 1012 blk_status_t error = bio->bi_status; 1013 struct dm_target_io *tio = clone_to_tio(bio); 1014 struct dm_target *ti = tio->ti; 1015 dm_endio_fn endio = ti->type->end_io; 1016 struct dm_io *io = tio->io; 1017 struct mapped_device *md = io->md; 1018 1019 if (unlikely(error == BLK_STS_TARGET)) { 1020 if (bio_op(bio) == REQ_OP_DISCARD && 1021 !bdev_max_discard_sectors(bio->bi_bdev)) 1022 disable_discard(md); 1023 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1024 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1025 disable_write_zeroes(md); 1026 } 1027 1028 if (static_branch_unlikely(&zoned_enabled) && 1029 unlikely(blk_queue_is_zoned(bdev_get_queue(bio->bi_bdev)))) 1030 dm_zone_endio(io, bio); 1031 1032 if (endio) { 1033 int r = endio(ti, bio, &error); 1034 switch (r) { 1035 case DM_ENDIO_REQUEUE: 1036 if (static_branch_unlikely(&zoned_enabled)) { 1037 /* 1038 * Requeuing writes to a sequential zone of a zoned 1039 * target will break the sequential write pattern: 1040 * fail such IO. 1041 */ 1042 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1043 error = BLK_STS_IOERR; 1044 else 1045 error = BLK_STS_DM_REQUEUE; 1046 } else 1047 error = BLK_STS_DM_REQUEUE; 1048 fallthrough; 1049 case DM_ENDIO_DONE: 1050 break; 1051 case DM_ENDIO_INCOMPLETE: 1052 /* The target will handle the io */ 1053 return; 1054 default: 1055 DMWARN("unimplemented target endio return value: %d", r); 1056 BUG(); 1057 } 1058 } 1059 1060 if (static_branch_unlikely(&swap_bios_enabled) && 1061 unlikely(swap_bios_limit(ti, bio))) 1062 up(&md->swap_bios_semaphore); 1063 1064 free_tio(bio); 1065 dm_io_dec_pending(io, error); 1066 } 1067 1068 /* 1069 * Return maximum size of I/O possible at the supplied sector up to the current 1070 * target boundary. 1071 */ 1072 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1073 sector_t target_offset) 1074 { 1075 return ti->len - target_offset; 1076 } 1077 1078 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 1079 { 1080 sector_t target_offset = dm_target_offset(ti, sector); 1081 sector_t len = max_io_len_target_boundary(ti, target_offset); 1082 sector_t max_len; 1083 1084 /* 1085 * Does the target need to split IO even further? 1086 * - varied (per target) IO splitting is a tenet of DM; this 1087 * explains why stacked chunk_sectors based splitting via 1088 * blk_max_size_offset() isn't possible here. So pass in 1089 * ti->max_io_len to override stacked chunk_sectors. 1090 */ 1091 if (ti->max_io_len) { 1092 max_len = blk_max_size_offset(ti->table->md->queue, 1093 target_offset, ti->max_io_len); 1094 if (len > max_len) 1095 len = max_len; 1096 } 1097 1098 return len; 1099 } 1100 1101 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1102 { 1103 if (len > UINT_MAX) { 1104 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1105 (unsigned long long)len, UINT_MAX); 1106 ti->error = "Maximum size of target IO is too large"; 1107 return -EINVAL; 1108 } 1109 1110 ti->max_io_len = (uint32_t) len; 1111 1112 return 0; 1113 } 1114 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1115 1116 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1117 sector_t sector, int *srcu_idx) 1118 __acquires(md->io_barrier) 1119 { 1120 struct dm_table *map; 1121 struct dm_target *ti; 1122 1123 map = dm_get_live_table(md, srcu_idx); 1124 if (!map) 1125 return NULL; 1126 1127 ti = dm_table_find_target(map, sector); 1128 if (!ti) 1129 return NULL; 1130 1131 return ti; 1132 } 1133 1134 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1135 long nr_pages, enum dax_access_mode mode, void **kaddr, 1136 pfn_t *pfn) 1137 { 1138 struct mapped_device *md = dax_get_private(dax_dev); 1139 sector_t sector = pgoff * PAGE_SECTORS; 1140 struct dm_target *ti; 1141 long len, ret = -EIO; 1142 int srcu_idx; 1143 1144 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1145 1146 if (!ti) 1147 goto out; 1148 if (!ti->type->direct_access) 1149 goto out; 1150 len = max_io_len(ti, sector) / PAGE_SECTORS; 1151 if (len < 1) 1152 goto out; 1153 nr_pages = min(len, nr_pages); 1154 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1155 1156 out: 1157 dm_put_live_table(md, srcu_idx); 1158 1159 return ret; 1160 } 1161 1162 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1163 size_t nr_pages) 1164 { 1165 struct mapped_device *md = dax_get_private(dax_dev); 1166 sector_t sector = pgoff * PAGE_SECTORS; 1167 struct dm_target *ti; 1168 int ret = -EIO; 1169 int srcu_idx; 1170 1171 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1172 1173 if (!ti) 1174 goto out; 1175 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1176 /* 1177 * ->zero_page_range() is mandatory dax operation. If we are 1178 * here, something is wrong. 1179 */ 1180 goto out; 1181 } 1182 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1183 out: 1184 dm_put_live_table(md, srcu_idx); 1185 1186 return ret; 1187 } 1188 1189 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1190 void *addr, size_t bytes, struct iov_iter *i) 1191 { 1192 struct mapped_device *md = dax_get_private(dax_dev); 1193 sector_t sector = pgoff * PAGE_SECTORS; 1194 struct dm_target *ti; 1195 int srcu_idx; 1196 long ret = 0; 1197 1198 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1199 if (!ti || !ti->type->dax_recovery_write) 1200 goto out; 1201 1202 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1203 out: 1204 dm_put_live_table(md, srcu_idx); 1205 return ret; 1206 } 1207 1208 /* 1209 * A target may call dm_accept_partial_bio only from the map routine. It is 1210 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1211 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1212 * __send_duplicate_bios(). 1213 * 1214 * dm_accept_partial_bio informs the dm that the target only wants to process 1215 * additional n_sectors sectors of the bio and the rest of the data should be 1216 * sent in a next bio. 1217 * 1218 * A diagram that explains the arithmetics: 1219 * +--------------------+---------------+-------+ 1220 * | 1 | 2 | 3 | 1221 * +--------------------+---------------+-------+ 1222 * 1223 * <-------------- *tio->len_ptr ---------------> 1224 * <----- bio_sectors -----> 1225 * <-- n_sectors --> 1226 * 1227 * Region 1 was already iterated over with bio_advance or similar function. 1228 * (it may be empty if the target doesn't use bio_advance) 1229 * Region 2 is the remaining bio size that the target wants to process. 1230 * (it may be empty if region 1 is non-empty, although there is no reason 1231 * to make it empty) 1232 * The target requires that region 3 is to be sent in the next bio. 1233 * 1234 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1235 * the partially processed part (the sum of regions 1+2) must be the same for all 1236 * copies of the bio. 1237 */ 1238 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1239 { 1240 struct dm_target_io *tio = clone_to_tio(bio); 1241 unsigned bio_sectors = bio_sectors(bio); 1242 1243 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1244 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1245 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1246 BUG_ON(bio_sectors > *tio->len_ptr); 1247 BUG_ON(n_sectors > bio_sectors); 1248 1249 *tio->len_ptr -= bio_sectors - n_sectors; 1250 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1251 1252 /* 1253 * __split_and_process_bio() may have already saved mapped part 1254 * for accounting but it is being reduced so update accordingly. 1255 */ 1256 dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT); 1257 tio->io->sectors = n_sectors; 1258 } 1259 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1260 1261 /* 1262 * @clone: clone bio that DM core passed to target's .map function 1263 * @tgt_clone: clone of @clone bio that target needs submitted 1264 * 1265 * Targets should use this interface to submit bios they take 1266 * ownership of when returning DM_MAPIO_SUBMITTED. 1267 * 1268 * Target should also enable ti->accounts_remapped_io 1269 */ 1270 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1271 { 1272 struct dm_target_io *tio = clone_to_tio(clone); 1273 struct dm_io *io = tio->io; 1274 1275 /* establish bio that will get submitted */ 1276 if (!tgt_clone) 1277 tgt_clone = clone; 1278 1279 /* 1280 * Account io->origin_bio to DM dev on behalf of target 1281 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1282 */ 1283 dm_start_io_acct(io, clone); 1284 1285 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1286 tio->old_sector); 1287 submit_bio_noacct(tgt_clone); 1288 } 1289 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1290 1291 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1292 { 1293 mutex_lock(&md->swap_bios_lock); 1294 while (latch < md->swap_bios) { 1295 cond_resched(); 1296 down(&md->swap_bios_semaphore); 1297 md->swap_bios--; 1298 } 1299 while (latch > md->swap_bios) { 1300 cond_resched(); 1301 up(&md->swap_bios_semaphore); 1302 md->swap_bios++; 1303 } 1304 mutex_unlock(&md->swap_bios_lock); 1305 } 1306 1307 static void __map_bio(struct bio *clone) 1308 { 1309 struct dm_target_io *tio = clone_to_tio(clone); 1310 struct dm_target *ti = tio->ti; 1311 struct dm_io *io = tio->io; 1312 struct mapped_device *md = io->md; 1313 int r; 1314 1315 clone->bi_end_io = clone_endio; 1316 1317 /* 1318 * Map the clone. 1319 */ 1320 tio->old_sector = clone->bi_iter.bi_sector; 1321 1322 if (static_branch_unlikely(&swap_bios_enabled) && 1323 unlikely(swap_bios_limit(ti, clone))) { 1324 int latch = get_swap_bios(); 1325 if (unlikely(latch != md->swap_bios)) 1326 __set_swap_bios_limit(md, latch); 1327 down(&md->swap_bios_semaphore); 1328 } 1329 1330 if (static_branch_unlikely(&zoned_enabled)) { 1331 /* 1332 * Check if the IO needs a special mapping due to zone append 1333 * emulation on zoned target. In this case, dm_zone_map_bio() 1334 * calls the target map operation. 1335 */ 1336 if (unlikely(dm_emulate_zone_append(md))) 1337 r = dm_zone_map_bio(tio); 1338 else 1339 r = ti->type->map(ti, clone); 1340 } else 1341 r = ti->type->map(ti, clone); 1342 1343 switch (r) { 1344 case DM_MAPIO_SUBMITTED: 1345 /* target has assumed ownership of this io */ 1346 if (!ti->accounts_remapped_io) 1347 dm_start_io_acct(io, clone); 1348 break; 1349 case DM_MAPIO_REMAPPED: 1350 dm_submit_bio_remap(clone, NULL); 1351 break; 1352 case DM_MAPIO_KILL: 1353 case DM_MAPIO_REQUEUE: 1354 if (static_branch_unlikely(&swap_bios_enabled) && 1355 unlikely(swap_bios_limit(ti, clone))) 1356 up(&md->swap_bios_semaphore); 1357 free_tio(clone); 1358 if (r == DM_MAPIO_KILL) 1359 dm_io_dec_pending(io, BLK_STS_IOERR); 1360 else 1361 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1362 break; 1363 default: 1364 DMWARN("unimplemented target map return value: %d", r); 1365 BUG(); 1366 } 1367 } 1368 1369 static void setup_split_accounting(struct clone_info *ci, unsigned len) 1370 { 1371 struct dm_io *io = ci->io; 1372 1373 if (ci->sector_count > len) { 1374 /* 1375 * Split needed, save the mapped part for accounting. 1376 * NOTE: dm_accept_partial_bio() will update accordingly. 1377 */ 1378 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1379 io->sectors = len; 1380 } 1381 1382 if (static_branch_unlikely(&stats_enabled) && 1383 unlikely(dm_stats_used(&io->md->stats))) { 1384 /* 1385 * Save bi_sector in terms of its offset from end of 1386 * original bio, only needed for DM-stats' benefit. 1387 * - saved regardless of whether split needed so that 1388 * dm_accept_partial_bio() doesn't need to. 1389 */ 1390 io->sector_offset = bio_end_sector(ci->bio) - ci->sector; 1391 } 1392 } 1393 1394 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1395 struct dm_target *ti, unsigned num_bios) 1396 { 1397 struct bio *bio; 1398 int try; 1399 1400 for (try = 0; try < 2; try++) { 1401 int bio_nr; 1402 1403 if (try) 1404 mutex_lock(&ci->io->md->table_devices_lock); 1405 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1406 bio = alloc_tio(ci, ti, bio_nr, NULL, 1407 try ? GFP_NOIO : GFP_NOWAIT); 1408 if (!bio) 1409 break; 1410 1411 bio_list_add(blist, bio); 1412 } 1413 if (try) 1414 mutex_unlock(&ci->io->md->table_devices_lock); 1415 if (bio_nr == num_bios) 1416 return; 1417 1418 while ((bio = bio_list_pop(blist))) 1419 free_tio(bio); 1420 } 1421 } 1422 1423 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1424 unsigned num_bios, unsigned *len) 1425 { 1426 struct bio_list blist = BIO_EMPTY_LIST; 1427 struct bio *clone; 1428 int ret = 0; 1429 1430 switch (num_bios) { 1431 case 0: 1432 break; 1433 case 1: 1434 if (len) 1435 setup_split_accounting(ci, *len); 1436 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1437 __map_bio(clone); 1438 ret = 1; 1439 break; 1440 default: 1441 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1442 alloc_multiple_bios(&blist, ci, ti, num_bios); 1443 while ((clone = bio_list_pop(&blist))) { 1444 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1445 __map_bio(clone); 1446 ret += 1; 1447 } 1448 break; 1449 } 1450 1451 return ret; 1452 } 1453 1454 static void __send_empty_flush(struct clone_info *ci) 1455 { 1456 unsigned target_nr = 0; 1457 struct dm_target *ti; 1458 struct bio flush_bio; 1459 1460 /* 1461 * Use an on-stack bio for this, it's safe since we don't 1462 * need to reference it after submit. It's just used as 1463 * the basis for the clone(s). 1464 */ 1465 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1466 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1467 1468 ci->bio = &flush_bio; 1469 ci->sector_count = 0; 1470 ci->io->tio.clone.bi_iter.bi_size = 0; 1471 1472 while ((ti = dm_table_get_target(ci->map, target_nr++))) { 1473 int bios; 1474 1475 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1476 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1477 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1478 } 1479 1480 /* 1481 * alloc_io() takes one extra reference for submission, so the 1482 * reference won't reach 0 without the following subtraction 1483 */ 1484 atomic_sub(1, &ci->io->io_count); 1485 1486 bio_uninit(ci->bio); 1487 } 1488 1489 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1490 unsigned num_bios) 1491 { 1492 unsigned len; 1493 int bios; 1494 1495 len = min_t(sector_t, ci->sector_count, 1496 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1497 1498 atomic_add(num_bios, &ci->io->io_count); 1499 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1500 /* 1501 * alloc_io() takes one extra reference for submission, so the 1502 * reference won't reach 0 without the following (+1) subtraction 1503 */ 1504 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1505 1506 ci->sector += len; 1507 ci->sector_count -= len; 1508 } 1509 1510 static bool is_abnormal_io(struct bio *bio) 1511 { 1512 unsigned int op = bio_op(bio); 1513 1514 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1515 switch (op) { 1516 case REQ_OP_DISCARD: 1517 case REQ_OP_SECURE_ERASE: 1518 case REQ_OP_WRITE_ZEROES: 1519 return true; 1520 default: 1521 break; 1522 } 1523 } 1524 1525 return false; 1526 } 1527 1528 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1529 struct dm_target *ti) 1530 { 1531 unsigned num_bios = 0; 1532 1533 switch (bio_op(ci->bio)) { 1534 case REQ_OP_DISCARD: 1535 num_bios = ti->num_discard_bios; 1536 break; 1537 case REQ_OP_SECURE_ERASE: 1538 num_bios = ti->num_secure_erase_bios; 1539 break; 1540 case REQ_OP_WRITE_ZEROES: 1541 num_bios = ti->num_write_zeroes_bios; 1542 break; 1543 } 1544 1545 /* 1546 * Even though the device advertised support for this type of 1547 * request, that does not mean every target supports it, and 1548 * reconfiguration might also have changed that since the 1549 * check was performed. 1550 */ 1551 if (unlikely(!num_bios)) 1552 return BLK_STS_NOTSUPP; 1553 1554 __send_changing_extent_only(ci, ti, num_bios); 1555 return BLK_STS_OK; 1556 } 1557 1558 /* 1559 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1560 * associated with this bio, and this bio's bi_private needs to be 1561 * stored in dm_io->data before the reuse. 1562 * 1563 * bio->bi_private is owned by fs or upper layer, so block layer won't 1564 * touch it after splitting. Meantime it won't be changed by anyone after 1565 * bio is submitted. So this reuse is safe. 1566 */ 1567 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1568 { 1569 return (struct dm_io **)&bio->bi_private; 1570 } 1571 1572 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1573 { 1574 struct dm_io **head = dm_poll_list_head(bio); 1575 1576 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1577 bio->bi_opf |= REQ_DM_POLL_LIST; 1578 /* 1579 * Save .bi_private into dm_io, so that we can reuse 1580 * .bi_private as dm_io list head for storing dm_io list 1581 */ 1582 io->data = bio->bi_private; 1583 1584 /* tell block layer to poll for completion */ 1585 bio->bi_cookie = ~BLK_QC_T_NONE; 1586 1587 io->next = NULL; 1588 } else { 1589 /* 1590 * bio recursed due to split, reuse original poll list, 1591 * and save bio->bi_private too. 1592 */ 1593 io->data = (*head)->data; 1594 io->next = *head; 1595 } 1596 1597 *head = io; 1598 } 1599 1600 /* 1601 * Select the correct strategy for processing a non-flush bio. 1602 */ 1603 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1604 { 1605 struct bio *clone; 1606 struct dm_target *ti; 1607 unsigned len; 1608 1609 ti = dm_table_find_target(ci->map, ci->sector); 1610 if (unlikely(!ti)) 1611 return BLK_STS_IOERR; 1612 else if (unlikely(ci->is_abnormal_io)) 1613 return __process_abnormal_io(ci, ti); 1614 1615 /* 1616 * Only support bio polling for normal IO, and the target io is 1617 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1618 */ 1619 ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED; 1620 1621 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1622 setup_split_accounting(ci, len); 1623 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1624 __map_bio(clone); 1625 1626 ci->sector += len; 1627 ci->sector_count -= len; 1628 1629 return BLK_STS_OK; 1630 } 1631 1632 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1633 struct dm_table *map, struct bio *bio, bool is_abnormal) 1634 { 1635 ci->map = map; 1636 ci->io = alloc_io(md, bio); 1637 ci->bio = bio; 1638 ci->is_abnormal_io = is_abnormal; 1639 ci->submit_as_polled = false; 1640 ci->sector = bio->bi_iter.bi_sector; 1641 ci->sector_count = bio_sectors(bio); 1642 1643 /* Shouldn't happen but sector_count was being set to 0 so... */ 1644 if (static_branch_unlikely(&zoned_enabled) && 1645 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1646 ci->sector_count = 0; 1647 } 1648 1649 /* 1650 * Entry point to split a bio into clones and submit them to the targets. 1651 */ 1652 static void dm_split_and_process_bio(struct mapped_device *md, 1653 struct dm_table *map, struct bio *bio) 1654 { 1655 struct clone_info ci; 1656 struct dm_io *io; 1657 blk_status_t error = BLK_STS_OK; 1658 bool is_abnormal; 1659 1660 is_abnormal = is_abnormal_io(bio); 1661 if (unlikely(is_abnormal)) { 1662 /* 1663 * Use blk_queue_split() for abnormal IO (e.g. discard, etc) 1664 * otherwise associated queue_limits won't be imposed. 1665 */ 1666 blk_queue_split(&bio); 1667 } 1668 1669 init_clone_info(&ci, md, map, bio, is_abnormal); 1670 io = ci.io; 1671 1672 if (bio->bi_opf & REQ_PREFLUSH) { 1673 __send_empty_flush(&ci); 1674 /* dm_io_complete submits any data associated with flush */ 1675 goto out; 1676 } 1677 1678 error = __split_and_process_bio(&ci); 1679 if (error || !ci.sector_count) 1680 goto out; 1681 /* 1682 * Remainder must be passed to submit_bio_noacct() so it gets handled 1683 * *after* bios already submitted have been completely processed. 1684 */ 1685 bio_trim(bio, io->sectors, ci.sector_count); 1686 trace_block_split(bio, bio->bi_iter.bi_sector); 1687 bio_inc_remaining(bio); 1688 submit_bio_noacct(bio); 1689 out: 1690 /* 1691 * Drop the extra reference count for non-POLLED bio, and hold one 1692 * reference for POLLED bio, which will be released in dm_poll_bio 1693 * 1694 * Add every dm_io instance into the dm_io list head which is stored 1695 * in bio->bi_private, so that dm_poll_bio can poll them all. 1696 */ 1697 if (error || !ci.submit_as_polled) { 1698 /* 1699 * In case of submission failure, the extra reference for 1700 * submitting io isn't consumed yet 1701 */ 1702 if (error) 1703 atomic_dec(&io->io_count); 1704 dm_io_dec_pending(io, error); 1705 } else 1706 dm_queue_poll_io(bio, io); 1707 } 1708 1709 static void dm_submit_bio(struct bio *bio) 1710 { 1711 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1712 int srcu_idx; 1713 struct dm_table *map; 1714 1715 map = dm_get_live_table_bio(md, &srcu_idx, bio); 1716 1717 /* If suspended, or map not yet available, queue this IO for later */ 1718 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1719 unlikely(!map)) { 1720 if (bio->bi_opf & REQ_NOWAIT) 1721 bio_wouldblock_error(bio); 1722 else if (bio->bi_opf & REQ_RAHEAD) 1723 bio_io_error(bio); 1724 else 1725 queue_io(md, bio); 1726 goto out; 1727 } 1728 1729 dm_split_and_process_bio(md, map, bio); 1730 out: 1731 dm_put_live_table_bio(md, srcu_idx, bio); 1732 } 1733 1734 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1735 unsigned int flags) 1736 { 1737 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1738 1739 /* don't poll if the mapped io is done */ 1740 if (atomic_read(&io->io_count) > 1) 1741 bio_poll(&io->tio.clone, iob, flags); 1742 1743 /* bio_poll holds the last reference */ 1744 return atomic_read(&io->io_count) == 1; 1745 } 1746 1747 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1748 unsigned int flags) 1749 { 1750 struct dm_io **head = dm_poll_list_head(bio); 1751 struct dm_io *list = *head; 1752 struct dm_io *tmp = NULL; 1753 struct dm_io *curr, *next; 1754 1755 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1756 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1757 return 0; 1758 1759 WARN_ON_ONCE(!list); 1760 1761 /* 1762 * Restore .bi_private before possibly completing dm_io. 1763 * 1764 * bio_poll() is only possible once @bio has been completely 1765 * submitted via submit_bio_noacct()'s depth-first submission. 1766 * So there is no dm_queue_poll_io() race associated with 1767 * clearing REQ_DM_POLL_LIST here. 1768 */ 1769 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1770 bio->bi_private = list->data; 1771 1772 for (curr = list, next = curr->next; curr; curr = next, next = 1773 curr ? curr->next : NULL) { 1774 if (dm_poll_dm_io(curr, iob, flags)) { 1775 /* 1776 * clone_endio() has already occurred, so no 1777 * error handling is needed here. 1778 */ 1779 __dm_io_dec_pending(curr); 1780 } else { 1781 curr->next = tmp; 1782 tmp = curr; 1783 } 1784 } 1785 1786 /* Not done? */ 1787 if (tmp) { 1788 bio->bi_opf |= REQ_DM_POLL_LIST; 1789 /* Reset bio->bi_private to dm_io list head */ 1790 *head = tmp; 1791 return 0; 1792 } 1793 return 1; 1794 } 1795 1796 /*----------------------------------------------------------------- 1797 * An IDR is used to keep track of allocated minor numbers. 1798 *---------------------------------------------------------------*/ 1799 static void free_minor(int minor) 1800 { 1801 spin_lock(&_minor_lock); 1802 idr_remove(&_minor_idr, minor); 1803 spin_unlock(&_minor_lock); 1804 } 1805 1806 /* 1807 * See if the device with a specific minor # is free. 1808 */ 1809 static int specific_minor(int minor) 1810 { 1811 int r; 1812 1813 if (minor >= (1 << MINORBITS)) 1814 return -EINVAL; 1815 1816 idr_preload(GFP_KERNEL); 1817 spin_lock(&_minor_lock); 1818 1819 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1820 1821 spin_unlock(&_minor_lock); 1822 idr_preload_end(); 1823 if (r < 0) 1824 return r == -ENOSPC ? -EBUSY : r; 1825 return 0; 1826 } 1827 1828 static int next_free_minor(int *minor) 1829 { 1830 int r; 1831 1832 idr_preload(GFP_KERNEL); 1833 spin_lock(&_minor_lock); 1834 1835 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1836 1837 spin_unlock(&_minor_lock); 1838 idr_preload_end(); 1839 if (r < 0) 1840 return r; 1841 *minor = r; 1842 return 0; 1843 } 1844 1845 static const struct block_device_operations dm_blk_dops; 1846 static const struct block_device_operations dm_rq_blk_dops; 1847 static const struct dax_operations dm_dax_ops; 1848 1849 static void dm_wq_work(struct work_struct *work); 1850 1851 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1852 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1853 { 1854 dm_destroy_crypto_profile(q->crypto_profile); 1855 } 1856 1857 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1858 1859 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1860 { 1861 } 1862 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1863 1864 static void cleanup_mapped_device(struct mapped_device *md) 1865 { 1866 if (md->wq) 1867 destroy_workqueue(md->wq); 1868 dm_free_md_mempools(md->mempools); 1869 1870 if (md->dax_dev) { 1871 dax_remove_host(md->disk); 1872 kill_dax(md->dax_dev); 1873 put_dax(md->dax_dev); 1874 md->dax_dev = NULL; 1875 } 1876 1877 dm_cleanup_zoned_dev(md); 1878 if (md->disk) { 1879 spin_lock(&_minor_lock); 1880 md->disk->private_data = NULL; 1881 spin_unlock(&_minor_lock); 1882 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1883 dm_sysfs_exit(md); 1884 del_gendisk(md->disk); 1885 } 1886 dm_queue_destroy_crypto_profile(md->queue); 1887 blk_cleanup_disk(md->disk); 1888 } 1889 1890 if (md->pending_io) { 1891 free_percpu(md->pending_io); 1892 md->pending_io = NULL; 1893 } 1894 1895 cleanup_srcu_struct(&md->io_barrier); 1896 1897 mutex_destroy(&md->suspend_lock); 1898 mutex_destroy(&md->type_lock); 1899 mutex_destroy(&md->table_devices_lock); 1900 mutex_destroy(&md->swap_bios_lock); 1901 1902 dm_mq_cleanup_mapped_device(md); 1903 } 1904 1905 /* 1906 * Allocate and initialise a blank device with a given minor. 1907 */ 1908 static struct mapped_device *alloc_dev(int minor) 1909 { 1910 int r, numa_node_id = dm_get_numa_node(); 1911 struct mapped_device *md; 1912 void *old_md; 1913 1914 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1915 if (!md) { 1916 DMWARN("unable to allocate device, out of memory."); 1917 return NULL; 1918 } 1919 1920 if (!try_module_get(THIS_MODULE)) 1921 goto bad_module_get; 1922 1923 /* get a minor number for the dev */ 1924 if (minor == DM_ANY_MINOR) 1925 r = next_free_minor(&minor); 1926 else 1927 r = specific_minor(minor); 1928 if (r < 0) 1929 goto bad_minor; 1930 1931 r = init_srcu_struct(&md->io_barrier); 1932 if (r < 0) 1933 goto bad_io_barrier; 1934 1935 md->numa_node_id = numa_node_id; 1936 md->init_tio_pdu = false; 1937 md->type = DM_TYPE_NONE; 1938 mutex_init(&md->suspend_lock); 1939 mutex_init(&md->type_lock); 1940 mutex_init(&md->table_devices_lock); 1941 spin_lock_init(&md->deferred_lock); 1942 atomic_set(&md->holders, 1); 1943 atomic_set(&md->open_count, 0); 1944 atomic_set(&md->event_nr, 0); 1945 atomic_set(&md->uevent_seq, 0); 1946 INIT_LIST_HEAD(&md->uevent_list); 1947 INIT_LIST_HEAD(&md->table_devices); 1948 spin_lock_init(&md->uevent_lock); 1949 1950 /* 1951 * default to bio-based until DM table is loaded and md->type 1952 * established. If request-based table is loaded: blk-mq will 1953 * override accordingly. 1954 */ 1955 md->disk = blk_alloc_disk(md->numa_node_id); 1956 if (!md->disk) 1957 goto bad; 1958 md->queue = md->disk->queue; 1959 1960 init_waitqueue_head(&md->wait); 1961 INIT_WORK(&md->work, dm_wq_work); 1962 init_waitqueue_head(&md->eventq); 1963 init_completion(&md->kobj_holder.completion); 1964 1965 md->swap_bios = get_swap_bios(); 1966 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1967 mutex_init(&md->swap_bios_lock); 1968 1969 md->disk->major = _major; 1970 md->disk->first_minor = minor; 1971 md->disk->minors = 1; 1972 md->disk->flags |= GENHD_FL_NO_PART; 1973 md->disk->fops = &dm_blk_dops; 1974 md->disk->queue = md->queue; 1975 md->disk->private_data = md; 1976 sprintf(md->disk->disk_name, "dm-%d", minor); 1977 1978 if (IS_ENABLED(CONFIG_FS_DAX)) { 1979 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1980 if (IS_ERR(md->dax_dev)) { 1981 md->dax_dev = NULL; 1982 goto bad; 1983 } 1984 set_dax_nocache(md->dax_dev); 1985 set_dax_nomc(md->dax_dev); 1986 if (dax_add_host(md->dax_dev, md->disk)) 1987 goto bad; 1988 } 1989 1990 format_dev_t(md->name, MKDEV(_major, minor)); 1991 1992 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 1993 if (!md->wq) 1994 goto bad; 1995 1996 md->pending_io = alloc_percpu(unsigned long); 1997 if (!md->pending_io) 1998 goto bad; 1999 2000 dm_stats_init(&md->stats); 2001 2002 /* Populate the mapping, nobody knows we exist yet */ 2003 spin_lock(&_minor_lock); 2004 old_md = idr_replace(&_minor_idr, md, minor); 2005 spin_unlock(&_minor_lock); 2006 2007 BUG_ON(old_md != MINOR_ALLOCED); 2008 2009 return md; 2010 2011 bad: 2012 cleanup_mapped_device(md); 2013 bad_io_barrier: 2014 free_minor(minor); 2015 bad_minor: 2016 module_put(THIS_MODULE); 2017 bad_module_get: 2018 kvfree(md); 2019 return NULL; 2020 } 2021 2022 static void unlock_fs(struct mapped_device *md); 2023 2024 static void free_dev(struct mapped_device *md) 2025 { 2026 int minor = MINOR(disk_devt(md->disk)); 2027 2028 unlock_fs(md); 2029 2030 cleanup_mapped_device(md); 2031 2032 free_table_devices(&md->table_devices); 2033 dm_stats_cleanup(&md->stats); 2034 free_minor(minor); 2035 2036 module_put(THIS_MODULE); 2037 kvfree(md); 2038 } 2039 2040 /* 2041 * Bind a table to the device. 2042 */ 2043 static void event_callback(void *context) 2044 { 2045 unsigned long flags; 2046 LIST_HEAD(uevents); 2047 struct mapped_device *md = (struct mapped_device *) context; 2048 2049 spin_lock_irqsave(&md->uevent_lock, flags); 2050 list_splice_init(&md->uevent_list, &uevents); 2051 spin_unlock_irqrestore(&md->uevent_lock, flags); 2052 2053 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2054 2055 atomic_inc(&md->event_nr); 2056 wake_up(&md->eventq); 2057 dm_issue_global_event(); 2058 } 2059 2060 /* 2061 * Returns old map, which caller must destroy. 2062 */ 2063 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2064 struct queue_limits *limits) 2065 { 2066 struct dm_table *old_map; 2067 sector_t size; 2068 int ret; 2069 2070 lockdep_assert_held(&md->suspend_lock); 2071 2072 size = dm_table_get_size(t); 2073 2074 /* 2075 * Wipe any geometry if the size of the table changed. 2076 */ 2077 if (size != dm_get_size(md)) 2078 memset(&md->geometry, 0, sizeof(md->geometry)); 2079 2080 if (!get_capacity(md->disk)) 2081 set_capacity(md->disk, size); 2082 else 2083 set_capacity_and_notify(md->disk, size); 2084 2085 dm_table_event_callback(t, event_callback, md); 2086 2087 if (dm_table_request_based(t)) { 2088 /* 2089 * Leverage the fact that request-based DM targets are 2090 * immutable singletons - used to optimize dm_mq_queue_rq. 2091 */ 2092 md->immutable_target = dm_table_get_immutable_target(t); 2093 2094 /* 2095 * There is no need to reload with request-based dm because the 2096 * size of front_pad doesn't change. 2097 * 2098 * Note for future: If you are to reload bioset, prep-ed 2099 * requests in the queue may refer to bio from the old bioset, 2100 * so you must walk through the queue to unprep. 2101 */ 2102 if (!md->mempools) { 2103 md->mempools = t->mempools; 2104 t->mempools = NULL; 2105 } 2106 } else { 2107 /* 2108 * The md may already have mempools that need changing. 2109 * If so, reload bioset because front_pad may have changed 2110 * because a different table was loaded. 2111 */ 2112 dm_free_md_mempools(md->mempools); 2113 md->mempools = t->mempools; 2114 t->mempools = NULL; 2115 } 2116 2117 ret = dm_table_set_restrictions(t, md->queue, limits); 2118 if (ret) { 2119 old_map = ERR_PTR(ret); 2120 goto out; 2121 } 2122 2123 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2124 rcu_assign_pointer(md->map, (void *)t); 2125 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2126 2127 if (old_map) 2128 dm_sync_table(md); 2129 out: 2130 return old_map; 2131 } 2132 2133 /* 2134 * Returns unbound table for the caller to free. 2135 */ 2136 static struct dm_table *__unbind(struct mapped_device *md) 2137 { 2138 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2139 2140 if (!map) 2141 return NULL; 2142 2143 dm_table_event_callback(map, NULL, NULL); 2144 RCU_INIT_POINTER(md->map, NULL); 2145 dm_sync_table(md); 2146 2147 return map; 2148 } 2149 2150 /* 2151 * Constructor for a new device. 2152 */ 2153 int dm_create(int minor, struct mapped_device **result) 2154 { 2155 struct mapped_device *md; 2156 2157 md = alloc_dev(minor); 2158 if (!md) 2159 return -ENXIO; 2160 2161 dm_ima_reset_data(md); 2162 2163 *result = md; 2164 return 0; 2165 } 2166 2167 /* 2168 * Functions to manage md->type. 2169 * All are required to hold md->type_lock. 2170 */ 2171 void dm_lock_md_type(struct mapped_device *md) 2172 { 2173 mutex_lock(&md->type_lock); 2174 } 2175 2176 void dm_unlock_md_type(struct mapped_device *md) 2177 { 2178 mutex_unlock(&md->type_lock); 2179 } 2180 2181 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2182 { 2183 BUG_ON(!mutex_is_locked(&md->type_lock)); 2184 md->type = type; 2185 } 2186 2187 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2188 { 2189 return md->type; 2190 } 2191 2192 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2193 { 2194 return md->immutable_target_type; 2195 } 2196 2197 /* 2198 * The queue_limits are only valid as long as you have a reference 2199 * count on 'md'. 2200 */ 2201 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2202 { 2203 BUG_ON(!atomic_read(&md->holders)); 2204 return &md->queue->limits; 2205 } 2206 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2207 2208 /* 2209 * Setup the DM device's queue based on md's type 2210 */ 2211 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2212 { 2213 enum dm_queue_mode type = dm_table_get_type(t); 2214 struct queue_limits limits; 2215 int r; 2216 2217 switch (type) { 2218 case DM_TYPE_REQUEST_BASED: 2219 md->disk->fops = &dm_rq_blk_dops; 2220 r = dm_mq_init_request_queue(md, t); 2221 if (r) { 2222 DMERR("Cannot initialize queue for request-based dm mapped device"); 2223 return r; 2224 } 2225 break; 2226 case DM_TYPE_BIO_BASED: 2227 case DM_TYPE_DAX_BIO_BASED: 2228 break; 2229 case DM_TYPE_NONE: 2230 WARN_ON_ONCE(true); 2231 break; 2232 } 2233 2234 r = dm_calculate_queue_limits(t, &limits); 2235 if (r) { 2236 DMERR("Cannot calculate initial queue limits"); 2237 return r; 2238 } 2239 r = dm_table_set_restrictions(t, md->queue, &limits); 2240 if (r) 2241 return r; 2242 2243 r = add_disk(md->disk); 2244 if (r) 2245 return r; 2246 2247 r = dm_sysfs_init(md); 2248 if (r) { 2249 del_gendisk(md->disk); 2250 return r; 2251 } 2252 md->type = type; 2253 return 0; 2254 } 2255 2256 struct mapped_device *dm_get_md(dev_t dev) 2257 { 2258 struct mapped_device *md; 2259 unsigned minor = MINOR(dev); 2260 2261 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2262 return NULL; 2263 2264 spin_lock(&_minor_lock); 2265 2266 md = idr_find(&_minor_idr, minor); 2267 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2268 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2269 md = NULL; 2270 goto out; 2271 } 2272 dm_get(md); 2273 out: 2274 spin_unlock(&_minor_lock); 2275 2276 return md; 2277 } 2278 EXPORT_SYMBOL_GPL(dm_get_md); 2279 2280 void *dm_get_mdptr(struct mapped_device *md) 2281 { 2282 return md->interface_ptr; 2283 } 2284 2285 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2286 { 2287 md->interface_ptr = ptr; 2288 } 2289 2290 void dm_get(struct mapped_device *md) 2291 { 2292 atomic_inc(&md->holders); 2293 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2294 } 2295 2296 int dm_hold(struct mapped_device *md) 2297 { 2298 spin_lock(&_minor_lock); 2299 if (test_bit(DMF_FREEING, &md->flags)) { 2300 spin_unlock(&_minor_lock); 2301 return -EBUSY; 2302 } 2303 dm_get(md); 2304 spin_unlock(&_minor_lock); 2305 return 0; 2306 } 2307 EXPORT_SYMBOL_GPL(dm_hold); 2308 2309 const char *dm_device_name(struct mapped_device *md) 2310 { 2311 return md->name; 2312 } 2313 EXPORT_SYMBOL_GPL(dm_device_name); 2314 2315 static void __dm_destroy(struct mapped_device *md, bool wait) 2316 { 2317 struct dm_table *map; 2318 int srcu_idx; 2319 2320 might_sleep(); 2321 2322 spin_lock(&_minor_lock); 2323 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2324 set_bit(DMF_FREEING, &md->flags); 2325 spin_unlock(&_minor_lock); 2326 2327 blk_mark_disk_dead(md->disk); 2328 2329 /* 2330 * Take suspend_lock so that presuspend and postsuspend methods 2331 * do not race with internal suspend. 2332 */ 2333 mutex_lock(&md->suspend_lock); 2334 map = dm_get_live_table(md, &srcu_idx); 2335 if (!dm_suspended_md(md)) { 2336 dm_table_presuspend_targets(map); 2337 set_bit(DMF_SUSPENDED, &md->flags); 2338 set_bit(DMF_POST_SUSPENDING, &md->flags); 2339 dm_table_postsuspend_targets(map); 2340 } 2341 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2342 dm_put_live_table(md, srcu_idx); 2343 mutex_unlock(&md->suspend_lock); 2344 2345 /* 2346 * Rare, but there may be I/O requests still going to complete, 2347 * for example. Wait for all references to disappear. 2348 * No one should increment the reference count of the mapped_device, 2349 * after the mapped_device state becomes DMF_FREEING. 2350 */ 2351 if (wait) 2352 while (atomic_read(&md->holders)) 2353 msleep(1); 2354 else if (atomic_read(&md->holders)) 2355 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2356 dm_device_name(md), atomic_read(&md->holders)); 2357 2358 dm_table_destroy(__unbind(md)); 2359 free_dev(md); 2360 } 2361 2362 void dm_destroy(struct mapped_device *md) 2363 { 2364 __dm_destroy(md, true); 2365 } 2366 2367 void dm_destroy_immediate(struct mapped_device *md) 2368 { 2369 __dm_destroy(md, false); 2370 } 2371 2372 void dm_put(struct mapped_device *md) 2373 { 2374 atomic_dec(&md->holders); 2375 } 2376 EXPORT_SYMBOL_GPL(dm_put); 2377 2378 static bool dm_in_flight_bios(struct mapped_device *md) 2379 { 2380 int cpu; 2381 unsigned long sum = 0; 2382 2383 for_each_possible_cpu(cpu) 2384 sum += *per_cpu_ptr(md->pending_io, cpu); 2385 2386 return sum != 0; 2387 } 2388 2389 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2390 { 2391 int r = 0; 2392 DEFINE_WAIT(wait); 2393 2394 while (true) { 2395 prepare_to_wait(&md->wait, &wait, task_state); 2396 2397 if (!dm_in_flight_bios(md)) 2398 break; 2399 2400 if (signal_pending_state(task_state, current)) { 2401 r = -EINTR; 2402 break; 2403 } 2404 2405 io_schedule(); 2406 } 2407 finish_wait(&md->wait, &wait); 2408 2409 smp_rmb(); 2410 2411 return r; 2412 } 2413 2414 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2415 { 2416 int r = 0; 2417 2418 if (!queue_is_mq(md->queue)) 2419 return dm_wait_for_bios_completion(md, task_state); 2420 2421 while (true) { 2422 if (!blk_mq_queue_inflight(md->queue)) 2423 break; 2424 2425 if (signal_pending_state(task_state, current)) { 2426 r = -EINTR; 2427 break; 2428 } 2429 2430 msleep(5); 2431 } 2432 2433 return r; 2434 } 2435 2436 /* 2437 * Process the deferred bios 2438 */ 2439 static void dm_wq_work(struct work_struct *work) 2440 { 2441 struct mapped_device *md = container_of(work, struct mapped_device, work); 2442 struct bio *bio; 2443 2444 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2445 spin_lock_irq(&md->deferred_lock); 2446 bio = bio_list_pop(&md->deferred); 2447 spin_unlock_irq(&md->deferred_lock); 2448 2449 if (!bio) 2450 break; 2451 2452 submit_bio_noacct(bio); 2453 } 2454 } 2455 2456 static void dm_queue_flush(struct mapped_device *md) 2457 { 2458 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2459 smp_mb__after_atomic(); 2460 queue_work(md->wq, &md->work); 2461 } 2462 2463 /* 2464 * Swap in a new table, returning the old one for the caller to destroy. 2465 */ 2466 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2467 { 2468 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2469 struct queue_limits limits; 2470 int r; 2471 2472 mutex_lock(&md->suspend_lock); 2473 2474 /* device must be suspended */ 2475 if (!dm_suspended_md(md)) 2476 goto out; 2477 2478 /* 2479 * If the new table has no data devices, retain the existing limits. 2480 * This helps multipath with queue_if_no_path if all paths disappear, 2481 * then new I/O is queued based on these limits, and then some paths 2482 * reappear. 2483 */ 2484 if (dm_table_has_no_data_devices(table)) { 2485 live_map = dm_get_live_table_fast(md); 2486 if (live_map) 2487 limits = md->queue->limits; 2488 dm_put_live_table_fast(md); 2489 } 2490 2491 if (!live_map) { 2492 r = dm_calculate_queue_limits(table, &limits); 2493 if (r) { 2494 map = ERR_PTR(r); 2495 goto out; 2496 } 2497 } 2498 2499 map = __bind(md, table, &limits); 2500 dm_issue_global_event(); 2501 2502 out: 2503 mutex_unlock(&md->suspend_lock); 2504 return map; 2505 } 2506 2507 /* 2508 * Functions to lock and unlock any filesystem running on the 2509 * device. 2510 */ 2511 static int lock_fs(struct mapped_device *md) 2512 { 2513 int r; 2514 2515 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2516 2517 r = freeze_bdev(md->disk->part0); 2518 if (!r) 2519 set_bit(DMF_FROZEN, &md->flags); 2520 return r; 2521 } 2522 2523 static void unlock_fs(struct mapped_device *md) 2524 { 2525 if (!test_bit(DMF_FROZEN, &md->flags)) 2526 return; 2527 thaw_bdev(md->disk->part0); 2528 clear_bit(DMF_FROZEN, &md->flags); 2529 } 2530 2531 /* 2532 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2533 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2534 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2535 * 2536 * If __dm_suspend returns 0, the device is completely quiescent 2537 * now. There is no request-processing activity. All new requests 2538 * are being added to md->deferred list. 2539 */ 2540 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2541 unsigned suspend_flags, unsigned int task_state, 2542 int dmf_suspended_flag) 2543 { 2544 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2545 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2546 int r; 2547 2548 lockdep_assert_held(&md->suspend_lock); 2549 2550 /* 2551 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2552 * This flag is cleared before dm_suspend returns. 2553 */ 2554 if (noflush) 2555 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2556 else 2557 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2558 2559 /* 2560 * This gets reverted if there's an error later and the targets 2561 * provide the .presuspend_undo hook. 2562 */ 2563 dm_table_presuspend_targets(map); 2564 2565 /* 2566 * Flush I/O to the device. 2567 * Any I/O submitted after lock_fs() may not be flushed. 2568 * noflush takes precedence over do_lockfs. 2569 * (lock_fs() flushes I/Os and waits for them to complete.) 2570 */ 2571 if (!noflush && do_lockfs) { 2572 r = lock_fs(md); 2573 if (r) { 2574 dm_table_presuspend_undo_targets(map); 2575 return r; 2576 } 2577 } 2578 2579 /* 2580 * Here we must make sure that no processes are submitting requests 2581 * to target drivers i.e. no one may be executing 2582 * dm_split_and_process_bio from dm_submit_bio. 2583 * 2584 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2585 * we take the write lock. To prevent any process from reentering 2586 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2587 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2588 * flush_workqueue(md->wq). 2589 */ 2590 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2591 if (map) 2592 synchronize_srcu(&md->io_barrier); 2593 2594 /* 2595 * Stop md->queue before flushing md->wq in case request-based 2596 * dm defers requests to md->wq from md->queue. 2597 */ 2598 if (dm_request_based(md)) 2599 dm_stop_queue(md->queue); 2600 2601 flush_workqueue(md->wq); 2602 2603 /* 2604 * At this point no more requests are entering target request routines. 2605 * We call dm_wait_for_completion to wait for all existing requests 2606 * to finish. 2607 */ 2608 r = dm_wait_for_completion(md, task_state); 2609 if (!r) 2610 set_bit(dmf_suspended_flag, &md->flags); 2611 2612 if (noflush) 2613 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2614 if (map) 2615 synchronize_srcu(&md->io_barrier); 2616 2617 /* were we interrupted ? */ 2618 if (r < 0) { 2619 dm_queue_flush(md); 2620 2621 if (dm_request_based(md)) 2622 dm_start_queue(md->queue); 2623 2624 unlock_fs(md); 2625 dm_table_presuspend_undo_targets(map); 2626 /* pushback list is already flushed, so skip flush */ 2627 } 2628 2629 return r; 2630 } 2631 2632 /* 2633 * We need to be able to change a mapping table under a mounted 2634 * filesystem. For example we might want to move some data in 2635 * the background. Before the table can be swapped with 2636 * dm_bind_table, dm_suspend must be called to flush any in 2637 * flight bios and ensure that any further io gets deferred. 2638 */ 2639 /* 2640 * Suspend mechanism in request-based dm. 2641 * 2642 * 1. Flush all I/Os by lock_fs() if needed. 2643 * 2. Stop dispatching any I/O by stopping the request_queue. 2644 * 3. Wait for all in-flight I/Os to be completed or requeued. 2645 * 2646 * To abort suspend, start the request_queue. 2647 */ 2648 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2649 { 2650 struct dm_table *map = NULL; 2651 int r = 0; 2652 2653 retry: 2654 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2655 2656 if (dm_suspended_md(md)) { 2657 r = -EINVAL; 2658 goto out_unlock; 2659 } 2660 2661 if (dm_suspended_internally_md(md)) { 2662 /* already internally suspended, wait for internal resume */ 2663 mutex_unlock(&md->suspend_lock); 2664 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2665 if (r) 2666 return r; 2667 goto retry; 2668 } 2669 2670 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2671 2672 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2673 if (r) 2674 goto out_unlock; 2675 2676 set_bit(DMF_POST_SUSPENDING, &md->flags); 2677 dm_table_postsuspend_targets(map); 2678 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2679 2680 out_unlock: 2681 mutex_unlock(&md->suspend_lock); 2682 return r; 2683 } 2684 2685 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2686 { 2687 if (map) { 2688 int r = dm_table_resume_targets(map); 2689 if (r) 2690 return r; 2691 } 2692 2693 dm_queue_flush(md); 2694 2695 /* 2696 * Flushing deferred I/Os must be done after targets are resumed 2697 * so that mapping of targets can work correctly. 2698 * Request-based dm is queueing the deferred I/Os in its request_queue. 2699 */ 2700 if (dm_request_based(md)) 2701 dm_start_queue(md->queue); 2702 2703 unlock_fs(md); 2704 2705 return 0; 2706 } 2707 2708 int dm_resume(struct mapped_device *md) 2709 { 2710 int r; 2711 struct dm_table *map = NULL; 2712 2713 retry: 2714 r = -EINVAL; 2715 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2716 2717 if (!dm_suspended_md(md)) 2718 goto out; 2719 2720 if (dm_suspended_internally_md(md)) { 2721 /* already internally suspended, wait for internal resume */ 2722 mutex_unlock(&md->suspend_lock); 2723 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2724 if (r) 2725 return r; 2726 goto retry; 2727 } 2728 2729 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2730 if (!map || !dm_table_get_size(map)) 2731 goto out; 2732 2733 r = __dm_resume(md, map); 2734 if (r) 2735 goto out; 2736 2737 clear_bit(DMF_SUSPENDED, &md->flags); 2738 out: 2739 mutex_unlock(&md->suspend_lock); 2740 2741 return r; 2742 } 2743 2744 /* 2745 * Internal suspend/resume works like userspace-driven suspend. It waits 2746 * until all bios finish and prevents issuing new bios to the target drivers. 2747 * It may be used only from the kernel. 2748 */ 2749 2750 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2751 { 2752 struct dm_table *map = NULL; 2753 2754 lockdep_assert_held(&md->suspend_lock); 2755 2756 if (md->internal_suspend_count++) 2757 return; /* nested internal suspend */ 2758 2759 if (dm_suspended_md(md)) { 2760 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2761 return; /* nest suspend */ 2762 } 2763 2764 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2765 2766 /* 2767 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2768 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2769 * would require changing .presuspend to return an error -- avoid this 2770 * until there is a need for more elaborate variants of internal suspend. 2771 */ 2772 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2773 DMF_SUSPENDED_INTERNALLY); 2774 2775 set_bit(DMF_POST_SUSPENDING, &md->flags); 2776 dm_table_postsuspend_targets(map); 2777 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2778 } 2779 2780 static void __dm_internal_resume(struct mapped_device *md) 2781 { 2782 BUG_ON(!md->internal_suspend_count); 2783 2784 if (--md->internal_suspend_count) 2785 return; /* resume from nested internal suspend */ 2786 2787 if (dm_suspended_md(md)) 2788 goto done; /* resume from nested suspend */ 2789 2790 /* 2791 * NOTE: existing callers don't need to call dm_table_resume_targets 2792 * (which may fail -- so best to avoid it for now by passing NULL map) 2793 */ 2794 (void) __dm_resume(md, NULL); 2795 2796 done: 2797 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2798 smp_mb__after_atomic(); 2799 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2800 } 2801 2802 void dm_internal_suspend_noflush(struct mapped_device *md) 2803 { 2804 mutex_lock(&md->suspend_lock); 2805 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2806 mutex_unlock(&md->suspend_lock); 2807 } 2808 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2809 2810 void dm_internal_resume(struct mapped_device *md) 2811 { 2812 mutex_lock(&md->suspend_lock); 2813 __dm_internal_resume(md); 2814 mutex_unlock(&md->suspend_lock); 2815 } 2816 EXPORT_SYMBOL_GPL(dm_internal_resume); 2817 2818 /* 2819 * Fast variants of internal suspend/resume hold md->suspend_lock, 2820 * which prevents interaction with userspace-driven suspend. 2821 */ 2822 2823 void dm_internal_suspend_fast(struct mapped_device *md) 2824 { 2825 mutex_lock(&md->suspend_lock); 2826 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2827 return; 2828 2829 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2830 synchronize_srcu(&md->io_barrier); 2831 flush_workqueue(md->wq); 2832 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2833 } 2834 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2835 2836 void dm_internal_resume_fast(struct mapped_device *md) 2837 { 2838 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2839 goto done; 2840 2841 dm_queue_flush(md); 2842 2843 done: 2844 mutex_unlock(&md->suspend_lock); 2845 } 2846 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2847 2848 /*----------------------------------------------------------------- 2849 * Event notification. 2850 *---------------------------------------------------------------*/ 2851 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2852 unsigned cookie) 2853 { 2854 int r; 2855 unsigned noio_flag; 2856 char udev_cookie[DM_COOKIE_LENGTH]; 2857 char *envp[] = { udev_cookie, NULL }; 2858 2859 noio_flag = memalloc_noio_save(); 2860 2861 if (!cookie) 2862 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2863 else { 2864 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2865 DM_COOKIE_ENV_VAR_NAME, cookie); 2866 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2867 action, envp); 2868 } 2869 2870 memalloc_noio_restore(noio_flag); 2871 2872 return r; 2873 } 2874 2875 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2876 { 2877 return atomic_add_return(1, &md->uevent_seq); 2878 } 2879 2880 uint32_t dm_get_event_nr(struct mapped_device *md) 2881 { 2882 return atomic_read(&md->event_nr); 2883 } 2884 2885 int dm_wait_event(struct mapped_device *md, int event_nr) 2886 { 2887 return wait_event_interruptible(md->eventq, 2888 (event_nr != atomic_read(&md->event_nr))); 2889 } 2890 2891 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2892 { 2893 unsigned long flags; 2894 2895 spin_lock_irqsave(&md->uevent_lock, flags); 2896 list_add(elist, &md->uevent_list); 2897 spin_unlock_irqrestore(&md->uevent_lock, flags); 2898 } 2899 2900 /* 2901 * The gendisk is only valid as long as you have a reference 2902 * count on 'md'. 2903 */ 2904 struct gendisk *dm_disk(struct mapped_device *md) 2905 { 2906 return md->disk; 2907 } 2908 EXPORT_SYMBOL_GPL(dm_disk); 2909 2910 struct kobject *dm_kobject(struct mapped_device *md) 2911 { 2912 return &md->kobj_holder.kobj; 2913 } 2914 2915 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2916 { 2917 struct mapped_device *md; 2918 2919 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2920 2921 spin_lock(&_minor_lock); 2922 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2923 md = NULL; 2924 goto out; 2925 } 2926 dm_get(md); 2927 out: 2928 spin_unlock(&_minor_lock); 2929 2930 return md; 2931 } 2932 2933 int dm_suspended_md(struct mapped_device *md) 2934 { 2935 return test_bit(DMF_SUSPENDED, &md->flags); 2936 } 2937 2938 static int dm_post_suspending_md(struct mapped_device *md) 2939 { 2940 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2941 } 2942 2943 int dm_suspended_internally_md(struct mapped_device *md) 2944 { 2945 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2946 } 2947 2948 int dm_test_deferred_remove_flag(struct mapped_device *md) 2949 { 2950 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2951 } 2952 2953 int dm_suspended(struct dm_target *ti) 2954 { 2955 return dm_suspended_md(ti->table->md); 2956 } 2957 EXPORT_SYMBOL_GPL(dm_suspended); 2958 2959 int dm_post_suspending(struct dm_target *ti) 2960 { 2961 return dm_post_suspending_md(ti->table->md); 2962 } 2963 EXPORT_SYMBOL_GPL(dm_post_suspending); 2964 2965 int dm_noflush_suspending(struct dm_target *ti) 2966 { 2967 return __noflush_suspending(ti->table->md); 2968 } 2969 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2970 2971 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2972 unsigned per_io_data_size, unsigned min_pool_size, 2973 bool integrity, bool poll) 2974 { 2975 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2976 unsigned int pool_size = 0; 2977 unsigned int front_pad, io_front_pad; 2978 int ret; 2979 2980 if (!pools) 2981 return NULL; 2982 2983 switch (type) { 2984 case DM_TYPE_BIO_BASED: 2985 case DM_TYPE_DAX_BIO_BASED: 2986 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2987 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2988 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2989 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0); 2990 if (ret) 2991 goto out; 2992 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2993 goto out; 2994 break; 2995 case DM_TYPE_REQUEST_BASED: 2996 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2997 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2998 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2999 break; 3000 default: 3001 BUG(); 3002 } 3003 3004 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3005 if (ret) 3006 goto out; 3007 3008 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3009 goto out; 3010 3011 return pools; 3012 3013 out: 3014 dm_free_md_mempools(pools); 3015 3016 return NULL; 3017 } 3018 3019 void dm_free_md_mempools(struct dm_md_mempools *pools) 3020 { 3021 if (!pools) 3022 return; 3023 3024 bioset_exit(&pools->bs); 3025 bioset_exit(&pools->io_bs); 3026 3027 kfree(pools); 3028 } 3029 3030 struct dm_pr { 3031 u64 old_key; 3032 u64 new_key; 3033 u32 flags; 3034 bool fail_early; 3035 }; 3036 3037 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3038 void *data) 3039 { 3040 struct mapped_device *md = bdev->bd_disk->private_data; 3041 struct dm_table *table; 3042 struct dm_target *ti; 3043 int ret = -ENOTTY, srcu_idx; 3044 3045 table = dm_get_live_table(md, &srcu_idx); 3046 if (!table || !dm_table_get_size(table)) 3047 goto out; 3048 3049 /* We only support devices that have a single target */ 3050 if (dm_table_get_num_targets(table) != 1) 3051 goto out; 3052 ti = dm_table_get_target(table, 0); 3053 3054 ret = -EINVAL; 3055 if (!ti->type->iterate_devices) 3056 goto out; 3057 3058 ret = ti->type->iterate_devices(ti, fn, data); 3059 out: 3060 dm_put_live_table(md, srcu_idx); 3061 return ret; 3062 } 3063 3064 /* 3065 * For register / unregister we need to manually call out to every path. 3066 */ 3067 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3068 sector_t start, sector_t len, void *data) 3069 { 3070 struct dm_pr *pr = data; 3071 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3072 3073 if (!ops || !ops->pr_register) 3074 return -EOPNOTSUPP; 3075 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3076 } 3077 3078 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3079 u32 flags) 3080 { 3081 struct dm_pr pr = { 3082 .old_key = old_key, 3083 .new_key = new_key, 3084 .flags = flags, 3085 .fail_early = true, 3086 }; 3087 int ret; 3088 3089 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3090 if (ret && new_key) { 3091 /* unregister all paths if we failed to register any path */ 3092 pr.old_key = new_key; 3093 pr.new_key = 0; 3094 pr.flags = 0; 3095 pr.fail_early = false; 3096 dm_call_pr(bdev, __dm_pr_register, &pr); 3097 } 3098 3099 return ret; 3100 } 3101 3102 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3103 u32 flags) 3104 { 3105 struct mapped_device *md = bdev->bd_disk->private_data; 3106 const struct pr_ops *ops; 3107 int r, srcu_idx; 3108 3109 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3110 if (r < 0) 3111 goto out; 3112 3113 ops = bdev->bd_disk->fops->pr_ops; 3114 if (ops && ops->pr_reserve) 3115 r = ops->pr_reserve(bdev, key, type, flags); 3116 else 3117 r = -EOPNOTSUPP; 3118 out: 3119 dm_unprepare_ioctl(md, srcu_idx); 3120 return r; 3121 } 3122 3123 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3124 { 3125 struct mapped_device *md = bdev->bd_disk->private_data; 3126 const struct pr_ops *ops; 3127 int r, srcu_idx; 3128 3129 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3130 if (r < 0) 3131 goto out; 3132 3133 ops = bdev->bd_disk->fops->pr_ops; 3134 if (ops && ops->pr_release) 3135 r = ops->pr_release(bdev, key, type); 3136 else 3137 r = -EOPNOTSUPP; 3138 out: 3139 dm_unprepare_ioctl(md, srcu_idx); 3140 return r; 3141 } 3142 3143 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3144 enum pr_type type, bool abort) 3145 { 3146 struct mapped_device *md = bdev->bd_disk->private_data; 3147 const struct pr_ops *ops; 3148 int r, srcu_idx; 3149 3150 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3151 if (r < 0) 3152 goto out; 3153 3154 ops = bdev->bd_disk->fops->pr_ops; 3155 if (ops && ops->pr_preempt) 3156 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3157 else 3158 r = -EOPNOTSUPP; 3159 out: 3160 dm_unprepare_ioctl(md, srcu_idx); 3161 return r; 3162 } 3163 3164 static int dm_pr_clear(struct block_device *bdev, u64 key) 3165 { 3166 struct mapped_device *md = bdev->bd_disk->private_data; 3167 const struct pr_ops *ops; 3168 int r, srcu_idx; 3169 3170 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3171 if (r < 0) 3172 goto out; 3173 3174 ops = bdev->bd_disk->fops->pr_ops; 3175 if (ops && ops->pr_clear) 3176 r = ops->pr_clear(bdev, key); 3177 else 3178 r = -EOPNOTSUPP; 3179 out: 3180 dm_unprepare_ioctl(md, srcu_idx); 3181 return r; 3182 } 3183 3184 static const struct pr_ops dm_pr_ops = { 3185 .pr_register = dm_pr_register, 3186 .pr_reserve = dm_pr_reserve, 3187 .pr_release = dm_pr_release, 3188 .pr_preempt = dm_pr_preempt, 3189 .pr_clear = dm_pr_clear, 3190 }; 3191 3192 static const struct block_device_operations dm_blk_dops = { 3193 .submit_bio = dm_submit_bio, 3194 .poll_bio = dm_poll_bio, 3195 .open = dm_blk_open, 3196 .release = dm_blk_close, 3197 .ioctl = dm_blk_ioctl, 3198 .getgeo = dm_blk_getgeo, 3199 .report_zones = dm_blk_report_zones, 3200 .pr_ops = &dm_pr_ops, 3201 .owner = THIS_MODULE 3202 }; 3203 3204 static const struct block_device_operations dm_rq_blk_dops = { 3205 .open = dm_blk_open, 3206 .release = dm_blk_close, 3207 .ioctl = dm_blk_ioctl, 3208 .getgeo = dm_blk_getgeo, 3209 .pr_ops = &dm_pr_ops, 3210 .owner = THIS_MODULE 3211 }; 3212 3213 static const struct dax_operations dm_dax_ops = { 3214 .direct_access = dm_dax_direct_access, 3215 .zero_page_range = dm_dax_zero_page_range, 3216 .recovery_write = dm_dax_recovery_write, 3217 }; 3218 3219 /* 3220 * module hooks 3221 */ 3222 module_init(dm_init); 3223 module_exit(dm_exit); 3224 3225 module_param(major, uint, 0); 3226 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3227 3228 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3229 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3230 3231 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3232 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3233 3234 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 3235 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3236 3237 MODULE_DESCRIPTION(DM_NAME " driver"); 3238 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3239 MODULE_LICENSE("GPL"); 3240