1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 #include <linux/delay.h> 23 #include <linux/wait.h> 24 #include <linux/pr.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 #ifdef CONFIG_PRINTK 29 /* 30 * ratelimit state to be used in DMXXX_LIMIT(). 31 */ 32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 33 DEFAULT_RATELIMIT_INTERVAL, 34 DEFAULT_RATELIMIT_BURST); 35 EXPORT_SYMBOL(dm_ratelimit_state); 36 #endif 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 static const char *_name = DM_NAME; 46 47 static unsigned int major = 0; 48 static unsigned int _major = 0; 49 50 static DEFINE_IDR(_minor_idr); 51 52 static DEFINE_SPINLOCK(_minor_lock); 53 54 static void do_deferred_remove(struct work_struct *w); 55 56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 57 58 static struct workqueue_struct *deferred_remove_workqueue; 59 60 /* 61 * One of these is allocated per bio. 62 */ 63 struct dm_io { 64 struct mapped_device *md; 65 int error; 66 atomic_t io_count; 67 struct bio *bio; 68 unsigned long start_time; 69 spinlock_t endio_lock; 70 struct dm_stats_aux stats_aux; 71 }; 72 73 #define MINOR_ALLOCED ((void *)-1) 74 75 /* 76 * Bits for the md->flags field. 77 */ 78 #define DMF_BLOCK_IO_FOR_SUSPEND 0 79 #define DMF_SUSPENDED 1 80 #define DMF_FROZEN 2 81 #define DMF_FREEING 3 82 #define DMF_DELETING 4 83 #define DMF_NOFLUSH_SUSPENDING 5 84 #define DMF_DEFERRED_REMOVE 6 85 #define DMF_SUSPENDED_INTERNALLY 7 86 87 #define DM_NUMA_NODE NUMA_NO_NODE 88 static int dm_numa_node = DM_NUMA_NODE; 89 90 /* 91 * For mempools pre-allocation at the table loading time. 92 */ 93 struct dm_md_mempools { 94 mempool_t *io_pool; 95 struct bio_set *bs; 96 }; 97 98 struct table_device { 99 struct list_head list; 100 atomic_t count; 101 struct dm_dev dm_dev; 102 }; 103 104 static struct kmem_cache *_io_cache; 105 static struct kmem_cache *_rq_tio_cache; 106 static struct kmem_cache *_rq_cache; 107 108 /* 109 * Bio-based DM's mempools' reserved IOs set by the user. 110 */ 111 #define RESERVED_BIO_BASED_IOS 16 112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 113 114 static int __dm_get_module_param_int(int *module_param, int min, int max) 115 { 116 int param = ACCESS_ONCE(*module_param); 117 int modified_param = 0; 118 bool modified = true; 119 120 if (param < min) 121 modified_param = min; 122 else if (param > max) 123 modified_param = max; 124 else 125 modified = false; 126 127 if (modified) { 128 (void)cmpxchg(module_param, param, modified_param); 129 param = modified_param; 130 } 131 132 return param; 133 } 134 135 unsigned __dm_get_module_param(unsigned *module_param, 136 unsigned def, unsigned max) 137 { 138 unsigned param = ACCESS_ONCE(*module_param); 139 unsigned modified_param = 0; 140 141 if (!param) 142 modified_param = def; 143 else if (param > max) 144 modified_param = max; 145 146 if (modified_param) { 147 (void)cmpxchg(module_param, param, modified_param); 148 param = modified_param; 149 } 150 151 return param; 152 } 153 154 unsigned dm_get_reserved_bio_based_ios(void) 155 { 156 return __dm_get_module_param(&reserved_bio_based_ios, 157 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 158 } 159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 160 161 static unsigned dm_get_numa_node(void) 162 { 163 return __dm_get_module_param_int(&dm_numa_node, 164 DM_NUMA_NODE, num_online_nodes() - 1); 165 } 166 167 static int __init local_init(void) 168 { 169 int r = -ENOMEM; 170 171 /* allocate a slab for the dm_ios */ 172 _io_cache = KMEM_CACHE(dm_io, 0); 173 if (!_io_cache) 174 return r; 175 176 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 177 if (!_rq_tio_cache) 178 goto out_free_io_cache; 179 180 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 181 __alignof__(struct request), 0, NULL); 182 if (!_rq_cache) 183 goto out_free_rq_tio_cache; 184 185 r = dm_uevent_init(); 186 if (r) 187 goto out_free_rq_cache; 188 189 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 190 if (!deferred_remove_workqueue) { 191 r = -ENOMEM; 192 goto out_uevent_exit; 193 } 194 195 _major = major; 196 r = register_blkdev(_major, _name); 197 if (r < 0) 198 goto out_free_workqueue; 199 200 if (!_major) 201 _major = r; 202 203 return 0; 204 205 out_free_workqueue: 206 destroy_workqueue(deferred_remove_workqueue); 207 out_uevent_exit: 208 dm_uevent_exit(); 209 out_free_rq_cache: 210 kmem_cache_destroy(_rq_cache); 211 out_free_rq_tio_cache: 212 kmem_cache_destroy(_rq_tio_cache); 213 out_free_io_cache: 214 kmem_cache_destroy(_io_cache); 215 216 return r; 217 } 218 219 static void local_exit(void) 220 { 221 flush_scheduled_work(); 222 destroy_workqueue(deferred_remove_workqueue); 223 224 kmem_cache_destroy(_rq_cache); 225 kmem_cache_destroy(_rq_tio_cache); 226 kmem_cache_destroy(_io_cache); 227 unregister_blkdev(_major, _name); 228 dm_uevent_exit(); 229 230 _major = 0; 231 232 DMINFO("cleaned up"); 233 } 234 235 static int (*_inits[])(void) __initdata = { 236 local_init, 237 dm_target_init, 238 dm_linear_init, 239 dm_stripe_init, 240 dm_io_init, 241 dm_kcopyd_init, 242 dm_interface_init, 243 dm_statistics_init, 244 }; 245 246 static void (*_exits[])(void) = { 247 local_exit, 248 dm_target_exit, 249 dm_linear_exit, 250 dm_stripe_exit, 251 dm_io_exit, 252 dm_kcopyd_exit, 253 dm_interface_exit, 254 dm_statistics_exit, 255 }; 256 257 static int __init dm_init(void) 258 { 259 const int count = ARRAY_SIZE(_inits); 260 261 int r, i; 262 263 for (i = 0; i < count; i++) { 264 r = _inits[i](); 265 if (r) 266 goto bad; 267 } 268 269 return 0; 270 271 bad: 272 while (i--) 273 _exits[i](); 274 275 return r; 276 } 277 278 static void __exit dm_exit(void) 279 { 280 int i = ARRAY_SIZE(_exits); 281 282 while (i--) 283 _exits[i](); 284 285 /* 286 * Should be empty by this point. 287 */ 288 idr_destroy(&_minor_idr); 289 } 290 291 /* 292 * Block device functions 293 */ 294 int dm_deleting_md(struct mapped_device *md) 295 { 296 return test_bit(DMF_DELETING, &md->flags); 297 } 298 299 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 300 { 301 struct mapped_device *md; 302 303 spin_lock(&_minor_lock); 304 305 md = bdev->bd_disk->private_data; 306 if (!md) 307 goto out; 308 309 if (test_bit(DMF_FREEING, &md->flags) || 310 dm_deleting_md(md)) { 311 md = NULL; 312 goto out; 313 } 314 315 dm_get(md); 316 atomic_inc(&md->open_count); 317 out: 318 spin_unlock(&_minor_lock); 319 320 return md ? 0 : -ENXIO; 321 } 322 323 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 324 { 325 struct mapped_device *md; 326 327 spin_lock(&_minor_lock); 328 329 md = disk->private_data; 330 if (WARN_ON(!md)) 331 goto out; 332 333 if (atomic_dec_and_test(&md->open_count) && 334 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 335 queue_work(deferred_remove_workqueue, &deferred_remove_work); 336 337 dm_put(md); 338 out: 339 spin_unlock(&_minor_lock); 340 } 341 342 int dm_open_count(struct mapped_device *md) 343 { 344 return atomic_read(&md->open_count); 345 } 346 347 /* 348 * Guarantees nothing is using the device before it's deleted. 349 */ 350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 351 { 352 int r = 0; 353 354 spin_lock(&_minor_lock); 355 356 if (dm_open_count(md)) { 357 r = -EBUSY; 358 if (mark_deferred) 359 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 360 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 361 r = -EEXIST; 362 else 363 set_bit(DMF_DELETING, &md->flags); 364 365 spin_unlock(&_minor_lock); 366 367 return r; 368 } 369 370 int dm_cancel_deferred_remove(struct mapped_device *md) 371 { 372 int r = 0; 373 374 spin_lock(&_minor_lock); 375 376 if (test_bit(DMF_DELETING, &md->flags)) 377 r = -EBUSY; 378 else 379 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 380 381 spin_unlock(&_minor_lock); 382 383 return r; 384 } 385 386 static void do_deferred_remove(struct work_struct *w) 387 { 388 dm_deferred_remove(); 389 } 390 391 sector_t dm_get_size(struct mapped_device *md) 392 { 393 return get_capacity(md->disk); 394 } 395 396 struct request_queue *dm_get_md_queue(struct mapped_device *md) 397 { 398 return md->queue; 399 } 400 401 struct dm_stats *dm_get_stats(struct mapped_device *md) 402 { 403 return &md->stats; 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 414 struct block_device **bdev, 415 fmode_t *mode) 416 { 417 struct dm_target *tgt; 418 struct dm_table *map; 419 int srcu_idx, r; 420 421 retry: 422 r = -ENOTTY; 423 map = dm_get_live_table(md, &srcu_idx); 424 if (!map || !dm_table_get_size(map)) 425 goto out; 426 427 /* We only support devices that have a single target */ 428 if (dm_table_get_num_targets(map) != 1) 429 goto out; 430 431 tgt = dm_table_get_target(map, 0); 432 if (!tgt->type->prepare_ioctl) 433 goto out; 434 435 if (dm_suspended_md(md)) { 436 r = -EAGAIN; 437 goto out; 438 } 439 440 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 441 if (r < 0) 442 goto out; 443 444 bdgrab(*bdev); 445 dm_put_live_table(md, srcu_idx); 446 return r; 447 448 out: 449 dm_put_live_table(md, srcu_idx); 450 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 451 msleep(10); 452 goto retry; 453 } 454 return r; 455 } 456 457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 458 unsigned int cmd, unsigned long arg) 459 { 460 struct mapped_device *md = bdev->bd_disk->private_data; 461 int r; 462 463 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 464 if (r < 0) 465 return r; 466 467 if (r > 0) { 468 /* 469 * Target determined this ioctl is being issued against a 470 * subset of the parent bdev; require extra privileges. 471 */ 472 if (!capable(CAP_SYS_RAWIO)) { 473 DMWARN_LIMIT( 474 "%s: sending ioctl %x to DM device without required privilege.", 475 current->comm, cmd); 476 r = -ENOIOCTLCMD; 477 goto out; 478 } 479 } 480 481 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 482 out: 483 bdput(bdev); 484 return r; 485 } 486 487 static struct dm_io *alloc_io(struct mapped_device *md) 488 { 489 return mempool_alloc(md->io_pool, GFP_NOIO); 490 } 491 492 static void free_io(struct mapped_device *md, struct dm_io *io) 493 { 494 mempool_free(io, md->io_pool); 495 } 496 497 static void free_tio(struct dm_target_io *tio) 498 { 499 bio_put(&tio->clone); 500 } 501 502 int md_in_flight(struct mapped_device *md) 503 { 504 return atomic_read(&md->pending[READ]) + 505 atomic_read(&md->pending[WRITE]); 506 } 507 508 static void start_io_acct(struct dm_io *io) 509 { 510 struct mapped_device *md = io->md; 511 struct bio *bio = io->bio; 512 int cpu; 513 int rw = bio_data_dir(bio); 514 515 io->start_time = jiffies; 516 517 cpu = part_stat_lock(); 518 part_round_stats(cpu, &dm_disk(md)->part0); 519 part_stat_unlock(); 520 atomic_set(&dm_disk(md)->part0.in_flight[rw], 521 atomic_inc_return(&md->pending[rw])); 522 523 if (unlikely(dm_stats_used(&md->stats))) 524 dm_stats_account_io(&md->stats, bio_data_dir(bio), 525 bio->bi_iter.bi_sector, bio_sectors(bio), 526 false, 0, &io->stats_aux); 527 } 528 529 static void end_io_acct(struct dm_io *io) 530 { 531 struct mapped_device *md = io->md; 532 struct bio *bio = io->bio; 533 unsigned long duration = jiffies - io->start_time; 534 int pending; 535 int rw = bio_data_dir(bio); 536 537 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 538 539 if (unlikely(dm_stats_used(&md->stats))) 540 dm_stats_account_io(&md->stats, bio_data_dir(bio), 541 bio->bi_iter.bi_sector, bio_sectors(bio), 542 true, duration, &io->stats_aux); 543 544 /* 545 * After this is decremented the bio must not be touched if it is 546 * a flush. 547 */ 548 pending = atomic_dec_return(&md->pending[rw]); 549 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 550 pending += atomic_read(&md->pending[rw^0x1]); 551 552 /* nudge anyone waiting on suspend queue */ 553 if (!pending) 554 wake_up(&md->wait); 555 } 556 557 /* 558 * Add the bio to the list of deferred io. 559 */ 560 static void queue_io(struct mapped_device *md, struct bio *bio) 561 { 562 unsigned long flags; 563 564 spin_lock_irqsave(&md->deferred_lock, flags); 565 bio_list_add(&md->deferred, bio); 566 spin_unlock_irqrestore(&md->deferred_lock, flags); 567 queue_work(md->wq, &md->work); 568 } 569 570 /* 571 * Everyone (including functions in this file), should use this 572 * function to access the md->map field, and make sure they call 573 * dm_put_live_table() when finished. 574 */ 575 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 576 { 577 *srcu_idx = srcu_read_lock(&md->io_barrier); 578 579 return srcu_dereference(md->map, &md->io_barrier); 580 } 581 582 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 583 { 584 srcu_read_unlock(&md->io_barrier, srcu_idx); 585 } 586 587 void dm_sync_table(struct mapped_device *md) 588 { 589 synchronize_srcu(&md->io_barrier); 590 synchronize_rcu_expedited(); 591 } 592 593 /* 594 * A fast alternative to dm_get_live_table/dm_put_live_table. 595 * The caller must not block between these two functions. 596 */ 597 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 598 { 599 rcu_read_lock(); 600 return rcu_dereference(md->map); 601 } 602 603 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 604 { 605 rcu_read_unlock(); 606 } 607 608 /* 609 * Open a table device so we can use it as a map destination. 610 */ 611 static int open_table_device(struct table_device *td, dev_t dev, 612 struct mapped_device *md) 613 { 614 static char *_claim_ptr = "I belong to device-mapper"; 615 struct block_device *bdev; 616 617 int r; 618 619 BUG_ON(td->dm_dev.bdev); 620 621 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 622 if (IS_ERR(bdev)) 623 return PTR_ERR(bdev); 624 625 r = bd_link_disk_holder(bdev, dm_disk(md)); 626 if (r) { 627 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 628 return r; 629 } 630 631 td->dm_dev.bdev = bdev; 632 return 0; 633 } 634 635 /* 636 * Close a table device that we've been using. 637 */ 638 static void close_table_device(struct table_device *td, struct mapped_device *md) 639 { 640 if (!td->dm_dev.bdev) 641 return; 642 643 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 644 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 645 td->dm_dev.bdev = NULL; 646 } 647 648 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 649 fmode_t mode) { 650 struct table_device *td; 651 652 list_for_each_entry(td, l, list) 653 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 654 return td; 655 656 return NULL; 657 } 658 659 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 660 struct dm_dev **result) { 661 int r; 662 struct table_device *td; 663 664 mutex_lock(&md->table_devices_lock); 665 td = find_table_device(&md->table_devices, dev, mode); 666 if (!td) { 667 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 668 if (!td) { 669 mutex_unlock(&md->table_devices_lock); 670 return -ENOMEM; 671 } 672 673 td->dm_dev.mode = mode; 674 td->dm_dev.bdev = NULL; 675 676 if ((r = open_table_device(td, dev, md))) { 677 mutex_unlock(&md->table_devices_lock); 678 kfree(td); 679 return r; 680 } 681 682 format_dev_t(td->dm_dev.name, dev); 683 684 atomic_set(&td->count, 0); 685 list_add(&td->list, &md->table_devices); 686 } 687 atomic_inc(&td->count); 688 mutex_unlock(&md->table_devices_lock); 689 690 *result = &td->dm_dev; 691 return 0; 692 } 693 EXPORT_SYMBOL_GPL(dm_get_table_device); 694 695 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 696 { 697 struct table_device *td = container_of(d, struct table_device, dm_dev); 698 699 mutex_lock(&md->table_devices_lock); 700 if (atomic_dec_and_test(&td->count)) { 701 close_table_device(td, md); 702 list_del(&td->list); 703 kfree(td); 704 } 705 mutex_unlock(&md->table_devices_lock); 706 } 707 EXPORT_SYMBOL(dm_put_table_device); 708 709 static void free_table_devices(struct list_head *devices) 710 { 711 struct list_head *tmp, *next; 712 713 list_for_each_safe(tmp, next, devices) { 714 struct table_device *td = list_entry(tmp, struct table_device, list); 715 716 DMWARN("dm_destroy: %s still exists with %d references", 717 td->dm_dev.name, atomic_read(&td->count)); 718 kfree(td); 719 } 720 } 721 722 /* 723 * Get the geometry associated with a dm device 724 */ 725 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 726 { 727 *geo = md->geometry; 728 729 return 0; 730 } 731 732 /* 733 * Set the geometry of a device. 734 */ 735 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 736 { 737 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 738 739 if (geo->start > sz) { 740 DMWARN("Start sector is beyond the geometry limits."); 741 return -EINVAL; 742 } 743 744 md->geometry = *geo; 745 746 return 0; 747 } 748 749 /*----------------------------------------------------------------- 750 * CRUD START: 751 * A more elegant soln is in the works that uses the queue 752 * merge fn, unfortunately there are a couple of changes to 753 * the block layer that I want to make for this. So in the 754 * interests of getting something for people to use I give 755 * you this clearly demarcated crap. 756 *---------------------------------------------------------------*/ 757 758 static int __noflush_suspending(struct mapped_device *md) 759 { 760 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 761 } 762 763 /* 764 * Decrements the number of outstanding ios that a bio has been 765 * cloned into, completing the original io if necc. 766 */ 767 static void dec_pending(struct dm_io *io, int error) 768 { 769 unsigned long flags; 770 int io_error; 771 struct bio *bio; 772 struct mapped_device *md = io->md; 773 774 /* Push-back supersedes any I/O errors */ 775 if (unlikely(error)) { 776 spin_lock_irqsave(&io->endio_lock, flags); 777 if (!(io->error > 0 && __noflush_suspending(md))) 778 io->error = error; 779 spin_unlock_irqrestore(&io->endio_lock, flags); 780 } 781 782 if (atomic_dec_and_test(&io->io_count)) { 783 if (io->error == DM_ENDIO_REQUEUE) { 784 /* 785 * Target requested pushing back the I/O. 786 */ 787 spin_lock_irqsave(&md->deferred_lock, flags); 788 if (__noflush_suspending(md)) 789 bio_list_add_head(&md->deferred, io->bio); 790 else 791 /* noflush suspend was interrupted. */ 792 io->error = -EIO; 793 spin_unlock_irqrestore(&md->deferred_lock, flags); 794 } 795 796 io_error = io->error; 797 bio = io->bio; 798 end_io_acct(io); 799 free_io(md, io); 800 801 if (io_error == DM_ENDIO_REQUEUE) 802 return; 803 804 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 805 /* 806 * Preflush done for flush with data, reissue 807 * without REQ_PREFLUSH. 808 */ 809 bio->bi_opf &= ~REQ_PREFLUSH; 810 queue_io(md, bio); 811 } else { 812 /* done with normal IO or empty flush */ 813 bio->bi_error = io_error; 814 bio_endio(bio); 815 } 816 } 817 } 818 819 void disable_write_same(struct mapped_device *md) 820 { 821 struct queue_limits *limits = dm_get_queue_limits(md); 822 823 /* device doesn't really support WRITE SAME, disable it */ 824 limits->max_write_same_sectors = 0; 825 } 826 827 void disable_write_zeroes(struct mapped_device *md) 828 { 829 struct queue_limits *limits = dm_get_queue_limits(md); 830 831 /* device doesn't really support WRITE ZEROES, disable it */ 832 limits->max_write_zeroes_sectors = 0; 833 } 834 835 static void clone_endio(struct bio *bio) 836 { 837 int error = bio->bi_error; 838 int r = error; 839 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 840 struct dm_io *io = tio->io; 841 struct mapped_device *md = tio->io->md; 842 dm_endio_fn endio = tio->ti->type->end_io; 843 844 if (endio) { 845 r = endio(tio->ti, bio, error); 846 if (r < 0 || r == DM_ENDIO_REQUEUE) 847 /* 848 * error and requeue request are handled 849 * in dec_pending(). 850 */ 851 error = r; 852 else if (r == DM_ENDIO_INCOMPLETE) 853 /* The target will handle the io */ 854 return; 855 else if (r) { 856 DMWARN("unimplemented target endio return value: %d", r); 857 BUG(); 858 } 859 } 860 861 if (unlikely(r == -EREMOTEIO)) { 862 if (bio_op(bio) == REQ_OP_WRITE_SAME && 863 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors) 864 disable_write_same(md); 865 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 866 !bdev_get_queue(bio->bi_bdev)->limits.max_write_zeroes_sectors) 867 disable_write_zeroes(md); 868 } 869 870 free_tio(tio); 871 dec_pending(io, error); 872 } 873 874 /* 875 * Return maximum size of I/O possible at the supplied sector up to the current 876 * target boundary. 877 */ 878 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 879 { 880 sector_t target_offset = dm_target_offset(ti, sector); 881 882 return ti->len - target_offset; 883 } 884 885 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 886 { 887 sector_t len = max_io_len_target_boundary(sector, ti); 888 sector_t offset, max_len; 889 890 /* 891 * Does the target need to split even further? 892 */ 893 if (ti->max_io_len) { 894 offset = dm_target_offset(ti, sector); 895 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 896 max_len = sector_div(offset, ti->max_io_len); 897 else 898 max_len = offset & (ti->max_io_len - 1); 899 max_len = ti->max_io_len - max_len; 900 901 if (len > max_len) 902 len = max_len; 903 } 904 905 return len; 906 } 907 908 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 909 { 910 if (len > UINT_MAX) { 911 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 912 (unsigned long long)len, UINT_MAX); 913 ti->error = "Maximum size of target IO is too large"; 914 return -EINVAL; 915 } 916 917 ti->max_io_len = (uint32_t) len; 918 919 return 0; 920 } 921 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 922 923 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector, 924 void **kaddr, pfn_t *pfn, long size) 925 { 926 struct mapped_device *md = bdev->bd_disk->private_data; 927 struct dm_table *map; 928 struct dm_target *ti; 929 int srcu_idx; 930 long len, ret = -EIO; 931 932 map = dm_get_live_table(md, &srcu_idx); 933 if (!map) 934 goto out; 935 936 ti = dm_table_find_target(map, sector); 937 if (!dm_target_is_valid(ti)) 938 goto out; 939 940 len = max_io_len(sector, ti) << SECTOR_SHIFT; 941 size = min(len, size); 942 943 if (ti->type->direct_access) 944 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size); 945 out: 946 dm_put_live_table(md, srcu_idx); 947 return min(ret, size); 948 } 949 950 /* 951 * A target may call dm_accept_partial_bio only from the map routine. It is 952 * allowed for all bio types except REQ_PREFLUSH. 953 * 954 * dm_accept_partial_bio informs the dm that the target only wants to process 955 * additional n_sectors sectors of the bio and the rest of the data should be 956 * sent in a next bio. 957 * 958 * A diagram that explains the arithmetics: 959 * +--------------------+---------------+-------+ 960 * | 1 | 2 | 3 | 961 * +--------------------+---------------+-------+ 962 * 963 * <-------------- *tio->len_ptr ---------------> 964 * <------- bi_size -------> 965 * <-- n_sectors --> 966 * 967 * Region 1 was already iterated over with bio_advance or similar function. 968 * (it may be empty if the target doesn't use bio_advance) 969 * Region 2 is the remaining bio size that the target wants to process. 970 * (it may be empty if region 1 is non-empty, although there is no reason 971 * to make it empty) 972 * The target requires that region 3 is to be sent in the next bio. 973 * 974 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 975 * the partially processed part (the sum of regions 1+2) must be the same for all 976 * copies of the bio. 977 */ 978 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 979 { 980 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 981 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 982 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 983 BUG_ON(bi_size > *tio->len_ptr); 984 BUG_ON(n_sectors > bi_size); 985 *tio->len_ptr -= bi_size - n_sectors; 986 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 987 } 988 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 989 990 /* 991 * Flush current->bio_list when the target map method blocks. 992 * This fixes deadlocks in snapshot and possibly in other targets. 993 */ 994 struct dm_offload { 995 struct blk_plug plug; 996 struct blk_plug_cb cb; 997 }; 998 999 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule) 1000 { 1001 struct dm_offload *o = container_of(cb, struct dm_offload, cb); 1002 struct bio_list list; 1003 struct bio *bio; 1004 int i; 1005 1006 INIT_LIST_HEAD(&o->cb.list); 1007 1008 if (unlikely(!current->bio_list)) 1009 return; 1010 1011 for (i = 0; i < 2; i++) { 1012 list = current->bio_list[i]; 1013 bio_list_init(¤t->bio_list[i]); 1014 1015 while ((bio = bio_list_pop(&list))) { 1016 struct bio_set *bs = bio->bi_pool; 1017 if (unlikely(!bs) || bs == fs_bio_set) { 1018 bio_list_add(¤t->bio_list[i], bio); 1019 continue; 1020 } 1021 1022 spin_lock(&bs->rescue_lock); 1023 bio_list_add(&bs->rescue_list, bio); 1024 queue_work(bs->rescue_workqueue, &bs->rescue_work); 1025 spin_unlock(&bs->rescue_lock); 1026 } 1027 } 1028 } 1029 1030 static void dm_offload_start(struct dm_offload *o) 1031 { 1032 blk_start_plug(&o->plug); 1033 o->cb.callback = flush_current_bio_list; 1034 list_add(&o->cb.list, ¤t->plug->cb_list); 1035 } 1036 1037 static void dm_offload_end(struct dm_offload *o) 1038 { 1039 list_del(&o->cb.list); 1040 blk_finish_plug(&o->plug); 1041 } 1042 1043 static void __map_bio(struct dm_target_io *tio) 1044 { 1045 int r; 1046 sector_t sector; 1047 struct dm_offload o; 1048 struct bio *clone = &tio->clone; 1049 struct dm_target *ti = tio->ti; 1050 1051 clone->bi_end_io = clone_endio; 1052 1053 /* 1054 * Map the clone. If r == 0 we don't need to do 1055 * anything, the target has assumed ownership of 1056 * this io. 1057 */ 1058 atomic_inc(&tio->io->io_count); 1059 sector = clone->bi_iter.bi_sector; 1060 1061 dm_offload_start(&o); 1062 r = ti->type->map(ti, clone); 1063 dm_offload_end(&o); 1064 1065 if (r == DM_MAPIO_REMAPPED) { 1066 /* the bio has been remapped so dispatch it */ 1067 1068 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1069 tio->io->bio->bi_bdev->bd_dev, sector); 1070 1071 generic_make_request(clone); 1072 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1073 /* error the io and bail out, or requeue it if needed */ 1074 dec_pending(tio->io, r); 1075 free_tio(tio); 1076 } else if (r != DM_MAPIO_SUBMITTED) { 1077 DMWARN("unimplemented target map return value: %d", r); 1078 BUG(); 1079 } 1080 } 1081 1082 struct clone_info { 1083 struct mapped_device *md; 1084 struct dm_table *map; 1085 struct bio *bio; 1086 struct dm_io *io; 1087 sector_t sector; 1088 unsigned sector_count; 1089 }; 1090 1091 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1092 { 1093 bio->bi_iter.bi_sector = sector; 1094 bio->bi_iter.bi_size = to_bytes(len); 1095 } 1096 1097 /* 1098 * Creates a bio that consists of range of complete bvecs. 1099 */ 1100 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1101 sector_t sector, unsigned len) 1102 { 1103 struct bio *clone = &tio->clone; 1104 1105 __bio_clone_fast(clone, bio); 1106 1107 if (bio_integrity(bio)) { 1108 int r = bio_integrity_clone(clone, bio, GFP_NOIO); 1109 if (r < 0) 1110 return r; 1111 } 1112 1113 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1114 clone->bi_iter.bi_size = to_bytes(len); 1115 1116 if (bio_integrity(bio)) 1117 bio_integrity_trim(clone, 0, len); 1118 1119 return 0; 1120 } 1121 1122 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1123 struct dm_target *ti, 1124 unsigned target_bio_nr) 1125 { 1126 struct dm_target_io *tio; 1127 struct bio *clone; 1128 1129 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1130 tio = container_of(clone, struct dm_target_io, clone); 1131 1132 tio->io = ci->io; 1133 tio->ti = ti; 1134 tio->target_bio_nr = target_bio_nr; 1135 1136 return tio; 1137 } 1138 1139 static void __clone_and_map_simple_bio(struct clone_info *ci, 1140 struct dm_target *ti, 1141 unsigned target_bio_nr, unsigned *len) 1142 { 1143 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1144 struct bio *clone = &tio->clone; 1145 1146 tio->len_ptr = len; 1147 1148 __bio_clone_fast(clone, ci->bio); 1149 if (len) 1150 bio_setup_sector(clone, ci->sector, *len); 1151 1152 __map_bio(tio); 1153 } 1154 1155 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1156 unsigned num_bios, unsigned *len) 1157 { 1158 unsigned target_bio_nr; 1159 1160 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1161 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1162 } 1163 1164 static int __send_empty_flush(struct clone_info *ci) 1165 { 1166 unsigned target_nr = 0; 1167 struct dm_target *ti; 1168 1169 BUG_ON(bio_has_data(ci->bio)); 1170 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1171 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1172 1173 return 0; 1174 } 1175 1176 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1177 sector_t sector, unsigned *len) 1178 { 1179 struct bio *bio = ci->bio; 1180 struct dm_target_io *tio; 1181 unsigned target_bio_nr; 1182 unsigned num_target_bios = 1; 1183 int r = 0; 1184 1185 /* 1186 * Does the target want to receive duplicate copies of the bio? 1187 */ 1188 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1189 num_target_bios = ti->num_write_bios(ti, bio); 1190 1191 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1192 tio = alloc_tio(ci, ti, target_bio_nr); 1193 tio->len_ptr = len; 1194 r = clone_bio(tio, bio, sector, *len); 1195 if (r < 0) { 1196 free_tio(tio); 1197 break; 1198 } 1199 __map_bio(tio); 1200 } 1201 1202 return r; 1203 } 1204 1205 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1206 1207 static unsigned get_num_discard_bios(struct dm_target *ti) 1208 { 1209 return ti->num_discard_bios; 1210 } 1211 1212 static unsigned get_num_write_same_bios(struct dm_target *ti) 1213 { 1214 return ti->num_write_same_bios; 1215 } 1216 1217 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1218 { 1219 return ti->num_write_zeroes_bios; 1220 } 1221 1222 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1223 1224 static bool is_split_required_for_discard(struct dm_target *ti) 1225 { 1226 return ti->split_discard_bios; 1227 } 1228 1229 static int __send_changing_extent_only(struct clone_info *ci, 1230 get_num_bios_fn get_num_bios, 1231 is_split_required_fn is_split_required) 1232 { 1233 struct dm_target *ti; 1234 unsigned len; 1235 unsigned num_bios; 1236 1237 do { 1238 ti = dm_table_find_target(ci->map, ci->sector); 1239 if (!dm_target_is_valid(ti)) 1240 return -EIO; 1241 1242 /* 1243 * Even though the device advertised support for this type of 1244 * request, that does not mean every target supports it, and 1245 * reconfiguration might also have changed that since the 1246 * check was performed. 1247 */ 1248 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1249 if (!num_bios) 1250 return -EOPNOTSUPP; 1251 1252 if (is_split_required && !is_split_required(ti)) 1253 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1254 else 1255 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1256 1257 __send_duplicate_bios(ci, ti, num_bios, &len); 1258 1259 ci->sector += len; 1260 } while (ci->sector_count -= len); 1261 1262 return 0; 1263 } 1264 1265 static int __send_discard(struct clone_info *ci) 1266 { 1267 return __send_changing_extent_only(ci, get_num_discard_bios, 1268 is_split_required_for_discard); 1269 } 1270 1271 static int __send_write_same(struct clone_info *ci) 1272 { 1273 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1274 } 1275 1276 static int __send_write_zeroes(struct clone_info *ci) 1277 { 1278 return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL); 1279 } 1280 1281 /* 1282 * Select the correct strategy for processing a non-flush bio. 1283 */ 1284 static int __split_and_process_non_flush(struct clone_info *ci) 1285 { 1286 struct bio *bio = ci->bio; 1287 struct dm_target *ti; 1288 unsigned len; 1289 int r; 1290 1291 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1292 return __send_discard(ci); 1293 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1294 return __send_write_same(ci); 1295 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES)) 1296 return __send_write_zeroes(ci); 1297 1298 ti = dm_table_find_target(ci->map, ci->sector); 1299 if (!dm_target_is_valid(ti)) 1300 return -EIO; 1301 1302 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1303 1304 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1305 if (r < 0) 1306 return r; 1307 1308 ci->sector += len; 1309 ci->sector_count -= len; 1310 1311 return 0; 1312 } 1313 1314 /* 1315 * Entry point to split a bio into clones and submit them to the targets. 1316 */ 1317 static void __split_and_process_bio(struct mapped_device *md, 1318 struct dm_table *map, struct bio *bio) 1319 { 1320 struct clone_info ci; 1321 int error = 0; 1322 1323 if (unlikely(!map)) { 1324 bio_io_error(bio); 1325 return; 1326 } 1327 1328 ci.map = map; 1329 ci.md = md; 1330 ci.io = alloc_io(md); 1331 ci.io->error = 0; 1332 atomic_set(&ci.io->io_count, 1); 1333 ci.io->bio = bio; 1334 ci.io->md = md; 1335 spin_lock_init(&ci.io->endio_lock); 1336 ci.sector = bio->bi_iter.bi_sector; 1337 1338 start_io_acct(ci.io); 1339 1340 if (bio->bi_opf & REQ_PREFLUSH) { 1341 ci.bio = &ci.md->flush_bio; 1342 ci.sector_count = 0; 1343 error = __send_empty_flush(&ci); 1344 /* dec_pending submits any data associated with flush */ 1345 } else { 1346 ci.bio = bio; 1347 ci.sector_count = bio_sectors(bio); 1348 while (ci.sector_count && !error) 1349 error = __split_and_process_non_flush(&ci); 1350 } 1351 1352 /* drop the extra reference count */ 1353 dec_pending(ci.io, error); 1354 } 1355 /*----------------------------------------------------------------- 1356 * CRUD END 1357 *---------------------------------------------------------------*/ 1358 1359 /* 1360 * The request function that just remaps the bio built up by 1361 * dm_merge_bvec. 1362 */ 1363 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1364 { 1365 int rw = bio_data_dir(bio); 1366 struct mapped_device *md = q->queuedata; 1367 int srcu_idx; 1368 struct dm_table *map; 1369 1370 map = dm_get_live_table(md, &srcu_idx); 1371 1372 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1373 1374 /* if we're suspended, we have to queue this io for later */ 1375 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1376 dm_put_live_table(md, srcu_idx); 1377 1378 if (!(bio->bi_opf & REQ_RAHEAD)) 1379 queue_io(md, bio); 1380 else 1381 bio_io_error(bio); 1382 return BLK_QC_T_NONE; 1383 } 1384 1385 __split_and_process_bio(md, map, bio); 1386 dm_put_live_table(md, srcu_idx); 1387 return BLK_QC_T_NONE; 1388 } 1389 1390 static int dm_any_congested(void *congested_data, int bdi_bits) 1391 { 1392 int r = bdi_bits; 1393 struct mapped_device *md = congested_data; 1394 struct dm_table *map; 1395 1396 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1397 if (dm_request_based(md)) { 1398 /* 1399 * With request-based DM we only need to check the 1400 * top-level queue for congestion. 1401 */ 1402 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1403 } else { 1404 map = dm_get_live_table_fast(md); 1405 if (map) 1406 r = dm_table_any_congested(map, bdi_bits); 1407 dm_put_live_table_fast(md); 1408 } 1409 } 1410 1411 return r; 1412 } 1413 1414 /*----------------------------------------------------------------- 1415 * An IDR is used to keep track of allocated minor numbers. 1416 *---------------------------------------------------------------*/ 1417 static void free_minor(int minor) 1418 { 1419 spin_lock(&_minor_lock); 1420 idr_remove(&_minor_idr, minor); 1421 spin_unlock(&_minor_lock); 1422 } 1423 1424 /* 1425 * See if the device with a specific minor # is free. 1426 */ 1427 static int specific_minor(int minor) 1428 { 1429 int r; 1430 1431 if (minor >= (1 << MINORBITS)) 1432 return -EINVAL; 1433 1434 idr_preload(GFP_KERNEL); 1435 spin_lock(&_minor_lock); 1436 1437 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1438 1439 spin_unlock(&_minor_lock); 1440 idr_preload_end(); 1441 if (r < 0) 1442 return r == -ENOSPC ? -EBUSY : r; 1443 return 0; 1444 } 1445 1446 static int next_free_minor(int *minor) 1447 { 1448 int r; 1449 1450 idr_preload(GFP_KERNEL); 1451 spin_lock(&_minor_lock); 1452 1453 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1454 1455 spin_unlock(&_minor_lock); 1456 idr_preload_end(); 1457 if (r < 0) 1458 return r; 1459 *minor = r; 1460 return 0; 1461 } 1462 1463 static const struct block_device_operations dm_blk_dops; 1464 1465 static void dm_wq_work(struct work_struct *work); 1466 1467 void dm_init_md_queue(struct mapped_device *md) 1468 { 1469 /* 1470 * Request-based dm devices cannot be stacked on top of bio-based dm 1471 * devices. The type of this dm device may not have been decided yet. 1472 * The type is decided at the first table loading time. 1473 * To prevent problematic device stacking, clear the queue flag 1474 * for request stacking support until then. 1475 * 1476 * This queue is new, so no concurrency on the queue_flags. 1477 */ 1478 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1479 1480 /* 1481 * Initialize data that will only be used by a non-blk-mq DM queue 1482 * - must do so here (in alloc_dev callchain) before queue is used 1483 */ 1484 md->queue->queuedata = md; 1485 md->queue->backing_dev_info->congested_data = md; 1486 } 1487 1488 void dm_init_normal_md_queue(struct mapped_device *md) 1489 { 1490 md->use_blk_mq = false; 1491 dm_init_md_queue(md); 1492 1493 /* 1494 * Initialize aspects of queue that aren't relevant for blk-mq 1495 */ 1496 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1497 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1498 } 1499 1500 static void cleanup_mapped_device(struct mapped_device *md) 1501 { 1502 if (md->wq) 1503 destroy_workqueue(md->wq); 1504 if (md->kworker_task) 1505 kthread_stop(md->kworker_task); 1506 mempool_destroy(md->io_pool); 1507 if (md->bs) 1508 bioset_free(md->bs); 1509 1510 if (md->disk) { 1511 spin_lock(&_minor_lock); 1512 md->disk->private_data = NULL; 1513 spin_unlock(&_minor_lock); 1514 del_gendisk(md->disk); 1515 put_disk(md->disk); 1516 } 1517 1518 if (md->queue) 1519 blk_cleanup_queue(md->queue); 1520 1521 cleanup_srcu_struct(&md->io_barrier); 1522 1523 if (md->bdev) { 1524 bdput(md->bdev); 1525 md->bdev = NULL; 1526 } 1527 1528 dm_mq_cleanup_mapped_device(md); 1529 } 1530 1531 /* 1532 * Allocate and initialise a blank device with a given minor. 1533 */ 1534 static struct mapped_device *alloc_dev(int minor) 1535 { 1536 int r, numa_node_id = dm_get_numa_node(); 1537 struct mapped_device *md; 1538 void *old_md; 1539 1540 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1541 if (!md) { 1542 DMWARN("unable to allocate device, out of memory."); 1543 return NULL; 1544 } 1545 1546 if (!try_module_get(THIS_MODULE)) 1547 goto bad_module_get; 1548 1549 /* get a minor number for the dev */ 1550 if (minor == DM_ANY_MINOR) 1551 r = next_free_minor(&minor); 1552 else 1553 r = specific_minor(minor); 1554 if (r < 0) 1555 goto bad_minor; 1556 1557 r = init_srcu_struct(&md->io_barrier); 1558 if (r < 0) 1559 goto bad_io_barrier; 1560 1561 md->numa_node_id = numa_node_id; 1562 md->use_blk_mq = dm_use_blk_mq_default(); 1563 md->init_tio_pdu = false; 1564 md->type = DM_TYPE_NONE; 1565 mutex_init(&md->suspend_lock); 1566 mutex_init(&md->type_lock); 1567 mutex_init(&md->table_devices_lock); 1568 spin_lock_init(&md->deferred_lock); 1569 atomic_set(&md->holders, 1); 1570 atomic_set(&md->open_count, 0); 1571 atomic_set(&md->event_nr, 0); 1572 atomic_set(&md->uevent_seq, 0); 1573 INIT_LIST_HEAD(&md->uevent_list); 1574 INIT_LIST_HEAD(&md->table_devices); 1575 spin_lock_init(&md->uevent_lock); 1576 1577 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1578 if (!md->queue) 1579 goto bad; 1580 1581 dm_init_md_queue(md); 1582 1583 md->disk = alloc_disk_node(1, numa_node_id); 1584 if (!md->disk) 1585 goto bad; 1586 1587 atomic_set(&md->pending[0], 0); 1588 atomic_set(&md->pending[1], 0); 1589 init_waitqueue_head(&md->wait); 1590 INIT_WORK(&md->work, dm_wq_work); 1591 init_waitqueue_head(&md->eventq); 1592 init_completion(&md->kobj_holder.completion); 1593 md->kworker_task = NULL; 1594 1595 md->disk->major = _major; 1596 md->disk->first_minor = minor; 1597 md->disk->fops = &dm_blk_dops; 1598 md->disk->queue = md->queue; 1599 md->disk->private_data = md; 1600 sprintf(md->disk->disk_name, "dm-%d", minor); 1601 add_disk(md->disk); 1602 format_dev_t(md->name, MKDEV(_major, minor)); 1603 1604 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1605 if (!md->wq) 1606 goto bad; 1607 1608 md->bdev = bdget_disk(md->disk, 0); 1609 if (!md->bdev) 1610 goto bad; 1611 1612 bio_init(&md->flush_bio, NULL, 0); 1613 md->flush_bio.bi_bdev = md->bdev; 1614 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1615 1616 dm_stats_init(&md->stats); 1617 1618 /* Populate the mapping, nobody knows we exist yet */ 1619 spin_lock(&_minor_lock); 1620 old_md = idr_replace(&_minor_idr, md, minor); 1621 spin_unlock(&_minor_lock); 1622 1623 BUG_ON(old_md != MINOR_ALLOCED); 1624 1625 return md; 1626 1627 bad: 1628 cleanup_mapped_device(md); 1629 bad_io_barrier: 1630 free_minor(minor); 1631 bad_minor: 1632 module_put(THIS_MODULE); 1633 bad_module_get: 1634 kfree(md); 1635 return NULL; 1636 } 1637 1638 static void unlock_fs(struct mapped_device *md); 1639 1640 static void free_dev(struct mapped_device *md) 1641 { 1642 int minor = MINOR(disk_devt(md->disk)); 1643 1644 unlock_fs(md); 1645 1646 cleanup_mapped_device(md); 1647 1648 free_table_devices(&md->table_devices); 1649 dm_stats_cleanup(&md->stats); 1650 free_minor(minor); 1651 1652 module_put(THIS_MODULE); 1653 kfree(md); 1654 } 1655 1656 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1657 { 1658 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1659 1660 if (md->bs) { 1661 /* The md already has necessary mempools. */ 1662 if (dm_table_bio_based(t)) { 1663 /* 1664 * Reload bioset because front_pad may have changed 1665 * because a different table was loaded. 1666 */ 1667 bioset_free(md->bs); 1668 md->bs = p->bs; 1669 p->bs = NULL; 1670 } 1671 /* 1672 * There's no need to reload with request-based dm 1673 * because the size of front_pad doesn't change. 1674 * Note for future: If you are to reload bioset, 1675 * prep-ed requests in the queue may refer 1676 * to bio from the old bioset, so you must walk 1677 * through the queue to unprep. 1678 */ 1679 goto out; 1680 } 1681 1682 BUG_ON(!p || md->io_pool || md->bs); 1683 1684 md->io_pool = p->io_pool; 1685 p->io_pool = NULL; 1686 md->bs = p->bs; 1687 p->bs = NULL; 1688 1689 out: 1690 /* mempool bind completed, no longer need any mempools in the table */ 1691 dm_table_free_md_mempools(t); 1692 } 1693 1694 /* 1695 * Bind a table to the device. 1696 */ 1697 static void event_callback(void *context) 1698 { 1699 unsigned long flags; 1700 LIST_HEAD(uevents); 1701 struct mapped_device *md = (struct mapped_device *) context; 1702 1703 spin_lock_irqsave(&md->uevent_lock, flags); 1704 list_splice_init(&md->uevent_list, &uevents); 1705 spin_unlock_irqrestore(&md->uevent_lock, flags); 1706 1707 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1708 1709 atomic_inc(&md->event_nr); 1710 wake_up(&md->eventq); 1711 } 1712 1713 /* 1714 * Protected by md->suspend_lock obtained by dm_swap_table(). 1715 */ 1716 static void __set_size(struct mapped_device *md, sector_t size) 1717 { 1718 set_capacity(md->disk, size); 1719 1720 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1721 } 1722 1723 /* 1724 * Returns old map, which caller must destroy. 1725 */ 1726 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1727 struct queue_limits *limits) 1728 { 1729 struct dm_table *old_map; 1730 struct request_queue *q = md->queue; 1731 sector_t size; 1732 1733 lockdep_assert_held(&md->suspend_lock); 1734 1735 size = dm_table_get_size(t); 1736 1737 /* 1738 * Wipe any geometry if the size of the table changed. 1739 */ 1740 if (size != dm_get_size(md)) 1741 memset(&md->geometry, 0, sizeof(md->geometry)); 1742 1743 __set_size(md, size); 1744 1745 dm_table_event_callback(t, event_callback, md); 1746 1747 /* 1748 * The queue hasn't been stopped yet, if the old table type wasn't 1749 * for request-based during suspension. So stop it to prevent 1750 * I/O mapping before resume. 1751 * This must be done before setting the queue restrictions, 1752 * because request-based dm may be run just after the setting. 1753 */ 1754 if (dm_table_request_based(t)) { 1755 dm_stop_queue(q); 1756 /* 1757 * Leverage the fact that request-based DM targets are 1758 * immutable singletons and establish md->immutable_target 1759 * - used to optimize both dm_request_fn and dm_mq_queue_rq 1760 */ 1761 md->immutable_target = dm_table_get_immutable_target(t); 1762 } 1763 1764 __bind_mempools(md, t); 1765 1766 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1767 rcu_assign_pointer(md->map, (void *)t); 1768 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1769 1770 dm_table_set_restrictions(t, q, limits); 1771 if (old_map) 1772 dm_sync_table(md); 1773 1774 return old_map; 1775 } 1776 1777 /* 1778 * Returns unbound table for the caller to free. 1779 */ 1780 static struct dm_table *__unbind(struct mapped_device *md) 1781 { 1782 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1783 1784 if (!map) 1785 return NULL; 1786 1787 dm_table_event_callback(map, NULL, NULL); 1788 RCU_INIT_POINTER(md->map, NULL); 1789 dm_sync_table(md); 1790 1791 return map; 1792 } 1793 1794 /* 1795 * Constructor for a new device. 1796 */ 1797 int dm_create(int minor, struct mapped_device **result) 1798 { 1799 struct mapped_device *md; 1800 1801 md = alloc_dev(minor); 1802 if (!md) 1803 return -ENXIO; 1804 1805 dm_sysfs_init(md); 1806 1807 *result = md; 1808 return 0; 1809 } 1810 1811 /* 1812 * Functions to manage md->type. 1813 * All are required to hold md->type_lock. 1814 */ 1815 void dm_lock_md_type(struct mapped_device *md) 1816 { 1817 mutex_lock(&md->type_lock); 1818 } 1819 1820 void dm_unlock_md_type(struct mapped_device *md) 1821 { 1822 mutex_unlock(&md->type_lock); 1823 } 1824 1825 void dm_set_md_type(struct mapped_device *md, unsigned type) 1826 { 1827 BUG_ON(!mutex_is_locked(&md->type_lock)); 1828 md->type = type; 1829 } 1830 1831 unsigned dm_get_md_type(struct mapped_device *md) 1832 { 1833 return md->type; 1834 } 1835 1836 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1837 { 1838 return md->immutable_target_type; 1839 } 1840 1841 /* 1842 * The queue_limits are only valid as long as you have a reference 1843 * count on 'md'. 1844 */ 1845 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1846 { 1847 BUG_ON(!atomic_read(&md->holders)); 1848 return &md->queue->limits; 1849 } 1850 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1851 1852 /* 1853 * Setup the DM device's queue based on md's type 1854 */ 1855 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1856 { 1857 int r; 1858 unsigned type = dm_get_md_type(md); 1859 1860 switch (type) { 1861 case DM_TYPE_REQUEST_BASED: 1862 r = dm_old_init_request_queue(md, t); 1863 if (r) { 1864 DMERR("Cannot initialize queue for request-based mapped device"); 1865 return r; 1866 } 1867 break; 1868 case DM_TYPE_MQ_REQUEST_BASED: 1869 r = dm_mq_init_request_queue(md, t); 1870 if (r) { 1871 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 1872 return r; 1873 } 1874 break; 1875 case DM_TYPE_BIO_BASED: 1876 case DM_TYPE_DAX_BIO_BASED: 1877 dm_init_normal_md_queue(md); 1878 blk_queue_make_request(md->queue, dm_make_request); 1879 /* 1880 * DM handles splitting bios as needed. Free the bio_split bioset 1881 * since it won't be used (saves 1 process per bio-based DM device). 1882 */ 1883 bioset_free(md->queue->bio_split); 1884 md->queue->bio_split = NULL; 1885 1886 if (type == DM_TYPE_DAX_BIO_BASED) 1887 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue); 1888 break; 1889 } 1890 1891 return 0; 1892 } 1893 1894 struct mapped_device *dm_get_md(dev_t dev) 1895 { 1896 struct mapped_device *md; 1897 unsigned minor = MINOR(dev); 1898 1899 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1900 return NULL; 1901 1902 spin_lock(&_minor_lock); 1903 1904 md = idr_find(&_minor_idr, minor); 1905 if (md) { 1906 if ((md == MINOR_ALLOCED || 1907 (MINOR(disk_devt(dm_disk(md))) != minor) || 1908 dm_deleting_md(md) || 1909 test_bit(DMF_FREEING, &md->flags))) { 1910 md = NULL; 1911 goto out; 1912 } 1913 dm_get(md); 1914 } 1915 1916 out: 1917 spin_unlock(&_minor_lock); 1918 1919 return md; 1920 } 1921 EXPORT_SYMBOL_GPL(dm_get_md); 1922 1923 void *dm_get_mdptr(struct mapped_device *md) 1924 { 1925 return md->interface_ptr; 1926 } 1927 1928 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1929 { 1930 md->interface_ptr = ptr; 1931 } 1932 1933 void dm_get(struct mapped_device *md) 1934 { 1935 atomic_inc(&md->holders); 1936 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1937 } 1938 1939 int dm_hold(struct mapped_device *md) 1940 { 1941 spin_lock(&_minor_lock); 1942 if (test_bit(DMF_FREEING, &md->flags)) { 1943 spin_unlock(&_minor_lock); 1944 return -EBUSY; 1945 } 1946 dm_get(md); 1947 spin_unlock(&_minor_lock); 1948 return 0; 1949 } 1950 EXPORT_SYMBOL_GPL(dm_hold); 1951 1952 const char *dm_device_name(struct mapped_device *md) 1953 { 1954 return md->name; 1955 } 1956 EXPORT_SYMBOL_GPL(dm_device_name); 1957 1958 static void __dm_destroy(struct mapped_device *md, bool wait) 1959 { 1960 struct request_queue *q = dm_get_md_queue(md); 1961 struct dm_table *map; 1962 int srcu_idx; 1963 1964 might_sleep(); 1965 1966 spin_lock(&_minor_lock); 1967 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 1968 set_bit(DMF_FREEING, &md->flags); 1969 spin_unlock(&_minor_lock); 1970 1971 blk_set_queue_dying(q); 1972 1973 if (dm_request_based(md) && md->kworker_task) 1974 kthread_flush_worker(&md->kworker); 1975 1976 /* 1977 * Take suspend_lock so that presuspend and postsuspend methods 1978 * do not race with internal suspend. 1979 */ 1980 mutex_lock(&md->suspend_lock); 1981 map = dm_get_live_table(md, &srcu_idx); 1982 if (!dm_suspended_md(md)) { 1983 dm_table_presuspend_targets(map); 1984 dm_table_postsuspend_targets(map); 1985 } 1986 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 1987 dm_put_live_table(md, srcu_idx); 1988 mutex_unlock(&md->suspend_lock); 1989 1990 /* 1991 * Rare, but there may be I/O requests still going to complete, 1992 * for example. Wait for all references to disappear. 1993 * No one should increment the reference count of the mapped_device, 1994 * after the mapped_device state becomes DMF_FREEING. 1995 */ 1996 if (wait) 1997 while (atomic_read(&md->holders)) 1998 msleep(1); 1999 else if (atomic_read(&md->holders)) 2000 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2001 dm_device_name(md), atomic_read(&md->holders)); 2002 2003 dm_sysfs_exit(md); 2004 dm_table_destroy(__unbind(md)); 2005 free_dev(md); 2006 } 2007 2008 void dm_destroy(struct mapped_device *md) 2009 { 2010 __dm_destroy(md, true); 2011 } 2012 2013 void dm_destroy_immediate(struct mapped_device *md) 2014 { 2015 __dm_destroy(md, false); 2016 } 2017 2018 void dm_put(struct mapped_device *md) 2019 { 2020 atomic_dec(&md->holders); 2021 } 2022 EXPORT_SYMBOL_GPL(dm_put); 2023 2024 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2025 { 2026 int r = 0; 2027 DEFINE_WAIT(wait); 2028 2029 while (1) { 2030 prepare_to_wait(&md->wait, &wait, task_state); 2031 2032 if (!md_in_flight(md)) 2033 break; 2034 2035 if (signal_pending_state(task_state, current)) { 2036 r = -EINTR; 2037 break; 2038 } 2039 2040 io_schedule(); 2041 } 2042 finish_wait(&md->wait, &wait); 2043 2044 return r; 2045 } 2046 2047 /* 2048 * Process the deferred bios 2049 */ 2050 static void dm_wq_work(struct work_struct *work) 2051 { 2052 struct mapped_device *md = container_of(work, struct mapped_device, 2053 work); 2054 struct bio *c; 2055 int srcu_idx; 2056 struct dm_table *map; 2057 2058 map = dm_get_live_table(md, &srcu_idx); 2059 2060 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2061 spin_lock_irq(&md->deferred_lock); 2062 c = bio_list_pop(&md->deferred); 2063 spin_unlock_irq(&md->deferred_lock); 2064 2065 if (!c) 2066 break; 2067 2068 if (dm_request_based(md)) 2069 generic_make_request(c); 2070 else 2071 __split_and_process_bio(md, map, c); 2072 } 2073 2074 dm_put_live_table(md, srcu_idx); 2075 } 2076 2077 static void dm_queue_flush(struct mapped_device *md) 2078 { 2079 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2080 smp_mb__after_atomic(); 2081 queue_work(md->wq, &md->work); 2082 } 2083 2084 /* 2085 * Swap in a new table, returning the old one for the caller to destroy. 2086 */ 2087 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2088 { 2089 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2090 struct queue_limits limits; 2091 int r; 2092 2093 mutex_lock(&md->suspend_lock); 2094 2095 /* device must be suspended */ 2096 if (!dm_suspended_md(md)) 2097 goto out; 2098 2099 /* 2100 * If the new table has no data devices, retain the existing limits. 2101 * This helps multipath with queue_if_no_path if all paths disappear, 2102 * then new I/O is queued based on these limits, and then some paths 2103 * reappear. 2104 */ 2105 if (dm_table_has_no_data_devices(table)) { 2106 live_map = dm_get_live_table_fast(md); 2107 if (live_map) 2108 limits = md->queue->limits; 2109 dm_put_live_table_fast(md); 2110 } 2111 2112 if (!live_map) { 2113 r = dm_calculate_queue_limits(table, &limits); 2114 if (r) { 2115 map = ERR_PTR(r); 2116 goto out; 2117 } 2118 } 2119 2120 map = __bind(md, table, &limits); 2121 2122 out: 2123 mutex_unlock(&md->suspend_lock); 2124 return map; 2125 } 2126 2127 /* 2128 * Functions to lock and unlock any filesystem running on the 2129 * device. 2130 */ 2131 static int lock_fs(struct mapped_device *md) 2132 { 2133 int r; 2134 2135 WARN_ON(md->frozen_sb); 2136 2137 md->frozen_sb = freeze_bdev(md->bdev); 2138 if (IS_ERR(md->frozen_sb)) { 2139 r = PTR_ERR(md->frozen_sb); 2140 md->frozen_sb = NULL; 2141 return r; 2142 } 2143 2144 set_bit(DMF_FROZEN, &md->flags); 2145 2146 return 0; 2147 } 2148 2149 static void unlock_fs(struct mapped_device *md) 2150 { 2151 if (!test_bit(DMF_FROZEN, &md->flags)) 2152 return; 2153 2154 thaw_bdev(md->bdev, md->frozen_sb); 2155 md->frozen_sb = NULL; 2156 clear_bit(DMF_FROZEN, &md->flags); 2157 } 2158 2159 /* 2160 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2161 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2162 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2163 * 2164 * If __dm_suspend returns 0, the device is completely quiescent 2165 * now. There is no request-processing activity. All new requests 2166 * are being added to md->deferred list. 2167 * 2168 * Caller must hold md->suspend_lock 2169 */ 2170 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2171 unsigned suspend_flags, long task_state, 2172 int dmf_suspended_flag) 2173 { 2174 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2175 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2176 int r; 2177 2178 lockdep_assert_held(&md->suspend_lock); 2179 2180 /* 2181 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2182 * This flag is cleared before dm_suspend returns. 2183 */ 2184 if (noflush) 2185 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2186 2187 /* 2188 * This gets reverted if there's an error later and the targets 2189 * provide the .presuspend_undo hook. 2190 */ 2191 dm_table_presuspend_targets(map); 2192 2193 /* 2194 * Flush I/O to the device. 2195 * Any I/O submitted after lock_fs() may not be flushed. 2196 * noflush takes precedence over do_lockfs. 2197 * (lock_fs() flushes I/Os and waits for them to complete.) 2198 */ 2199 if (!noflush && do_lockfs) { 2200 r = lock_fs(md); 2201 if (r) { 2202 dm_table_presuspend_undo_targets(map); 2203 return r; 2204 } 2205 } 2206 2207 /* 2208 * Here we must make sure that no processes are submitting requests 2209 * to target drivers i.e. no one may be executing 2210 * __split_and_process_bio. This is called from dm_request and 2211 * dm_wq_work. 2212 * 2213 * To get all processes out of __split_and_process_bio in dm_request, 2214 * we take the write lock. To prevent any process from reentering 2215 * __split_and_process_bio from dm_request and quiesce the thread 2216 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2217 * flush_workqueue(md->wq). 2218 */ 2219 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2220 if (map) 2221 synchronize_srcu(&md->io_barrier); 2222 2223 /* 2224 * Stop md->queue before flushing md->wq in case request-based 2225 * dm defers requests to md->wq from md->queue. 2226 */ 2227 if (dm_request_based(md)) { 2228 dm_stop_queue(md->queue); 2229 if (md->kworker_task) 2230 kthread_flush_worker(&md->kworker); 2231 } 2232 2233 flush_workqueue(md->wq); 2234 2235 /* 2236 * At this point no more requests are entering target request routines. 2237 * We call dm_wait_for_completion to wait for all existing requests 2238 * to finish. 2239 */ 2240 r = dm_wait_for_completion(md, task_state); 2241 if (!r) 2242 set_bit(dmf_suspended_flag, &md->flags); 2243 2244 if (noflush) 2245 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2246 if (map) 2247 synchronize_srcu(&md->io_barrier); 2248 2249 /* were we interrupted ? */ 2250 if (r < 0) { 2251 dm_queue_flush(md); 2252 2253 if (dm_request_based(md)) 2254 dm_start_queue(md->queue); 2255 2256 unlock_fs(md); 2257 dm_table_presuspend_undo_targets(map); 2258 /* pushback list is already flushed, so skip flush */ 2259 } 2260 2261 return r; 2262 } 2263 2264 /* 2265 * We need to be able to change a mapping table under a mounted 2266 * filesystem. For example we might want to move some data in 2267 * the background. Before the table can be swapped with 2268 * dm_bind_table, dm_suspend must be called to flush any in 2269 * flight bios and ensure that any further io gets deferred. 2270 */ 2271 /* 2272 * Suspend mechanism in request-based dm. 2273 * 2274 * 1. Flush all I/Os by lock_fs() if needed. 2275 * 2. Stop dispatching any I/O by stopping the request_queue. 2276 * 3. Wait for all in-flight I/Os to be completed or requeued. 2277 * 2278 * To abort suspend, start the request_queue. 2279 */ 2280 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2281 { 2282 struct dm_table *map = NULL; 2283 int r = 0; 2284 2285 retry: 2286 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2287 2288 if (dm_suspended_md(md)) { 2289 r = -EINVAL; 2290 goto out_unlock; 2291 } 2292 2293 if (dm_suspended_internally_md(md)) { 2294 /* already internally suspended, wait for internal resume */ 2295 mutex_unlock(&md->suspend_lock); 2296 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2297 if (r) 2298 return r; 2299 goto retry; 2300 } 2301 2302 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2303 2304 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2305 if (r) 2306 goto out_unlock; 2307 2308 dm_table_postsuspend_targets(map); 2309 2310 out_unlock: 2311 mutex_unlock(&md->suspend_lock); 2312 return r; 2313 } 2314 2315 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2316 { 2317 if (map) { 2318 int r = dm_table_resume_targets(map); 2319 if (r) 2320 return r; 2321 } 2322 2323 dm_queue_flush(md); 2324 2325 /* 2326 * Flushing deferred I/Os must be done after targets are resumed 2327 * so that mapping of targets can work correctly. 2328 * Request-based dm is queueing the deferred I/Os in its request_queue. 2329 */ 2330 if (dm_request_based(md)) 2331 dm_start_queue(md->queue); 2332 2333 unlock_fs(md); 2334 2335 return 0; 2336 } 2337 2338 int dm_resume(struct mapped_device *md) 2339 { 2340 int r; 2341 struct dm_table *map = NULL; 2342 2343 retry: 2344 r = -EINVAL; 2345 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2346 2347 if (!dm_suspended_md(md)) 2348 goto out; 2349 2350 if (dm_suspended_internally_md(md)) { 2351 /* already internally suspended, wait for internal resume */ 2352 mutex_unlock(&md->suspend_lock); 2353 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2354 if (r) 2355 return r; 2356 goto retry; 2357 } 2358 2359 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2360 if (!map || !dm_table_get_size(map)) 2361 goto out; 2362 2363 r = __dm_resume(md, map); 2364 if (r) 2365 goto out; 2366 2367 clear_bit(DMF_SUSPENDED, &md->flags); 2368 out: 2369 mutex_unlock(&md->suspend_lock); 2370 2371 return r; 2372 } 2373 2374 /* 2375 * Internal suspend/resume works like userspace-driven suspend. It waits 2376 * until all bios finish and prevents issuing new bios to the target drivers. 2377 * It may be used only from the kernel. 2378 */ 2379 2380 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2381 { 2382 struct dm_table *map = NULL; 2383 2384 if (md->internal_suspend_count++) 2385 return; /* nested internal suspend */ 2386 2387 if (dm_suspended_md(md)) { 2388 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2389 return; /* nest suspend */ 2390 } 2391 2392 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2393 2394 /* 2395 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2396 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2397 * would require changing .presuspend to return an error -- avoid this 2398 * until there is a need for more elaborate variants of internal suspend. 2399 */ 2400 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2401 DMF_SUSPENDED_INTERNALLY); 2402 2403 dm_table_postsuspend_targets(map); 2404 } 2405 2406 static void __dm_internal_resume(struct mapped_device *md) 2407 { 2408 BUG_ON(!md->internal_suspend_count); 2409 2410 if (--md->internal_suspend_count) 2411 return; /* resume from nested internal suspend */ 2412 2413 if (dm_suspended_md(md)) 2414 goto done; /* resume from nested suspend */ 2415 2416 /* 2417 * NOTE: existing callers don't need to call dm_table_resume_targets 2418 * (which may fail -- so best to avoid it for now by passing NULL map) 2419 */ 2420 (void) __dm_resume(md, NULL); 2421 2422 done: 2423 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2424 smp_mb__after_atomic(); 2425 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2426 } 2427 2428 void dm_internal_suspend_noflush(struct mapped_device *md) 2429 { 2430 mutex_lock(&md->suspend_lock); 2431 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2432 mutex_unlock(&md->suspend_lock); 2433 } 2434 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2435 2436 void dm_internal_resume(struct mapped_device *md) 2437 { 2438 mutex_lock(&md->suspend_lock); 2439 __dm_internal_resume(md); 2440 mutex_unlock(&md->suspend_lock); 2441 } 2442 EXPORT_SYMBOL_GPL(dm_internal_resume); 2443 2444 /* 2445 * Fast variants of internal suspend/resume hold md->suspend_lock, 2446 * which prevents interaction with userspace-driven suspend. 2447 */ 2448 2449 void dm_internal_suspend_fast(struct mapped_device *md) 2450 { 2451 mutex_lock(&md->suspend_lock); 2452 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2453 return; 2454 2455 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2456 synchronize_srcu(&md->io_barrier); 2457 flush_workqueue(md->wq); 2458 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2459 } 2460 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2461 2462 void dm_internal_resume_fast(struct mapped_device *md) 2463 { 2464 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2465 goto done; 2466 2467 dm_queue_flush(md); 2468 2469 done: 2470 mutex_unlock(&md->suspend_lock); 2471 } 2472 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2473 2474 /*----------------------------------------------------------------- 2475 * Event notification. 2476 *---------------------------------------------------------------*/ 2477 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2478 unsigned cookie) 2479 { 2480 char udev_cookie[DM_COOKIE_LENGTH]; 2481 char *envp[] = { udev_cookie, NULL }; 2482 2483 if (!cookie) 2484 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2485 else { 2486 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2487 DM_COOKIE_ENV_VAR_NAME, cookie); 2488 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2489 action, envp); 2490 } 2491 } 2492 2493 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2494 { 2495 return atomic_add_return(1, &md->uevent_seq); 2496 } 2497 2498 uint32_t dm_get_event_nr(struct mapped_device *md) 2499 { 2500 return atomic_read(&md->event_nr); 2501 } 2502 2503 int dm_wait_event(struct mapped_device *md, int event_nr) 2504 { 2505 return wait_event_interruptible(md->eventq, 2506 (event_nr != atomic_read(&md->event_nr))); 2507 } 2508 2509 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2510 { 2511 unsigned long flags; 2512 2513 spin_lock_irqsave(&md->uevent_lock, flags); 2514 list_add(elist, &md->uevent_list); 2515 spin_unlock_irqrestore(&md->uevent_lock, flags); 2516 } 2517 2518 /* 2519 * The gendisk is only valid as long as you have a reference 2520 * count on 'md'. 2521 */ 2522 struct gendisk *dm_disk(struct mapped_device *md) 2523 { 2524 return md->disk; 2525 } 2526 EXPORT_SYMBOL_GPL(dm_disk); 2527 2528 struct kobject *dm_kobject(struct mapped_device *md) 2529 { 2530 return &md->kobj_holder.kobj; 2531 } 2532 2533 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2534 { 2535 struct mapped_device *md; 2536 2537 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2538 2539 if (test_bit(DMF_FREEING, &md->flags) || 2540 dm_deleting_md(md)) 2541 return NULL; 2542 2543 dm_get(md); 2544 return md; 2545 } 2546 2547 int dm_suspended_md(struct mapped_device *md) 2548 { 2549 return test_bit(DMF_SUSPENDED, &md->flags); 2550 } 2551 2552 int dm_suspended_internally_md(struct mapped_device *md) 2553 { 2554 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2555 } 2556 2557 int dm_test_deferred_remove_flag(struct mapped_device *md) 2558 { 2559 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2560 } 2561 2562 int dm_suspended(struct dm_target *ti) 2563 { 2564 return dm_suspended_md(dm_table_get_md(ti->table)); 2565 } 2566 EXPORT_SYMBOL_GPL(dm_suspended); 2567 2568 int dm_noflush_suspending(struct dm_target *ti) 2569 { 2570 return __noflush_suspending(dm_table_get_md(ti->table)); 2571 } 2572 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2573 2574 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 2575 unsigned integrity, unsigned per_io_data_size) 2576 { 2577 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2578 unsigned int pool_size = 0; 2579 unsigned int front_pad; 2580 2581 if (!pools) 2582 return NULL; 2583 2584 switch (type) { 2585 case DM_TYPE_BIO_BASED: 2586 case DM_TYPE_DAX_BIO_BASED: 2587 pool_size = dm_get_reserved_bio_based_ios(); 2588 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2589 2590 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache); 2591 if (!pools->io_pool) 2592 goto out; 2593 break; 2594 case DM_TYPE_REQUEST_BASED: 2595 case DM_TYPE_MQ_REQUEST_BASED: 2596 pool_size = dm_get_reserved_rq_based_ios(); 2597 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2598 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2599 break; 2600 default: 2601 BUG(); 2602 } 2603 2604 pools->bs = bioset_create_nobvec(pool_size, front_pad); 2605 if (!pools->bs) 2606 goto out; 2607 2608 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2609 goto out; 2610 2611 return pools; 2612 2613 out: 2614 dm_free_md_mempools(pools); 2615 2616 return NULL; 2617 } 2618 2619 void dm_free_md_mempools(struct dm_md_mempools *pools) 2620 { 2621 if (!pools) 2622 return; 2623 2624 mempool_destroy(pools->io_pool); 2625 2626 if (pools->bs) 2627 bioset_free(pools->bs); 2628 2629 kfree(pools); 2630 } 2631 2632 struct dm_pr { 2633 u64 old_key; 2634 u64 new_key; 2635 u32 flags; 2636 bool fail_early; 2637 }; 2638 2639 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2640 void *data) 2641 { 2642 struct mapped_device *md = bdev->bd_disk->private_data; 2643 struct dm_table *table; 2644 struct dm_target *ti; 2645 int ret = -ENOTTY, srcu_idx; 2646 2647 table = dm_get_live_table(md, &srcu_idx); 2648 if (!table || !dm_table_get_size(table)) 2649 goto out; 2650 2651 /* We only support devices that have a single target */ 2652 if (dm_table_get_num_targets(table) != 1) 2653 goto out; 2654 ti = dm_table_get_target(table, 0); 2655 2656 ret = -EINVAL; 2657 if (!ti->type->iterate_devices) 2658 goto out; 2659 2660 ret = ti->type->iterate_devices(ti, fn, data); 2661 out: 2662 dm_put_live_table(md, srcu_idx); 2663 return ret; 2664 } 2665 2666 /* 2667 * For register / unregister we need to manually call out to every path. 2668 */ 2669 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2670 sector_t start, sector_t len, void *data) 2671 { 2672 struct dm_pr *pr = data; 2673 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2674 2675 if (!ops || !ops->pr_register) 2676 return -EOPNOTSUPP; 2677 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2678 } 2679 2680 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2681 u32 flags) 2682 { 2683 struct dm_pr pr = { 2684 .old_key = old_key, 2685 .new_key = new_key, 2686 .flags = flags, 2687 .fail_early = true, 2688 }; 2689 int ret; 2690 2691 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2692 if (ret && new_key) { 2693 /* unregister all paths if we failed to register any path */ 2694 pr.old_key = new_key; 2695 pr.new_key = 0; 2696 pr.flags = 0; 2697 pr.fail_early = false; 2698 dm_call_pr(bdev, __dm_pr_register, &pr); 2699 } 2700 2701 return ret; 2702 } 2703 2704 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2705 u32 flags) 2706 { 2707 struct mapped_device *md = bdev->bd_disk->private_data; 2708 const struct pr_ops *ops; 2709 fmode_t mode; 2710 int r; 2711 2712 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2713 if (r < 0) 2714 return r; 2715 2716 ops = bdev->bd_disk->fops->pr_ops; 2717 if (ops && ops->pr_reserve) 2718 r = ops->pr_reserve(bdev, key, type, flags); 2719 else 2720 r = -EOPNOTSUPP; 2721 2722 bdput(bdev); 2723 return r; 2724 } 2725 2726 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2727 { 2728 struct mapped_device *md = bdev->bd_disk->private_data; 2729 const struct pr_ops *ops; 2730 fmode_t mode; 2731 int r; 2732 2733 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2734 if (r < 0) 2735 return r; 2736 2737 ops = bdev->bd_disk->fops->pr_ops; 2738 if (ops && ops->pr_release) 2739 r = ops->pr_release(bdev, key, type); 2740 else 2741 r = -EOPNOTSUPP; 2742 2743 bdput(bdev); 2744 return r; 2745 } 2746 2747 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2748 enum pr_type type, bool abort) 2749 { 2750 struct mapped_device *md = bdev->bd_disk->private_data; 2751 const struct pr_ops *ops; 2752 fmode_t mode; 2753 int r; 2754 2755 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2756 if (r < 0) 2757 return r; 2758 2759 ops = bdev->bd_disk->fops->pr_ops; 2760 if (ops && ops->pr_preempt) 2761 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2762 else 2763 r = -EOPNOTSUPP; 2764 2765 bdput(bdev); 2766 return r; 2767 } 2768 2769 static int dm_pr_clear(struct block_device *bdev, u64 key) 2770 { 2771 struct mapped_device *md = bdev->bd_disk->private_data; 2772 const struct pr_ops *ops; 2773 fmode_t mode; 2774 int r; 2775 2776 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2777 if (r < 0) 2778 return r; 2779 2780 ops = bdev->bd_disk->fops->pr_ops; 2781 if (ops && ops->pr_clear) 2782 r = ops->pr_clear(bdev, key); 2783 else 2784 r = -EOPNOTSUPP; 2785 2786 bdput(bdev); 2787 return r; 2788 } 2789 2790 static const struct pr_ops dm_pr_ops = { 2791 .pr_register = dm_pr_register, 2792 .pr_reserve = dm_pr_reserve, 2793 .pr_release = dm_pr_release, 2794 .pr_preempt = dm_pr_preempt, 2795 .pr_clear = dm_pr_clear, 2796 }; 2797 2798 static const struct block_device_operations dm_blk_dops = { 2799 .open = dm_blk_open, 2800 .release = dm_blk_close, 2801 .ioctl = dm_blk_ioctl, 2802 .direct_access = dm_blk_direct_access, 2803 .getgeo = dm_blk_getgeo, 2804 .pr_ops = &dm_pr_ops, 2805 .owner = THIS_MODULE 2806 }; 2807 2808 /* 2809 * module hooks 2810 */ 2811 module_init(dm_init); 2812 module_exit(dm_exit); 2813 2814 module_param(major, uint, 0); 2815 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2816 2817 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2818 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2819 2820 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2821 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2822 2823 MODULE_DESCRIPTION(DM_NAME " driver"); 2824 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2825 MODULE_LICENSE("GPL"); 2826