xref: /linux/drivers/md/dm.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 /*
28  * Cookies are numeric values sent with CHANGE and REMOVE
29  * uevents while resuming, removing or renaming the device.
30  */
31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32 #define DM_COOKIE_LENGTH 24
33 
34 static const char *_name = DM_NAME;
35 
36 static unsigned int major = 0;
37 static unsigned int _major = 0;
38 
39 static DEFINE_SPINLOCK(_minor_lock);
40 /*
41  * For bio-based dm.
42  * One of these is allocated per bio.
43  */
44 struct dm_io {
45 	struct mapped_device *md;
46 	int error;
47 	atomic_t io_count;
48 	struct bio *bio;
49 	unsigned long start_time;
50 };
51 
52 /*
53  * For bio-based dm.
54  * One of these is allocated per target within a bio.  Hopefully
55  * this will be simplified out one day.
56  */
57 struct dm_target_io {
58 	struct dm_io *io;
59 	struct dm_target *ti;
60 	union map_info info;
61 };
62 
63 /*
64  * For request-based dm.
65  * One of these is allocated per request.
66  */
67 struct dm_rq_target_io {
68 	struct mapped_device *md;
69 	struct dm_target *ti;
70 	struct request *orig, clone;
71 	int error;
72 	union map_info info;
73 };
74 
75 /*
76  * For request-based dm.
77  * One of these is allocated per bio.
78  */
79 struct dm_rq_clone_bio_info {
80 	struct bio *orig;
81 	struct dm_rq_target_io *tio;
82 };
83 
84 union map_info *dm_get_mapinfo(struct bio *bio)
85 {
86 	if (bio && bio->bi_private)
87 		return &((struct dm_target_io *)bio->bi_private)->info;
88 	return NULL;
89 }
90 
91 union map_info *dm_get_rq_mapinfo(struct request *rq)
92 {
93 	if (rq && rq->end_io_data)
94 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
95 	return NULL;
96 }
97 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
98 
99 #define MINOR_ALLOCED ((void *)-1)
100 
101 /*
102  * Bits for the md->flags field.
103  */
104 #define DMF_BLOCK_IO_FOR_SUSPEND 0
105 #define DMF_SUSPENDED 1
106 #define DMF_FROZEN 2
107 #define DMF_FREEING 3
108 #define DMF_DELETING 4
109 #define DMF_NOFLUSH_SUSPENDING 5
110 #define DMF_QUEUE_IO_TO_THREAD 6
111 
112 /*
113  * Work processed by per-device workqueue.
114  */
115 struct mapped_device {
116 	struct rw_semaphore io_lock;
117 	struct mutex suspend_lock;
118 	rwlock_t map_lock;
119 	atomic_t holders;
120 	atomic_t open_count;
121 
122 	unsigned long flags;
123 
124 	struct request_queue *queue;
125 	struct gendisk *disk;
126 	char name[16];
127 
128 	void *interface_ptr;
129 
130 	/*
131 	 * A list of ios that arrived while we were suspended.
132 	 */
133 	atomic_t pending;
134 	wait_queue_head_t wait;
135 	struct work_struct work;
136 	struct bio_list deferred;
137 	spinlock_t deferred_lock;
138 
139 	/*
140 	 * An error from the barrier request currently being processed.
141 	 */
142 	int barrier_error;
143 
144 	/*
145 	 * Processing queue (flush/barriers)
146 	 */
147 	struct workqueue_struct *wq;
148 
149 	/*
150 	 * The current mapping.
151 	 */
152 	struct dm_table *map;
153 
154 	/*
155 	 * io objects are allocated from here.
156 	 */
157 	mempool_t *io_pool;
158 	mempool_t *tio_pool;
159 
160 	struct bio_set *bs;
161 
162 	/*
163 	 * Event handling.
164 	 */
165 	atomic_t event_nr;
166 	wait_queue_head_t eventq;
167 	atomic_t uevent_seq;
168 	struct list_head uevent_list;
169 	spinlock_t uevent_lock; /* Protect access to uevent_list */
170 
171 	/*
172 	 * freeze/thaw support require holding onto a super block
173 	 */
174 	struct super_block *frozen_sb;
175 	struct block_device *bdev;
176 
177 	/* forced geometry settings */
178 	struct hd_geometry geometry;
179 
180 	/* marker of flush suspend for request-based dm */
181 	struct request suspend_rq;
182 
183 	/* For saving the address of __make_request for request based dm */
184 	make_request_fn *saved_make_request_fn;
185 
186 	/* sysfs handle */
187 	struct kobject kobj;
188 
189 	/* zero-length barrier that will be cloned and submitted to targets */
190 	struct bio barrier_bio;
191 };
192 
193 /*
194  * For mempools pre-allocation at the table loading time.
195  */
196 struct dm_md_mempools {
197 	mempool_t *io_pool;
198 	mempool_t *tio_pool;
199 	struct bio_set *bs;
200 };
201 
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_tio_cache;
205 static struct kmem_cache *_rq_tio_cache;
206 static struct kmem_cache *_rq_bio_info_cache;
207 
208 static int __init local_init(void)
209 {
210 	int r = -ENOMEM;
211 
212 	/* allocate a slab for the dm_ios */
213 	_io_cache = KMEM_CACHE(dm_io, 0);
214 	if (!_io_cache)
215 		return r;
216 
217 	/* allocate a slab for the target ios */
218 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
219 	if (!_tio_cache)
220 		goto out_free_io_cache;
221 
222 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
223 	if (!_rq_tio_cache)
224 		goto out_free_tio_cache;
225 
226 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
227 	if (!_rq_bio_info_cache)
228 		goto out_free_rq_tio_cache;
229 
230 	r = dm_uevent_init();
231 	if (r)
232 		goto out_free_rq_bio_info_cache;
233 
234 	_major = major;
235 	r = register_blkdev(_major, _name);
236 	if (r < 0)
237 		goto out_uevent_exit;
238 
239 	if (!_major)
240 		_major = r;
241 
242 	return 0;
243 
244 out_uevent_exit:
245 	dm_uevent_exit();
246 out_free_rq_bio_info_cache:
247 	kmem_cache_destroy(_rq_bio_info_cache);
248 out_free_rq_tio_cache:
249 	kmem_cache_destroy(_rq_tio_cache);
250 out_free_tio_cache:
251 	kmem_cache_destroy(_tio_cache);
252 out_free_io_cache:
253 	kmem_cache_destroy(_io_cache);
254 
255 	return r;
256 }
257 
258 static void local_exit(void)
259 {
260 	kmem_cache_destroy(_rq_bio_info_cache);
261 	kmem_cache_destroy(_rq_tio_cache);
262 	kmem_cache_destroy(_tio_cache);
263 	kmem_cache_destroy(_io_cache);
264 	unregister_blkdev(_major, _name);
265 	dm_uevent_exit();
266 
267 	_major = 0;
268 
269 	DMINFO("cleaned up");
270 }
271 
272 static int (*_inits[])(void) __initdata = {
273 	local_init,
274 	dm_target_init,
275 	dm_linear_init,
276 	dm_stripe_init,
277 	dm_kcopyd_init,
278 	dm_interface_init,
279 };
280 
281 static void (*_exits[])(void) = {
282 	local_exit,
283 	dm_target_exit,
284 	dm_linear_exit,
285 	dm_stripe_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 };
289 
290 static int __init dm_init(void)
291 {
292 	const int count = ARRAY_SIZE(_inits);
293 
294 	int r, i;
295 
296 	for (i = 0; i < count; i++) {
297 		r = _inits[i]();
298 		if (r)
299 			goto bad;
300 	}
301 
302 	return 0;
303 
304       bad:
305 	while (i--)
306 		_exits[i]();
307 
308 	return r;
309 }
310 
311 static void __exit dm_exit(void)
312 {
313 	int i = ARRAY_SIZE(_exits);
314 
315 	while (i--)
316 		_exits[i]();
317 }
318 
319 /*
320  * Block device functions
321  */
322 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
323 {
324 	struct mapped_device *md;
325 
326 	spin_lock(&_minor_lock);
327 
328 	md = bdev->bd_disk->private_data;
329 	if (!md)
330 		goto out;
331 
332 	if (test_bit(DMF_FREEING, &md->flags) ||
333 	    test_bit(DMF_DELETING, &md->flags)) {
334 		md = NULL;
335 		goto out;
336 	}
337 
338 	dm_get(md);
339 	atomic_inc(&md->open_count);
340 
341 out:
342 	spin_unlock(&_minor_lock);
343 
344 	return md ? 0 : -ENXIO;
345 }
346 
347 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
348 {
349 	struct mapped_device *md = disk->private_data;
350 	atomic_dec(&md->open_count);
351 	dm_put(md);
352 	return 0;
353 }
354 
355 int dm_open_count(struct mapped_device *md)
356 {
357 	return atomic_read(&md->open_count);
358 }
359 
360 /*
361  * Guarantees nothing is using the device before it's deleted.
362  */
363 int dm_lock_for_deletion(struct mapped_device *md)
364 {
365 	int r = 0;
366 
367 	spin_lock(&_minor_lock);
368 
369 	if (dm_open_count(md))
370 		r = -EBUSY;
371 	else
372 		set_bit(DMF_DELETING, &md->flags);
373 
374 	spin_unlock(&_minor_lock);
375 
376 	return r;
377 }
378 
379 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
380 {
381 	struct mapped_device *md = bdev->bd_disk->private_data;
382 
383 	return dm_get_geometry(md, geo);
384 }
385 
386 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
387 			unsigned int cmd, unsigned long arg)
388 {
389 	struct mapped_device *md = bdev->bd_disk->private_data;
390 	struct dm_table *map = dm_get_table(md);
391 	struct dm_target *tgt;
392 	int r = -ENOTTY;
393 
394 	if (!map || !dm_table_get_size(map))
395 		goto out;
396 
397 	/* We only support devices that have a single target */
398 	if (dm_table_get_num_targets(map) != 1)
399 		goto out;
400 
401 	tgt = dm_table_get_target(map, 0);
402 
403 	if (dm_suspended(md)) {
404 		r = -EAGAIN;
405 		goto out;
406 	}
407 
408 	if (tgt->type->ioctl)
409 		r = tgt->type->ioctl(tgt, cmd, arg);
410 
411 out:
412 	dm_table_put(map);
413 
414 	return r;
415 }
416 
417 static struct dm_io *alloc_io(struct mapped_device *md)
418 {
419 	return mempool_alloc(md->io_pool, GFP_NOIO);
420 }
421 
422 static void free_io(struct mapped_device *md, struct dm_io *io)
423 {
424 	mempool_free(io, md->io_pool);
425 }
426 
427 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
428 {
429 	mempool_free(tio, md->tio_pool);
430 }
431 
432 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md)
433 {
434 	return mempool_alloc(md->tio_pool, GFP_ATOMIC);
435 }
436 
437 static void free_rq_tio(struct dm_rq_target_io *tio)
438 {
439 	mempool_free(tio, tio->md->tio_pool);
440 }
441 
442 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
443 {
444 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
445 }
446 
447 static void free_bio_info(struct dm_rq_clone_bio_info *info)
448 {
449 	mempool_free(info, info->tio->md->io_pool);
450 }
451 
452 static void start_io_acct(struct dm_io *io)
453 {
454 	struct mapped_device *md = io->md;
455 	int cpu;
456 
457 	io->start_time = jiffies;
458 
459 	cpu = part_stat_lock();
460 	part_round_stats(cpu, &dm_disk(md)->part0);
461 	part_stat_unlock();
462 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
463 }
464 
465 static void end_io_acct(struct dm_io *io)
466 {
467 	struct mapped_device *md = io->md;
468 	struct bio *bio = io->bio;
469 	unsigned long duration = jiffies - io->start_time;
470 	int pending, cpu;
471 	int rw = bio_data_dir(bio);
472 
473 	cpu = part_stat_lock();
474 	part_round_stats(cpu, &dm_disk(md)->part0);
475 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
476 	part_stat_unlock();
477 
478 	/*
479 	 * After this is decremented the bio must not be touched if it is
480 	 * a barrier.
481 	 */
482 	dm_disk(md)->part0.in_flight = pending =
483 		atomic_dec_return(&md->pending);
484 
485 	/* nudge anyone waiting on suspend queue */
486 	if (!pending)
487 		wake_up(&md->wait);
488 }
489 
490 /*
491  * Add the bio to the list of deferred io.
492  */
493 static void queue_io(struct mapped_device *md, struct bio *bio)
494 {
495 	down_write(&md->io_lock);
496 
497 	spin_lock_irq(&md->deferred_lock);
498 	bio_list_add(&md->deferred, bio);
499 	spin_unlock_irq(&md->deferred_lock);
500 
501 	if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
502 		queue_work(md->wq, &md->work);
503 
504 	up_write(&md->io_lock);
505 }
506 
507 /*
508  * Everyone (including functions in this file), should use this
509  * function to access the md->map field, and make sure they call
510  * dm_table_put() when finished.
511  */
512 struct dm_table *dm_get_table(struct mapped_device *md)
513 {
514 	struct dm_table *t;
515 	unsigned long flags;
516 
517 	read_lock_irqsave(&md->map_lock, flags);
518 	t = md->map;
519 	if (t)
520 		dm_table_get(t);
521 	read_unlock_irqrestore(&md->map_lock, flags);
522 
523 	return t;
524 }
525 
526 /*
527  * Get the geometry associated with a dm device
528  */
529 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
530 {
531 	*geo = md->geometry;
532 
533 	return 0;
534 }
535 
536 /*
537  * Set the geometry of a device.
538  */
539 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
540 {
541 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
542 
543 	if (geo->start > sz) {
544 		DMWARN("Start sector is beyond the geometry limits.");
545 		return -EINVAL;
546 	}
547 
548 	md->geometry = *geo;
549 
550 	return 0;
551 }
552 
553 /*-----------------------------------------------------------------
554  * CRUD START:
555  *   A more elegant soln is in the works that uses the queue
556  *   merge fn, unfortunately there are a couple of changes to
557  *   the block layer that I want to make for this.  So in the
558  *   interests of getting something for people to use I give
559  *   you this clearly demarcated crap.
560  *---------------------------------------------------------------*/
561 
562 static int __noflush_suspending(struct mapped_device *md)
563 {
564 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
565 }
566 
567 /*
568  * Decrements the number of outstanding ios that a bio has been
569  * cloned into, completing the original io if necc.
570  */
571 static void dec_pending(struct dm_io *io, int error)
572 {
573 	unsigned long flags;
574 	int io_error;
575 	struct bio *bio;
576 	struct mapped_device *md = io->md;
577 
578 	/* Push-back supersedes any I/O errors */
579 	if (error && !(io->error > 0 && __noflush_suspending(md)))
580 		io->error = error;
581 
582 	if (atomic_dec_and_test(&io->io_count)) {
583 		if (io->error == DM_ENDIO_REQUEUE) {
584 			/*
585 			 * Target requested pushing back the I/O.
586 			 */
587 			spin_lock_irqsave(&md->deferred_lock, flags);
588 			if (__noflush_suspending(md)) {
589 				if (!bio_barrier(io->bio))
590 					bio_list_add_head(&md->deferred,
591 							  io->bio);
592 			} else
593 				/* noflush suspend was interrupted. */
594 				io->error = -EIO;
595 			spin_unlock_irqrestore(&md->deferred_lock, flags);
596 		}
597 
598 		io_error = io->error;
599 		bio = io->bio;
600 
601 		if (bio_barrier(bio)) {
602 			/*
603 			 * There can be just one barrier request so we use
604 			 * a per-device variable for error reporting.
605 			 * Note that you can't touch the bio after end_io_acct
606 			 */
607 			if (!md->barrier_error && io_error != -EOPNOTSUPP)
608 				md->barrier_error = io_error;
609 			end_io_acct(io);
610 		} else {
611 			end_io_acct(io);
612 
613 			if (io_error != DM_ENDIO_REQUEUE) {
614 				trace_block_bio_complete(md->queue, bio);
615 
616 				bio_endio(bio, io_error);
617 			}
618 		}
619 
620 		free_io(md, io);
621 	}
622 }
623 
624 static void clone_endio(struct bio *bio, int error)
625 {
626 	int r = 0;
627 	struct dm_target_io *tio = bio->bi_private;
628 	struct dm_io *io = tio->io;
629 	struct mapped_device *md = tio->io->md;
630 	dm_endio_fn endio = tio->ti->type->end_io;
631 
632 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
633 		error = -EIO;
634 
635 	if (endio) {
636 		r = endio(tio->ti, bio, error, &tio->info);
637 		if (r < 0 || r == DM_ENDIO_REQUEUE)
638 			/*
639 			 * error and requeue request are handled
640 			 * in dec_pending().
641 			 */
642 			error = r;
643 		else if (r == DM_ENDIO_INCOMPLETE)
644 			/* The target will handle the io */
645 			return;
646 		else if (r) {
647 			DMWARN("unimplemented target endio return value: %d", r);
648 			BUG();
649 		}
650 	}
651 
652 	/*
653 	 * Store md for cleanup instead of tio which is about to get freed.
654 	 */
655 	bio->bi_private = md->bs;
656 
657 	free_tio(md, tio);
658 	bio_put(bio);
659 	dec_pending(io, error);
660 }
661 
662 /*
663  * Partial completion handling for request-based dm
664  */
665 static void end_clone_bio(struct bio *clone, int error)
666 {
667 	struct dm_rq_clone_bio_info *info = clone->bi_private;
668 	struct dm_rq_target_io *tio = info->tio;
669 	struct bio *bio = info->orig;
670 	unsigned int nr_bytes = info->orig->bi_size;
671 
672 	bio_put(clone);
673 
674 	if (tio->error)
675 		/*
676 		 * An error has already been detected on the request.
677 		 * Once error occurred, just let clone->end_io() handle
678 		 * the remainder.
679 		 */
680 		return;
681 	else if (error) {
682 		/*
683 		 * Don't notice the error to the upper layer yet.
684 		 * The error handling decision is made by the target driver,
685 		 * when the request is completed.
686 		 */
687 		tio->error = error;
688 		return;
689 	}
690 
691 	/*
692 	 * I/O for the bio successfully completed.
693 	 * Notice the data completion to the upper layer.
694 	 */
695 
696 	/*
697 	 * bios are processed from the head of the list.
698 	 * So the completing bio should always be rq->bio.
699 	 * If it's not, something wrong is happening.
700 	 */
701 	if (tio->orig->bio != bio)
702 		DMERR("bio completion is going in the middle of the request");
703 
704 	/*
705 	 * Update the original request.
706 	 * Do not use blk_end_request() here, because it may complete
707 	 * the original request before the clone, and break the ordering.
708 	 */
709 	blk_update_request(tio->orig, 0, nr_bytes);
710 }
711 
712 /*
713  * Don't touch any member of the md after calling this function because
714  * the md may be freed in dm_put() at the end of this function.
715  * Or do dm_get() before calling this function and dm_put() later.
716  */
717 static void rq_completed(struct mapped_device *md, int run_queue)
718 {
719 	int wakeup_waiters = 0;
720 	struct request_queue *q = md->queue;
721 	unsigned long flags;
722 
723 	spin_lock_irqsave(q->queue_lock, flags);
724 	if (!queue_in_flight(q))
725 		wakeup_waiters = 1;
726 	spin_unlock_irqrestore(q->queue_lock, flags);
727 
728 	/* nudge anyone waiting on suspend queue */
729 	if (wakeup_waiters)
730 		wake_up(&md->wait);
731 
732 	if (run_queue)
733 		blk_run_queue(q);
734 
735 	/*
736 	 * dm_put() must be at the end of this function. See the comment above
737 	 */
738 	dm_put(md);
739 }
740 
741 static void dm_unprep_request(struct request *rq)
742 {
743 	struct request *clone = rq->special;
744 	struct dm_rq_target_io *tio = clone->end_io_data;
745 
746 	rq->special = NULL;
747 	rq->cmd_flags &= ~REQ_DONTPREP;
748 
749 	blk_rq_unprep_clone(clone);
750 	free_rq_tio(tio);
751 }
752 
753 /*
754  * Requeue the original request of a clone.
755  */
756 void dm_requeue_unmapped_request(struct request *clone)
757 {
758 	struct dm_rq_target_io *tio = clone->end_io_data;
759 	struct mapped_device *md = tio->md;
760 	struct request *rq = tio->orig;
761 	struct request_queue *q = rq->q;
762 	unsigned long flags;
763 
764 	dm_unprep_request(rq);
765 
766 	spin_lock_irqsave(q->queue_lock, flags);
767 	if (elv_queue_empty(q))
768 		blk_plug_device(q);
769 	blk_requeue_request(q, rq);
770 	spin_unlock_irqrestore(q->queue_lock, flags);
771 
772 	rq_completed(md, 0);
773 }
774 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
775 
776 static void __stop_queue(struct request_queue *q)
777 {
778 	blk_stop_queue(q);
779 }
780 
781 static void stop_queue(struct request_queue *q)
782 {
783 	unsigned long flags;
784 
785 	spin_lock_irqsave(q->queue_lock, flags);
786 	__stop_queue(q);
787 	spin_unlock_irqrestore(q->queue_lock, flags);
788 }
789 
790 static void __start_queue(struct request_queue *q)
791 {
792 	if (blk_queue_stopped(q))
793 		blk_start_queue(q);
794 }
795 
796 static void start_queue(struct request_queue *q)
797 {
798 	unsigned long flags;
799 
800 	spin_lock_irqsave(q->queue_lock, flags);
801 	__start_queue(q);
802 	spin_unlock_irqrestore(q->queue_lock, flags);
803 }
804 
805 /*
806  * Complete the clone and the original request.
807  * Must be called without queue lock.
808  */
809 static void dm_end_request(struct request *clone, int error)
810 {
811 	struct dm_rq_target_io *tio = clone->end_io_data;
812 	struct mapped_device *md = tio->md;
813 	struct request *rq = tio->orig;
814 
815 	if (blk_pc_request(rq)) {
816 		rq->errors = clone->errors;
817 		rq->resid_len = clone->resid_len;
818 
819 		if (rq->sense)
820 			/*
821 			 * We are using the sense buffer of the original
822 			 * request.
823 			 * So setting the length of the sense data is enough.
824 			 */
825 			rq->sense_len = clone->sense_len;
826 	}
827 
828 	BUG_ON(clone->bio);
829 	free_rq_tio(tio);
830 
831 	blk_end_request_all(rq, error);
832 
833 	rq_completed(md, 1);
834 }
835 
836 /*
837  * Request completion handler for request-based dm
838  */
839 static void dm_softirq_done(struct request *rq)
840 {
841 	struct request *clone = rq->completion_data;
842 	struct dm_rq_target_io *tio = clone->end_io_data;
843 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
844 	int error = tio->error;
845 
846 	if (!(rq->cmd_flags & REQ_FAILED) && rq_end_io)
847 		error = rq_end_io(tio->ti, clone, error, &tio->info);
848 
849 	if (error <= 0)
850 		/* The target wants to complete the I/O */
851 		dm_end_request(clone, error);
852 	else if (error == DM_ENDIO_INCOMPLETE)
853 		/* The target will handle the I/O */
854 		return;
855 	else if (error == DM_ENDIO_REQUEUE)
856 		/* The target wants to requeue the I/O */
857 		dm_requeue_unmapped_request(clone);
858 	else {
859 		DMWARN("unimplemented target endio return value: %d", error);
860 		BUG();
861 	}
862 }
863 
864 /*
865  * Complete the clone and the original request with the error status
866  * through softirq context.
867  */
868 static void dm_complete_request(struct request *clone, int error)
869 {
870 	struct dm_rq_target_io *tio = clone->end_io_data;
871 	struct request *rq = tio->orig;
872 
873 	tio->error = error;
874 	rq->completion_data = clone;
875 	blk_complete_request(rq);
876 }
877 
878 /*
879  * Complete the not-mapped clone and the original request with the error status
880  * through softirq context.
881  * Target's rq_end_io() function isn't called.
882  * This may be used when the target's map_rq() function fails.
883  */
884 void dm_kill_unmapped_request(struct request *clone, int error)
885 {
886 	struct dm_rq_target_io *tio = clone->end_io_data;
887 	struct request *rq = tio->orig;
888 
889 	rq->cmd_flags |= REQ_FAILED;
890 	dm_complete_request(clone, error);
891 }
892 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
893 
894 /*
895  * Called with the queue lock held
896  */
897 static void end_clone_request(struct request *clone, int error)
898 {
899 	/*
900 	 * For just cleaning up the information of the queue in which
901 	 * the clone was dispatched.
902 	 * The clone is *NOT* freed actually here because it is alloced from
903 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
904 	 */
905 	__blk_put_request(clone->q, clone);
906 
907 	/*
908 	 * Actual request completion is done in a softirq context which doesn't
909 	 * hold the queue lock.  Otherwise, deadlock could occur because:
910 	 *     - another request may be submitted by the upper level driver
911 	 *       of the stacking during the completion
912 	 *     - the submission which requires queue lock may be done
913 	 *       against this queue
914 	 */
915 	dm_complete_request(clone, error);
916 }
917 
918 static sector_t max_io_len(struct mapped_device *md,
919 			   sector_t sector, struct dm_target *ti)
920 {
921 	sector_t offset = sector - ti->begin;
922 	sector_t len = ti->len - offset;
923 
924 	/*
925 	 * Does the target need to split even further ?
926 	 */
927 	if (ti->split_io) {
928 		sector_t boundary;
929 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
930 			   - offset;
931 		if (len > boundary)
932 			len = boundary;
933 	}
934 
935 	return len;
936 }
937 
938 static void __map_bio(struct dm_target *ti, struct bio *clone,
939 		      struct dm_target_io *tio)
940 {
941 	int r;
942 	sector_t sector;
943 	struct mapped_device *md;
944 
945 	clone->bi_end_io = clone_endio;
946 	clone->bi_private = tio;
947 
948 	/*
949 	 * Map the clone.  If r == 0 we don't need to do
950 	 * anything, the target has assumed ownership of
951 	 * this io.
952 	 */
953 	atomic_inc(&tio->io->io_count);
954 	sector = clone->bi_sector;
955 	r = ti->type->map(ti, clone, &tio->info);
956 	if (r == DM_MAPIO_REMAPPED) {
957 		/* the bio has been remapped so dispatch it */
958 
959 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
960 				    tio->io->bio->bi_bdev->bd_dev, sector);
961 
962 		generic_make_request(clone);
963 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
964 		/* error the io and bail out, or requeue it if needed */
965 		md = tio->io->md;
966 		dec_pending(tio->io, r);
967 		/*
968 		 * Store bio_set for cleanup.
969 		 */
970 		clone->bi_private = md->bs;
971 		bio_put(clone);
972 		free_tio(md, tio);
973 	} else if (r) {
974 		DMWARN("unimplemented target map return value: %d", r);
975 		BUG();
976 	}
977 }
978 
979 struct clone_info {
980 	struct mapped_device *md;
981 	struct dm_table *map;
982 	struct bio *bio;
983 	struct dm_io *io;
984 	sector_t sector;
985 	sector_t sector_count;
986 	unsigned short idx;
987 };
988 
989 static void dm_bio_destructor(struct bio *bio)
990 {
991 	struct bio_set *bs = bio->bi_private;
992 
993 	bio_free(bio, bs);
994 }
995 
996 /*
997  * Creates a little bio that is just does part of a bvec.
998  */
999 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1000 			      unsigned short idx, unsigned int offset,
1001 			      unsigned int len, struct bio_set *bs)
1002 {
1003 	struct bio *clone;
1004 	struct bio_vec *bv = bio->bi_io_vec + idx;
1005 
1006 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1007 	clone->bi_destructor = dm_bio_destructor;
1008 	*clone->bi_io_vec = *bv;
1009 
1010 	clone->bi_sector = sector;
1011 	clone->bi_bdev = bio->bi_bdev;
1012 	clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
1013 	clone->bi_vcnt = 1;
1014 	clone->bi_size = to_bytes(len);
1015 	clone->bi_io_vec->bv_offset = offset;
1016 	clone->bi_io_vec->bv_len = clone->bi_size;
1017 	clone->bi_flags |= 1 << BIO_CLONED;
1018 
1019 	if (bio_integrity(bio)) {
1020 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1021 		bio_integrity_trim(clone,
1022 				   bio_sector_offset(bio, idx, offset), len);
1023 	}
1024 
1025 	return clone;
1026 }
1027 
1028 /*
1029  * Creates a bio that consists of range of complete bvecs.
1030  */
1031 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1032 			     unsigned short idx, unsigned short bv_count,
1033 			     unsigned int len, struct bio_set *bs)
1034 {
1035 	struct bio *clone;
1036 
1037 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1038 	__bio_clone(clone, bio);
1039 	clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
1040 	clone->bi_destructor = dm_bio_destructor;
1041 	clone->bi_sector = sector;
1042 	clone->bi_idx = idx;
1043 	clone->bi_vcnt = idx + bv_count;
1044 	clone->bi_size = to_bytes(len);
1045 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1046 
1047 	if (bio_integrity(bio)) {
1048 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1049 
1050 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1051 			bio_integrity_trim(clone,
1052 					   bio_sector_offset(bio, idx, 0), len);
1053 	}
1054 
1055 	return clone;
1056 }
1057 
1058 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1059 				      struct dm_target *ti)
1060 {
1061 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1062 
1063 	tio->io = ci->io;
1064 	tio->ti = ti;
1065 	memset(&tio->info, 0, sizeof(tio->info));
1066 
1067 	return tio;
1068 }
1069 
1070 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
1071 			  unsigned flush_nr)
1072 {
1073 	struct dm_target_io *tio = alloc_tio(ci, ti);
1074 	struct bio *clone;
1075 
1076 	tio->info.flush_request = flush_nr;
1077 
1078 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1079 	__bio_clone(clone, ci->bio);
1080 	clone->bi_destructor = dm_bio_destructor;
1081 
1082 	__map_bio(ti, clone, tio);
1083 }
1084 
1085 static int __clone_and_map_empty_barrier(struct clone_info *ci)
1086 {
1087 	unsigned target_nr = 0, flush_nr;
1088 	struct dm_target *ti;
1089 
1090 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1091 		for (flush_nr = 0; flush_nr < ti->num_flush_requests;
1092 		     flush_nr++)
1093 			__flush_target(ci, ti, flush_nr);
1094 
1095 	ci->sector_count = 0;
1096 
1097 	return 0;
1098 }
1099 
1100 static int __clone_and_map(struct clone_info *ci)
1101 {
1102 	struct bio *clone, *bio = ci->bio;
1103 	struct dm_target *ti;
1104 	sector_t len = 0, max;
1105 	struct dm_target_io *tio;
1106 
1107 	if (unlikely(bio_empty_barrier(bio)))
1108 		return __clone_and_map_empty_barrier(ci);
1109 
1110 	ti = dm_table_find_target(ci->map, ci->sector);
1111 	if (!dm_target_is_valid(ti))
1112 		return -EIO;
1113 
1114 	max = max_io_len(ci->md, ci->sector, ti);
1115 
1116 	/*
1117 	 * Allocate a target io object.
1118 	 */
1119 	tio = alloc_tio(ci, ti);
1120 
1121 	if (ci->sector_count <= max) {
1122 		/*
1123 		 * Optimise for the simple case where we can do all of
1124 		 * the remaining io with a single clone.
1125 		 */
1126 		clone = clone_bio(bio, ci->sector, ci->idx,
1127 				  bio->bi_vcnt - ci->idx, ci->sector_count,
1128 				  ci->md->bs);
1129 		__map_bio(ti, clone, tio);
1130 		ci->sector_count = 0;
1131 
1132 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1133 		/*
1134 		 * There are some bvecs that don't span targets.
1135 		 * Do as many of these as possible.
1136 		 */
1137 		int i;
1138 		sector_t remaining = max;
1139 		sector_t bv_len;
1140 
1141 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1142 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1143 
1144 			if (bv_len > remaining)
1145 				break;
1146 
1147 			remaining -= bv_len;
1148 			len += bv_len;
1149 		}
1150 
1151 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1152 				  ci->md->bs);
1153 		__map_bio(ti, clone, tio);
1154 
1155 		ci->sector += len;
1156 		ci->sector_count -= len;
1157 		ci->idx = i;
1158 
1159 	} else {
1160 		/*
1161 		 * Handle a bvec that must be split between two or more targets.
1162 		 */
1163 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1164 		sector_t remaining = to_sector(bv->bv_len);
1165 		unsigned int offset = 0;
1166 
1167 		do {
1168 			if (offset) {
1169 				ti = dm_table_find_target(ci->map, ci->sector);
1170 				if (!dm_target_is_valid(ti))
1171 					return -EIO;
1172 
1173 				max = max_io_len(ci->md, ci->sector, ti);
1174 
1175 				tio = alloc_tio(ci, ti);
1176 			}
1177 
1178 			len = min(remaining, max);
1179 
1180 			clone = split_bvec(bio, ci->sector, ci->idx,
1181 					   bv->bv_offset + offset, len,
1182 					   ci->md->bs);
1183 
1184 			__map_bio(ti, clone, tio);
1185 
1186 			ci->sector += len;
1187 			ci->sector_count -= len;
1188 			offset += to_bytes(len);
1189 		} while (remaining -= len);
1190 
1191 		ci->idx++;
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 /*
1198  * Split the bio into several clones and submit it to targets.
1199  */
1200 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1201 {
1202 	struct clone_info ci;
1203 	int error = 0;
1204 
1205 	ci.map = dm_get_table(md);
1206 	if (unlikely(!ci.map)) {
1207 		if (!bio_barrier(bio))
1208 			bio_io_error(bio);
1209 		else
1210 			if (!md->barrier_error)
1211 				md->barrier_error = -EIO;
1212 		return;
1213 	}
1214 
1215 	ci.md = md;
1216 	ci.bio = bio;
1217 	ci.io = alloc_io(md);
1218 	ci.io->error = 0;
1219 	atomic_set(&ci.io->io_count, 1);
1220 	ci.io->bio = bio;
1221 	ci.io->md = md;
1222 	ci.sector = bio->bi_sector;
1223 	ci.sector_count = bio_sectors(bio);
1224 	if (unlikely(bio_empty_barrier(bio)))
1225 		ci.sector_count = 1;
1226 	ci.idx = bio->bi_idx;
1227 
1228 	start_io_acct(ci.io);
1229 	while (ci.sector_count && !error)
1230 		error = __clone_and_map(&ci);
1231 
1232 	/* drop the extra reference count */
1233 	dec_pending(ci.io, error);
1234 	dm_table_put(ci.map);
1235 }
1236 /*-----------------------------------------------------------------
1237  * CRUD END
1238  *---------------------------------------------------------------*/
1239 
1240 static int dm_merge_bvec(struct request_queue *q,
1241 			 struct bvec_merge_data *bvm,
1242 			 struct bio_vec *biovec)
1243 {
1244 	struct mapped_device *md = q->queuedata;
1245 	struct dm_table *map = dm_get_table(md);
1246 	struct dm_target *ti;
1247 	sector_t max_sectors;
1248 	int max_size = 0;
1249 
1250 	if (unlikely(!map))
1251 		goto out;
1252 
1253 	ti = dm_table_find_target(map, bvm->bi_sector);
1254 	if (!dm_target_is_valid(ti))
1255 		goto out_table;
1256 
1257 	/*
1258 	 * Find maximum amount of I/O that won't need splitting
1259 	 */
1260 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
1261 			  (sector_t) BIO_MAX_SECTORS);
1262 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1263 	if (max_size < 0)
1264 		max_size = 0;
1265 
1266 	/*
1267 	 * merge_bvec_fn() returns number of bytes
1268 	 * it can accept at this offset
1269 	 * max is precomputed maximal io size
1270 	 */
1271 	if (max_size && ti->type->merge)
1272 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1273 	/*
1274 	 * If the target doesn't support merge method and some of the devices
1275 	 * provided their merge_bvec method (we know this by looking at
1276 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1277 	 * entries.  So always set max_size to 0, and the code below allows
1278 	 * just one page.
1279 	 */
1280 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1281 
1282 		max_size = 0;
1283 
1284 out_table:
1285 	dm_table_put(map);
1286 
1287 out:
1288 	/*
1289 	 * Always allow an entire first page
1290 	 */
1291 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1292 		max_size = biovec->bv_len;
1293 
1294 	return max_size;
1295 }
1296 
1297 /*
1298  * The request function that just remaps the bio built up by
1299  * dm_merge_bvec.
1300  */
1301 static int _dm_request(struct request_queue *q, struct bio *bio)
1302 {
1303 	int rw = bio_data_dir(bio);
1304 	struct mapped_device *md = q->queuedata;
1305 	int cpu;
1306 
1307 	down_read(&md->io_lock);
1308 
1309 	cpu = part_stat_lock();
1310 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1311 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1312 	part_stat_unlock();
1313 
1314 	/*
1315 	 * If we're suspended or the thread is processing barriers
1316 	 * we have to queue this io for later.
1317 	 */
1318 	if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1319 	    unlikely(bio_barrier(bio))) {
1320 		up_read(&md->io_lock);
1321 
1322 		if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1323 		    bio_rw(bio) == READA) {
1324 			bio_io_error(bio);
1325 			return 0;
1326 		}
1327 
1328 		queue_io(md, bio);
1329 
1330 		return 0;
1331 	}
1332 
1333 	__split_and_process_bio(md, bio);
1334 	up_read(&md->io_lock);
1335 	return 0;
1336 }
1337 
1338 static int dm_make_request(struct request_queue *q, struct bio *bio)
1339 {
1340 	struct mapped_device *md = q->queuedata;
1341 
1342 	if (unlikely(bio_barrier(bio))) {
1343 		bio_endio(bio, -EOPNOTSUPP);
1344 		return 0;
1345 	}
1346 
1347 	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1348 }
1349 
1350 static int dm_request_based(struct mapped_device *md)
1351 {
1352 	return blk_queue_stackable(md->queue);
1353 }
1354 
1355 static int dm_request(struct request_queue *q, struct bio *bio)
1356 {
1357 	struct mapped_device *md = q->queuedata;
1358 
1359 	if (dm_request_based(md))
1360 		return dm_make_request(q, bio);
1361 
1362 	return _dm_request(q, bio);
1363 }
1364 
1365 void dm_dispatch_request(struct request *rq)
1366 {
1367 	int r;
1368 
1369 	if (blk_queue_io_stat(rq->q))
1370 		rq->cmd_flags |= REQ_IO_STAT;
1371 
1372 	rq->start_time = jiffies;
1373 	r = blk_insert_cloned_request(rq->q, rq);
1374 	if (r)
1375 		dm_complete_request(rq, r);
1376 }
1377 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1378 
1379 static void dm_rq_bio_destructor(struct bio *bio)
1380 {
1381 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1382 	struct mapped_device *md = info->tio->md;
1383 
1384 	free_bio_info(info);
1385 	bio_free(bio, md->bs);
1386 }
1387 
1388 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1389 				 void *data)
1390 {
1391 	struct dm_rq_target_io *tio = data;
1392 	struct mapped_device *md = tio->md;
1393 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1394 
1395 	if (!info)
1396 		return -ENOMEM;
1397 
1398 	info->orig = bio_orig;
1399 	info->tio = tio;
1400 	bio->bi_end_io = end_clone_bio;
1401 	bio->bi_private = info;
1402 	bio->bi_destructor = dm_rq_bio_destructor;
1403 
1404 	return 0;
1405 }
1406 
1407 static int setup_clone(struct request *clone, struct request *rq,
1408 		       struct dm_rq_target_io *tio)
1409 {
1410 	int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1411 				  dm_rq_bio_constructor, tio);
1412 
1413 	if (r)
1414 		return r;
1415 
1416 	clone->cmd = rq->cmd;
1417 	clone->cmd_len = rq->cmd_len;
1418 	clone->sense = rq->sense;
1419 	clone->buffer = rq->buffer;
1420 	clone->end_io = end_clone_request;
1421 	clone->end_io_data = tio;
1422 
1423 	return 0;
1424 }
1425 
1426 static int dm_rq_flush_suspending(struct mapped_device *md)
1427 {
1428 	return !md->suspend_rq.special;
1429 }
1430 
1431 /*
1432  * Called with the queue lock held.
1433  */
1434 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1435 {
1436 	struct mapped_device *md = q->queuedata;
1437 	struct dm_rq_target_io *tio;
1438 	struct request *clone;
1439 
1440 	if (unlikely(rq == &md->suspend_rq)) {
1441 		if (dm_rq_flush_suspending(md))
1442 			return BLKPREP_OK;
1443 		else
1444 			/* The flush suspend was interrupted */
1445 			return BLKPREP_KILL;
1446 	}
1447 
1448 	if (unlikely(rq->special)) {
1449 		DMWARN("Already has something in rq->special.");
1450 		return BLKPREP_KILL;
1451 	}
1452 
1453 	tio = alloc_rq_tio(md); /* Only one for each original request */
1454 	if (!tio)
1455 		/* -ENOMEM */
1456 		return BLKPREP_DEFER;
1457 
1458 	tio->md = md;
1459 	tio->ti = NULL;
1460 	tio->orig = rq;
1461 	tio->error = 0;
1462 	memset(&tio->info, 0, sizeof(tio->info));
1463 
1464 	clone = &tio->clone;
1465 	if (setup_clone(clone, rq, tio)) {
1466 		/* -ENOMEM */
1467 		free_rq_tio(tio);
1468 		return BLKPREP_DEFER;
1469 	}
1470 
1471 	rq->special = clone;
1472 	rq->cmd_flags |= REQ_DONTPREP;
1473 
1474 	return BLKPREP_OK;
1475 }
1476 
1477 static void map_request(struct dm_target *ti, struct request *rq,
1478 			struct mapped_device *md)
1479 {
1480 	int r;
1481 	struct request *clone = rq->special;
1482 	struct dm_rq_target_io *tio = clone->end_io_data;
1483 
1484 	/*
1485 	 * Hold the md reference here for the in-flight I/O.
1486 	 * We can't rely on the reference count by device opener,
1487 	 * because the device may be closed during the request completion
1488 	 * when all bios are completed.
1489 	 * See the comment in rq_completed() too.
1490 	 */
1491 	dm_get(md);
1492 
1493 	tio->ti = ti;
1494 	r = ti->type->map_rq(ti, clone, &tio->info);
1495 	switch (r) {
1496 	case DM_MAPIO_SUBMITTED:
1497 		/* The target has taken the I/O to submit by itself later */
1498 		break;
1499 	case DM_MAPIO_REMAPPED:
1500 		/* The target has remapped the I/O so dispatch it */
1501 		dm_dispatch_request(clone);
1502 		break;
1503 	case DM_MAPIO_REQUEUE:
1504 		/* The target wants to requeue the I/O */
1505 		dm_requeue_unmapped_request(clone);
1506 		break;
1507 	default:
1508 		if (r > 0) {
1509 			DMWARN("unimplemented target map return value: %d", r);
1510 			BUG();
1511 		}
1512 
1513 		/* The target wants to complete the I/O */
1514 		dm_kill_unmapped_request(clone, r);
1515 		break;
1516 	}
1517 }
1518 
1519 /*
1520  * q->request_fn for request-based dm.
1521  * Called with the queue lock held.
1522  */
1523 static void dm_request_fn(struct request_queue *q)
1524 {
1525 	struct mapped_device *md = q->queuedata;
1526 	struct dm_table *map = dm_get_table(md);
1527 	struct dm_target *ti;
1528 	struct request *rq;
1529 
1530 	/*
1531 	 * For noflush suspend, check blk_queue_stopped() to immediately
1532 	 * quit I/O dispatching.
1533 	 */
1534 	while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1535 		rq = blk_peek_request(q);
1536 		if (!rq)
1537 			goto plug_and_out;
1538 
1539 		if (unlikely(rq == &md->suspend_rq)) { /* Flush suspend maker */
1540 			if (queue_in_flight(q))
1541 				/* Not quiet yet.  Wait more */
1542 				goto plug_and_out;
1543 
1544 			/* This device should be quiet now */
1545 			__stop_queue(q);
1546 			blk_start_request(rq);
1547 			__blk_end_request_all(rq, 0);
1548 			wake_up(&md->wait);
1549 			goto out;
1550 		}
1551 
1552 		ti = dm_table_find_target(map, blk_rq_pos(rq));
1553 		if (ti->type->busy && ti->type->busy(ti))
1554 			goto plug_and_out;
1555 
1556 		blk_start_request(rq);
1557 		spin_unlock(q->queue_lock);
1558 		map_request(ti, rq, md);
1559 		spin_lock_irq(q->queue_lock);
1560 	}
1561 
1562 	goto out;
1563 
1564 plug_and_out:
1565 	if (!elv_queue_empty(q))
1566 		/* Some requests still remain, retry later */
1567 		blk_plug_device(q);
1568 
1569 out:
1570 	dm_table_put(map);
1571 
1572 	return;
1573 }
1574 
1575 int dm_underlying_device_busy(struct request_queue *q)
1576 {
1577 	return blk_lld_busy(q);
1578 }
1579 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1580 
1581 static int dm_lld_busy(struct request_queue *q)
1582 {
1583 	int r;
1584 	struct mapped_device *md = q->queuedata;
1585 	struct dm_table *map = dm_get_table(md);
1586 
1587 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1588 		r = 1;
1589 	else
1590 		r = dm_table_any_busy_target(map);
1591 
1592 	dm_table_put(map);
1593 
1594 	return r;
1595 }
1596 
1597 static void dm_unplug_all(struct request_queue *q)
1598 {
1599 	struct mapped_device *md = q->queuedata;
1600 	struct dm_table *map = dm_get_table(md);
1601 
1602 	if (map) {
1603 		if (dm_request_based(md))
1604 			generic_unplug_device(q);
1605 
1606 		dm_table_unplug_all(map);
1607 		dm_table_put(map);
1608 	}
1609 }
1610 
1611 static int dm_any_congested(void *congested_data, int bdi_bits)
1612 {
1613 	int r = bdi_bits;
1614 	struct mapped_device *md = congested_data;
1615 	struct dm_table *map;
1616 
1617 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1618 		map = dm_get_table(md);
1619 		if (map) {
1620 			/*
1621 			 * Request-based dm cares about only own queue for
1622 			 * the query about congestion status of request_queue
1623 			 */
1624 			if (dm_request_based(md))
1625 				r = md->queue->backing_dev_info.state &
1626 				    bdi_bits;
1627 			else
1628 				r = dm_table_any_congested(map, bdi_bits);
1629 
1630 			dm_table_put(map);
1631 		}
1632 	}
1633 
1634 	return r;
1635 }
1636 
1637 /*-----------------------------------------------------------------
1638  * An IDR is used to keep track of allocated minor numbers.
1639  *---------------------------------------------------------------*/
1640 static DEFINE_IDR(_minor_idr);
1641 
1642 static void free_minor(int minor)
1643 {
1644 	spin_lock(&_minor_lock);
1645 	idr_remove(&_minor_idr, minor);
1646 	spin_unlock(&_minor_lock);
1647 }
1648 
1649 /*
1650  * See if the device with a specific minor # is free.
1651  */
1652 static int specific_minor(int minor)
1653 {
1654 	int r, m;
1655 
1656 	if (minor >= (1 << MINORBITS))
1657 		return -EINVAL;
1658 
1659 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1660 	if (!r)
1661 		return -ENOMEM;
1662 
1663 	spin_lock(&_minor_lock);
1664 
1665 	if (idr_find(&_minor_idr, minor)) {
1666 		r = -EBUSY;
1667 		goto out;
1668 	}
1669 
1670 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1671 	if (r)
1672 		goto out;
1673 
1674 	if (m != minor) {
1675 		idr_remove(&_minor_idr, m);
1676 		r = -EBUSY;
1677 		goto out;
1678 	}
1679 
1680 out:
1681 	spin_unlock(&_minor_lock);
1682 	return r;
1683 }
1684 
1685 static int next_free_minor(int *minor)
1686 {
1687 	int r, m;
1688 
1689 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1690 	if (!r)
1691 		return -ENOMEM;
1692 
1693 	spin_lock(&_minor_lock);
1694 
1695 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1696 	if (r)
1697 		goto out;
1698 
1699 	if (m >= (1 << MINORBITS)) {
1700 		idr_remove(&_minor_idr, m);
1701 		r = -ENOSPC;
1702 		goto out;
1703 	}
1704 
1705 	*minor = m;
1706 
1707 out:
1708 	spin_unlock(&_minor_lock);
1709 	return r;
1710 }
1711 
1712 static struct block_device_operations dm_blk_dops;
1713 
1714 static void dm_wq_work(struct work_struct *work);
1715 
1716 /*
1717  * Allocate and initialise a blank device with a given minor.
1718  */
1719 static struct mapped_device *alloc_dev(int minor)
1720 {
1721 	int r;
1722 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1723 	void *old_md;
1724 
1725 	if (!md) {
1726 		DMWARN("unable to allocate device, out of memory.");
1727 		return NULL;
1728 	}
1729 
1730 	if (!try_module_get(THIS_MODULE))
1731 		goto bad_module_get;
1732 
1733 	/* get a minor number for the dev */
1734 	if (minor == DM_ANY_MINOR)
1735 		r = next_free_minor(&minor);
1736 	else
1737 		r = specific_minor(minor);
1738 	if (r < 0)
1739 		goto bad_minor;
1740 
1741 	init_rwsem(&md->io_lock);
1742 	mutex_init(&md->suspend_lock);
1743 	spin_lock_init(&md->deferred_lock);
1744 	rwlock_init(&md->map_lock);
1745 	atomic_set(&md->holders, 1);
1746 	atomic_set(&md->open_count, 0);
1747 	atomic_set(&md->event_nr, 0);
1748 	atomic_set(&md->uevent_seq, 0);
1749 	INIT_LIST_HEAD(&md->uevent_list);
1750 	spin_lock_init(&md->uevent_lock);
1751 
1752 	md->queue = blk_init_queue(dm_request_fn, NULL);
1753 	if (!md->queue)
1754 		goto bad_queue;
1755 
1756 	/*
1757 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1758 	 * devices.  The type of this dm device has not been decided yet,
1759 	 * although we initialized the queue using blk_init_queue().
1760 	 * The type is decided at the first table loading time.
1761 	 * To prevent problematic device stacking, clear the queue flag
1762 	 * for request stacking support until then.
1763 	 *
1764 	 * This queue is new, so no concurrency on the queue_flags.
1765 	 */
1766 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1767 	md->saved_make_request_fn = md->queue->make_request_fn;
1768 	md->queue->queuedata = md;
1769 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1770 	md->queue->backing_dev_info.congested_data = md;
1771 	blk_queue_make_request(md->queue, dm_request);
1772 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1773 	md->queue->unplug_fn = dm_unplug_all;
1774 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1775 	blk_queue_softirq_done(md->queue, dm_softirq_done);
1776 	blk_queue_prep_rq(md->queue, dm_prep_fn);
1777 	blk_queue_lld_busy(md->queue, dm_lld_busy);
1778 
1779 	md->disk = alloc_disk(1);
1780 	if (!md->disk)
1781 		goto bad_disk;
1782 
1783 	atomic_set(&md->pending, 0);
1784 	init_waitqueue_head(&md->wait);
1785 	INIT_WORK(&md->work, dm_wq_work);
1786 	init_waitqueue_head(&md->eventq);
1787 
1788 	md->disk->major = _major;
1789 	md->disk->first_minor = minor;
1790 	md->disk->fops = &dm_blk_dops;
1791 	md->disk->queue = md->queue;
1792 	md->disk->private_data = md;
1793 	sprintf(md->disk->disk_name, "dm-%d", minor);
1794 	add_disk(md->disk);
1795 	format_dev_t(md->name, MKDEV(_major, minor));
1796 
1797 	md->wq = create_singlethread_workqueue("kdmflush");
1798 	if (!md->wq)
1799 		goto bad_thread;
1800 
1801 	md->bdev = bdget_disk(md->disk, 0);
1802 	if (!md->bdev)
1803 		goto bad_bdev;
1804 
1805 	/* Populate the mapping, nobody knows we exist yet */
1806 	spin_lock(&_minor_lock);
1807 	old_md = idr_replace(&_minor_idr, md, minor);
1808 	spin_unlock(&_minor_lock);
1809 
1810 	BUG_ON(old_md != MINOR_ALLOCED);
1811 
1812 	return md;
1813 
1814 bad_bdev:
1815 	destroy_workqueue(md->wq);
1816 bad_thread:
1817 	put_disk(md->disk);
1818 bad_disk:
1819 	blk_cleanup_queue(md->queue);
1820 bad_queue:
1821 	free_minor(minor);
1822 bad_minor:
1823 	module_put(THIS_MODULE);
1824 bad_module_get:
1825 	kfree(md);
1826 	return NULL;
1827 }
1828 
1829 static void unlock_fs(struct mapped_device *md);
1830 
1831 static void free_dev(struct mapped_device *md)
1832 {
1833 	int minor = MINOR(disk_devt(md->disk));
1834 
1835 	unlock_fs(md);
1836 	bdput(md->bdev);
1837 	destroy_workqueue(md->wq);
1838 	if (md->tio_pool)
1839 		mempool_destroy(md->tio_pool);
1840 	if (md->io_pool)
1841 		mempool_destroy(md->io_pool);
1842 	if (md->bs)
1843 		bioset_free(md->bs);
1844 	blk_integrity_unregister(md->disk);
1845 	del_gendisk(md->disk);
1846 	free_minor(minor);
1847 
1848 	spin_lock(&_minor_lock);
1849 	md->disk->private_data = NULL;
1850 	spin_unlock(&_minor_lock);
1851 
1852 	put_disk(md->disk);
1853 	blk_cleanup_queue(md->queue);
1854 	module_put(THIS_MODULE);
1855 	kfree(md);
1856 }
1857 
1858 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1859 {
1860 	struct dm_md_mempools *p;
1861 
1862 	if (md->io_pool && md->tio_pool && md->bs)
1863 		/* the md already has necessary mempools */
1864 		goto out;
1865 
1866 	p = dm_table_get_md_mempools(t);
1867 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1868 
1869 	md->io_pool = p->io_pool;
1870 	p->io_pool = NULL;
1871 	md->tio_pool = p->tio_pool;
1872 	p->tio_pool = NULL;
1873 	md->bs = p->bs;
1874 	p->bs = NULL;
1875 
1876 out:
1877 	/* mempool bind completed, now no need any mempools in the table */
1878 	dm_table_free_md_mempools(t);
1879 }
1880 
1881 /*
1882  * Bind a table to the device.
1883  */
1884 static void event_callback(void *context)
1885 {
1886 	unsigned long flags;
1887 	LIST_HEAD(uevents);
1888 	struct mapped_device *md = (struct mapped_device *) context;
1889 
1890 	spin_lock_irqsave(&md->uevent_lock, flags);
1891 	list_splice_init(&md->uevent_list, &uevents);
1892 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1893 
1894 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1895 
1896 	atomic_inc(&md->event_nr);
1897 	wake_up(&md->eventq);
1898 }
1899 
1900 static void __set_size(struct mapped_device *md, sector_t size)
1901 {
1902 	set_capacity(md->disk, size);
1903 
1904 	mutex_lock(&md->bdev->bd_inode->i_mutex);
1905 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1906 	mutex_unlock(&md->bdev->bd_inode->i_mutex);
1907 }
1908 
1909 static int __bind(struct mapped_device *md, struct dm_table *t,
1910 		  struct queue_limits *limits)
1911 {
1912 	struct request_queue *q = md->queue;
1913 	sector_t size;
1914 	unsigned long flags;
1915 
1916 	size = dm_table_get_size(t);
1917 
1918 	/*
1919 	 * Wipe any geometry if the size of the table changed.
1920 	 */
1921 	if (size != get_capacity(md->disk))
1922 		memset(&md->geometry, 0, sizeof(md->geometry));
1923 
1924 	__set_size(md, size);
1925 
1926 	if (!size) {
1927 		dm_table_destroy(t);
1928 		return 0;
1929 	}
1930 
1931 	dm_table_event_callback(t, event_callback, md);
1932 
1933 	/*
1934 	 * The queue hasn't been stopped yet, if the old table type wasn't
1935 	 * for request-based during suspension.  So stop it to prevent
1936 	 * I/O mapping before resume.
1937 	 * This must be done before setting the queue restrictions,
1938 	 * because request-based dm may be run just after the setting.
1939 	 */
1940 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
1941 		stop_queue(q);
1942 
1943 	__bind_mempools(md, t);
1944 
1945 	write_lock_irqsave(&md->map_lock, flags);
1946 	md->map = t;
1947 	dm_table_set_restrictions(t, q, limits);
1948 	write_unlock_irqrestore(&md->map_lock, flags);
1949 
1950 	return 0;
1951 }
1952 
1953 static void __unbind(struct mapped_device *md)
1954 {
1955 	struct dm_table *map = md->map;
1956 	unsigned long flags;
1957 
1958 	if (!map)
1959 		return;
1960 
1961 	dm_table_event_callback(map, NULL, NULL);
1962 	write_lock_irqsave(&md->map_lock, flags);
1963 	md->map = NULL;
1964 	write_unlock_irqrestore(&md->map_lock, flags);
1965 	dm_table_destroy(map);
1966 }
1967 
1968 /*
1969  * Constructor for a new device.
1970  */
1971 int dm_create(int minor, struct mapped_device **result)
1972 {
1973 	struct mapped_device *md;
1974 
1975 	md = alloc_dev(minor);
1976 	if (!md)
1977 		return -ENXIO;
1978 
1979 	dm_sysfs_init(md);
1980 
1981 	*result = md;
1982 	return 0;
1983 }
1984 
1985 static struct mapped_device *dm_find_md(dev_t dev)
1986 {
1987 	struct mapped_device *md;
1988 	unsigned minor = MINOR(dev);
1989 
1990 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1991 		return NULL;
1992 
1993 	spin_lock(&_minor_lock);
1994 
1995 	md = idr_find(&_minor_idr, minor);
1996 	if (md && (md == MINOR_ALLOCED ||
1997 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1998 		   test_bit(DMF_FREEING, &md->flags))) {
1999 		md = NULL;
2000 		goto out;
2001 	}
2002 
2003 out:
2004 	spin_unlock(&_minor_lock);
2005 
2006 	return md;
2007 }
2008 
2009 struct mapped_device *dm_get_md(dev_t dev)
2010 {
2011 	struct mapped_device *md = dm_find_md(dev);
2012 
2013 	if (md)
2014 		dm_get(md);
2015 
2016 	return md;
2017 }
2018 
2019 void *dm_get_mdptr(struct mapped_device *md)
2020 {
2021 	return md->interface_ptr;
2022 }
2023 
2024 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2025 {
2026 	md->interface_ptr = ptr;
2027 }
2028 
2029 void dm_get(struct mapped_device *md)
2030 {
2031 	atomic_inc(&md->holders);
2032 }
2033 
2034 const char *dm_device_name(struct mapped_device *md)
2035 {
2036 	return md->name;
2037 }
2038 EXPORT_SYMBOL_GPL(dm_device_name);
2039 
2040 void dm_put(struct mapped_device *md)
2041 {
2042 	struct dm_table *map;
2043 
2044 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2045 
2046 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
2047 		map = dm_get_table(md);
2048 		idr_replace(&_minor_idr, MINOR_ALLOCED,
2049 			    MINOR(disk_devt(dm_disk(md))));
2050 		set_bit(DMF_FREEING, &md->flags);
2051 		spin_unlock(&_minor_lock);
2052 		if (!dm_suspended(md)) {
2053 			dm_table_presuspend_targets(map);
2054 			dm_table_postsuspend_targets(map);
2055 		}
2056 		dm_sysfs_exit(md);
2057 		dm_table_put(map);
2058 		__unbind(md);
2059 		free_dev(md);
2060 	}
2061 }
2062 EXPORT_SYMBOL_GPL(dm_put);
2063 
2064 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2065 {
2066 	int r = 0;
2067 	DECLARE_WAITQUEUE(wait, current);
2068 	struct request_queue *q = md->queue;
2069 	unsigned long flags;
2070 
2071 	dm_unplug_all(md->queue);
2072 
2073 	add_wait_queue(&md->wait, &wait);
2074 
2075 	while (1) {
2076 		set_current_state(interruptible);
2077 
2078 		smp_mb();
2079 		if (dm_request_based(md)) {
2080 			spin_lock_irqsave(q->queue_lock, flags);
2081 			if (!queue_in_flight(q) && blk_queue_stopped(q)) {
2082 				spin_unlock_irqrestore(q->queue_lock, flags);
2083 				break;
2084 			}
2085 			spin_unlock_irqrestore(q->queue_lock, flags);
2086 		} else if (!atomic_read(&md->pending))
2087 			break;
2088 
2089 		if (interruptible == TASK_INTERRUPTIBLE &&
2090 		    signal_pending(current)) {
2091 			r = -EINTR;
2092 			break;
2093 		}
2094 
2095 		io_schedule();
2096 	}
2097 	set_current_state(TASK_RUNNING);
2098 
2099 	remove_wait_queue(&md->wait, &wait);
2100 
2101 	return r;
2102 }
2103 
2104 static void dm_flush(struct mapped_device *md)
2105 {
2106 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2107 
2108 	bio_init(&md->barrier_bio);
2109 	md->barrier_bio.bi_bdev = md->bdev;
2110 	md->barrier_bio.bi_rw = WRITE_BARRIER;
2111 	__split_and_process_bio(md, &md->barrier_bio);
2112 
2113 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2114 }
2115 
2116 static void process_barrier(struct mapped_device *md, struct bio *bio)
2117 {
2118 	md->barrier_error = 0;
2119 
2120 	dm_flush(md);
2121 
2122 	if (!bio_empty_barrier(bio)) {
2123 		__split_and_process_bio(md, bio);
2124 		dm_flush(md);
2125 	}
2126 
2127 	if (md->barrier_error != DM_ENDIO_REQUEUE)
2128 		bio_endio(bio, md->barrier_error);
2129 	else {
2130 		spin_lock_irq(&md->deferred_lock);
2131 		bio_list_add_head(&md->deferred, bio);
2132 		spin_unlock_irq(&md->deferred_lock);
2133 	}
2134 }
2135 
2136 /*
2137  * Process the deferred bios
2138  */
2139 static void dm_wq_work(struct work_struct *work)
2140 {
2141 	struct mapped_device *md = container_of(work, struct mapped_device,
2142 						work);
2143 	struct bio *c;
2144 
2145 	down_write(&md->io_lock);
2146 
2147 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2148 		spin_lock_irq(&md->deferred_lock);
2149 		c = bio_list_pop(&md->deferred);
2150 		spin_unlock_irq(&md->deferred_lock);
2151 
2152 		if (!c) {
2153 			clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2154 			break;
2155 		}
2156 
2157 		up_write(&md->io_lock);
2158 
2159 		if (dm_request_based(md))
2160 			generic_make_request(c);
2161 		else {
2162 			if (bio_barrier(c))
2163 				process_barrier(md, c);
2164 			else
2165 				__split_and_process_bio(md, c);
2166 		}
2167 
2168 		down_write(&md->io_lock);
2169 	}
2170 
2171 	up_write(&md->io_lock);
2172 }
2173 
2174 static void dm_queue_flush(struct mapped_device *md)
2175 {
2176 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2177 	smp_mb__after_clear_bit();
2178 	queue_work(md->wq, &md->work);
2179 }
2180 
2181 /*
2182  * Swap in a new table (destroying old one).
2183  */
2184 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
2185 {
2186 	struct queue_limits limits;
2187 	int r = -EINVAL;
2188 
2189 	mutex_lock(&md->suspend_lock);
2190 
2191 	/* device must be suspended */
2192 	if (!dm_suspended(md))
2193 		goto out;
2194 
2195 	r = dm_calculate_queue_limits(table, &limits);
2196 	if (r)
2197 		goto out;
2198 
2199 	/* cannot change the device type, once a table is bound */
2200 	if (md->map &&
2201 	    (dm_table_get_type(md->map) != dm_table_get_type(table))) {
2202 		DMWARN("can't change the device type after a table is bound");
2203 		goto out;
2204 	}
2205 
2206 	/*
2207 	 * It is enought that blk_queue_ordered() is called only once when
2208 	 * the first bio-based table is bound.
2209 	 *
2210 	 * This setting should be moved to alloc_dev() when request-based dm
2211 	 * supports barrier.
2212 	 */
2213 	if (!md->map && dm_table_bio_based(table))
2214 		blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
2215 
2216 	__unbind(md);
2217 	r = __bind(md, table, &limits);
2218 
2219 out:
2220 	mutex_unlock(&md->suspend_lock);
2221 	return r;
2222 }
2223 
2224 static void dm_rq_invalidate_suspend_marker(struct mapped_device *md)
2225 {
2226 	md->suspend_rq.special = (void *)0x1;
2227 }
2228 
2229 static void dm_rq_abort_suspend(struct mapped_device *md, int noflush)
2230 {
2231 	struct request_queue *q = md->queue;
2232 	unsigned long flags;
2233 
2234 	spin_lock_irqsave(q->queue_lock, flags);
2235 	if (!noflush)
2236 		dm_rq_invalidate_suspend_marker(md);
2237 	__start_queue(q);
2238 	spin_unlock_irqrestore(q->queue_lock, flags);
2239 }
2240 
2241 static void dm_rq_start_suspend(struct mapped_device *md, int noflush)
2242 {
2243 	struct request *rq = &md->suspend_rq;
2244 	struct request_queue *q = md->queue;
2245 
2246 	if (noflush)
2247 		stop_queue(q);
2248 	else {
2249 		blk_rq_init(q, rq);
2250 		blk_insert_request(q, rq, 0, NULL);
2251 	}
2252 }
2253 
2254 static int dm_rq_suspend_available(struct mapped_device *md, int noflush)
2255 {
2256 	int r = 1;
2257 	struct request *rq = &md->suspend_rq;
2258 	struct request_queue *q = md->queue;
2259 	unsigned long flags;
2260 
2261 	if (noflush)
2262 		return r;
2263 
2264 	/* The marker must be protected by queue lock if it is in use */
2265 	spin_lock_irqsave(q->queue_lock, flags);
2266 	if (unlikely(rq->ref_count)) {
2267 		/*
2268 		 * This can happen, when the previous flush suspend was
2269 		 * interrupted, the marker is still in the queue and
2270 		 * this flush suspend has been invoked, because we don't
2271 		 * remove the marker at the time of suspend interruption.
2272 		 * We have only one marker per mapped_device, so we can't
2273 		 * start another flush suspend while it is in use.
2274 		 */
2275 		BUG_ON(!rq->special); /* The marker should be invalidated */
2276 		DMWARN("Invalidating the previous flush suspend is still in"
2277 		       " progress.  Please retry later.");
2278 		r = 0;
2279 	}
2280 	spin_unlock_irqrestore(q->queue_lock, flags);
2281 
2282 	return r;
2283 }
2284 
2285 /*
2286  * Functions to lock and unlock any filesystem running on the
2287  * device.
2288  */
2289 static int lock_fs(struct mapped_device *md)
2290 {
2291 	int r;
2292 
2293 	WARN_ON(md->frozen_sb);
2294 
2295 	md->frozen_sb = freeze_bdev(md->bdev);
2296 	if (IS_ERR(md->frozen_sb)) {
2297 		r = PTR_ERR(md->frozen_sb);
2298 		md->frozen_sb = NULL;
2299 		return r;
2300 	}
2301 
2302 	set_bit(DMF_FROZEN, &md->flags);
2303 
2304 	return 0;
2305 }
2306 
2307 static void unlock_fs(struct mapped_device *md)
2308 {
2309 	if (!test_bit(DMF_FROZEN, &md->flags))
2310 		return;
2311 
2312 	thaw_bdev(md->bdev, md->frozen_sb);
2313 	md->frozen_sb = NULL;
2314 	clear_bit(DMF_FROZEN, &md->flags);
2315 }
2316 
2317 /*
2318  * We need to be able to change a mapping table under a mounted
2319  * filesystem.  For example we might want to move some data in
2320  * the background.  Before the table can be swapped with
2321  * dm_bind_table, dm_suspend must be called to flush any in
2322  * flight bios and ensure that any further io gets deferred.
2323  */
2324 /*
2325  * Suspend mechanism in request-based dm.
2326  *
2327  * After the suspend starts, further incoming requests are kept in
2328  * the request_queue and deferred.
2329  * Remaining requests in the request_queue at the start of suspend are flushed
2330  * if it is flush suspend.
2331  * The suspend completes when the following conditions have been satisfied,
2332  * so wait for it:
2333  *    1. q->in_flight is 0 (which means no in_flight request)
2334  *    2. queue has been stopped (which means no request dispatching)
2335  *
2336  *
2337  * Noflush suspend
2338  * ---------------
2339  * Noflush suspend doesn't need to dispatch remaining requests.
2340  * So stop the queue immediately.  Then, wait for all in_flight requests
2341  * to be completed or requeued.
2342  *
2343  * To abort noflush suspend, start the queue.
2344  *
2345  *
2346  * Flush suspend
2347  * -------------
2348  * Flush suspend needs to dispatch remaining requests.  So stop the queue
2349  * after the remaining requests are completed. (Requeued request must be also
2350  * re-dispatched and completed.  Until then, we can't stop the queue.)
2351  *
2352  * During flushing the remaining requests, further incoming requests are also
2353  * inserted to the same queue.  To distinguish which requests are to be
2354  * flushed, we insert a marker request to the queue at the time of starting
2355  * flush suspend, like a barrier.
2356  * The dispatching is blocked when the marker is found on the top of the queue.
2357  * And the queue is stopped when all in_flight requests are completed, since
2358  * that means the remaining requests are completely flushed.
2359  * Then, the marker is removed from the queue.
2360  *
2361  * To abort flush suspend, we also need to take care of the marker, not only
2362  * starting the queue.
2363  * We don't remove the marker forcibly from the queue since it's against
2364  * the block-layer manner.  Instead, we put a invalidated mark on the marker.
2365  * When the invalidated marker is found on the top of the queue, it is
2366  * immediately removed from the queue, so it doesn't block dispatching.
2367  * Because we have only one marker per mapped_device, we can't start another
2368  * flush suspend until the invalidated marker is removed from the queue.
2369  * So fail and return with -EBUSY in such a case.
2370  */
2371 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2372 {
2373 	struct dm_table *map = NULL;
2374 	int r = 0;
2375 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2376 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2377 
2378 	mutex_lock(&md->suspend_lock);
2379 
2380 	if (dm_suspended(md)) {
2381 		r = -EINVAL;
2382 		goto out_unlock;
2383 	}
2384 
2385 	if (dm_request_based(md) && !dm_rq_suspend_available(md, noflush)) {
2386 		r = -EBUSY;
2387 		goto out_unlock;
2388 	}
2389 
2390 	map = dm_get_table(md);
2391 
2392 	/*
2393 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2394 	 * This flag is cleared before dm_suspend returns.
2395 	 */
2396 	if (noflush)
2397 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2398 
2399 	/* This does not get reverted if there's an error later. */
2400 	dm_table_presuspend_targets(map);
2401 
2402 	/*
2403 	 * Flush I/O to the device. noflush supersedes do_lockfs,
2404 	 * because lock_fs() needs to flush I/Os.
2405 	 */
2406 	if (!noflush && do_lockfs) {
2407 		r = lock_fs(md);
2408 		if (r)
2409 			goto out;
2410 	}
2411 
2412 	/*
2413 	 * Here we must make sure that no processes are submitting requests
2414 	 * to target drivers i.e. no one may be executing
2415 	 * __split_and_process_bio. This is called from dm_request and
2416 	 * dm_wq_work.
2417 	 *
2418 	 * To get all processes out of __split_and_process_bio in dm_request,
2419 	 * we take the write lock. To prevent any process from reentering
2420 	 * __split_and_process_bio from dm_request, we set
2421 	 * DMF_QUEUE_IO_TO_THREAD.
2422 	 *
2423 	 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2424 	 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2425 	 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2426 	 * further calls to __split_and_process_bio from dm_wq_work.
2427 	 */
2428 	down_write(&md->io_lock);
2429 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2430 	set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2431 	up_write(&md->io_lock);
2432 
2433 	flush_workqueue(md->wq);
2434 
2435 	if (dm_request_based(md))
2436 		dm_rq_start_suspend(md, noflush);
2437 
2438 	/*
2439 	 * At this point no more requests are entering target request routines.
2440 	 * We call dm_wait_for_completion to wait for all existing requests
2441 	 * to finish.
2442 	 */
2443 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2444 
2445 	down_write(&md->io_lock);
2446 	if (noflush)
2447 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2448 	up_write(&md->io_lock);
2449 
2450 	/* were we interrupted ? */
2451 	if (r < 0) {
2452 		dm_queue_flush(md);
2453 
2454 		if (dm_request_based(md))
2455 			dm_rq_abort_suspend(md, noflush);
2456 
2457 		unlock_fs(md);
2458 		goto out; /* pushback list is already flushed, so skip flush */
2459 	}
2460 
2461 	/*
2462 	 * If dm_wait_for_completion returned 0, the device is completely
2463 	 * quiescent now. There is no request-processing activity. All new
2464 	 * requests are being added to md->deferred list.
2465 	 */
2466 
2467 	dm_table_postsuspend_targets(map);
2468 
2469 	set_bit(DMF_SUSPENDED, &md->flags);
2470 
2471 out:
2472 	dm_table_put(map);
2473 
2474 out_unlock:
2475 	mutex_unlock(&md->suspend_lock);
2476 	return r;
2477 }
2478 
2479 int dm_resume(struct mapped_device *md)
2480 {
2481 	int r = -EINVAL;
2482 	struct dm_table *map = NULL;
2483 
2484 	mutex_lock(&md->suspend_lock);
2485 	if (!dm_suspended(md))
2486 		goto out;
2487 
2488 	map = dm_get_table(md);
2489 	if (!map || !dm_table_get_size(map))
2490 		goto out;
2491 
2492 	r = dm_table_resume_targets(map);
2493 	if (r)
2494 		goto out;
2495 
2496 	dm_queue_flush(md);
2497 
2498 	/*
2499 	 * Flushing deferred I/Os must be done after targets are resumed
2500 	 * so that mapping of targets can work correctly.
2501 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2502 	 */
2503 	if (dm_request_based(md))
2504 		start_queue(md->queue);
2505 
2506 	unlock_fs(md);
2507 
2508 	clear_bit(DMF_SUSPENDED, &md->flags);
2509 
2510 	dm_table_unplug_all(map);
2511 	r = 0;
2512 out:
2513 	dm_table_put(map);
2514 	mutex_unlock(&md->suspend_lock);
2515 
2516 	return r;
2517 }
2518 
2519 /*-----------------------------------------------------------------
2520  * Event notification.
2521  *---------------------------------------------------------------*/
2522 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2523 		       unsigned cookie)
2524 {
2525 	char udev_cookie[DM_COOKIE_LENGTH];
2526 	char *envp[] = { udev_cookie, NULL };
2527 
2528 	if (!cookie)
2529 		kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2530 	else {
2531 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2532 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2533 		kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2534 	}
2535 }
2536 
2537 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2538 {
2539 	return atomic_add_return(1, &md->uevent_seq);
2540 }
2541 
2542 uint32_t dm_get_event_nr(struct mapped_device *md)
2543 {
2544 	return atomic_read(&md->event_nr);
2545 }
2546 
2547 int dm_wait_event(struct mapped_device *md, int event_nr)
2548 {
2549 	return wait_event_interruptible(md->eventq,
2550 			(event_nr != atomic_read(&md->event_nr)));
2551 }
2552 
2553 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2554 {
2555 	unsigned long flags;
2556 
2557 	spin_lock_irqsave(&md->uevent_lock, flags);
2558 	list_add(elist, &md->uevent_list);
2559 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2560 }
2561 
2562 /*
2563  * The gendisk is only valid as long as you have a reference
2564  * count on 'md'.
2565  */
2566 struct gendisk *dm_disk(struct mapped_device *md)
2567 {
2568 	return md->disk;
2569 }
2570 
2571 struct kobject *dm_kobject(struct mapped_device *md)
2572 {
2573 	return &md->kobj;
2574 }
2575 
2576 /*
2577  * struct mapped_device should not be exported outside of dm.c
2578  * so use this check to verify that kobj is part of md structure
2579  */
2580 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2581 {
2582 	struct mapped_device *md;
2583 
2584 	md = container_of(kobj, struct mapped_device, kobj);
2585 	if (&md->kobj != kobj)
2586 		return NULL;
2587 
2588 	if (test_bit(DMF_FREEING, &md->flags) ||
2589 	    test_bit(DMF_DELETING, &md->flags))
2590 		return NULL;
2591 
2592 	dm_get(md);
2593 	return md;
2594 }
2595 
2596 int dm_suspended(struct mapped_device *md)
2597 {
2598 	return test_bit(DMF_SUSPENDED, &md->flags);
2599 }
2600 
2601 int dm_noflush_suspending(struct dm_target *ti)
2602 {
2603 	struct mapped_device *md = dm_table_get_md(ti->table);
2604 	int r = __noflush_suspending(md);
2605 
2606 	dm_put(md);
2607 
2608 	return r;
2609 }
2610 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2611 
2612 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2613 {
2614 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2615 
2616 	if (!pools)
2617 		return NULL;
2618 
2619 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2620 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2621 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2622 	if (!pools->io_pool)
2623 		goto free_pools_and_out;
2624 
2625 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2626 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2627 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2628 	if (!pools->tio_pool)
2629 		goto free_io_pool_and_out;
2630 
2631 	pools->bs = (type == DM_TYPE_BIO_BASED) ?
2632 		    bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2633 	if (!pools->bs)
2634 		goto free_tio_pool_and_out;
2635 
2636 	return pools;
2637 
2638 free_tio_pool_and_out:
2639 	mempool_destroy(pools->tio_pool);
2640 
2641 free_io_pool_and_out:
2642 	mempool_destroy(pools->io_pool);
2643 
2644 free_pools_and_out:
2645 	kfree(pools);
2646 
2647 	return NULL;
2648 }
2649 
2650 void dm_free_md_mempools(struct dm_md_mempools *pools)
2651 {
2652 	if (!pools)
2653 		return;
2654 
2655 	if (pools->io_pool)
2656 		mempool_destroy(pools->io_pool);
2657 
2658 	if (pools->tio_pool)
2659 		mempool_destroy(pools->tio_pool);
2660 
2661 	if (pools->bs)
2662 		bioset_free(pools->bs);
2663 
2664 	kfree(pools);
2665 }
2666 
2667 static struct block_device_operations dm_blk_dops = {
2668 	.open = dm_blk_open,
2669 	.release = dm_blk_close,
2670 	.ioctl = dm_blk_ioctl,
2671 	.getgeo = dm_blk_getgeo,
2672 	.owner = THIS_MODULE
2673 };
2674 
2675 EXPORT_SYMBOL(dm_get_mapinfo);
2676 
2677 /*
2678  * module hooks
2679  */
2680 module_init(dm_init);
2681 module_exit(dm_exit);
2682 
2683 module_param(major, uint, 0);
2684 MODULE_PARM_DESC(major, "The major number of the device mapper");
2685 MODULE_DESCRIPTION(DM_NAME " driver");
2686 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2687 MODULE_LICENSE("GPL");
2688