1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/signal.h> 19 #include <linux/blkpg.h> 20 #include <linux/bio.h> 21 #include <linux/mempool.h> 22 #include <linux/dax.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/uio.h> 26 #include <linux/hdreg.h> 27 #include <linux/delay.h> 28 #include <linux/wait.h> 29 #include <linux/pr.h> 30 #include <linux/refcount.h> 31 #include <linux/part_stat.h> 32 #include <linux/blk-crypto.h> 33 #include <linux/blk-crypto-profile.h> 34 35 #define DM_MSG_PREFIX "core" 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 /* 45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 46 * dm_io into one list, and reuse bio->bi_private as the list head. Before 47 * ending this fs bio, we will recover its ->bi_private. 48 */ 49 #define REQ_DM_POLL_LIST REQ_DRV 50 51 static const char *_name = DM_NAME; 52 53 static unsigned int major; 54 static unsigned int _major; 55 56 static DEFINE_IDR(_minor_idr); 57 58 static DEFINE_SPINLOCK(_minor_lock); 59 60 static void do_deferred_remove(struct work_struct *w); 61 62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 63 64 static struct workqueue_struct *deferred_remove_workqueue; 65 66 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 68 69 void dm_issue_global_event(void) 70 { 71 atomic_inc(&dm_global_event_nr); 72 wake_up(&dm_global_eventq); 73 } 74 75 DEFINE_STATIC_KEY_FALSE(stats_enabled); 76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 77 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 78 79 /* 80 * One of these is allocated (on-stack) per original bio. 81 */ 82 struct clone_info { 83 struct dm_table *map; 84 struct bio *bio; 85 struct dm_io *io; 86 sector_t sector; 87 unsigned int sector_count; 88 bool is_abnormal_io:1; 89 bool submit_as_polled:1; 90 }; 91 92 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 93 { 94 return container_of(clone, struct dm_target_io, clone); 95 } 96 97 void *dm_per_bio_data(struct bio *bio, size_t data_size) 98 { 99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 101 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 102 } 103 EXPORT_SYMBOL_GPL(dm_per_bio_data); 104 105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 106 { 107 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 108 109 if (io->magic == DM_IO_MAGIC) 110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 111 BUG_ON(io->magic != DM_TIO_MAGIC); 112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 113 } 114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 115 116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 117 { 118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 119 } 120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 121 122 #define MINOR_ALLOCED ((void *)-1) 123 124 #define DM_NUMA_NODE NUMA_NO_NODE 125 static int dm_numa_node = DM_NUMA_NODE; 126 127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 128 static int swap_bios = DEFAULT_SWAP_BIOS; 129 static int get_swap_bios(void) 130 { 131 int latch = READ_ONCE(swap_bios); 132 133 if (unlikely(latch <= 0)) 134 latch = DEFAULT_SWAP_BIOS; 135 return latch; 136 } 137 138 struct table_device { 139 struct list_head list; 140 refcount_t count; 141 struct dm_dev dm_dev; 142 }; 143 144 /* 145 * Bio-based DM's mempools' reserved IOs set by the user. 146 */ 147 #define RESERVED_BIO_BASED_IOS 16 148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 149 150 static int __dm_get_module_param_int(int *module_param, int min, int max) 151 { 152 int param = READ_ONCE(*module_param); 153 int modified_param = 0; 154 bool modified = true; 155 156 if (param < min) 157 modified_param = min; 158 else if (param > max) 159 modified_param = max; 160 else 161 modified = false; 162 163 if (modified) { 164 (void)cmpxchg(module_param, param, modified_param); 165 param = modified_param; 166 } 167 168 return param; 169 } 170 171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 172 { 173 unsigned int param = READ_ONCE(*module_param); 174 unsigned int modified_param = 0; 175 176 if (!param) 177 modified_param = def; 178 else if (param > max) 179 modified_param = max; 180 181 if (modified_param) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned int dm_get_reserved_bio_based_ios(void) 190 { 191 return __dm_get_module_param(&reserved_bio_based_ios, 192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 193 } 194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 195 196 static unsigned int dm_get_numa_node(void) 197 { 198 return __dm_get_module_param_int(&dm_numa_node, 199 DM_NUMA_NODE, num_online_nodes() - 1); 200 } 201 202 static int __init local_init(void) 203 { 204 int r; 205 206 r = dm_uevent_init(); 207 if (r) 208 return r; 209 210 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); 211 if (!deferred_remove_workqueue) { 212 r = -ENOMEM; 213 goto out_uevent_exit; 214 } 215 216 _major = major; 217 r = register_blkdev(_major, _name); 218 if (r < 0) 219 goto out_free_workqueue; 220 221 if (!_major) 222 _major = r; 223 224 return 0; 225 226 out_free_workqueue: 227 destroy_workqueue(deferred_remove_workqueue); 228 out_uevent_exit: 229 dm_uevent_exit(); 230 231 return r; 232 } 233 234 static void local_exit(void) 235 { 236 destroy_workqueue(deferred_remove_workqueue); 237 238 unregister_blkdev(_major, _name); 239 dm_uevent_exit(); 240 241 _major = 0; 242 243 DMINFO("cleaned up"); 244 } 245 246 static int (*_inits[])(void) __initdata = { 247 local_init, 248 dm_target_init, 249 dm_linear_init, 250 dm_stripe_init, 251 dm_io_init, 252 dm_kcopyd_init, 253 dm_interface_init, 254 dm_statistics_init, 255 }; 256 257 static void (*_exits[])(void) = { 258 local_exit, 259 dm_target_exit, 260 dm_linear_exit, 261 dm_stripe_exit, 262 dm_io_exit, 263 dm_kcopyd_exit, 264 dm_interface_exit, 265 dm_statistics_exit, 266 }; 267 268 static int __init dm_init(void) 269 { 270 const int count = ARRAY_SIZE(_inits); 271 int r, i; 272 273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 275 " Duplicate IMA measurements will not be recorded in the IMA log."); 276 #endif 277 278 for (i = 0; i < count; i++) { 279 r = _inits[i](); 280 if (r) 281 goto bad; 282 } 283 284 return 0; 285 bad: 286 while (i--) 287 _exits[i](); 288 289 return r; 290 } 291 292 static void __exit dm_exit(void) 293 { 294 int i = ARRAY_SIZE(_exits); 295 296 while (i--) 297 _exits[i](); 298 299 /* 300 * Should be empty by this point. 301 */ 302 idr_destroy(&_minor_idr); 303 } 304 305 /* 306 * Block device functions 307 */ 308 int dm_deleting_md(struct mapped_device *md) 309 { 310 return test_bit(DMF_DELETING, &md->flags); 311 } 312 313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 314 { 315 struct mapped_device *md; 316 317 spin_lock(&_minor_lock); 318 319 md = disk->private_data; 320 if (!md) 321 goto out; 322 323 if (test_bit(DMF_FREEING, &md->flags) || 324 dm_deleting_md(md)) { 325 md = NULL; 326 goto out; 327 } 328 329 dm_get(md); 330 atomic_inc(&md->open_count); 331 out: 332 spin_unlock(&_minor_lock); 333 334 return md ? 0 : -ENXIO; 335 } 336 337 static void dm_blk_close(struct gendisk *disk) 338 { 339 struct mapped_device *md; 340 341 spin_lock(&_minor_lock); 342 343 md = disk->private_data; 344 if (WARN_ON(!md)) 345 goto out; 346 347 if (atomic_dec_and_test(&md->open_count) && 348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 349 queue_work(deferred_remove_workqueue, &deferred_remove_work); 350 351 dm_put(md); 352 out: 353 spin_unlock(&_minor_lock); 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) { 371 r = -EBUSY; 372 if (mark_deferred) 373 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 375 r = -EEXIST; 376 else 377 set_bit(DMF_DELETING, &md->flags); 378 379 spin_unlock(&_minor_lock); 380 381 return r; 382 } 383 384 int dm_cancel_deferred_remove(struct mapped_device *md) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (test_bit(DMF_DELETING, &md->flags)) 391 r = -EBUSY; 392 else 393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 static void do_deferred_remove(struct work_struct *w) 401 { 402 dm_deferred_remove(); 403 } 404 405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 406 { 407 struct mapped_device *md = bdev->bd_disk->private_data; 408 409 return dm_get_geometry(md, geo); 410 } 411 412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 413 struct block_device **bdev) 414 { 415 struct dm_target *ti; 416 struct dm_table *map; 417 int r; 418 419 retry: 420 r = -ENOTTY; 421 map = dm_get_live_table(md, srcu_idx); 422 if (!map || !dm_table_get_size(map)) 423 return r; 424 425 /* We only support devices that have a single target */ 426 if (map->num_targets != 1) 427 return r; 428 429 ti = dm_table_get_target(map, 0); 430 if (!ti->type->prepare_ioctl) 431 return r; 432 433 if (dm_suspended_md(md)) 434 return -EAGAIN; 435 436 r = ti->type->prepare_ioctl(ti, bdev); 437 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 438 dm_put_live_table(md, *srcu_idx); 439 fsleep(10000); 440 goto retry; 441 } 442 443 return r; 444 } 445 446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 447 { 448 dm_put_live_table(md, srcu_idx); 449 } 450 451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 452 unsigned int cmd, unsigned long arg) 453 { 454 struct mapped_device *md = bdev->bd_disk->private_data; 455 int r, srcu_idx; 456 457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 458 if (r < 0) 459 goto out; 460 461 if (r > 0) { 462 /* 463 * Target determined this ioctl is being issued against a 464 * subset of the parent bdev; require extra privileges. 465 */ 466 if (!capable(CAP_SYS_RAWIO)) { 467 DMDEBUG_LIMIT( 468 "%s: sending ioctl %x to DM device without required privilege.", 469 current->comm, cmd); 470 r = -ENOIOCTLCMD; 471 goto out; 472 } 473 } 474 475 if (!bdev->bd_disk->fops->ioctl) 476 r = -ENOTTY; 477 else 478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 479 out: 480 dm_unprepare_ioctl(md, srcu_idx); 481 return r; 482 } 483 484 u64 dm_start_time_ns_from_clone(struct bio *bio) 485 { 486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 487 } 488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 489 490 static inline bool bio_is_flush_with_data(struct bio *bio) 491 { 492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 493 } 494 495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) 496 { 497 /* 498 * If REQ_PREFLUSH set, don't account payload, it will be 499 * submitted (and accounted) after this flush completes. 500 */ 501 if (bio_is_flush_with_data(bio)) 502 return 0; 503 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 504 return io->sectors; 505 return bio_sectors(bio); 506 } 507 508 static void dm_io_acct(struct dm_io *io, bool end) 509 { 510 struct bio *bio = io->orig_bio; 511 512 if (dm_io_flagged(io, DM_IO_BLK_STAT)) { 513 if (!end) 514 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), 515 io->start_time); 516 else 517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), 518 dm_io_sectors(io, bio), 519 io->start_time); 520 } 521 522 if (static_branch_unlikely(&stats_enabled) && 523 unlikely(dm_stats_used(&io->md->stats))) { 524 sector_t sector; 525 526 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 527 sector = bio_end_sector(bio) - io->sector_offset; 528 else 529 sector = bio->bi_iter.bi_sector; 530 531 dm_stats_account_io(&io->md->stats, bio_data_dir(bio), 532 sector, dm_io_sectors(io, bio), 533 end, io->start_time, &io->stats_aux); 534 } 535 } 536 537 static void __dm_start_io_acct(struct dm_io *io) 538 { 539 dm_io_acct(io, false); 540 } 541 542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 543 { 544 /* 545 * Ensure IO accounting is only ever started once. 546 */ 547 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 548 return; 549 550 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 551 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 552 dm_io_set_flag(io, DM_IO_ACCOUNTED); 553 } else { 554 unsigned long flags; 555 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 556 spin_lock_irqsave(&io->lock, flags); 557 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 558 spin_unlock_irqrestore(&io->lock, flags); 559 return; 560 } 561 dm_io_set_flag(io, DM_IO_ACCOUNTED); 562 spin_unlock_irqrestore(&io->lock, flags); 563 } 564 565 __dm_start_io_acct(io); 566 } 567 568 static void dm_end_io_acct(struct dm_io *io) 569 { 570 dm_io_acct(io, true); 571 } 572 573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask) 574 { 575 struct dm_io *io; 576 struct dm_target_io *tio; 577 struct bio *clone; 578 579 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs); 580 if (unlikely(!clone)) 581 return NULL; 582 tio = clone_to_tio(clone); 583 tio->flags = 0; 584 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 585 tio->io = NULL; 586 587 io = container_of(tio, struct dm_io, tio); 588 io->magic = DM_IO_MAGIC; 589 io->status = BLK_STS_OK; 590 591 /* one ref is for submission, the other is for completion */ 592 atomic_set(&io->io_count, 2); 593 this_cpu_inc(*md->pending_io); 594 io->orig_bio = bio; 595 io->md = md; 596 spin_lock_init(&io->lock); 597 io->start_time = jiffies; 598 io->flags = 0; 599 if (blk_queue_io_stat(md->queue)) 600 dm_io_set_flag(io, DM_IO_BLK_STAT); 601 602 if (static_branch_unlikely(&stats_enabled) && 603 unlikely(dm_stats_used(&md->stats))) 604 dm_stats_record_start(&md->stats, &io->stats_aux); 605 606 return io; 607 } 608 609 static void free_io(struct dm_io *io) 610 { 611 bio_put(&io->tio.clone); 612 } 613 614 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 615 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 616 { 617 struct mapped_device *md = ci->io->md; 618 struct dm_target_io *tio; 619 struct bio *clone; 620 621 if (!ci->io->tio.io) { 622 /* the dm_target_io embedded in ci->io is available */ 623 tio = &ci->io->tio; 624 /* alloc_io() already initialized embedded clone */ 625 clone = &tio->clone; 626 } else { 627 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 628 &md->mempools->bs); 629 if (!clone) 630 return NULL; 631 632 /* REQ_DM_POLL_LIST shouldn't be inherited */ 633 clone->bi_opf &= ~REQ_DM_POLL_LIST; 634 635 tio = clone_to_tio(clone); 636 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 637 } 638 639 tio->magic = DM_TIO_MAGIC; 640 tio->io = ci->io; 641 tio->ti = ti; 642 tio->target_bio_nr = target_bio_nr; 643 tio->len_ptr = len; 644 tio->old_sector = 0; 645 646 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 647 clone->bi_bdev = md->disk->part0; 648 if (unlikely(ti->needs_bio_set_dev)) 649 bio_set_dev(clone, md->disk->part0); 650 651 if (len) { 652 clone->bi_iter.bi_size = to_bytes(*len); 653 if (bio_integrity(clone)) 654 bio_integrity_trim(clone); 655 } 656 657 return clone; 658 } 659 660 static void free_tio(struct bio *clone) 661 { 662 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 663 return; 664 bio_put(clone); 665 } 666 667 /* 668 * Add the bio to the list of deferred io. 669 */ 670 static void queue_io(struct mapped_device *md, struct bio *bio) 671 { 672 unsigned long flags; 673 674 spin_lock_irqsave(&md->deferred_lock, flags); 675 bio_list_add(&md->deferred, bio); 676 spin_unlock_irqrestore(&md->deferred_lock, flags); 677 queue_work(md->wq, &md->work); 678 } 679 680 /* 681 * Everyone (including functions in this file), should use this 682 * function to access the md->map field, and make sure they call 683 * dm_put_live_table() when finished. 684 */ 685 struct dm_table *dm_get_live_table(struct mapped_device *md, 686 int *srcu_idx) __acquires(md->io_barrier) 687 { 688 *srcu_idx = srcu_read_lock(&md->io_barrier); 689 690 return srcu_dereference(md->map, &md->io_barrier); 691 } 692 693 void dm_put_live_table(struct mapped_device *md, 694 int srcu_idx) __releases(md->io_barrier) 695 { 696 srcu_read_unlock(&md->io_barrier, srcu_idx); 697 } 698 699 void dm_sync_table(struct mapped_device *md) 700 { 701 synchronize_srcu(&md->io_barrier); 702 synchronize_rcu_expedited(); 703 } 704 705 /* 706 * A fast alternative to dm_get_live_table/dm_put_live_table. 707 * The caller must not block between these two functions. 708 */ 709 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 710 { 711 rcu_read_lock(); 712 return rcu_dereference(md->map); 713 } 714 715 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 716 { 717 rcu_read_unlock(); 718 } 719 720 static char *_dm_claim_ptr = "I belong to device-mapper"; 721 722 /* 723 * Open a table device so we can use it as a map destination. 724 */ 725 static struct table_device *open_table_device(struct mapped_device *md, 726 dev_t dev, blk_mode_t mode) 727 { 728 struct table_device *td; 729 struct file *bdev_file; 730 struct block_device *bdev; 731 u64 part_off; 732 int r; 733 734 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 735 if (!td) 736 return ERR_PTR(-ENOMEM); 737 refcount_set(&td->count, 1); 738 739 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL); 740 if (IS_ERR(bdev_file)) { 741 r = PTR_ERR(bdev_file); 742 goto out_free_td; 743 } 744 745 bdev = file_bdev(bdev_file); 746 747 /* 748 * We can be called before the dm disk is added. In that case we can't 749 * register the holder relation here. It will be done once add_disk was 750 * called. 751 */ 752 if (md->disk->slave_dir) { 753 r = bd_link_disk_holder(bdev, md->disk); 754 if (r) 755 goto out_blkdev_put; 756 } 757 758 td->dm_dev.mode = mode; 759 td->dm_dev.bdev = bdev; 760 td->dm_dev.bdev_file = bdev_file; 761 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, 762 NULL, NULL); 763 format_dev_t(td->dm_dev.name, dev); 764 list_add(&td->list, &md->table_devices); 765 return td; 766 767 out_blkdev_put: 768 __fput_sync(bdev_file); 769 out_free_td: 770 kfree(td); 771 return ERR_PTR(r); 772 } 773 774 /* 775 * Close a table device that we've been using. 776 */ 777 static void close_table_device(struct table_device *td, struct mapped_device *md) 778 { 779 if (md->disk->slave_dir) 780 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 781 782 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */ 783 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 784 fput(td->dm_dev.bdev_file); 785 else 786 __fput_sync(td->dm_dev.bdev_file); 787 788 put_dax(td->dm_dev.dax_dev); 789 list_del(&td->list); 790 kfree(td); 791 } 792 793 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 794 blk_mode_t mode) 795 { 796 struct table_device *td; 797 798 list_for_each_entry(td, l, list) 799 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 800 return td; 801 802 return NULL; 803 } 804 805 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 806 struct dm_dev **result) 807 { 808 struct table_device *td; 809 810 mutex_lock(&md->table_devices_lock); 811 td = find_table_device(&md->table_devices, dev, mode); 812 if (!td) { 813 td = open_table_device(md, dev, mode); 814 if (IS_ERR(td)) { 815 mutex_unlock(&md->table_devices_lock); 816 return PTR_ERR(td); 817 } 818 } else { 819 refcount_inc(&td->count); 820 } 821 mutex_unlock(&md->table_devices_lock); 822 823 *result = &td->dm_dev; 824 return 0; 825 } 826 827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 828 { 829 struct table_device *td = container_of(d, struct table_device, dm_dev); 830 831 mutex_lock(&md->table_devices_lock); 832 if (refcount_dec_and_test(&td->count)) 833 close_table_device(td, md); 834 mutex_unlock(&md->table_devices_lock); 835 } 836 837 /* 838 * Get the geometry associated with a dm device 839 */ 840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 841 { 842 *geo = md->geometry; 843 844 return 0; 845 } 846 847 /* 848 * Set the geometry of a device. 849 */ 850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 851 { 852 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 853 854 if (geo->start > sz) { 855 DMERR("Start sector is beyond the geometry limits."); 856 return -EINVAL; 857 } 858 859 md->geometry = *geo; 860 861 return 0; 862 } 863 864 static int __noflush_suspending(struct mapped_device *md) 865 { 866 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 867 } 868 869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 870 { 871 struct mapped_device *md = io->md; 872 873 if (first_stage) { 874 struct dm_io *next = md->requeue_list; 875 876 md->requeue_list = io; 877 io->next = next; 878 } else { 879 bio_list_add_head(&md->deferred, io->orig_bio); 880 } 881 } 882 883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 884 { 885 if (first_stage) 886 queue_work(md->wq, &md->requeue_work); 887 else 888 queue_work(md->wq, &md->work); 889 } 890 891 /* 892 * Return true if the dm_io's original bio is requeued. 893 * io->status is updated with error if requeue disallowed. 894 */ 895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 896 { 897 struct bio *bio = io->orig_bio; 898 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 899 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 900 (bio->bi_opf & REQ_POLLED)); 901 struct mapped_device *md = io->md; 902 bool requeued = false; 903 904 if (handle_requeue || handle_polled_eagain) { 905 unsigned long flags; 906 907 if (bio->bi_opf & REQ_POLLED) { 908 /* 909 * Upper layer won't help us poll split bio 910 * (io->orig_bio may only reflect a subset of the 911 * pre-split original) so clear REQ_POLLED. 912 */ 913 bio_clear_polled(bio); 914 } 915 916 /* 917 * Target requested pushing back the I/O or 918 * polled IO hit BLK_STS_AGAIN. 919 */ 920 spin_lock_irqsave(&md->deferred_lock, flags); 921 if ((__noflush_suspending(md) && 922 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 923 handle_polled_eagain || first_stage) { 924 dm_requeue_add_io(io, first_stage); 925 requeued = true; 926 } else { 927 /* 928 * noflush suspend was interrupted or this is 929 * a write to a zoned target. 930 */ 931 io->status = BLK_STS_IOERR; 932 } 933 spin_unlock_irqrestore(&md->deferred_lock, flags); 934 } 935 936 if (requeued) 937 dm_kick_requeue(md, first_stage); 938 939 return requeued; 940 } 941 942 static void __dm_io_complete(struct dm_io *io, bool first_stage) 943 { 944 struct bio *bio = io->orig_bio; 945 struct mapped_device *md = io->md; 946 blk_status_t io_error; 947 bool requeued; 948 949 requeued = dm_handle_requeue(io, first_stage); 950 if (requeued && first_stage) 951 return; 952 953 io_error = io->status; 954 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 955 dm_end_io_acct(io); 956 else if (!io_error) { 957 /* 958 * Must handle target that DM_MAPIO_SUBMITTED only to 959 * then bio_endio() rather than dm_submit_bio_remap() 960 */ 961 __dm_start_io_acct(io); 962 dm_end_io_acct(io); 963 } 964 free_io(io); 965 smp_wmb(); 966 this_cpu_dec(*md->pending_io); 967 968 /* nudge anyone waiting on suspend queue */ 969 if (unlikely(wq_has_sleeper(&md->wait))) 970 wake_up(&md->wait); 971 972 /* Return early if the original bio was requeued */ 973 if (requeued) 974 return; 975 976 if (bio_is_flush_with_data(bio)) { 977 /* 978 * Preflush done for flush with data, reissue 979 * without REQ_PREFLUSH. 980 */ 981 bio->bi_opf &= ~REQ_PREFLUSH; 982 queue_io(md, bio); 983 } else { 984 /* done with normal IO or empty flush */ 985 if (io_error) 986 bio->bi_status = io_error; 987 bio_endio(bio); 988 } 989 } 990 991 static void dm_wq_requeue_work(struct work_struct *work) 992 { 993 struct mapped_device *md = container_of(work, struct mapped_device, 994 requeue_work); 995 unsigned long flags; 996 struct dm_io *io; 997 998 /* reuse deferred lock to simplify dm_handle_requeue */ 999 spin_lock_irqsave(&md->deferred_lock, flags); 1000 io = md->requeue_list; 1001 md->requeue_list = NULL; 1002 spin_unlock_irqrestore(&md->deferred_lock, flags); 1003 1004 while (io) { 1005 struct dm_io *next = io->next; 1006 1007 dm_io_rewind(io, &md->disk->bio_split); 1008 1009 io->next = NULL; 1010 __dm_io_complete(io, false); 1011 io = next; 1012 cond_resched(); 1013 } 1014 } 1015 1016 /* 1017 * Two staged requeue: 1018 * 1019 * 1) io->orig_bio points to the real original bio, and the part mapped to 1020 * this io must be requeued, instead of other parts of the original bio. 1021 * 1022 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1023 */ 1024 static void dm_io_complete(struct dm_io *io) 1025 { 1026 bool first_requeue; 1027 1028 /* 1029 * Only dm_io that has been split needs two stage requeue, otherwise 1030 * we may run into long bio clone chain during suspend and OOM could 1031 * be triggered. 1032 * 1033 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1034 * also aren't handled via the first stage requeue. 1035 */ 1036 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1037 first_requeue = true; 1038 else 1039 first_requeue = false; 1040 1041 __dm_io_complete(io, first_requeue); 1042 } 1043 1044 /* 1045 * Decrements the number of outstanding ios that a bio has been 1046 * cloned into, completing the original io if necc. 1047 */ 1048 static inline void __dm_io_dec_pending(struct dm_io *io) 1049 { 1050 if (atomic_dec_and_test(&io->io_count)) 1051 dm_io_complete(io); 1052 } 1053 1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1055 { 1056 unsigned long flags; 1057 1058 /* Push-back supersedes any I/O errors */ 1059 spin_lock_irqsave(&io->lock, flags); 1060 if (!(io->status == BLK_STS_DM_REQUEUE && 1061 __noflush_suspending(io->md))) { 1062 io->status = error; 1063 } 1064 spin_unlock_irqrestore(&io->lock, flags); 1065 } 1066 1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1068 { 1069 if (unlikely(error)) 1070 dm_io_set_error(io, error); 1071 1072 __dm_io_dec_pending(io); 1073 } 1074 1075 /* 1076 * The queue_limits are only valid as long as you have a reference 1077 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1078 */ 1079 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1080 { 1081 return &md->queue->limits; 1082 } 1083 1084 void disable_discard(struct mapped_device *md) 1085 { 1086 struct queue_limits *limits = dm_get_queue_limits(md); 1087 1088 /* device doesn't really support DISCARD, disable it */ 1089 limits->max_hw_discard_sectors = 0; 1090 } 1091 1092 void disable_write_zeroes(struct mapped_device *md) 1093 { 1094 struct queue_limits *limits = dm_get_queue_limits(md); 1095 1096 /* device doesn't really support WRITE ZEROES, disable it */ 1097 limits->max_write_zeroes_sectors = 0; 1098 } 1099 1100 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1101 { 1102 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1103 } 1104 1105 static void clone_endio(struct bio *bio) 1106 { 1107 blk_status_t error = bio->bi_status; 1108 struct dm_target_io *tio = clone_to_tio(bio); 1109 struct dm_target *ti = tio->ti; 1110 dm_endio_fn endio = ti->type->end_io; 1111 struct dm_io *io = tio->io; 1112 struct mapped_device *md = io->md; 1113 1114 if (unlikely(error == BLK_STS_TARGET)) { 1115 if (bio_op(bio) == REQ_OP_DISCARD && 1116 !bdev_max_discard_sectors(bio->bi_bdev)) 1117 disable_discard(md); 1118 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1119 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1120 disable_write_zeroes(md); 1121 } 1122 1123 if (static_branch_unlikely(&zoned_enabled) && 1124 unlikely(bdev_is_zoned(bio->bi_bdev))) 1125 dm_zone_endio(io, bio); 1126 1127 if (endio) { 1128 int r = endio(ti, bio, &error); 1129 1130 switch (r) { 1131 case DM_ENDIO_REQUEUE: 1132 if (static_branch_unlikely(&zoned_enabled)) { 1133 /* 1134 * Requeuing writes to a sequential zone of a zoned 1135 * target will break the sequential write pattern: 1136 * fail such IO. 1137 */ 1138 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1139 error = BLK_STS_IOERR; 1140 else 1141 error = BLK_STS_DM_REQUEUE; 1142 } else 1143 error = BLK_STS_DM_REQUEUE; 1144 fallthrough; 1145 case DM_ENDIO_DONE: 1146 break; 1147 case DM_ENDIO_INCOMPLETE: 1148 /* The target will handle the io */ 1149 return; 1150 default: 1151 DMCRIT("unimplemented target endio return value: %d", r); 1152 BUG(); 1153 } 1154 } 1155 1156 if (static_branch_unlikely(&swap_bios_enabled) && 1157 unlikely(swap_bios_limit(ti, bio))) 1158 up(&md->swap_bios_semaphore); 1159 1160 free_tio(bio); 1161 dm_io_dec_pending(io, error); 1162 } 1163 1164 /* 1165 * Return maximum size of I/O possible at the supplied sector up to the current 1166 * target boundary. 1167 */ 1168 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1169 sector_t target_offset) 1170 { 1171 return ti->len - target_offset; 1172 } 1173 1174 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1175 unsigned int max_granularity, 1176 unsigned int max_sectors) 1177 { 1178 sector_t target_offset = dm_target_offset(ti, sector); 1179 sector_t len = max_io_len_target_boundary(ti, target_offset); 1180 1181 /* 1182 * Does the target need to split IO even further? 1183 * - varied (per target) IO splitting is a tenet of DM; this 1184 * explains why stacked chunk_sectors based splitting via 1185 * bio_split_to_limits() isn't possible here. 1186 */ 1187 if (!max_granularity) 1188 return len; 1189 return min_t(sector_t, len, 1190 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1191 blk_boundary_sectors_left(target_offset, max_granularity))); 1192 } 1193 1194 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1195 { 1196 return __max_io_len(ti, sector, ti->max_io_len, 0); 1197 } 1198 1199 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1200 { 1201 if (len > UINT_MAX) { 1202 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1203 (unsigned long long)len, UINT_MAX); 1204 ti->error = "Maximum size of target IO is too large"; 1205 return -EINVAL; 1206 } 1207 1208 ti->max_io_len = (uint32_t) len; 1209 1210 return 0; 1211 } 1212 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1213 1214 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1215 sector_t sector, int *srcu_idx) 1216 __acquires(md->io_barrier) 1217 { 1218 struct dm_table *map; 1219 struct dm_target *ti; 1220 1221 map = dm_get_live_table(md, srcu_idx); 1222 if (!map) 1223 return NULL; 1224 1225 ti = dm_table_find_target(map, sector); 1226 if (!ti) 1227 return NULL; 1228 1229 return ti; 1230 } 1231 1232 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1233 long nr_pages, enum dax_access_mode mode, void **kaddr, 1234 pfn_t *pfn) 1235 { 1236 struct mapped_device *md = dax_get_private(dax_dev); 1237 sector_t sector = pgoff * PAGE_SECTORS; 1238 struct dm_target *ti; 1239 long len, ret = -EIO; 1240 int srcu_idx; 1241 1242 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1243 1244 if (!ti) 1245 goto out; 1246 if (!ti->type->direct_access) 1247 goto out; 1248 len = max_io_len(ti, sector) / PAGE_SECTORS; 1249 if (len < 1) 1250 goto out; 1251 nr_pages = min(len, nr_pages); 1252 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1253 1254 out: 1255 dm_put_live_table(md, srcu_idx); 1256 1257 return ret; 1258 } 1259 1260 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1261 size_t nr_pages) 1262 { 1263 struct mapped_device *md = dax_get_private(dax_dev); 1264 sector_t sector = pgoff * PAGE_SECTORS; 1265 struct dm_target *ti; 1266 int ret = -EIO; 1267 int srcu_idx; 1268 1269 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1270 1271 if (!ti) 1272 goto out; 1273 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1274 /* 1275 * ->zero_page_range() is mandatory dax operation. If we are 1276 * here, something is wrong. 1277 */ 1278 goto out; 1279 } 1280 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1281 out: 1282 dm_put_live_table(md, srcu_idx); 1283 1284 return ret; 1285 } 1286 1287 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1288 void *addr, size_t bytes, struct iov_iter *i) 1289 { 1290 struct mapped_device *md = dax_get_private(dax_dev); 1291 sector_t sector = pgoff * PAGE_SECTORS; 1292 struct dm_target *ti; 1293 int srcu_idx; 1294 long ret = 0; 1295 1296 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1297 if (!ti || !ti->type->dax_recovery_write) 1298 goto out; 1299 1300 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1301 out: 1302 dm_put_live_table(md, srcu_idx); 1303 return ret; 1304 } 1305 1306 /* 1307 * A target may call dm_accept_partial_bio only from the map routine. It is 1308 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1309 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1310 * __send_duplicate_bios(). 1311 * 1312 * dm_accept_partial_bio informs the dm that the target only wants to process 1313 * additional n_sectors sectors of the bio and the rest of the data should be 1314 * sent in a next bio. 1315 * 1316 * A diagram that explains the arithmetics: 1317 * +--------------------+---------------+-------+ 1318 * | 1 | 2 | 3 | 1319 * +--------------------+---------------+-------+ 1320 * 1321 * <-------------- *tio->len_ptr ---------------> 1322 * <----- bio_sectors -----> 1323 * <-- n_sectors --> 1324 * 1325 * Region 1 was already iterated over with bio_advance or similar function. 1326 * (it may be empty if the target doesn't use bio_advance) 1327 * Region 2 is the remaining bio size that the target wants to process. 1328 * (it may be empty if region 1 is non-empty, although there is no reason 1329 * to make it empty) 1330 * The target requires that region 3 is to be sent in the next bio. 1331 * 1332 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1333 * the partially processed part (the sum of regions 1+2) must be the same for all 1334 * copies of the bio. 1335 */ 1336 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1337 { 1338 struct dm_target_io *tio = clone_to_tio(bio); 1339 struct dm_io *io = tio->io; 1340 unsigned int bio_sectors = bio_sectors(bio); 1341 1342 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1343 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1344 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1345 BUG_ON(bio_sectors > *tio->len_ptr); 1346 BUG_ON(n_sectors > bio_sectors); 1347 1348 *tio->len_ptr -= bio_sectors - n_sectors; 1349 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1350 1351 /* 1352 * __split_and_process_bio() may have already saved mapped part 1353 * for accounting but it is being reduced so update accordingly. 1354 */ 1355 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1356 io->sectors = n_sectors; 1357 io->sector_offset = bio_sectors(io->orig_bio); 1358 } 1359 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1360 1361 /* 1362 * @clone: clone bio that DM core passed to target's .map function 1363 * @tgt_clone: clone of @clone bio that target needs submitted 1364 * 1365 * Targets should use this interface to submit bios they take 1366 * ownership of when returning DM_MAPIO_SUBMITTED. 1367 * 1368 * Target should also enable ti->accounts_remapped_io 1369 */ 1370 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1371 { 1372 struct dm_target_io *tio = clone_to_tio(clone); 1373 struct dm_io *io = tio->io; 1374 1375 /* establish bio that will get submitted */ 1376 if (!tgt_clone) 1377 tgt_clone = clone; 1378 1379 /* 1380 * Account io->origin_bio to DM dev on behalf of target 1381 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1382 */ 1383 dm_start_io_acct(io, clone); 1384 1385 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1386 tio->old_sector); 1387 submit_bio_noacct(tgt_clone); 1388 } 1389 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1390 1391 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1392 { 1393 mutex_lock(&md->swap_bios_lock); 1394 while (latch < md->swap_bios) { 1395 cond_resched(); 1396 down(&md->swap_bios_semaphore); 1397 md->swap_bios--; 1398 } 1399 while (latch > md->swap_bios) { 1400 cond_resched(); 1401 up(&md->swap_bios_semaphore); 1402 md->swap_bios++; 1403 } 1404 mutex_unlock(&md->swap_bios_lock); 1405 } 1406 1407 static void __map_bio(struct bio *clone) 1408 { 1409 struct dm_target_io *tio = clone_to_tio(clone); 1410 struct dm_target *ti = tio->ti; 1411 struct dm_io *io = tio->io; 1412 struct mapped_device *md = io->md; 1413 int r; 1414 1415 clone->bi_end_io = clone_endio; 1416 1417 /* 1418 * Map the clone. 1419 */ 1420 tio->old_sector = clone->bi_iter.bi_sector; 1421 1422 if (static_branch_unlikely(&swap_bios_enabled) && 1423 unlikely(swap_bios_limit(ti, clone))) { 1424 int latch = get_swap_bios(); 1425 1426 if (unlikely(latch != md->swap_bios)) 1427 __set_swap_bios_limit(md, latch); 1428 down(&md->swap_bios_semaphore); 1429 } 1430 1431 if (likely(ti->type->map == linear_map)) 1432 r = linear_map(ti, clone); 1433 else if (ti->type->map == stripe_map) 1434 r = stripe_map(ti, clone); 1435 else 1436 r = ti->type->map(ti, clone); 1437 1438 switch (r) { 1439 case DM_MAPIO_SUBMITTED: 1440 /* target has assumed ownership of this io */ 1441 if (!ti->accounts_remapped_io) 1442 dm_start_io_acct(io, clone); 1443 break; 1444 case DM_MAPIO_REMAPPED: 1445 dm_submit_bio_remap(clone, NULL); 1446 break; 1447 case DM_MAPIO_KILL: 1448 case DM_MAPIO_REQUEUE: 1449 if (static_branch_unlikely(&swap_bios_enabled) && 1450 unlikely(swap_bios_limit(ti, clone))) 1451 up(&md->swap_bios_semaphore); 1452 free_tio(clone); 1453 if (r == DM_MAPIO_KILL) 1454 dm_io_dec_pending(io, BLK_STS_IOERR); 1455 else 1456 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1457 break; 1458 default: 1459 DMCRIT("unimplemented target map return value: %d", r); 1460 BUG(); 1461 } 1462 } 1463 1464 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1465 { 1466 struct dm_io *io = ci->io; 1467 1468 if (ci->sector_count > len) { 1469 /* 1470 * Split needed, save the mapped part for accounting. 1471 * NOTE: dm_accept_partial_bio() will update accordingly. 1472 */ 1473 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1474 io->sectors = len; 1475 io->sector_offset = bio_sectors(ci->bio); 1476 } 1477 } 1478 1479 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1480 struct dm_target *ti, unsigned int num_bios, 1481 unsigned *len, gfp_t gfp_flag) 1482 { 1483 struct bio *bio; 1484 int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1; 1485 1486 for (; try < 2; try++) { 1487 int bio_nr; 1488 1489 if (try && num_bios > 1) 1490 mutex_lock(&ci->io->md->table_devices_lock); 1491 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1492 bio = alloc_tio(ci, ti, bio_nr, len, 1493 try ? GFP_NOIO : GFP_NOWAIT); 1494 if (!bio) 1495 break; 1496 1497 bio_list_add(blist, bio); 1498 } 1499 if (try && num_bios > 1) 1500 mutex_unlock(&ci->io->md->table_devices_lock); 1501 if (bio_nr == num_bios) 1502 return; 1503 1504 while ((bio = bio_list_pop(blist))) 1505 free_tio(bio); 1506 } 1507 } 1508 1509 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1510 unsigned int num_bios, unsigned int *len, 1511 gfp_t gfp_flag) 1512 { 1513 struct bio_list blist = BIO_EMPTY_LIST; 1514 struct bio *clone; 1515 unsigned int ret = 0; 1516 1517 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */ 1518 return 0; 1519 1520 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1521 if (len) 1522 setup_split_accounting(ci, *len); 1523 1524 /* 1525 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently 1526 * support allocating using GFP_NOWAIT with GFP_NOIO fallback. 1527 */ 1528 alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag); 1529 while ((clone = bio_list_pop(&blist))) { 1530 if (num_bios > 1) 1531 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1532 __map_bio(clone); 1533 ret += 1; 1534 } 1535 1536 return ret; 1537 } 1538 1539 static void __send_empty_flush(struct clone_info *ci) 1540 { 1541 struct dm_table *t = ci->map; 1542 struct bio flush_bio; 1543 1544 /* 1545 * Use an on-stack bio for this, it's safe since we don't 1546 * need to reference it after submit. It's just used as 1547 * the basis for the clone(s). 1548 */ 1549 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1550 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1551 1552 ci->bio = &flush_bio; 1553 ci->sector_count = 0; 1554 ci->io->tio.clone.bi_iter.bi_size = 0; 1555 1556 for (unsigned int i = 0; i < t->num_targets; i++) { 1557 unsigned int bios; 1558 struct dm_target *ti = dm_table_get_target(t, i); 1559 1560 if (unlikely(ti->num_flush_bios == 0)) 1561 continue; 1562 1563 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1564 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, 1565 NULL, GFP_NOWAIT); 1566 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1567 } 1568 1569 /* 1570 * alloc_io() takes one extra reference for submission, so the 1571 * reference won't reach 0 without the following subtraction 1572 */ 1573 atomic_sub(1, &ci->io->io_count); 1574 1575 bio_uninit(ci->bio); 1576 } 1577 1578 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1579 unsigned int num_bios, unsigned int max_granularity, 1580 unsigned int max_sectors) 1581 { 1582 unsigned int len, bios; 1583 1584 len = min_t(sector_t, ci->sector_count, 1585 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1586 1587 atomic_add(num_bios, &ci->io->io_count); 1588 bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO); 1589 /* 1590 * alloc_io() takes one extra reference for submission, so the 1591 * reference won't reach 0 without the following (+1) subtraction 1592 */ 1593 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1594 1595 ci->sector += len; 1596 ci->sector_count -= len; 1597 } 1598 1599 static bool is_abnormal_io(struct bio *bio) 1600 { 1601 enum req_op op = bio_op(bio); 1602 1603 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1604 switch (op) { 1605 case REQ_OP_DISCARD: 1606 case REQ_OP_SECURE_ERASE: 1607 case REQ_OP_WRITE_ZEROES: 1608 return true; 1609 default: 1610 break; 1611 } 1612 } 1613 1614 return false; 1615 } 1616 1617 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1618 struct dm_target *ti) 1619 { 1620 unsigned int num_bios = 0; 1621 unsigned int max_granularity = 0; 1622 unsigned int max_sectors = 0; 1623 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1624 1625 switch (bio_op(ci->bio)) { 1626 case REQ_OP_DISCARD: 1627 num_bios = ti->num_discard_bios; 1628 max_sectors = limits->max_discard_sectors; 1629 if (ti->max_discard_granularity) 1630 max_granularity = max_sectors; 1631 break; 1632 case REQ_OP_SECURE_ERASE: 1633 num_bios = ti->num_secure_erase_bios; 1634 max_sectors = limits->max_secure_erase_sectors; 1635 if (ti->max_secure_erase_granularity) 1636 max_granularity = max_sectors; 1637 break; 1638 case REQ_OP_WRITE_ZEROES: 1639 num_bios = ti->num_write_zeroes_bios; 1640 max_sectors = limits->max_write_zeroes_sectors; 1641 if (ti->max_write_zeroes_granularity) 1642 max_granularity = max_sectors; 1643 break; 1644 default: 1645 break; 1646 } 1647 1648 /* 1649 * Even though the device advertised support for this type of 1650 * request, that does not mean every target supports it, and 1651 * reconfiguration might also have changed that since the 1652 * check was performed. 1653 */ 1654 if (unlikely(!num_bios)) 1655 return BLK_STS_NOTSUPP; 1656 1657 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors); 1658 1659 return BLK_STS_OK; 1660 } 1661 1662 /* 1663 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1664 * associated with this bio, and this bio's bi_private needs to be 1665 * stored in dm_io->data before the reuse. 1666 * 1667 * bio->bi_private is owned by fs or upper layer, so block layer won't 1668 * touch it after splitting. Meantime it won't be changed by anyone after 1669 * bio is submitted. So this reuse is safe. 1670 */ 1671 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1672 { 1673 return (struct dm_io **)&bio->bi_private; 1674 } 1675 1676 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1677 { 1678 struct dm_io **head = dm_poll_list_head(bio); 1679 1680 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1681 bio->bi_opf |= REQ_DM_POLL_LIST; 1682 /* 1683 * Save .bi_private into dm_io, so that we can reuse 1684 * .bi_private as dm_io list head for storing dm_io list 1685 */ 1686 io->data = bio->bi_private; 1687 1688 /* tell block layer to poll for completion */ 1689 bio->bi_cookie = ~BLK_QC_T_NONE; 1690 1691 io->next = NULL; 1692 } else { 1693 /* 1694 * bio recursed due to split, reuse original poll list, 1695 * and save bio->bi_private too. 1696 */ 1697 io->data = (*head)->data; 1698 io->next = *head; 1699 } 1700 1701 *head = io; 1702 } 1703 1704 /* 1705 * Select the correct strategy for processing a non-flush bio. 1706 */ 1707 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1708 { 1709 struct bio *clone; 1710 struct dm_target *ti; 1711 unsigned int len; 1712 1713 ti = dm_table_find_target(ci->map, ci->sector); 1714 if (unlikely(!ti)) 1715 return BLK_STS_IOERR; 1716 1717 if (unlikely(ci->is_abnormal_io)) 1718 return __process_abnormal_io(ci, ti); 1719 1720 /* 1721 * Only support bio polling for normal IO, and the target io is 1722 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1723 */ 1724 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1725 1726 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1727 setup_split_accounting(ci, len); 1728 1729 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) { 1730 if (unlikely(!dm_target_supports_nowait(ti->type))) 1731 return BLK_STS_NOTSUPP; 1732 1733 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT); 1734 if (unlikely(!clone)) 1735 return BLK_STS_AGAIN; 1736 } else { 1737 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1738 } 1739 __map_bio(clone); 1740 1741 ci->sector += len; 1742 ci->sector_count -= len; 1743 1744 return BLK_STS_OK; 1745 } 1746 1747 static void init_clone_info(struct clone_info *ci, struct dm_io *io, 1748 struct dm_table *map, struct bio *bio, bool is_abnormal) 1749 { 1750 ci->map = map; 1751 ci->io = io; 1752 ci->bio = bio; 1753 ci->is_abnormal_io = is_abnormal; 1754 ci->submit_as_polled = false; 1755 ci->sector = bio->bi_iter.bi_sector; 1756 ci->sector_count = bio_sectors(bio); 1757 1758 /* Shouldn't happen but sector_count was being set to 0 so... */ 1759 if (static_branch_unlikely(&zoned_enabled) && 1760 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1761 ci->sector_count = 0; 1762 } 1763 1764 #ifdef CONFIG_BLK_DEV_ZONED 1765 static inline bool dm_zone_bio_needs_split(struct mapped_device *md, 1766 struct bio *bio) 1767 { 1768 /* 1769 * For mapped device that need zone append emulation, we must 1770 * split any large BIO that straddles zone boundaries. 1771 */ 1772 return dm_emulate_zone_append(md) && bio_straddles_zones(bio) && 1773 !bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); 1774 } 1775 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1776 { 1777 return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0); 1778 } 1779 #else 1780 static inline bool dm_zone_bio_needs_split(struct mapped_device *md, 1781 struct bio *bio) 1782 { 1783 return false; 1784 } 1785 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1786 { 1787 return false; 1788 } 1789 #endif 1790 1791 /* 1792 * Entry point to split a bio into clones and submit them to the targets. 1793 */ 1794 static void dm_split_and_process_bio(struct mapped_device *md, 1795 struct dm_table *map, struct bio *bio) 1796 { 1797 struct clone_info ci; 1798 struct dm_io *io; 1799 blk_status_t error = BLK_STS_OK; 1800 bool is_abnormal, need_split; 1801 1802 need_split = is_abnormal = is_abnormal_io(bio); 1803 if (static_branch_unlikely(&zoned_enabled)) 1804 need_split = is_abnormal || dm_zone_bio_needs_split(md, bio); 1805 1806 if (unlikely(need_split)) { 1807 /* 1808 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1809 * otherwise associated queue_limits won't be imposed. 1810 * Also split the BIO for mapped devices needing zone append 1811 * emulation to ensure that the BIO does not cross zone 1812 * boundaries. 1813 */ 1814 bio = bio_split_to_limits(bio); 1815 if (!bio) 1816 return; 1817 } 1818 1819 /* 1820 * Use the block layer zone write plugging for mapped devices that 1821 * need zone append emulation (e.g. dm-crypt). 1822 */ 1823 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio)) 1824 return; 1825 1826 /* Only support nowait for normal IO */ 1827 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) { 1828 io = alloc_io(md, bio, GFP_NOWAIT); 1829 if (unlikely(!io)) { 1830 /* Unable to do anything without dm_io. */ 1831 bio_wouldblock_error(bio); 1832 return; 1833 } 1834 } else { 1835 io = alloc_io(md, bio, GFP_NOIO); 1836 } 1837 init_clone_info(&ci, io, map, bio, is_abnormal); 1838 1839 if (bio->bi_opf & REQ_PREFLUSH) { 1840 __send_empty_flush(&ci); 1841 /* dm_io_complete submits any data associated with flush */ 1842 goto out; 1843 } 1844 1845 error = __split_and_process_bio(&ci); 1846 if (error || !ci.sector_count) 1847 goto out; 1848 /* 1849 * Remainder must be passed to submit_bio_noacct() so it gets handled 1850 * *after* bios already submitted have been completely processed. 1851 */ 1852 bio_trim(bio, io->sectors, ci.sector_count); 1853 trace_block_split(bio, bio->bi_iter.bi_sector); 1854 bio_inc_remaining(bio); 1855 submit_bio_noacct(bio); 1856 out: 1857 /* 1858 * Drop the extra reference count for non-POLLED bio, and hold one 1859 * reference for POLLED bio, which will be released in dm_poll_bio 1860 * 1861 * Add every dm_io instance into the dm_io list head which is stored 1862 * in bio->bi_private, so that dm_poll_bio can poll them all. 1863 */ 1864 if (error || !ci.submit_as_polled) { 1865 /* 1866 * In case of submission failure, the extra reference for 1867 * submitting io isn't consumed yet 1868 */ 1869 if (error) 1870 atomic_dec(&io->io_count); 1871 dm_io_dec_pending(io, error); 1872 } else 1873 dm_queue_poll_io(bio, io); 1874 } 1875 1876 static void dm_submit_bio(struct bio *bio) 1877 { 1878 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1879 int srcu_idx; 1880 struct dm_table *map; 1881 1882 map = dm_get_live_table(md, &srcu_idx); 1883 1884 /* If suspended, or map not yet available, queue this IO for later */ 1885 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1886 unlikely(!map)) { 1887 if (bio->bi_opf & REQ_NOWAIT) 1888 bio_wouldblock_error(bio); 1889 else if (bio->bi_opf & REQ_RAHEAD) 1890 bio_io_error(bio); 1891 else 1892 queue_io(md, bio); 1893 goto out; 1894 } 1895 1896 dm_split_and_process_bio(md, map, bio); 1897 out: 1898 dm_put_live_table(md, srcu_idx); 1899 } 1900 1901 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1902 unsigned int flags) 1903 { 1904 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1905 1906 /* don't poll if the mapped io is done */ 1907 if (atomic_read(&io->io_count) > 1) 1908 bio_poll(&io->tio.clone, iob, flags); 1909 1910 /* bio_poll holds the last reference */ 1911 return atomic_read(&io->io_count) == 1; 1912 } 1913 1914 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1915 unsigned int flags) 1916 { 1917 struct dm_io **head = dm_poll_list_head(bio); 1918 struct dm_io *list = *head; 1919 struct dm_io *tmp = NULL; 1920 struct dm_io *curr, *next; 1921 1922 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1923 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1924 return 0; 1925 1926 WARN_ON_ONCE(!list); 1927 1928 /* 1929 * Restore .bi_private before possibly completing dm_io. 1930 * 1931 * bio_poll() is only possible once @bio has been completely 1932 * submitted via submit_bio_noacct()'s depth-first submission. 1933 * So there is no dm_queue_poll_io() race associated with 1934 * clearing REQ_DM_POLL_LIST here. 1935 */ 1936 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1937 bio->bi_private = list->data; 1938 1939 for (curr = list, next = curr->next; curr; curr = next, next = 1940 curr ? curr->next : NULL) { 1941 if (dm_poll_dm_io(curr, iob, flags)) { 1942 /* 1943 * clone_endio() has already occurred, so no 1944 * error handling is needed here. 1945 */ 1946 __dm_io_dec_pending(curr); 1947 } else { 1948 curr->next = tmp; 1949 tmp = curr; 1950 } 1951 } 1952 1953 /* Not done? */ 1954 if (tmp) { 1955 bio->bi_opf |= REQ_DM_POLL_LIST; 1956 /* Reset bio->bi_private to dm_io list head */ 1957 *head = tmp; 1958 return 0; 1959 } 1960 return 1; 1961 } 1962 1963 /* 1964 *--------------------------------------------------------------- 1965 * An IDR is used to keep track of allocated minor numbers. 1966 *--------------------------------------------------------------- 1967 */ 1968 static void free_minor(int minor) 1969 { 1970 spin_lock(&_minor_lock); 1971 idr_remove(&_minor_idr, minor); 1972 spin_unlock(&_minor_lock); 1973 } 1974 1975 /* 1976 * See if the device with a specific minor # is free. 1977 */ 1978 static int specific_minor(int minor) 1979 { 1980 int r; 1981 1982 if (minor >= (1 << MINORBITS)) 1983 return -EINVAL; 1984 1985 idr_preload(GFP_KERNEL); 1986 spin_lock(&_minor_lock); 1987 1988 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1989 1990 spin_unlock(&_minor_lock); 1991 idr_preload_end(); 1992 if (r < 0) 1993 return r == -ENOSPC ? -EBUSY : r; 1994 return 0; 1995 } 1996 1997 static int next_free_minor(int *minor) 1998 { 1999 int r; 2000 2001 idr_preload(GFP_KERNEL); 2002 spin_lock(&_minor_lock); 2003 2004 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2005 2006 spin_unlock(&_minor_lock); 2007 idr_preload_end(); 2008 if (r < 0) 2009 return r; 2010 *minor = r; 2011 return 0; 2012 } 2013 2014 static const struct block_device_operations dm_blk_dops; 2015 static const struct block_device_operations dm_rq_blk_dops; 2016 static const struct dax_operations dm_dax_ops; 2017 2018 static void dm_wq_work(struct work_struct *work); 2019 2020 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 2021 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 2022 { 2023 dm_destroy_crypto_profile(q->crypto_profile); 2024 } 2025 2026 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 2027 2028 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 2029 { 2030 } 2031 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 2032 2033 static void cleanup_mapped_device(struct mapped_device *md) 2034 { 2035 if (md->wq) 2036 destroy_workqueue(md->wq); 2037 dm_free_md_mempools(md->mempools); 2038 2039 if (md->dax_dev) { 2040 dax_remove_host(md->disk); 2041 kill_dax(md->dax_dev); 2042 put_dax(md->dax_dev); 2043 md->dax_dev = NULL; 2044 } 2045 2046 if (md->disk) { 2047 spin_lock(&_minor_lock); 2048 md->disk->private_data = NULL; 2049 spin_unlock(&_minor_lock); 2050 if (dm_get_md_type(md) != DM_TYPE_NONE) { 2051 struct table_device *td; 2052 2053 dm_sysfs_exit(md); 2054 list_for_each_entry(td, &md->table_devices, list) { 2055 bd_unlink_disk_holder(td->dm_dev.bdev, 2056 md->disk); 2057 } 2058 2059 /* 2060 * Hold lock to make sure del_gendisk() won't concurrent 2061 * with open/close_table_device(). 2062 */ 2063 mutex_lock(&md->table_devices_lock); 2064 del_gendisk(md->disk); 2065 mutex_unlock(&md->table_devices_lock); 2066 } 2067 dm_queue_destroy_crypto_profile(md->queue); 2068 put_disk(md->disk); 2069 } 2070 2071 if (md->pending_io) { 2072 free_percpu(md->pending_io); 2073 md->pending_io = NULL; 2074 } 2075 2076 cleanup_srcu_struct(&md->io_barrier); 2077 2078 mutex_destroy(&md->suspend_lock); 2079 mutex_destroy(&md->type_lock); 2080 mutex_destroy(&md->table_devices_lock); 2081 mutex_destroy(&md->swap_bios_lock); 2082 2083 dm_mq_cleanup_mapped_device(md); 2084 } 2085 2086 /* 2087 * Allocate and initialise a blank device with a given minor. 2088 */ 2089 static struct mapped_device *alloc_dev(int minor) 2090 { 2091 int r, numa_node_id = dm_get_numa_node(); 2092 struct dax_device *dax_dev; 2093 struct mapped_device *md; 2094 void *old_md; 2095 2096 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2097 if (!md) { 2098 DMERR("unable to allocate device, out of memory."); 2099 return NULL; 2100 } 2101 2102 if (!try_module_get(THIS_MODULE)) 2103 goto bad_module_get; 2104 2105 /* get a minor number for the dev */ 2106 if (minor == DM_ANY_MINOR) 2107 r = next_free_minor(&minor); 2108 else 2109 r = specific_minor(minor); 2110 if (r < 0) 2111 goto bad_minor; 2112 2113 r = init_srcu_struct(&md->io_barrier); 2114 if (r < 0) 2115 goto bad_io_barrier; 2116 2117 md->numa_node_id = numa_node_id; 2118 md->init_tio_pdu = false; 2119 md->type = DM_TYPE_NONE; 2120 mutex_init(&md->suspend_lock); 2121 mutex_init(&md->type_lock); 2122 mutex_init(&md->table_devices_lock); 2123 spin_lock_init(&md->deferred_lock); 2124 atomic_set(&md->holders, 1); 2125 atomic_set(&md->open_count, 0); 2126 atomic_set(&md->event_nr, 0); 2127 atomic_set(&md->uevent_seq, 0); 2128 INIT_LIST_HEAD(&md->uevent_list); 2129 INIT_LIST_HEAD(&md->table_devices); 2130 spin_lock_init(&md->uevent_lock); 2131 2132 /* 2133 * default to bio-based until DM table is loaded and md->type 2134 * established. If request-based table is loaded: blk-mq will 2135 * override accordingly. 2136 */ 2137 md->disk = blk_alloc_disk(NULL, md->numa_node_id); 2138 if (IS_ERR(md->disk)) 2139 goto bad; 2140 md->queue = md->disk->queue; 2141 2142 init_waitqueue_head(&md->wait); 2143 INIT_WORK(&md->work, dm_wq_work); 2144 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2145 init_waitqueue_head(&md->eventq); 2146 init_completion(&md->kobj_holder.completion); 2147 2148 md->requeue_list = NULL; 2149 md->swap_bios = get_swap_bios(); 2150 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2151 mutex_init(&md->swap_bios_lock); 2152 2153 md->disk->major = _major; 2154 md->disk->first_minor = minor; 2155 md->disk->minors = 1; 2156 md->disk->flags |= GENHD_FL_NO_PART; 2157 md->disk->fops = &dm_blk_dops; 2158 md->disk->private_data = md; 2159 sprintf(md->disk->disk_name, "dm-%d", minor); 2160 2161 dax_dev = alloc_dax(md, &dm_dax_ops); 2162 if (IS_ERR(dax_dev)) { 2163 if (PTR_ERR(dax_dev) != -EOPNOTSUPP) 2164 goto bad; 2165 } else { 2166 set_dax_nocache(dax_dev); 2167 set_dax_nomc(dax_dev); 2168 md->dax_dev = dax_dev; 2169 if (dax_add_host(dax_dev, md->disk)) 2170 goto bad; 2171 } 2172 2173 format_dev_t(md->name, MKDEV(_major, minor)); 2174 2175 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2176 if (!md->wq) 2177 goto bad; 2178 2179 md->pending_io = alloc_percpu(unsigned long); 2180 if (!md->pending_io) 2181 goto bad; 2182 2183 r = dm_stats_init(&md->stats); 2184 if (r < 0) 2185 goto bad; 2186 2187 /* Populate the mapping, nobody knows we exist yet */ 2188 spin_lock(&_minor_lock); 2189 old_md = idr_replace(&_minor_idr, md, minor); 2190 spin_unlock(&_minor_lock); 2191 2192 BUG_ON(old_md != MINOR_ALLOCED); 2193 2194 return md; 2195 2196 bad: 2197 cleanup_mapped_device(md); 2198 bad_io_barrier: 2199 free_minor(minor); 2200 bad_minor: 2201 module_put(THIS_MODULE); 2202 bad_module_get: 2203 kvfree(md); 2204 return NULL; 2205 } 2206 2207 static void unlock_fs(struct mapped_device *md); 2208 2209 static void free_dev(struct mapped_device *md) 2210 { 2211 int minor = MINOR(disk_devt(md->disk)); 2212 2213 unlock_fs(md); 2214 2215 cleanup_mapped_device(md); 2216 2217 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2218 dm_stats_cleanup(&md->stats); 2219 free_minor(minor); 2220 2221 module_put(THIS_MODULE); 2222 kvfree(md); 2223 } 2224 2225 /* 2226 * Bind a table to the device. 2227 */ 2228 static void event_callback(void *context) 2229 { 2230 unsigned long flags; 2231 LIST_HEAD(uevents); 2232 struct mapped_device *md = context; 2233 2234 spin_lock_irqsave(&md->uevent_lock, flags); 2235 list_splice_init(&md->uevent_list, &uevents); 2236 spin_unlock_irqrestore(&md->uevent_lock, flags); 2237 2238 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2239 2240 atomic_inc(&md->event_nr); 2241 wake_up(&md->eventq); 2242 dm_issue_global_event(); 2243 } 2244 2245 /* 2246 * Returns old map, which caller must destroy. 2247 */ 2248 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2249 struct queue_limits *limits) 2250 { 2251 struct dm_table *old_map; 2252 sector_t size; 2253 int ret; 2254 2255 lockdep_assert_held(&md->suspend_lock); 2256 2257 size = dm_table_get_size(t); 2258 2259 /* 2260 * Wipe any geometry if the size of the table changed. 2261 */ 2262 if (size != dm_get_size(md)) 2263 memset(&md->geometry, 0, sizeof(md->geometry)); 2264 2265 set_capacity(md->disk, size); 2266 2267 dm_table_event_callback(t, event_callback, md); 2268 2269 if (dm_table_request_based(t)) { 2270 /* 2271 * Leverage the fact that request-based DM targets are 2272 * immutable singletons - used to optimize dm_mq_queue_rq. 2273 */ 2274 md->immutable_target = dm_table_get_immutable_target(t); 2275 2276 /* 2277 * There is no need to reload with request-based dm because the 2278 * size of front_pad doesn't change. 2279 * 2280 * Note for future: If you are to reload bioset, prep-ed 2281 * requests in the queue may refer to bio from the old bioset, 2282 * so you must walk through the queue to unprep. 2283 */ 2284 if (!md->mempools) { 2285 md->mempools = t->mempools; 2286 t->mempools = NULL; 2287 } 2288 } else { 2289 /* 2290 * The md may already have mempools that need changing. 2291 * If so, reload bioset because front_pad may have changed 2292 * because a different table was loaded. 2293 */ 2294 dm_free_md_mempools(md->mempools); 2295 md->mempools = t->mempools; 2296 t->mempools = NULL; 2297 } 2298 2299 ret = dm_table_set_restrictions(t, md->queue, limits); 2300 if (ret) { 2301 old_map = ERR_PTR(ret); 2302 goto out; 2303 } 2304 2305 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2306 rcu_assign_pointer(md->map, (void *)t); 2307 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2308 2309 if (old_map) 2310 dm_sync_table(md); 2311 out: 2312 return old_map; 2313 } 2314 2315 /* 2316 * Returns unbound table for the caller to free. 2317 */ 2318 static struct dm_table *__unbind(struct mapped_device *md) 2319 { 2320 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2321 2322 if (!map) 2323 return NULL; 2324 2325 dm_table_event_callback(map, NULL, NULL); 2326 RCU_INIT_POINTER(md->map, NULL); 2327 dm_sync_table(md); 2328 2329 return map; 2330 } 2331 2332 /* 2333 * Constructor for a new device. 2334 */ 2335 int dm_create(int minor, struct mapped_device **result) 2336 { 2337 struct mapped_device *md; 2338 2339 md = alloc_dev(minor); 2340 if (!md) 2341 return -ENXIO; 2342 2343 dm_ima_reset_data(md); 2344 2345 *result = md; 2346 return 0; 2347 } 2348 2349 /* 2350 * Functions to manage md->type. 2351 * All are required to hold md->type_lock. 2352 */ 2353 void dm_lock_md_type(struct mapped_device *md) 2354 { 2355 mutex_lock(&md->type_lock); 2356 } 2357 2358 void dm_unlock_md_type(struct mapped_device *md) 2359 { 2360 mutex_unlock(&md->type_lock); 2361 } 2362 2363 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2364 { 2365 BUG_ON(!mutex_is_locked(&md->type_lock)); 2366 md->type = type; 2367 } 2368 2369 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2370 { 2371 return md->type; 2372 } 2373 2374 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2375 { 2376 return md->immutable_target_type; 2377 } 2378 2379 /* 2380 * Setup the DM device's queue based on md's type 2381 */ 2382 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2383 { 2384 enum dm_queue_mode type = dm_table_get_type(t); 2385 struct queue_limits limits; 2386 struct table_device *td; 2387 int r; 2388 2389 WARN_ON_ONCE(type == DM_TYPE_NONE); 2390 2391 if (type == DM_TYPE_REQUEST_BASED) { 2392 md->disk->fops = &dm_rq_blk_dops; 2393 r = dm_mq_init_request_queue(md, t); 2394 if (r) { 2395 DMERR("Cannot initialize queue for request-based dm mapped device"); 2396 return r; 2397 } 2398 } 2399 2400 r = dm_calculate_queue_limits(t, &limits); 2401 if (r) { 2402 DMERR("Cannot calculate initial queue limits"); 2403 return r; 2404 } 2405 r = dm_table_set_restrictions(t, md->queue, &limits); 2406 if (r) 2407 return r; 2408 2409 /* 2410 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2411 * with open_table_device() and close_table_device(). 2412 */ 2413 mutex_lock(&md->table_devices_lock); 2414 r = add_disk(md->disk); 2415 mutex_unlock(&md->table_devices_lock); 2416 if (r) 2417 return r; 2418 2419 /* 2420 * Register the holder relationship for devices added before the disk 2421 * was live. 2422 */ 2423 list_for_each_entry(td, &md->table_devices, list) { 2424 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2425 if (r) 2426 goto out_undo_holders; 2427 } 2428 2429 r = dm_sysfs_init(md); 2430 if (r) 2431 goto out_undo_holders; 2432 2433 md->type = type; 2434 return 0; 2435 2436 out_undo_holders: 2437 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2438 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2439 mutex_lock(&md->table_devices_lock); 2440 del_gendisk(md->disk); 2441 mutex_unlock(&md->table_devices_lock); 2442 return r; 2443 } 2444 2445 struct mapped_device *dm_get_md(dev_t dev) 2446 { 2447 struct mapped_device *md; 2448 unsigned int minor = MINOR(dev); 2449 2450 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2451 return NULL; 2452 2453 spin_lock(&_minor_lock); 2454 2455 md = idr_find(&_minor_idr, minor); 2456 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2457 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2458 md = NULL; 2459 goto out; 2460 } 2461 dm_get(md); 2462 out: 2463 spin_unlock(&_minor_lock); 2464 2465 return md; 2466 } 2467 EXPORT_SYMBOL_GPL(dm_get_md); 2468 2469 void *dm_get_mdptr(struct mapped_device *md) 2470 { 2471 return md->interface_ptr; 2472 } 2473 2474 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2475 { 2476 md->interface_ptr = ptr; 2477 } 2478 2479 void dm_get(struct mapped_device *md) 2480 { 2481 atomic_inc(&md->holders); 2482 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2483 } 2484 2485 int dm_hold(struct mapped_device *md) 2486 { 2487 spin_lock(&_minor_lock); 2488 if (test_bit(DMF_FREEING, &md->flags)) { 2489 spin_unlock(&_minor_lock); 2490 return -EBUSY; 2491 } 2492 dm_get(md); 2493 spin_unlock(&_minor_lock); 2494 return 0; 2495 } 2496 EXPORT_SYMBOL_GPL(dm_hold); 2497 2498 const char *dm_device_name(struct mapped_device *md) 2499 { 2500 return md->name; 2501 } 2502 EXPORT_SYMBOL_GPL(dm_device_name); 2503 2504 static void __dm_destroy(struct mapped_device *md, bool wait) 2505 { 2506 struct dm_table *map; 2507 int srcu_idx; 2508 2509 might_sleep(); 2510 2511 spin_lock(&_minor_lock); 2512 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2513 set_bit(DMF_FREEING, &md->flags); 2514 spin_unlock(&_minor_lock); 2515 2516 blk_mark_disk_dead(md->disk); 2517 2518 /* 2519 * Take suspend_lock so that presuspend and postsuspend methods 2520 * do not race with internal suspend. 2521 */ 2522 mutex_lock(&md->suspend_lock); 2523 map = dm_get_live_table(md, &srcu_idx); 2524 if (!dm_suspended_md(md)) { 2525 dm_table_presuspend_targets(map); 2526 set_bit(DMF_SUSPENDED, &md->flags); 2527 set_bit(DMF_POST_SUSPENDING, &md->flags); 2528 dm_table_postsuspend_targets(map); 2529 } 2530 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2531 dm_put_live_table(md, srcu_idx); 2532 mutex_unlock(&md->suspend_lock); 2533 2534 /* 2535 * Rare, but there may be I/O requests still going to complete, 2536 * for example. Wait for all references to disappear. 2537 * No one should increment the reference count of the mapped_device, 2538 * after the mapped_device state becomes DMF_FREEING. 2539 */ 2540 if (wait) 2541 while (atomic_read(&md->holders)) 2542 fsleep(1000); 2543 else if (atomic_read(&md->holders)) 2544 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2545 dm_device_name(md), atomic_read(&md->holders)); 2546 2547 dm_table_destroy(__unbind(md)); 2548 free_dev(md); 2549 } 2550 2551 void dm_destroy(struct mapped_device *md) 2552 { 2553 __dm_destroy(md, true); 2554 } 2555 2556 void dm_destroy_immediate(struct mapped_device *md) 2557 { 2558 __dm_destroy(md, false); 2559 } 2560 2561 void dm_put(struct mapped_device *md) 2562 { 2563 atomic_dec(&md->holders); 2564 } 2565 EXPORT_SYMBOL_GPL(dm_put); 2566 2567 static bool dm_in_flight_bios(struct mapped_device *md) 2568 { 2569 int cpu; 2570 unsigned long sum = 0; 2571 2572 for_each_possible_cpu(cpu) 2573 sum += *per_cpu_ptr(md->pending_io, cpu); 2574 2575 return sum != 0; 2576 } 2577 2578 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2579 { 2580 int r = 0; 2581 DEFINE_WAIT(wait); 2582 2583 while (true) { 2584 prepare_to_wait(&md->wait, &wait, task_state); 2585 2586 if (!dm_in_flight_bios(md)) 2587 break; 2588 2589 if (signal_pending_state(task_state, current)) { 2590 r = -EINTR; 2591 break; 2592 } 2593 2594 io_schedule(); 2595 } 2596 finish_wait(&md->wait, &wait); 2597 2598 smp_rmb(); 2599 2600 return r; 2601 } 2602 2603 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2604 { 2605 int r = 0; 2606 2607 if (!queue_is_mq(md->queue)) 2608 return dm_wait_for_bios_completion(md, task_state); 2609 2610 while (true) { 2611 if (!blk_mq_queue_inflight(md->queue)) 2612 break; 2613 2614 if (signal_pending_state(task_state, current)) { 2615 r = -EINTR; 2616 break; 2617 } 2618 2619 fsleep(5000); 2620 } 2621 2622 return r; 2623 } 2624 2625 /* 2626 * Process the deferred bios 2627 */ 2628 static void dm_wq_work(struct work_struct *work) 2629 { 2630 struct mapped_device *md = container_of(work, struct mapped_device, work); 2631 struct bio *bio; 2632 2633 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2634 spin_lock_irq(&md->deferred_lock); 2635 bio = bio_list_pop(&md->deferred); 2636 spin_unlock_irq(&md->deferred_lock); 2637 2638 if (!bio) 2639 break; 2640 2641 submit_bio_noacct(bio); 2642 cond_resched(); 2643 } 2644 } 2645 2646 static void dm_queue_flush(struct mapped_device *md) 2647 { 2648 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2649 smp_mb__after_atomic(); 2650 queue_work(md->wq, &md->work); 2651 } 2652 2653 /* 2654 * Swap in a new table, returning the old one for the caller to destroy. 2655 */ 2656 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2657 { 2658 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2659 struct queue_limits limits; 2660 int r; 2661 2662 mutex_lock(&md->suspend_lock); 2663 2664 /* device must be suspended */ 2665 if (!dm_suspended_md(md)) 2666 goto out; 2667 2668 /* 2669 * If the new table has no data devices, retain the existing limits. 2670 * This helps multipath with queue_if_no_path if all paths disappear, 2671 * then new I/O is queued based on these limits, and then some paths 2672 * reappear. 2673 */ 2674 if (dm_table_has_no_data_devices(table)) { 2675 live_map = dm_get_live_table_fast(md); 2676 if (live_map) 2677 limits = md->queue->limits; 2678 dm_put_live_table_fast(md); 2679 } 2680 2681 if (!live_map) { 2682 r = dm_calculate_queue_limits(table, &limits); 2683 if (r) { 2684 map = ERR_PTR(r); 2685 goto out; 2686 } 2687 } 2688 2689 map = __bind(md, table, &limits); 2690 dm_issue_global_event(); 2691 2692 out: 2693 mutex_unlock(&md->suspend_lock); 2694 return map; 2695 } 2696 2697 /* 2698 * Functions to lock and unlock any filesystem running on the 2699 * device. 2700 */ 2701 static int lock_fs(struct mapped_device *md) 2702 { 2703 int r; 2704 2705 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2706 2707 r = bdev_freeze(md->disk->part0); 2708 if (!r) 2709 set_bit(DMF_FROZEN, &md->flags); 2710 return r; 2711 } 2712 2713 static void unlock_fs(struct mapped_device *md) 2714 { 2715 if (!test_bit(DMF_FROZEN, &md->flags)) 2716 return; 2717 bdev_thaw(md->disk->part0); 2718 clear_bit(DMF_FROZEN, &md->flags); 2719 } 2720 2721 /* 2722 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2723 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2724 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2725 * 2726 * If __dm_suspend returns 0, the device is completely quiescent 2727 * now. There is no request-processing activity. All new requests 2728 * are being added to md->deferred list. 2729 */ 2730 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2731 unsigned int suspend_flags, unsigned int task_state, 2732 int dmf_suspended_flag) 2733 { 2734 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2735 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2736 int r; 2737 2738 lockdep_assert_held(&md->suspend_lock); 2739 2740 /* 2741 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2742 * This flag is cleared before dm_suspend returns. 2743 */ 2744 if (noflush) 2745 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2746 else 2747 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2748 2749 /* 2750 * This gets reverted if there's an error later and the targets 2751 * provide the .presuspend_undo hook. 2752 */ 2753 dm_table_presuspend_targets(map); 2754 2755 /* 2756 * Flush I/O to the device. 2757 * Any I/O submitted after lock_fs() may not be flushed. 2758 * noflush takes precedence over do_lockfs. 2759 * (lock_fs() flushes I/Os and waits for them to complete.) 2760 */ 2761 if (!noflush && do_lockfs) { 2762 r = lock_fs(md); 2763 if (r) { 2764 dm_table_presuspend_undo_targets(map); 2765 return r; 2766 } 2767 } 2768 2769 /* 2770 * Here we must make sure that no processes are submitting requests 2771 * to target drivers i.e. no one may be executing 2772 * dm_split_and_process_bio from dm_submit_bio. 2773 * 2774 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2775 * we take the write lock. To prevent any process from reentering 2776 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2777 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2778 * flush_workqueue(md->wq). 2779 */ 2780 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2781 if (map) 2782 synchronize_srcu(&md->io_barrier); 2783 2784 /* 2785 * Stop md->queue before flushing md->wq in case request-based 2786 * dm defers requests to md->wq from md->queue. 2787 */ 2788 if (dm_request_based(md)) 2789 dm_stop_queue(md->queue); 2790 2791 flush_workqueue(md->wq); 2792 2793 /* 2794 * At this point no more requests are entering target request routines. 2795 * We call dm_wait_for_completion to wait for all existing requests 2796 * to finish. 2797 */ 2798 r = dm_wait_for_completion(md, task_state); 2799 if (!r) 2800 set_bit(dmf_suspended_flag, &md->flags); 2801 2802 if (noflush) 2803 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2804 if (map) 2805 synchronize_srcu(&md->io_barrier); 2806 2807 /* were we interrupted ? */ 2808 if (r < 0) { 2809 dm_queue_flush(md); 2810 2811 if (dm_request_based(md)) 2812 dm_start_queue(md->queue); 2813 2814 unlock_fs(md); 2815 dm_table_presuspend_undo_targets(map); 2816 /* pushback list is already flushed, so skip flush */ 2817 } 2818 2819 return r; 2820 } 2821 2822 /* 2823 * We need to be able to change a mapping table under a mounted 2824 * filesystem. For example we might want to move some data in 2825 * the background. Before the table can be swapped with 2826 * dm_bind_table, dm_suspend must be called to flush any in 2827 * flight bios and ensure that any further io gets deferred. 2828 */ 2829 /* 2830 * Suspend mechanism in request-based dm. 2831 * 2832 * 1. Flush all I/Os by lock_fs() if needed. 2833 * 2. Stop dispatching any I/O by stopping the request_queue. 2834 * 3. Wait for all in-flight I/Os to be completed or requeued. 2835 * 2836 * To abort suspend, start the request_queue. 2837 */ 2838 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2839 { 2840 struct dm_table *map = NULL; 2841 int r = 0; 2842 2843 retry: 2844 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2845 2846 if (dm_suspended_md(md)) { 2847 r = -EINVAL; 2848 goto out_unlock; 2849 } 2850 2851 if (dm_suspended_internally_md(md)) { 2852 /* already internally suspended, wait for internal resume */ 2853 mutex_unlock(&md->suspend_lock); 2854 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2855 if (r) 2856 return r; 2857 goto retry; 2858 } 2859 2860 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2861 if (!map) { 2862 /* avoid deadlock with fs/namespace.c:do_mount() */ 2863 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 2864 } 2865 2866 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2867 if (r) 2868 goto out_unlock; 2869 2870 set_bit(DMF_POST_SUSPENDING, &md->flags); 2871 dm_table_postsuspend_targets(map); 2872 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2873 2874 out_unlock: 2875 mutex_unlock(&md->suspend_lock); 2876 return r; 2877 } 2878 2879 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2880 { 2881 if (map) { 2882 int r = dm_table_resume_targets(map); 2883 2884 if (r) 2885 return r; 2886 } 2887 2888 dm_queue_flush(md); 2889 2890 /* 2891 * Flushing deferred I/Os must be done after targets are resumed 2892 * so that mapping of targets can work correctly. 2893 * Request-based dm is queueing the deferred I/Os in its request_queue. 2894 */ 2895 if (dm_request_based(md)) 2896 dm_start_queue(md->queue); 2897 2898 unlock_fs(md); 2899 2900 return 0; 2901 } 2902 2903 int dm_resume(struct mapped_device *md) 2904 { 2905 int r; 2906 struct dm_table *map = NULL; 2907 2908 retry: 2909 r = -EINVAL; 2910 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2911 2912 if (!dm_suspended_md(md)) 2913 goto out; 2914 2915 if (dm_suspended_internally_md(md)) { 2916 /* already internally suspended, wait for internal resume */ 2917 mutex_unlock(&md->suspend_lock); 2918 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2919 if (r) 2920 return r; 2921 goto retry; 2922 } 2923 2924 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2925 if (!map || !dm_table_get_size(map)) 2926 goto out; 2927 2928 r = __dm_resume(md, map); 2929 if (r) 2930 goto out; 2931 2932 clear_bit(DMF_SUSPENDED, &md->flags); 2933 out: 2934 mutex_unlock(&md->suspend_lock); 2935 2936 return r; 2937 } 2938 2939 /* 2940 * Internal suspend/resume works like userspace-driven suspend. It waits 2941 * until all bios finish and prevents issuing new bios to the target drivers. 2942 * It may be used only from the kernel. 2943 */ 2944 2945 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 2946 { 2947 struct dm_table *map = NULL; 2948 2949 lockdep_assert_held(&md->suspend_lock); 2950 2951 if (md->internal_suspend_count++) 2952 return; /* nested internal suspend */ 2953 2954 if (dm_suspended_md(md)) { 2955 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2956 return; /* nest suspend */ 2957 } 2958 2959 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2960 2961 /* 2962 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2963 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2964 * would require changing .presuspend to return an error -- avoid this 2965 * until there is a need for more elaborate variants of internal suspend. 2966 */ 2967 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2968 DMF_SUSPENDED_INTERNALLY); 2969 2970 set_bit(DMF_POST_SUSPENDING, &md->flags); 2971 dm_table_postsuspend_targets(map); 2972 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2973 } 2974 2975 static void __dm_internal_resume(struct mapped_device *md) 2976 { 2977 int r; 2978 struct dm_table *map; 2979 2980 BUG_ON(!md->internal_suspend_count); 2981 2982 if (--md->internal_suspend_count) 2983 return; /* resume from nested internal suspend */ 2984 2985 if (dm_suspended_md(md)) 2986 goto done; /* resume from nested suspend */ 2987 2988 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2989 r = __dm_resume(md, map); 2990 if (r) { 2991 /* 2992 * If a preresume method of some target failed, we are in a 2993 * tricky situation. We can't return an error to the caller. We 2994 * can't fake success because then the "resume" and 2995 * "postsuspend" methods would not be paired correctly, and it 2996 * would break various targets, for example it would cause list 2997 * corruption in the "origin" target. 2998 * 2999 * So, we fake normal suspend here, to make sure that the 3000 * "resume" and "postsuspend" methods will be paired correctly. 3001 */ 3002 DMERR("Preresume method failed: %d", r); 3003 set_bit(DMF_SUSPENDED, &md->flags); 3004 } 3005 done: 3006 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3007 smp_mb__after_atomic(); 3008 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3009 } 3010 3011 void dm_internal_suspend_noflush(struct mapped_device *md) 3012 { 3013 mutex_lock(&md->suspend_lock); 3014 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3015 mutex_unlock(&md->suspend_lock); 3016 } 3017 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3018 3019 void dm_internal_resume(struct mapped_device *md) 3020 { 3021 mutex_lock(&md->suspend_lock); 3022 __dm_internal_resume(md); 3023 mutex_unlock(&md->suspend_lock); 3024 } 3025 EXPORT_SYMBOL_GPL(dm_internal_resume); 3026 3027 /* 3028 * Fast variants of internal suspend/resume hold md->suspend_lock, 3029 * which prevents interaction with userspace-driven suspend. 3030 */ 3031 3032 void dm_internal_suspend_fast(struct mapped_device *md) 3033 { 3034 mutex_lock(&md->suspend_lock); 3035 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3036 return; 3037 3038 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3039 synchronize_srcu(&md->io_barrier); 3040 flush_workqueue(md->wq); 3041 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3042 } 3043 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3044 3045 void dm_internal_resume_fast(struct mapped_device *md) 3046 { 3047 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3048 goto done; 3049 3050 dm_queue_flush(md); 3051 3052 done: 3053 mutex_unlock(&md->suspend_lock); 3054 } 3055 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3056 3057 /* 3058 *--------------------------------------------------------------- 3059 * Event notification. 3060 *--------------------------------------------------------------- 3061 */ 3062 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3063 unsigned int cookie, bool need_resize_uevent) 3064 { 3065 int r; 3066 unsigned int noio_flag; 3067 char udev_cookie[DM_COOKIE_LENGTH]; 3068 char *envp[3] = { NULL, NULL, NULL }; 3069 char **envpp = envp; 3070 if (cookie) { 3071 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3072 DM_COOKIE_ENV_VAR_NAME, cookie); 3073 *envpp++ = udev_cookie; 3074 } 3075 if (need_resize_uevent) { 3076 *envpp++ = "RESIZE=1"; 3077 } 3078 3079 noio_flag = memalloc_noio_save(); 3080 3081 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3082 3083 memalloc_noio_restore(noio_flag); 3084 3085 return r; 3086 } 3087 3088 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3089 { 3090 return atomic_add_return(1, &md->uevent_seq); 3091 } 3092 3093 uint32_t dm_get_event_nr(struct mapped_device *md) 3094 { 3095 return atomic_read(&md->event_nr); 3096 } 3097 3098 int dm_wait_event(struct mapped_device *md, int event_nr) 3099 { 3100 return wait_event_interruptible(md->eventq, 3101 (event_nr != atomic_read(&md->event_nr))); 3102 } 3103 3104 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3105 { 3106 unsigned long flags; 3107 3108 spin_lock_irqsave(&md->uevent_lock, flags); 3109 list_add(elist, &md->uevent_list); 3110 spin_unlock_irqrestore(&md->uevent_lock, flags); 3111 } 3112 3113 /* 3114 * The gendisk is only valid as long as you have a reference 3115 * count on 'md'. 3116 */ 3117 struct gendisk *dm_disk(struct mapped_device *md) 3118 { 3119 return md->disk; 3120 } 3121 EXPORT_SYMBOL_GPL(dm_disk); 3122 3123 struct kobject *dm_kobject(struct mapped_device *md) 3124 { 3125 return &md->kobj_holder.kobj; 3126 } 3127 3128 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3129 { 3130 struct mapped_device *md; 3131 3132 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3133 3134 spin_lock(&_minor_lock); 3135 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3136 md = NULL; 3137 goto out; 3138 } 3139 dm_get(md); 3140 out: 3141 spin_unlock(&_minor_lock); 3142 3143 return md; 3144 } 3145 3146 int dm_suspended_md(struct mapped_device *md) 3147 { 3148 return test_bit(DMF_SUSPENDED, &md->flags); 3149 } 3150 3151 static int dm_post_suspending_md(struct mapped_device *md) 3152 { 3153 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3154 } 3155 3156 int dm_suspended_internally_md(struct mapped_device *md) 3157 { 3158 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3159 } 3160 3161 int dm_test_deferred_remove_flag(struct mapped_device *md) 3162 { 3163 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3164 } 3165 3166 int dm_suspended(struct dm_target *ti) 3167 { 3168 return dm_suspended_md(ti->table->md); 3169 } 3170 EXPORT_SYMBOL_GPL(dm_suspended); 3171 3172 int dm_post_suspending(struct dm_target *ti) 3173 { 3174 return dm_post_suspending_md(ti->table->md); 3175 } 3176 EXPORT_SYMBOL_GPL(dm_post_suspending); 3177 3178 int dm_noflush_suspending(struct dm_target *ti) 3179 { 3180 return __noflush_suspending(ti->table->md); 3181 } 3182 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3183 3184 void dm_free_md_mempools(struct dm_md_mempools *pools) 3185 { 3186 if (!pools) 3187 return; 3188 3189 bioset_exit(&pools->bs); 3190 bioset_exit(&pools->io_bs); 3191 3192 kfree(pools); 3193 } 3194 3195 struct dm_pr { 3196 u64 old_key; 3197 u64 new_key; 3198 u32 flags; 3199 bool abort; 3200 bool fail_early; 3201 int ret; 3202 enum pr_type type; 3203 struct pr_keys *read_keys; 3204 struct pr_held_reservation *rsv; 3205 }; 3206 3207 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3208 struct dm_pr *pr) 3209 { 3210 struct mapped_device *md = bdev->bd_disk->private_data; 3211 struct dm_table *table; 3212 struct dm_target *ti; 3213 int ret = -ENOTTY, srcu_idx; 3214 3215 table = dm_get_live_table(md, &srcu_idx); 3216 if (!table || !dm_table_get_size(table)) 3217 goto out; 3218 3219 /* We only support devices that have a single target */ 3220 if (table->num_targets != 1) 3221 goto out; 3222 ti = dm_table_get_target(table, 0); 3223 3224 if (dm_suspended_md(md)) { 3225 ret = -EAGAIN; 3226 goto out; 3227 } 3228 3229 ret = -EINVAL; 3230 if (!ti->type->iterate_devices) 3231 goto out; 3232 3233 ti->type->iterate_devices(ti, fn, pr); 3234 ret = 0; 3235 out: 3236 dm_put_live_table(md, srcu_idx); 3237 return ret; 3238 } 3239 3240 /* 3241 * For register / unregister we need to manually call out to every path. 3242 */ 3243 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3244 sector_t start, sector_t len, void *data) 3245 { 3246 struct dm_pr *pr = data; 3247 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3248 int ret; 3249 3250 if (!ops || !ops->pr_register) { 3251 pr->ret = -EOPNOTSUPP; 3252 return -1; 3253 } 3254 3255 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3256 if (!ret) 3257 return 0; 3258 3259 if (!pr->ret) 3260 pr->ret = ret; 3261 3262 if (pr->fail_early) 3263 return -1; 3264 3265 return 0; 3266 } 3267 3268 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3269 u32 flags) 3270 { 3271 struct dm_pr pr = { 3272 .old_key = old_key, 3273 .new_key = new_key, 3274 .flags = flags, 3275 .fail_early = true, 3276 .ret = 0, 3277 }; 3278 int ret; 3279 3280 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3281 if (ret) { 3282 /* Didn't even get to register a path */ 3283 return ret; 3284 } 3285 3286 if (!pr.ret) 3287 return 0; 3288 ret = pr.ret; 3289 3290 if (!new_key) 3291 return ret; 3292 3293 /* unregister all paths if we failed to register any path */ 3294 pr.old_key = new_key; 3295 pr.new_key = 0; 3296 pr.flags = 0; 3297 pr.fail_early = false; 3298 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3299 return ret; 3300 } 3301 3302 3303 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3304 sector_t start, sector_t len, void *data) 3305 { 3306 struct dm_pr *pr = data; 3307 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3308 3309 if (!ops || !ops->pr_reserve) { 3310 pr->ret = -EOPNOTSUPP; 3311 return -1; 3312 } 3313 3314 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3315 if (!pr->ret) 3316 return -1; 3317 3318 return 0; 3319 } 3320 3321 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3322 u32 flags) 3323 { 3324 struct dm_pr pr = { 3325 .old_key = key, 3326 .flags = flags, 3327 .type = type, 3328 .fail_early = false, 3329 .ret = 0, 3330 }; 3331 int ret; 3332 3333 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3334 if (ret) 3335 return ret; 3336 3337 return pr.ret; 3338 } 3339 3340 /* 3341 * If there is a non-All Registrants type of reservation, the release must be 3342 * sent down the holding path. For the cases where there is no reservation or 3343 * the path is not the holder the device will also return success, so we must 3344 * try each path to make sure we got the correct path. 3345 */ 3346 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3347 sector_t start, sector_t len, void *data) 3348 { 3349 struct dm_pr *pr = data; 3350 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3351 3352 if (!ops || !ops->pr_release) { 3353 pr->ret = -EOPNOTSUPP; 3354 return -1; 3355 } 3356 3357 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3358 if (pr->ret) 3359 return -1; 3360 3361 return 0; 3362 } 3363 3364 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3365 { 3366 struct dm_pr pr = { 3367 .old_key = key, 3368 .type = type, 3369 .fail_early = false, 3370 }; 3371 int ret; 3372 3373 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3374 if (ret) 3375 return ret; 3376 3377 return pr.ret; 3378 } 3379 3380 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3381 sector_t start, sector_t len, void *data) 3382 { 3383 struct dm_pr *pr = data; 3384 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3385 3386 if (!ops || !ops->pr_preempt) { 3387 pr->ret = -EOPNOTSUPP; 3388 return -1; 3389 } 3390 3391 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3392 pr->abort); 3393 if (!pr->ret) 3394 return -1; 3395 3396 return 0; 3397 } 3398 3399 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3400 enum pr_type type, bool abort) 3401 { 3402 struct dm_pr pr = { 3403 .new_key = new_key, 3404 .old_key = old_key, 3405 .type = type, 3406 .fail_early = false, 3407 }; 3408 int ret; 3409 3410 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3411 if (ret) 3412 return ret; 3413 3414 return pr.ret; 3415 } 3416 3417 static int dm_pr_clear(struct block_device *bdev, u64 key) 3418 { 3419 struct mapped_device *md = bdev->bd_disk->private_data; 3420 const struct pr_ops *ops; 3421 int r, srcu_idx; 3422 3423 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3424 if (r < 0) 3425 goto out; 3426 3427 ops = bdev->bd_disk->fops->pr_ops; 3428 if (ops && ops->pr_clear) 3429 r = ops->pr_clear(bdev, key); 3430 else 3431 r = -EOPNOTSUPP; 3432 out: 3433 dm_unprepare_ioctl(md, srcu_idx); 3434 return r; 3435 } 3436 3437 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, 3438 sector_t start, sector_t len, void *data) 3439 { 3440 struct dm_pr *pr = data; 3441 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3442 3443 if (!ops || !ops->pr_read_keys) { 3444 pr->ret = -EOPNOTSUPP; 3445 return -1; 3446 } 3447 3448 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); 3449 if (!pr->ret) 3450 return -1; 3451 3452 return 0; 3453 } 3454 3455 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) 3456 { 3457 struct dm_pr pr = { 3458 .read_keys = keys, 3459 }; 3460 int ret; 3461 3462 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); 3463 if (ret) 3464 return ret; 3465 3466 return pr.ret; 3467 } 3468 3469 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, 3470 sector_t start, sector_t len, void *data) 3471 { 3472 struct dm_pr *pr = data; 3473 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3474 3475 if (!ops || !ops->pr_read_reservation) { 3476 pr->ret = -EOPNOTSUPP; 3477 return -1; 3478 } 3479 3480 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); 3481 if (!pr->ret) 3482 return -1; 3483 3484 return 0; 3485 } 3486 3487 static int dm_pr_read_reservation(struct block_device *bdev, 3488 struct pr_held_reservation *rsv) 3489 { 3490 struct dm_pr pr = { 3491 .rsv = rsv, 3492 }; 3493 int ret; 3494 3495 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); 3496 if (ret) 3497 return ret; 3498 3499 return pr.ret; 3500 } 3501 3502 static const struct pr_ops dm_pr_ops = { 3503 .pr_register = dm_pr_register, 3504 .pr_reserve = dm_pr_reserve, 3505 .pr_release = dm_pr_release, 3506 .pr_preempt = dm_pr_preempt, 3507 .pr_clear = dm_pr_clear, 3508 .pr_read_keys = dm_pr_read_keys, 3509 .pr_read_reservation = dm_pr_read_reservation, 3510 }; 3511 3512 static const struct block_device_operations dm_blk_dops = { 3513 .submit_bio = dm_submit_bio, 3514 .poll_bio = dm_poll_bio, 3515 .open = dm_blk_open, 3516 .release = dm_blk_close, 3517 .ioctl = dm_blk_ioctl, 3518 .getgeo = dm_blk_getgeo, 3519 .report_zones = dm_blk_report_zones, 3520 .pr_ops = &dm_pr_ops, 3521 .owner = THIS_MODULE 3522 }; 3523 3524 static const struct block_device_operations dm_rq_blk_dops = { 3525 .open = dm_blk_open, 3526 .release = dm_blk_close, 3527 .ioctl = dm_blk_ioctl, 3528 .getgeo = dm_blk_getgeo, 3529 .pr_ops = &dm_pr_ops, 3530 .owner = THIS_MODULE 3531 }; 3532 3533 static const struct dax_operations dm_dax_ops = { 3534 .direct_access = dm_dax_direct_access, 3535 .zero_page_range = dm_dax_zero_page_range, 3536 .recovery_write = dm_dax_recovery_write, 3537 }; 3538 3539 /* 3540 * module hooks 3541 */ 3542 module_init(dm_init); 3543 module_exit(dm_exit); 3544 3545 module_param(major, uint, 0); 3546 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3547 3548 module_param(reserved_bio_based_ios, uint, 0644); 3549 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3550 3551 module_param(dm_numa_node, int, 0644); 3552 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3553 3554 module_param(swap_bios, int, 0644); 3555 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3556 3557 MODULE_DESCRIPTION(DM_NAME " driver"); 3558 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>"); 3559 MODULE_LICENSE("GPL"); 3560