1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 /* 44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 45 * dm_io into one list, and reuse bio->bi_private as the list head. Before 46 * ending this fs bio, we will recover its ->bi_private. 47 */ 48 #define REQ_DM_POLL_LIST REQ_DRV 49 50 static const char *_name = DM_NAME; 51 52 static unsigned int major = 0; 53 static unsigned int _major = 0; 54 55 static DEFINE_IDR(_minor_idr); 56 57 static DEFINE_SPINLOCK(_minor_lock); 58 59 static void do_deferred_remove(struct work_struct *w); 60 61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 62 63 static struct workqueue_struct *deferred_remove_workqueue; 64 65 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 67 68 void dm_issue_global_event(void) 69 { 70 atomic_inc(&dm_global_event_nr); 71 wake_up(&dm_global_eventq); 72 } 73 74 DEFINE_STATIC_KEY_FALSE(stats_enabled); 75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 76 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 77 78 /* 79 * One of these is allocated (on-stack) per original bio. 80 */ 81 struct clone_info { 82 struct dm_table *map; 83 struct bio *bio; 84 struct dm_io *io; 85 sector_t sector; 86 unsigned sector_count; 87 bool is_abnormal_io:1; 88 bool submit_as_polled:1; 89 }; 90 91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 92 #define DM_IO_BIO_OFFSET \ 93 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 94 95 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 96 { 97 return container_of(clone, struct dm_target_io, clone); 98 } 99 100 void *dm_per_bio_data(struct bio *bio, size_t data_size) 101 { 102 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 103 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 104 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 105 } 106 EXPORT_SYMBOL_GPL(dm_per_bio_data); 107 108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 109 { 110 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 111 if (io->magic == DM_IO_MAGIC) 112 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 113 BUG_ON(io->magic != DM_TIO_MAGIC); 114 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 115 } 116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 117 118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 119 { 120 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 123 124 #define MINOR_ALLOCED ((void *)-1) 125 126 #define DM_NUMA_NODE NUMA_NO_NODE 127 static int dm_numa_node = DM_NUMA_NODE; 128 129 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 130 static int swap_bios = DEFAULT_SWAP_BIOS; 131 static int get_swap_bios(void) 132 { 133 int latch = READ_ONCE(swap_bios); 134 if (unlikely(latch <= 0)) 135 latch = DEFAULT_SWAP_BIOS; 136 return latch; 137 } 138 139 /* 140 * For mempools pre-allocation at the table loading time. 141 */ 142 struct dm_md_mempools { 143 struct bio_set bs; 144 struct bio_set io_bs; 145 }; 146 147 struct table_device { 148 struct list_head list; 149 refcount_t count; 150 struct dm_dev dm_dev; 151 }; 152 153 /* 154 * Bio-based DM's mempools' reserved IOs set by the user. 155 */ 156 #define RESERVED_BIO_BASED_IOS 16 157 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 158 159 static int __dm_get_module_param_int(int *module_param, int min, int max) 160 { 161 int param = READ_ONCE(*module_param); 162 int modified_param = 0; 163 bool modified = true; 164 165 if (param < min) 166 modified_param = min; 167 else if (param > max) 168 modified_param = max; 169 else 170 modified = false; 171 172 if (modified) { 173 (void)cmpxchg(module_param, param, modified_param); 174 param = modified_param; 175 } 176 177 return param; 178 } 179 180 unsigned __dm_get_module_param(unsigned *module_param, 181 unsigned def, unsigned max) 182 { 183 unsigned param = READ_ONCE(*module_param); 184 unsigned modified_param = 0; 185 186 if (!param) 187 modified_param = def; 188 else if (param > max) 189 modified_param = max; 190 191 if (modified_param) { 192 (void)cmpxchg(module_param, param, modified_param); 193 param = modified_param; 194 } 195 196 return param; 197 } 198 199 unsigned dm_get_reserved_bio_based_ios(void) 200 { 201 return __dm_get_module_param(&reserved_bio_based_ios, 202 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 203 } 204 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 205 206 static unsigned dm_get_numa_node(void) 207 { 208 return __dm_get_module_param_int(&dm_numa_node, 209 DM_NUMA_NODE, num_online_nodes() - 1); 210 } 211 212 static int __init local_init(void) 213 { 214 int r; 215 216 r = dm_uevent_init(); 217 if (r) 218 return r; 219 220 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 221 if (!deferred_remove_workqueue) { 222 r = -ENOMEM; 223 goto out_uevent_exit; 224 } 225 226 _major = major; 227 r = register_blkdev(_major, _name); 228 if (r < 0) 229 goto out_free_workqueue; 230 231 if (!_major) 232 _major = r; 233 234 return 0; 235 236 out_free_workqueue: 237 destroy_workqueue(deferred_remove_workqueue); 238 out_uevent_exit: 239 dm_uevent_exit(); 240 241 return r; 242 } 243 244 static void local_exit(void) 245 { 246 flush_scheduled_work(); 247 destroy_workqueue(deferred_remove_workqueue); 248 249 unregister_blkdev(_major, _name); 250 dm_uevent_exit(); 251 252 _major = 0; 253 254 DMINFO("cleaned up"); 255 } 256 257 static int (*_inits[])(void) __initdata = { 258 local_init, 259 dm_target_init, 260 dm_linear_init, 261 dm_stripe_init, 262 dm_io_init, 263 dm_kcopyd_init, 264 dm_interface_init, 265 dm_statistics_init, 266 }; 267 268 static void (*_exits[])(void) = { 269 local_exit, 270 dm_target_exit, 271 dm_linear_exit, 272 dm_stripe_exit, 273 dm_io_exit, 274 dm_kcopyd_exit, 275 dm_interface_exit, 276 dm_statistics_exit, 277 }; 278 279 static int __init dm_init(void) 280 { 281 const int count = ARRAY_SIZE(_inits); 282 int r, i; 283 284 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 285 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 286 " Duplicate IMA measurements will not be recorded in the IMA log."); 287 #endif 288 289 for (i = 0; i < count; i++) { 290 r = _inits[i](); 291 if (r) 292 goto bad; 293 } 294 295 return 0; 296 bad: 297 while (i--) 298 _exits[i](); 299 300 return r; 301 } 302 303 static void __exit dm_exit(void) 304 { 305 int i = ARRAY_SIZE(_exits); 306 307 while (i--) 308 _exits[i](); 309 310 /* 311 * Should be empty by this point. 312 */ 313 idr_destroy(&_minor_idr); 314 } 315 316 /* 317 * Block device functions 318 */ 319 int dm_deleting_md(struct mapped_device *md) 320 { 321 return test_bit(DMF_DELETING, &md->flags); 322 } 323 324 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 325 { 326 struct mapped_device *md; 327 328 spin_lock(&_minor_lock); 329 330 md = bdev->bd_disk->private_data; 331 if (!md) 332 goto out; 333 334 if (test_bit(DMF_FREEING, &md->flags) || 335 dm_deleting_md(md)) { 336 md = NULL; 337 goto out; 338 } 339 340 dm_get(md); 341 atomic_inc(&md->open_count); 342 out: 343 spin_unlock(&_minor_lock); 344 345 return md ? 0 : -ENXIO; 346 } 347 348 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 349 { 350 struct mapped_device *md; 351 352 spin_lock(&_minor_lock); 353 354 md = disk->private_data; 355 if (WARN_ON(!md)) 356 goto out; 357 358 if (atomic_dec_and_test(&md->open_count) && 359 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 360 queue_work(deferred_remove_workqueue, &deferred_remove_work); 361 362 dm_put(md); 363 out: 364 spin_unlock(&_minor_lock); 365 } 366 367 int dm_open_count(struct mapped_device *md) 368 { 369 return atomic_read(&md->open_count); 370 } 371 372 /* 373 * Guarantees nothing is using the device before it's deleted. 374 */ 375 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 376 { 377 int r = 0; 378 379 spin_lock(&_minor_lock); 380 381 if (dm_open_count(md)) { 382 r = -EBUSY; 383 if (mark_deferred) 384 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 385 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 386 r = -EEXIST; 387 else 388 set_bit(DMF_DELETING, &md->flags); 389 390 spin_unlock(&_minor_lock); 391 392 return r; 393 } 394 395 int dm_cancel_deferred_remove(struct mapped_device *md) 396 { 397 int r = 0; 398 399 spin_lock(&_minor_lock); 400 401 if (test_bit(DMF_DELETING, &md->flags)) 402 r = -EBUSY; 403 else 404 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 405 406 spin_unlock(&_minor_lock); 407 408 return r; 409 } 410 411 static void do_deferred_remove(struct work_struct *w) 412 { 413 dm_deferred_remove(); 414 } 415 416 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 417 { 418 struct mapped_device *md = bdev->bd_disk->private_data; 419 420 return dm_get_geometry(md, geo); 421 } 422 423 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 424 struct block_device **bdev) 425 { 426 struct dm_target *tgt; 427 struct dm_table *map; 428 int r; 429 430 retry: 431 r = -ENOTTY; 432 map = dm_get_live_table(md, srcu_idx); 433 if (!map || !dm_table_get_size(map)) 434 return r; 435 436 /* We only support devices that have a single target */ 437 if (dm_table_get_num_targets(map) != 1) 438 return r; 439 440 tgt = dm_table_get_target(map, 0); 441 if (!tgt->type->prepare_ioctl) 442 return r; 443 444 if (dm_suspended_md(md)) 445 return -EAGAIN; 446 447 r = tgt->type->prepare_ioctl(tgt, bdev); 448 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 449 dm_put_live_table(md, *srcu_idx); 450 msleep(10); 451 goto retry; 452 } 453 454 return r; 455 } 456 457 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 458 { 459 dm_put_live_table(md, srcu_idx); 460 } 461 462 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 463 unsigned int cmd, unsigned long arg) 464 { 465 struct mapped_device *md = bdev->bd_disk->private_data; 466 int r, srcu_idx; 467 468 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 469 if (r < 0) 470 goto out; 471 472 if (r > 0) { 473 /* 474 * Target determined this ioctl is being issued against a 475 * subset of the parent bdev; require extra privileges. 476 */ 477 if (!capable(CAP_SYS_RAWIO)) { 478 DMDEBUG_LIMIT( 479 "%s: sending ioctl %x to DM device without required privilege.", 480 current->comm, cmd); 481 r = -ENOIOCTLCMD; 482 goto out; 483 } 484 } 485 486 if (!bdev->bd_disk->fops->ioctl) 487 r = -ENOTTY; 488 else 489 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 490 out: 491 dm_unprepare_ioctl(md, srcu_idx); 492 return r; 493 } 494 495 u64 dm_start_time_ns_from_clone(struct bio *bio) 496 { 497 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 498 } 499 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 500 501 static bool bio_is_flush_with_data(struct bio *bio) 502 { 503 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 504 } 505 506 static void dm_io_acct(struct dm_io *io, bool end) 507 { 508 struct dm_stats_aux *stats_aux = &io->stats_aux; 509 unsigned long start_time = io->start_time; 510 struct mapped_device *md = io->md; 511 struct bio *bio = io->orig_bio; 512 unsigned int sectors; 513 514 /* 515 * If REQ_PREFLUSH set, don't account payload, it will be 516 * submitted (and accounted) after this flush completes. 517 */ 518 if (bio_is_flush_with_data(bio)) 519 sectors = 0; 520 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT)))) 521 sectors = bio_sectors(bio); 522 else 523 sectors = io->sectors; 524 525 if (!end) 526 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio), 527 start_time); 528 else 529 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time); 530 531 if (static_branch_unlikely(&stats_enabled) && 532 unlikely(dm_stats_used(&md->stats))) { 533 sector_t sector; 534 535 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT))) 536 sector = bio->bi_iter.bi_sector; 537 else 538 sector = bio_end_sector(bio) - io->sector_offset; 539 540 dm_stats_account_io(&md->stats, bio_data_dir(bio), 541 sector, sectors, 542 end, start_time, stats_aux); 543 } 544 } 545 546 static void __dm_start_io_acct(struct dm_io *io) 547 { 548 dm_io_acct(io, false); 549 } 550 551 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 552 { 553 /* 554 * Ensure IO accounting is only ever started once. 555 */ 556 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 557 return; 558 559 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 560 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 561 dm_io_set_flag(io, DM_IO_ACCOUNTED); 562 } else { 563 unsigned long flags; 564 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 565 spin_lock_irqsave(&io->lock, flags); 566 dm_io_set_flag(io, DM_IO_ACCOUNTED); 567 spin_unlock_irqrestore(&io->lock, flags); 568 } 569 570 __dm_start_io_acct(io); 571 } 572 573 static void dm_end_io_acct(struct dm_io *io) 574 { 575 dm_io_acct(io, true); 576 } 577 578 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 579 { 580 struct dm_io *io; 581 struct dm_target_io *tio; 582 struct bio *clone; 583 584 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->io_bs); 585 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 586 clone->bi_bdev = md->disk->part0; 587 588 tio = clone_to_tio(clone); 589 tio->flags = 0; 590 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 591 tio->io = NULL; 592 593 io = container_of(tio, struct dm_io, tio); 594 io->magic = DM_IO_MAGIC; 595 io->status = BLK_STS_OK; 596 597 /* one ref is for submission, the other is for completion */ 598 atomic_set(&io->io_count, 2); 599 this_cpu_inc(*md->pending_io); 600 io->orig_bio = bio; 601 io->md = md; 602 spin_lock_init(&io->lock); 603 io->start_time = jiffies; 604 io->flags = 0; 605 606 if (static_branch_unlikely(&stats_enabled)) 607 dm_stats_record_start(&md->stats, &io->stats_aux); 608 609 return io; 610 } 611 612 static void free_io(struct dm_io *io) 613 { 614 bio_put(&io->tio.clone); 615 } 616 617 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 618 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 619 { 620 struct dm_target_io *tio; 621 struct bio *clone; 622 623 if (!ci->io->tio.io) { 624 /* the dm_target_io embedded in ci->io is available */ 625 tio = &ci->io->tio; 626 /* alloc_io() already initialized embedded clone */ 627 clone = &tio->clone; 628 } else { 629 struct mapped_device *md = ci->io->md; 630 631 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, &md->bs); 632 if (!clone) 633 return NULL; 634 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 635 clone->bi_bdev = md->disk->part0; 636 637 /* REQ_DM_POLL_LIST shouldn't be inherited */ 638 clone->bi_opf &= ~REQ_DM_POLL_LIST; 639 640 tio = clone_to_tio(clone); 641 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 642 } 643 644 tio->magic = DM_TIO_MAGIC; 645 tio->io = ci->io; 646 tio->ti = ti; 647 tio->target_bio_nr = target_bio_nr; 648 tio->len_ptr = len; 649 tio->old_sector = 0; 650 651 if (len) { 652 clone->bi_iter.bi_size = to_bytes(*len); 653 if (bio_integrity(clone)) 654 bio_integrity_trim(clone); 655 } 656 657 return clone; 658 } 659 660 static void free_tio(struct bio *clone) 661 { 662 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 663 return; 664 bio_put(clone); 665 } 666 667 /* 668 * Add the bio to the list of deferred io. 669 */ 670 static void queue_io(struct mapped_device *md, struct bio *bio) 671 { 672 unsigned long flags; 673 674 spin_lock_irqsave(&md->deferred_lock, flags); 675 bio_list_add(&md->deferred, bio); 676 spin_unlock_irqrestore(&md->deferred_lock, flags); 677 queue_work(md->wq, &md->work); 678 } 679 680 /* 681 * Everyone (including functions in this file), should use this 682 * function to access the md->map field, and make sure they call 683 * dm_put_live_table() when finished. 684 */ 685 struct dm_table *dm_get_live_table(struct mapped_device *md, 686 int *srcu_idx) __acquires(md->io_barrier) 687 { 688 *srcu_idx = srcu_read_lock(&md->io_barrier); 689 690 return srcu_dereference(md->map, &md->io_barrier); 691 } 692 693 void dm_put_live_table(struct mapped_device *md, 694 int srcu_idx) __releases(md->io_barrier) 695 { 696 srcu_read_unlock(&md->io_barrier, srcu_idx); 697 } 698 699 void dm_sync_table(struct mapped_device *md) 700 { 701 synchronize_srcu(&md->io_barrier); 702 synchronize_rcu_expedited(); 703 } 704 705 /* 706 * A fast alternative to dm_get_live_table/dm_put_live_table. 707 * The caller must not block between these two functions. 708 */ 709 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 710 { 711 rcu_read_lock(); 712 return rcu_dereference(md->map); 713 } 714 715 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 716 { 717 rcu_read_unlock(); 718 } 719 720 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 721 int *srcu_idx, struct bio *bio) 722 { 723 if (bio->bi_opf & REQ_NOWAIT) 724 return dm_get_live_table_fast(md); 725 else 726 return dm_get_live_table(md, srcu_idx); 727 } 728 729 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 730 struct bio *bio) 731 { 732 if (bio->bi_opf & REQ_NOWAIT) 733 dm_put_live_table_fast(md); 734 else 735 dm_put_live_table(md, srcu_idx); 736 } 737 738 static char *_dm_claim_ptr = "I belong to device-mapper"; 739 740 /* 741 * Open a table device so we can use it as a map destination. 742 */ 743 static int open_table_device(struct table_device *td, dev_t dev, 744 struct mapped_device *md) 745 { 746 struct block_device *bdev; 747 u64 part_off; 748 int r; 749 750 BUG_ON(td->dm_dev.bdev); 751 752 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 753 if (IS_ERR(bdev)) 754 return PTR_ERR(bdev); 755 756 r = bd_link_disk_holder(bdev, dm_disk(md)); 757 if (r) { 758 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 759 return r; 760 } 761 762 td->dm_dev.bdev = bdev; 763 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 764 return 0; 765 } 766 767 /* 768 * Close a table device that we've been using. 769 */ 770 static void close_table_device(struct table_device *td, struct mapped_device *md) 771 { 772 if (!td->dm_dev.bdev) 773 return; 774 775 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 776 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 777 put_dax(td->dm_dev.dax_dev); 778 td->dm_dev.bdev = NULL; 779 td->dm_dev.dax_dev = NULL; 780 } 781 782 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 783 fmode_t mode) 784 { 785 struct table_device *td; 786 787 list_for_each_entry(td, l, list) 788 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 789 return td; 790 791 return NULL; 792 } 793 794 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 795 struct dm_dev **result) 796 { 797 int r; 798 struct table_device *td; 799 800 mutex_lock(&md->table_devices_lock); 801 td = find_table_device(&md->table_devices, dev, mode); 802 if (!td) { 803 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 804 if (!td) { 805 mutex_unlock(&md->table_devices_lock); 806 return -ENOMEM; 807 } 808 809 td->dm_dev.mode = mode; 810 td->dm_dev.bdev = NULL; 811 812 if ((r = open_table_device(td, dev, md))) { 813 mutex_unlock(&md->table_devices_lock); 814 kfree(td); 815 return r; 816 } 817 818 format_dev_t(td->dm_dev.name, dev); 819 820 refcount_set(&td->count, 1); 821 list_add(&td->list, &md->table_devices); 822 } else { 823 refcount_inc(&td->count); 824 } 825 mutex_unlock(&md->table_devices_lock); 826 827 *result = &td->dm_dev; 828 return 0; 829 } 830 831 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 832 { 833 struct table_device *td = container_of(d, struct table_device, dm_dev); 834 835 mutex_lock(&md->table_devices_lock); 836 if (refcount_dec_and_test(&td->count)) { 837 close_table_device(td, md); 838 list_del(&td->list); 839 kfree(td); 840 } 841 mutex_unlock(&md->table_devices_lock); 842 } 843 844 static void free_table_devices(struct list_head *devices) 845 { 846 struct list_head *tmp, *next; 847 848 list_for_each_safe(tmp, next, devices) { 849 struct table_device *td = list_entry(tmp, struct table_device, list); 850 851 DMWARN("dm_destroy: %s still exists with %d references", 852 td->dm_dev.name, refcount_read(&td->count)); 853 kfree(td); 854 } 855 } 856 857 /* 858 * Get the geometry associated with a dm device 859 */ 860 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 861 { 862 *geo = md->geometry; 863 864 return 0; 865 } 866 867 /* 868 * Set the geometry of a device. 869 */ 870 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 871 { 872 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 873 874 if (geo->start > sz) { 875 DMWARN("Start sector is beyond the geometry limits."); 876 return -EINVAL; 877 } 878 879 md->geometry = *geo; 880 881 return 0; 882 } 883 884 static int __noflush_suspending(struct mapped_device *md) 885 { 886 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 887 } 888 889 static void dm_io_complete(struct dm_io *io) 890 { 891 blk_status_t io_error; 892 struct mapped_device *md = io->md; 893 struct bio *bio = io->orig_bio; 894 895 if (io->status == BLK_STS_DM_REQUEUE) { 896 unsigned long flags; 897 /* 898 * Target requested pushing back the I/O. 899 */ 900 spin_lock_irqsave(&md->deferred_lock, flags); 901 if (__noflush_suspending(md) && 902 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 903 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 904 bio_list_add_head(&md->deferred, bio); 905 } else { 906 /* 907 * noflush suspend was interrupted or this is 908 * a write to a zoned target. 909 */ 910 io->status = BLK_STS_IOERR; 911 } 912 spin_unlock_irqrestore(&md->deferred_lock, flags); 913 } 914 915 io_error = io->status; 916 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 917 dm_end_io_acct(io); 918 else if (!io_error) { 919 /* 920 * Must handle target that DM_MAPIO_SUBMITTED only to 921 * then bio_endio() rather than dm_submit_bio_remap() 922 */ 923 __dm_start_io_acct(io); 924 dm_end_io_acct(io); 925 } 926 free_io(io); 927 smp_wmb(); 928 this_cpu_dec(*md->pending_io); 929 930 /* nudge anyone waiting on suspend queue */ 931 if (unlikely(wq_has_sleeper(&md->wait))) 932 wake_up(&md->wait); 933 934 if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) { 935 if (bio->bi_opf & REQ_POLLED) { 936 /* 937 * Upper layer won't help us poll split bio (io->orig_bio 938 * may only reflect a subset of the pre-split original) 939 * so clear REQ_POLLED in case of requeue. 940 */ 941 bio_clear_polled(bio); 942 if (io_error == BLK_STS_AGAIN) { 943 /* io_uring doesn't handle BLK_STS_AGAIN (yet) */ 944 queue_io(md, bio); 945 } 946 } 947 return; 948 } 949 950 if (bio_is_flush_with_data(bio)) { 951 /* 952 * Preflush done for flush with data, reissue 953 * without REQ_PREFLUSH. 954 */ 955 bio->bi_opf &= ~REQ_PREFLUSH; 956 queue_io(md, bio); 957 } else { 958 /* done with normal IO or empty flush */ 959 if (io_error) 960 bio->bi_status = io_error; 961 bio_endio(bio); 962 } 963 } 964 965 /* 966 * Decrements the number of outstanding ios that a bio has been 967 * cloned into, completing the original io if necc. 968 */ 969 static inline void __dm_io_dec_pending(struct dm_io *io) 970 { 971 if (atomic_dec_and_test(&io->io_count)) 972 dm_io_complete(io); 973 } 974 975 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 976 { 977 unsigned long flags; 978 979 /* Push-back supersedes any I/O errors */ 980 spin_lock_irqsave(&io->lock, flags); 981 if (!(io->status == BLK_STS_DM_REQUEUE && 982 __noflush_suspending(io->md))) { 983 io->status = error; 984 } 985 spin_unlock_irqrestore(&io->lock, flags); 986 } 987 988 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 989 { 990 if (unlikely(error)) 991 dm_io_set_error(io, error); 992 993 __dm_io_dec_pending(io); 994 } 995 996 void disable_discard(struct mapped_device *md) 997 { 998 struct queue_limits *limits = dm_get_queue_limits(md); 999 1000 /* device doesn't really support DISCARD, disable it */ 1001 limits->max_discard_sectors = 0; 1002 } 1003 1004 void disable_write_zeroes(struct mapped_device *md) 1005 { 1006 struct queue_limits *limits = dm_get_queue_limits(md); 1007 1008 /* device doesn't really support WRITE ZEROES, disable it */ 1009 limits->max_write_zeroes_sectors = 0; 1010 } 1011 1012 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1013 { 1014 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1015 } 1016 1017 static void clone_endio(struct bio *bio) 1018 { 1019 blk_status_t error = bio->bi_status; 1020 struct dm_target_io *tio = clone_to_tio(bio); 1021 struct dm_target *ti = tio->ti; 1022 dm_endio_fn endio = ti->type->end_io; 1023 struct dm_io *io = tio->io; 1024 struct mapped_device *md = io->md; 1025 1026 if (likely(bio->bi_bdev != md->disk->part0)) { 1027 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1028 1029 if (unlikely(error == BLK_STS_TARGET)) { 1030 if (bio_op(bio) == REQ_OP_DISCARD && 1031 !bdev_max_discard_sectors(bio->bi_bdev)) 1032 disable_discard(md); 1033 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1034 !q->limits.max_write_zeroes_sectors) 1035 disable_write_zeroes(md); 1036 } 1037 1038 if (static_branch_unlikely(&zoned_enabled) && 1039 unlikely(blk_queue_is_zoned(q))) 1040 dm_zone_endio(io, bio); 1041 } 1042 1043 if (endio) { 1044 int r = endio(ti, bio, &error); 1045 switch (r) { 1046 case DM_ENDIO_REQUEUE: 1047 if (static_branch_unlikely(&zoned_enabled)) { 1048 /* 1049 * Requeuing writes to a sequential zone of a zoned 1050 * target will break the sequential write pattern: 1051 * fail such IO. 1052 */ 1053 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1054 error = BLK_STS_IOERR; 1055 else 1056 error = BLK_STS_DM_REQUEUE; 1057 } else 1058 error = BLK_STS_DM_REQUEUE; 1059 fallthrough; 1060 case DM_ENDIO_DONE: 1061 break; 1062 case DM_ENDIO_INCOMPLETE: 1063 /* The target will handle the io */ 1064 return; 1065 default: 1066 DMWARN("unimplemented target endio return value: %d", r); 1067 BUG(); 1068 } 1069 } 1070 1071 if (static_branch_unlikely(&swap_bios_enabled) && 1072 unlikely(swap_bios_limit(ti, bio))) 1073 up(&md->swap_bios_semaphore); 1074 1075 free_tio(bio); 1076 dm_io_dec_pending(io, error); 1077 } 1078 1079 /* 1080 * Return maximum size of I/O possible at the supplied sector up to the current 1081 * target boundary. 1082 */ 1083 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1084 sector_t target_offset) 1085 { 1086 return ti->len - target_offset; 1087 } 1088 1089 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 1090 { 1091 sector_t target_offset = dm_target_offset(ti, sector); 1092 sector_t len = max_io_len_target_boundary(ti, target_offset); 1093 sector_t max_len; 1094 1095 /* 1096 * Does the target need to split IO even further? 1097 * - varied (per target) IO splitting is a tenet of DM; this 1098 * explains why stacked chunk_sectors based splitting via 1099 * blk_max_size_offset() isn't possible here. So pass in 1100 * ti->max_io_len to override stacked chunk_sectors. 1101 */ 1102 if (ti->max_io_len) { 1103 max_len = blk_max_size_offset(ti->table->md->queue, 1104 target_offset, ti->max_io_len); 1105 if (len > max_len) 1106 len = max_len; 1107 } 1108 1109 return len; 1110 } 1111 1112 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1113 { 1114 if (len > UINT_MAX) { 1115 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1116 (unsigned long long)len, UINT_MAX); 1117 ti->error = "Maximum size of target IO is too large"; 1118 return -EINVAL; 1119 } 1120 1121 ti->max_io_len = (uint32_t) len; 1122 1123 return 0; 1124 } 1125 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1126 1127 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1128 sector_t sector, int *srcu_idx) 1129 __acquires(md->io_barrier) 1130 { 1131 struct dm_table *map; 1132 struct dm_target *ti; 1133 1134 map = dm_get_live_table(md, srcu_idx); 1135 if (!map) 1136 return NULL; 1137 1138 ti = dm_table_find_target(map, sector); 1139 if (!ti) 1140 return NULL; 1141 1142 return ti; 1143 } 1144 1145 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1146 long nr_pages, enum dax_access_mode mode, void **kaddr, 1147 pfn_t *pfn) 1148 { 1149 struct mapped_device *md = dax_get_private(dax_dev); 1150 sector_t sector = pgoff * PAGE_SECTORS; 1151 struct dm_target *ti; 1152 long len, ret = -EIO; 1153 int srcu_idx; 1154 1155 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1156 1157 if (!ti) 1158 goto out; 1159 if (!ti->type->direct_access) 1160 goto out; 1161 len = max_io_len(ti, sector) / PAGE_SECTORS; 1162 if (len < 1) 1163 goto out; 1164 nr_pages = min(len, nr_pages); 1165 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1166 1167 out: 1168 dm_put_live_table(md, srcu_idx); 1169 1170 return ret; 1171 } 1172 1173 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1174 size_t nr_pages) 1175 { 1176 struct mapped_device *md = dax_get_private(dax_dev); 1177 sector_t sector = pgoff * PAGE_SECTORS; 1178 struct dm_target *ti; 1179 int ret = -EIO; 1180 int srcu_idx; 1181 1182 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1183 1184 if (!ti) 1185 goto out; 1186 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1187 /* 1188 * ->zero_page_range() is mandatory dax operation. If we are 1189 * here, something is wrong. 1190 */ 1191 goto out; 1192 } 1193 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1194 out: 1195 dm_put_live_table(md, srcu_idx); 1196 1197 return ret; 1198 } 1199 1200 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1201 void *addr, size_t bytes, struct iov_iter *i) 1202 { 1203 struct mapped_device *md = dax_get_private(dax_dev); 1204 sector_t sector = pgoff * PAGE_SECTORS; 1205 struct dm_target *ti; 1206 int srcu_idx; 1207 long ret = 0; 1208 1209 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1210 if (!ti || !ti->type->dax_recovery_write) 1211 goto out; 1212 1213 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1214 out: 1215 dm_put_live_table(md, srcu_idx); 1216 return ret; 1217 } 1218 1219 /* 1220 * A target may call dm_accept_partial_bio only from the map routine. It is 1221 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1222 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1223 * __send_duplicate_bios(). 1224 * 1225 * dm_accept_partial_bio informs the dm that the target only wants to process 1226 * additional n_sectors sectors of the bio and the rest of the data should be 1227 * sent in a next bio. 1228 * 1229 * A diagram that explains the arithmetics: 1230 * +--------------------+---------------+-------+ 1231 * | 1 | 2 | 3 | 1232 * +--------------------+---------------+-------+ 1233 * 1234 * <-------------- *tio->len_ptr ---------------> 1235 * <----- bio_sectors -----> 1236 * <-- n_sectors --> 1237 * 1238 * Region 1 was already iterated over with bio_advance or similar function. 1239 * (it may be empty if the target doesn't use bio_advance) 1240 * Region 2 is the remaining bio size that the target wants to process. 1241 * (it may be empty if region 1 is non-empty, although there is no reason 1242 * to make it empty) 1243 * The target requires that region 3 is to be sent in the next bio. 1244 * 1245 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1246 * the partially processed part (the sum of regions 1+2) must be the same for all 1247 * copies of the bio. 1248 */ 1249 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1250 { 1251 struct dm_target_io *tio = clone_to_tio(bio); 1252 unsigned bio_sectors = bio_sectors(bio); 1253 1254 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1255 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1256 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1257 BUG_ON(bio_sectors > *tio->len_ptr); 1258 BUG_ON(n_sectors > bio_sectors); 1259 1260 *tio->len_ptr -= bio_sectors - n_sectors; 1261 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1262 1263 /* 1264 * __split_and_process_bio() may have already saved mapped part 1265 * for accounting but it is being reduced so update accordingly. 1266 */ 1267 dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT); 1268 tio->io->sectors = n_sectors; 1269 } 1270 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1271 1272 /* 1273 * @clone: clone bio that DM core passed to target's .map function 1274 * @tgt_clone: clone of @clone bio that target needs submitted 1275 * 1276 * Targets should use this interface to submit bios they take 1277 * ownership of when returning DM_MAPIO_SUBMITTED. 1278 * 1279 * Target should also enable ti->accounts_remapped_io 1280 */ 1281 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1282 { 1283 struct dm_target_io *tio = clone_to_tio(clone); 1284 struct dm_io *io = tio->io; 1285 1286 /* establish bio that will get submitted */ 1287 if (!tgt_clone) 1288 tgt_clone = clone; 1289 1290 /* 1291 * Account io->origin_bio to DM dev on behalf of target 1292 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1293 */ 1294 dm_start_io_acct(io, clone); 1295 1296 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1297 tio->old_sector); 1298 submit_bio_noacct(tgt_clone); 1299 } 1300 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1301 1302 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1303 { 1304 mutex_lock(&md->swap_bios_lock); 1305 while (latch < md->swap_bios) { 1306 cond_resched(); 1307 down(&md->swap_bios_semaphore); 1308 md->swap_bios--; 1309 } 1310 while (latch > md->swap_bios) { 1311 cond_resched(); 1312 up(&md->swap_bios_semaphore); 1313 md->swap_bios++; 1314 } 1315 mutex_unlock(&md->swap_bios_lock); 1316 } 1317 1318 static void __map_bio(struct bio *clone) 1319 { 1320 struct dm_target_io *tio = clone_to_tio(clone); 1321 struct dm_target *ti = tio->ti; 1322 struct dm_io *io = tio->io; 1323 struct mapped_device *md = io->md; 1324 int r; 1325 1326 clone->bi_end_io = clone_endio; 1327 1328 /* 1329 * Map the clone. 1330 */ 1331 tio->old_sector = clone->bi_iter.bi_sector; 1332 1333 if (static_branch_unlikely(&swap_bios_enabled) && 1334 unlikely(swap_bios_limit(ti, clone))) { 1335 int latch = get_swap_bios(); 1336 if (unlikely(latch != md->swap_bios)) 1337 __set_swap_bios_limit(md, latch); 1338 down(&md->swap_bios_semaphore); 1339 } 1340 1341 if (static_branch_unlikely(&zoned_enabled)) { 1342 /* 1343 * Check if the IO needs a special mapping due to zone append 1344 * emulation on zoned target. In this case, dm_zone_map_bio() 1345 * calls the target map operation. 1346 */ 1347 if (unlikely(dm_emulate_zone_append(md))) 1348 r = dm_zone_map_bio(tio); 1349 else 1350 r = ti->type->map(ti, clone); 1351 } else 1352 r = ti->type->map(ti, clone); 1353 1354 switch (r) { 1355 case DM_MAPIO_SUBMITTED: 1356 /* target has assumed ownership of this io */ 1357 if (!ti->accounts_remapped_io) 1358 dm_start_io_acct(io, clone); 1359 break; 1360 case DM_MAPIO_REMAPPED: 1361 dm_submit_bio_remap(clone, NULL); 1362 break; 1363 case DM_MAPIO_KILL: 1364 case DM_MAPIO_REQUEUE: 1365 if (static_branch_unlikely(&swap_bios_enabled) && 1366 unlikely(swap_bios_limit(ti, clone))) 1367 up(&md->swap_bios_semaphore); 1368 free_tio(clone); 1369 if (r == DM_MAPIO_KILL) 1370 dm_io_dec_pending(io, BLK_STS_IOERR); 1371 else 1372 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1373 break; 1374 default: 1375 DMWARN("unimplemented target map return value: %d", r); 1376 BUG(); 1377 } 1378 } 1379 1380 static void setup_split_accounting(struct clone_info *ci, unsigned len) 1381 { 1382 struct dm_io *io = ci->io; 1383 1384 if (ci->sector_count > len) { 1385 /* 1386 * Split needed, save the mapped part for accounting. 1387 * NOTE: dm_accept_partial_bio() will update accordingly. 1388 */ 1389 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1390 io->sectors = len; 1391 } 1392 1393 if (static_branch_unlikely(&stats_enabled) && 1394 unlikely(dm_stats_used(&io->md->stats))) { 1395 /* 1396 * Save bi_sector in terms of its offset from end of 1397 * original bio, only needed for DM-stats' benefit. 1398 * - saved regardless of whether split needed so that 1399 * dm_accept_partial_bio() doesn't need to. 1400 */ 1401 io->sector_offset = bio_end_sector(ci->bio) - ci->sector; 1402 } 1403 } 1404 1405 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1406 struct dm_target *ti, unsigned num_bios) 1407 { 1408 struct bio *bio; 1409 int try; 1410 1411 for (try = 0; try < 2; try++) { 1412 int bio_nr; 1413 1414 if (try) 1415 mutex_lock(&ci->io->md->table_devices_lock); 1416 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1417 bio = alloc_tio(ci, ti, bio_nr, NULL, 1418 try ? GFP_NOIO : GFP_NOWAIT); 1419 if (!bio) 1420 break; 1421 1422 bio_list_add(blist, bio); 1423 } 1424 if (try) 1425 mutex_unlock(&ci->io->md->table_devices_lock); 1426 if (bio_nr == num_bios) 1427 return; 1428 1429 while ((bio = bio_list_pop(blist))) 1430 free_tio(bio); 1431 } 1432 } 1433 1434 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1435 unsigned num_bios, unsigned *len) 1436 { 1437 struct bio_list blist = BIO_EMPTY_LIST; 1438 struct bio *clone; 1439 int ret = 0; 1440 1441 switch (num_bios) { 1442 case 0: 1443 break; 1444 case 1: 1445 if (len) 1446 setup_split_accounting(ci, *len); 1447 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1448 __map_bio(clone); 1449 ret = 1; 1450 break; 1451 default: 1452 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1453 alloc_multiple_bios(&blist, ci, ti, num_bios); 1454 while ((clone = bio_list_pop(&blist))) { 1455 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1456 __map_bio(clone); 1457 ret += 1; 1458 } 1459 break; 1460 } 1461 1462 return ret; 1463 } 1464 1465 static void __send_empty_flush(struct clone_info *ci) 1466 { 1467 unsigned target_nr = 0; 1468 struct dm_target *ti; 1469 struct bio flush_bio; 1470 1471 /* 1472 * Use an on-stack bio for this, it's safe since we don't 1473 * need to reference it after submit. It's just used as 1474 * the basis for the clone(s). 1475 */ 1476 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1477 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1478 1479 ci->bio = &flush_bio; 1480 ci->sector_count = 0; 1481 ci->io->tio.clone.bi_iter.bi_size = 0; 1482 1483 while ((ti = dm_table_get_target(ci->map, target_nr++))) { 1484 int bios; 1485 1486 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1487 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1488 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1489 } 1490 1491 /* 1492 * alloc_io() takes one extra reference for submission, so the 1493 * reference won't reach 0 without the following subtraction 1494 */ 1495 atomic_sub(1, &ci->io->io_count); 1496 1497 bio_uninit(ci->bio); 1498 } 1499 1500 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1501 unsigned num_bios) 1502 { 1503 unsigned len; 1504 int bios; 1505 1506 len = min_t(sector_t, ci->sector_count, 1507 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1508 1509 atomic_add(num_bios, &ci->io->io_count); 1510 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1511 /* 1512 * alloc_io() takes one extra reference for submission, so the 1513 * reference won't reach 0 without the following (+1) subtraction 1514 */ 1515 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1516 1517 ci->sector += len; 1518 ci->sector_count -= len; 1519 } 1520 1521 static bool is_abnormal_io(struct bio *bio) 1522 { 1523 unsigned int op = bio_op(bio); 1524 1525 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1526 switch (op) { 1527 case REQ_OP_DISCARD: 1528 case REQ_OP_SECURE_ERASE: 1529 case REQ_OP_WRITE_ZEROES: 1530 return true; 1531 default: 1532 break; 1533 } 1534 } 1535 1536 return false; 1537 } 1538 1539 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1540 struct dm_target *ti) 1541 { 1542 unsigned num_bios = 0; 1543 1544 switch (bio_op(ci->bio)) { 1545 case REQ_OP_DISCARD: 1546 num_bios = ti->num_discard_bios; 1547 break; 1548 case REQ_OP_SECURE_ERASE: 1549 num_bios = ti->num_secure_erase_bios; 1550 break; 1551 case REQ_OP_WRITE_ZEROES: 1552 num_bios = ti->num_write_zeroes_bios; 1553 break; 1554 } 1555 1556 /* 1557 * Even though the device advertised support for this type of 1558 * request, that does not mean every target supports it, and 1559 * reconfiguration might also have changed that since the 1560 * check was performed. 1561 */ 1562 if (unlikely(!num_bios)) 1563 return BLK_STS_NOTSUPP; 1564 1565 __send_changing_extent_only(ci, ti, num_bios); 1566 return BLK_STS_OK; 1567 } 1568 1569 /* 1570 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1571 * associated with this bio, and this bio's bi_private needs to be 1572 * stored in dm_io->data before the reuse. 1573 * 1574 * bio->bi_private is owned by fs or upper layer, so block layer won't 1575 * touch it after splitting. Meantime it won't be changed by anyone after 1576 * bio is submitted. So this reuse is safe. 1577 */ 1578 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1579 { 1580 return (struct dm_io **)&bio->bi_private; 1581 } 1582 1583 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1584 { 1585 struct dm_io **head = dm_poll_list_head(bio); 1586 1587 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1588 bio->bi_opf |= REQ_DM_POLL_LIST; 1589 /* 1590 * Save .bi_private into dm_io, so that we can reuse 1591 * .bi_private as dm_io list head for storing dm_io list 1592 */ 1593 io->data = bio->bi_private; 1594 1595 /* tell block layer to poll for completion */ 1596 bio->bi_cookie = ~BLK_QC_T_NONE; 1597 1598 io->next = NULL; 1599 } else { 1600 /* 1601 * bio recursed due to split, reuse original poll list, 1602 * and save bio->bi_private too. 1603 */ 1604 io->data = (*head)->data; 1605 io->next = *head; 1606 } 1607 1608 *head = io; 1609 } 1610 1611 /* 1612 * Select the correct strategy for processing a non-flush bio. 1613 */ 1614 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1615 { 1616 struct bio *clone; 1617 struct dm_target *ti; 1618 unsigned len; 1619 1620 ti = dm_table_find_target(ci->map, ci->sector); 1621 if (unlikely(!ti)) 1622 return BLK_STS_IOERR; 1623 else if (unlikely(ci->is_abnormal_io)) 1624 return __process_abnormal_io(ci, ti); 1625 1626 /* 1627 * Only support bio polling for normal IO, and the target io is 1628 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1629 */ 1630 ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED; 1631 1632 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1633 setup_split_accounting(ci, len); 1634 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1635 __map_bio(clone); 1636 1637 ci->sector += len; 1638 ci->sector_count -= len; 1639 1640 return BLK_STS_OK; 1641 } 1642 1643 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1644 struct dm_table *map, struct bio *bio, bool is_abnormal) 1645 { 1646 ci->map = map; 1647 ci->io = alloc_io(md, bio); 1648 ci->bio = bio; 1649 ci->is_abnormal_io = is_abnormal; 1650 ci->submit_as_polled = false; 1651 ci->sector = bio->bi_iter.bi_sector; 1652 ci->sector_count = bio_sectors(bio); 1653 1654 /* Shouldn't happen but sector_count was being set to 0 so... */ 1655 if (static_branch_unlikely(&zoned_enabled) && 1656 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1657 ci->sector_count = 0; 1658 } 1659 1660 /* 1661 * Entry point to split a bio into clones and submit them to the targets. 1662 */ 1663 static void dm_split_and_process_bio(struct mapped_device *md, 1664 struct dm_table *map, struct bio *bio) 1665 { 1666 struct clone_info ci; 1667 struct dm_io *io; 1668 blk_status_t error = BLK_STS_OK; 1669 bool is_abnormal; 1670 1671 is_abnormal = is_abnormal_io(bio); 1672 if (unlikely(is_abnormal)) { 1673 /* 1674 * Use blk_queue_split() for abnormal IO (e.g. discard, etc) 1675 * otherwise associated queue_limits won't be imposed. 1676 */ 1677 blk_queue_split(&bio); 1678 } 1679 1680 init_clone_info(&ci, md, map, bio, is_abnormal); 1681 io = ci.io; 1682 1683 if (bio->bi_opf & REQ_PREFLUSH) { 1684 __send_empty_flush(&ci); 1685 /* dm_io_complete submits any data associated with flush */ 1686 goto out; 1687 } 1688 1689 error = __split_and_process_bio(&ci); 1690 if (error || !ci.sector_count) 1691 goto out; 1692 /* 1693 * Remainder must be passed to submit_bio_noacct() so it gets handled 1694 * *after* bios already submitted have been completely processed. 1695 */ 1696 bio_trim(bio, io->sectors, ci.sector_count); 1697 trace_block_split(bio, bio->bi_iter.bi_sector); 1698 bio_inc_remaining(bio); 1699 submit_bio_noacct(bio); 1700 out: 1701 /* 1702 * Drop the extra reference count for non-POLLED bio, and hold one 1703 * reference for POLLED bio, which will be released in dm_poll_bio 1704 * 1705 * Add every dm_io instance into the dm_io list head which is stored 1706 * in bio->bi_private, so that dm_poll_bio can poll them all. 1707 */ 1708 if (error || !ci.submit_as_polled) { 1709 /* 1710 * In case of submission failure, the extra reference for 1711 * submitting io isn't consumed yet 1712 */ 1713 if (error) 1714 atomic_dec(&io->io_count); 1715 dm_io_dec_pending(io, error); 1716 } else 1717 dm_queue_poll_io(bio, io); 1718 } 1719 1720 static void dm_submit_bio(struct bio *bio) 1721 { 1722 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1723 int srcu_idx; 1724 struct dm_table *map; 1725 1726 map = dm_get_live_table_bio(md, &srcu_idx, bio); 1727 1728 /* If suspended, or map not yet available, queue this IO for later */ 1729 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1730 unlikely(!map)) { 1731 if (bio->bi_opf & REQ_NOWAIT) 1732 bio_wouldblock_error(bio); 1733 else if (bio->bi_opf & REQ_RAHEAD) 1734 bio_io_error(bio); 1735 else 1736 queue_io(md, bio); 1737 goto out; 1738 } 1739 1740 dm_split_and_process_bio(md, map, bio); 1741 out: 1742 dm_put_live_table_bio(md, srcu_idx, bio); 1743 } 1744 1745 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1746 unsigned int flags) 1747 { 1748 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1749 1750 /* don't poll if the mapped io is done */ 1751 if (atomic_read(&io->io_count) > 1) 1752 bio_poll(&io->tio.clone, iob, flags); 1753 1754 /* bio_poll holds the last reference */ 1755 return atomic_read(&io->io_count) == 1; 1756 } 1757 1758 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1759 unsigned int flags) 1760 { 1761 struct dm_io **head = dm_poll_list_head(bio); 1762 struct dm_io *list = *head; 1763 struct dm_io *tmp = NULL; 1764 struct dm_io *curr, *next; 1765 1766 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1767 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1768 return 0; 1769 1770 WARN_ON_ONCE(!list); 1771 1772 /* 1773 * Restore .bi_private before possibly completing dm_io. 1774 * 1775 * bio_poll() is only possible once @bio has been completely 1776 * submitted via submit_bio_noacct()'s depth-first submission. 1777 * So there is no dm_queue_poll_io() race associated with 1778 * clearing REQ_DM_POLL_LIST here. 1779 */ 1780 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1781 bio->bi_private = list->data; 1782 1783 for (curr = list, next = curr->next; curr; curr = next, next = 1784 curr ? curr->next : NULL) { 1785 if (dm_poll_dm_io(curr, iob, flags)) { 1786 /* 1787 * clone_endio() has already occurred, so no 1788 * error handling is needed here. 1789 */ 1790 __dm_io_dec_pending(curr); 1791 } else { 1792 curr->next = tmp; 1793 tmp = curr; 1794 } 1795 } 1796 1797 /* Not done? */ 1798 if (tmp) { 1799 bio->bi_opf |= REQ_DM_POLL_LIST; 1800 /* Reset bio->bi_private to dm_io list head */ 1801 *head = tmp; 1802 return 0; 1803 } 1804 return 1; 1805 } 1806 1807 /*----------------------------------------------------------------- 1808 * An IDR is used to keep track of allocated minor numbers. 1809 *---------------------------------------------------------------*/ 1810 static void free_minor(int minor) 1811 { 1812 spin_lock(&_minor_lock); 1813 idr_remove(&_minor_idr, minor); 1814 spin_unlock(&_minor_lock); 1815 } 1816 1817 /* 1818 * See if the device with a specific minor # is free. 1819 */ 1820 static int specific_minor(int minor) 1821 { 1822 int r; 1823 1824 if (minor >= (1 << MINORBITS)) 1825 return -EINVAL; 1826 1827 idr_preload(GFP_KERNEL); 1828 spin_lock(&_minor_lock); 1829 1830 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1831 1832 spin_unlock(&_minor_lock); 1833 idr_preload_end(); 1834 if (r < 0) 1835 return r == -ENOSPC ? -EBUSY : r; 1836 return 0; 1837 } 1838 1839 static int next_free_minor(int *minor) 1840 { 1841 int r; 1842 1843 idr_preload(GFP_KERNEL); 1844 spin_lock(&_minor_lock); 1845 1846 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1847 1848 spin_unlock(&_minor_lock); 1849 idr_preload_end(); 1850 if (r < 0) 1851 return r; 1852 *minor = r; 1853 return 0; 1854 } 1855 1856 static const struct block_device_operations dm_blk_dops; 1857 static const struct block_device_operations dm_rq_blk_dops; 1858 static const struct dax_operations dm_dax_ops; 1859 1860 static void dm_wq_work(struct work_struct *work); 1861 1862 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1863 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1864 { 1865 dm_destroy_crypto_profile(q->crypto_profile); 1866 } 1867 1868 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1869 1870 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1871 { 1872 } 1873 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1874 1875 static void cleanup_mapped_device(struct mapped_device *md) 1876 { 1877 if (md->wq) 1878 destroy_workqueue(md->wq); 1879 bioset_exit(&md->bs); 1880 bioset_exit(&md->io_bs); 1881 1882 if (md->dax_dev) { 1883 dax_remove_host(md->disk); 1884 kill_dax(md->dax_dev); 1885 put_dax(md->dax_dev); 1886 md->dax_dev = NULL; 1887 } 1888 1889 dm_cleanup_zoned_dev(md); 1890 if (md->disk) { 1891 spin_lock(&_minor_lock); 1892 md->disk->private_data = NULL; 1893 spin_unlock(&_minor_lock); 1894 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1895 dm_sysfs_exit(md); 1896 del_gendisk(md->disk); 1897 } 1898 dm_queue_destroy_crypto_profile(md->queue); 1899 blk_cleanup_disk(md->disk); 1900 } 1901 1902 if (md->pending_io) { 1903 free_percpu(md->pending_io); 1904 md->pending_io = NULL; 1905 } 1906 1907 cleanup_srcu_struct(&md->io_barrier); 1908 1909 mutex_destroy(&md->suspend_lock); 1910 mutex_destroy(&md->type_lock); 1911 mutex_destroy(&md->table_devices_lock); 1912 mutex_destroy(&md->swap_bios_lock); 1913 1914 dm_mq_cleanup_mapped_device(md); 1915 } 1916 1917 /* 1918 * Allocate and initialise a blank device with a given minor. 1919 */ 1920 static struct mapped_device *alloc_dev(int minor) 1921 { 1922 int r, numa_node_id = dm_get_numa_node(); 1923 struct mapped_device *md; 1924 void *old_md; 1925 1926 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1927 if (!md) { 1928 DMWARN("unable to allocate device, out of memory."); 1929 return NULL; 1930 } 1931 1932 if (!try_module_get(THIS_MODULE)) 1933 goto bad_module_get; 1934 1935 /* get a minor number for the dev */ 1936 if (minor == DM_ANY_MINOR) 1937 r = next_free_minor(&minor); 1938 else 1939 r = specific_minor(minor); 1940 if (r < 0) 1941 goto bad_minor; 1942 1943 r = init_srcu_struct(&md->io_barrier); 1944 if (r < 0) 1945 goto bad_io_barrier; 1946 1947 md->numa_node_id = numa_node_id; 1948 md->init_tio_pdu = false; 1949 md->type = DM_TYPE_NONE; 1950 mutex_init(&md->suspend_lock); 1951 mutex_init(&md->type_lock); 1952 mutex_init(&md->table_devices_lock); 1953 spin_lock_init(&md->deferred_lock); 1954 atomic_set(&md->holders, 1); 1955 atomic_set(&md->open_count, 0); 1956 atomic_set(&md->event_nr, 0); 1957 atomic_set(&md->uevent_seq, 0); 1958 INIT_LIST_HEAD(&md->uevent_list); 1959 INIT_LIST_HEAD(&md->table_devices); 1960 spin_lock_init(&md->uevent_lock); 1961 1962 /* 1963 * default to bio-based until DM table is loaded and md->type 1964 * established. If request-based table is loaded: blk-mq will 1965 * override accordingly. 1966 */ 1967 md->disk = blk_alloc_disk(md->numa_node_id); 1968 if (!md->disk) 1969 goto bad; 1970 md->queue = md->disk->queue; 1971 1972 init_waitqueue_head(&md->wait); 1973 INIT_WORK(&md->work, dm_wq_work); 1974 init_waitqueue_head(&md->eventq); 1975 init_completion(&md->kobj_holder.completion); 1976 1977 md->swap_bios = get_swap_bios(); 1978 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1979 mutex_init(&md->swap_bios_lock); 1980 1981 md->disk->major = _major; 1982 md->disk->first_minor = minor; 1983 md->disk->minors = 1; 1984 md->disk->flags |= GENHD_FL_NO_PART; 1985 md->disk->fops = &dm_blk_dops; 1986 md->disk->queue = md->queue; 1987 md->disk->private_data = md; 1988 sprintf(md->disk->disk_name, "dm-%d", minor); 1989 1990 if (IS_ENABLED(CONFIG_FS_DAX)) { 1991 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1992 if (IS_ERR(md->dax_dev)) { 1993 md->dax_dev = NULL; 1994 goto bad; 1995 } 1996 set_dax_nocache(md->dax_dev); 1997 set_dax_nomc(md->dax_dev); 1998 if (dax_add_host(md->dax_dev, md->disk)) 1999 goto bad; 2000 } 2001 2002 format_dev_t(md->name, MKDEV(_major, minor)); 2003 2004 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2005 if (!md->wq) 2006 goto bad; 2007 2008 md->pending_io = alloc_percpu(unsigned long); 2009 if (!md->pending_io) 2010 goto bad; 2011 2012 dm_stats_init(&md->stats); 2013 2014 /* Populate the mapping, nobody knows we exist yet */ 2015 spin_lock(&_minor_lock); 2016 old_md = idr_replace(&_minor_idr, md, minor); 2017 spin_unlock(&_minor_lock); 2018 2019 BUG_ON(old_md != MINOR_ALLOCED); 2020 2021 return md; 2022 2023 bad: 2024 cleanup_mapped_device(md); 2025 bad_io_barrier: 2026 free_minor(minor); 2027 bad_minor: 2028 module_put(THIS_MODULE); 2029 bad_module_get: 2030 kvfree(md); 2031 return NULL; 2032 } 2033 2034 static void unlock_fs(struct mapped_device *md); 2035 2036 static void free_dev(struct mapped_device *md) 2037 { 2038 int minor = MINOR(disk_devt(md->disk)); 2039 2040 unlock_fs(md); 2041 2042 cleanup_mapped_device(md); 2043 2044 free_table_devices(&md->table_devices); 2045 dm_stats_cleanup(&md->stats); 2046 free_minor(minor); 2047 2048 module_put(THIS_MODULE); 2049 kvfree(md); 2050 } 2051 2052 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2053 { 2054 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2055 int ret = 0; 2056 2057 if (dm_table_bio_based(t)) { 2058 /* 2059 * The md may already have mempools that need changing. 2060 * If so, reload bioset because front_pad may have changed 2061 * because a different table was loaded. 2062 */ 2063 bioset_exit(&md->bs); 2064 bioset_exit(&md->io_bs); 2065 2066 } else if (bioset_initialized(&md->bs)) { 2067 /* 2068 * There's no need to reload with request-based dm 2069 * because the size of front_pad doesn't change. 2070 * Note for future: If you are to reload bioset, 2071 * prep-ed requests in the queue may refer 2072 * to bio from the old bioset, so you must walk 2073 * through the queue to unprep. 2074 */ 2075 goto out; 2076 } 2077 2078 BUG_ON(!p || 2079 bioset_initialized(&md->bs) || 2080 bioset_initialized(&md->io_bs)); 2081 2082 ret = bioset_init_from_src(&md->bs, &p->bs); 2083 if (ret) 2084 goto out; 2085 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2086 if (ret) 2087 bioset_exit(&md->bs); 2088 out: 2089 /* mempool bind completed, no longer need any mempools in the table */ 2090 dm_table_free_md_mempools(t); 2091 return ret; 2092 } 2093 2094 /* 2095 * Bind a table to the device. 2096 */ 2097 static void event_callback(void *context) 2098 { 2099 unsigned long flags; 2100 LIST_HEAD(uevents); 2101 struct mapped_device *md = (struct mapped_device *) context; 2102 2103 spin_lock_irqsave(&md->uevent_lock, flags); 2104 list_splice_init(&md->uevent_list, &uevents); 2105 spin_unlock_irqrestore(&md->uevent_lock, flags); 2106 2107 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2108 2109 atomic_inc(&md->event_nr); 2110 wake_up(&md->eventq); 2111 dm_issue_global_event(); 2112 } 2113 2114 /* 2115 * Returns old map, which caller must destroy. 2116 */ 2117 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2118 struct queue_limits *limits) 2119 { 2120 struct dm_table *old_map; 2121 sector_t size; 2122 int ret; 2123 2124 lockdep_assert_held(&md->suspend_lock); 2125 2126 size = dm_table_get_size(t); 2127 2128 /* 2129 * Wipe any geometry if the size of the table changed. 2130 */ 2131 if (size != dm_get_size(md)) 2132 memset(&md->geometry, 0, sizeof(md->geometry)); 2133 2134 if (!get_capacity(md->disk)) 2135 set_capacity(md->disk, size); 2136 else 2137 set_capacity_and_notify(md->disk, size); 2138 2139 dm_table_event_callback(t, event_callback, md); 2140 2141 if (dm_table_request_based(t)) { 2142 /* 2143 * Leverage the fact that request-based DM targets are 2144 * immutable singletons - used to optimize dm_mq_queue_rq. 2145 */ 2146 md->immutable_target = dm_table_get_immutable_target(t); 2147 } 2148 2149 ret = __bind_mempools(md, t); 2150 if (ret) { 2151 old_map = ERR_PTR(ret); 2152 goto out; 2153 } 2154 2155 ret = dm_table_set_restrictions(t, md->queue, limits); 2156 if (ret) { 2157 old_map = ERR_PTR(ret); 2158 goto out; 2159 } 2160 2161 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2162 rcu_assign_pointer(md->map, (void *)t); 2163 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2164 2165 if (old_map) 2166 dm_sync_table(md); 2167 out: 2168 return old_map; 2169 } 2170 2171 /* 2172 * Returns unbound table for the caller to free. 2173 */ 2174 static struct dm_table *__unbind(struct mapped_device *md) 2175 { 2176 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2177 2178 if (!map) 2179 return NULL; 2180 2181 dm_table_event_callback(map, NULL, NULL); 2182 RCU_INIT_POINTER(md->map, NULL); 2183 dm_sync_table(md); 2184 2185 return map; 2186 } 2187 2188 /* 2189 * Constructor for a new device. 2190 */ 2191 int dm_create(int minor, struct mapped_device **result) 2192 { 2193 struct mapped_device *md; 2194 2195 md = alloc_dev(minor); 2196 if (!md) 2197 return -ENXIO; 2198 2199 dm_ima_reset_data(md); 2200 2201 *result = md; 2202 return 0; 2203 } 2204 2205 /* 2206 * Functions to manage md->type. 2207 * All are required to hold md->type_lock. 2208 */ 2209 void dm_lock_md_type(struct mapped_device *md) 2210 { 2211 mutex_lock(&md->type_lock); 2212 } 2213 2214 void dm_unlock_md_type(struct mapped_device *md) 2215 { 2216 mutex_unlock(&md->type_lock); 2217 } 2218 2219 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2220 { 2221 BUG_ON(!mutex_is_locked(&md->type_lock)); 2222 md->type = type; 2223 } 2224 2225 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2226 { 2227 return md->type; 2228 } 2229 2230 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2231 { 2232 return md->immutable_target_type; 2233 } 2234 2235 /* 2236 * The queue_limits are only valid as long as you have a reference 2237 * count on 'md'. 2238 */ 2239 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2240 { 2241 BUG_ON(!atomic_read(&md->holders)); 2242 return &md->queue->limits; 2243 } 2244 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2245 2246 /* 2247 * Setup the DM device's queue based on md's type 2248 */ 2249 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2250 { 2251 enum dm_queue_mode type = dm_table_get_type(t); 2252 struct queue_limits limits; 2253 int r; 2254 2255 switch (type) { 2256 case DM_TYPE_REQUEST_BASED: 2257 md->disk->fops = &dm_rq_blk_dops; 2258 r = dm_mq_init_request_queue(md, t); 2259 if (r) { 2260 DMERR("Cannot initialize queue for request-based dm mapped device"); 2261 return r; 2262 } 2263 break; 2264 case DM_TYPE_BIO_BASED: 2265 case DM_TYPE_DAX_BIO_BASED: 2266 break; 2267 case DM_TYPE_NONE: 2268 WARN_ON_ONCE(true); 2269 break; 2270 } 2271 2272 r = dm_calculate_queue_limits(t, &limits); 2273 if (r) { 2274 DMERR("Cannot calculate initial queue limits"); 2275 return r; 2276 } 2277 r = dm_table_set_restrictions(t, md->queue, &limits); 2278 if (r) 2279 return r; 2280 2281 r = add_disk(md->disk); 2282 if (r) 2283 return r; 2284 2285 r = dm_sysfs_init(md); 2286 if (r) { 2287 del_gendisk(md->disk); 2288 return r; 2289 } 2290 md->type = type; 2291 return 0; 2292 } 2293 2294 struct mapped_device *dm_get_md(dev_t dev) 2295 { 2296 struct mapped_device *md; 2297 unsigned minor = MINOR(dev); 2298 2299 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2300 return NULL; 2301 2302 spin_lock(&_minor_lock); 2303 2304 md = idr_find(&_minor_idr, minor); 2305 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2306 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2307 md = NULL; 2308 goto out; 2309 } 2310 dm_get(md); 2311 out: 2312 spin_unlock(&_minor_lock); 2313 2314 return md; 2315 } 2316 EXPORT_SYMBOL_GPL(dm_get_md); 2317 2318 void *dm_get_mdptr(struct mapped_device *md) 2319 { 2320 return md->interface_ptr; 2321 } 2322 2323 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2324 { 2325 md->interface_ptr = ptr; 2326 } 2327 2328 void dm_get(struct mapped_device *md) 2329 { 2330 atomic_inc(&md->holders); 2331 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2332 } 2333 2334 int dm_hold(struct mapped_device *md) 2335 { 2336 spin_lock(&_minor_lock); 2337 if (test_bit(DMF_FREEING, &md->flags)) { 2338 spin_unlock(&_minor_lock); 2339 return -EBUSY; 2340 } 2341 dm_get(md); 2342 spin_unlock(&_minor_lock); 2343 return 0; 2344 } 2345 EXPORT_SYMBOL_GPL(dm_hold); 2346 2347 const char *dm_device_name(struct mapped_device *md) 2348 { 2349 return md->name; 2350 } 2351 EXPORT_SYMBOL_GPL(dm_device_name); 2352 2353 static void __dm_destroy(struct mapped_device *md, bool wait) 2354 { 2355 struct dm_table *map; 2356 int srcu_idx; 2357 2358 might_sleep(); 2359 2360 spin_lock(&_minor_lock); 2361 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2362 set_bit(DMF_FREEING, &md->flags); 2363 spin_unlock(&_minor_lock); 2364 2365 blk_mark_disk_dead(md->disk); 2366 2367 /* 2368 * Take suspend_lock so that presuspend and postsuspend methods 2369 * do not race with internal suspend. 2370 */ 2371 mutex_lock(&md->suspend_lock); 2372 map = dm_get_live_table(md, &srcu_idx); 2373 if (!dm_suspended_md(md)) { 2374 dm_table_presuspend_targets(map); 2375 set_bit(DMF_SUSPENDED, &md->flags); 2376 set_bit(DMF_POST_SUSPENDING, &md->flags); 2377 dm_table_postsuspend_targets(map); 2378 } 2379 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2380 dm_put_live_table(md, srcu_idx); 2381 mutex_unlock(&md->suspend_lock); 2382 2383 /* 2384 * Rare, but there may be I/O requests still going to complete, 2385 * for example. Wait for all references to disappear. 2386 * No one should increment the reference count of the mapped_device, 2387 * after the mapped_device state becomes DMF_FREEING. 2388 */ 2389 if (wait) 2390 while (atomic_read(&md->holders)) 2391 msleep(1); 2392 else if (atomic_read(&md->holders)) 2393 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2394 dm_device_name(md), atomic_read(&md->holders)); 2395 2396 dm_table_destroy(__unbind(md)); 2397 free_dev(md); 2398 } 2399 2400 void dm_destroy(struct mapped_device *md) 2401 { 2402 __dm_destroy(md, true); 2403 } 2404 2405 void dm_destroy_immediate(struct mapped_device *md) 2406 { 2407 __dm_destroy(md, false); 2408 } 2409 2410 void dm_put(struct mapped_device *md) 2411 { 2412 atomic_dec(&md->holders); 2413 } 2414 EXPORT_SYMBOL_GPL(dm_put); 2415 2416 static bool dm_in_flight_bios(struct mapped_device *md) 2417 { 2418 int cpu; 2419 unsigned long sum = 0; 2420 2421 for_each_possible_cpu(cpu) 2422 sum += *per_cpu_ptr(md->pending_io, cpu); 2423 2424 return sum != 0; 2425 } 2426 2427 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2428 { 2429 int r = 0; 2430 DEFINE_WAIT(wait); 2431 2432 while (true) { 2433 prepare_to_wait(&md->wait, &wait, task_state); 2434 2435 if (!dm_in_flight_bios(md)) 2436 break; 2437 2438 if (signal_pending_state(task_state, current)) { 2439 r = -EINTR; 2440 break; 2441 } 2442 2443 io_schedule(); 2444 } 2445 finish_wait(&md->wait, &wait); 2446 2447 smp_rmb(); 2448 2449 return r; 2450 } 2451 2452 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2453 { 2454 int r = 0; 2455 2456 if (!queue_is_mq(md->queue)) 2457 return dm_wait_for_bios_completion(md, task_state); 2458 2459 while (true) { 2460 if (!blk_mq_queue_inflight(md->queue)) 2461 break; 2462 2463 if (signal_pending_state(task_state, current)) { 2464 r = -EINTR; 2465 break; 2466 } 2467 2468 msleep(5); 2469 } 2470 2471 return r; 2472 } 2473 2474 /* 2475 * Process the deferred bios 2476 */ 2477 static void dm_wq_work(struct work_struct *work) 2478 { 2479 struct mapped_device *md = container_of(work, struct mapped_device, work); 2480 struct bio *bio; 2481 2482 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2483 spin_lock_irq(&md->deferred_lock); 2484 bio = bio_list_pop(&md->deferred); 2485 spin_unlock_irq(&md->deferred_lock); 2486 2487 if (!bio) 2488 break; 2489 2490 submit_bio_noacct(bio); 2491 } 2492 } 2493 2494 static void dm_queue_flush(struct mapped_device *md) 2495 { 2496 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2497 smp_mb__after_atomic(); 2498 queue_work(md->wq, &md->work); 2499 } 2500 2501 /* 2502 * Swap in a new table, returning the old one for the caller to destroy. 2503 */ 2504 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2505 { 2506 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2507 struct queue_limits limits; 2508 int r; 2509 2510 mutex_lock(&md->suspend_lock); 2511 2512 /* device must be suspended */ 2513 if (!dm_suspended_md(md)) 2514 goto out; 2515 2516 /* 2517 * If the new table has no data devices, retain the existing limits. 2518 * This helps multipath with queue_if_no_path if all paths disappear, 2519 * then new I/O is queued based on these limits, and then some paths 2520 * reappear. 2521 */ 2522 if (dm_table_has_no_data_devices(table)) { 2523 live_map = dm_get_live_table_fast(md); 2524 if (live_map) 2525 limits = md->queue->limits; 2526 dm_put_live_table_fast(md); 2527 } 2528 2529 if (!live_map) { 2530 r = dm_calculate_queue_limits(table, &limits); 2531 if (r) { 2532 map = ERR_PTR(r); 2533 goto out; 2534 } 2535 } 2536 2537 map = __bind(md, table, &limits); 2538 dm_issue_global_event(); 2539 2540 out: 2541 mutex_unlock(&md->suspend_lock); 2542 return map; 2543 } 2544 2545 /* 2546 * Functions to lock and unlock any filesystem running on the 2547 * device. 2548 */ 2549 static int lock_fs(struct mapped_device *md) 2550 { 2551 int r; 2552 2553 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2554 2555 r = freeze_bdev(md->disk->part0); 2556 if (!r) 2557 set_bit(DMF_FROZEN, &md->flags); 2558 return r; 2559 } 2560 2561 static void unlock_fs(struct mapped_device *md) 2562 { 2563 if (!test_bit(DMF_FROZEN, &md->flags)) 2564 return; 2565 thaw_bdev(md->disk->part0); 2566 clear_bit(DMF_FROZEN, &md->flags); 2567 } 2568 2569 /* 2570 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2571 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2572 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2573 * 2574 * If __dm_suspend returns 0, the device is completely quiescent 2575 * now. There is no request-processing activity. All new requests 2576 * are being added to md->deferred list. 2577 */ 2578 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2579 unsigned suspend_flags, unsigned int task_state, 2580 int dmf_suspended_flag) 2581 { 2582 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2583 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2584 int r; 2585 2586 lockdep_assert_held(&md->suspend_lock); 2587 2588 /* 2589 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2590 * This flag is cleared before dm_suspend returns. 2591 */ 2592 if (noflush) 2593 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2594 else 2595 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2596 2597 /* 2598 * This gets reverted if there's an error later and the targets 2599 * provide the .presuspend_undo hook. 2600 */ 2601 dm_table_presuspend_targets(map); 2602 2603 /* 2604 * Flush I/O to the device. 2605 * Any I/O submitted after lock_fs() may not be flushed. 2606 * noflush takes precedence over do_lockfs. 2607 * (lock_fs() flushes I/Os and waits for them to complete.) 2608 */ 2609 if (!noflush && do_lockfs) { 2610 r = lock_fs(md); 2611 if (r) { 2612 dm_table_presuspend_undo_targets(map); 2613 return r; 2614 } 2615 } 2616 2617 /* 2618 * Here we must make sure that no processes are submitting requests 2619 * to target drivers i.e. no one may be executing 2620 * dm_split_and_process_bio from dm_submit_bio. 2621 * 2622 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2623 * we take the write lock. To prevent any process from reentering 2624 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2625 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2626 * flush_workqueue(md->wq). 2627 */ 2628 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2629 if (map) 2630 synchronize_srcu(&md->io_barrier); 2631 2632 /* 2633 * Stop md->queue before flushing md->wq in case request-based 2634 * dm defers requests to md->wq from md->queue. 2635 */ 2636 if (dm_request_based(md)) 2637 dm_stop_queue(md->queue); 2638 2639 flush_workqueue(md->wq); 2640 2641 /* 2642 * At this point no more requests are entering target request routines. 2643 * We call dm_wait_for_completion to wait for all existing requests 2644 * to finish. 2645 */ 2646 r = dm_wait_for_completion(md, task_state); 2647 if (!r) 2648 set_bit(dmf_suspended_flag, &md->flags); 2649 2650 if (noflush) 2651 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2652 if (map) 2653 synchronize_srcu(&md->io_barrier); 2654 2655 /* were we interrupted ? */ 2656 if (r < 0) { 2657 dm_queue_flush(md); 2658 2659 if (dm_request_based(md)) 2660 dm_start_queue(md->queue); 2661 2662 unlock_fs(md); 2663 dm_table_presuspend_undo_targets(map); 2664 /* pushback list is already flushed, so skip flush */ 2665 } 2666 2667 return r; 2668 } 2669 2670 /* 2671 * We need to be able to change a mapping table under a mounted 2672 * filesystem. For example we might want to move some data in 2673 * the background. Before the table can be swapped with 2674 * dm_bind_table, dm_suspend must be called to flush any in 2675 * flight bios and ensure that any further io gets deferred. 2676 */ 2677 /* 2678 * Suspend mechanism in request-based dm. 2679 * 2680 * 1. Flush all I/Os by lock_fs() if needed. 2681 * 2. Stop dispatching any I/O by stopping the request_queue. 2682 * 3. Wait for all in-flight I/Os to be completed or requeued. 2683 * 2684 * To abort suspend, start the request_queue. 2685 */ 2686 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2687 { 2688 struct dm_table *map = NULL; 2689 int r = 0; 2690 2691 retry: 2692 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2693 2694 if (dm_suspended_md(md)) { 2695 r = -EINVAL; 2696 goto out_unlock; 2697 } 2698 2699 if (dm_suspended_internally_md(md)) { 2700 /* already internally suspended, wait for internal resume */ 2701 mutex_unlock(&md->suspend_lock); 2702 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2703 if (r) 2704 return r; 2705 goto retry; 2706 } 2707 2708 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2709 2710 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2711 if (r) 2712 goto out_unlock; 2713 2714 set_bit(DMF_POST_SUSPENDING, &md->flags); 2715 dm_table_postsuspend_targets(map); 2716 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2717 2718 out_unlock: 2719 mutex_unlock(&md->suspend_lock); 2720 return r; 2721 } 2722 2723 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2724 { 2725 if (map) { 2726 int r = dm_table_resume_targets(map); 2727 if (r) 2728 return r; 2729 } 2730 2731 dm_queue_flush(md); 2732 2733 /* 2734 * Flushing deferred I/Os must be done after targets are resumed 2735 * so that mapping of targets can work correctly. 2736 * Request-based dm is queueing the deferred I/Os in its request_queue. 2737 */ 2738 if (dm_request_based(md)) 2739 dm_start_queue(md->queue); 2740 2741 unlock_fs(md); 2742 2743 return 0; 2744 } 2745 2746 int dm_resume(struct mapped_device *md) 2747 { 2748 int r; 2749 struct dm_table *map = NULL; 2750 2751 retry: 2752 r = -EINVAL; 2753 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2754 2755 if (!dm_suspended_md(md)) 2756 goto out; 2757 2758 if (dm_suspended_internally_md(md)) { 2759 /* already internally suspended, wait for internal resume */ 2760 mutex_unlock(&md->suspend_lock); 2761 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2762 if (r) 2763 return r; 2764 goto retry; 2765 } 2766 2767 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2768 if (!map || !dm_table_get_size(map)) 2769 goto out; 2770 2771 r = __dm_resume(md, map); 2772 if (r) 2773 goto out; 2774 2775 clear_bit(DMF_SUSPENDED, &md->flags); 2776 out: 2777 mutex_unlock(&md->suspend_lock); 2778 2779 return r; 2780 } 2781 2782 /* 2783 * Internal suspend/resume works like userspace-driven suspend. It waits 2784 * until all bios finish and prevents issuing new bios to the target drivers. 2785 * It may be used only from the kernel. 2786 */ 2787 2788 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2789 { 2790 struct dm_table *map = NULL; 2791 2792 lockdep_assert_held(&md->suspend_lock); 2793 2794 if (md->internal_suspend_count++) 2795 return; /* nested internal suspend */ 2796 2797 if (dm_suspended_md(md)) { 2798 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2799 return; /* nest suspend */ 2800 } 2801 2802 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2803 2804 /* 2805 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2806 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2807 * would require changing .presuspend to return an error -- avoid this 2808 * until there is a need for more elaborate variants of internal suspend. 2809 */ 2810 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2811 DMF_SUSPENDED_INTERNALLY); 2812 2813 set_bit(DMF_POST_SUSPENDING, &md->flags); 2814 dm_table_postsuspend_targets(map); 2815 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2816 } 2817 2818 static void __dm_internal_resume(struct mapped_device *md) 2819 { 2820 BUG_ON(!md->internal_suspend_count); 2821 2822 if (--md->internal_suspend_count) 2823 return; /* resume from nested internal suspend */ 2824 2825 if (dm_suspended_md(md)) 2826 goto done; /* resume from nested suspend */ 2827 2828 /* 2829 * NOTE: existing callers don't need to call dm_table_resume_targets 2830 * (which may fail -- so best to avoid it for now by passing NULL map) 2831 */ 2832 (void) __dm_resume(md, NULL); 2833 2834 done: 2835 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2836 smp_mb__after_atomic(); 2837 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2838 } 2839 2840 void dm_internal_suspend_noflush(struct mapped_device *md) 2841 { 2842 mutex_lock(&md->suspend_lock); 2843 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2844 mutex_unlock(&md->suspend_lock); 2845 } 2846 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2847 2848 void dm_internal_resume(struct mapped_device *md) 2849 { 2850 mutex_lock(&md->suspend_lock); 2851 __dm_internal_resume(md); 2852 mutex_unlock(&md->suspend_lock); 2853 } 2854 EXPORT_SYMBOL_GPL(dm_internal_resume); 2855 2856 /* 2857 * Fast variants of internal suspend/resume hold md->suspend_lock, 2858 * which prevents interaction with userspace-driven suspend. 2859 */ 2860 2861 void dm_internal_suspend_fast(struct mapped_device *md) 2862 { 2863 mutex_lock(&md->suspend_lock); 2864 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2865 return; 2866 2867 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2868 synchronize_srcu(&md->io_barrier); 2869 flush_workqueue(md->wq); 2870 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2871 } 2872 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2873 2874 void dm_internal_resume_fast(struct mapped_device *md) 2875 { 2876 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2877 goto done; 2878 2879 dm_queue_flush(md); 2880 2881 done: 2882 mutex_unlock(&md->suspend_lock); 2883 } 2884 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2885 2886 /*----------------------------------------------------------------- 2887 * Event notification. 2888 *---------------------------------------------------------------*/ 2889 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2890 unsigned cookie) 2891 { 2892 int r; 2893 unsigned noio_flag; 2894 char udev_cookie[DM_COOKIE_LENGTH]; 2895 char *envp[] = { udev_cookie, NULL }; 2896 2897 noio_flag = memalloc_noio_save(); 2898 2899 if (!cookie) 2900 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2901 else { 2902 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2903 DM_COOKIE_ENV_VAR_NAME, cookie); 2904 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2905 action, envp); 2906 } 2907 2908 memalloc_noio_restore(noio_flag); 2909 2910 return r; 2911 } 2912 2913 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2914 { 2915 return atomic_add_return(1, &md->uevent_seq); 2916 } 2917 2918 uint32_t dm_get_event_nr(struct mapped_device *md) 2919 { 2920 return atomic_read(&md->event_nr); 2921 } 2922 2923 int dm_wait_event(struct mapped_device *md, int event_nr) 2924 { 2925 return wait_event_interruptible(md->eventq, 2926 (event_nr != atomic_read(&md->event_nr))); 2927 } 2928 2929 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2930 { 2931 unsigned long flags; 2932 2933 spin_lock_irqsave(&md->uevent_lock, flags); 2934 list_add(elist, &md->uevent_list); 2935 spin_unlock_irqrestore(&md->uevent_lock, flags); 2936 } 2937 2938 /* 2939 * The gendisk is only valid as long as you have a reference 2940 * count on 'md'. 2941 */ 2942 struct gendisk *dm_disk(struct mapped_device *md) 2943 { 2944 return md->disk; 2945 } 2946 EXPORT_SYMBOL_GPL(dm_disk); 2947 2948 struct kobject *dm_kobject(struct mapped_device *md) 2949 { 2950 return &md->kobj_holder.kobj; 2951 } 2952 2953 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2954 { 2955 struct mapped_device *md; 2956 2957 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2958 2959 spin_lock(&_minor_lock); 2960 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2961 md = NULL; 2962 goto out; 2963 } 2964 dm_get(md); 2965 out: 2966 spin_unlock(&_minor_lock); 2967 2968 return md; 2969 } 2970 2971 int dm_suspended_md(struct mapped_device *md) 2972 { 2973 return test_bit(DMF_SUSPENDED, &md->flags); 2974 } 2975 2976 static int dm_post_suspending_md(struct mapped_device *md) 2977 { 2978 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2979 } 2980 2981 int dm_suspended_internally_md(struct mapped_device *md) 2982 { 2983 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2984 } 2985 2986 int dm_test_deferred_remove_flag(struct mapped_device *md) 2987 { 2988 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2989 } 2990 2991 int dm_suspended(struct dm_target *ti) 2992 { 2993 return dm_suspended_md(ti->table->md); 2994 } 2995 EXPORT_SYMBOL_GPL(dm_suspended); 2996 2997 int dm_post_suspending(struct dm_target *ti) 2998 { 2999 return dm_post_suspending_md(ti->table->md); 3000 } 3001 EXPORT_SYMBOL_GPL(dm_post_suspending); 3002 3003 int dm_noflush_suspending(struct dm_target *ti) 3004 { 3005 return __noflush_suspending(ti->table->md); 3006 } 3007 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3008 3009 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 3010 unsigned per_io_data_size, unsigned min_pool_size, 3011 bool integrity, bool poll) 3012 { 3013 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 3014 unsigned int pool_size = 0; 3015 unsigned int front_pad, io_front_pad; 3016 int ret; 3017 3018 if (!pools) 3019 return NULL; 3020 3021 switch (type) { 3022 case DM_TYPE_BIO_BASED: 3023 case DM_TYPE_DAX_BIO_BASED: 3024 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 3025 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 3026 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 3027 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0); 3028 if (ret) 3029 goto out; 3030 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3031 goto out; 3032 break; 3033 case DM_TYPE_REQUEST_BASED: 3034 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3035 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3036 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3037 break; 3038 default: 3039 BUG(); 3040 } 3041 3042 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3043 if (ret) 3044 goto out; 3045 3046 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3047 goto out; 3048 3049 return pools; 3050 3051 out: 3052 dm_free_md_mempools(pools); 3053 3054 return NULL; 3055 } 3056 3057 void dm_free_md_mempools(struct dm_md_mempools *pools) 3058 { 3059 if (!pools) 3060 return; 3061 3062 bioset_exit(&pools->bs); 3063 bioset_exit(&pools->io_bs); 3064 3065 kfree(pools); 3066 } 3067 3068 struct dm_pr { 3069 u64 old_key; 3070 u64 new_key; 3071 u32 flags; 3072 bool fail_early; 3073 }; 3074 3075 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3076 void *data) 3077 { 3078 struct mapped_device *md = bdev->bd_disk->private_data; 3079 struct dm_table *table; 3080 struct dm_target *ti; 3081 int ret = -ENOTTY, srcu_idx; 3082 3083 table = dm_get_live_table(md, &srcu_idx); 3084 if (!table || !dm_table_get_size(table)) 3085 goto out; 3086 3087 /* We only support devices that have a single target */ 3088 if (dm_table_get_num_targets(table) != 1) 3089 goto out; 3090 ti = dm_table_get_target(table, 0); 3091 3092 ret = -EINVAL; 3093 if (!ti->type->iterate_devices) 3094 goto out; 3095 3096 ret = ti->type->iterate_devices(ti, fn, data); 3097 out: 3098 dm_put_live_table(md, srcu_idx); 3099 return ret; 3100 } 3101 3102 /* 3103 * For register / unregister we need to manually call out to every path. 3104 */ 3105 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3106 sector_t start, sector_t len, void *data) 3107 { 3108 struct dm_pr *pr = data; 3109 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3110 3111 if (!ops || !ops->pr_register) 3112 return -EOPNOTSUPP; 3113 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3114 } 3115 3116 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3117 u32 flags) 3118 { 3119 struct dm_pr pr = { 3120 .old_key = old_key, 3121 .new_key = new_key, 3122 .flags = flags, 3123 .fail_early = true, 3124 }; 3125 int ret; 3126 3127 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3128 if (ret && new_key) { 3129 /* unregister all paths if we failed to register any path */ 3130 pr.old_key = new_key; 3131 pr.new_key = 0; 3132 pr.flags = 0; 3133 pr.fail_early = false; 3134 dm_call_pr(bdev, __dm_pr_register, &pr); 3135 } 3136 3137 return ret; 3138 } 3139 3140 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3141 u32 flags) 3142 { 3143 struct mapped_device *md = bdev->bd_disk->private_data; 3144 const struct pr_ops *ops; 3145 int r, srcu_idx; 3146 3147 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3148 if (r < 0) 3149 goto out; 3150 3151 ops = bdev->bd_disk->fops->pr_ops; 3152 if (ops && ops->pr_reserve) 3153 r = ops->pr_reserve(bdev, key, type, flags); 3154 else 3155 r = -EOPNOTSUPP; 3156 out: 3157 dm_unprepare_ioctl(md, srcu_idx); 3158 return r; 3159 } 3160 3161 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3162 { 3163 struct mapped_device *md = bdev->bd_disk->private_data; 3164 const struct pr_ops *ops; 3165 int r, srcu_idx; 3166 3167 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3168 if (r < 0) 3169 goto out; 3170 3171 ops = bdev->bd_disk->fops->pr_ops; 3172 if (ops && ops->pr_release) 3173 r = ops->pr_release(bdev, key, type); 3174 else 3175 r = -EOPNOTSUPP; 3176 out: 3177 dm_unprepare_ioctl(md, srcu_idx); 3178 return r; 3179 } 3180 3181 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3182 enum pr_type type, bool abort) 3183 { 3184 struct mapped_device *md = bdev->bd_disk->private_data; 3185 const struct pr_ops *ops; 3186 int r, srcu_idx; 3187 3188 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3189 if (r < 0) 3190 goto out; 3191 3192 ops = bdev->bd_disk->fops->pr_ops; 3193 if (ops && ops->pr_preempt) 3194 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3195 else 3196 r = -EOPNOTSUPP; 3197 out: 3198 dm_unprepare_ioctl(md, srcu_idx); 3199 return r; 3200 } 3201 3202 static int dm_pr_clear(struct block_device *bdev, u64 key) 3203 { 3204 struct mapped_device *md = bdev->bd_disk->private_data; 3205 const struct pr_ops *ops; 3206 int r, srcu_idx; 3207 3208 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3209 if (r < 0) 3210 goto out; 3211 3212 ops = bdev->bd_disk->fops->pr_ops; 3213 if (ops && ops->pr_clear) 3214 r = ops->pr_clear(bdev, key); 3215 else 3216 r = -EOPNOTSUPP; 3217 out: 3218 dm_unprepare_ioctl(md, srcu_idx); 3219 return r; 3220 } 3221 3222 static const struct pr_ops dm_pr_ops = { 3223 .pr_register = dm_pr_register, 3224 .pr_reserve = dm_pr_reserve, 3225 .pr_release = dm_pr_release, 3226 .pr_preempt = dm_pr_preempt, 3227 .pr_clear = dm_pr_clear, 3228 }; 3229 3230 static const struct block_device_operations dm_blk_dops = { 3231 .submit_bio = dm_submit_bio, 3232 .poll_bio = dm_poll_bio, 3233 .open = dm_blk_open, 3234 .release = dm_blk_close, 3235 .ioctl = dm_blk_ioctl, 3236 .getgeo = dm_blk_getgeo, 3237 .report_zones = dm_blk_report_zones, 3238 .pr_ops = &dm_pr_ops, 3239 .owner = THIS_MODULE 3240 }; 3241 3242 static const struct block_device_operations dm_rq_blk_dops = { 3243 .open = dm_blk_open, 3244 .release = dm_blk_close, 3245 .ioctl = dm_blk_ioctl, 3246 .getgeo = dm_blk_getgeo, 3247 .pr_ops = &dm_pr_ops, 3248 .owner = THIS_MODULE 3249 }; 3250 3251 static const struct dax_operations dm_dax_ops = { 3252 .direct_access = dm_dax_direct_access, 3253 .zero_page_range = dm_dax_zero_page_range, 3254 .recovery_write = dm_dax_recovery_write, 3255 }; 3256 3257 /* 3258 * module hooks 3259 */ 3260 module_init(dm_init); 3261 module_exit(dm_exit); 3262 3263 module_param(major, uint, 0); 3264 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3265 3266 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3267 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3268 3269 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3270 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3271 3272 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 3273 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3274 3275 MODULE_DESCRIPTION(DM_NAME " driver"); 3276 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3277 MODULE_LICENSE("GPL"); 3278