1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/bio-integrity.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/signal.h> 20 #include <linux/blkpg.h> 21 #include <linux/bio.h> 22 #include <linux/mempool.h> 23 #include <linux/dax.h> 24 #include <linux/slab.h> 25 #include <linux/idr.h> 26 #include <linux/uio.h> 27 #include <linux/hdreg.h> 28 #include <linux/delay.h> 29 #include <linux/wait.h> 30 #include <linux/pr.h> 31 #include <linux/refcount.h> 32 #include <linux/part_stat.h> 33 #include <linux/blk-crypto.h> 34 #include <linux/blk-crypto-profile.h> 35 36 #define DM_MSG_PREFIX "core" 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 /* 46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 47 * dm_io into one list, and reuse bio->bi_private as the list head. Before 48 * ending this fs bio, we will recover its ->bi_private. 49 */ 50 #define REQ_DM_POLL_LIST REQ_DRV 51 52 static const char *_name = DM_NAME; 53 54 static unsigned int major; 55 static unsigned int _major; 56 57 static DEFINE_IDR(_minor_idr); 58 59 static DEFINE_SPINLOCK(_minor_lock); 60 61 static void do_deferred_remove(struct work_struct *w); 62 63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 64 65 static struct workqueue_struct *deferred_remove_workqueue; 66 67 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 69 70 void dm_issue_global_event(void) 71 { 72 atomic_inc(&dm_global_event_nr); 73 wake_up(&dm_global_eventq); 74 } 75 76 DEFINE_STATIC_KEY_FALSE(stats_enabled); 77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 78 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 79 80 /* 81 * One of these is allocated (on-stack) per original bio. 82 */ 83 struct clone_info { 84 struct dm_table *map; 85 struct bio *bio; 86 struct dm_io *io; 87 sector_t sector; 88 unsigned int sector_count; 89 bool is_abnormal_io:1; 90 bool submit_as_polled:1; 91 }; 92 93 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 94 { 95 return container_of(clone, struct dm_target_io, clone); 96 } 97 98 void *dm_per_bio_data(struct bio *bio, size_t data_size) 99 { 100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 102 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 103 } 104 EXPORT_SYMBOL_GPL(dm_per_bio_data); 105 106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 107 { 108 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 109 110 if (io->magic == DM_IO_MAGIC) 111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 112 BUG_ON(io->magic != DM_TIO_MAGIC); 113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 114 } 115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 116 117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 118 { 119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 120 } 121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 122 123 #define MINOR_ALLOCED ((void *)-1) 124 125 #define DM_NUMA_NODE NUMA_NO_NODE 126 static int dm_numa_node = DM_NUMA_NODE; 127 128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 129 static int swap_bios = DEFAULT_SWAP_BIOS; 130 static int get_swap_bios(void) 131 { 132 int latch = READ_ONCE(swap_bios); 133 134 if (unlikely(latch <= 0)) 135 latch = DEFAULT_SWAP_BIOS; 136 return latch; 137 } 138 139 struct table_device { 140 struct list_head list; 141 refcount_t count; 142 struct dm_dev dm_dev; 143 }; 144 145 /* 146 * Bio-based DM's mempools' reserved IOs set by the user. 147 */ 148 #define RESERVED_BIO_BASED_IOS 16 149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 150 151 static int __dm_get_module_param_int(int *module_param, int min, int max) 152 { 153 int param = READ_ONCE(*module_param); 154 int modified_param = 0; 155 bool modified = true; 156 157 if (param < min) 158 modified_param = min; 159 else if (param > max) 160 modified_param = max; 161 else 162 modified = false; 163 164 if (modified) { 165 (void)cmpxchg(module_param, param, modified_param); 166 param = modified_param; 167 } 168 169 return param; 170 } 171 172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 173 { 174 unsigned int param = READ_ONCE(*module_param); 175 unsigned int modified_param = 0; 176 177 if (!param) 178 modified_param = def; 179 else if (param > max) 180 modified_param = max; 181 182 if (modified_param) { 183 (void)cmpxchg(module_param, param, modified_param); 184 param = modified_param; 185 } 186 187 return param; 188 } 189 190 unsigned int dm_get_reserved_bio_based_ios(void) 191 { 192 return __dm_get_module_param(&reserved_bio_based_ios, 193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 194 } 195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 196 197 static unsigned int dm_get_numa_node(void) 198 { 199 return __dm_get_module_param_int(&dm_numa_node, 200 DM_NUMA_NODE, num_online_nodes() - 1); 201 } 202 203 static int __init local_init(void) 204 { 205 int r; 206 207 r = dm_uevent_init(); 208 if (r) 209 return r; 210 211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); 212 if (!deferred_remove_workqueue) { 213 r = -ENOMEM; 214 goto out_uevent_exit; 215 } 216 217 _major = major; 218 r = register_blkdev(_major, _name); 219 if (r < 0) 220 goto out_free_workqueue; 221 222 if (!_major) 223 _major = r; 224 225 return 0; 226 227 out_free_workqueue: 228 destroy_workqueue(deferred_remove_workqueue); 229 out_uevent_exit: 230 dm_uevent_exit(); 231 232 return r; 233 } 234 235 static void local_exit(void) 236 { 237 destroy_workqueue(deferred_remove_workqueue); 238 239 unregister_blkdev(_major, _name); 240 dm_uevent_exit(); 241 242 _major = 0; 243 244 DMINFO("cleaned up"); 245 } 246 247 static int (*_inits[])(void) __initdata = { 248 local_init, 249 dm_target_init, 250 dm_linear_init, 251 dm_stripe_init, 252 dm_io_init, 253 dm_kcopyd_init, 254 dm_interface_init, 255 dm_statistics_init, 256 }; 257 258 static void (*_exits[])(void) = { 259 local_exit, 260 dm_target_exit, 261 dm_linear_exit, 262 dm_stripe_exit, 263 dm_io_exit, 264 dm_kcopyd_exit, 265 dm_interface_exit, 266 dm_statistics_exit, 267 }; 268 269 static int __init dm_init(void) 270 { 271 const int count = ARRAY_SIZE(_inits); 272 int r, i; 273 274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 276 " Duplicate IMA measurements will not be recorded in the IMA log."); 277 #endif 278 279 for (i = 0; i < count; i++) { 280 r = _inits[i](); 281 if (r) 282 goto bad; 283 } 284 285 return 0; 286 bad: 287 while (i--) 288 _exits[i](); 289 290 return r; 291 } 292 293 static void __exit dm_exit(void) 294 { 295 int i = ARRAY_SIZE(_exits); 296 297 while (i--) 298 _exits[i](); 299 300 /* 301 * Should be empty by this point. 302 */ 303 idr_destroy(&_minor_idr); 304 } 305 306 /* 307 * Block device functions 308 */ 309 int dm_deleting_md(struct mapped_device *md) 310 { 311 return test_bit(DMF_DELETING, &md->flags); 312 } 313 314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 315 { 316 struct mapped_device *md; 317 318 spin_lock(&_minor_lock); 319 320 md = disk->private_data; 321 if (!md) 322 goto out; 323 324 if (test_bit(DMF_FREEING, &md->flags) || 325 dm_deleting_md(md)) { 326 md = NULL; 327 goto out; 328 } 329 330 dm_get(md); 331 atomic_inc(&md->open_count); 332 out: 333 spin_unlock(&_minor_lock); 334 335 return md ? 0 : -ENXIO; 336 } 337 338 static void dm_blk_close(struct gendisk *disk) 339 { 340 struct mapped_device *md; 341 342 spin_lock(&_minor_lock); 343 344 md = disk->private_data; 345 if (WARN_ON(!md)) 346 goto out; 347 348 if (atomic_dec_and_test(&md->open_count) && 349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 350 queue_work(deferred_remove_workqueue, &deferred_remove_work); 351 352 dm_put(md); 353 out: 354 spin_unlock(&_minor_lock); 355 } 356 357 int dm_open_count(struct mapped_device *md) 358 { 359 return atomic_read(&md->open_count); 360 } 361 362 /* 363 * Guarantees nothing is using the device before it's deleted. 364 */ 365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 366 { 367 int r = 0; 368 369 spin_lock(&_minor_lock); 370 371 if (dm_open_count(md)) { 372 r = -EBUSY; 373 if (mark_deferred) 374 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 376 r = -EEXIST; 377 else 378 set_bit(DMF_DELETING, &md->flags); 379 380 spin_unlock(&_minor_lock); 381 382 return r; 383 } 384 385 int dm_cancel_deferred_remove(struct mapped_device *md) 386 { 387 int r = 0; 388 389 spin_lock(&_minor_lock); 390 391 if (test_bit(DMF_DELETING, &md->flags)) 392 r = -EBUSY; 393 else 394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 395 396 spin_unlock(&_minor_lock); 397 398 return r; 399 } 400 401 static void do_deferred_remove(struct work_struct *w) 402 { 403 dm_deferred_remove(); 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 414 struct block_device **bdev, unsigned int cmd, 415 unsigned long arg, bool *forward) 416 { 417 struct dm_target *ti; 418 struct dm_table *map; 419 int r; 420 421 retry: 422 r = -ENOTTY; 423 map = dm_get_live_table(md, srcu_idx); 424 if (!map || !dm_table_get_size(map)) 425 return r; 426 427 /* We only support devices that have a single target */ 428 if (map->num_targets != 1) 429 return r; 430 431 ti = dm_table_get_target(map, 0); 432 if (!ti->type->prepare_ioctl) 433 return r; 434 435 if (dm_suspended_md(md)) 436 return -EAGAIN; 437 438 r = ti->type->prepare_ioctl(ti, bdev, cmd, arg, forward); 439 if (r == -ENOTCONN && *forward && !fatal_signal_pending(current)) { 440 dm_put_live_table(md, *srcu_idx); 441 fsleep(10000); 442 goto retry; 443 } 444 445 return r; 446 } 447 448 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 449 { 450 dm_put_live_table(md, srcu_idx); 451 } 452 453 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 454 unsigned int cmd, unsigned long arg) 455 { 456 struct mapped_device *md = bdev->bd_disk->private_data; 457 int r, srcu_idx; 458 bool forward = true; 459 460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, cmd, arg, &forward); 461 if (!forward || r < 0) 462 goto out; 463 464 if (r > 0) { 465 /* 466 * Target determined this ioctl is being issued against a 467 * subset of the parent bdev; require extra privileges. 468 */ 469 if (!capable(CAP_SYS_RAWIO)) { 470 DMDEBUG_LIMIT( 471 "%s: sending ioctl %x to DM device without required privilege.", 472 current->comm, cmd); 473 r = -ENOIOCTLCMD; 474 goto out; 475 } 476 } 477 478 if (!bdev->bd_disk->fops->ioctl) 479 r = -ENOTTY; 480 else 481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 482 out: 483 dm_unprepare_ioctl(md, srcu_idx); 484 return r; 485 } 486 487 u64 dm_start_time_ns_from_clone(struct bio *bio) 488 { 489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 490 } 491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 492 493 static inline bool bio_is_flush_with_data(struct bio *bio) 494 { 495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 496 } 497 498 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) 499 { 500 /* 501 * If REQ_PREFLUSH set, don't account payload, it will be 502 * submitted (and accounted) after this flush completes. 503 */ 504 if (bio_is_flush_with_data(bio)) 505 return 0; 506 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 507 return io->sectors; 508 return bio_sectors(bio); 509 } 510 511 static void dm_io_acct(struct dm_io *io, bool end) 512 { 513 struct bio *bio = io->orig_bio; 514 515 if (dm_io_flagged(io, DM_IO_BLK_STAT)) { 516 if (!end) 517 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), 518 io->start_time); 519 else 520 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), 521 dm_io_sectors(io, bio), 522 io->start_time); 523 } 524 525 if (static_branch_unlikely(&stats_enabled) && 526 unlikely(dm_stats_used(&io->md->stats))) { 527 sector_t sector; 528 529 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 530 sector = bio_end_sector(bio) - io->sector_offset; 531 else 532 sector = bio->bi_iter.bi_sector; 533 534 dm_stats_account_io(&io->md->stats, bio_data_dir(bio), 535 sector, dm_io_sectors(io, bio), 536 end, io->start_time, &io->stats_aux); 537 } 538 } 539 540 static void __dm_start_io_acct(struct dm_io *io) 541 { 542 dm_io_acct(io, false); 543 } 544 545 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 546 { 547 /* 548 * Ensure IO accounting is only ever started once. 549 */ 550 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 551 return; 552 553 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 554 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 555 dm_io_set_flag(io, DM_IO_ACCOUNTED); 556 } else { 557 unsigned long flags; 558 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 559 spin_lock_irqsave(&io->lock, flags); 560 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 561 spin_unlock_irqrestore(&io->lock, flags); 562 return; 563 } 564 dm_io_set_flag(io, DM_IO_ACCOUNTED); 565 spin_unlock_irqrestore(&io->lock, flags); 566 } 567 568 __dm_start_io_acct(io); 569 } 570 571 static void dm_end_io_acct(struct dm_io *io) 572 { 573 dm_io_acct(io, true); 574 } 575 576 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask) 577 { 578 struct dm_io *io; 579 struct dm_target_io *tio; 580 struct bio *clone; 581 582 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs); 583 if (unlikely(!clone)) 584 return NULL; 585 tio = clone_to_tio(clone); 586 tio->flags = 0; 587 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 588 tio->io = NULL; 589 590 io = container_of(tio, struct dm_io, tio); 591 io->magic = DM_IO_MAGIC; 592 io->status = BLK_STS_OK; 593 594 /* one ref is for submission, the other is for completion */ 595 atomic_set(&io->io_count, 2); 596 this_cpu_inc(*md->pending_io); 597 io->orig_bio = bio; 598 io->md = md; 599 spin_lock_init(&io->lock); 600 io->start_time = jiffies; 601 io->flags = 0; 602 if (blk_queue_io_stat(md->queue)) 603 dm_io_set_flag(io, DM_IO_BLK_STAT); 604 605 if (static_branch_unlikely(&stats_enabled) && 606 unlikely(dm_stats_used(&md->stats))) 607 dm_stats_record_start(&md->stats, &io->stats_aux); 608 609 return io; 610 } 611 612 static void free_io(struct dm_io *io) 613 { 614 bio_put(&io->tio.clone); 615 } 616 617 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 618 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 619 { 620 struct mapped_device *md = ci->io->md; 621 struct dm_target_io *tio; 622 struct bio *clone; 623 624 if (!ci->io->tio.io) { 625 /* the dm_target_io embedded in ci->io is available */ 626 tio = &ci->io->tio; 627 /* alloc_io() already initialized embedded clone */ 628 clone = &tio->clone; 629 } else { 630 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 631 &md->mempools->bs); 632 if (!clone) 633 return NULL; 634 635 /* REQ_DM_POLL_LIST shouldn't be inherited */ 636 clone->bi_opf &= ~REQ_DM_POLL_LIST; 637 638 tio = clone_to_tio(clone); 639 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 640 } 641 642 tio->magic = DM_TIO_MAGIC; 643 tio->io = ci->io; 644 tio->ti = ti; 645 tio->target_bio_nr = target_bio_nr; 646 tio->len_ptr = len; 647 tio->old_sector = 0; 648 649 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 650 clone->bi_bdev = md->disk->part0; 651 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev)) 652 bio_set_dev(clone, md->disk->part0); 653 654 if (len) { 655 clone->bi_iter.bi_size = to_bytes(*len); 656 if (bio_integrity(clone)) 657 bio_integrity_trim(clone); 658 } 659 660 return clone; 661 } 662 663 static void free_tio(struct bio *clone) 664 { 665 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 666 return; 667 bio_put(clone); 668 } 669 670 /* 671 * Add the bio to the list of deferred io. 672 */ 673 static void queue_io(struct mapped_device *md, struct bio *bio) 674 { 675 unsigned long flags; 676 677 spin_lock_irqsave(&md->deferred_lock, flags); 678 bio_list_add(&md->deferred, bio); 679 spin_unlock_irqrestore(&md->deferred_lock, flags); 680 queue_work(md->wq, &md->work); 681 } 682 683 /* 684 * Everyone (including functions in this file), should use this 685 * function to access the md->map field, and make sure they call 686 * dm_put_live_table() when finished. 687 */ 688 struct dm_table *dm_get_live_table(struct mapped_device *md, 689 int *srcu_idx) __acquires(md->io_barrier) 690 { 691 *srcu_idx = srcu_read_lock(&md->io_barrier); 692 693 return srcu_dereference(md->map, &md->io_barrier); 694 } 695 696 void dm_put_live_table(struct mapped_device *md, 697 int srcu_idx) __releases(md->io_barrier) 698 { 699 srcu_read_unlock(&md->io_barrier, srcu_idx); 700 } 701 702 void dm_sync_table(struct mapped_device *md) 703 { 704 synchronize_srcu(&md->io_barrier); 705 synchronize_rcu_expedited(); 706 } 707 708 /* 709 * A fast alternative to dm_get_live_table/dm_put_live_table. 710 * The caller must not block between these two functions. 711 */ 712 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 713 { 714 rcu_read_lock(); 715 return rcu_dereference(md->map); 716 } 717 718 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 719 { 720 rcu_read_unlock(); 721 } 722 723 static char *_dm_claim_ptr = "I belong to device-mapper"; 724 725 /* 726 * Open a table device so we can use it as a map destination. 727 */ 728 static struct table_device *open_table_device(struct mapped_device *md, 729 dev_t dev, blk_mode_t mode) 730 { 731 struct table_device *td; 732 struct file *bdev_file; 733 struct block_device *bdev; 734 u64 part_off; 735 int r; 736 737 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 738 if (!td) 739 return ERR_PTR(-ENOMEM); 740 refcount_set(&td->count, 1); 741 742 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL); 743 if (IS_ERR(bdev_file)) { 744 r = PTR_ERR(bdev_file); 745 goto out_free_td; 746 } 747 748 bdev = file_bdev(bdev_file); 749 750 /* 751 * We can be called before the dm disk is added. In that case we can't 752 * register the holder relation here. It will be done once add_disk was 753 * called. 754 */ 755 if (md->disk->slave_dir) { 756 r = bd_link_disk_holder(bdev, md->disk); 757 if (r) 758 goto out_blkdev_put; 759 } 760 761 td->dm_dev.mode = mode; 762 td->dm_dev.bdev = bdev; 763 td->dm_dev.bdev_file = bdev_file; 764 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, 765 NULL, NULL); 766 format_dev_t(td->dm_dev.name, dev); 767 list_add(&td->list, &md->table_devices); 768 return td; 769 770 out_blkdev_put: 771 __fput_sync(bdev_file); 772 out_free_td: 773 kfree(td); 774 return ERR_PTR(r); 775 } 776 777 /* 778 * Close a table device that we've been using. 779 */ 780 static void close_table_device(struct table_device *td, struct mapped_device *md) 781 { 782 if (md->disk->slave_dir) 783 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 784 785 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */ 786 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 787 fput(td->dm_dev.bdev_file); 788 else 789 __fput_sync(td->dm_dev.bdev_file); 790 791 put_dax(td->dm_dev.dax_dev); 792 list_del(&td->list); 793 kfree(td); 794 } 795 796 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 797 blk_mode_t mode) 798 { 799 struct table_device *td; 800 801 list_for_each_entry(td, l, list) 802 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 803 return td; 804 805 return NULL; 806 } 807 808 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 809 struct dm_dev **result) 810 { 811 struct table_device *td; 812 813 mutex_lock(&md->table_devices_lock); 814 td = find_table_device(&md->table_devices, dev, mode); 815 if (!td) { 816 td = open_table_device(md, dev, mode); 817 if (IS_ERR(td)) { 818 mutex_unlock(&md->table_devices_lock); 819 return PTR_ERR(td); 820 } 821 } else { 822 refcount_inc(&td->count); 823 } 824 mutex_unlock(&md->table_devices_lock); 825 826 *result = &td->dm_dev; 827 return 0; 828 } 829 830 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 831 { 832 struct table_device *td = container_of(d, struct table_device, dm_dev); 833 834 mutex_lock(&md->table_devices_lock); 835 if (refcount_dec_and_test(&td->count)) 836 close_table_device(td, md); 837 mutex_unlock(&md->table_devices_lock); 838 } 839 840 /* 841 * Get the geometry associated with a dm device 842 */ 843 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 844 { 845 *geo = md->geometry; 846 847 return 0; 848 } 849 850 /* 851 * Set the geometry of a device. 852 */ 853 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 854 { 855 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 856 857 if (geo->start > sz) { 858 DMERR("Start sector is beyond the geometry limits."); 859 return -EINVAL; 860 } 861 862 md->geometry = *geo; 863 864 return 0; 865 } 866 867 static int __noflush_suspending(struct mapped_device *md) 868 { 869 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 870 } 871 872 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 873 { 874 struct mapped_device *md = io->md; 875 876 if (first_stage) { 877 struct dm_io *next = md->requeue_list; 878 879 md->requeue_list = io; 880 io->next = next; 881 } else { 882 bio_list_add_head(&md->deferred, io->orig_bio); 883 } 884 } 885 886 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 887 { 888 if (first_stage) 889 queue_work(md->wq, &md->requeue_work); 890 else 891 queue_work(md->wq, &md->work); 892 } 893 894 /* 895 * Return true if the dm_io's original bio is requeued. 896 * io->status is updated with error if requeue disallowed. 897 */ 898 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 899 { 900 struct bio *bio = io->orig_bio; 901 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 902 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 903 (bio->bi_opf & REQ_POLLED)); 904 struct mapped_device *md = io->md; 905 bool requeued = false; 906 907 if (handle_requeue || handle_polled_eagain) { 908 unsigned long flags; 909 910 if (bio->bi_opf & REQ_POLLED) { 911 /* 912 * Upper layer won't help us poll split bio 913 * (io->orig_bio may only reflect a subset of the 914 * pre-split original) so clear REQ_POLLED. 915 */ 916 bio_clear_polled(bio); 917 } 918 919 /* 920 * Target requested pushing back the I/O or 921 * polled IO hit BLK_STS_AGAIN. 922 */ 923 spin_lock_irqsave(&md->deferred_lock, flags); 924 if ((__noflush_suspending(md) && 925 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 926 handle_polled_eagain || first_stage) { 927 dm_requeue_add_io(io, first_stage); 928 requeued = true; 929 } else { 930 /* 931 * noflush suspend was interrupted or this is 932 * a write to a zoned target. 933 */ 934 io->status = BLK_STS_IOERR; 935 } 936 spin_unlock_irqrestore(&md->deferred_lock, flags); 937 } 938 939 if (requeued) 940 dm_kick_requeue(md, first_stage); 941 942 return requeued; 943 } 944 945 static void __dm_io_complete(struct dm_io *io, bool first_stage) 946 { 947 struct bio *bio = io->orig_bio; 948 struct mapped_device *md = io->md; 949 blk_status_t io_error; 950 bool requeued; 951 952 requeued = dm_handle_requeue(io, first_stage); 953 if (requeued && first_stage) 954 return; 955 956 io_error = io->status; 957 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 958 dm_end_io_acct(io); 959 else if (!io_error) { 960 /* 961 * Must handle target that DM_MAPIO_SUBMITTED only to 962 * then bio_endio() rather than dm_submit_bio_remap() 963 */ 964 __dm_start_io_acct(io); 965 dm_end_io_acct(io); 966 } 967 free_io(io); 968 smp_wmb(); 969 this_cpu_dec(*md->pending_io); 970 971 /* nudge anyone waiting on suspend queue */ 972 if (unlikely(wq_has_sleeper(&md->wait))) 973 wake_up(&md->wait); 974 975 /* Return early if the original bio was requeued */ 976 if (requeued) 977 return; 978 979 if (bio_is_flush_with_data(bio)) { 980 /* 981 * Preflush done for flush with data, reissue 982 * without REQ_PREFLUSH. 983 */ 984 bio->bi_opf &= ~REQ_PREFLUSH; 985 queue_io(md, bio); 986 } else { 987 /* done with normal IO or empty flush */ 988 if (io_error) 989 bio->bi_status = io_error; 990 bio_endio(bio); 991 } 992 } 993 994 static void dm_wq_requeue_work(struct work_struct *work) 995 { 996 struct mapped_device *md = container_of(work, struct mapped_device, 997 requeue_work); 998 unsigned long flags; 999 struct dm_io *io; 1000 1001 /* reuse deferred lock to simplify dm_handle_requeue */ 1002 spin_lock_irqsave(&md->deferred_lock, flags); 1003 io = md->requeue_list; 1004 md->requeue_list = NULL; 1005 spin_unlock_irqrestore(&md->deferred_lock, flags); 1006 1007 while (io) { 1008 struct dm_io *next = io->next; 1009 1010 dm_io_rewind(io, &md->disk->bio_split); 1011 1012 io->next = NULL; 1013 __dm_io_complete(io, false); 1014 io = next; 1015 cond_resched(); 1016 } 1017 } 1018 1019 /* 1020 * Two staged requeue: 1021 * 1022 * 1) io->orig_bio points to the real original bio, and the part mapped to 1023 * this io must be requeued, instead of other parts of the original bio. 1024 * 1025 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1026 */ 1027 static void dm_io_complete(struct dm_io *io) 1028 { 1029 bool first_requeue; 1030 1031 /* 1032 * Only dm_io that has been split needs two stage requeue, otherwise 1033 * we may run into long bio clone chain during suspend and OOM could 1034 * be triggered. 1035 * 1036 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1037 * also aren't handled via the first stage requeue. 1038 */ 1039 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1040 first_requeue = true; 1041 else 1042 first_requeue = false; 1043 1044 __dm_io_complete(io, first_requeue); 1045 } 1046 1047 /* 1048 * Decrements the number of outstanding ios that a bio has been 1049 * cloned into, completing the original io if necc. 1050 */ 1051 static inline void __dm_io_dec_pending(struct dm_io *io) 1052 { 1053 if (atomic_dec_and_test(&io->io_count)) 1054 dm_io_complete(io); 1055 } 1056 1057 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1058 { 1059 unsigned long flags; 1060 1061 /* Push-back supersedes any I/O errors */ 1062 spin_lock_irqsave(&io->lock, flags); 1063 if (!(io->status == BLK_STS_DM_REQUEUE && 1064 __noflush_suspending(io->md))) { 1065 io->status = error; 1066 } 1067 spin_unlock_irqrestore(&io->lock, flags); 1068 } 1069 1070 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1071 { 1072 if (unlikely(error)) 1073 dm_io_set_error(io, error); 1074 1075 __dm_io_dec_pending(io); 1076 } 1077 1078 /* 1079 * The queue_limits are only valid as long as you have a reference 1080 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1081 */ 1082 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1083 { 1084 return &md->queue->limits; 1085 } 1086 1087 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1088 { 1089 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1090 } 1091 1092 static void clone_endio(struct bio *bio) 1093 { 1094 blk_status_t error = bio->bi_status; 1095 struct dm_target_io *tio = clone_to_tio(bio); 1096 struct dm_target *ti = tio->ti; 1097 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL; 1098 struct dm_io *io = tio->io; 1099 struct mapped_device *md = io->md; 1100 1101 if (unlikely(error == BLK_STS_TARGET)) { 1102 if (bio_op(bio) == REQ_OP_DISCARD && 1103 !bdev_max_discard_sectors(bio->bi_bdev)) 1104 blk_queue_disable_discard(md->queue); 1105 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1106 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1107 blk_queue_disable_write_zeroes(md->queue); 1108 } 1109 1110 if (static_branch_unlikely(&zoned_enabled) && 1111 unlikely(bdev_is_zoned(bio->bi_bdev))) 1112 dm_zone_endio(io, bio); 1113 1114 if (endio) { 1115 int r = endio(ti, bio, &error); 1116 1117 switch (r) { 1118 case DM_ENDIO_REQUEUE: 1119 if (static_branch_unlikely(&zoned_enabled)) { 1120 /* 1121 * Requeuing writes to a sequential zone of a zoned 1122 * target will break the sequential write pattern: 1123 * fail such IO. 1124 */ 1125 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1126 error = BLK_STS_IOERR; 1127 else 1128 error = BLK_STS_DM_REQUEUE; 1129 } else 1130 error = BLK_STS_DM_REQUEUE; 1131 fallthrough; 1132 case DM_ENDIO_DONE: 1133 break; 1134 case DM_ENDIO_INCOMPLETE: 1135 /* The target will handle the io */ 1136 return; 1137 default: 1138 DMCRIT("unimplemented target endio return value: %d", r); 1139 BUG(); 1140 } 1141 } 1142 1143 if (static_branch_unlikely(&swap_bios_enabled) && 1144 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio))) 1145 up(&md->swap_bios_semaphore); 1146 1147 free_tio(bio); 1148 dm_io_dec_pending(io, error); 1149 } 1150 1151 /* 1152 * Return maximum size of I/O possible at the supplied sector up to the current 1153 * target boundary. 1154 */ 1155 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1156 sector_t target_offset) 1157 { 1158 return ti->len - target_offset; 1159 } 1160 1161 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1162 unsigned int max_granularity, 1163 unsigned int max_sectors) 1164 { 1165 sector_t target_offset = dm_target_offset(ti, sector); 1166 sector_t len = max_io_len_target_boundary(ti, target_offset); 1167 1168 /* 1169 * Does the target need to split IO even further? 1170 * - varied (per target) IO splitting is a tenet of DM; this 1171 * explains why stacked chunk_sectors based splitting via 1172 * bio_split_to_limits() isn't possible here. 1173 */ 1174 if (!max_granularity) 1175 return len; 1176 return min_t(sector_t, len, 1177 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1178 blk_boundary_sectors_left(target_offset, max_granularity))); 1179 } 1180 1181 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1182 { 1183 return __max_io_len(ti, sector, ti->max_io_len, 0); 1184 } 1185 1186 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1187 { 1188 if (len > UINT_MAX) { 1189 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1190 (unsigned long long)len, UINT_MAX); 1191 ti->error = "Maximum size of target IO is too large"; 1192 return -EINVAL; 1193 } 1194 1195 ti->max_io_len = (uint32_t) len; 1196 1197 return 0; 1198 } 1199 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1200 1201 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1202 sector_t sector, int *srcu_idx) 1203 __acquires(md->io_barrier) 1204 { 1205 struct dm_table *map; 1206 struct dm_target *ti; 1207 1208 map = dm_get_live_table(md, srcu_idx); 1209 if (!map) 1210 return NULL; 1211 1212 ti = dm_table_find_target(map, sector); 1213 if (!ti) 1214 return NULL; 1215 1216 return ti; 1217 } 1218 1219 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1220 long nr_pages, enum dax_access_mode mode, void **kaddr, 1221 pfn_t *pfn) 1222 { 1223 struct mapped_device *md = dax_get_private(dax_dev); 1224 sector_t sector = pgoff * PAGE_SECTORS; 1225 struct dm_target *ti; 1226 long len, ret = -EIO; 1227 int srcu_idx; 1228 1229 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1230 1231 if (!ti) 1232 goto out; 1233 if (!ti->type->direct_access) 1234 goto out; 1235 len = max_io_len(ti, sector) / PAGE_SECTORS; 1236 if (len < 1) 1237 goto out; 1238 nr_pages = min(len, nr_pages); 1239 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1240 1241 out: 1242 dm_put_live_table(md, srcu_idx); 1243 1244 return ret; 1245 } 1246 1247 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1248 size_t nr_pages) 1249 { 1250 struct mapped_device *md = dax_get_private(dax_dev); 1251 sector_t sector = pgoff * PAGE_SECTORS; 1252 struct dm_target *ti; 1253 int ret = -EIO; 1254 int srcu_idx; 1255 1256 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1257 1258 if (!ti) 1259 goto out; 1260 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1261 /* 1262 * ->zero_page_range() is mandatory dax operation. If we are 1263 * here, something is wrong. 1264 */ 1265 goto out; 1266 } 1267 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1268 out: 1269 dm_put_live_table(md, srcu_idx); 1270 1271 return ret; 1272 } 1273 1274 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1275 void *addr, size_t bytes, struct iov_iter *i) 1276 { 1277 struct mapped_device *md = dax_get_private(dax_dev); 1278 sector_t sector = pgoff * PAGE_SECTORS; 1279 struct dm_target *ti; 1280 int srcu_idx; 1281 long ret = 0; 1282 1283 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1284 if (!ti || !ti->type->dax_recovery_write) 1285 goto out; 1286 1287 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1288 out: 1289 dm_put_live_table(md, srcu_idx); 1290 return ret; 1291 } 1292 1293 /* 1294 * A target may call dm_accept_partial_bio only from the map routine. It is 1295 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1296 * operations, zone append writes (native with REQ_OP_ZONE_APPEND or emulated 1297 * with write BIOs flagged with BIO_EMULATES_ZONE_APPEND) and any bio serviced 1298 * by __send_duplicate_bios(). 1299 * 1300 * dm_accept_partial_bio informs the dm that the target only wants to process 1301 * additional n_sectors sectors of the bio and the rest of the data should be 1302 * sent in a next bio. 1303 * 1304 * A diagram that explains the arithmetics: 1305 * +--------------------+---------------+-------+ 1306 * | 1 | 2 | 3 | 1307 * +--------------------+---------------+-------+ 1308 * 1309 * <-------------- *tio->len_ptr ---------------> 1310 * <----- bio_sectors -----> 1311 * <-- n_sectors --> 1312 * 1313 * Region 1 was already iterated over with bio_advance or similar function. 1314 * (it may be empty if the target doesn't use bio_advance) 1315 * Region 2 is the remaining bio size that the target wants to process. 1316 * (it may be empty if region 1 is non-empty, although there is no reason 1317 * to make it empty) 1318 * The target requires that region 3 is to be sent in the next bio. 1319 * 1320 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1321 * the partially processed part (the sum of regions 1+2) must be the same for all 1322 * copies of the bio. 1323 */ 1324 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1325 { 1326 struct dm_target_io *tio = clone_to_tio(bio); 1327 struct dm_io *io = tio->io; 1328 unsigned int bio_sectors = bio_sectors(bio); 1329 1330 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1331 BUG_ON(bio_sectors > *tio->len_ptr); 1332 BUG_ON(n_sectors > bio_sectors); 1333 1334 if (static_branch_unlikely(&zoned_enabled) && 1335 unlikely(bdev_is_zoned(bio->bi_bdev))) { 1336 enum req_op op = bio_op(bio); 1337 1338 BUG_ON(op_is_zone_mgmt(op)); 1339 BUG_ON(op == REQ_OP_WRITE); 1340 BUG_ON(op == REQ_OP_WRITE_ZEROES); 1341 BUG_ON(op == REQ_OP_ZONE_APPEND); 1342 } 1343 1344 *tio->len_ptr -= bio_sectors - n_sectors; 1345 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1346 1347 /* 1348 * __split_and_process_bio() may have already saved mapped part 1349 * for accounting but it is being reduced so update accordingly. 1350 */ 1351 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1352 io->sectors = n_sectors; 1353 io->sector_offset = bio_sectors(io->orig_bio); 1354 } 1355 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1356 1357 /* 1358 * @clone: clone bio that DM core passed to target's .map function 1359 * @tgt_clone: clone of @clone bio that target needs submitted 1360 * 1361 * Targets should use this interface to submit bios they take 1362 * ownership of when returning DM_MAPIO_SUBMITTED. 1363 * 1364 * Target should also enable ti->accounts_remapped_io 1365 */ 1366 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1367 { 1368 struct dm_target_io *tio = clone_to_tio(clone); 1369 struct dm_io *io = tio->io; 1370 1371 /* establish bio that will get submitted */ 1372 if (!tgt_clone) 1373 tgt_clone = clone; 1374 1375 /* 1376 * Account io->origin_bio to DM dev on behalf of target 1377 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1378 */ 1379 dm_start_io_acct(io, clone); 1380 1381 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1382 tio->old_sector); 1383 submit_bio_noacct(tgt_clone); 1384 } 1385 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1386 1387 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1388 { 1389 mutex_lock(&md->swap_bios_lock); 1390 while (latch < md->swap_bios) { 1391 cond_resched(); 1392 down(&md->swap_bios_semaphore); 1393 md->swap_bios--; 1394 } 1395 while (latch > md->swap_bios) { 1396 cond_resched(); 1397 up(&md->swap_bios_semaphore); 1398 md->swap_bios++; 1399 } 1400 mutex_unlock(&md->swap_bios_lock); 1401 } 1402 1403 static void __map_bio(struct bio *clone) 1404 { 1405 struct dm_target_io *tio = clone_to_tio(clone); 1406 struct dm_target *ti = tio->ti; 1407 struct dm_io *io = tio->io; 1408 struct mapped_device *md = io->md; 1409 int r; 1410 1411 clone->bi_end_io = clone_endio; 1412 1413 /* 1414 * Map the clone. 1415 */ 1416 tio->old_sector = clone->bi_iter.bi_sector; 1417 1418 if (static_branch_unlikely(&swap_bios_enabled) && 1419 unlikely(swap_bios_limit(ti, clone))) { 1420 int latch = get_swap_bios(); 1421 1422 if (unlikely(latch != md->swap_bios)) 1423 __set_swap_bios_limit(md, latch); 1424 down(&md->swap_bios_semaphore); 1425 } 1426 1427 if (likely(ti->type->map == linear_map)) 1428 r = linear_map(ti, clone); 1429 else if (ti->type->map == stripe_map) 1430 r = stripe_map(ti, clone); 1431 else 1432 r = ti->type->map(ti, clone); 1433 1434 switch (r) { 1435 case DM_MAPIO_SUBMITTED: 1436 /* target has assumed ownership of this io */ 1437 if (!ti->accounts_remapped_io) 1438 dm_start_io_acct(io, clone); 1439 break; 1440 case DM_MAPIO_REMAPPED: 1441 dm_submit_bio_remap(clone, NULL); 1442 break; 1443 case DM_MAPIO_KILL: 1444 case DM_MAPIO_REQUEUE: 1445 if (static_branch_unlikely(&swap_bios_enabled) && 1446 unlikely(swap_bios_limit(ti, clone))) 1447 up(&md->swap_bios_semaphore); 1448 free_tio(clone); 1449 if (r == DM_MAPIO_KILL) 1450 dm_io_dec_pending(io, BLK_STS_IOERR); 1451 else 1452 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1453 break; 1454 default: 1455 DMCRIT("unimplemented target map return value: %d", r); 1456 BUG(); 1457 } 1458 } 1459 1460 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1461 { 1462 struct dm_io *io = ci->io; 1463 1464 if (ci->sector_count > len) { 1465 /* 1466 * Split needed, save the mapped part for accounting. 1467 * NOTE: dm_accept_partial_bio() will update accordingly. 1468 */ 1469 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1470 io->sectors = len; 1471 io->sector_offset = bio_sectors(ci->bio); 1472 } 1473 } 1474 1475 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1476 struct dm_target *ti, unsigned int num_bios, 1477 unsigned *len) 1478 { 1479 struct bio *bio; 1480 int try; 1481 1482 for (try = 0; try < 2; try++) { 1483 int bio_nr; 1484 1485 if (try && num_bios > 1) 1486 mutex_lock(&ci->io->md->table_devices_lock); 1487 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1488 bio = alloc_tio(ci, ti, bio_nr, len, 1489 try ? GFP_NOIO : GFP_NOWAIT); 1490 if (!bio) 1491 break; 1492 1493 bio_list_add(blist, bio); 1494 } 1495 if (try && num_bios > 1) 1496 mutex_unlock(&ci->io->md->table_devices_lock); 1497 if (bio_nr == num_bios) 1498 return; 1499 1500 while ((bio = bio_list_pop(blist))) 1501 free_tio(bio); 1502 } 1503 } 1504 1505 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1506 unsigned int num_bios, unsigned int *len) 1507 { 1508 struct bio_list blist = BIO_EMPTY_LIST; 1509 struct bio *clone; 1510 unsigned int ret = 0; 1511 1512 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */ 1513 return 0; 1514 1515 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1516 if (len) 1517 setup_split_accounting(ci, *len); 1518 1519 /* 1520 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently 1521 * support allocating using GFP_NOWAIT with GFP_NOIO fallback. 1522 */ 1523 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1524 while ((clone = bio_list_pop(&blist))) { 1525 if (num_bios > 1) 1526 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1527 __map_bio(clone); 1528 ret += 1; 1529 } 1530 1531 return ret; 1532 } 1533 1534 static void __send_empty_flush(struct clone_info *ci) 1535 { 1536 struct dm_table *t = ci->map; 1537 struct bio flush_bio; 1538 blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1539 1540 if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) == 1541 (REQ_IDLE | REQ_SYNC)) 1542 opf |= REQ_IDLE; 1543 1544 /* 1545 * Use an on-stack bio for this, it's safe since we don't 1546 * need to reference it after submit. It's just used as 1547 * the basis for the clone(s). 1548 */ 1549 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf); 1550 1551 ci->bio = &flush_bio; 1552 ci->sector_count = 0; 1553 ci->io->tio.clone.bi_iter.bi_size = 0; 1554 1555 if (!t->flush_bypasses_map) { 1556 for (unsigned int i = 0; i < t->num_targets; i++) { 1557 unsigned int bios; 1558 struct dm_target *ti = dm_table_get_target(t, i); 1559 1560 if (unlikely(ti->num_flush_bios == 0)) 1561 continue; 1562 1563 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1564 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, 1565 NULL); 1566 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1567 } 1568 } else { 1569 /* 1570 * Note that there's no need to grab t->devices_lock here 1571 * because the targets that support flush optimization don't 1572 * modify the list of devices. 1573 */ 1574 struct list_head *devices = dm_table_get_devices(t); 1575 unsigned int len = 0; 1576 struct dm_dev_internal *dd; 1577 list_for_each_entry(dd, devices, list) { 1578 struct bio *clone; 1579 /* 1580 * Note that the structure dm_target_io is not 1581 * associated with any target (because the device may be 1582 * used by multiple targets), so we set tio->ti = NULL. 1583 * We must check for NULL in the I/O processing path, to 1584 * avoid NULL pointer dereference. 1585 */ 1586 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO); 1587 atomic_add(1, &ci->io->io_count); 1588 bio_set_dev(clone, dd->dm_dev->bdev); 1589 clone->bi_end_io = clone_endio; 1590 dm_submit_bio_remap(clone, NULL); 1591 } 1592 } 1593 1594 /* 1595 * alloc_io() takes one extra reference for submission, so the 1596 * reference won't reach 0 without the following subtraction 1597 */ 1598 atomic_sub(1, &ci->io->io_count); 1599 1600 bio_uninit(ci->bio); 1601 } 1602 1603 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1604 unsigned int num_bios, unsigned int max_granularity, 1605 unsigned int max_sectors) 1606 { 1607 unsigned int len, bios; 1608 1609 len = min_t(sector_t, ci->sector_count, 1610 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1611 1612 atomic_add(num_bios, &ci->io->io_count); 1613 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1614 /* 1615 * alloc_io() takes one extra reference for submission, so the 1616 * reference won't reach 0 without the following (+1) subtraction 1617 */ 1618 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1619 1620 ci->sector += len; 1621 ci->sector_count -= len; 1622 } 1623 1624 static bool is_abnormal_io(struct bio *bio) 1625 { 1626 switch (bio_op(bio)) { 1627 case REQ_OP_READ: 1628 case REQ_OP_WRITE: 1629 case REQ_OP_FLUSH: 1630 return false; 1631 case REQ_OP_DISCARD: 1632 case REQ_OP_SECURE_ERASE: 1633 case REQ_OP_WRITE_ZEROES: 1634 case REQ_OP_ZONE_RESET_ALL: 1635 return true; 1636 default: 1637 return false; 1638 } 1639 } 1640 1641 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1642 struct dm_target *ti) 1643 { 1644 unsigned int num_bios = 0; 1645 unsigned int max_granularity = 0; 1646 unsigned int max_sectors = 0; 1647 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1648 1649 switch (bio_op(ci->bio)) { 1650 case REQ_OP_DISCARD: 1651 num_bios = ti->num_discard_bios; 1652 max_sectors = limits->max_discard_sectors; 1653 if (ti->max_discard_granularity) 1654 max_granularity = max_sectors; 1655 break; 1656 case REQ_OP_SECURE_ERASE: 1657 num_bios = ti->num_secure_erase_bios; 1658 max_sectors = limits->max_secure_erase_sectors; 1659 break; 1660 case REQ_OP_WRITE_ZEROES: 1661 num_bios = ti->num_write_zeroes_bios; 1662 max_sectors = limits->max_write_zeroes_sectors; 1663 break; 1664 default: 1665 break; 1666 } 1667 1668 /* 1669 * Even though the device advertised support for this type of 1670 * request, that does not mean every target supports it, and 1671 * reconfiguration might also have changed that since the 1672 * check was performed. 1673 */ 1674 if (unlikely(!num_bios)) 1675 return BLK_STS_NOTSUPP; 1676 1677 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors); 1678 1679 return BLK_STS_OK; 1680 } 1681 1682 /* 1683 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1684 * associated with this bio, and this bio's bi_private needs to be 1685 * stored in dm_io->data before the reuse. 1686 * 1687 * bio->bi_private is owned by fs or upper layer, so block layer won't 1688 * touch it after splitting. Meantime it won't be changed by anyone after 1689 * bio is submitted. So this reuse is safe. 1690 */ 1691 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1692 { 1693 return (struct dm_io **)&bio->bi_private; 1694 } 1695 1696 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1697 { 1698 struct dm_io **head = dm_poll_list_head(bio); 1699 1700 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1701 bio->bi_opf |= REQ_DM_POLL_LIST; 1702 /* 1703 * Save .bi_private into dm_io, so that we can reuse 1704 * .bi_private as dm_io list head for storing dm_io list 1705 */ 1706 io->data = bio->bi_private; 1707 1708 /* tell block layer to poll for completion */ 1709 bio->bi_cookie = ~BLK_QC_T_NONE; 1710 1711 io->next = NULL; 1712 } else { 1713 /* 1714 * bio recursed due to split, reuse original poll list, 1715 * and save bio->bi_private too. 1716 */ 1717 io->data = (*head)->data; 1718 io->next = *head; 1719 } 1720 1721 *head = io; 1722 } 1723 1724 /* 1725 * Select the correct strategy for processing a non-flush bio. 1726 */ 1727 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1728 { 1729 struct bio *clone; 1730 struct dm_target *ti; 1731 unsigned int len; 1732 1733 ti = dm_table_find_target(ci->map, ci->sector); 1734 if (unlikely(!ti)) 1735 return BLK_STS_IOERR; 1736 1737 if (unlikely(ci->is_abnormal_io)) 1738 return __process_abnormal_io(ci, ti); 1739 1740 /* 1741 * Only support bio polling for normal IO, and the target io is 1742 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1743 */ 1744 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1745 1746 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1747 if (ci->bio->bi_opf & REQ_ATOMIC && len != ci->sector_count) 1748 return BLK_STS_IOERR; 1749 1750 setup_split_accounting(ci, len); 1751 1752 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) { 1753 if (unlikely(!dm_target_supports_nowait(ti->type))) 1754 return BLK_STS_NOTSUPP; 1755 1756 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT); 1757 if (unlikely(!clone)) 1758 return BLK_STS_AGAIN; 1759 } else { 1760 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1761 } 1762 __map_bio(clone); 1763 1764 ci->sector += len; 1765 ci->sector_count -= len; 1766 1767 return BLK_STS_OK; 1768 } 1769 1770 static void init_clone_info(struct clone_info *ci, struct dm_io *io, 1771 struct dm_table *map, struct bio *bio, bool is_abnormal) 1772 { 1773 ci->map = map; 1774 ci->io = io; 1775 ci->bio = bio; 1776 ci->is_abnormal_io = is_abnormal; 1777 ci->submit_as_polled = false; 1778 ci->sector = bio->bi_iter.bi_sector; 1779 ci->sector_count = bio_sectors(bio); 1780 1781 /* Shouldn't happen but sector_count was being set to 0 so... */ 1782 if (static_branch_unlikely(&zoned_enabled) && 1783 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1784 ci->sector_count = 0; 1785 } 1786 1787 #ifdef CONFIG_BLK_DEV_ZONED 1788 static inline bool dm_zone_bio_needs_split(struct bio *bio) 1789 { 1790 /* 1791 * Special case the zone operations that cannot or should not be split. 1792 */ 1793 switch (bio_op(bio)) { 1794 case REQ_OP_ZONE_APPEND: 1795 case REQ_OP_ZONE_FINISH: 1796 case REQ_OP_ZONE_RESET: 1797 case REQ_OP_ZONE_RESET_ALL: 1798 return false; 1799 default: 1800 break; 1801 } 1802 1803 /* 1804 * When mapped devices use the block layer zone write plugging, we must 1805 * split any large BIO to the mapped device limits to not submit BIOs 1806 * that span zone boundaries and to avoid potential deadlocks with 1807 * queue freeze operations. 1808 */ 1809 return bio_needs_zone_write_plugging(bio) || bio_straddles_zones(bio); 1810 } 1811 1812 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1813 { 1814 if (!bio_needs_zone_write_plugging(bio)) 1815 return false; 1816 return blk_zone_plug_bio(bio, 0); 1817 } 1818 1819 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci, 1820 struct dm_target *ti) 1821 { 1822 struct bio_list blist = BIO_EMPTY_LIST; 1823 struct mapped_device *md = ci->io->md; 1824 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors; 1825 unsigned long *need_reset; 1826 unsigned int i, nr_zones, nr_reset; 1827 unsigned int num_bios = 0; 1828 blk_status_t sts = BLK_STS_OK; 1829 sector_t sector = ti->begin; 1830 struct bio *clone; 1831 int ret; 1832 1833 nr_zones = ti->len >> ilog2(zone_sectors); 1834 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO); 1835 if (!need_reset) 1836 return BLK_STS_RESOURCE; 1837 1838 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin, 1839 nr_zones, need_reset); 1840 if (ret) { 1841 sts = BLK_STS_IOERR; 1842 goto free_bitmap; 1843 } 1844 1845 /* If we have no zone to reset, we are done. */ 1846 nr_reset = bitmap_weight(need_reset, nr_zones); 1847 if (!nr_reset) 1848 goto free_bitmap; 1849 1850 atomic_add(nr_zones, &ci->io->io_count); 1851 1852 for (i = 0; i < nr_zones; i++) { 1853 1854 if (!test_bit(i, need_reset)) { 1855 sector += zone_sectors; 1856 continue; 1857 } 1858 1859 if (bio_list_empty(&blist)) { 1860 /* This may take a while, so be nice to others */ 1861 if (num_bios) 1862 cond_resched(); 1863 1864 /* 1865 * We may need to reset thousands of zones, so let's 1866 * not go crazy with the clone allocation. 1867 */ 1868 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32), 1869 NULL); 1870 } 1871 1872 /* Get a clone and change it to a regular reset operation. */ 1873 clone = bio_list_pop(&blist); 1874 clone->bi_opf &= ~REQ_OP_MASK; 1875 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC; 1876 clone->bi_iter.bi_sector = sector; 1877 clone->bi_iter.bi_size = 0; 1878 __map_bio(clone); 1879 1880 sector += zone_sectors; 1881 num_bios++; 1882 nr_reset--; 1883 } 1884 1885 WARN_ON_ONCE(!bio_list_empty(&blist)); 1886 atomic_sub(nr_zones - num_bios, &ci->io->io_count); 1887 ci->sector_count = 0; 1888 1889 free_bitmap: 1890 bitmap_free(need_reset); 1891 1892 return sts; 1893 } 1894 1895 static void __send_zone_reset_all_native(struct clone_info *ci, 1896 struct dm_target *ti) 1897 { 1898 unsigned int bios; 1899 1900 atomic_add(1, &ci->io->io_count); 1901 bios = __send_duplicate_bios(ci, ti, 1, NULL); 1902 atomic_sub(1 - bios, &ci->io->io_count); 1903 1904 ci->sector_count = 0; 1905 } 1906 1907 static blk_status_t __send_zone_reset_all(struct clone_info *ci) 1908 { 1909 struct dm_table *t = ci->map; 1910 blk_status_t sts = BLK_STS_OK; 1911 1912 for (unsigned int i = 0; i < t->num_targets; i++) { 1913 struct dm_target *ti = dm_table_get_target(t, i); 1914 1915 if (ti->zone_reset_all_supported) { 1916 __send_zone_reset_all_native(ci, ti); 1917 continue; 1918 } 1919 1920 sts = __send_zone_reset_all_emulated(ci, ti); 1921 if (sts != BLK_STS_OK) 1922 break; 1923 } 1924 1925 /* Release the reference that alloc_io() took for submission. */ 1926 atomic_sub(1, &ci->io->io_count); 1927 1928 return sts; 1929 } 1930 1931 #else 1932 static inline bool dm_zone_bio_needs_split(struct bio *bio) 1933 { 1934 return false; 1935 } 1936 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1937 { 1938 return false; 1939 } 1940 static blk_status_t __send_zone_reset_all(struct clone_info *ci) 1941 { 1942 return BLK_STS_NOTSUPP; 1943 } 1944 #endif 1945 1946 /* 1947 * Entry point to split a bio into clones and submit them to the targets. 1948 */ 1949 static void dm_split_and_process_bio(struct mapped_device *md, 1950 struct dm_table *map, struct bio *bio) 1951 { 1952 struct clone_info ci; 1953 struct dm_io *io; 1954 blk_status_t error = BLK_STS_OK; 1955 bool is_abnormal, need_split; 1956 1957 is_abnormal = is_abnormal_io(bio); 1958 if (static_branch_unlikely(&zoned_enabled)) { 1959 need_split = is_abnormal || dm_zone_bio_needs_split(bio); 1960 } else { 1961 need_split = is_abnormal; 1962 } 1963 1964 if (unlikely(need_split)) { 1965 /* 1966 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1967 * otherwise associated queue_limits won't be imposed. 1968 * Also split the BIO for mapped devices needing zone append 1969 * emulation to ensure that the BIO does not cross zone 1970 * boundaries. 1971 */ 1972 bio = bio_split_to_limits(bio); 1973 if (!bio) 1974 return; 1975 } 1976 1977 /* 1978 * Use the block layer zone write plugging for mapped devices that 1979 * need zone append emulation (e.g. dm-crypt). 1980 */ 1981 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio)) 1982 return; 1983 1984 /* Only support nowait for normal IO */ 1985 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) { 1986 /* 1987 * Don't support NOWAIT for FLUSH because it may allocate 1988 * multiple bios and there's no easy way how to undo the 1989 * allocations. 1990 */ 1991 if (bio->bi_opf & REQ_PREFLUSH) { 1992 bio_wouldblock_error(bio); 1993 return; 1994 } 1995 io = alloc_io(md, bio, GFP_NOWAIT); 1996 if (unlikely(!io)) { 1997 /* Unable to do anything without dm_io. */ 1998 bio_wouldblock_error(bio); 1999 return; 2000 } 2001 } else { 2002 io = alloc_io(md, bio, GFP_NOIO); 2003 } 2004 init_clone_info(&ci, io, map, bio, is_abnormal); 2005 2006 if (bio->bi_opf & REQ_PREFLUSH) { 2007 __send_empty_flush(&ci); 2008 /* dm_io_complete submits any data associated with flush */ 2009 goto out; 2010 } 2011 2012 if (static_branch_unlikely(&zoned_enabled) && 2013 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) { 2014 error = __send_zone_reset_all(&ci); 2015 goto out; 2016 } 2017 2018 error = __split_and_process_bio(&ci); 2019 if (error || !ci.sector_count) 2020 goto out; 2021 /* 2022 * Remainder must be passed to submit_bio_noacct() so it gets handled 2023 * *after* bios already submitted have been completely processed. 2024 */ 2025 bio_trim(bio, io->sectors, ci.sector_count); 2026 trace_block_split(bio, bio->bi_iter.bi_sector); 2027 bio_inc_remaining(bio); 2028 submit_bio_noacct(bio); 2029 out: 2030 /* 2031 * Drop the extra reference count for non-POLLED bio, and hold one 2032 * reference for POLLED bio, which will be released in dm_poll_bio 2033 * 2034 * Add every dm_io instance into the dm_io list head which is stored 2035 * in bio->bi_private, so that dm_poll_bio can poll them all. 2036 */ 2037 if (error || !ci.submit_as_polled) { 2038 /* 2039 * In case of submission failure, the extra reference for 2040 * submitting io isn't consumed yet 2041 */ 2042 if (error) 2043 atomic_dec(&io->io_count); 2044 dm_io_dec_pending(io, error); 2045 } else 2046 dm_queue_poll_io(bio, io); 2047 } 2048 2049 static void dm_submit_bio(struct bio *bio) 2050 { 2051 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 2052 int srcu_idx; 2053 struct dm_table *map; 2054 2055 map = dm_get_live_table(md, &srcu_idx); 2056 if (unlikely(!map)) { 2057 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 2058 dm_device_name(md)); 2059 bio_io_error(bio); 2060 goto out; 2061 } 2062 2063 /* If suspended, queue this IO for later */ 2064 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 2065 if (bio->bi_opf & REQ_NOWAIT) 2066 bio_wouldblock_error(bio); 2067 else if (bio->bi_opf & REQ_RAHEAD) 2068 bio_io_error(bio); 2069 else 2070 queue_io(md, bio); 2071 goto out; 2072 } 2073 2074 dm_split_and_process_bio(md, map, bio); 2075 out: 2076 dm_put_live_table(md, srcu_idx); 2077 } 2078 2079 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 2080 unsigned int flags) 2081 { 2082 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 2083 2084 /* don't poll if the mapped io is done */ 2085 if (atomic_read(&io->io_count) > 1) 2086 bio_poll(&io->tio.clone, iob, flags); 2087 2088 /* bio_poll holds the last reference */ 2089 return atomic_read(&io->io_count) == 1; 2090 } 2091 2092 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 2093 unsigned int flags) 2094 { 2095 struct dm_io **head = dm_poll_list_head(bio); 2096 struct dm_io *list = *head; 2097 struct dm_io *tmp = NULL; 2098 struct dm_io *curr, *next; 2099 2100 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 2101 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 2102 return 0; 2103 2104 WARN_ON_ONCE(!list); 2105 2106 /* 2107 * Restore .bi_private before possibly completing dm_io. 2108 * 2109 * bio_poll() is only possible once @bio has been completely 2110 * submitted via submit_bio_noacct()'s depth-first submission. 2111 * So there is no dm_queue_poll_io() race associated with 2112 * clearing REQ_DM_POLL_LIST here. 2113 */ 2114 bio->bi_opf &= ~REQ_DM_POLL_LIST; 2115 bio->bi_private = list->data; 2116 2117 for (curr = list, next = curr->next; curr; curr = next, next = 2118 curr ? curr->next : NULL) { 2119 if (dm_poll_dm_io(curr, iob, flags)) { 2120 /* 2121 * clone_endio() has already occurred, so no 2122 * error handling is needed here. 2123 */ 2124 __dm_io_dec_pending(curr); 2125 } else { 2126 curr->next = tmp; 2127 tmp = curr; 2128 } 2129 } 2130 2131 /* Not done? */ 2132 if (tmp) { 2133 bio->bi_opf |= REQ_DM_POLL_LIST; 2134 /* Reset bio->bi_private to dm_io list head */ 2135 *head = tmp; 2136 return 0; 2137 } 2138 return 1; 2139 } 2140 2141 /* 2142 *--------------------------------------------------------------- 2143 * An IDR is used to keep track of allocated minor numbers. 2144 *--------------------------------------------------------------- 2145 */ 2146 static void free_minor(int minor) 2147 { 2148 spin_lock(&_minor_lock); 2149 idr_remove(&_minor_idr, minor); 2150 spin_unlock(&_minor_lock); 2151 } 2152 2153 /* 2154 * See if the device with a specific minor # is free. 2155 */ 2156 static int specific_minor(int minor) 2157 { 2158 int r; 2159 2160 if (minor >= (1 << MINORBITS)) 2161 return -EINVAL; 2162 2163 idr_preload(GFP_KERNEL); 2164 spin_lock(&_minor_lock); 2165 2166 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2167 2168 spin_unlock(&_minor_lock); 2169 idr_preload_end(); 2170 if (r < 0) 2171 return r == -ENOSPC ? -EBUSY : r; 2172 return 0; 2173 } 2174 2175 static int next_free_minor(int *minor) 2176 { 2177 int r; 2178 2179 idr_preload(GFP_KERNEL); 2180 spin_lock(&_minor_lock); 2181 2182 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2183 2184 spin_unlock(&_minor_lock); 2185 idr_preload_end(); 2186 if (r < 0) 2187 return r; 2188 *minor = r; 2189 return 0; 2190 } 2191 2192 static const struct block_device_operations dm_blk_dops; 2193 static const struct block_device_operations dm_rq_blk_dops; 2194 static const struct dax_operations dm_dax_ops; 2195 2196 static void dm_wq_work(struct work_struct *work); 2197 2198 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 2199 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 2200 { 2201 dm_destroy_crypto_profile(q->crypto_profile); 2202 } 2203 2204 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 2205 2206 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 2207 { 2208 } 2209 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 2210 2211 static void cleanup_mapped_device(struct mapped_device *md) 2212 { 2213 if (md->wq) 2214 destroy_workqueue(md->wq); 2215 dm_free_md_mempools(md->mempools); 2216 2217 if (md->dax_dev) { 2218 dax_remove_host(md->disk); 2219 kill_dax(md->dax_dev); 2220 put_dax(md->dax_dev); 2221 md->dax_dev = NULL; 2222 } 2223 2224 if (md->disk) { 2225 spin_lock(&_minor_lock); 2226 md->disk->private_data = NULL; 2227 spin_unlock(&_minor_lock); 2228 if (dm_get_md_type(md) != DM_TYPE_NONE) { 2229 struct table_device *td; 2230 2231 dm_sysfs_exit(md); 2232 list_for_each_entry(td, &md->table_devices, list) { 2233 bd_unlink_disk_holder(td->dm_dev.bdev, 2234 md->disk); 2235 } 2236 2237 /* 2238 * Hold lock to make sure del_gendisk() won't concurrent 2239 * with open/close_table_device(). 2240 */ 2241 mutex_lock(&md->table_devices_lock); 2242 del_gendisk(md->disk); 2243 mutex_unlock(&md->table_devices_lock); 2244 } 2245 dm_queue_destroy_crypto_profile(md->queue); 2246 put_disk(md->disk); 2247 } 2248 2249 if (md->pending_io) { 2250 free_percpu(md->pending_io); 2251 md->pending_io = NULL; 2252 } 2253 2254 cleanup_srcu_struct(&md->io_barrier); 2255 2256 mutex_destroy(&md->suspend_lock); 2257 mutex_destroy(&md->type_lock); 2258 mutex_destroy(&md->table_devices_lock); 2259 mutex_destroy(&md->swap_bios_lock); 2260 2261 dm_mq_cleanup_mapped_device(md); 2262 } 2263 2264 /* 2265 * Allocate and initialise a blank device with a given minor. 2266 */ 2267 static struct mapped_device *alloc_dev(int minor) 2268 { 2269 int r, numa_node_id = dm_get_numa_node(); 2270 struct dax_device *dax_dev; 2271 struct mapped_device *md; 2272 void *old_md; 2273 2274 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2275 if (!md) { 2276 DMERR("unable to allocate device, out of memory."); 2277 return NULL; 2278 } 2279 2280 if (!try_module_get(THIS_MODULE)) 2281 goto bad_module_get; 2282 2283 /* get a minor number for the dev */ 2284 if (minor == DM_ANY_MINOR) 2285 r = next_free_minor(&minor); 2286 else 2287 r = specific_minor(minor); 2288 if (r < 0) 2289 goto bad_minor; 2290 2291 r = init_srcu_struct(&md->io_barrier); 2292 if (r < 0) 2293 goto bad_io_barrier; 2294 2295 md->numa_node_id = numa_node_id; 2296 md->init_tio_pdu = false; 2297 md->type = DM_TYPE_NONE; 2298 mutex_init(&md->suspend_lock); 2299 mutex_init(&md->type_lock); 2300 mutex_init(&md->table_devices_lock); 2301 spin_lock_init(&md->deferred_lock); 2302 atomic_set(&md->holders, 1); 2303 atomic_set(&md->open_count, 0); 2304 atomic_set(&md->event_nr, 0); 2305 atomic_set(&md->uevent_seq, 0); 2306 INIT_LIST_HEAD(&md->uevent_list); 2307 INIT_LIST_HEAD(&md->table_devices); 2308 spin_lock_init(&md->uevent_lock); 2309 2310 /* 2311 * default to bio-based until DM table is loaded and md->type 2312 * established. If request-based table is loaded: blk-mq will 2313 * override accordingly. 2314 */ 2315 md->disk = blk_alloc_disk(NULL, md->numa_node_id); 2316 if (IS_ERR(md->disk)) { 2317 md->disk = NULL; 2318 goto bad; 2319 } 2320 md->queue = md->disk->queue; 2321 2322 init_waitqueue_head(&md->wait); 2323 INIT_WORK(&md->work, dm_wq_work); 2324 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2325 init_waitqueue_head(&md->eventq); 2326 init_completion(&md->kobj_holder.completion); 2327 2328 md->requeue_list = NULL; 2329 md->swap_bios = get_swap_bios(); 2330 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2331 mutex_init(&md->swap_bios_lock); 2332 2333 md->disk->major = _major; 2334 md->disk->first_minor = minor; 2335 md->disk->minors = 1; 2336 md->disk->flags |= GENHD_FL_NO_PART; 2337 md->disk->fops = &dm_blk_dops; 2338 md->disk->private_data = md; 2339 sprintf(md->disk->disk_name, "dm-%d", minor); 2340 2341 dax_dev = alloc_dax(md, &dm_dax_ops); 2342 if (IS_ERR(dax_dev)) { 2343 if (PTR_ERR(dax_dev) != -EOPNOTSUPP) 2344 goto bad; 2345 } else { 2346 set_dax_nocache(dax_dev); 2347 set_dax_nomc(dax_dev); 2348 md->dax_dev = dax_dev; 2349 if (dax_add_host(dax_dev, md->disk)) 2350 goto bad; 2351 } 2352 2353 format_dev_t(md->name, MKDEV(_major, minor)); 2354 2355 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2356 if (!md->wq) 2357 goto bad; 2358 2359 md->pending_io = alloc_percpu(unsigned long); 2360 if (!md->pending_io) 2361 goto bad; 2362 2363 r = dm_stats_init(&md->stats); 2364 if (r < 0) 2365 goto bad; 2366 2367 /* Populate the mapping, nobody knows we exist yet */ 2368 spin_lock(&_minor_lock); 2369 old_md = idr_replace(&_minor_idr, md, minor); 2370 spin_unlock(&_minor_lock); 2371 2372 BUG_ON(old_md != MINOR_ALLOCED); 2373 2374 return md; 2375 2376 bad: 2377 cleanup_mapped_device(md); 2378 bad_io_barrier: 2379 free_minor(minor); 2380 bad_minor: 2381 module_put(THIS_MODULE); 2382 bad_module_get: 2383 kvfree(md); 2384 return NULL; 2385 } 2386 2387 static void unlock_fs(struct mapped_device *md); 2388 2389 static void free_dev(struct mapped_device *md) 2390 { 2391 int minor = MINOR(disk_devt(md->disk)); 2392 2393 unlock_fs(md); 2394 2395 cleanup_mapped_device(md); 2396 2397 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2398 dm_stats_cleanup(&md->stats); 2399 free_minor(minor); 2400 2401 module_put(THIS_MODULE); 2402 kvfree(md); 2403 } 2404 2405 /* 2406 * Bind a table to the device. 2407 */ 2408 static void event_callback(void *context) 2409 { 2410 unsigned long flags; 2411 LIST_HEAD(uevents); 2412 struct mapped_device *md = context; 2413 2414 spin_lock_irqsave(&md->uevent_lock, flags); 2415 list_splice_init(&md->uevent_list, &uevents); 2416 spin_unlock_irqrestore(&md->uevent_lock, flags); 2417 2418 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2419 2420 atomic_inc(&md->event_nr); 2421 wake_up(&md->eventq); 2422 dm_issue_global_event(); 2423 } 2424 2425 /* 2426 * Returns old map, which caller must destroy. 2427 */ 2428 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2429 struct queue_limits *limits) 2430 { 2431 struct dm_table *old_map; 2432 sector_t size, old_size; 2433 int ret; 2434 2435 lockdep_assert_held(&md->suspend_lock); 2436 2437 size = dm_table_get_size(t); 2438 2439 old_size = dm_get_size(md); 2440 2441 if (!dm_table_supports_size_change(t, old_size, size)) { 2442 old_map = ERR_PTR(-EINVAL); 2443 goto out; 2444 } 2445 2446 set_capacity(md->disk, size); 2447 2448 ret = dm_table_set_restrictions(t, md->queue, limits); 2449 if (ret) { 2450 set_capacity(md->disk, old_size); 2451 old_map = ERR_PTR(ret); 2452 goto out; 2453 } 2454 2455 /* 2456 * Wipe any geometry if the size of the table changed. 2457 */ 2458 if (size != old_size) 2459 memset(&md->geometry, 0, sizeof(md->geometry)); 2460 2461 dm_table_event_callback(t, event_callback, md); 2462 2463 if (dm_table_request_based(t)) { 2464 /* 2465 * Leverage the fact that request-based DM targets are 2466 * immutable singletons - used to optimize dm_mq_queue_rq. 2467 */ 2468 md->immutable_target = dm_table_get_immutable_target(t); 2469 2470 /* 2471 * There is no need to reload with request-based dm because the 2472 * size of front_pad doesn't change. 2473 * 2474 * Note for future: If you are to reload bioset, prep-ed 2475 * requests in the queue may refer to bio from the old bioset, 2476 * so you must walk through the queue to unprep. 2477 */ 2478 if (!md->mempools) 2479 md->mempools = t->mempools; 2480 else 2481 dm_free_md_mempools(t->mempools); 2482 } else { 2483 /* 2484 * The md may already have mempools that need changing. 2485 * If so, reload bioset because front_pad may have changed 2486 * because a different table was loaded. 2487 */ 2488 dm_free_md_mempools(md->mempools); 2489 md->mempools = t->mempools; 2490 } 2491 t->mempools = NULL; 2492 2493 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2494 rcu_assign_pointer(md->map, (void *)t); 2495 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2496 2497 if (old_map) 2498 dm_sync_table(md); 2499 out: 2500 return old_map; 2501 } 2502 2503 /* 2504 * Returns unbound table for the caller to free. 2505 */ 2506 static struct dm_table *__unbind(struct mapped_device *md) 2507 { 2508 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2509 2510 if (!map) 2511 return NULL; 2512 2513 dm_table_event_callback(map, NULL, NULL); 2514 RCU_INIT_POINTER(md->map, NULL); 2515 dm_sync_table(md); 2516 2517 return map; 2518 } 2519 2520 /* 2521 * Constructor for a new device. 2522 */ 2523 int dm_create(int minor, struct mapped_device **result) 2524 { 2525 struct mapped_device *md; 2526 2527 md = alloc_dev(minor); 2528 if (!md) 2529 return -ENXIO; 2530 2531 dm_ima_reset_data(md); 2532 2533 *result = md; 2534 return 0; 2535 } 2536 2537 /* 2538 * Functions to manage md->type. 2539 * All are required to hold md->type_lock. 2540 */ 2541 void dm_lock_md_type(struct mapped_device *md) 2542 { 2543 mutex_lock(&md->type_lock); 2544 } 2545 2546 void dm_unlock_md_type(struct mapped_device *md) 2547 { 2548 mutex_unlock(&md->type_lock); 2549 } 2550 2551 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2552 { 2553 return md->type; 2554 } 2555 2556 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2557 { 2558 return md->immutable_target_type; 2559 } 2560 2561 /* 2562 * Setup the DM device's queue based on md's type 2563 */ 2564 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2565 { 2566 enum dm_queue_mode type = dm_table_get_type(t); 2567 struct queue_limits limits; 2568 struct table_device *td; 2569 int r; 2570 2571 WARN_ON_ONCE(type == DM_TYPE_NONE); 2572 2573 if (type == DM_TYPE_REQUEST_BASED) { 2574 md->disk->fops = &dm_rq_blk_dops; 2575 r = dm_mq_init_request_queue(md, t); 2576 if (r) { 2577 DMERR("Cannot initialize queue for request-based dm mapped device"); 2578 return r; 2579 } 2580 } 2581 2582 r = dm_calculate_queue_limits(t, &limits); 2583 if (r) { 2584 DMERR("Cannot calculate initial queue limits"); 2585 return r; 2586 } 2587 r = dm_table_set_restrictions(t, md->queue, &limits); 2588 if (r) 2589 return r; 2590 2591 /* 2592 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2593 * with open_table_device() and close_table_device(). 2594 */ 2595 mutex_lock(&md->table_devices_lock); 2596 r = add_disk(md->disk); 2597 mutex_unlock(&md->table_devices_lock); 2598 if (r) 2599 return r; 2600 2601 /* 2602 * Register the holder relationship for devices added before the disk 2603 * was live. 2604 */ 2605 list_for_each_entry(td, &md->table_devices, list) { 2606 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2607 if (r) 2608 goto out_undo_holders; 2609 } 2610 2611 r = dm_sysfs_init(md); 2612 if (r) 2613 goto out_undo_holders; 2614 2615 md->type = type; 2616 return 0; 2617 2618 out_undo_holders: 2619 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2620 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2621 mutex_lock(&md->table_devices_lock); 2622 del_gendisk(md->disk); 2623 mutex_unlock(&md->table_devices_lock); 2624 return r; 2625 } 2626 2627 struct mapped_device *dm_get_md(dev_t dev) 2628 { 2629 struct mapped_device *md; 2630 unsigned int minor = MINOR(dev); 2631 2632 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2633 return NULL; 2634 2635 spin_lock(&_minor_lock); 2636 2637 md = idr_find(&_minor_idr, minor); 2638 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2639 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2640 md = NULL; 2641 goto out; 2642 } 2643 dm_get(md); 2644 out: 2645 spin_unlock(&_minor_lock); 2646 2647 return md; 2648 } 2649 EXPORT_SYMBOL_GPL(dm_get_md); 2650 2651 void *dm_get_mdptr(struct mapped_device *md) 2652 { 2653 return md->interface_ptr; 2654 } 2655 2656 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2657 { 2658 md->interface_ptr = ptr; 2659 } 2660 2661 void dm_get(struct mapped_device *md) 2662 { 2663 atomic_inc(&md->holders); 2664 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2665 } 2666 2667 int dm_hold(struct mapped_device *md) 2668 { 2669 spin_lock(&_minor_lock); 2670 if (test_bit(DMF_FREEING, &md->flags)) { 2671 spin_unlock(&_minor_lock); 2672 return -EBUSY; 2673 } 2674 dm_get(md); 2675 spin_unlock(&_minor_lock); 2676 return 0; 2677 } 2678 EXPORT_SYMBOL_GPL(dm_hold); 2679 2680 const char *dm_device_name(struct mapped_device *md) 2681 { 2682 return md->name; 2683 } 2684 EXPORT_SYMBOL_GPL(dm_device_name); 2685 2686 static void __dm_destroy(struct mapped_device *md, bool wait) 2687 { 2688 struct dm_table *map; 2689 int srcu_idx; 2690 2691 might_sleep(); 2692 2693 spin_lock(&_minor_lock); 2694 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2695 set_bit(DMF_FREEING, &md->flags); 2696 spin_unlock(&_minor_lock); 2697 2698 blk_mark_disk_dead(md->disk); 2699 2700 /* 2701 * Take suspend_lock so that presuspend and postsuspend methods 2702 * do not race with internal suspend. 2703 */ 2704 mutex_lock(&md->suspend_lock); 2705 map = dm_get_live_table(md, &srcu_idx); 2706 if (!dm_suspended_md(md)) { 2707 dm_table_presuspend_targets(map); 2708 set_bit(DMF_SUSPENDED, &md->flags); 2709 set_bit(DMF_POST_SUSPENDING, &md->flags); 2710 dm_table_postsuspend_targets(map); 2711 } 2712 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2713 dm_put_live_table(md, srcu_idx); 2714 mutex_unlock(&md->suspend_lock); 2715 2716 /* 2717 * Rare, but there may be I/O requests still going to complete, 2718 * for example. Wait for all references to disappear. 2719 * No one should increment the reference count of the mapped_device, 2720 * after the mapped_device state becomes DMF_FREEING. 2721 */ 2722 if (wait) 2723 while (atomic_read(&md->holders)) 2724 fsleep(1000); 2725 else if (atomic_read(&md->holders)) 2726 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2727 dm_device_name(md), atomic_read(&md->holders)); 2728 2729 dm_table_destroy(__unbind(md)); 2730 free_dev(md); 2731 } 2732 2733 void dm_destroy(struct mapped_device *md) 2734 { 2735 __dm_destroy(md, true); 2736 } 2737 2738 void dm_destroy_immediate(struct mapped_device *md) 2739 { 2740 __dm_destroy(md, false); 2741 } 2742 2743 void dm_put(struct mapped_device *md) 2744 { 2745 atomic_dec(&md->holders); 2746 } 2747 EXPORT_SYMBOL_GPL(dm_put); 2748 2749 static bool dm_in_flight_bios(struct mapped_device *md) 2750 { 2751 int cpu; 2752 unsigned long sum = 0; 2753 2754 for_each_possible_cpu(cpu) 2755 sum += *per_cpu_ptr(md->pending_io, cpu); 2756 2757 return sum != 0; 2758 } 2759 2760 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2761 { 2762 int r = 0; 2763 DEFINE_WAIT(wait); 2764 2765 while (true) { 2766 prepare_to_wait(&md->wait, &wait, task_state); 2767 2768 if (!dm_in_flight_bios(md)) 2769 break; 2770 2771 if (signal_pending_state(task_state, current)) { 2772 r = -ERESTARTSYS; 2773 break; 2774 } 2775 2776 io_schedule(); 2777 } 2778 finish_wait(&md->wait, &wait); 2779 2780 smp_rmb(); 2781 2782 return r; 2783 } 2784 2785 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2786 { 2787 int r = 0; 2788 2789 if (!queue_is_mq(md->queue)) 2790 return dm_wait_for_bios_completion(md, task_state); 2791 2792 while (true) { 2793 if (!blk_mq_queue_inflight(md->queue)) 2794 break; 2795 2796 if (signal_pending_state(task_state, current)) { 2797 r = -ERESTARTSYS; 2798 break; 2799 } 2800 2801 fsleep(5000); 2802 } 2803 2804 return r; 2805 } 2806 2807 /* 2808 * Process the deferred bios 2809 */ 2810 static void dm_wq_work(struct work_struct *work) 2811 { 2812 struct mapped_device *md = container_of(work, struct mapped_device, work); 2813 struct bio *bio; 2814 2815 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2816 spin_lock_irq(&md->deferred_lock); 2817 bio = bio_list_pop(&md->deferred); 2818 spin_unlock_irq(&md->deferred_lock); 2819 2820 if (!bio) 2821 break; 2822 2823 submit_bio_noacct(bio); 2824 cond_resched(); 2825 } 2826 } 2827 2828 static void dm_queue_flush(struct mapped_device *md) 2829 { 2830 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2831 smp_mb__after_atomic(); 2832 queue_work(md->wq, &md->work); 2833 } 2834 2835 /* 2836 * Swap in a new table, returning the old one for the caller to destroy. 2837 */ 2838 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2839 { 2840 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2841 struct queue_limits limits; 2842 int r; 2843 2844 mutex_lock(&md->suspend_lock); 2845 2846 /* device must be suspended */ 2847 if (!dm_suspended_md(md)) 2848 goto out; 2849 2850 /* 2851 * If the new table has no data devices, retain the existing limits. 2852 * This helps multipath with queue_if_no_path if all paths disappear, 2853 * then new I/O is queued based on these limits, and then some paths 2854 * reappear. 2855 */ 2856 if (dm_table_has_no_data_devices(table)) { 2857 live_map = dm_get_live_table_fast(md); 2858 if (live_map) 2859 limits = md->queue->limits; 2860 dm_put_live_table_fast(md); 2861 } 2862 2863 if (!live_map) { 2864 r = dm_calculate_queue_limits(table, &limits); 2865 if (r) { 2866 map = ERR_PTR(r); 2867 goto out; 2868 } 2869 } 2870 2871 map = __bind(md, table, &limits); 2872 dm_issue_global_event(); 2873 2874 out: 2875 mutex_unlock(&md->suspend_lock); 2876 return map; 2877 } 2878 2879 /* 2880 * Functions to lock and unlock any filesystem running on the 2881 * device. 2882 */ 2883 static int lock_fs(struct mapped_device *md) 2884 { 2885 int r; 2886 2887 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2888 2889 r = bdev_freeze(md->disk->part0); 2890 if (!r) 2891 set_bit(DMF_FROZEN, &md->flags); 2892 return r; 2893 } 2894 2895 static void unlock_fs(struct mapped_device *md) 2896 { 2897 if (!test_bit(DMF_FROZEN, &md->flags)) 2898 return; 2899 bdev_thaw(md->disk->part0); 2900 clear_bit(DMF_FROZEN, &md->flags); 2901 } 2902 2903 /* 2904 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2905 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2906 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2907 * 2908 * If __dm_suspend returns 0, the device is completely quiescent 2909 * now. There is no request-processing activity. All new requests 2910 * are being added to md->deferred list. 2911 */ 2912 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2913 unsigned int suspend_flags, unsigned int task_state, 2914 int dmf_suspended_flag) 2915 { 2916 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2917 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2918 int r; 2919 2920 lockdep_assert_held(&md->suspend_lock); 2921 2922 /* 2923 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2924 * This flag is cleared before dm_suspend returns. 2925 */ 2926 if (noflush) 2927 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2928 else 2929 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2930 2931 /* 2932 * This gets reverted if there's an error later and the targets 2933 * provide the .presuspend_undo hook. 2934 */ 2935 dm_table_presuspend_targets(map); 2936 2937 /* 2938 * Flush I/O to the device. 2939 * Any I/O submitted after lock_fs() may not be flushed. 2940 * noflush takes precedence over do_lockfs. 2941 * (lock_fs() flushes I/Os and waits for them to complete.) 2942 */ 2943 if (!noflush && do_lockfs) { 2944 r = lock_fs(md); 2945 if (r) { 2946 dm_table_presuspend_undo_targets(map); 2947 return r; 2948 } 2949 } 2950 2951 /* 2952 * Here we must make sure that no processes are submitting requests 2953 * to target drivers i.e. no one may be executing 2954 * dm_split_and_process_bio from dm_submit_bio. 2955 * 2956 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2957 * we take the write lock. To prevent any process from reentering 2958 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2959 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2960 * flush_workqueue(md->wq). 2961 */ 2962 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2963 if (map) 2964 synchronize_srcu(&md->io_barrier); 2965 2966 /* 2967 * Stop md->queue before flushing md->wq in case request-based 2968 * dm defers requests to md->wq from md->queue. 2969 */ 2970 if (dm_request_based(md)) 2971 dm_stop_queue(md->queue); 2972 2973 flush_workqueue(md->wq); 2974 2975 /* 2976 * At this point no more requests are entering target request routines. 2977 * We call dm_wait_for_completion to wait for all existing requests 2978 * to finish. 2979 */ 2980 r = dm_wait_for_completion(md, task_state); 2981 if (!r) 2982 set_bit(dmf_suspended_flag, &md->flags); 2983 2984 if (noflush) 2985 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2986 if (map) 2987 synchronize_srcu(&md->io_barrier); 2988 2989 /* were we interrupted ? */ 2990 if (r < 0) { 2991 dm_queue_flush(md); 2992 2993 if (dm_request_based(md)) 2994 dm_start_queue(md->queue); 2995 2996 unlock_fs(md); 2997 dm_table_presuspend_undo_targets(map); 2998 /* pushback list is already flushed, so skip flush */ 2999 } 3000 3001 return r; 3002 } 3003 3004 /* 3005 * We need to be able to change a mapping table under a mounted 3006 * filesystem. For example we might want to move some data in 3007 * the background. Before the table can be swapped with 3008 * dm_bind_table, dm_suspend must be called to flush any in 3009 * flight bios and ensure that any further io gets deferred. 3010 */ 3011 /* 3012 * Suspend mechanism in request-based dm. 3013 * 3014 * 1. Flush all I/Os by lock_fs() if needed. 3015 * 2. Stop dispatching any I/O by stopping the request_queue. 3016 * 3. Wait for all in-flight I/Os to be completed or requeued. 3017 * 3018 * To abort suspend, start the request_queue. 3019 */ 3020 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 3021 { 3022 struct dm_table *map = NULL; 3023 int r = 0; 3024 3025 retry: 3026 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3027 3028 if (dm_suspended_md(md)) { 3029 r = -EINVAL; 3030 goto out_unlock; 3031 } 3032 3033 if (dm_suspended_internally_md(md)) { 3034 /* already internally suspended, wait for internal resume */ 3035 mutex_unlock(&md->suspend_lock); 3036 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3037 if (r) 3038 return r; 3039 goto retry; 3040 } 3041 3042 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3043 if (!map) { 3044 /* avoid deadlock with fs/namespace.c:do_mount() */ 3045 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 3046 } 3047 3048 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 3049 if (r) 3050 goto out_unlock; 3051 3052 set_bit(DMF_POST_SUSPENDING, &md->flags); 3053 dm_table_postsuspend_targets(map); 3054 clear_bit(DMF_POST_SUSPENDING, &md->flags); 3055 3056 out_unlock: 3057 mutex_unlock(&md->suspend_lock); 3058 return r; 3059 } 3060 3061 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3062 { 3063 if (map) { 3064 int r = dm_table_resume_targets(map); 3065 3066 if (r) 3067 return r; 3068 } 3069 3070 dm_queue_flush(md); 3071 3072 /* 3073 * Flushing deferred I/Os must be done after targets are resumed 3074 * so that mapping of targets can work correctly. 3075 * Request-based dm is queueing the deferred I/Os in its request_queue. 3076 */ 3077 if (dm_request_based(md)) 3078 dm_start_queue(md->queue); 3079 3080 unlock_fs(md); 3081 3082 return 0; 3083 } 3084 3085 int dm_resume(struct mapped_device *md) 3086 { 3087 int r; 3088 struct dm_table *map = NULL; 3089 3090 retry: 3091 r = -EINVAL; 3092 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3093 3094 if (!dm_suspended_md(md)) 3095 goto out; 3096 3097 if (dm_suspended_internally_md(md)) { 3098 /* already internally suspended, wait for internal resume */ 3099 mutex_unlock(&md->suspend_lock); 3100 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3101 if (r) 3102 return r; 3103 goto retry; 3104 } 3105 3106 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3107 if (!map || !dm_table_get_size(map)) 3108 goto out; 3109 3110 r = __dm_resume(md, map); 3111 if (r) 3112 goto out; 3113 3114 clear_bit(DMF_SUSPENDED, &md->flags); 3115 out: 3116 mutex_unlock(&md->suspend_lock); 3117 3118 return r; 3119 } 3120 3121 /* 3122 * Internal suspend/resume works like userspace-driven suspend. It waits 3123 * until all bios finish and prevents issuing new bios to the target drivers. 3124 * It may be used only from the kernel. 3125 */ 3126 3127 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 3128 { 3129 struct dm_table *map = NULL; 3130 3131 lockdep_assert_held(&md->suspend_lock); 3132 3133 if (md->internal_suspend_count++) 3134 return; /* nested internal suspend */ 3135 3136 if (dm_suspended_md(md)) { 3137 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3138 return; /* nest suspend */ 3139 } 3140 3141 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3142 3143 /* 3144 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3145 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3146 * would require changing .presuspend to return an error -- avoid this 3147 * until there is a need for more elaborate variants of internal suspend. 3148 */ 3149 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 3150 DMF_SUSPENDED_INTERNALLY); 3151 3152 set_bit(DMF_POST_SUSPENDING, &md->flags); 3153 dm_table_postsuspend_targets(map); 3154 clear_bit(DMF_POST_SUSPENDING, &md->flags); 3155 } 3156 3157 static void __dm_internal_resume(struct mapped_device *md) 3158 { 3159 int r; 3160 struct dm_table *map; 3161 3162 BUG_ON(!md->internal_suspend_count); 3163 3164 if (--md->internal_suspend_count) 3165 return; /* resume from nested internal suspend */ 3166 3167 if (dm_suspended_md(md)) 3168 goto done; /* resume from nested suspend */ 3169 3170 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3171 r = __dm_resume(md, map); 3172 if (r) { 3173 /* 3174 * If a preresume method of some target failed, we are in a 3175 * tricky situation. We can't return an error to the caller. We 3176 * can't fake success because then the "resume" and 3177 * "postsuspend" methods would not be paired correctly, and it 3178 * would break various targets, for example it would cause list 3179 * corruption in the "origin" target. 3180 * 3181 * So, we fake normal suspend here, to make sure that the 3182 * "resume" and "postsuspend" methods will be paired correctly. 3183 */ 3184 DMERR("Preresume method failed: %d", r); 3185 set_bit(DMF_SUSPENDED, &md->flags); 3186 } 3187 done: 3188 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3189 smp_mb__after_atomic(); 3190 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3191 } 3192 3193 void dm_internal_suspend_noflush(struct mapped_device *md) 3194 { 3195 mutex_lock(&md->suspend_lock); 3196 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3197 mutex_unlock(&md->suspend_lock); 3198 } 3199 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3200 3201 void dm_internal_resume(struct mapped_device *md) 3202 { 3203 mutex_lock(&md->suspend_lock); 3204 __dm_internal_resume(md); 3205 mutex_unlock(&md->suspend_lock); 3206 } 3207 EXPORT_SYMBOL_GPL(dm_internal_resume); 3208 3209 /* 3210 * Fast variants of internal suspend/resume hold md->suspend_lock, 3211 * which prevents interaction with userspace-driven suspend. 3212 */ 3213 3214 void dm_internal_suspend_fast(struct mapped_device *md) 3215 { 3216 mutex_lock(&md->suspend_lock); 3217 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3218 return; 3219 3220 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3221 synchronize_srcu(&md->io_barrier); 3222 flush_workqueue(md->wq); 3223 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3224 } 3225 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3226 3227 void dm_internal_resume_fast(struct mapped_device *md) 3228 { 3229 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3230 goto done; 3231 3232 dm_queue_flush(md); 3233 3234 done: 3235 mutex_unlock(&md->suspend_lock); 3236 } 3237 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3238 3239 /* 3240 *--------------------------------------------------------------- 3241 * Event notification. 3242 *--------------------------------------------------------------- 3243 */ 3244 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3245 unsigned int cookie, bool need_resize_uevent) 3246 { 3247 int r; 3248 unsigned int noio_flag; 3249 char udev_cookie[DM_COOKIE_LENGTH]; 3250 char *envp[3] = { NULL, NULL, NULL }; 3251 char **envpp = envp; 3252 if (cookie) { 3253 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3254 DM_COOKIE_ENV_VAR_NAME, cookie); 3255 *envpp++ = udev_cookie; 3256 } 3257 if (need_resize_uevent) { 3258 *envpp++ = "RESIZE=1"; 3259 } 3260 3261 noio_flag = memalloc_noio_save(); 3262 3263 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3264 3265 memalloc_noio_restore(noio_flag); 3266 3267 return r; 3268 } 3269 3270 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3271 { 3272 return atomic_add_return(1, &md->uevent_seq); 3273 } 3274 3275 uint32_t dm_get_event_nr(struct mapped_device *md) 3276 { 3277 return atomic_read(&md->event_nr); 3278 } 3279 3280 int dm_wait_event(struct mapped_device *md, int event_nr) 3281 { 3282 return wait_event_interruptible(md->eventq, 3283 (event_nr != atomic_read(&md->event_nr))); 3284 } 3285 3286 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3287 { 3288 unsigned long flags; 3289 3290 spin_lock_irqsave(&md->uevent_lock, flags); 3291 list_add(elist, &md->uevent_list); 3292 spin_unlock_irqrestore(&md->uevent_lock, flags); 3293 } 3294 3295 /* 3296 * The gendisk is only valid as long as you have a reference 3297 * count on 'md'. 3298 */ 3299 struct gendisk *dm_disk(struct mapped_device *md) 3300 { 3301 return md->disk; 3302 } 3303 EXPORT_SYMBOL_GPL(dm_disk); 3304 3305 struct kobject *dm_kobject(struct mapped_device *md) 3306 { 3307 return &md->kobj_holder.kobj; 3308 } 3309 3310 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3311 { 3312 struct mapped_device *md; 3313 3314 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3315 3316 spin_lock(&_minor_lock); 3317 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3318 md = NULL; 3319 goto out; 3320 } 3321 dm_get(md); 3322 out: 3323 spin_unlock(&_minor_lock); 3324 3325 return md; 3326 } 3327 3328 int dm_suspended_md(struct mapped_device *md) 3329 { 3330 return test_bit(DMF_SUSPENDED, &md->flags); 3331 } 3332 3333 static int dm_post_suspending_md(struct mapped_device *md) 3334 { 3335 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3336 } 3337 3338 int dm_suspended_internally_md(struct mapped_device *md) 3339 { 3340 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3341 } 3342 3343 int dm_test_deferred_remove_flag(struct mapped_device *md) 3344 { 3345 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3346 } 3347 3348 int dm_suspended(struct dm_target *ti) 3349 { 3350 return dm_suspended_md(ti->table->md); 3351 } 3352 EXPORT_SYMBOL_GPL(dm_suspended); 3353 3354 int dm_post_suspending(struct dm_target *ti) 3355 { 3356 return dm_post_suspending_md(ti->table->md); 3357 } 3358 EXPORT_SYMBOL_GPL(dm_post_suspending); 3359 3360 int dm_noflush_suspending(struct dm_target *ti) 3361 { 3362 return __noflush_suspending(ti->table->md); 3363 } 3364 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3365 3366 void dm_free_md_mempools(struct dm_md_mempools *pools) 3367 { 3368 if (!pools) 3369 return; 3370 3371 bioset_exit(&pools->bs); 3372 bioset_exit(&pools->io_bs); 3373 3374 kfree(pools); 3375 } 3376 3377 struct dm_blkdev_id { 3378 u8 *id; 3379 enum blk_unique_id type; 3380 }; 3381 3382 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev, 3383 sector_t start, sector_t len, void *data) 3384 { 3385 struct dm_blkdev_id *dm_id = data; 3386 const struct block_device_operations *fops = dev->bdev->bd_disk->fops; 3387 3388 if (!fops->get_unique_id) 3389 return 0; 3390 3391 return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type); 3392 } 3393 3394 /* 3395 * Allow access to get_unique_id() for the first device returning a 3396 * non-zero result. Reasonable use expects all devices to have the 3397 * same unique id. 3398 */ 3399 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id, 3400 enum blk_unique_id type) 3401 { 3402 struct mapped_device *md = disk->private_data; 3403 struct dm_table *table; 3404 struct dm_target *ti; 3405 int ret = 0, srcu_idx; 3406 3407 struct dm_blkdev_id dm_id = { 3408 .id = id, 3409 .type = type, 3410 }; 3411 3412 table = dm_get_live_table(md, &srcu_idx); 3413 if (!table || !dm_table_get_size(table)) 3414 goto out; 3415 3416 /* We only support devices that have a single target */ 3417 if (table->num_targets != 1) 3418 goto out; 3419 ti = dm_table_get_target(table, 0); 3420 3421 if (!ti->type->iterate_devices) 3422 goto out; 3423 3424 ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id); 3425 out: 3426 dm_put_live_table(md, srcu_idx); 3427 return ret; 3428 } 3429 3430 struct dm_pr { 3431 u64 old_key; 3432 u64 new_key; 3433 u32 flags; 3434 bool abort; 3435 bool fail_early; 3436 int ret; 3437 enum pr_type type; 3438 struct pr_keys *read_keys; 3439 struct pr_held_reservation *rsv; 3440 }; 3441 3442 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3443 struct dm_pr *pr) 3444 { 3445 struct mapped_device *md = bdev->bd_disk->private_data; 3446 struct dm_table *table; 3447 struct dm_target *ti; 3448 int ret = -ENOTTY, srcu_idx; 3449 3450 table = dm_get_live_table(md, &srcu_idx); 3451 if (!table || !dm_table_get_size(table)) 3452 goto out; 3453 3454 /* We only support devices that have a single target */ 3455 if (table->num_targets != 1) 3456 goto out; 3457 ti = dm_table_get_target(table, 0); 3458 3459 if (dm_suspended_md(md)) { 3460 ret = -EAGAIN; 3461 goto out; 3462 } 3463 3464 ret = -EINVAL; 3465 if (!ti->type->iterate_devices) 3466 goto out; 3467 3468 ti->type->iterate_devices(ti, fn, pr); 3469 ret = 0; 3470 out: 3471 dm_put_live_table(md, srcu_idx); 3472 return ret; 3473 } 3474 3475 /* 3476 * For register / unregister we need to manually call out to every path. 3477 */ 3478 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3479 sector_t start, sector_t len, void *data) 3480 { 3481 struct dm_pr *pr = data; 3482 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3483 int ret; 3484 3485 if (!ops || !ops->pr_register) { 3486 pr->ret = -EOPNOTSUPP; 3487 return -1; 3488 } 3489 3490 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3491 if (!ret) 3492 return 0; 3493 3494 if (!pr->ret) 3495 pr->ret = ret; 3496 3497 if (pr->fail_early) 3498 return -1; 3499 3500 return 0; 3501 } 3502 3503 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3504 u32 flags) 3505 { 3506 struct dm_pr pr = { 3507 .old_key = old_key, 3508 .new_key = new_key, 3509 .flags = flags, 3510 .fail_early = true, 3511 .ret = 0, 3512 }; 3513 int ret; 3514 3515 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3516 if (ret) { 3517 /* Didn't even get to register a path */ 3518 return ret; 3519 } 3520 3521 if (!pr.ret) 3522 return 0; 3523 ret = pr.ret; 3524 3525 if (!new_key) 3526 return ret; 3527 3528 /* unregister all paths if we failed to register any path */ 3529 pr.old_key = new_key; 3530 pr.new_key = 0; 3531 pr.flags = 0; 3532 pr.fail_early = false; 3533 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3534 return ret; 3535 } 3536 3537 3538 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3539 sector_t start, sector_t len, void *data) 3540 { 3541 struct dm_pr *pr = data; 3542 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3543 3544 if (!ops || !ops->pr_reserve) { 3545 pr->ret = -EOPNOTSUPP; 3546 return -1; 3547 } 3548 3549 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3550 if (!pr->ret) 3551 return -1; 3552 3553 return 0; 3554 } 3555 3556 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3557 u32 flags) 3558 { 3559 struct dm_pr pr = { 3560 .old_key = key, 3561 .flags = flags, 3562 .type = type, 3563 .fail_early = false, 3564 .ret = 0, 3565 }; 3566 int ret; 3567 3568 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3569 if (ret) 3570 return ret; 3571 3572 return pr.ret; 3573 } 3574 3575 /* 3576 * If there is a non-All Registrants type of reservation, the release must be 3577 * sent down the holding path. For the cases where there is no reservation or 3578 * the path is not the holder the device will also return success, so we must 3579 * try each path to make sure we got the correct path. 3580 */ 3581 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3582 sector_t start, sector_t len, void *data) 3583 { 3584 struct dm_pr *pr = data; 3585 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3586 3587 if (!ops || !ops->pr_release) { 3588 pr->ret = -EOPNOTSUPP; 3589 return -1; 3590 } 3591 3592 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3593 if (pr->ret) 3594 return -1; 3595 3596 return 0; 3597 } 3598 3599 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3600 { 3601 struct dm_pr pr = { 3602 .old_key = key, 3603 .type = type, 3604 .fail_early = false, 3605 }; 3606 int ret; 3607 3608 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3609 if (ret) 3610 return ret; 3611 3612 return pr.ret; 3613 } 3614 3615 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3616 sector_t start, sector_t len, void *data) 3617 { 3618 struct dm_pr *pr = data; 3619 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3620 3621 if (!ops || !ops->pr_preempt) { 3622 pr->ret = -EOPNOTSUPP; 3623 return -1; 3624 } 3625 3626 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3627 pr->abort); 3628 if (!pr->ret) 3629 return -1; 3630 3631 return 0; 3632 } 3633 3634 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3635 enum pr_type type, bool abort) 3636 { 3637 struct dm_pr pr = { 3638 .new_key = new_key, 3639 .old_key = old_key, 3640 .type = type, 3641 .fail_early = false, 3642 }; 3643 int ret; 3644 3645 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3646 if (ret) 3647 return ret; 3648 3649 return pr.ret; 3650 } 3651 3652 static int dm_pr_clear(struct block_device *bdev, u64 key) 3653 { 3654 struct mapped_device *md = bdev->bd_disk->private_data; 3655 const struct pr_ops *ops; 3656 int r, srcu_idx; 3657 bool forward = true; 3658 3659 /* Not a real ioctl, but targets must not interpret non-DM ioctls */ 3660 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, 0, 0, &forward); 3661 if (r < 0) 3662 goto out; 3663 WARN_ON_ONCE(!forward); 3664 3665 ops = bdev->bd_disk->fops->pr_ops; 3666 if (ops && ops->pr_clear) 3667 r = ops->pr_clear(bdev, key); 3668 else 3669 r = -EOPNOTSUPP; 3670 out: 3671 dm_unprepare_ioctl(md, srcu_idx); 3672 return r; 3673 } 3674 3675 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, 3676 sector_t start, sector_t len, void *data) 3677 { 3678 struct dm_pr *pr = data; 3679 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3680 3681 if (!ops || !ops->pr_read_keys) { 3682 pr->ret = -EOPNOTSUPP; 3683 return -1; 3684 } 3685 3686 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); 3687 if (!pr->ret) 3688 return -1; 3689 3690 return 0; 3691 } 3692 3693 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) 3694 { 3695 struct dm_pr pr = { 3696 .read_keys = keys, 3697 }; 3698 int ret; 3699 3700 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); 3701 if (ret) 3702 return ret; 3703 3704 return pr.ret; 3705 } 3706 3707 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, 3708 sector_t start, sector_t len, void *data) 3709 { 3710 struct dm_pr *pr = data; 3711 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3712 3713 if (!ops || !ops->pr_read_reservation) { 3714 pr->ret = -EOPNOTSUPP; 3715 return -1; 3716 } 3717 3718 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); 3719 if (!pr->ret) 3720 return -1; 3721 3722 return 0; 3723 } 3724 3725 static int dm_pr_read_reservation(struct block_device *bdev, 3726 struct pr_held_reservation *rsv) 3727 { 3728 struct dm_pr pr = { 3729 .rsv = rsv, 3730 }; 3731 int ret; 3732 3733 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); 3734 if (ret) 3735 return ret; 3736 3737 return pr.ret; 3738 } 3739 3740 static const struct pr_ops dm_pr_ops = { 3741 .pr_register = dm_pr_register, 3742 .pr_reserve = dm_pr_reserve, 3743 .pr_release = dm_pr_release, 3744 .pr_preempt = dm_pr_preempt, 3745 .pr_clear = dm_pr_clear, 3746 .pr_read_keys = dm_pr_read_keys, 3747 .pr_read_reservation = dm_pr_read_reservation, 3748 }; 3749 3750 static const struct block_device_operations dm_blk_dops = { 3751 .submit_bio = dm_submit_bio, 3752 .poll_bio = dm_poll_bio, 3753 .open = dm_blk_open, 3754 .release = dm_blk_close, 3755 .ioctl = dm_blk_ioctl, 3756 .getgeo = dm_blk_getgeo, 3757 .report_zones = dm_blk_report_zones, 3758 .get_unique_id = dm_blk_get_unique_id, 3759 .pr_ops = &dm_pr_ops, 3760 .owner = THIS_MODULE 3761 }; 3762 3763 static const struct block_device_operations dm_rq_blk_dops = { 3764 .open = dm_blk_open, 3765 .release = dm_blk_close, 3766 .ioctl = dm_blk_ioctl, 3767 .getgeo = dm_blk_getgeo, 3768 .get_unique_id = dm_blk_get_unique_id, 3769 .pr_ops = &dm_pr_ops, 3770 .owner = THIS_MODULE 3771 }; 3772 3773 static const struct dax_operations dm_dax_ops = { 3774 .direct_access = dm_dax_direct_access, 3775 .zero_page_range = dm_dax_zero_page_range, 3776 .recovery_write = dm_dax_recovery_write, 3777 }; 3778 3779 /* 3780 * module hooks 3781 */ 3782 module_init(dm_init); 3783 module_exit(dm_exit); 3784 3785 module_param(major, uint, 0); 3786 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3787 3788 module_param(reserved_bio_based_ios, uint, 0644); 3789 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3790 3791 module_param(dm_numa_node, int, 0644); 3792 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3793 3794 module_param(swap_bios, int, 0644); 3795 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3796 3797 MODULE_DESCRIPTION(DM_NAME " driver"); 3798 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>"); 3799 MODULE_LICENSE("GPL"); 3800