1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/signal.h> 19 #include <linux/blkpg.h> 20 #include <linux/bio.h> 21 #include <linux/mempool.h> 22 #include <linux/dax.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/uio.h> 26 #include <linux/hdreg.h> 27 #include <linux/delay.h> 28 #include <linux/wait.h> 29 #include <linux/pr.h> 30 #include <linux/refcount.h> 31 #include <linux/part_stat.h> 32 #include <linux/blk-crypto.h> 33 #include <linux/blk-crypto-profile.h> 34 35 #define DM_MSG_PREFIX "core" 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 /* 45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 46 * dm_io into one list, and reuse bio->bi_private as the list head. Before 47 * ending this fs bio, we will recover its ->bi_private. 48 */ 49 #define REQ_DM_POLL_LIST REQ_DRV 50 51 static const char *_name = DM_NAME; 52 53 static unsigned int major; 54 static unsigned int _major; 55 56 static DEFINE_IDR(_minor_idr); 57 58 static DEFINE_SPINLOCK(_minor_lock); 59 60 static void do_deferred_remove(struct work_struct *w); 61 62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 63 64 static struct workqueue_struct *deferred_remove_workqueue; 65 66 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 68 69 void dm_issue_global_event(void) 70 { 71 atomic_inc(&dm_global_event_nr); 72 wake_up(&dm_global_eventq); 73 } 74 75 DEFINE_STATIC_KEY_FALSE(stats_enabled); 76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 77 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 78 79 /* 80 * One of these is allocated (on-stack) per original bio. 81 */ 82 struct clone_info { 83 struct dm_table *map; 84 struct bio *bio; 85 struct dm_io *io; 86 sector_t sector; 87 unsigned int sector_count; 88 bool is_abnormal_io:1; 89 bool submit_as_polled:1; 90 }; 91 92 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 93 { 94 return container_of(clone, struct dm_target_io, clone); 95 } 96 97 void *dm_per_bio_data(struct bio *bio, size_t data_size) 98 { 99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 101 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 102 } 103 EXPORT_SYMBOL_GPL(dm_per_bio_data); 104 105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 106 { 107 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 108 109 if (io->magic == DM_IO_MAGIC) 110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 111 BUG_ON(io->magic != DM_TIO_MAGIC); 112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 113 } 114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 115 116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 117 { 118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 119 } 120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 121 122 #define MINOR_ALLOCED ((void *)-1) 123 124 #define DM_NUMA_NODE NUMA_NO_NODE 125 static int dm_numa_node = DM_NUMA_NODE; 126 127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 128 static int swap_bios = DEFAULT_SWAP_BIOS; 129 static int get_swap_bios(void) 130 { 131 int latch = READ_ONCE(swap_bios); 132 133 if (unlikely(latch <= 0)) 134 latch = DEFAULT_SWAP_BIOS; 135 return latch; 136 } 137 138 struct table_device { 139 struct list_head list; 140 refcount_t count; 141 struct dm_dev dm_dev; 142 }; 143 144 /* 145 * Bio-based DM's mempools' reserved IOs set by the user. 146 */ 147 #define RESERVED_BIO_BASED_IOS 16 148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 149 150 static int __dm_get_module_param_int(int *module_param, int min, int max) 151 { 152 int param = READ_ONCE(*module_param); 153 int modified_param = 0; 154 bool modified = true; 155 156 if (param < min) 157 modified_param = min; 158 else if (param > max) 159 modified_param = max; 160 else 161 modified = false; 162 163 if (modified) { 164 (void)cmpxchg(module_param, param, modified_param); 165 param = modified_param; 166 } 167 168 return param; 169 } 170 171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 172 { 173 unsigned int param = READ_ONCE(*module_param); 174 unsigned int modified_param = 0; 175 176 if (!param) 177 modified_param = def; 178 else if (param > max) 179 modified_param = max; 180 181 if (modified_param) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned int dm_get_reserved_bio_based_ios(void) 190 { 191 return __dm_get_module_param(&reserved_bio_based_ios, 192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 193 } 194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 195 196 static unsigned int dm_get_numa_node(void) 197 { 198 return __dm_get_module_param_int(&dm_numa_node, 199 DM_NUMA_NODE, num_online_nodes() - 1); 200 } 201 202 static int __init local_init(void) 203 { 204 int r; 205 206 r = dm_uevent_init(); 207 if (r) 208 return r; 209 210 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); 211 if (!deferred_remove_workqueue) { 212 r = -ENOMEM; 213 goto out_uevent_exit; 214 } 215 216 _major = major; 217 r = register_blkdev(_major, _name); 218 if (r < 0) 219 goto out_free_workqueue; 220 221 if (!_major) 222 _major = r; 223 224 return 0; 225 226 out_free_workqueue: 227 destroy_workqueue(deferred_remove_workqueue); 228 out_uevent_exit: 229 dm_uevent_exit(); 230 231 return r; 232 } 233 234 static void local_exit(void) 235 { 236 destroy_workqueue(deferred_remove_workqueue); 237 238 unregister_blkdev(_major, _name); 239 dm_uevent_exit(); 240 241 _major = 0; 242 243 DMINFO("cleaned up"); 244 } 245 246 static int (*_inits[])(void) __initdata = { 247 local_init, 248 dm_target_init, 249 dm_linear_init, 250 dm_stripe_init, 251 dm_io_init, 252 dm_kcopyd_init, 253 dm_interface_init, 254 dm_statistics_init, 255 }; 256 257 static void (*_exits[])(void) = { 258 local_exit, 259 dm_target_exit, 260 dm_linear_exit, 261 dm_stripe_exit, 262 dm_io_exit, 263 dm_kcopyd_exit, 264 dm_interface_exit, 265 dm_statistics_exit, 266 }; 267 268 static int __init dm_init(void) 269 { 270 const int count = ARRAY_SIZE(_inits); 271 int r, i; 272 273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 275 " Duplicate IMA measurements will not be recorded in the IMA log."); 276 #endif 277 278 for (i = 0; i < count; i++) { 279 r = _inits[i](); 280 if (r) 281 goto bad; 282 } 283 284 return 0; 285 bad: 286 while (i--) 287 _exits[i](); 288 289 return r; 290 } 291 292 static void __exit dm_exit(void) 293 { 294 int i = ARRAY_SIZE(_exits); 295 296 while (i--) 297 _exits[i](); 298 299 /* 300 * Should be empty by this point. 301 */ 302 idr_destroy(&_minor_idr); 303 } 304 305 /* 306 * Block device functions 307 */ 308 int dm_deleting_md(struct mapped_device *md) 309 { 310 return test_bit(DMF_DELETING, &md->flags); 311 } 312 313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 314 { 315 struct mapped_device *md; 316 317 spin_lock(&_minor_lock); 318 319 md = disk->private_data; 320 if (!md) 321 goto out; 322 323 if (test_bit(DMF_FREEING, &md->flags) || 324 dm_deleting_md(md)) { 325 md = NULL; 326 goto out; 327 } 328 329 dm_get(md); 330 atomic_inc(&md->open_count); 331 out: 332 spin_unlock(&_minor_lock); 333 334 return md ? 0 : -ENXIO; 335 } 336 337 static void dm_blk_close(struct gendisk *disk) 338 { 339 struct mapped_device *md; 340 341 spin_lock(&_minor_lock); 342 343 md = disk->private_data; 344 if (WARN_ON(!md)) 345 goto out; 346 347 if (atomic_dec_and_test(&md->open_count) && 348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 349 queue_work(deferred_remove_workqueue, &deferred_remove_work); 350 351 dm_put(md); 352 out: 353 spin_unlock(&_minor_lock); 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) { 371 r = -EBUSY; 372 if (mark_deferred) 373 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 375 r = -EEXIST; 376 else 377 set_bit(DMF_DELETING, &md->flags); 378 379 spin_unlock(&_minor_lock); 380 381 return r; 382 } 383 384 int dm_cancel_deferred_remove(struct mapped_device *md) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (test_bit(DMF_DELETING, &md->flags)) 391 r = -EBUSY; 392 else 393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 static void do_deferred_remove(struct work_struct *w) 401 { 402 dm_deferred_remove(); 403 } 404 405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 406 { 407 struct mapped_device *md = bdev->bd_disk->private_data; 408 409 return dm_get_geometry(md, geo); 410 } 411 412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 413 struct block_device **bdev) 414 { 415 struct dm_target *ti; 416 struct dm_table *map; 417 int r; 418 419 retry: 420 r = -ENOTTY; 421 map = dm_get_live_table(md, srcu_idx); 422 if (!map || !dm_table_get_size(map)) 423 return r; 424 425 /* We only support devices that have a single target */ 426 if (map->num_targets != 1) 427 return r; 428 429 ti = dm_table_get_target(map, 0); 430 if (!ti->type->prepare_ioctl) 431 return r; 432 433 if (dm_suspended_md(md)) 434 return -EAGAIN; 435 436 r = ti->type->prepare_ioctl(ti, bdev); 437 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 438 dm_put_live_table(md, *srcu_idx); 439 fsleep(10000); 440 goto retry; 441 } 442 443 return r; 444 } 445 446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 447 { 448 dm_put_live_table(md, srcu_idx); 449 } 450 451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 452 unsigned int cmd, unsigned long arg) 453 { 454 struct mapped_device *md = bdev->bd_disk->private_data; 455 int r, srcu_idx; 456 457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 458 if (r < 0) 459 goto out; 460 461 if (r > 0) { 462 /* 463 * Target determined this ioctl is being issued against a 464 * subset of the parent bdev; require extra privileges. 465 */ 466 if (!capable(CAP_SYS_RAWIO)) { 467 DMDEBUG_LIMIT( 468 "%s: sending ioctl %x to DM device without required privilege.", 469 current->comm, cmd); 470 r = -ENOIOCTLCMD; 471 goto out; 472 } 473 } 474 475 if (!bdev->bd_disk->fops->ioctl) 476 r = -ENOTTY; 477 else 478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 479 out: 480 dm_unprepare_ioctl(md, srcu_idx); 481 return r; 482 } 483 484 u64 dm_start_time_ns_from_clone(struct bio *bio) 485 { 486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 487 } 488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 489 490 static inline bool bio_is_flush_with_data(struct bio *bio) 491 { 492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 493 } 494 495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) 496 { 497 /* 498 * If REQ_PREFLUSH set, don't account payload, it will be 499 * submitted (and accounted) after this flush completes. 500 */ 501 if (bio_is_flush_with_data(bio)) 502 return 0; 503 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 504 return io->sectors; 505 return bio_sectors(bio); 506 } 507 508 static void dm_io_acct(struct dm_io *io, bool end) 509 { 510 struct bio *bio = io->orig_bio; 511 512 if (dm_io_flagged(io, DM_IO_BLK_STAT)) { 513 if (!end) 514 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), 515 io->start_time); 516 else 517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), 518 dm_io_sectors(io, bio), 519 io->start_time); 520 } 521 522 if (static_branch_unlikely(&stats_enabled) && 523 unlikely(dm_stats_used(&io->md->stats))) { 524 sector_t sector; 525 526 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 527 sector = bio_end_sector(bio) - io->sector_offset; 528 else 529 sector = bio->bi_iter.bi_sector; 530 531 dm_stats_account_io(&io->md->stats, bio_data_dir(bio), 532 sector, dm_io_sectors(io, bio), 533 end, io->start_time, &io->stats_aux); 534 } 535 } 536 537 static void __dm_start_io_acct(struct dm_io *io) 538 { 539 dm_io_acct(io, false); 540 } 541 542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 543 { 544 /* 545 * Ensure IO accounting is only ever started once. 546 */ 547 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 548 return; 549 550 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 551 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 552 dm_io_set_flag(io, DM_IO_ACCOUNTED); 553 } else { 554 unsigned long flags; 555 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 556 spin_lock_irqsave(&io->lock, flags); 557 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 558 spin_unlock_irqrestore(&io->lock, flags); 559 return; 560 } 561 dm_io_set_flag(io, DM_IO_ACCOUNTED); 562 spin_unlock_irqrestore(&io->lock, flags); 563 } 564 565 __dm_start_io_acct(io); 566 } 567 568 static void dm_end_io_acct(struct dm_io *io) 569 { 570 dm_io_acct(io, true); 571 } 572 573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask) 574 { 575 struct dm_io *io; 576 struct dm_target_io *tio; 577 struct bio *clone; 578 579 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs); 580 if (unlikely(!clone)) 581 return NULL; 582 tio = clone_to_tio(clone); 583 tio->flags = 0; 584 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 585 tio->io = NULL; 586 587 io = container_of(tio, struct dm_io, tio); 588 io->magic = DM_IO_MAGIC; 589 io->status = BLK_STS_OK; 590 591 /* one ref is for submission, the other is for completion */ 592 atomic_set(&io->io_count, 2); 593 this_cpu_inc(*md->pending_io); 594 io->orig_bio = bio; 595 io->md = md; 596 spin_lock_init(&io->lock); 597 io->start_time = jiffies; 598 io->flags = 0; 599 if (blk_queue_io_stat(md->queue)) 600 dm_io_set_flag(io, DM_IO_BLK_STAT); 601 602 if (static_branch_unlikely(&stats_enabled) && 603 unlikely(dm_stats_used(&md->stats))) 604 dm_stats_record_start(&md->stats, &io->stats_aux); 605 606 return io; 607 } 608 609 static void free_io(struct dm_io *io) 610 { 611 bio_put(&io->tio.clone); 612 } 613 614 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 615 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 616 { 617 struct mapped_device *md = ci->io->md; 618 struct dm_target_io *tio; 619 struct bio *clone; 620 621 if (!ci->io->tio.io) { 622 /* the dm_target_io embedded in ci->io is available */ 623 tio = &ci->io->tio; 624 /* alloc_io() already initialized embedded clone */ 625 clone = &tio->clone; 626 } else { 627 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 628 &md->mempools->bs); 629 if (!clone) 630 return NULL; 631 632 /* REQ_DM_POLL_LIST shouldn't be inherited */ 633 clone->bi_opf &= ~REQ_DM_POLL_LIST; 634 635 tio = clone_to_tio(clone); 636 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 637 } 638 639 tio->magic = DM_TIO_MAGIC; 640 tio->io = ci->io; 641 tio->ti = ti; 642 tio->target_bio_nr = target_bio_nr; 643 tio->len_ptr = len; 644 tio->old_sector = 0; 645 646 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 647 clone->bi_bdev = md->disk->part0; 648 if (unlikely(ti->needs_bio_set_dev)) 649 bio_set_dev(clone, md->disk->part0); 650 651 if (len) { 652 clone->bi_iter.bi_size = to_bytes(*len); 653 if (bio_integrity(clone)) 654 bio_integrity_trim(clone); 655 } 656 657 return clone; 658 } 659 660 static void free_tio(struct bio *clone) 661 { 662 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 663 return; 664 bio_put(clone); 665 } 666 667 /* 668 * Add the bio to the list of deferred io. 669 */ 670 static void queue_io(struct mapped_device *md, struct bio *bio) 671 { 672 unsigned long flags; 673 674 spin_lock_irqsave(&md->deferred_lock, flags); 675 bio_list_add(&md->deferred, bio); 676 spin_unlock_irqrestore(&md->deferred_lock, flags); 677 queue_work(md->wq, &md->work); 678 } 679 680 /* 681 * Everyone (including functions in this file), should use this 682 * function to access the md->map field, and make sure they call 683 * dm_put_live_table() when finished. 684 */ 685 struct dm_table *dm_get_live_table(struct mapped_device *md, 686 int *srcu_idx) __acquires(md->io_barrier) 687 { 688 *srcu_idx = srcu_read_lock(&md->io_barrier); 689 690 return srcu_dereference(md->map, &md->io_barrier); 691 } 692 693 void dm_put_live_table(struct mapped_device *md, 694 int srcu_idx) __releases(md->io_barrier) 695 { 696 srcu_read_unlock(&md->io_barrier, srcu_idx); 697 } 698 699 void dm_sync_table(struct mapped_device *md) 700 { 701 synchronize_srcu(&md->io_barrier); 702 synchronize_rcu_expedited(); 703 } 704 705 /* 706 * A fast alternative to dm_get_live_table/dm_put_live_table. 707 * The caller must not block between these two functions. 708 */ 709 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 710 { 711 rcu_read_lock(); 712 return rcu_dereference(md->map); 713 } 714 715 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 716 { 717 rcu_read_unlock(); 718 } 719 720 static char *_dm_claim_ptr = "I belong to device-mapper"; 721 722 /* 723 * Open a table device so we can use it as a map destination. 724 */ 725 static struct table_device *open_table_device(struct mapped_device *md, 726 dev_t dev, blk_mode_t mode) 727 { 728 struct table_device *td; 729 struct bdev_handle *bdev_handle; 730 u64 part_off; 731 int r; 732 733 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 734 if (!td) 735 return ERR_PTR(-ENOMEM); 736 refcount_set(&td->count, 1); 737 738 bdev_handle = bdev_open_by_dev(dev, mode, _dm_claim_ptr, NULL); 739 if (IS_ERR(bdev_handle)) { 740 r = PTR_ERR(bdev_handle); 741 goto out_free_td; 742 } 743 744 /* 745 * We can be called before the dm disk is added. In that case we can't 746 * register the holder relation here. It will be done once add_disk was 747 * called. 748 */ 749 if (md->disk->slave_dir) { 750 r = bd_link_disk_holder(bdev_handle->bdev, md->disk); 751 if (r) 752 goto out_blkdev_put; 753 } 754 755 td->dm_dev.mode = mode; 756 td->dm_dev.bdev = bdev_handle->bdev; 757 td->dm_dev.bdev_handle = bdev_handle; 758 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev_handle->bdev, &part_off, 759 NULL, NULL); 760 format_dev_t(td->dm_dev.name, dev); 761 list_add(&td->list, &md->table_devices); 762 return td; 763 764 out_blkdev_put: 765 bdev_release(bdev_handle); 766 out_free_td: 767 kfree(td); 768 return ERR_PTR(r); 769 } 770 771 /* 772 * Close a table device that we've been using. 773 */ 774 static void close_table_device(struct table_device *td, struct mapped_device *md) 775 { 776 if (md->disk->slave_dir) 777 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 778 bdev_release(td->dm_dev.bdev_handle); 779 put_dax(td->dm_dev.dax_dev); 780 list_del(&td->list); 781 kfree(td); 782 } 783 784 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 785 blk_mode_t mode) 786 { 787 struct table_device *td; 788 789 list_for_each_entry(td, l, list) 790 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 791 return td; 792 793 return NULL; 794 } 795 796 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 797 struct dm_dev **result) 798 { 799 struct table_device *td; 800 801 mutex_lock(&md->table_devices_lock); 802 td = find_table_device(&md->table_devices, dev, mode); 803 if (!td) { 804 td = open_table_device(md, dev, mode); 805 if (IS_ERR(td)) { 806 mutex_unlock(&md->table_devices_lock); 807 return PTR_ERR(td); 808 } 809 } else { 810 refcount_inc(&td->count); 811 } 812 mutex_unlock(&md->table_devices_lock); 813 814 *result = &td->dm_dev; 815 return 0; 816 } 817 818 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 819 { 820 struct table_device *td = container_of(d, struct table_device, dm_dev); 821 822 mutex_lock(&md->table_devices_lock); 823 if (refcount_dec_and_test(&td->count)) 824 close_table_device(td, md); 825 mutex_unlock(&md->table_devices_lock); 826 } 827 828 /* 829 * Get the geometry associated with a dm device 830 */ 831 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 832 { 833 *geo = md->geometry; 834 835 return 0; 836 } 837 838 /* 839 * Set the geometry of a device. 840 */ 841 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 842 { 843 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 844 845 if (geo->start > sz) { 846 DMERR("Start sector is beyond the geometry limits."); 847 return -EINVAL; 848 } 849 850 md->geometry = *geo; 851 852 return 0; 853 } 854 855 static int __noflush_suspending(struct mapped_device *md) 856 { 857 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 858 } 859 860 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 861 { 862 struct mapped_device *md = io->md; 863 864 if (first_stage) { 865 struct dm_io *next = md->requeue_list; 866 867 md->requeue_list = io; 868 io->next = next; 869 } else { 870 bio_list_add_head(&md->deferred, io->orig_bio); 871 } 872 } 873 874 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 875 { 876 if (first_stage) 877 queue_work(md->wq, &md->requeue_work); 878 else 879 queue_work(md->wq, &md->work); 880 } 881 882 /* 883 * Return true if the dm_io's original bio is requeued. 884 * io->status is updated with error if requeue disallowed. 885 */ 886 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 887 { 888 struct bio *bio = io->orig_bio; 889 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 890 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 891 (bio->bi_opf & REQ_POLLED)); 892 struct mapped_device *md = io->md; 893 bool requeued = false; 894 895 if (handle_requeue || handle_polled_eagain) { 896 unsigned long flags; 897 898 if (bio->bi_opf & REQ_POLLED) { 899 /* 900 * Upper layer won't help us poll split bio 901 * (io->orig_bio may only reflect a subset of the 902 * pre-split original) so clear REQ_POLLED. 903 */ 904 bio_clear_polled(bio); 905 } 906 907 /* 908 * Target requested pushing back the I/O or 909 * polled IO hit BLK_STS_AGAIN. 910 */ 911 spin_lock_irqsave(&md->deferred_lock, flags); 912 if ((__noflush_suspending(md) && 913 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 914 handle_polled_eagain || first_stage) { 915 dm_requeue_add_io(io, first_stage); 916 requeued = true; 917 } else { 918 /* 919 * noflush suspend was interrupted or this is 920 * a write to a zoned target. 921 */ 922 io->status = BLK_STS_IOERR; 923 } 924 spin_unlock_irqrestore(&md->deferred_lock, flags); 925 } 926 927 if (requeued) 928 dm_kick_requeue(md, first_stage); 929 930 return requeued; 931 } 932 933 static void __dm_io_complete(struct dm_io *io, bool first_stage) 934 { 935 struct bio *bio = io->orig_bio; 936 struct mapped_device *md = io->md; 937 blk_status_t io_error; 938 bool requeued; 939 940 requeued = dm_handle_requeue(io, first_stage); 941 if (requeued && first_stage) 942 return; 943 944 io_error = io->status; 945 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 946 dm_end_io_acct(io); 947 else if (!io_error) { 948 /* 949 * Must handle target that DM_MAPIO_SUBMITTED only to 950 * then bio_endio() rather than dm_submit_bio_remap() 951 */ 952 __dm_start_io_acct(io); 953 dm_end_io_acct(io); 954 } 955 free_io(io); 956 smp_wmb(); 957 this_cpu_dec(*md->pending_io); 958 959 /* nudge anyone waiting on suspend queue */ 960 if (unlikely(wq_has_sleeper(&md->wait))) 961 wake_up(&md->wait); 962 963 /* Return early if the original bio was requeued */ 964 if (requeued) 965 return; 966 967 if (bio_is_flush_with_data(bio)) { 968 /* 969 * Preflush done for flush with data, reissue 970 * without REQ_PREFLUSH. 971 */ 972 bio->bi_opf &= ~REQ_PREFLUSH; 973 queue_io(md, bio); 974 } else { 975 /* done with normal IO or empty flush */ 976 if (io_error) 977 bio->bi_status = io_error; 978 bio_endio(bio); 979 } 980 } 981 982 static void dm_wq_requeue_work(struct work_struct *work) 983 { 984 struct mapped_device *md = container_of(work, struct mapped_device, 985 requeue_work); 986 unsigned long flags; 987 struct dm_io *io; 988 989 /* reuse deferred lock to simplify dm_handle_requeue */ 990 spin_lock_irqsave(&md->deferred_lock, flags); 991 io = md->requeue_list; 992 md->requeue_list = NULL; 993 spin_unlock_irqrestore(&md->deferred_lock, flags); 994 995 while (io) { 996 struct dm_io *next = io->next; 997 998 dm_io_rewind(io, &md->disk->bio_split); 999 1000 io->next = NULL; 1001 __dm_io_complete(io, false); 1002 io = next; 1003 cond_resched(); 1004 } 1005 } 1006 1007 /* 1008 * Two staged requeue: 1009 * 1010 * 1) io->orig_bio points to the real original bio, and the part mapped to 1011 * this io must be requeued, instead of other parts of the original bio. 1012 * 1013 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1014 */ 1015 static void dm_io_complete(struct dm_io *io) 1016 { 1017 bool first_requeue; 1018 1019 /* 1020 * Only dm_io that has been split needs two stage requeue, otherwise 1021 * we may run into long bio clone chain during suspend and OOM could 1022 * be triggered. 1023 * 1024 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1025 * also aren't handled via the first stage requeue. 1026 */ 1027 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1028 first_requeue = true; 1029 else 1030 first_requeue = false; 1031 1032 __dm_io_complete(io, first_requeue); 1033 } 1034 1035 /* 1036 * Decrements the number of outstanding ios that a bio has been 1037 * cloned into, completing the original io if necc. 1038 */ 1039 static inline void __dm_io_dec_pending(struct dm_io *io) 1040 { 1041 if (atomic_dec_and_test(&io->io_count)) 1042 dm_io_complete(io); 1043 } 1044 1045 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1046 { 1047 unsigned long flags; 1048 1049 /* Push-back supersedes any I/O errors */ 1050 spin_lock_irqsave(&io->lock, flags); 1051 if (!(io->status == BLK_STS_DM_REQUEUE && 1052 __noflush_suspending(io->md))) { 1053 io->status = error; 1054 } 1055 spin_unlock_irqrestore(&io->lock, flags); 1056 } 1057 1058 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1059 { 1060 if (unlikely(error)) 1061 dm_io_set_error(io, error); 1062 1063 __dm_io_dec_pending(io); 1064 } 1065 1066 /* 1067 * The queue_limits are only valid as long as you have a reference 1068 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1069 */ 1070 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1071 { 1072 return &md->queue->limits; 1073 } 1074 1075 void disable_discard(struct mapped_device *md) 1076 { 1077 struct queue_limits *limits = dm_get_queue_limits(md); 1078 1079 /* device doesn't really support DISCARD, disable it */ 1080 limits->max_discard_sectors = 0; 1081 } 1082 1083 void disable_write_zeroes(struct mapped_device *md) 1084 { 1085 struct queue_limits *limits = dm_get_queue_limits(md); 1086 1087 /* device doesn't really support WRITE ZEROES, disable it */ 1088 limits->max_write_zeroes_sectors = 0; 1089 } 1090 1091 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1092 { 1093 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1094 } 1095 1096 static void clone_endio(struct bio *bio) 1097 { 1098 blk_status_t error = bio->bi_status; 1099 struct dm_target_io *tio = clone_to_tio(bio); 1100 struct dm_target *ti = tio->ti; 1101 dm_endio_fn endio = ti->type->end_io; 1102 struct dm_io *io = tio->io; 1103 struct mapped_device *md = io->md; 1104 1105 if (unlikely(error == BLK_STS_TARGET)) { 1106 if (bio_op(bio) == REQ_OP_DISCARD && 1107 !bdev_max_discard_sectors(bio->bi_bdev)) 1108 disable_discard(md); 1109 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1110 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1111 disable_write_zeroes(md); 1112 } 1113 1114 if (static_branch_unlikely(&zoned_enabled) && 1115 unlikely(bdev_is_zoned(bio->bi_bdev))) 1116 dm_zone_endio(io, bio); 1117 1118 if (endio) { 1119 int r = endio(ti, bio, &error); 1120 1121 switch (r) { 1122 case DM_ENDIO_REQUEUE: 1123 if (static_branch_unlikely(&zoned_enabled)) { 1124 /* 1125 * Requeuing writes to a sequential zone of a zoned 1126 * target will break the sequential write pattern: 1127 * fail such IO. 1128 */ 1129 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1130 error = BLK_STS_IOERR; 1131 else 1132 error = BLK_STS_DM_REQUEUE; 1133 } else 1134 error = BLK_STS_DM_REQUEUE; 1135 fallthrough; 1136 case DM_ENDIO_DONE: 1137 break; 1138 case DM_ENDIO_INCOMPLETE: 1139 /* The target will handle the io */ 1140 return; 1141 default: 1142 DMCRIT("unimplemented target endio return value: %d", r); 1143 BUG(); 1144 } 1145 } 1146 1147 if (static_branch_unlikely(&swap_bios_enabled) && 1148 unlikely(swap_bios_limit(ti, bio))) 1149 up(&md->swap_bios_semaphore); 1150 1151 free_tio(bio); 1152 dm_io_dec_pending(io, error); 1153 } 1154 1155 /* 1156 * Return maximum size of I/O possible at the supplied sector up to the current 1157 * target boundary. 1158 */ 1159 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1160 sector_t target_offset) 1161 { 1162 return ti->len - target_offset; 1163 } 1164 1165 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1166 unsigned int max_granularity, 1167 unsigned int max_sectors) 1168 { 1169 sector_t target_offset = dm_target_offset(ti, sector); 1170 sector_t len = max_io_len_target_boundary(ti, target_offset); 1171 1172 /* 1173 * Does the target need to split IO even further? 1174 * - varied (per target) IO splitting is a tenet of DM; this 1175 * explains why stacked chunk_sectors based splitting via 1176 * bio_split_to_limits() isn't possible here. 1177 */ 1178 if (!max_granularity) 1179 return len; 1180 return min_t(sector_t, len, 1181 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1182 blk_chunk_sectors_left(target_offset, max_granularity))); 1183 } 1184 1185 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1186 { 1187 return __max_io_len(ti, sector, ti->max_io_len, 0); 1188 } 1189 1190 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1191 { 1192 if (len > UINT_MAX) { 1193 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1194 (unsigned long long)len, UINT_MAX); 1195 ti->error = "Maximum size of target IO is too large"; 1196 return -EINVAL; 1197 } 1198 1199 ti->max_io_len = (uint32_t) len; 1200 1201 return 0; 1202 } 1203 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1204 1205 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1206 sector_t sector, int *srcu_idx) 1207 __acquires(md->io_barrier) 1208 { 1209 struct dm_table *map; 1210 struct dm_target *ti; 1211 1212 map = dm_get_live_table(md, srcu_idx); 1213 if (!map) 1214 return NULL; 1215 1216 ti = dm_table_find_target(map, sector); 1217 if (!ti) 1218 return NULL; 1219 1220 return ti; 1221 } 1222 1223 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1224 long nr_pages, enum dax_access_mode mode, void **kaddr, 1225 pfn_t *pfn) 1226 { 1227 struct mapped_device *md = dax_get_private(dax_dev); 1228 sector_t sector = pgoff * PAGE_SECTORS; 1229 struct dm_target *ti; 1230 long len, ret = -EIO; 1231 int srcu_idx; 1232 1233 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1234 1235 if (!ti) 1236 goto out; 1237 if (!ti->type->direct_access) 1238 goto out; 1239 len = max_io_len(ti, sector) / PAGE_SECTORS; 1240 if (len < 1) 1241 goto out; 1242 nr_pages = min(len, nr_pages); 1243 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1244 1245 out: 1246 dm_put_live_table(md, srcu_idx); 1247 1248 return ret; 1249 } 1250 1251 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1252 size_t nr_pages) 1253 { 1254 struct mapped_device *md = dax_get_private(dax_dev); 1255 sector_t sector = pgoff * PAGE_SECTORS; 1256 struct dm_target *ti; 1257 int ret = -EIO; 1258 int srcu_idx; 1259 1260 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1261 1262 if (!ti) 1263 goto out; 1264 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1265 /* 1266 * ->zero_page_range() is mandatory dax operation. If we are 1267 * here, something is wrong. 1268 */ 1269 goto out; 1270 } 1271 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1272 out: 1273 dm_put_live_table(md, srcu_idx); 1274 1275 return ret; 1276 } 1277 1278 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1279 void *addr, size_t bytes, struct iov_iter *i) 1280 { 1281 struct mapped_device *md = dax_get_private(dax_dev); 1282 sector_t sector = pgoff * PAGE_SECTORS; 1283 struct dm_target *ti; 1284 int srcu_idx; 1285 long ret = 0; 1286 1287 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1288 if (!ti || !ti->type->dax_recovery_write) 1289 goto out; 1290 1291 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1292 out: 1293 dm_put_live_table(md, srcu_idx); 1294 return ret; 1295 } 1296 1297 /* 1298 * A target may call dm_accept_partial_bio only from the map routine. It is 1299 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1300 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1301 * __send_duplicate_bios(). 1302 * 1303 * dm_accept_partial_bio informs the dm that the target only wants to process 1304 * additional n_sectors sectors of the bio and the rest of the data should be 1305 * sent in a next bio. 1306 * 1307 * A diagram that explains the arithmetics: 1308 * +--------------------+---------------+-------+ 1309 * | 1 | 2 | 3 | 1310 * +--------------------+---------------+-------+ 1311 * 1312 * <-------------- *tio->len_ptr ---------------> 1313 * <----- bio_sectors -----> 1314 * <-- n_sectors --> 1315 * 1316 * Region 1 was already iterated over with bio_advance or similar function. 1317 * (it may be empty if the target doesn't use bio_advance) 1318 * Region 2 is the remaining bio size that the target wants to process. 1319 * (it may be empty if region 1 is non-empty, although there is no reason 1320 * to make it empty) 1321 * The target requires that region 3 is to be sent in the next bio. 1322 * 1323 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1324 * the partially processed part (the sum of regions 1+2) must be the same for all 1325 * copies of the bio. 1326 */ 1327 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1328 { 1329 struct dm_target_io *tio = clone_to_tio(bio); 1330 struct dm_io *io = tio->io; 1331 unsigned int bio_sectors = bio_sectors(bio); 1332 1333 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1334 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1335 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1336 BUG_ON(bio_sectors > *tio->len_ptr); 1337 BUG_ON(n_sectors > bio_sectors); 1338 1339 *tio->len_ptr -= bio_sectors - n_sectors; 1340 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1341 1342 /* 1343 * __split_and_process_bio() may have already saved mapped part 1344 * for accounting but it is being reduced so update accordingly. 1345 */ 1346 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1347 io->sectors = n_sectors; 1348 io->sector_offset = bio_sectors(io->orig_bio); 1349 } 1350 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1351 1352 /* 1353 * @clone: clone bio that DM core passed to target's .map function 1354 * @tgt_clone: clone of @clone bio that target needs submitted 1355 * 1356 * Targets should use this interface to submit bios they take 1357 * ownership of when returning DM_MAPIO_SUBMITTED. 1358 * 1359 * Target should also enable ti->accounts_remapped_io 1360 */ 1361 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1362 { 1363 struct dm_target_io *tio = clone_to_tio(clone); 1364 struct dm_io *io = tio->io; 1365 1366 /* establish bio that will get submitted */ 1367 if (!tgt_clone) 1368 tgt_clone = clone; 1369 1370 /* 1371 * Account io->origin_bio to DM dev on behalf of target 1372 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1373 */ 1374 dm_start_io_acct(io, clone); 1375 1376 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1377 tio->old_sector); 1378 submit_bio_noacct(tgt_clone); 1379 } 1380 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1381 1382 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1383 { 1384 mutex_lock(&md->swap_bios_lock); 1385 while (latch < md->swap_bios) { 1386 cond_resched(); 1387 down(&md->swap_bios_semaphore); 1388 md->swap_bios--; 1389 } 1390 while (latch > md->swap_bios) { 1391 cond_resched(); 1392 up(&md->swap_bios_semaphore); 1393 md->swap_bios++; 1394 } 1395 mutex_unlock(&md->swap_bios_lock); 1396 } 1397 1398 static void __map_bio(struct bio *clone) 1399 { 1400 struct dm_target_io *tio = clone_to_tio(clone); 1401 struct dm_target *ti = tio->ti; 1402 struct dm_io *io = tio->io; 1403 struct mapped_device *md = io->md; 1404 int r; 1405 1406 clone->bi_end_io = clone_endio; 1407 1408 /* 1409 * Map the clone. 1410 */ 1411 tio->old_sector = clone->bi_iter.bi_sector; 1412 1413 if (static_branch_unlikely(&swap_bios_enabled) && 1414 unlikely(swap_bios_limit(ti, clone))) { 1415 int latch = get_swap_bios(); 1416 1417 if (unlikely(latch != md->swap_bios)) 1418 __set_swap_bios_limit(md, latch); 1419 down(&md->swap_bios_semaphore); 1420 } 1421 1422 if (static_branch_unlikely(&zoned_enabled)) { 1423 /* 1424 * Check if the IO needs a special mapping due to zone append 1425 * emulation on zoned target. In this case, dm_zone_map_bio() 1426 * calls the target map operation. 1427 */ 1428 if (unlikely(dm_emulate_zone_append(md))) 1429 r = dm_zone_map_bio(tio); 1430 else 1431 goto do_map; 1432 } else { 1433 do_map: 1434 if (likely(ti->type->map == linear_map)) 1435 r = linear_map(ti, clone); 1436 else if (ti->type->map == stripe_map) 1437 r = stripe_map(ti, clone); 1438 else 1439 r = ti->type->map(ti, clone); 1440 } 1441 1442 switch (r) { 1443 case DM_MAPIO_SUBMITTED: 1444 /* target has assumed ownership of this io */ 1445 if (!ti->accounts_remapped_io) 1446 dm_start_io_acct(io, clone); 1447 break; 1448 case DM_MAPIO_REMAPPED: 1449 dm_submit_bio_remap(clone, NULL); 1450 break; 1451 case DM_MAPIO_KILL: 1452 case DM_MAPIO_REQUEUE: 1453 if (static_branch_unlikely(&swap_bios_enabled) && 1454 unlikely(swap_bios_limit(ti, clone))) 1455 up(&md->swap_bios_semaphore); 1456 free_tio(clone); 1457 if (r == DM_MAPIO_KILL) 1458 dm_io_dec_pending(io, BLK_STS_IOERR); 1459 else 1460 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1461 break; 1462 default: 1463 DMCRIT("unimplemented target map return value: %d", r); 1464 BUG(); 1465 } 1466 } 1467 1468 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1469 { 1470 struct dm_io *io = ci->io; 1471 1472 if (ci->sector_count > len) { 1473 /* 1474 * Split needed, save the mapped part for accounting. 1475 * NOTE: dm_accept_partial_bio() will update accordingly. 1476 */ 1477 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1478 io->sectors = len; 1479 io->sector_offset = bio_sectors(ci->bio); 1480 } 1481 } 1482 1483 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1484 struct dm_target *ti, unsigned int num_bios, 1485 unsigned *len, gfp_t gfp_flag) 1486 { 1487 struct bio *bio; 1488 int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1; 1489 1490 for (; try < 2; try++) { 1491 int bio_nr; 1492 1493 if (try && num_bios > 1) 1494 mutex_lock(&ci->io->md->table_devices_lock); 1495 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1496 bio = alloc_tio(ci, ti, bio_nr, len, 1497 try ? GFP_NOIO : GFP_NOWAIT); 1498 if (!bio) 1499 break; 1500 1501 bio_list_add(blist, bio); 1502 } 1503 if (try && num_bios > 1) 1504 mutex_unlock(&ci->io->md->table_devices_lock); 1505 if (bio_nr == num_bios) 1506 return; 1507 1508 while ((bio = bio_list_pop(blist))) 1509 free_tio(bio); 1510 } 1511 } 1512 1513 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1514 unsigned int num_bios, unsigned int *len, 1515 gfp_t gfp_flag) 1516 { 1517 struct bio_list blist = BIO_EMPTY_LIST; 1518 struct bio *clone; 1519 unsigned int ret = 0; 1520 1521 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */ 1522 return 0; 1523 1524 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1525 if (len) 1526 setup_split_accounting(ci, *len); 1527 1528 /* 1529 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently 1530 * support allocating using GFP_NOWAIT with GFP_NOIO fallback. 1531 */ 1532 alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag); 1533 while ((clone = bio_list_pop(&blist))) { 1534 if (num_bios > 1) 1535 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1536 __map_bio(clone); 1537 ret += 1; 1538 } 1539 1540 return ret; 1541 } 1542 1543 static void __send_empty_flush(struct clone_info *ci) 1544 { 1545 struct dm_table *t = ci->map; 1546 struct bio flush_bio; 1547 1548 /* 1549 * Use an on-stack bio for this, it's safe since we don't 1550 * need to reference it after submit. It's just used as 1551 * the basis for the clone(s). 1552 */ 1553 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1554 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1555 1556 ci->bio = &flush_bio; 1557 ci->sector_count = 0; 1558 ci->io->tio.clone.bi_iter.bi_size = 0; 1559 1560 for (unsigned int i = 0; i < t->num_targets; i++) { 1561 unsigned int bios; 1562 struct dm_target *ti = dm_table_get_target(t, i); 1563 1564 if (unlikely(ti->num_flush_bios == 0)) 1565 continue; 1566 1567 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1568 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, 1569 NULL, GFP_NOWAIT); 1570 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1571 } 1572 1573 /* 1574 * alloc_io() takes one extra reference for submission, so the 1575 * reference won't reach 0 without the following subtraction 1576 */ 1577 atomic_sub(1, &ci->io->io_count); 1578 1579 bio_uninit(ci->bio); 1580 } 1581 1582 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1583 unsigned int num_bios, unsigned int max_granularity, 1584 unsigned int max_sectors) 1585 { 1586 unsigned int len, bios; 1587 1588 len = min_t(sector_t, ci->sector_count, 1589 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1590 1591 atomic_add(num_bios, &ci->io->io_count); 1592 bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO); 1593 /* 1594 * alloc_io() takes one extra reference for submission, so the 1595 * reference won't reach 0 without the following (+1) subtraction 1596 */ 1597 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1598 1599 ci->sector += len; 1600 ci->sector_count -= len; 1601 } 1602 1603 static bool is_abnormal_io(struct bio *bio) 1604 { 1605 enum req_op op = bio_op(bio); 1606 1607 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1608 switch (op) { 1609 case REQ_OP_DISCARD: 1610 case REQ_OP_SECURE_ERASE: 1611 case REQ_OP_WRITE_ZEROES: 1612 return true; 1613 default: 1614 break; 1615 } 1616 } 1617 1618 return false; 1619 } 1620 1621 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1622 struct dm_target *ti) 1623 { 1624 unsigned int num_bios = 0; 1625 unsigned int max_granularity = 0; 1626 unsigned int max_sectors = 0; 1627 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1628 1629 switch (bio_op(ci->bio)) { 1630 case REQ_OP_DISCARD: 1631 num_bios = ti->num_discard_bios; 1632 max_sectors = limits->max_discard_sectors; 1633 if (ti->max_discard_granularity) 1634 max_granularity = max_sectors; 1635 break; 1636 case REQ_OP_SECURE_ERASE: 1637 num_bios = ti->num_secure_erase_bios; 1638 max_sectors = limits->max_secure_erase_sectors; 1639 if (ti->max_secure_erase_granularity) 1640 max_granularity = max_sectors; 1641 break; 1642 case REQ_OP_WRITE_ZEROES: 1643 num_bios = ti->num_write_zeroes_bios; 1644 max_sectors = limits->max_write_zeroes_sectors; 1645 if (ti->max_write_zeroes_granularity) 1646 max_granularity = max_sectors; 1647 break; 1648 default: 1649 break; 1650 } 1651 1652 /* 1653 * Even though the device advertised support for this type of 1654 * request, that does not mean every target supports it, and 1655 * reconfiguration might also have changed that since the 1656 * check was performed. 1657 */ 1658 if (unlikely(!num_bios)) 1659 return BLK_STS_NOTSUPP; 1660 1661 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors); 1662 1663 return BLK_STS_OK; 1664 } 1665 1666 /* 1667 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1668 * associated with this bio, and this bio's bi_private needs to be 1669 * stored in dm_io->data before the reuse. 1670 * 1671 * bio->bi_private is owned by fs or upper layer, so block layer won't 1672 * touch it after splitting. Meantime it won't be changed by anyone after 1673 * bio is submitted. So this reuse is safe. 1674 */ 1675 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1676 { 1677 return (struct dm_io **)&bio->bi_private; 1678 } 1679 1680 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1681 { 1682 struct dm_io **head = dm_poll_list_head(bio); 1683 1684 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1685 bio->bi_opf |= REQ_DM_POLL_LIST; 1686 /* 1687 * Save .bi_private into dm_io, so that we can reuse 1688 * .bi_private as dm_io list head for storing dm_io list 1689 */ 1690 io->data = bio->bi_private; 1691 1692 /* tell block layer to poll for completion */ 1693 bio->bi_cookie = ~BLK_QC_T_NONE; 1694 1695 io->next = NULL; 1696 } else { 1697 /* 1698 * bio recursed due to split, reuse original poll list, 1699 * and save bio->bi_private too. 1700 */ 1701 io->data = (*head)->data; 1702 io->next = *head; 1703 } 1704 1705 *head = io; 1706 } 1707 1708 /* 1709 * Select the correct strategy for processing a non-flush bio. 1710 */ 1711 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1712 { 1713 struct bio *clone; 1714 struct dm_target *ti; 1715 unsigned int len; 1716 1717 ti = dm_table_find_target(ci->map, ci->sector); 1718 if (unlikely(!ti)) 1719 return BLK_STS_IOERR; 1720 1721 if (unlikely(ci->is_abnormal_io)) 1722 return __process_abnormal_io(ci, ti); 1723 1724 /* 1725 * Only support bio polling for normal IO, and the target io is 1726 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1727 */ 1728 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1729 1730 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1731 setup_split_accounting(ci, len); 1732 1733 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) { 1734 if (unlikely(!dm_target_supports_nowait(ti->type))) 1735 return BLK_STS_NOTSUPP; 1736 1737 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT); 1738 if (unlikely(!clone)) 1739 return BLK_STS_AGAIN; 1740 } else { 1741 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1742 } 1743 __map_bio(clone); 1744 1745 ci->sector += len; 1746 ci->sector_count -= len; 1747 1748 return BLK_STS_OK; 1749 } 1750 1751 static void init_clone_info(struct clone_info *ci, struct dm_io *io, 1752 struct dm_table *map, struct bio *bio, bool is_abnormal) 1753 { 1754 ci->map = map; 1755 ci->io = io; 1756 ci->bio = bio; 1757 ci->is_abnormal_io = is_abnormal; 1758 ci->submit_as_polled = false; 1759 ci->sector = bio->bi_iter.bi_sector; 1760 ci->sector_count = bio_sectors(bio); 1761 1762 /* Shouldn't happen but sector_count was being set to 0 so... */ 1763 if (static_branch_unlikely(&zoned_enabled) && 1764 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1765 ci->sector_count = 0; 1766 } 1767 1768 /* 1769 * Entry point to split a bio into clones and submit them to the targets. 1770 */ 1771 static void dm_split_and_process_bio(struct mapped_device *md, 1772 struct dm_table *map, struct bio *bio) 1773 { 1774 struct clone_info ci; 1775 struct dm_io *io; 1776 blk_status_t error = BLK_STS_OK; 1777 bool is_abnormal; 1778 1779 is_abnormal = is_abnormal_io(bio); 1780 if (unlikely(is_abnormal)) { 1781 /* 1782 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1783 * otherwise associated queue_limits won't be imposed. 1784 */ 1785 bio = bio_split_to_limits(bio); 1786 if (!bio) 1787 return; 1788 } 1789 1790 /* Only support nowait for normal IO */ 1791 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) { 1792 io = alloc_io(md, bio, GFP_NOWAIT); 1793 if (unlikely(!io)) { 1794 /* Unable to do anything without dm_io. */ 1795 bio_wouldblock_error(bio); 1796 return; 1797 } 1798 } else { 1799 io = alloc_io(md, bio, GFP_NOIO); 1800 } 1801 init_clone_info(&ci, io, map, bio, is_abnormal); 1802 1803 if (bio->bi_opf & REQ_PREFLUSH) { 1804 __send_empty_flush(&ci); 1805 /* dm_io_complete submits any data associated with flush */ 1806 goto out; 1807 } 1808 1809 error = __split_and_process_bio(&ci); 1810 if (error || !ci.sector_count) 1811 goto out; 1812 /* 1813 * Remainder must be passed to submit_bio_noacct() so it gets handled 1814 * *after* bios already submitted have been completely processed. 1815 */ 1816 bio_trim(bio, io->sectors, ci.sector_count); 1817 trace_block_split(bio, bio->bi_iter.bi_sector); 1818 bio_inc_remaining(bio); 1819 submit_bio_noacct(bio); 1820 out: 1821 /* 1822 * Drop the extra reference count for non-POLLED bio, and hold one 1823 * reference for POLLED bio, which will be released in dm_poll_bio 1824 * 1825 * Add every dm_io instance into the dm_io list head which is stored 1826 * in bio->bi_private, so that dm_poll_bio can poll them all. 1827 */ 1828 if (error || !ci.submit_as_polled) { 1829 /* 1830 * In case of submission failure, the extra reference for 1831 * submitting io isn't consumed yet 1832 */ 1833 if (error) 1834 atomic_dec(&io->io_count); 1835 dm_io_dec_pending(io, error); 1836 } else 1837 dm_queue_poll_io(bio, io); 1838 } 1839 1840 static void dm_submit_bio(struct bio *bio) 1841 { 1842 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1843 int srcu_idx; 1844 struct dm_table *map; 1845 1846 map = dm_get_live_table(md, &srcu_idx); 1847 1848 /* If suspended, or map not yet available, queue this IO for later */ 1849 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1850 unlikely(!map)) { 1851 if (bio->bi_opf & REQ_NOWAIT) 1852 bio_wouldblock_error(bio); 1853 else if (bio->bi_opf & REQ_RAHEAD) 1854 bio_io_error(bio); 1855 else 1856 queue_io(md, bio); 1857 goto out; 1858 } 1859 1860 dm_split_and_process_bio(md, map, bio); 1861 out: 1862 dm_put_live_table(md, srcu_idx); 1863 } 1864 1865 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1866 unsigned int flags) 1867 { 1868 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1869 1870 /* don't poll if the mapped io is done */ 1871 if (atomic_read(&io->io_count) > 1) 1872 bio_poll(&io->tio.clone, iob, flags); 1873 1874 /* bio_poll holds the last reference */ 1875 return atomic_read(&io->io_count) == 1; 1876 } 1877 1878 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1879 unsigned int flags) 1880 { 1881 struct dm_io **head = dm_poll_list_head(bio); 1882 struct dm_io *list = *head; 1883 struct dm_io *tmp = NULL; 1884 struct dm_io *curr, *next; 1885 1886 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1887 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1888 return 0; 1889 1890 WARN_ON_ONCE(!list); 1891 1892 /* 1893 * Restore .bi_private before possibly completing dm_io. 1894 * 1895 * bio_poll() is only possible once @bio has been completely 1896 * submitted via submit_bio_noacct()'s depth-first submission. 1897 * So there is no dm_queue_poll_io() race associated with 1898 * clearing REQ_DM_POLL_LIST here. 1899 */ 1900 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1901 bio->bi_private = list->data; 1902 1903 for (curr = list, next = curr->next; curr; curr = next, next = 1904 curr ? curr->next : NULL) { 1905 if (dm_poll_dm_io(curr, iob, flags)) { 1906 /* 1907 * clone_endio() has already occurred, so no 1908 * error handling is needed here. 1909 */ 1910 __dm_io_dec_pending(curr); 1911 } else { 1912 curr->next = tmp; 1913 tmp = curr; 1914 } 1915 } 1916 1917 /* Not done? */ 1918 if (tmp) { 1919 bio->bi_opf |= REQ_DM_POLL_LIST; 1920 /* Reset bio->bi_private to dm_io list head */ 1921 *head = tmp; 1922 return 0; 1923 } 1924 return 1; 1925 } 1926 1927 /* 1928 *--------------------------------------------------------------- 1929 * An IDR is used to keep track of allocated minor numbers. 1930 *--------------------------------------------------------------- 1931 */ 1932 static void free_minor(int minor) 1933 { 1934 spin_lock(&_minor_lock); 1935 idr_remove(&_minor_idr, minor); 1936 spin_unlock(&_minor_lock); 1937 } 1938 1939 /* 1940 * See if the device with a specific minor # is free. 1941 */ 1942 static int specific_minor(int minor) 1943 { 1944 int r; 1945 1946 if (minor >= (1 << MINORBITS)) 1947 return -EINVAL; 1948 1949 idr_preload(GFP_KERNEL); 1950 spin_lock(&_minor_lock); 1951 1952 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1953 1954 spin_unlock(&_minor_lock); 1955 idr_preload_end(); 1956 if (r < 0) 1957 return r == -ENOSPC ? -EBUSY : r; 1958 return 0; 1959 } 1960 1961 static int next_free_minor(int *minor) 1962 { 1963 int r; 1964 1965 idr_preload(GFP_KERNEL); 1966 spin_lock(&_minor_lock); 1967 1968 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1969 1970 spin_unlock(&_minor_lock); 1971 idr_preload_end(); 1972 if (r < 0) 1973 return r; 1974 *minor = r; 1975 return 0; 1976 } 1977 1978 static const struct block_device_operations dm_blk_dops; 1979 static const struct block_device_operations dm_rq_blk_dops; 1980 static const struct dax_operations dm_dax_ops; 1981 1982 static void dm_wq_work(struct work_struct *work); 1983 1984 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1985 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1986 { 1987 dm_destroy_crypto_profile(q->crypto_profile); 1988 } 1989 1990 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1991 1992 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1993 { 1994 } 1995 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1996 1997 static void cleanup_mapped_device(struct mapped_device *md) 1998 { 1999 if (md->wq) 2000 destroy_workqueue(md->wq); 2001 dm_free_md_mempools(md->mempools); 2002 2003 if (md->dax_dev) { 2004 dax_remove_host(md->disk); 2005 kill_dax(md->dax_dev); 2006 put_dax(md->dax_dev); 2007 md->dax_dev = NULL; 2008 } 2009 2010 dm_cleanup_zoned_dev(md); 2011 if (md->disk) { 2012 spin_lock(&_minor_lock); 2013 md->disk->private_data = NULL; 2014 spin_unlock(&_minor_lock); 2015 if (dm_get_md_type(md) != DM_TYPE_NONE) { 2016 struct table_device *td; 2017 2018 dm_sysfs_exit(md); 2019 list_for_each_entry(td, &md->table_devices, list) { 2020 bd_unlink_disk_holder(td->dm_dev.bdev, 2021 md->disk); 2022 } 2023 2024 /* 2025 * Hold lock to make sure del_gendisk() won't concurrent 2026 * with open/close_table_device(). 2027 */ 2028 mutex_lock(&md->table_devices_lock); 2029 del_gendisk(md->disk); 2030 mutex_unlock(&md->table_devices_lock); 2031 } 2032 dm_queue_destroy_crypto_profile(md->queue); 2033 put_disk(md->disk); 2034 } 2035 2036 if (md->pending_io) { 2037 free_percpu(md->pending_io); 2038 md->pending_io = NULL; 2039 } 2040 2041 cleanup_srcu_struct(&md->io_barrier); 2042 2043 mutex_destroy(&md->suspend_lock); 2044 mutex_destroy(&md->type_lock); 2045 mutex_destroy(&md->table_devices_lock); 2046 mutex_destroy(&md->swap_bios_lock); 2047 2048 dm_mq_cleanup_mapped_device(md); 2049 } 2050 2051 /* 2052 * Allocate and initialise a blank device with a given minor. 2053 */ 2054 static struct mapped_device *alloc_dev(int minor) 2055 { 2056 int r, numa_node_id = dm_get_numa_node(); 2057 struct mapped_device *md; 2058 void *old_md; 2059 2060 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2061 if (!md) { 2062 DMERR("unable to allocate device, out of memory."); 2063 return NULL; 2064 } 2065 2066 if (!try_module_get(THIS_MODULE)) 2067 goto bad_module_get; 2068 2069 /* get a minor number for the dev */ 2070 if (minor == DM_ANY_MINOR) 2071 r = next_free_minor(&minor); 2072 else 2073 r = specific_minor(minor); 2074 if (r < 0) 2075 goto bad_minor; 2076 2077 r = init_srcu_struct(&md->io_barrier); 2078 if (r < 0) 2079 goto bad_io_barrier; 2080 2081 md->numa_node_id = numa_node_id; 2082 md->init_tio_pdu = false; 2083 md->type = DM_TYPE_NONE; 2084 mutex_init(&md->suspend_lock); 2085 mutex_init(&md->type_lock); 2086 mutex_init(&md->table_devices_lock); 2087 spin_lock_init(&md->deferred_lock); 2088 atomic_set(&md->holders, 1); 2089 atomic_set(&md->open_count, 0); 2090 atomic_set(&md->event_nr, 0); 2091 atomic_set(&md->uevent_seq, 0); 2092 INIT_LIST_HEAD(&md->uevent_list); 2093 INIT_LIST_HEAD(&md->table_devices); 2094 spin_lock_init(&md->uevent_lock); 2095 2096 /* 2097 * default to bio-based until DM table is loaded and md->type 2098 * established. If request-based table is loaded: blk-mq will 2099 * override accordingly. 2100 */ 2101 md->disk = blk_alloc_disk(md->numa_node_id); 2102 if (!md->disk) 2103 goto bad; 2104 md->queue = md->disk->queue; 2105 2106 init_waitqueue_head(&md->wait); 2107 INIT_WORK(&md->work, dm_wq_work); 2108 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2109 init_waitqueue_head(&md->eventq); 2110 init_completion(&md->kobj_holder.completion); 2111 2112 md->requeue_list = NULL; 2113 md->swap_bios = get_swap_bios(); 2114 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2115 mutex_init(&md->swap_bios_lock); 2116 2117 md->disk->major = _major; 2118 md->disk->first_minor = minor; 2119 md->disk->minors = 1; 2120 md->disk->flags |= GENHD_FL_NO_PART; 2121 md->disk->fops = &dm_blk_dops; 2122 md->disk->private_data = md; 2123 sprintf(md->disk->disk_name, "dm-%d", minor); 2124 2125 if (IS_ENABLED(CONFIG_FS_DAX)) { 2126 md->dax_dev = alloc_dax(md, &dm_dax_ops); 2127 if (IS_ERR(md->dax_dev)) { 2128 md->dax_dev = NULL; 2129 goto bad; 2130 } 2131 set_dax_nocache(md->dax_dev); 2132 set_dax_nomc(md->dax_dev); 2133 if (dax_add_host(md->dax_dev, md->disk)) 2134 goto bad; 2135 } 2136 2137 format_dev_t(md->name, MKDEV(_major, minor)); 2138 2139 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2140 if (!md->wq) 2141 goto bad; 2142 2143 md->pending_io = alloc_percpu(unsigned long); 2144 if (!md->pending_io) 2145 goto bad; 2146 2147 r = dm_stats_init(&md->stats); 2148 if (r < 0) 2149 goto bad; 2150 2151 /* Populate the mapping, nobody knows we exist yet */ 2152 spin_lock(&_minor_lock); 2153 old_md = idr_replace(&_minor_idr, md, minor); 2154 spin_unlock(&_minor_lock); 2155 2156 BUG_ON(old_md != MINOR_ALLOCED); 2157 2158 return md; 2159 2160 bad: 2161 cleanup_mapped_device(md); 2162 bad_io_barrier: 2163 free_minor(minor); 2164 bad_minor: 2165 module_put(THIS_MODULE); 2166 bad_module_get: 2167 kvfree(md); 2168 return NULL; 2169 } 2170 2171 static void unlock_fs(struct mapped_device *md); 2172 2173 static void free_dev(struct mapped_device *md) 2174 { 2175 int minor = MINOR(disk_devt(md->disk)); 2176 2177 unlock_fs(md); 2178 2179 cleanup_mapped_device(md); 2180 2181 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2182 dm_stats_cleanup(&md->stats); 2183 free_minor(minor); 2184 2185 module_put(THIS_MODULE); 2186 kvfree(md); 2187 } 2188 2189 /* 2190 * Bind a table to the device. 2191 */ 2192 static void event_callback(void *context) 2193 { 2194 unsigned long flags; 2195 LIST_HEAD(uevents); 2196 struct mapped_device *md = context; 2197 2198 spin_lock_irqsave(&md->uevent_lock, flags); 2199 list_splice_init(&md->uevent_list, &uevents); 2200 spin_unlock_irqrestore(&md->uevent_lock, flags); 2201 2202 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2203 2204 atomic_inc(&md->event_nr); 2205 wake_up(&md->eventq); 2206 dm_issue_global_event(); 2207 } 2208 2209 /* 2210 * Returns old map, which caller must destroy. 2211 */ 2212 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2213 struct queue_limits *limits) 2214 { 2215 struct dm_table *old_map; 2216 sector_t size; 2217 int ret; 2218 2219 lockdep_assert_held(&md->suspend_lock); 2220 2221 size = dm_table_get_size(t); 2222 2223 /* 2224 * Wipe any geometry if the size of the table changed. 2225 */ 2226 if (size != dm_get_size(md)) 2227 memset(&md->geometry, 0, sizeof(md->geometry)); 2228 2229 set_capacity(md->disk, size); 2230 2231 dm_table_event_callback(t, event_callback, md); 2232 2233 if (dm_table_request_based(t)) { 2234 /* 2235 * Leverage the fact that request-based DM targets are 2236 * immutable singletons - used to optimize dm_mq_queue_rq. 2237 */ 2238 md->immutable_target = dm_table_get_immutable_target(t); 2239 2240 /* 2241 * There is no need to reload with request-based dm because the 2242 * size of front_pad doesn't change. 2243 * 2244 * Note for future: If you are to reload bioset, prep-ed 2245 * requests in the queue may refer to bio from the old bioset, 2246 * so you must walk through the queue to unprep. 2247 */ 2248 if (!md->mempools) { 2249 md->mempools = t->mempools; 2250 t->mempools = NULL; 2251 } 2252 } else { 2253 /* 2254 * The md may already have mempools that need changing. 2255 * If so, reload bioset because front_pad may have changed 2256 * because a different table was loaded. 2257 */ 2258 dm_free_md_mempools(md->mempools); 2259 md->mempools = t->mempools; 2260 t->mempools = NULL; 2261 } 2262 2263 ret = dm_table_set_restrictions(t, md->queue, limits); 2264 if (ret) { 2265 old_map = ERR_PTR(ret); 2266 goto out; 2267 } 2268 2269 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2270 rcu_assign_pointer(md->map, (void *)t); 2271 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2272 2273 if (old_map) 2274 dm_sync_table(md); 2275 out: 2276 return old_map; 2277 } 2278 2279 /* 2280 * Returns unbound table for the caller to free. 2281 */ 2282 static struct dm_table *__unbind(struct mapped_device *md) 2283 { 2284 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2285 2286 if (!map) 2287 return NULL; 2288 2289 dm_table_event_callback(map, NULL, NULL); 2290 RCU_INIT_POINTER(md->map, NULL); 2291 dm_sync_table(md); 2292 2293 return map; 2294 } 2295 2296 /* 2297 * Constructor for a new device. 2298 */ 2299 int dm_create(int minor, struct mapped_device **result) 2300 { 2301 struct mapped_device *md; 2302 2303 md = alloc_dev(minor); 2304 if (!md) 2305 return -ENXIO; 2306 2307 dm_ima_reset_data(md); 2308 2309 *result = md; 2310 return 0; 2311 } 2312 2313 /* 2314 * Functions to manage md->type. 2315 * All are required to hold md->type_lock. 2316 */ 2317 void dm_lock_md_type(struct mapped_device *md) 2318 { 2319 mutex_lock(&md->type_lock); 2320 } 2321 2322 void dm_unlock_md_type(struct mapped_device *md) 2323 { 2324 mutex_unlock(&md->type_lock); 2325 } 2326 2327 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2328 { 2329 BUG_ON(!mutex_is_locked(&md->type_lock)); 2330 md->type = type; 2331 } 2332 2333 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2334 { 2335 return md->type; 2336 } 2337 2338 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2339 { 2340 return md->immutable_target_type; 2341 } 2342 2343 /* 2344 * Setup the DM device's queue based on md's type 2345 */ 2346 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2347 { 2348 enum dm_queue_mode type = dm_table_get_type(t); 2349 struct queue_limits limits; 2350 struct table_device *td; 2351 int r; 2352 2353 switch (type) { 2354 case DM_TYPE_REQUEST_BASED: 2355 md->disk->fops = &dm_rq_blk_dops; 2356 r = dm_mq_init_request_queue(md, t); 2357 if (r) { 2358 DMERR("Cannot initialize queue for request-based dm mapped device"); 2359 return r; 2360 } 2361 break; 2362 case DM_TYPE_BIO_BASED: 2363 case DM_TYPE_DAX_BIO_BASED: 2364 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue); 2365 break; 2366 case DM_TYPE_NONE: 2367 WARN_ON_ONCE(true); 2368 break; 2369 } 2370 2371 r = dm_calculate_queue_limits(t, &limits); 2372 if (r) { 2373 DMERR("Cannot calculate initial queue limits"); 2374 return r; 2375 } 2376 r = dm_table_set_restrictions(t, md->queue, &limits); 2377 if (r) 2378 return r; 2379 2380 /* 2381 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2382 * with open_table_device() and close_table_device(). 2383 */ 2384 mutex_lock(&md->table_devices_lock); 2385 r = add_disk(md->disk); 2386 mutex_unlock(&md->table_devices_lock); 2387 if (r) 2388 return r; 2389 2390 /* 2391 * Register the holder relationship for devices added before the disk 2392 * was live. 2393 */ 2394 list_for_each_entry(td, &md->table_devices, list) { 2395 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2396 if (r) 2397 goto out_undo_holders; 2398 } 2399 2400 r = dm_sysfs_init(md); 2401 if (r) 2402 goto out_undo_holders; 2403 2404 md->type = type; 2405 return 0; 2406 2407 out_undo_holders: 2408 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2409 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2410 mutex_lock(&md->table_devices_lock); 2411 del_gendisk(md->disk); 2412 mutex_unlock(&md->table_devices_lock); 2413 return r; 2414 } 2415 2416 struct mapped_device *dm_get_md(dev_t dev) 2417 { 2418 struct mapped_device *md; 2419 unsigned int minor = MINOR(dev); 2420 2421 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2422 return NULL; 2423 2424 spin_lock(&_minor_lock); 2425 2426 md = idr_find(&_minor_idr, minor); 2427 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2428 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2429 md = NULL; 2430 goto out; 2431 } 2432 dm_get(md); 2433 out: 2434 spin_unlock(&_minor_lock); 2435 2436 return md; 2437 } 2438 EXPORT_SYMBOL_GPL(dm_get_md); 2439 2440 void *dm_get_mdptr(struct mapped_device *md) 2441 { 2442 return md->interface_ptr; 2443 } 2444 2445 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2446 { 2447 md->interface_ptr = ptr; 2448 } 2449 2450 void dm_get(struct mapped_device *md) 2451 { 2452 atomic_inc(&md->holders); 2453 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2454 } 2455 2456 int dm_hold(struct mapped_device *md) 2457 { 2458 spin_lock(&_minor_lock); 2459 if (test_bit(DMF_FREEING, &md->flags)) { 2460 spin_unlock(&_minor_lock); 2461 return -EBUSY; 2462 } 2463 dm_get(md); 2464 spin_unlock(&_minor_lock); 2465 return 0; 2466 } 2467 EXPORT_SYMBOL_GPL(dm_hold); 2468 2469 const char *dm_device_name(struct mapped_device *md) 2470 { 2471 return md->name; 2472 } 2473 EXPORT_SYMBOL_GPL(dm_device_name); 2474 2475 static void __dm_destroy(struct mapped_device *md, bool wait) 2476 { 2477 struct dm_table *map; 2478 int srcu_idx; 2479 2480 might_sleep(); 2481 2482 spin_lock(&_minor_lock); 2483 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2484 set_bit(DMF_FREEING, &md->flags); 2485 spin_unlock(&_minor_lock); 2486 2487 blk_mark_disk_dead(md->disk); 2488 2489 /* 2490 * Take suspend_lock so that presuspend and postsuspend methods 2491 * do not race with internal suspend. 2492 */ 2493 mutex_lock(&md->suspend_lock); 2494 map = dm_get_live_table(md, &srcu_idx); 2495 if (!dm_suspended_md(md)) { 2496 dm_table_presuspend_targets(map); 2497 set_bit(DMF_SUSPENDED, &md->flags); 2498 set_bit(DMF_POST_SUSPENDING, &md->flags); 2499 dm_table_postsuspend_targets(map); 2500 } 2501 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2502 dm_put_live_table(md, srcu_idx); 2503 mutex_unlock(&md->suspend_lock); 2504 2505 /* 2506 * Rare, but there may be I/O requests still going to complete, 2507 * for example. Wait for all references to disappear. 2508 * No one should increment the reference count of the mapped_device, 2509 * after the mapped_device state becomes DMF_FREEING. 2510 */ 2511 if (wait) 2512 while (atomic_read(&md->holders)) 2513 fsleep(1000); 2514 else if (atomic_read(&md->holders)) 2515 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2516 dm_device_name(md), atomic_read(&md->holders)); 2517 2518 dm_table_destroy(__unbind(md)); 2519 free_dev(md); 2520 } 2521 2522 void dm_destroy(struct mapped_device *md) 2523 { 2524 __dm_destroy(md, true); 2525 } 2526 2527 void dm_destroy_immediate(struct mapped_device *md) 2528 { 2529 __dm_destroy(md, false); 2530 } 2531 2532 void dm_put(struct mapped_device *md) 2533 { 2534 atomic_dec(&md->holders); 2535 } 2536 EXPORT_SYMBOL_GPL(dm_put); 2537 2538 static bool dm_in_flight_bios(struct mapped_device *md) 2539 { 2540 int cpu; 2541 unsigned long sum = 0; 2542 2543 for_each_possible_cpu(cpu) 2544 sum += *per_cpu_ptr(md->pending_io, cpu); 2545 2546 return sum != 0; 2547 } 2548 2549 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2550 { 2551 int r = 0; 2552 DEFINE_WAIT(wait); 2553 2554 while (true) { 2555 prepare_to_wait(&md->wait, &wait, task_state); 2556 2557 if (!dm_in_flight_bios(md)) 2558 break; 2559 2560 if (signal_pending_state(task_state, current)) { 2561 r = -EINTR; 2562 break; 2563 } 2564 2565 io_schedule(); 2566 } 2567 finish_wait(&md->wait, &wait); 2568 2569 smp_rmb(); 2570 2571 return r; 2572 } 2573 2574 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2575 { 2576 int r = 0; 2577 2578 if (!queue_is_mq(md->queue)) 2579 return dm_wait_for_bios_completion(md, task_state); 2580 2581 while (true) { 2582 if (!blk_mq_queue_inflight(md->queue)) 2583 break; 2584 2585 if (signal_pending_state(task_state, current)) { 2586 r = -EINTR; 2587 break; 2588 } 2589 2590 fsleep(5000); 2591 } 2592 2593 return r; 2594 } 2595 2596 /* 2597 * Process the deferred bios 2598 */ 2599 static void dm_wq_work(struct work_struct *work) 2600 { 2601 struct mapped_device *md = container_of(work, struct mapped_device, work); 2602 struct bio *bio; 2603 2604 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2605 spin_lock_irq(&md->deferred_lock); 2606 bio = bio_list_pop(&md->deferred); 2607 spin_unlock_irq(&md->deferred_lock); 2608 2609 if (!bio) 2610 break; 2611 2612 submit_bio_noacct(bio); 2613 cond_resched(); 2614 } 2615 } 2616 2617 static void dm_queue_flush(struct mapped_device *md) 2618 { 2619 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2620 smp_mb__after_atomic(); 2621 queue_work(md->wq, &md->work); 2622 } 2623 2624 /* 2625 * Swap in a new table, returning the old one for the caller to destroy. 2626 */ 2627 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2628 { 2629 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2630 struct queue_limits limits; 2631 int r; 2632 2633 mutex_lock(&md->suspend_lock); 2634 2635 /* device must be suspended */ 2636 if (!dm_suspended_md(md)) 2637 goto out; 2638 2639 /* 2640 * If the new table has no data devices, retain the existing limits. 2641 * This helps multipath with queue_if_no_path if all paths disappear, 2642 * then new I/O is queued based on these limits, and then some paths 2643 * reappear. 2644 */ 2645 if (dm_table_has_no_data_devices(table)) { 2646 live_map = dm_get_live_table_fast(md); 2647 if (live_map) 2648 limits = md->queue->limits; 2649 dm_put_live_table_fast(md); 2650 } 2651 2652 if (!live_map) { 2653 r = dm_calculate_queue_limits(table, &limits); 2654 if (r) { 2655 map = ERR_PTR(r); 2656 goto out; 2657 } 2658 } 2659 2660 map = __bind(md, table, &limits); 2661 dm_issue_global_event(); 2662 2663 out: 2664 mutex_unlock(&md->suspend_lock); 2665 return map; 2666 } 2667 2668 /* 2669 * Functions to lock and unlock any filesystem running on the 2670 * device. 2671 */ 2672 static int lock_fs(struct mapped_device *md) 2673 { 2674 int r; 2675 2676 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2677 2678 r = freeze_bdev(md->disk->part0); 2679 if (!r) 2680 set_bit(DMF_FROZEN, &md->flags); 2681 return r; 2682 } 2683 2684 static void unlock_fs(struct mapped_device *md) 2685 { 2686 if (!test_bit(DMF_FROZEN, &md->flags)) 2687 return; 2688 thaw_bdev(md->disk->part0); 2689 clear_bit(DMF_FROZEN, &md->flags); 2690 } 2691 2692 /* 2693 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2694 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2695 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2696 * 2697 * If __dm_suspend returns 0, the device is completely quiescent 2698 * now. There is no request-processing activity. All new requests 2699 * are being added to md->deferred list. 2700 */ 2701 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2702 unsigned int suspend_flags, unsigned int task_state, 2703 int dmf_suspended_flag) 2704 { 2705 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2706 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2707 int r; 2708 2709 lockdep_assert_held(&md->suspend_lock); 2710 2711 /* 2712 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2713 * This flag is cleared before dm_suspend returns. 2714 */ 2715 if (noflush) 2716 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2717 else 2718 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2719 2720 /* 2721 * This gets reverted if there's an error later and the targets 2722 * provide the .presuspend_undo hook. 2723 */ 2724 dm_table_presuspend_targets(map); 2725 2726 /* 2727 * Flush I/O to the device. 2728 * Any I/O submitted after lock_fs() may not be flushed. 2729 * noflush takes precedence over do_lockfs. 2730 * (lock_fs() flushes I/Os and waits for them to complete.) 2731 */ 2732 if (!noflush && do_lockfs) { 2733 r = lock_fs(md); 2734 if (r) { 2735 dm_table_presuspend_undo_targets(map); 2736 return r; 2737 } 2738 } 2739 2740 /* 2741 * Here we must make sure that no processes are submitting requests 2742 * to target drivers i.e. no one may be executing 2743 * dm_split_and_process_bio from dm_submit_bio. 2744 * 2745 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2746 * we take the write lock. To prevent any process from reentering 2747 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2748 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2749 * flush_workqueue(md->wq). 2750 */ 2751 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2752 if (map) 2753 synchronize_srcu(&md->io_barrier); 2754 2755 /* 2756 * Stop md->queue before flushing md->wq in case request-based 2757 * dm defers requests to md->wq from md->queue. 2758 */ 2759 if (dm_request_based(md)) 2760 dm_stop_queue(md->queue); 2761 2762 flush_workqueue(md->wq); 2763 2764 /* 2765 * At this point no more requests are entering target request routines. 2766 * We call dm_wait_for_completion to wait for all existing requests 2767 * to finish. 2768 */ 2769 r = dm_wait_for_completion(md, task_state); 2770 if (!r) 2771 set_bit(dmf_suspended_flag, &md->flags); 2772 2773 if (noflush) 2774 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2775 if (map) 2776 synchronize_srcu(&md->io_barrier); 2777 2778 /* were we interrupted ? */ 2779 if (r < 0) { 2780 dm_queue_flush(md); 2781 2782 if (dm_request_based(md)) 2783 dm_start_queue(md->queue); 2784 2785 unlock_fs(md); 2786 dm_table_presuspend_undo_targets(map); 2787 /* pushback list is already flushed, so skip flush */ 2788 } 2789 2790 return r; 2791 } 2792 2793 /* 2794 * We need to be able to change a mapping table under a mounted 2795 * filesystem. For example we might want to move some data in 2796 * the background. Before the table can be swapped with 2797 * dm_bind_table, dm_suspend must be called to flush any in 2798 * flight bios and ensure that any further io gets deferred. 2799 */ 2800 /* 2801 * Suspend mechanism in request-based dm. 2802 * 2803 * 1. Flush all I/Os by lock_fs() if needed. 2804 * 2. Stop dispatching any I/O by stopping the request_queue. 2805 * 3. Wait for all in-flight I/Os to be completed or requeued. 2806 * 2807 * To abort suspend, start the request_queue. 2808 */ 2809 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2810 { 2811 struct dm_table *map = NULL; 2812 int r = 0; 2813 2814 retry: 2815 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2816 2817 if (dm_suspended_md(md)) { 2818 r = -EINVAL; 2819 goto out_unlock; 2820 } 2821 2822 if (dm_suspended_internally_md(md)) { 2823 /* already internally suspended, wait for internal resume */ 2824 mutex_unlock(&md->suspend_lock); 2825 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2826 if (r) 2827 return r; 2828 goto retry; 2829 } 2830 2831 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2832 if (!map) { 2833 /* avoid deadlock with fs/namespace.c:do_mount() */ 2834 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 2835 } 2836 2837 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2838 if (r) 2839 goto out_unlock; 2840 2841 set_bit(DMF_POST_SUSPENDING, &md->flags); 2842 dm_table_postsuspend_targets(map); 2843 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2844 2845 out_unlock: 2846 mutex_unlock(&md->suspend_lock); 2847 return r; 2848 } 2849 2850 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2851 { 2852 if (map) { 2853 int r = dm_table_resume_targets(map); 2854 2855 if (r) 2856 return r; 2857 } 2858 2859 dm_queue_flush(md); 2860 2861 /* 2862 * Flushing deferred I/Os must be done after targets are resumed 2863 * so that mapping of targets can work correctly. 2864 * Request-based dm is queueing the deferred I/Os in its request_queue. 2865 */ 2866 if (dm_request_based(md)) 2867 dm_start_queue(md->queue); 2868 2869 unlock_fs(md); 2870 2871 return 0; 2872 } 2873 2874 int dm_resume(struct mapped_device *md) 2875 { 2876 int r; 2877 struct dm_table *map = NULL; 2878 2879 retry: 2880 r = -EINVAL; 2881 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2882 2883 if (!dm_suspended_md(md)) 2884 goto out; 2885 2886 if (dm_suspended_internally_md(md)) { 2887 /* already internally suspended, wait for internal resume */ 2888 mutex_unlock(&md->suspend_lock); 2889 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2890 if (r) 2891 return r; 2892 goto retry; 2893 } 2894 2895 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2896 if (!map || !dm_table_get_size(map)) 2897 goto out; 2898 2899 r = __dm_resume(md, map); 2900 if (r) 2901 goto out; 2902 2903 clear_bit(DMF_SUSPENDED, &md->flags); 2904 out: 2905 mutex_unlock(&md->suspend_lock); 2906 2907 return r; 2908 } 2909 2910 /* 2911 * Internal suspend/resume works like userspace-driven suspend. It waits 2912 * until all bios finish and prevents issuing new bios to the target drivers. 2913 * It may be used only from the kernel. 2914 */ 2915 2916 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 2917 { 2918 struct dm_table *map = NULL; 2919 2920 lockdep_assert_held(&md->suspend_lock); 2921 2922 if (md->internal_suspend_count++) 2923 return; /* nested internal suspend */ 2924 2925 if (dm_suspended_md(md)) { 2926 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2927 return; /* nest suspend */ 2928 } 2929 2930 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2931 2932 /* 2933 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2934 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2935 * would require changing .presuspend to return an error -- avoid this 2936 * until there is a need for more elaborate variants of internal suspend. 2937 */ 2938 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2939 DMF_SUSPENDED_INTERNALLY); 2940 2941 set_bit(DMF_POST_SUSPENDING, &md->flags); 2942 dm_table_postsuspend_targets(map); 2943 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2944 } 2945 2946 static void __dm_internal_resume(struct mapped_device *md) 2947 { 2948 BUG_ON(!md->internal_suspend_count); 2949 2950 if (--md->internal_suspend_count) 2951 return; /* resume from nested internal suspend */ 2952 2953 if (dm_suspended_md(md)) 2954 goto done; /* resume from nested suspend */ 2955 2956 /* 2957 * NOTE: existing callers don't need to call dm_table_resume_targets 2958 * (which may fail -- so best to avoid it for now by passing NULL map) 2959 */ 2960 (void) __dm_resume(md, NULL); 2961 2962 done: 2963 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2964 smp_mb__after_atomic(); 2965 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2966 } 2967 2968 void dm_internal_suspend_noflush(struct mapped_device *md) 2969 { 2970 mutex_lock(&md->suspend_lock); 2971 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2972 mutex_unlock(&md->suspend_lock); 2973 } 2974 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2975 2976 void dm_internal_resume(struct mapped_device *md) 2977 { 2978 mutex_lock(&md->suspend_lock); 2979 __dm_internal_resume(md); 2980 mutex_unlock(&md->suspend_lock); 2981 } 2982 EXPORT_SYMBOL_GPL(dm_internal_resume); 2983 2984 /* 2985 * Fast variants of internal suspend/resume hold md->suspend_lock, 2986 * which prevents interaction with userspace-driven suspend. 2987 */ 2988 2989 void dm_internal_suspend_fast(struct mapped_device *md) 2990 { 2991 mutex_lock(&md->suspend_lock); 2992 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2993 return; 2994 2995 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2996 synchronize_srcu(&md->io_barrier); 2997 flush_workqueue(md->wq); 2998 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2999 } 3000 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3001 3002 void dm_internal_resume_fast(struct mapped_device *md) 3003 { 3004 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3005 goto done; 3006 3007 dm_queue_flush(md); 3008 3009 done: 3010 mutex_unlock(&md->suspend_lock); 3011 } 3012 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3013 3014 /* 3015 *--------------------------------------------------------------- 3016 * Event notification. 3017 *--------------------------------------------------------------- 3018 */ 3019 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3020 unsigned int cookie, bool need_resize_uevent) 3021 { 3022 int r; 3023 unsigned int noio_flag; 3024 char udev_cookie[DM_COOKIE_LENGTH]; 3025 char *envp[3] = { NULL, NULL, NULL }; 3026 char **envpp = envp; 3027 if (cookie) { 3028 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3029 DM_COOKIE_ENV_VAR_NAME, cookie); 3030 *envpp++ = udev_cookie; 3031 } 3032 if (need_resize_uevent) { 3033 *envpp++ = "RESIZE=1"; 3034 } 3035 3036 noio_flag = memalloc_noio_save(); 3037 3038 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3039 3040 memalloc_noio_restore(noio_flag); 3041 3042 return r; 3043 } 3044 3045 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3046 { 3047 return atomic_add_return(1, &md->uevent_seq); 3048 } 3049 3050 uint32_t dm_get_event_nr(struct mapped_device *md) 3051 { 3052 return atomic_read(&md->event_nr); 3053 } 3054 3055 int dm_wait_event(struct mapped_device *md, int event_nr) 3056 { 3057 return wait_event_interruptible(md->eventq, 3058 (event_nr != atomic_read(&md->event_nr))); 3059 } 3060 3061 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3062 { 3063 unsigned long flags; 3064 3065 spin_lock_irqsave(&md->uevent_lock, flags); 3066 list_add(elist, &md->uevent_list); 3067 spin_unlock_irqrestore(&md->uevent_lock, flags); 3068 } 3069 3070 /* 3071 * The gendisk is only valid as long as you have a reference 3072 * count on 'md'. 3073 */ 3074 struct gendisk *dm_disk(struct mapped_device *md) 3075 { 3076 return md->disk; 3077 } 3078 EXPORT_SYMBOL_GPL(dm_disk); 3079 3080 struct kobject *dm_kobject(struct mapped_device *md) 3081 { 3082 return &md->kobj_holder.kobj; 3083 } 3084 3085 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3086 { 3087 struct mapped_device *md; 3088 3089 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3090 3091 spin_lock(&_minor_lock); 3092 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3093 md = NULL; 3094 goto out; 3095 } 3096 dm_get(md); 3097 out: 3098 spin_unlock(&_minor_lock); 3099 3100 return md; 3101 } 3102 3103 int dm_suspended_md(struct mapped_device *md) 3104 { 3105 return test_bit(DMF_SUSPENDED, &md->flags); 3106 } 3107 3108 static int dm_post_suspending_md(struct mapped_device *md) 3109 { 3110 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3111 } 3112 3113 int dm_suspended_internally_md(struct mapped_device *md) 3114 { 3115 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3116 } 3117 3118 int dm_test_deferred_remove_flag(struct mapped_device *md) 3119 { 3120 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3121 } 3122 3123 int dm_suspended(struct dm_target *ti) 3124 { 3125 return dm_suspended_md(ti->table->md); 3126 } 3127 EXPORT_SYMBOL_GPL(dm_suspended); 3128 3129 int dm_post_suspending(struct dm_target *ti) 3130 { 3131 return dm_post_suspending_md(ti->table->md); 3132 } 3133 EXPORT_SYMBOL_GPL(dm_post_suspending); 3134 3135 int dm_noflush_suspending(struct dm_target *ti) 3136 { 3137 return __noflush_suspending(ti->table->md); 3138 } 3139 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3140 3141 void dm_free_md_mempools(struct dm_md_mempools *pools) 3142 { 3143 if (!pools) 3144 return; 3145 3146 bioset_exit(&pools->bs); 3147 bioset_exit(&pools->io_bs); 3148 3149 kfree(pools); 3150 } 3151 3152 struct dm_pr { 3153 u64 old_key; 3154 u64 new_key; 3155 u32 flags; 3156 bool abort; 3157 bool fail_early; 3158 int ret; 3159 enum pr_type type; 3160 struct pr_keys *read_keys; 3161 struct pr_held_reservation *rsv; 3162 }; 3163 3164 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3165 struct dm_pr *pr) 3166 { 3167 struct mapped_device *md = bdev->bd_disk->private_data; 3168 struct dm_table *table; 3169 struct dm_target *ti; 3170 int ret = -ENOTTY, srcu_idx; 3171 3172 table = dm_get_live_table(md, &srcu_idx); 3173 if (!table || !dm_table_get_size(table)) 3174 goto out; 3175 3176 /* We only support devices that have a single target */ 3177 if (table->num_targets != 1) 3178 goto out; 3179 ti = dm_table_get_target(table, 0); 3180 3181 if (dm_suspended_md(md)) { 3182 ret = -EAGAIN; 3183 goto out; 3184 } 3185 3186 ret = -EINVAL; 3187 if (!ti->type->iterate_devices) 3188 goto out; 3189 3190 ti->type->iterate_devices(ti, fn, pr); 3191 ret = 0; 3192 out: 3193 dm_put_live_table(md, srcu_idx); 3194 return ret; 3195 } 3196 3197 /* 3198 * For register / unregister we need to manually call out to every path. 3199 */ 3200 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3201 sector_t start, sector_t len, void *data) 3202 { 3203 struct dm_pr *pr = data; 3204 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3205 int ret; 3206 3207 if (!ops || !ops->pr_register) { 3208 pr->ret = -EOPNOTSUPP; 3209 return -1; 3210 } 3211 3212 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3213 if (!ret) 3214 return 0; 3215 3216 if (!pr->ret) 3217 pr->ret = ret; 3218 3219 if (pr->fail_early) 3220 return -1; 3221 3222 return 0; 3223 } 3224 3225 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3226 u32 flags) 3227 { 3228 struct dm_pr pr = { 3229 .old_key = old_key, 3230 .new_key = new_key, 3231 .flags = flags, 3232 .fail_early = true, 3233 .ret = 0, 3234 }; 3235 int ret; 3236 3237 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3238 if (ret) { 3239 /* Didn't even get to register a path */ 3240 return ret; 3241 } 3242 3243 if (!pr.ret) 3244 return 0; 3245 ret = pr.ret; 3246 3247 if (!new_key) 3248 return ret; 3249 3250 /* unregister all paths if we failed to register any path */ 3251 pr.old_key = new_key; 3252 pr.new_key = 0; 3253 pr.flags = 0; 3254 pr.fail_early = false; 3255 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3256 return ret; 3257 } 3258 3259 3260 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3261 sector_t start, sector_t len, void *data) 3262 { 3263 struct dm_pr *pr = data; 3264 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3265 3266 if (!ops || !ops->pr_reserve) { 3267 pr->ret = -EOPNOTSUPP; 3268 return -1; 3269 } 3270 3271 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3272 if (!pr->ret) 3273 return -1; 3274 3275 return 0; 3276 } 3277 3278 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3279 u32 flags) 3280 { 3281 struct dm_pr pr = { 3282 .old_key = key, 3283 .flags = flags, 3284 .type = type, 3285 .fail_early = false, 3286 .ret = 0, 3287 }; 3288 int ret; 3289 3290 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3291 if (ret) 3292 return ret; 3293 3294 return pr.ret; 3295 } 3296 3297 /* 3298 * If there is a non-All Registrants type of reservation, the release must be 3299 * sent down the holding path. For the cases where there is no reservation or 3300 * the path is not the holder the device will also return success, so we must 3301 * try each path to make sure we got the correct path. 3302 */ 3303 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3304 sector_t start, sector_t len, void *data) 3305 { 3306 struct dm_pr *pr = data; 3307 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3308 3309 if (!ops || !ops->pr_release) { 3310 pr->ret = -EOPNOTSUPP; 3311 return -1; 3312 } 3313 3314 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3315 if (pr->ret) 3316 return -1; 3317 3318 return 0; 3319 } 3320 3321 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3322 { 3323 struct dm_pr pr = { 3324 .old_key = key, 3325 .type = type, 3326 .fail_early = false, 3327 }; 3328 int ret; 3329 3330 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3331 if (ret) 3332 return ret; 3333 3334 return pr.ret; 3335 } 3336 3337 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3338 sector_t start, sector_t len, void *data) 3339 { 3340 struct dm_pr *pr = data; 3341 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3342 3343 if (!ops || !ops->pr_preempt) { 3344 pr->ret = -EOPNOTSUPP; 3345 return -1; 3346 } 3347 3348 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3349 pr->abort); 3350 if (!pr->ret) 3351 return -1; 3352 3353 return 0; 3354 } 3355 3356 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3357 enum pr_type type, bool abort) 3358 { 3359 struct dm_pr pr = { 3360 .new_key = new_key, 3361 .old_key = old_key, 3362 .type = type, 3363 .fail_early = false, 3364 }; 3365 int ret; 3366 3367 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3368 if (ret) 3369 return ret; 3370 3371 return pr.ret; 3372 } 3373 3374 static int dm_pr_clear(struct block_device *bdev, u64 key) 3375 { 3376 struct mapped_device *md = bdev->bd_disk->private_data; 3377 const struct pr_ops *ops; 3378 int r, srcu_idx; 3379 3380 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3381 if (r < 0) 3382 goto out; 3383 3384 ops = bdev->bd_disk->fops->pr_ops; 3385 if (ops && ops->pr_clear) 3386 r = ops->pr_clear(bdev, key); 3387 else 3388 r = -EOPNOTSUPP; 3389 out: 3390 dm_unprepare_ioctl(md, srcu_idx); 3391 return r; 3392 } 3393 3394 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, 3395 sector_t start, sector_t len, void *data) 3396 { 3397 struct dm_pr *pr = data; 3398 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3399 3400 if (!ops || !ops->pr_read_keys) { 3401 pr->ret = -EOPNOTSUPP; 3402 return -1; 3403 } 3404 3405 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); 3406 if (!pr->ret) 3407 return -1; 3408 3409 return 0; 3410 } 3411 3412 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) 3413 { 3414 struct dm_pr pr = { 3415 .read_keys = keys, 3416 }; 3417 int ret; 3418 3419 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); 3420 if (ret) 3421 return ret; 3422 3423 return pr.ret; 3424 } 3425 3426 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, 3427 sector_t start, sector_t len, void *data) 3428 { 3429 struct dm_pr *pr = data; 3430 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3431 3432 if (!ops || !ops->pr_read_reservation) { 3433 pr->ret = -EOPNOTSUPP; 3434 return -1; 3435 } 3436 3437 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); 3438 if (!pr->ret) 3439 return -1; 3440 3441 return 0; 3442 } 3443 3444 static int dm_pr_read_reservation(struct block_device *bdev, 3445 struct pr_held_reservation *rsv) 3446 { 3447 struct dm_pr pr = { 3448 .rsv = rsv, 3449 }; 3450 int ret; 3451 3452 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); 3453 if (ret) 3454 return ret; 3455 3456 return pr.ret; 3457 } 3458 3459 static const struct pr_ops dm_pr_ops = { 3460 .pr_register = dm_pr_register, 3461 .pr_reserve = dm_pr_reserve, 3462 .pr_release = dm_pr_release, 3463 .pr_preempt = dm_pr_preempt, 3464 .pr_clear = dm_pr_clear, 3465 .pr_read_keys = dm_pr_read_keys, 3466 .pr_read_reservation = dm_pr_read_reservation, 3467 }; 3468 3469 static const struct block_device_operations dm_blk_dops = { 3470 .submit_bio = dm_submit_bio, 3471 .poll_bio = dm_poll_bio, 3472 .open = dm_blk_open, 3473 .release = dm_blk_close, 3474 .ioctl = dm_blk_ioctl, 3475 .getgeo = dm_blk_getgeo, 3476 .report_zones = dm_blk_report_zones, 3477 .pr_ops = &dm_pr_ops, 3478 .owner = THIS_MODULE 3479 }; 3480 3481 static const struct block_device_operations dm_rq_blk_dops = { 3482 .open = dm_blk_open, 3483 .release = dm_blk_close, 3484 .ioctl = dm_blk_ioctl, 3485 .getgeo = dm_blk_getgeo, 3486 .pr_ops = &dm_pr_ops, 3487 .owner = THIS_MODULE 3488 }; 3489 3490 static const struct dax_operations dm_dax_ops = { 3491 .direct_access = dm_dax_direct_access, 3492 .zero_page_range = dm_dax_zero_page_range, 3493 .recovery_write = dm_dax_recovery_write, 3494 }; 3495 3496 /* 3497 * module hooks 3498 */ 3499 module_init(dm_init); 3500 module_exit(dm_exit); 3501 3502 module_param(major, uint, 0); 3503 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3504 3505 module_param(reserved_bio_based_ios, uint, 0644); 3506 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3507 3508 module_param(dm_numa_node, int, 0644); 3509 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3510 3511 module_param(swap_bios, int, 0644); 3512 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3513 3514 MODULE_DESCRIPTION(DM_NAME " driver"); 3515 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3516 MODULE_LICENSE("GPL"); 3517