xref: /linux/drivers/md/dm.c (revision 564f7dfde24a405d877168f150ae5d29d3ad99c7)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23 #include <linux/wait.h>
24 #include <linux/pr.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 #ifdef CONFIG_PRINTK
29 /*
30  * ratelimit state to be used in DMXXX_LIMIT().
31  */
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 		       DEFAULT_RATELIMIT_INTERVAL,
34 		       DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
37 
38 /*
39  * Cookies are numeric values sent with CHANGE and REMOVE
40  * uevents while resuming, removing or renaming the device.
41  */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44 
45 static const char *_name = DM_NAME;
46 
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
49 
50 static DEFINE_IDR(_minor_idr);
51 
52 static DEFINE_SPINLOCK(_minor_lock);
53 
54 static void do_deferred_remove(struct work_struct *w);
55 
56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
57 
58 static struct workqueue_struct *deferred_remove_workqueue;
59 
60 /*
61  * One of these is allocated per bio.
62  */
63 struct dm_io {
64 	struct mapped_device *md;
65 	int error;
66 	atomic_t io_count;
67 	struct bio *bio;
68 	unsigned long start_time;
69 	spinlock_t endio_lock;
70 	struct dm_stats_aux stats_aux;
71 };
72 
73 #define MINOR_ALLOCED ((void *)-1)
74 
75 /*
76  * Bits for the md->flags field.
77  */
78 #define DMF_BLOCK_IO_FOR_SUSPEND 0
79 #define DMF_SUSPENDED 1
80 #define DMF_FROZEN 2
81 #define DMF_FREEING 3
82 #define DMF_DELETING 4
83 #define DMF_NOFLUSH_SUSPENDING 5
84 #define DMF_DEFERRED_REMOVE 6
85 #define DMF_SUSPENDED_INTERNALLY 7
86 
87 #define DM_NUMA_NODE NUMA_NO_NODE
88 static int dm_numa_node = DM_NUMA_NODE;
89 
90 /*
91  * For mempools pre-allocation at the table loading time.
92  */
93 struct dm_md_mempools {
94 	mempool_t *io_pool;
95 	struct bio_set *bs;
96 };
97 
98 struct table_device {
99 	struct list_head list;
100 	atomic_t count;
101 	struct dm_dev dm_dev;
102 };
103 
104 static struct kmem_cache *_io_cache;
105 static struct kmem_cache *_rq_tio_cache;
106 static struct kmem_cache *_rq_cache;
107 
108 /*
109  * Bio-based DM's mempools' reserved IOs set by the user.
110  */
111 #define RESERVED_BIO_BASED_IOS		16
112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
113 
114 static int __dm_get_module_param_int(int *module_param, int min, int max)
115 {
116 	int param = ACCESS_ONCE(*module_param);
117 	int modified_param = 0;
118 	bool modified = true;
119 
120 	if (param < min)
121 		modified_param = min;
122 	else if (param > max)
123 		modified_param = max;
124 	else
125 		modified = false;
126 
127 	if (modified) {
128 		(void)cmpxchg(module_param, param, modified_param);
129 		param = modified_param;
130 	}
131 
132 	return param;
133 }
134 
135 unsigned __dm_get_module_param(unsigned *module_param,
136 			       unsigned def, unsigned max)
137 {
138 	unsigned param = ACCESS_ONCE(*module_param);
139 	unsigned modified_param = 0;
140 
141 	if (!param)
142 		modified_param = def;
143 	else if (param > max)
144 		modified_param = max;
145 
146 	if (modified_param) {
147 		(void)cmpxchg(module_param, param, modified_param);
148 		param = modified_param;
149 	}
150 
151 	return param;
152 }
153 
154 unsigned dm_get_reserved_bio_based_ios(void)
155 {
156 	return __dm_get_module_param(&reserved_bio_based_ios,
157 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
158 }
159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
160 
161 static unsigned dm_get_numa_node(void)
162 {
163 	return __dm_get_module_param_int(&dm_numa_node,
164 					 DM_NUMA_NODE, num_online_nodes() - 1);
165 }
166 
167 static int __init local_init(void)
168 {
169 	int r = -ENOMEM;
170 
171 	/* allocate a slab for the dm_ios */
172 	_io_cache = KMEM_CACHE(dm_io, 0);
173 	if (!_io_cache)
174 		return r;
175 
176 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
177 	if (!_rq_tio_cache)
178 		goto out_free_io_cache;
179 
180 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
181 				      __alignof__(struct request), 0, NULL);
182 	if (!_rq_cache)
183 		goto out_free_rq_tio_cache;
184 
185 	r = dm_uevent_init();
186 	if (r)
187 		goto out_free_rq_cache;
188 
189 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
190 	if (!deferred_remove_workqueue) {
191 		r = -ENOMEM;
192 		goto out_uevent_exit;
193 	}
194 
195 	_major = major;
196 	r = register_blkdev(_major, _name);
197 	if (r < 0)
198 		goto out_free_workqueue;
199 
200 	if (!_major)
201 		_major = r;
202 
203 	return 0;
204 
205 out_free_workqueue:
206 	destroy_workqueue(deferred_remove_workqueue);
207 out_uevent_exit:
208 	dm_uevent_exit();
209 out_free_rq_cache:
210 	kmem_cache_destroy(_rq_cache);
211 out_free_rq_tio_cache:
212 	kmem_cache_destroy(_rq_tio_cache);
213 out_free_io_cache:
214 	kmem_cache_destroy(_io_cache);
215 
216 	return r;
217 }
218 
219 static void local_exit(void)
220 {
221 	flush_scheduled_work();
222 	destroy_workqueue(deferred_remove_workqueue);
223 
224 	kmem_cache_destroy(_rq_cache);
225 	kmem_cache_destroy(_rq_tio_cache);
226 	kmem_cache_destroy(_io_cache);
227 	unregister_blkdev(_major, _name);
228 	dm_uevent_exit();
229 
230 	_major = 0;
231 
232 	DMINFO("cleaned up");
233 }
234 
235 static int (*_inits[])(void) __initdata = {
236 	local_init,
237 	dm_target_init,
238 	dm_linear_init,
239 	dm_stripe_init,
240 	dm_io_init,
241 	dm_kcopyd_init,
242 	dm_interface_init,
243 	dm_statistics_init,
244 };
245 
246 static void (*_exits[])(void) = {
247 	local_exit,
248 	dm_target_exit,
249 	dm_linear_exit,
250 	dm_stripe_exit,
251 	dm_io_exit,
252 	dm_kcopyd_exit,
253 	dm_interface_exit,
254 	dm_statistics_exit,
255 };
256 
257 static int __init dm_init(void)
258 {
259 	const int count = ARRAY_SIZE(_inits);
260 
261 	int r, i;
262 
263 	for (i = 0; i < count; i++) {
264 		r = _inits[i]();
265 		if (r)
266 			goto bad;
267 	}
268 
269 	return 0;
270 
271       bad:
272 	while (i--)
273 		_exits[i]();
274 
275 	return r;
276 }
277 
278 static void __exit dm_exit(void)
279 {
280 	int i = ARRAY_SIZE(_exits);
281 
282 	while (i--)
283 		_exits[i]();
284 
285 	/*
286 	 * Should be empty by this point.
287 	 */
288 	idr_destroy(&_minor_idr);
289 }
290 
291 /*
292  * Block device functions
293  */
294 int dm_deleting_md(struct mapped_device *md)
295 {
296 	return test_bit(DMF_DELETING, &md->flags);
297 }
298 
299 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
300 {
301 	struct mapped_device *md;
302 
303 	spin_lock(&_minor_lock);
304 
305 	md = bdev->bd_disk->private_data;
306 	if (!md)
307 		goto out;
308 
309 	if (test_bit(DMF_FREEING, &md->flags) ||
310 	    dm_deleting_md(md)) {
311 		md = NULL;
312 		goto out;
313 	}
314 
315 	dm_get(md);
316 	atomic_inc(&md->open_count);
317 out:
318 	spin_unlock(&_minor_lock);
319 
320 	return md ? 0 : -ENXIO;
321 }
322 
323 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
324 {
325 	struct mapped_device *md;
326 
327 	spin_lock(&_minor_lock);
328 
329 	md = disk->private_data;
330 	if (WARN_ON(!md))
331 		goto out;
332 
333 	if (atomic_dec_and_test(&md->open_count) &&
334 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
335 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
336 
337 	dm_put(md);
338 out:
339 	spin_unlock(&_minor_lock);
340 }
341 
342 int dm_open_count(struct mapped_device *md)
343 {
344 	return atomic_read(&md->open_count);
345 }
346 
347 /*
348  * Guarantees nothing is using the device before it's deleted.
349  */
350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
351 {
352 	int r = 0;
353 
354 	spin_lock(&_minor_lock);
355 
356 	if (dm_open_count(md)) {
357 		r = -EBUSY;
358 		if (mark_deferred)
359 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
360 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
361 		r = -EEXIST;
362 	else
363 		set_bit(DMF_DELETING, &md->flags);
364 
365 	spin_unlock(&_minor_lock);
366 
367 	return r;
368 }
369 
370 int dm_cancel_deferred_remove(struct mapped_device *md)
371 {
372 	int r = 0;
373 
374 	spin_lock(&_minor_lock);
375 
376 	if (test_bit(DMF_DELETING, &md->flags))
377 		r = -EBUSY;
378 	else
379 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
380 
381 	spin_unlock(&_minor_lock);
382 
383 	return r;
384 }
385 
386 static void do_deferred_remove(struct work_struct *w)
387 {
388 	dm_deferred_remove();
389 }
390 
391 sector_t dm_get_size(struct mapped_device *md)
392 {
393 	return get_capacity(md->disk);
394 }
395 
396 struct request_queue *dm_get_md_queue(struct mapped_device *md)
397 {
398 	return md->queue;
399 }
400 
401 struct dm_stats *dm_get_stats(struct mapped_device *md)
402 {
403 	return &md->stats;
404 }
405 
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
414 				  struct block_device **bdev,
415 				  fmode_t *mode)
416 {
417 	struct dm_target *tgt;
418 	struct dm_table *map;
419 	int srcu_idx, r;
420 
421 retry:
422 	r = -ENOTTY;
423 	map = dm_get_live_table(md, &srcu_idx);
424 	if (!map || !dm_table_get_size(map))
425 		goto out;
426 
427 	/* We only support devices that have a single target */
428 	if (dm_table_get_num_targets(map) != 1)
429 		goto out;
430 
431 	tgt = dm_table_get_target(map, 0);
432 	if (!tgt->type->prepare_ioctl)
433 		goto out;
434 
435 	if (dm_suspended_md(md)) {
436 		r = -EAGAIN;
437 		goto out;
438 	}
439 
440 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
441 	if (r < 0)
442 		goto out;
443 
444 	bdgrab(*bdev);
445 	dm_put_live_table(md, srcu_idx);
446 	return r;
447 
448 out:
449 	dm_put_live_table(md, srcu_idx);
450 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
451 		msleep(10);
452 		goto retry;
453 	}
454 	return r;
455 }
456 
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 			unsigned int cmd, unsigned long arg)
459 {
460 	struct mapped_device *md = bdev->bd_disk->private_data;
461 	int r;
462 
463 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
464 	if (r < 0)
465 		return r;
466 
467 	if (r > 0) {
468 		/*
469 		 * Target determined this ioctl is being issued against a
470 		 * subset of the parent bdev; require extra privileges.
471 		 */
472 		if (!capable(CAP_SYS_RAWIO)) {
473 			DMWARN_LIMIT(
474 	"%s: sending ioctl %x to DM device without required privilege.",
475 				current->comm, cmd);
476 			r = -ENOIOCTLCMD;
477 			goto out;
478 		}
479 	}
480 
481 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
482 out:
483 	bdput(bdev);
484 	return r;
485 }
486 
487 static struct dm_io *alloc_io(struct mapped_device *md)
488 {
489 	return mempool_alloc(md->io_pool, GFP_NOIO);
490 }
491 
492 static void free_io(struct mapped_device *md, struct dm_io *io)
493 {
494 	mempool_free(io, md->io_pool);
495 }
496 
497 static void free_tio(struct dm_target_io *tio)
498 {
499 	bio_put(&tio->clone);
500 }
501 
502 int md_in_flight(struct mapped_device *md)
503 {
504 	return atomic_read(&md->pending[READ]) +
505 	       atomic_read(&md->pending[WRITE]);
506 }
507 
508 static void start_io_acct(struct dm_io *io)
509 {
510 	struct mapped_device *md = io->md;
511 	struct bio *bio = io->bio;
512 	int cpu;
513 	int rw = bio_data_dir(bio);
514 
515 	io->start_time = jiffies;
516 
517 	cpu = part_stat_lock();
518 	part_round_stats(cpu, &dm_disk(md)->part0);
519 	part_stat_unlock();
520 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
521 		atomic_inc_return(&md->pending[rw]));
522 
523 	if (unlikely(dm_stats_used(&md->stats)))
524 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
525 				    bio->bi_iter.bi_sector, bio_sectors(bio),
526 				    false, 0, &io->stats_aux);
527 }
528 
529 static void end_io_acct(struct dm_io *io)
530 {
531 	struct mapped_device *md = io->md;
532 	struct bio *bio = io->bio;
533 	unsigned long duration = jiffies - io->start_time;
534 	int pending;
535 	int rw = bio_data_dir(bio);
536 
537 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
538 
539 	if (unlikely(dm_stats_used(&md->stats)))
540 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
541 				    bio->bi_iter.bi_sector, bio_sectors(bio),
542 				    true, duration, &io->stats_aux);
543 
544 	/*
545 	 * After this is decremented the bio must not be touched if it is
546 	 * a flush.
547 	 */
548 	pending = atomic_dec_return(&md->pending[rw]);
549 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
550 	pending += atomic_read(&md->pending[rw^0x1]);
551 
552 	/* nudge anyone waiting on suspend queue */
553 	if (!pending)
554 		wake_up(&md->wait);
555 }
556 
557 /*
558  * Add the bio to the list of deferred io.
559  */
560 static void queue_io(struct mapped_device *md, struct bio *bio)
561 {
562 	unsigned long flags;
563 
564 	spin_lock_irqsave(&md->deferred_lock, flags);
565 	bio_list_add(&md->deferred, bio);
566 	spin_unlock_irqrestore(&md->deferred_lock, flags);
567 	queue_work(md->wq, &md->work);
568 }
569 
570 /*
571  * Everyone (including functions in this file), should use this
572  * function to access the md->map field, and make sure they call
573  * dm_put_live_table() when finished.
574  */
575 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
576 {
577 	*srcu_idx = srcu_read_lock(&md->io_barrier);
578 
579 	return srcu_dereference(md->map, &md->io_barrier);
580 }
581 
582 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
583 {
584 	srcu_read_unlock(&md->io_barrier, srcu_idx);
585 }
586 
587 void dm_sync_table(struct mapped_device *md)
588 {
589 	synchronize_srcu(&md->io_barrier);
590 	synchronize_rcu_expedited();
591 }
592 
593 /*
594  * A fast alternative to dm_get_live_table/dm_put_live_table.
595  * The caller must not block between these two functions.
596  */
597 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
598 {
599 	rcu_read_lock();
600 	return rcu_dereference(md->map);
601 }
602 
603 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
604 {
605 	rcu_read_unlock();
606 }
607 
608 /*
609  * Open a table device so we can use it as a map destination.
610  */
611 static int open_table_device(struct table_device *td, dev_t dev,
612 			     struct mapped_device *md)
613 {
614 	static char *_claim_ptr = "I belong to device-mapper";
615 	struct block_device *bdev;
616 
617 	int r;
618 
619 	BUG_ON(td->dm_dev.bdev);
620 
621 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
622 	if (IS_ERR(bdev))
623 		return PTR_ERR(bdev);
624 
625 	r = bd_link_disk_holder(bdev, dm_disk(md));
626 	if (r) {
627 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
628 		return r;
629 	}
630 
631 	td->dm_dev.bdev = bdev;
632 	return 0;
633 }
634 
635 /*
636  * Close a table device that we've been using.
637  */
638 static void close_table_device(struct table_device *td, struct mapped_device *md)
639 {
640 	if (!td->dm_dev.bdev)
641 		return;
642 
643 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
644 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
645 	td->dm_dev.bdev = NULL;
646 }
647 
648 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
649 					      fmode_t mode) {
650 	struct table_device *td;
651 
652 	list_for_each_entry(td, l, list)
653 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
654 			return td;
655 
656 	return NULL;
657 }
658 
659 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
660 			struct dm_dev **result) {
661 	int r;
662 	struct table_device *td;
663 
664 	mutex_lock(&md->table_devices_lock);
665 	td = find_table_device(&md->table_devices, dev, mode);
666 	if (!td) {
667 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
668 		if (!td) {
669 			mutex_unlock(&md->table_devices_lock);
670 			return -ENOMEM;
671 		}
672 
673 		td->dm_dev.mode = mode;
674 		td->dm_dev.bdev = NULL;
675 
676 		if ((r = open_table_device(td, dev, md))) {
677 			mutex_unlock(&md->table_devices_lock);
678 			kfree(td);
679 			return r;
680 		}
681 
682 		format_dev_t(td->dm_dev.name, dev);
683 
684 		atomic_set(&td->count, 0);
685 		list_add(&td->list, &md->table_devices);
686 	}
687 	atomic_inc(&td->count);
688 	mutex_unlock(&md->table_devices_lock);
689 
690 	*result = &td->dm_dev;
691 	return 0;
692 }
693 EXPORT_SYMBOL_GPL(dm_get_table_device);
694 
695 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
696 {
697 	struct table_device *td = container_of(d, struct table_device, dm_dev);
698 
699 	mutex_lock(&md->table_devices_lock);
700 	if (atomic_dec_and_test(&td->count)) {
701 		close_table_device(td, md);
702 		list_del(&td->list);
703 		kfree(td);
704 	}
705 	mutex_unlock(&md->table_devices_lock);
706 }
707 EXPORT_SYMBOL(dm_put_table_device);
708 
709 static void free_table_devices(struct list_head *devices)
710 {
711 	struct list_head *tmp, *next;
712 
713 	list_for_each_safe(tmp, next, devices) {
714 		struct table_device *td = list_entry(tmp, struct table_device, list);
715 
716 		DMWARN("dm_destroy: %s still exists with %d references",
717 		       td->dm_dev.name, atomic_read(&td->count));
718 		kfree(td);
719 	}
720 }
721 
722 /*
723  * Get the geometry associated with a dm device
724  */
725 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
726 {
727 	*geo = md->geometry;
728 
729 	return 0;
730 }
731 
732 /*
733  * Set the geometry of a device.
734  */
735 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
736 {
737 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
738 
739 	if (geo->start > sz) {
740 		DMWARN("Start sector is beyond the geometry limits.");
741 		return -EINVAL;
742 	}
743 
744 	md->geometry = *geo;
745 
746 	return 0;
747 }
748 
749 /*-----------------------------------------------------------------
750  * CRUD START:
751  *   A more elegant soln is in the works that uses the queue
752  *   merge fn, unfortunately there are a couple of changes to
753  *   the block layer that I want to make for this.  So in the
754  *   interests of getting something for people to use I give
755  *   you this clearly demarcated crap.
756  *---------------------------------------------------------------*/
757 
758 static int __noflush_suspending(struct mapped_device *md)
759 {
760 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
761 }
762 
763 /*
764  * Decrements the number of outstanding ios that a bio has been
765  * cloned into, completing the original io if necc.
766  */
767 static void dec_pending(struct dm_io *io, int error)
768 {
769 	unsigned long flags;
770 	int io_error;
771 	struct bio *bio;
772 	struct mapped_device *md = io->md;
773 
774 	/* Push-back supersedes any I/O errors */
775 	if (unlikely(error)) {
776 		spin_lock_irqsave(&io->endio_lock, flags);
777 		if (!(io->error > 0 && __noflush_suspending(md)))
778 			io->error = error;
779 		spin_unlock_irqrestore(&io->endio_lock, flags);
780 	}
781 
782 	if (atomic_dec_and_test(&io->io_count)) {
783 		if (io->error == DM_ENDIO_REQUEUE) {
784 			/*
785 			 * Target requested pushing back the I/O.
786 			 */
787 			spin_lock_irqsave(&md->deferred_lock, flags);
788 			if (__noflush_suspending(md))
789 				bio_list_add_head(&md->deferred, io->bio);
790 			else
791 				/* noflush suspend was interrupted. */
792 				io->error = -EIO;
793 			spin_unlock_irqrestore(&md->deferred_lock, flags);
794 		}
795 
796 		io_error = io->error;
797 		bio = io->bio;
798 		end_io_acct(io);
799 		free_io(md, io);
800 
801 		if (io_error == DM_ENDIO_REQUEUE)
802 			return;
803 
804 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
805 			/*
806 			 * Preflush done for flush with data, reissue
807 			 * without REQ_PREFLUSH.
808 			 */
809 			bio->bi_opf &= ~REQ_PREFLUSH;
810 			queue_io(md, bio);
811 		} else {
812 			/* done with normal IO or empty flush */
813 			bio->bi_error = io_error;
814 			bio_endio(bio);
815 		}
816 	}
817 }
818 
819 void disable_write_same(struct mapped_device *md)
820 {
821 	struct queue_limits *limits = dm_get_queue_limits(md);
822 
823 	/* device doesn't really support WRITE SAME, disable it */
824 	limits->max_write_same_sectors = 0;
825 }
826 
827 void disable_write_zeroes(struct mapped_device *md)
828 {
829 	struct queue_limits *limits = dm_get_queue_limits(md);
830 
831 	/* device doesn't really support WRITE ZEROES, disable it */
832 	limits->max_write_zeroes_sectors = 0;
833 }
834 
835 static void clone_endio(struct bio *bio)
836 {
837 	int error = bio->bi_error;
838 	int r = error;
839 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
840 	struct dm_io *io = tio->io;
841 	struct mapped_device *md = tio->io->md;
842 	dm_endio_fn endio = tio->ti->type->end_io;
843 
844 	if (endio) {
845 		r = endio(tio->ti, bio, error);
846 		if (r < 0 || r == DM_ENDIO_REQUEUE)
847 			/*
848 			 * error and requeue request are handled
849 			 * in dec_pending().
850 			 */
851 			error = r;
852 		else if (r == DM_ENDIO_INCOMPLETE)
853 			/* The target will handle the io */
854 			return;
855 		else if (r) {
856 			DMWARN("unimplemented target endio return value: %d", r);
857 			BUG();
858 		}
859 	}
860 
861 	if (unlikely(r == -EREMOTEIO)) {
862 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
863 		    !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)
864 			disable_write_same(md);
865 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
866 		    !bdev_get_queue(bio->bi_bdev)->limits.max_write_zeroes_sectors)
867 			disable_write_zeroes(md);
868 	}
869 
870 	free_tio(tio);
871 	dec_pending(io, error);
872 }
873 
874 /*
875  * Return maximum size of I/O possible at the supplied sector up to the current
876  * target boundary.
877  */
878 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
879 {
880 	sector_t target_offset = dm_target_offset(ti, sector);
881 
882 	return ti->len - target_offset;
883 }
884 
885 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
886 {
887 	sector_t len = max_io_len_target_boundary(sector, ti);
888 	sector_t offset, max_len;
889 
890 	/*
891 	 * Does the target need to split even further?
892 	 */
893 	if (ti->max_io_len) {
894 		offset = dm_target_offset(ti, sector);
895 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
896 			max_len = sector_div(offset, ti->max_io_len);
897 		else
898 			max_len = offset & (ti->max_io_len - 1);
899 		max_len = ti->max_io_len - max_len;
900 
901 		if (len > max_len)
902 			len = max_len;
903 	}
904 
905 	return len;
906 }
907 
908 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
909 {
910 	if (len > UINT_MAX) {
911 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
912 		      (unsigned long long)len, UINT_MAX);
913 		ti->error = "Maximum size of target IO is too large";
914 		return -EINVAL;
915 	}
916 
917 	ti->max_io_len = (uint32_t) len;
918 
919 	return 0;
920 }
921 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
922 
923 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
924 				 void **kaddr, pfn_t *pfn, long size)
925 {
926 	struct mapped_device *md = bdev->bd_disk->private_data;
927 	struct dm_table *map;
928 	struct dm_target *ti;
929 	int srcu_idx;
930 	long len, ret = -EIO;
931 
932 	map = dm_get_live_table(md, &srcu_idx);
933 	if (!map)
934 		goto out;
935 
936 	ti = dm_table_find_target(map, sector);
937 	if (!dm_target_is_valid(ti))
938 		goto out;
939 
940 	len = max_io_len(sector, ti) << SECTOR_SHIFT;
941 	size = min(len, size);
942 
943 	if (ti->type->direct_access)
944 		ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
945 out:
946 	dm_put_live_table(md, srcu_idx);
947 	return min(ret, size);
948 }
949 
950 /*
951  * A target may call dm_accept_partial_bio only from the map routine.  It is
952  * allowed for all bio types except REQ_PREFLUSH.
953  *
954  * dm_accept_partial_bio informs the dm that the target only wants to process
955  * additional n_sectors sectors of the bio and the rest of the data should be
956  * sent in a next bio.
957  *
958  * A diagram that explains the arithmetics:
959  * +--------------------+---------------+-------+
960  * |         1          |       2       |   3   |
961  * +--------------------+---------------+-------+
962  *
963  * <-------------- *tio->len_ptr --------------->
964  *                      <------- bi_size ------->
965  *                      <-- n_sectors -->
966  *
967  * Region 1 was already iterated over with bio_advance or similar function.
968  *	(it may be empty if the target doesn't use bio_advance)
969  * Region 2 is the remaining bio size that the target wants to process.
970  *	(it may be empty if region 1 is non-empty, although there is no reason
971  *	 to make it empty)
972  * The target requires that region 3 is to be sent in the next bio.
973  *
974  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
975  * the partially processed part (the sum of regions 1+2) must be the same for all
976  * copies of the bio.
977  */
978 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
979 {
980 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
981 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
982 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
983 	BUG_ON(bi_size > *tio->len_ptr);
984 	BUG_ON(n_sectors > bi_size);
985 	*tio->len_ptr -= bi_size - n_sectors;
986 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
987 }
988 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
989 
990 /*
991  * Flush current->bio_list when the target map method blocks.
992  * This fixes deadlocks in snapshot and possibly in other targets.
993  */
994 struct dm_offload {
995 	struct blk_plug plug;
996 	struct blk_plug_cb cb;
997 };
998 
999 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1000 {
1001 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1002 	struct bio_list list;
1003 	struct bio *bio;
1004 	int i;
1005 
1006 	INIT_LIST_HEAD(&o->cb.list);
1007 
1008 	if (unlikely(!current->bio_list))
1009 		return;
1010 
1011 	for (i = 0; i < 2; i++) {
1012 		list = current->bio_list[i];
1013 		bio_list_init(&current->bio_list[i]);
1014 
1015 		while ((bio = bio_list_pop(&list))) {
1016 			struct bio_set *bs = bio->bi_pool;
1017 			if (unlikely(!bs) || bs == fs_bio_set) {
1018 				bio_list_add(&current->bio_list[i], bio);
1019 				continue;
1020 			}
1021 
1022 			spin_lock(&bs->rescue_lock);
1023 			bio_list_add(&bs->rescue_list, bio);
1024 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1025 			spin_unlock(&bs->rescue_lock);
1026 		}
1027 	}
1028 }
1029 
1030 static void dm_offload_start(struct dm_offload *o)
1031 {
1032 	blk_start_plug(&o->plug);
1033 	o->cb.callback = flush_current_bio_list;
1034 	list_add(&o->cb.list, &current->plug->cb_list);
1035 }
1036 
1037 static void dm_offload_end(struct dm_offload *o)
1038 {
1039 	list_del(&o->cb.list);
1040 	blk_finish_plug(&o->plug);
1041 }
1042 
1043 static void __map_bio(struct dm_target_io *tio)
1044 {
1045 	int r;
1046 	sector_t sector;
1047 	struct dm_offload o;
1048 	struct bio *clone = &tio->clone;
1049 	struct dm_target *ti = tio->ti;
1050 
1051 	clone->bi_end_io = clone_endio;
1052 
1053 	/*
1054 	 * Map the clone.  If r == 0 we don't need to do
1055 	 * anything, the target has assumed ownership of
1056 	 * this io.
1057 	 */
1058 	atomic_inc(&tio->io->io_count);
1059 	sector = clone->bi_iter.bi_sector;
1060 
1061 	dm_offload_start(&o);
1062 	r = ti->type->map(ti, clone);
1063 	dm_offload_end(&o);
1064 
1065 	if (r == DM_MAPIO_REMAPPED) {
1066 		/* the bio has been remapped so dispatch it */
1067 
1068 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1069 				      tio->io->bio->bi_bdev->bd_dev, sector);
1070 
1071 		generic_make_request(clone);
1072 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1073 		/* error the io and bail out, or requeue it if needed */
1074 		dec_pending(tio->io, r);
1075 		free_tio(tio);
1076 	} else if (r != DM_MAPIO_SUBMITTED) {
1077 		DMWARN("unimplemented target map return value: %d", r);
1078 		BUG();
1079 	}
1080 }
1081 
1082 struct clone_info {
1083 	struct mapped_device *md;
1084 	struct dm_table *map;
1085 	struct bio *bio;
1086 	struct dm_io *io;
1087 	sector_t sector;
1088 	unsigned sector_count;
1089 };
1090 
1091 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1092 {
1093 	bio->bi_iter.bi_sector = sector;
1094 	bio->bi_iter.bi_size = to_bytes(len);
1095 }
1096 
1097 /*
1098  * Creates a bio that consists of range of complete bvecs.
1099  */
1100 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1101 		     sector_t sector, unsigned len)
1102 {
1103 	struct bio *clone = &tio->clone;
1104 
1105 	__bio_clone_fast(clone, bio);
1106 
1107 	if (bio_integrity(bio)) {
1108 		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1109 		if (r < 0)
1110 			return r;
1111 	}
1112 
1113 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1114 	clone->bi_iter.bi_size = to_bytes(len);
1115 
1116 	if (bio_integrity(bio))
1117 		bio_integrity_trim(clone, 0, len);
1118 
1119 	return 0;
1120 }
1121 
1122 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1123 				      struct dm_target *ti,
1124 				      unsigned target_bio_nr)
1125 {
1126 	struct dm_target_io *tio;
1127 	struct bio *clone;
1128 
1129 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1130 	tio = container_of(clone, struct dm_target_io, clone);
1131 
1132 	tio->io = ci->io;
1133 	tio->ti = ti;
1134 	tio->target_bio_nr = target_bio_nr;
1135 
1136 	return tio;
1137 }
1138 
1139 static void __clone_and_map_simple_bio(struct clone_info *ci,
1140 				       struct dm_target *ti,
1141 				       unsigned target_bio_nr, unsigned *len)
1142 {
1143 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1144 	struct bio *clone = &tio->clone;
1145 
1146 	tio->len_ptr = len;
1147 
1148 	__bio_clone_fast(clone, ci->bio);
1149 	if (len)
1150 		bio_setup_sector(clone, ci->sector, *len);
1151 
1152 	__map_bio(tio);
1153 }
1154 
1155 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1156 				  unsigned num_bios, unsigned *len)
1157 {
1158 	unsigned target_bio_nr;
1159 
1160 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1161 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1162 }
1163 
1164 static int __send_empty_flush(struct clone_info *ci)
1165 {
1166 	unsigned target_nr = 0;
1167 	struct dm_target *ti;
1168 
1169 	BUG_ON(bio_has_data(ci->bio));
1170 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1171 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1172 
1173 	return 0;
1174 }
1175 
1176 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1177 				     sector_t sector, unsigned *len)
1178 {
1179 	struct bio *bio = ci->bio;
1180 	struct dm_target_io *tio;
1181 	unsigned target_bio_nr;
1182 	unsigned num_target_bios = 1;
1183 	int r = 0;
1184 
1185 	/*
1186 	 * Does the target want to receive duplicate copies of the bio?
1187 	 */
1188 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1189 		num_target_bios = ti->num_write_bios(ti, bio);
1190 
1191 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1192 		tio = alloc_tio(ci, ti, target_bio_nr);
1193 		tio->len_ptr = len;
1194 		r = clone_bio(tio, bio, sector, *len);
1195 		if (r < 0) {
1196 			free_tio(tio);
1197 			break;
1198 		}
1199 		__map_bio(tio);
1200 	}
1201 
1202 	return r;
1203 }
1204 
1205 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1206 
1207 static unsigned get_num_discard_bios(struct dm_target *ti)
1208 {
1209 	return ti->num_discard_bios;
1210 }
1211 
1212 static unsigned get_num_write_same_bios(struct dm_target *ti)
1213 {
1214 	return ti->num_write_same_bios;
1215 }
1216 
1217 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1218 {
1219 	return ti->num_write_zeroes_bios;
1220 }
1221 
1222 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1223 
1224 static bool is_split_required_for_discard(struct dm_target *ti)
1225 {
1226 	return ti->split_discard_bios;
1227 }
1228 
1229 static int __send_changing_extent_only(struct clone_info *ci,
1230 				       get_num_bios_fn get_num_bios,
1231 				       is_split_required_fn is_split_required)
1232 {
1233 	struct dm_target *ti;
1234 	unsigned len;
1235 	unsigned num_bios;
1236 
1237 	do {
1238 		ti = dm_table_find_target(ci->map, ci->sector);
1239 		if (!dm_target_is_valid(ti))
1240 			return -EIO;
1241 
1242 		/*
1243 		 * Even though the device advertised support for this type of
1244 		 * request, that does not mean every target supports it, and
1245 		 * reconfiguration might also have changed that since the
1246 		 * check was performed.
1247 		 */
1248 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1249 		if (!num_bios)
1250 			return -EOPNOTSUPP;
1251 
1252 		if (is_split_required && !is_split_required(ti))
1253 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1254 		else
1255 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1256 
1257 		__send_duplicate_bios(ci, ti, num_bios, &len);
1258 
1259 		ci->sector += len;
1260 	} while (ci->sector_count -= len);
1261 
1262 	return 0;
1263 }
1264 
1265 static int __send_discard(struct clone_info *ci)
1266 {
1267 	return __send_changing_extent_only(ci, get_num_discard_bios,
1268 					   is_split_required_for_discard);
1269 }
1270 
1271 static int __send_write_same(struct clone_info *ci)
1272 {
1273 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1274 }
1275 
1276 static int __send_write_zeroes(struct clone_info *ci)
1277 {
1278 	return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1279 }
1280 
1281 /*
1282  * Select the correct strategy for processing a non-flush bio.
1283  */
1284 static int __split_and_process_non_flush(struct clone_info *ci)
1285 {
1286 	struct bio *bio = ci->bio;
1287 	struct dm_target *ti;
1288 	unsigned len;
1289 	int r;
1290 
1291 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1292 		return __send_discard(ci);
1293 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1294 		return __send_write_same(ci);
1295 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1296 		return __send_write_zeroes(ci);
1297 
1298 	ti = dm_table_find_target(ci->map, ci->sector);
1299 	if (!dm_target_is_valid(ti))
1300 		return -EIO;
1301 
1302 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1303 
1304 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1305 	if (r < 0)
1306 		return r;
1307 
1308 	ci->sector += len;
1309 	ci->sector_count -= len;
1310 
1311 	return 0;
1312 }
1313 
1314 /*
1315  * Entry point to split a bio into clones and submit them to the targets.
1316  */
1317 static void __split_and_process_bio(struct mapped_device *md,
1318 				    struct dm_table *map, struct bio *bio)
1319 {
1320 	struct clone_info ci;
1321 	int error = 0;
1322 
1323 	if (unlikely(!map)) {
1324 		bio_io_error(bio);
1325 		return;
1326 	}
1327 
1328 	ci.map = map;
1329 	ci.md = md;
1330 	ci.io = alloc_io(md);
1331 	ci.io->error = 0;
1332 	atomic_set(&ci.io->io_count, 1);
1333 	ci.io->bio = bio;
1334 	ci.io->md = md;
1335 	spin_lock_init(&ci.io->endio_lock);
1336 	ci.sector = bio->bi_iter.bi_sector;
1337 
1338 	start_io_acct(ci.io);
1339 
1340 	if (bio->bi_opf & REQ_PREFLUSH) {
1341 		ci.bio = &ci.md->flush_bio;
1342 		ci.sector_count = 0;
1343 		error = __send_empty_flush(&ci);
1344 		/* dec_pending submits any data associated with flush */
1345 	} else {
1346 		ci.bio = bio;
1347 		ci.sector_count = bio_sectors(bio);
1348 		while (ci.sector_count && !error)
1349 			error = __split_and_process_non_flush(&ci);
1350 	}
1351 
1352 	/* drop the extra reference count */
1353 	dec_pending(ci.io, error);
1354 }
1355 /*-----------------------------------------------------------------
1356  * CRUD END
1357  *---------------------------------------------------------------*/
1358 
1359 /*
1360  * The request function that just remaps the bio built up by
1361  * dm_merge_bvec.
1362  */
1363 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1364 {
1365 	int rw = bio_data_dir(bio);
1366 	struct mapped_device *md = q->queuedata;
1367 	int srcu_idx;
1368 	struct dm_table *map;
1369 
1370 	map = dm_get_live_table(md, &srcu_idx);
1371 
1372 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1373 
1374 	/* if we're suspended, we have to queue this io for later */
1375 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1376 		dm_put_live_table(md, srcu_idx);
1377 
1378 		if (!(bio->bi_opf & REQ_RAHEAD))
1379 			queue_io(md, bio);
1380 		else
1381 			bio_io_error(bio);
1382 		return BLK_QC_T_NONE;
1383 	}
1384 
1385 	__split_and_process_bio(md, map, bio);
1386 	dm_put_live_table(md, srcu_idx);
1387 	return BLK_QC_T_NONE;
1388 }
1389 
1390 static int dm_any_congested(void *congested_data, int bdi_bits)
1391 {
1392 	int r = bdi_bits;
1393 	struct mapped_device *md = congested_data;
1394 	struct dm_table *map;
1395 
1396 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1397 		if (dm_request_based(md)) {
1398 			/*
1399 			 * With request-based DM we only need to check the
1400 			 * top-level queue for congestion.
1401 			 */
1402 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1403 		} else {
1404 			map = dm_get_live_table_fast(md);
1405 			if (map)
1406 				r = dm_table_any_congested(map, bdi_bits);
1407 			dm_put_live_table_fast(md);
1408 		}
1409 	}
1410 
1411 	return r;
1412 }
1413 
1414 /*-----------------------------------------------------------------
1415  * An IDR is used to keep track of allocated minor numbers.
1416  *---------------------------------------------------------------*/
1417 static void free_minor(int minor)
1418 {
1419 	spin_lock(&_minor_lock);
1420 	idr_remove(&_minor_idr, minor);
1421 	spin_unlock(&_minor_lock);
1422 }
1423 
1424 /*
1425  * See if the device with a specific minor # is free.
1426  */
1427 static int specific_minor(int minor)
1428 {
1429 	int r;
1430 
1431 	if (minor >= (1 << MINORBITS))
1432 		return -EINVAL;
1433 
1434 	idr_preload(GFP_KERNEL);
1435 	spin_lock(&_minor_lock);
1436 
1437 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1438 
1439 	spin_unlock(&_minor_lock);
1440 	idr_preload_end();
1441 	if (r < 0)
1442 		return r == -ENOSPC ? -EBUSY : r;
1443 	return 0;
1444 }
1445 
1446 static int next_free_minor(int *minor)
1447 {
1448 	int r;
1449 
1450 	idr_preload(GFP_KERNEL);
1451 	spin_lock(&_minor_lock);
1452 
1453 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1454 
1455 	spin_unlock(&_minor_lock);
1456 	idr_preload_end();
1457 	if (r < 0)
1458 		return r;
1459 	*minor = r;
1460 	return 0;
1461 }
1462 
1463 static const struct block_device_operations dm_blk_dops;
1464 
1465 static void dm_wq_work(struct work_struct *work);
1466 
1467 void dm_init_md_queue(struct mapped_device *md)
1468 {
1469 	/*
1470 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1471 	 * devices.  The type of this dm device may not have been decided yet.
1472 	 * The type is decided at the first table loading time.
1473 	 * To prevent problematic device stacking, clear the queue flag
1474 	 * for request stacking support until then.
1475 	 *
1476 	 * This queue is new, so no concurrency on the queue_flags.
1477 	 */
1478 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1479 
1480 	/*
1481 	 * Initialize data that will only be used by a non-blk-mq DM queue
1482 	 * - must do so here (in alloc_dev callchain) before queue is used
1483 	 */
1484 	md->queue->queuedata = md;
1485 	md->queue->backing_dev_info->congested_data = md;
1486 }
1487 
1488 void dm_init_normal_md_queue(struct mapped_device *md)
1489 {
1490 	md->use_blk_mq = false;
1491 	dm_init_md_queue(md);
1492 
1493 	/*
1494 	 * Initialize aspects of queue that aren't relevant for blk-mq
1495 	 */
1496 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1497 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1498 }
1499 
1500 static void cleanup_mapped_device(struct mapped_device *md)
1501 {
1502 	if (md->wq)
1503 		destroy_workqueue(md->wq);
1504 	if (md->kworker_task)
1505 		kthread_stop(md->kworker_task);
1506 	mempool_destroy(md->io_pool);
1507 	if (md->bs)
1508 		bioset_free(md->bs);
1509 
1510 	if (md->disk) {
1511 		spin_lock(&_minor_lock);
1512 		md->disk->private_data = NULL;
1513 		spin_unlock(&_minor_lock);
1514 		del_gendisk(md->disk);
1515 		put_disk(md->disk);
1516 	}
1517 
1518 	if (md->queue)
1519 		blk_cleanup_queue(md->queue);
1520 
1521 	cleanup_srcu_struct(&md->io_barrier);
1522 
1523 	if (md->bdev) {
1524 		bdput(md->bdev);
1525 		md->bdev = NULL;
1526 	}
1527 
1528 	dm_mq_cleanup_mapped_device(md);
1529 }
1530 
1531 /*
1532  * Allocate and initialise a blank device with a given minor.
1533  */
1534 static struct mapped_device *alloc_dev(int minor)
1535 {
1536 	int r, numa_node_id = dm_get_numa_node();
1537 	struct mapped_device *md;
1538 	void *old_md;
1539 
1540 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1541 	if (!md) {
1542 		DMWARN("unable to allocate device, out of memory.");
1543 		return NULL;
1544 	}
1545 
1546 	if (!try_module_get(THIS_MODULE))
1547 		goto bad_module_get;
1548 
1549 	/* get a minor number for the dev */
1550 	if (minor == DM_ANY_MINOR)
1551 		r = next_free_minor(&minor);
1552 	else
1553 		r = specific_minor(minor);
1554 	if (r < 0)
1555 		goto bad_minor;
1556 
1557 	r = init_srcu_struct(&md->io_barrier);
1558 	if (r < 0)
1559 		goto bad_io_barrier;
1560 
1561 	md->numa_node_id = numa_node_id;
1562 	md->use_blk_mq = dm_use_blk_mq_default();
1563 	md->init_tio_pdu = false;
1564 	md->type = DM_TYPE_NONE;
1565 	mutex_init(&md->suspend_lock);
1566 	mutex_init(&md->type_lock);
1567 	mutex_init(&md->table_devices_lock);
1568 	spin_lock_init(&md->deferred_lock);
1569 	atomic_set(&md->holders, 1);
1570 	atomic_set(&md->open_count, 0);
1571 	atomic_set(&md->event_nr, 0);
1572 	atomic_set(&md->uevent_seq, 0);
1573 	INIT_LIST_HEAD(&md->uevent_list);
1574 	INIT_LIST_HEAD(&md->table_devices);
1575 	spin_lock_init(&md->uevent_lock);
1576 
1577 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1578 	if (!md->queue)
1579 		goto bad;
1580 
1581 	dm_init_md_queue(md);
1582 
1583 	md->disk = alloc_disk_node(1, numa_node_id);
1584 	if (!md->disk)
1585 		goto bad;
1586 
1587 	atomic_set(&md->pending[0], 0);
1588 	atomic_set(&md->pending[1], 0);
1589 	init_waitqueue_head(&md->wait);
1590 	INIT_WORK(&md->work, dm_wq_work);
1591 	init_waitqueue_head(&md->eventq);
1592 	init_completion(&md->kobj_holder.completion);
1593 	md->kworker_task = NULL;
1594 
1595 	md->disk->major = _major;
1596 	md->disk->first_minor = minor;
1597 	md->disk->fops = &dm_blk_dops;
1598 	md->disk->queue = md->queue;
1599 	md->disk->private_data = md;
1600 	sprintf(md->disk->disk_name, "dm-%d", minor);
1601 	add_disk(md->disk);
1602 	format_dev_t(md->name, MKDEV(_major, minor));
1603 
1604 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1605 	if (!md->wq)
1606 		goto bad;
1607 
1608 	md->bdev = bdget_disk(md->disk, 0);
1609 	if (!md->bdev)
1610 		goto bad;
1611 
1612 	bio_init(&md->flush_bio, NULL, 0);
1613 	md->flush_bio.bi_bdev = md->bdev;
1614 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1615 
1616 	dm_stats_init(&md->stats);
1617 
1618 	/* Populate the mapping, nobody knows we exist yet */
1619 	spin_lock(&_minor_lock);
1620 	old_md = idr_replace(&_minor_idr, md, minor);
1621 	spin_unlock(&_minor_lock);
1622 
1623 	BUG_ON(old_md != MINOR_ALLOCED);
1624 
1625 	return md;
1626 
1627 bad:
1628 	cleanup_mapped_device(md);
1629 bad_io_barrier:
1630 	free_minor(minor);
1631 bad_minor:
1632 	module_put(THIS_MODULE);
1633 bad_module_get:
1634 	kfree(md);
1635 	return NULL;
1636 }
1637 
1638 static void unlock_fs(struct mapped_device *md);
1639 
1640 static void free_dev(struct mapped_device *md)
1641 {
1642 	int minor = MINOR(disk_devt(md->disk));
1643 
1644 	unlock_fs(md);
1645 
1646 	cleanup_mapped_device(md);
1647 
1648 	free_table_devices(&md->table_devices);
1649 	dm_stats_cleanup(&md->stats);
1650 	free_minor(minor);
1651 
1652 	module_put(THIS_MODULE);
1653 	kfree(md);
1654 }
1655 
1656 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1657 {
1658 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1659 
1660 	if (md->bs) {
1661 		/* The md already has necessary mempools. */
1662 		if (dm_table_bio_based(t)) {
1663 			/*
1664 			 * Reload bioset because front_pad may have changed
1665 			 * because a different table was loaded.
1666 			 */
1667 			bioset_free(md->bs);
1668 			md->bs = p->bs;
1669 			p->bs = NULL;
1670 		}
1671 		/*
1672 		 * There's no need to reload with request-based dm
1673 		 * because the size of front_pad doesn't change.
1674 		 * Note for future: If you are to reload bioset,
1675 		 * prep-ed requests in the queue may refer
1676 		 * to bio from the old bioset, so you must walk
1677 		 * through the queue to unprep.
1678 		 */
1679 		goto out;
1680 	}
1681 
1682 	BUG_ON(!p || md->io_pool || md->bs);
1683 
1684 	md->io_pool = p->io_pool;
1685 	p->io_pool = NULL;
1686 	md->bs = p->bs;
1687 	p->bs = NULL;
1688 
1689 out:
1690 	/* mempool bind completed, no longer need any mempools in the table */
1691 	dm_table_free_md_mempools(t);
1692 }
1693 
1694 /*
1695  * Bind a table to the device.
1696  */
1697 static void event_callback(void *context)
1698 {
1699 	unsigned long flags;
1700 	LIST_HEAD(uevents);
1701 	struct mapped_device *md = (struct mapped_device *) context;
1702 
1703 	spin_lock_irqsave(&md->uevent_lock, flags);
1704 	list_splice_init(&md->uevent_list, &uevents);
1705 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1706 
1707 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1708 
1709 	atomic_inc(&md->event_nr);
1710 	wake_up(&md->eventq);
1711 }
1712 
1713 /*
1714  * Protected by md->suspend_lock obtained by dm_swap_table().
1715  */
1716 static void __set_size(struct mapped_device *md, sector_t size)
1717 {
1718 	set_capacity(md->disk, size);
1719 
1720 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1721 }
1722 
1723 /*
1724  * Returns old map, which caller must destroy.
1725  */
1726 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1727 			       struct queue_limits *limits)
1728 {
1729 	struct dm_table *old_map;
1730 	struct request_queue *q = md->queue;
1731 	sector_t size;
1732 
1733 	lockdep_assert_held(&md->suspend_lock);
1734 
1735 	size = dm_table_get_size(t);
1736 
1737 	/*
1738 	 * Wipe any geometry if the size of the table changed.
1739 	 */
1740 	if (size != dm_get_size(md))
1741 		memset(&md->geometry, 0, sizeof(md->geometry));
1742 
1743 	__set_size(md, size);
1744 
1745 	dm_table_event_callback(t, event_callback, md);
1746 
1747 	/*
1748 	 * The queue hasn't been stopped yet, if the old table type wasn't
1749 	 * for request-based during suspension.  So stop it to prevent
1750 	 * I/O mapping before resume.
1751 	 * This must be done before setting the queue restrictions,
1752 	 * because request-based dm may be run just after the setting.
1753 	 */
1754 	if (dm_table_request_based(t)) {
1755 		dm_stop_queue(q);
1756 		/*
1757 		 * Leverage the fact that request-based DM targets are
1758 		 * immutable singletons and establish md->immutable_target
1759 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1760 		 */
1761 		md->immutable_target = dm_table_get_immutable_target(t);
1762 	}
1763 
1764 	__bind_mempools(md, t);
1765 
1766 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1767 	rcu_assign_pointer(md->map, (void *)t);
1768 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1769 
1770 	dm_table_set_restrictions(t, q, limits);
1771 	if (old_map)
1772 		dm_sync_table(md);
1773 
1774 	return old_map;
1775 }
1776 
1777 /*
1778  * Returns unbound table for the caller to free.
1779  */
1780 static struct dm_table *__unbind(struct mapped_device *md)
1781 {
1782 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1783 
1784 	if (!map)
1785 		return NULL;
1786 
1787 	dm_table_event_callback(map, NULL, NULL);
1788 	RCU_INIT_POINTER(md->map, NULL);
1789 	dm_sync_table(md);
1790 
1791 	return map;
1792 }
1793 
1794 /*
1795  * Constructor for a new device.
1796  */
1797 int dm_create(int minor, struct mapped_device **result)
1798 {
1799 	struct mapped_device *md;
1800 
1801 	md = alloc_dev(minor);
1802 	if (!md)
1803 		return -ENXIO;
1804 
1805 	dm_sysfs_init(md);
1806 
1807 	*result = md;
1808 	return 0;
1809 }
1810 
1811 /*
1812  * Functions to manage md->type.
1813  * All are required to hold md->type_lock.
1814  */
1815 void dm_lock_md_type(struct mapped_device *md)
1816 {
1817 	mutex_lock(&md->type_lock);
1818 }
1819 
1820 void dm_unlock_md_type(struct mapped_device *md)
1821 {
1822 	mutex_unlock(&md->type_lock);
1823 }
1824 
1825 void dm_set_md_type(struct mapped_device *md, unsigned type)
1826 {
1827 	BUG_ON(!mutex_is_locked(&md->type_lock));
1828 	md->type = type;
1829 }
1830 
1831 unsigned dm_get_md_type(struct mapped_device *md)
1832 {
1833 	return md->type;
1834 }
1835 
1836 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1837 {
1838 	return md->immutable_target_type;
1839 }
1840 
1841 /*
1842  * The queue_limits are only valid as long as you have a reference
1843  * count on 'md'.
1844  */
1845 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1846 {
1847 	BUG_ON(!atomic_read(&md->holders));
1848 	return &md->queue->limits;
1849 }
1850 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1851 
1852 /*
1853  * Setup the DM device's queue based on md's type
1854  */
1855 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1856 {
1857 	int r;
1858 	unsigned type = dm_get_md_type(md);
1859 
1860 	switch (type) {
1861 	case DM_TYPE_REQUEST_BASED:
1862 		r = dm_old_init_request_queue(md, t);
1863 		if (r) {
1864 			DMERR("Cannot initialize queue for request-based mapped device");
1865 			return r;
1866 		}
1867 		break;
1868 	case DM_TYPE_MQ_REQUEST_BASED:
1869 		r = dm_mq_init_request_queue(md, t);
1870 		if (r) {
1871 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1872 			return r;
1873 		}
1874 		break;
1875 	case DM_TYPE_BIO_BASED:
1876 	case DM_TYPE_DAX_BIO_BASED:
1877 		dm_init_normal_md_queue(md);
1878 		blk_queue_make_request(md->queue, dm_make_request);
1879 		/*
1880 		 * DM handles splitting bios as needed.  Free the bio_split bioset
1881 		 * since it won't be used (saves 1 process per bio-based DM device).
1882 		 */
1883 		bioset_free(md->queue->bio_split);
1884 		md->queue->bio_split = NULL;
1885 
1886 		if (type == DM_TYPE_DAX_BIO_BASED)
1887 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1888 		break;
1889 	}
1890 
1891 	return 0;
1892 }
1893 
1894 struct mapped_device *dm_get_md(dev_t dev)
1895 {
1896 	struct mapped_device *md;
1897 	unsigned minor = MINOR(dev);
1898 
1899 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1900 		return NULL;
1901 
1902 	spin_lock(&_minor_lock);
1903 
1904 	md = idr_find(&_minor_idr, minor);
1905 	if (md) {
1906 		if ((md == MINOR_ALLOCED ||
1907 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
1908 		     dm_deleting_md(md) ||
1909 		     test_bit(DMF_FREEING, &md->flags))) {
1910 			md = NULL;
1911 			goto out;
1912 		}
1913 		dm_get(md);
1914 	}
1915 
1916 out:
1917 	spin_unlock(&_minor_lock);
1918 
1919 	return md;
1920 }
1921 EXPORT_SYMBOL_GPL(dm_get_md);
1922 
1923 void *dm_get_mdptr(struct mapped_device *md)
1924 {
1925 	return md->interface_ptr;
1926 }
1927 
1928 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1929 {
1930 	md->interface_ptr = ptr;
1931 }
1932 
1933 void dm_get(struct mapped_device *md)
1934 {
1935 	atomic_inc(&md->holders);
1936 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1937 }
1938 
1939 int dm_hold(struct mapped_device *md)
1940 {
1941 	spin_lock(&_minor_lock);
1942 	if (test_bit(DMF_FREEING, &md->flags)) {
1943 		spin_unlock(&_minor_lock);
1944 		return -EBUSY;
1945 	}
1946 	dm_get(md);
1947 	spin_unlock(&_minor_lock);
1948 	return 0;
1949 }
1950 EXPORT_SYMBOL_GPL(dm_hold);
1951 
1952 const char *dm_device_name(struct mapped_device *md)
1953 {
1954 	return md->name;
1955 }
1956 EXPORT_SYMBOL_GPL(dm_device_name);
1957 
1958 static void __dm_destroy(struct mapped_device *md, bool wait)
1959 {
1960 	struct request_queue *q = dm_get_md_queue(md);
1961 	struct dm_table *map;
1962 	int srcu_idx;
1963 
1964 	might_sleep();
1965 
1966 	spin_lock(&_minor_lock);
1967 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1968 	set_bit(DMF_FREEING, &md->flags);
1969 	spin_unlock(&_minor_lock);
1970 
1971 	blk_set_queue_dying(q);
1972 
1973 	if (dm_request_based(md) && md->kworker_task)
1974 		kthread_flush_worker(&md->kworker);
1975 
1976 	/*
1977 	 * Take suspend_lock so that presuspend and postsuspend methods
1978 	 * do not race with internal suspend.
1979 	 */
1980 	mutex_lock(&md->suspend_lock);
1981 	map = dm_get_live_table(md, &srcu_idx);
1982 	if (!dm_suspended_md(md)) {
1983 		dm_table_presuspend_targets(map);
1984 		dm_table_postsuspend_targets(map);
1985 	}
1986 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1987 	dm_put_live_table(md, srcu_idx);
1988 	mutex_unlock(&md->suspend_lock);
1989 
1990 	/*
1991 	 * Rare, but there may be I/O requests still going to complete,
1992 	 * for example.  Wait for all references to disappear.
1993 	 * No one should increment the reference count of the mapped_device,
1994 	 * after the mapped_device state becomes DMF_FREEING.
1995 	 */
1996 	if (wait)
1997 		while (atomic_read(&md->holders))
1998 			msleep(1);
1999 	else if (atomic_read(&md->holders))
2000 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2001 		       dm_device_name(md), atomic_read(&md->holders));
2002 
2003 	dm_sysfs_exit(md);
2004 	dm_table_destroy(__unbind(md));
2005 	free_dev(md);
2006 }
2007 
2008 void dm_destroy(struct mapped_device *md)
2009 {
2010 	__dm_destroy(md, true);
2011 }
2012 
2013 void dm_destroy_immediate(struct mapped_device *md)
2014 {
2015 	__dm_destroy(md, false);
2016 }
2017 
2018 void dm_put(struct mapped_device *md)
2019 {
2020 	atomic_dec(&md->holders);
2021 }
2022 EXPORT_SYMBOL_GPL(dm_put);
2023 
2024 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2025 {
2026 	int r = 0;
2027 	DEFINE_WAIT(wait);
2028 
2029 	while (1) {
2030 		prepare_to_wait(&md->wait, &wait, task_state);
2031 
2032 		if (!md_in_flight(md))
2033 			break;
2034 
2035 		if (signal_pending_state(task_state, current)) {
2036 			r = -EINTR;
2037 			break;
2038 		}
2039 
2040 		io_schedule();
2041 	}
2042 	finish_wait(&md->wait, &wait);
2043 
2044 	return r;
2045 }
2046 
2047 /*
2048  * Process the deferred bios
2049  */
2050 static void dm_wq_work(struct work_struct *work)
2051 {
2052 	struct mapped_device *md = container_of(work, struct mapped_device,
2053 						work);
2054 	struct bio *c;
2055 	int srcu_idx;
2056 	struct dm_table *map;
2057 
2058 	map = dm_get_live_table(md, &srcu_idx);
2059 
2060 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2061 		spin_lock_irq(&md->deferred_lock);
2062 		c = bio_list_pop(&md->deferred);
2063 		spin_unlock_irq(&md->deferred_lock);
2064 
2065 		if (!c)
2066 			break;
2067 
2068 		if (dm_request_based(md))
2069 			generic_make_request(c);
2070 		else
2071 			__split_and_process_bio(md, map, c);
2072 	}
2073 
2074 	dm_put_live_table(md, srcu_idx);
2075 }
2076 
2077 static void dm_queue_flush(struct mapped_device *md)
2078 {
2079 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2080 	smp_mb__after_atomic();
2081 	queue_work(md->wq, &md->work);
2082 }
2083 
2084 /*
2085  * Swap in a new table, returning the old one for the caller to destroy.
2086  */
2087 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2088 {
2089 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2090 	struct queue_limits limits;
2091 	int r;
2092 
2093 	mutex_lock(&md->suspend_lock);
2094 
2095 	/* device must be suspended */
2096 	if (!dm_suspended_md(md))
2097 		goto out;
2098 
2099 	/*
2100 	 * If the new table has no data devices, retain the existing limits.
2101 	 * This helps multipath with queue_if_no_path if all paths disappear,
2102 	 * then new I/O is queued based on these limits, and then some paths
2103 	 * reappear.
2104 	 */
2105 	if (dm_table_has_no_data_devices(table)) {
2106 		live_map = dm_get_live_table_fast(md);
2107 		if (live_map)
2108 			limits = md->queue->limits;
2109 		dm_put_live_table_fast(md);
2110 	}
2111 
2112 	if (!live_map) {
2113 		r = dm_calculate_queue_limits(table, &limits);
2114 		if (r) {
2115 			map = ERR_PTR(r);
2116 			goto out;
2117 		}
2118 	}
2119 
2120 	map = __bind(md, table, &limits);
2121 
2122 out:
2123 	mutex_unlock(&md->suspend_lock);
2124 	return map;
2125 }
2126 
2127 /*
2128  * Functions to lock and unlock any filesystem running on the
2129  * device.
2130  */
2131 static int lock_fs(struct mapped_device *md)
2132 {
2133 	int r;
2134 
2135 	WARN_ON(md->frozen_sb);
2136 
2137 	md->frozen_sb = freeze_bdev(md->bdev);
2138 	if (IS_ERR(md->frozen_sb)) {
2139 		r = PTR_ERR(md->frozen_sb);
2140 		md->frozen_sb = NULL;
2141 		return r;
2142 	}
2143 
2144 	set_bit(DMF_FROZEN, &md->flags);
2145 
2146 	return 0;
2147 }
2148 
2149 static void unlock_fs(struct mapped_device *md)
2150 {
2151 	if (!test_bit(DMF_FROZEN, &md->flags))
2152 		return;
2153 
2154 	thaw_bdev(md->bdev, md->frozen_sb);
2155 	md->frozen_sb = NULL;
2156 	clear_bit(DMF_FROZEN, &md->flags);
2157 }
2158 
2159 /*
2160  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2161  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2162  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2163  *
2164  * If __dm_suspend returns 0, the device is completely quiescent
2165  * now. There is no request-processing activity. All new requests
2166  * are being added to md->deferred list.
2167  *
2168  * Caller must hold md->suspend_lock
2169  */
2170 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2171 			unsigned suspend_flags, long task_state,
2172 			int dmf_suspended_flag)
2173 {
2174 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2175 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2176 	int r;
2177 
2178 	lockdep_assert_held(&md->suspend_lock);
2179 
2180 	/*
2181 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2182 	 * This flag is cleared before dm_suspend returns.
2183 	 */
2184 	if (noflush)
2185 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2186 
2187 	/*
2188 	 * This gets reverted if there's an error later and the targets
2189 	 * provide the .presuspend_undo hook.
2190 	 */
2191 	dm_table_presuspend_targets(map);
2192 
2193 	/*
2194 	 * Flush I/O to the device.
2195 	 * Any I/O submitted after lock_fs() may not be flushed.
2196 	 * noflush takes precedence over do_lockfs.
2197 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2198 	 */
2199 	if (!noflush && do_lockfs) {
2200 		r = lock_fs(md);
2201 		if (r) {
2202 			dm_table_presuspend_undo_targets(map);
2203 			return r;
2204 		}
2205 	}
2206 
2207 	/*
2208 	 * Here we must make sure that no processes are submitting requests
2209 	 * to target drivers i.e. no one may be executing
2210 	 * __split_and_process_bio. This is called from dm_request and
2211 	 * dm_wq_work.
2212 	 *
2213 	 * To get all processes out of __split_and_process_bio in dm_request,
2214 	 * we take the write lock. To prevent any process from reentering
2215 	 * __split_and_process_bio from dm_request and quiesce the thread
2216 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2217 	 * flush_workqueue(md->wq).
2218 	 */
2219 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2220 	if (map)
2221 		synchronize_srcu(&md->io_barrier);
2222 
2223 	/*
2224 	 * Stop md->queue before flushing md->wq in case request-based
2225 	 * dm defers requests to md->wq from md->queue.
2226 	 */
2227 	if (dm_request_based(md)) {
2228 		dm_stop_queue(md->queue);
2229 		if (md->kworker_task)
2230 			kthread_flush_worker(&md->kworker);
2231 	}
2232 
2233 	flush_workqueue(md->wq);
2234 
2235 	/*
2236 	 * At this point no more requests are entering target request routines.
2237 	 * We call dm_wait_for_completion to wait for all existing requests
2238 	 * to finish.
2239 	 */
2240 	r = dm_wait_for_completion(md, task_state);
2241 	if (!r)
2242 		set_bit(dmf_suspended_flag, &md->flags);
2243 
2244 	if (noflush)
2245 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2246 	if (map)
2247 		synchronize_srcu(&md->io_barrier);
2248 
2249 	/* were we interrupted ? */
2250 	if (r < 0) {
2251 		dm_queue_flush(md);
2252 
2253 		if (dm_request_based(md))
2254 			dm_start_queue(md->queue);
2255 
2256 		unlock_fs(md);
2257 		dm_table_presuspend_undo_targets(map);
2258 		/* pushback list is already flushed, so skip flush */
2259 	}
2260 
2261 	return r;
2262 }
2263 
2264 /*
2265  * We need to be able to change a mapping table under a mounted
2266  * filesystem.  For example we might want to move some data in
2267  * the background.  Before the table can be swapped with
2268  * dm_bind_table, dm_suspend must be called to flush any in
2269  * flight bios and ensure that any further io gets deferred.
2270  */
2271 /*
2272  * Suspend mechanism in request-based dm.
2273  *
2274  * 1. Flush all I/Os by lock_fs() if needed.
2275  * 2. Stop dispatching any I/O by stopping the request_queue.
2276  * 3. Wait for all in-flight I/Os to be completed or requeued.
2277  *
2278  * To abort suspend, start the request_queue.
2279  */
2280 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2281 {
2282 	struct dm_table *map = NULL;
2283 	int r = 0;
2284 
2285 retry:
2286 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2287 
2288 	if (dm_suspended_md(md)) {
2289 		r = -EINVAL;
2290 		goto out_unlock;
2291 	}
2292 
2293 	if (dm_suspended_internally_md(md)) {
2294 		/* already internally suspended, wait for internal resume */
2295 		mutex_unlock(&md->suspend_lock);
2296 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2297 		if (r)
2298 			return r;
2299 		goto retry;
2300 	}
2301 
2302 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2303 
2304 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2305 	if (r)
2306 		goto out_unlock;
2307 
2308 	dm_table_postsuspend_targets(map);
2309 
2310 out_unlock:
2311 	mutex_unlock(&md->suspend_lock);
2312 	return r;
2313 }
2314 
2315 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2316 {
2317 	if (map) {
2318 		int r = dm_table_resume_targets(map);
2319 		if (r)
2320 			return r;
2321 	}
2322 
2323 	dm_queue_flush(md);
2324 
2325 	/*
2326 	 * Flushing deferred I/Os must be done after targets are resumed
2327 	 * so that mapping of targets can work correctly.
2328 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2329 	 */
2330 	if (dm_request_based(md))
2331 		dm_start_queue(md->queue);
2332 
2333 	unlock_fs(md);
2334 
2335 	return 0;
2336 }
2337 
2338 int dm_resume(struct mapped_device *md)
2339 {
2340 	int r;
2341 	struct dm_table *map = NULL;
2342 
2343 retry:
2344 	r = -EINVAL;
2345 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2346 
2347 	if (!dm_suspended_md(md))
2348 		goto out;
2349 
2350 	if (dm_suspended_internally_md(md)) {
2351 		/* already internally suspended, wait for internal resume */
2352 		mutex_unlock(&md->suspend_lock);
2353 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2354 		if (r)
2355 			return r;
2356 		goto retry;
2357 	}
2358 
2359 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2360 	if (!map || !dm_table_get_size(map))
2361 		goto out;
2362 
2363 	r = __dm_resume(md, map);
2364 	if (r)
2365 		goto out;
2366 
2367 	clear_bit(DMF_SUSPENDED, &md->flags);
2368 out:
2369 	mutex_unlock(&md->suspend_lock);
2370 
2371 	return r;
2372 }
2373 
2374 /*
2375  * Internal suspend/resume works like userspace-driven suspend. It waits
2376  * until all bios finish and prevents issuing new bios to the target drivers.
2377  * It may be used only from the kernel.
2378  */
2379 
2380 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2381 {
2382 	struct dm_table *map = NULL;
2383 
2384 	if (md->internal_suspend_count++)
2385 		return; /* nested internal suspend */
2386 
2387 	if (dm_suspended_md(md)) {
2388 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2389 		return; /* nest suspend */
2390 	}
2391 
2392 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2393 
2394 	/*
2395 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2396 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2397 	 * would require changing .presuspend to return an error -- avoid this
2398 	 * until there is a need for more elaborate variants of internal suspend.
2399 	 */
2400 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2401 			    DMF_SUSPENDED_INTERNALLY);
2402 
2403 	dm_table_postsuspend_targets(map);
2404 }
2405 
2406 static void __dm_internal_resume(struct mapped_device *md)
2407 {
2408 	BUG_ON(!md->internal_suspend_count);
2409 
2410 	if (--md->internal_suspend_count)
2411 		return; /* resume from nested internal suspend */
2412 
2413 	if (dm_suspended_md(md))
2414 		goto done; /* resume from nested suspend */
2415 
2416 	/*
2417 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2418 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2419 	 */
2420 	(void) __dm_resume(md, NULL);
2421 
2422 done:
2423 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2424 	smp_mb__after_atomic();
2425 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2426 }
2427 
2428 void dm_internal_suspend_noflush(struct mapped_device *md)
2429 {
2430 	mutex_lock(&md->suspend_lock);
2431 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2432 	mutex_unlock(&md->suspend_lock);
2433 }
2434 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2435 
2436 void dm_internal_resume(struct mapped_device *md)
2437 {
2438 	mutex_lock(&md->suspend_lock);
2439 	__dm_internal_resume(md);
2440 	mutex_unlock(&md->suspend_lock);
2441 }
2442 EXPORT_SYMBOL_GPL(dm_internal_resume);
2443 
2444 /*
2445  * Fast variants of internal suspend/resume hold md->suspend_lock,
2446  * which prevents interaction with userspace-driven suspend.
2447  */
2448 
2449 void dm_internal_suspend_fast(struct mapped_device *md)
2450 {
2451 	mutex_lock(&md->suspend_lock);
2452 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2453 		return;
2454 
2455 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2456 	synchronize_srcu(&md->io_barrier);
2457 	flush_workqueue(md->wq);
2458 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2459 }
2460 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2461 
2462 void dm_internal_resume_fast(struct mapped_device *md)
2463 {
2464 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2465 		goto done;
2466 
2467 	dm_queue_flush(md);
2468 
2469 done:
2470 	mutex_unlock(&md->suspend_lock);
2471 }
2472 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2473 
2474 /*-----------------------------------------------------------------
2475  * Event notification.
2476  *---------------------------------------------------------------*/
2477 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2478 		       unsigned cookie)
2479 {
2480 	char udev_cookie[DM_COOKIE_LENGTH];
2481 	char *envp[] = { udev_cookie, NULL };
2482 
2483 	if (!cookie)
2484 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2485 	else {
2486 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2487 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2488 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2489 					  action, envp);
2490 	}
2491 }
2492 
2493 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2494 {
2495 	return atomic_add_return(1, &md->uevent_seq);
2496 }
2497 
2498 uint32_t dm_get_event_nr(struct mapped_device *md)
2499 {
2500 	return atomic_read(&md->event_nr);
2501 }
2502 
2503 int dm_wait_event(struct mapped_device *md, int event_nr)
2504 {
2505 	return wait_event_interruptible(md->eventq,
2506 			(event_nr != atomic_read(&md->event_nr)));
2507 }
2508 
2509 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2510 {
2511 	unsigned long flags;
2512 
2513 	spin_lock_irqsave(&md->uevent_lock, flags);
2514 	list_add(elist, &md->uevent_list);
2515 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2516 }
2517 
2518 /*
2519  * The gendisk is only valid as long as you have a reference
2520  * count on 'md'.
2521  */
2522 struct gendisk *dm_disk(struct mapped_device *md)
2523 {
2524 	return md->disk;
2525 }
2526 EXPORT_SYMBOL_GPL(dm_disk);
2527 
2528 struct kobject *dm_kobject(struct mapped_device *md)
2529 {
2530 	return &md->kobj_holder.kobj;
2531 }
2532 
2533 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2534 {
2535 	struct mapped_device *md;
2536 
2537 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2538 
2539 	if (test_bit(DMF_FREEING, &md->flags) ||
2540 	    dm_deleting_md(md))
2541 		return NULL;
2542 
2543 	dm_get(md);
2544 	return md;
2545 }
2546 
2547 int dm_suspended_md(struct mapped_device *md)
2548 {
2549 	return test_bit(DMF_SUSPENDED, &md->flags);
2550 }
2551 
2552 int dm_suspended_internally_md(struct mapped_device *md)
2553 {
2554 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2555 }
2556 
2557 int dm_test_deferred_remove_flag(struct mapped_device *md)
2558 {
2559 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2560 }
2561 
2562 int dm_suspended(struct dm_target *ti)
2563 {
2564 	return dm_suspended_md(dm_table_get_md(ti->table));
2565 }
2566 EXPORT_SYMBOL_GPL(dm_suspended);
2567 
2568 int dm_noflush_suspending(struct dm_target *ti)
2569 {
2570 	return __noflush_suspending(dm_table_get_md(ti->table));
2571 }
2572 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2573 
2574 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2575 					    unsigned integrity, unsigned per_io_data_size)
2576 {
2577 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2578 	unsigned int pool_size = 0;
2579 	unsigned int front_pad;
2580 
2581 	if (!pools)
2582 		return NULL;
2583 
2584 	switch (type) {
2585 	case DM_TYPE_BIO_BASED:
2586 	case DM_TYPE_DAX_BIO_BASED:
2587 		pool_size = dm_get_reserved_bio_based_ios();
2588 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2589 
2590 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2591 		if (!pools->io_pool)
2592 			goto out;
2593 		break;
2594 	case DM_TYPE_REQUEST_BASED:
2595 	case DM_TYPE_MQ_REQUEST_BASED:
2596 		pool_size = dm_get_reserved_rq_based_ios();
2597 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2598 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2599 		break;
2600 	default:
2601 		BUG();
2602 	}
2603 
2604 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
2605 	if (!pools->bs)
2606 		goto out;
2607 
2608 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2609 		goto out;
2610 
2611 	return pools;
2612 
2613 out:
2614 	dm_free_md_mempools(pools);
2615 
2616 	return NULL;
2617 }
2618 
2619 void dm_free_md_mempools(struct dm_md_mempools *pools)
2620 {
2621 	if (!pools)
2622 		return;
2623 
2624 	mempool_destroy(pools->io_pool);
2625 
2626 	if (pools->bs)
2627 		bioset_free(pools->bs);
2628 
2629 	kfree(pools);
2630 }
2631 
2632 struct dm_pr {
2633 	u64	old_key;
2634 	u64	new_key;
2635 	u32	flags;
2636 	bool	fail_early;
2637 };
2638 
2639 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2640 		      void *data)
2641 {
2642 	struct mapped_device *md = bdev->bd_disk->private_data;
2643 	struct dm_table *table;
2644 	struct dm_target *ti;
2645 	int ret = -ENOTTY, srcu_idx;
2646 
2647 	table = dm_get_live_table(md, &srcu_idx);
2648 	if (!table || !dm_table_get_size(table))
2649 		goto out;
2650 
2651 	/* We only support devices that have a single target */
2652 	if (dm_table_get_num_targets(table) != 1)
2653 		goto out;
2654 	ti = dm_table_get_target(table, 0);
2655 
2656 	ret = -EINVAL;
2657 	if (!ti->type->iterate_devices)
2658 		goto out;
2659 
2660 	ret = ti->type->iterate_devices(ti, fn, data);
2661 out:
2662 	dm_put_live_table(md, srcu_idx);
2663 	return ret;
2664 }
2665 
2666 /*
2667  * For register / unregister we need to manually call out to every path.
2668  */
2669 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2670 			    sector_t start, sector_t len, void *data)
2671 {
2672 	struct dm_pr *pr = data;
2673 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2674 
2675 	if (!ops || !ops->pr_register)
2676 		return -EOPNOTSUPP;
2677 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2678 }
2679 
2680 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2681 			  u32 flags)
2682 {
2683 	struct dm_pr pr = {
2684 		.old_key	= old_key,
2685 		.new_key	= new_key,
2686 		.flags		= flags,
2687 		.fail_early	= true,
2688 	};
2689 	int ret;
2690 
2691 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2692 	if (ret && new_key) {
2693 		/* unregister all paths if we failed to register any path */
2694 		pr.old_key = new_key;
2695 		pr.new_key = 0;
2696 		pr.flags = 0;
2697 		pr.fail_early = false;
2698 		dm_call_pr(bdev, __dm_pr_register, &pr);
2699 	}
2700 
2701 	return ret;
2702 }
2703 
2704 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2705 			 u32 flags)
2706 {
2707 	struct mapped_device *md = bdev->bd_disk->private_data;
2708 	const struct pr_ops *ops;
2709 	fmode_t mode;
2710 	int r;
2711 
2712 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2713 	if (r < 0)
2714 		return r;
2715 
2716 	ops = bdev->bd_disk->fops->pr_ops;
2717 	if (ops && ops->pr_reserve)
2718 		r = ops->pr_reserve(bdev, key, type, flags);
2719 	else
2720 		r = -EOPNOTSUPP;
2721 
2722 	bdput(bdev);
2723 	return r;
2724 }
2725 
2726 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2727 {
2728 	struct mapped_device *md = bdev->bd_disk->private_data;
2729 	const struct pr_ops *ops;
2730 	fmode_t mode;
2731 	int r;
2732 
2733 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2734 	if (r < 0)
2735 		return r;
2736 
2737 	ops = bdev->bd_disk->fops->pr_ops;
2738 	if (ops && ops->pr_release)
2739 		r = ops->pr_release(bdev, key, type);
2740 	else
2741 		r = -EOPNOTSUPP;
2742 
2743 	bdput(bdev);
2744 	return r;
2745 }
2746 
2747 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2748 			 enum pr_type type, bool abort)
2749 {
2750 	struct mapped_device *md = bdev->bd_disk->private_data;
2751 	const struct pr_ops *ops;
2752 	fmode_t mode;
2753 	int r;
2754 
2755 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2756 	if (r < 0)
2757 		return r;
2758 
2759 	ops = bdev->bd_disk->fops->pr_ops;
2760 	if (ops && ops->pr_preempt)
2761 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2762 	else
2763 		r = -EOPNOTSUPP;
2764 
2765 	bdput(bdev);
2766 	return r;
2767 }
2768 
2769 static int dm_pr_clear(struct block_device *bdev, u64 key)
2770 {
2771 	struct mapped_device *md = bdev->bd_disk->private_data;
2772 	const struct pr_ops *ops;
2773 	fmode_t mode;
2774 	int r;
2775 
2776 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2777 	if (r < 0)
2778 		return r;
2779 
2780 	ops = bdev->bd_disk->fops->pr_ops;
2781 	if (ops && ops->pr_clear)
2782 		r = ops->pr_clear(bdev, key);
2783 	else
2784 		r = -EOPNOTSUPP;
2785 
2786 	bdput(bdev);
2787 	return r;
2788 }
2789 
2790 static const struct pr_ops dm_pr_ops = {
2791 	.pr_register	= dm_pr_register,
2792 	.pr_reserve	= dm_pr_reserve,
2793 	.pr_release	= dm_pr_release,
2794 	.pr_preempt	= dm_pr_preempt,
2795 	.pr_clear	= dm_pr_clear,
2796 };
2797 
2798 static const struct block_device_operations dm_blk_dops = {
2799 	.open = dm_blk_open,
2800 	.release = dm_blk_close,
2801 	.ioctl = dm_blk_ioctl,
2802 	.direct_access = dm_blk_direct_access,
2803 	.getgeo = dm_blk_getgeo,
2804 	.pr_ops = &dm_pr_ops,
2805 	.owner = THIS_MODULE
2806 };
2807 
2808 /*
2809  * module hooks
2810  */
2811 module_init(dm_init);
2812 module_exit(dm_exit);
2813 
2814 module_param(major, uint, 0);
2815 MODULE_PARM_DESC(major, "The major number of the device mapper");
2816 
2817 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2818 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2819 
2820 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2821 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2822 
2823 MODULE_DESCRIPTION(DM_NAME " driver");
2824 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2825 MODULE_LICENSE("GPL");
2826