xref: /linux/drivers/md/dm.c (revision 527eff227d4321c6ea453db1083bc4fdd4d3a3e8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
29 #include <linux/pr.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
34 
35 #define DM_MSG_PREFIX "core"
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 /*
45  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46  * dm_io into one list, and reuse bio->bi_private as the list head. Before
47  * ending this fs bio, we will recover its ->bi_private.
48  */
49 #define REQ_DM_POLL_LIST	REQ_DRV
50 
51 static const char *_name = DM_NAME;
52 
53 static unsigned int major;
54 static unsigned int _major;
55 
56 static DEFINE_IDR(_minor_idr);
57 
58 static DEFINE_SPINLOCK(_minor_lock);
59 
60 static void do_deferred_remove(struct work_struct *w);
61 
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 
64 static struct workqueue_struct *deferred_remove_workqueue;
65 
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 
69 void dm_issue_global_event(void)
70 {
71 	atomic_inc(&dm_global_event_nr);
72 	wake_up(&dm_global_eventq);
73 }
74 
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78 
79 /*
80  * One of these is allocated (on-stack) per original bio.
81  */
82 struct clone_info {
83 	struct dm_table *map;
84 	struct bio *bio;
85 	struct dm_io *io;
86 	sector_t sector;
87 	unsigned int sector_count;
88 	bool is_abnormal_io:1;
89 	bool submit_as_polled:1;
90 };
91 
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 {
94 	return container_of(clone, struct dm_target_io, clone);
95 }
96 
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 {
99 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 }
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104 
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 {
107 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108 
109 	if (io->magic == DM_IO_MAGIC)
110 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 	BUG_ON(io->magic != DM_TIO_MAGIC);
112 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113 }
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115 
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117 {
118 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119 }
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121 
122 #define MINOR_ALLOCED ((void *)-1)
123 
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
126 
127 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
130 {
131 	int latch = READ_ONCE(swap_bios);
132 
133 	if (unlikely(latch <= 0))
134 		latch = DEFAULT_SWAP_BIOS;
135 	return latch;
136 }
137 
138 struct table_device {
139 	struct list_head list;
140 	refcount_t count;
141 	struct dm_dev dm_dev;
142 };
143 
144 /*
145  * Bio-based DM's mempools' reserved IOs set by the user.
146  */
147 #define RESERVED_BIO_BASED_IOS		16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149 
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
151 {
152 	int param = READ_ONCE(*module_param);
153 	int modified_param = 0;
154 	bool modified = true;
155 
156 	if (param < min)
157 		modified_param = min;
158 	else if (param > max)
159 		modified_param = max;
160 	else
161 		modified = false;
162 
163 	if (modified) {
164 		(void)cmpxchg(module_param, param, modified_param);
165 		param = modified_param;
166 	}
167 
168 	return param;
169 }
170 
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172 {
173 	unsigned int param = READ_ONCE(*module_param);
174 	unsigned int modified_param = 0;
175 
176 	if (!param)
177 		modified_param = def;
178 	else if (param > max)
179 		modified_param = max;
180 
181 	if (modified_param) {
182 		(void)cmpxchg(module_param, param, modified_param);
183 		param = modified_param;
184 	}
185 
186 	return param;
187 }
188 
189 unsigned int dm_get_reserved_bio_based_ios(void)
190 {
191 	return __dm_get_module_param(&reserved_bio_based_ios,
192 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193 }
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195 
196 static unsigned int dm_get_numa_node(void)
197 {
198 	return __dm_get_module_param_int(&dm_numa_node,
199 					 DM_NUMA_NODE, num_online_nodes() - 1);
200 }
201 
202 static int __init local_init(void)
203 {
204 	int r;
205 
206 	r = dm_uevent_init();
207 	if (r)
208 		return r;
209 
210 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211 	if (!deferred_remove_workqueue) {
212 		r = -ENOMEM;
213 		goto out_uevent_exit;
214 	}
215 
216 	_major = major;
217 	r = register_blkdev(_major, _name);
218 	if (r < 0)
219 		goto out_free_workqueue;
220 
221 	if (!_major)
222 		_major = r;
223 
224 	return 0;
225 
226 out_free_workqueue:
227 	destroy_workqueue(deferred_remove_workqueue);
228 out_uevent_exit:
229 	dm_uevent_exit();
230 
231 	return r;
232 }
233 
234 static void local_exit(void)
235 {
236 	destroy_workqueue(deferred_remove_workqueue);
237 
238 	unregister_blkdev(_major, _name);
239 	dm_uevent_exit();
240 
241 	_major = 0;
242 
243 	DMINFO("cleaned up");
244 }
245 
246 static int (*_inits[])(void) __initdata = {
247 	local_init,
248 	dm_target_init,
249 	dm_linear_init,
250 	dm_stripe_init,
251 	dm_io_init,
252 	dm_kcopyd_init,
253 	dm_interface_init,
254 	dm_statistics_init,
255 };
256 
257 static void (*_exits[])(void) = {
258 	local_exit,
259 	dm_target_exit,
260 	dm_linear_exit,
261 	dm_stripe_exit,
262 	dm_io_exit,
263 	dm_kcopyd_exit,
264 	dm_interface_exit,
265 	dm_statistics_exit,
266 };
267 
268 static int __init dm_init(void)
269 {
270 	const int count = ARRAY_SIZE(_inits);
271 	int r, i;
272 
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276 #endif
277 
278 	for (i = 0; i < count; i++) {
279 		r = _inits[i]();
280 		if (r)
281 			goto bad;
282 	}
283 
284 	return 0;
285 bad:
286 	while (i--)
287 		_exits[i]();
288 
289 	return r;
290 }
291 
292 static void __exit dm_exit(void)
293 {
294 	int i = ARRAY_SIZE(_exits);
295 
296 	while (i--)
297 		_exits[i]();
298 
299 	/*
300 	 * Should be empty by this point.
301 	 */
302 	idr_destroy(&_minor_idr);
303 }
304 
305 /*
306  * Block device functions
307  */
308 int dm_deleting_md(struct mapped_device *md)
309 {
310 	return test_bit(DMF_DELETING, &md->flags);
311 }
312 
313 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
314 {
315 	struct mapped_device *md;
316 
317 	spin_lock(&_minor_lock);
318 
319 	md = disk->private_data;
320 	if (!md)
321 		goto out;
322 
323 	if (test_bit(DMF_FREEING, &md->flags) ||
324 	    dm_deleting_md(md)) {
325 		md = NULL;
326 		goto out;
327 	}
328 
329 	dm_get(md);
330 	atomic_inc(&md->open_count);
331 out:
332 	spin_unlock(&_minor_lock);
333 
334 	return md ? 0 : -ENXIO;
335 }
336 
337 static void dm_blk_close(struct gendisk *disk)
338 {
339 	struct mapped_device *md;
340 
341 	spin_lock(&_minor_lock);
342 
343 	md = disk->private_data;
344 	if (WARN_ON(!md))
345 		goto out;
346 
347 	if (atomic_dec_and_test(&md->open_count) &&
348 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350 
351 	dm_put(md);
352 out:
353 	spin_unlock(&_minor_lock);
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md)) {
371 		r = -EBUSY;
372 		if (mark_deferred)
373 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 		r = -EEXIST;
376 	else
377 		set_bit(DMF_DELETING, &md->flags);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return r;
382 }
383 
384 int dm_cancel_deferred_remove(struct mapped_device *md)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (test_bit(DMF_DELETING, &md->flags))
391 		r = -EBUSY;
392 	else
393 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 static void do_deferred_remove(struct work_struct *w)
401 {
402 	dm_deferred_remove();
403 }
404 
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 	struct mapped_device *md = bdev->bd_disk->private_data;
408 
409 	return dm_get_geometry(md, geo);
410 }
411 
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 			    struct block_device **bdev)
414 {
415 	struct dm_target *ti;
416 	struct dm_table *map;
417 	int r;
418 
419 retry:
420 	r = -ENOTTY;
421 	map = dm_get_live_table(md, srcu_idx);
422 	if (!map || !dm_table_get_size(map))
423 		return r;
424 
425 	/* We only support devices that have a single target */
426 	if (map->num_targets != 1)
427 		return r;
428 
429 	ti = dm_table_get_target(map, 0);
430 	if (!ti->type->prepare_ioctl)
431 		return r;
432 
433 	if (dm_suspended_md(md))
434 		return -EAGAIN;
435 
436 	r = ti->type->prepare_ioctl(ti, bdev);
437 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 		dm_put_live_table(md, *srcu_idx);
439 		fsleep(10000);
440 		goto retry;
441 	}
442 
443 	return r;
444 }
445 
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 {
448 	dm_put_live_table(md, srcu_idx);
449 }
450 
451 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452 			unsigned int cmd, unsigned long arg)
453 {
454 	struct mapped_device *md = bdev->bd_disk->private_data;
455 	int r, srcu_idx;
456 
457 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 	if (r < 0)
459 		goto out;
460 
461 	if (r > 0) {
462 		/*
463 		 * Target determined this ioctl is being issued against a
464 		 * subset of the parent bdev; require extra privileges.
465 		 */
466 		if (!capable(CAP_SYS_RAWIO)) {
467 			DMDEBUG_LIMIT(
468 	"%s: sending ioctl %x to DM device without required privilege.",
469 				current->comm, cmd);
470 			r = -ENOIOCTLCMD;
471 			goto out;
472 		}
473 	}
474 
475 	if (!bdev->bd_disk->fops->ioctl)
476 		r = -ENOTTY;
477 	else
478 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 out:
480 	dm_unprepare_ioctl(md, srcu_idx);
481 	return r;
482 }
483 
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 {
486 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 }
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489 
490 static inline bool bio_is_flush_with_data(struct bio *bio)
491 {
492 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493 }
494 
495 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
496 {
497 	/*
498 	 * If REQ_PREFLUSH set, don't account payload, it will be
499 	 * submitted (and accounted) after this flush completes.
500 	 */
501 	if (bio_is_flush_with_data(bio))
502 		return 0;
503 	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
504 		return io->sectors;
505 	return bio_sectors(bio);
506 }
507 
508 static void dm_io_acct(struct dm_io *io, bool end)
509 {
510 	struct bio *bio = io->orig_bio;
511 
512 	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
513 		if (!end)
514 			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
515 					   io->start_time);
516 		else
517 			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518 					 dm_io_sectors(io, bio),
519 					 io->start_time);
520 	}
521 
522 	if (static_branch_unlikely(&stats_enabled) &&
523 	    unlikely(dm_stats_used(&io->md->stats))) {
524 		sector_t sector;
525 
526 		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527 			sector = bio_end_sector(bio) - io->sector_offset;
528 		else
529 			sector = bio->bi_iter.bi_sector;
530 
531 		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532 				    sector, dm_io_sectors(io, bio),
533 				    end, io->start_time, &io->stats_aux);
534 	}
535 }
536 
537 static void __dm_start_io_acct(struct dm_io *io)
538 {
539 	dm_io_acct(io, false);
540 }
541 
542 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
543 {
544 	/*
545 	 * Ensure IO accounting is only ever started once.
546 	 */
547 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
548 		return;
549 
550 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
553 	} else {
554 		unsigned long flags;
555 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556 		spin_lock_irqsave(&io->lock, flags);
557 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558 			spin_unlock_irqrestore(&io->lock, flags);
559 			return;
560 		}
561 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
562 		spin_unlock_irqrestore(&io->lock, flags);
563 	}
564 
565 	__dm_start_io_acct(io);
566 }
567 
568 static void dm_end_io_acct(struct dm_io *io)
569 {
570 	dm_io_acct(io, true);
571 }
572 
573 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
574 {
575 	struct dm_io *io;
576 	struct dm_target_io *tio;
577 	struct bio *clone;
578 
579 	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
580 	if (unlikely(!clone))
581 		return NULL;
582 	tio = clone_to_tio(clone);
583 	tio->flags = 0;
584 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
585 	tio->io = NULL;
586 
587 	io = container_of(tio, struct dm_io, tio);
588 	io->magic = DM_IO_MAGIC;
589 	io->status = BLK_STS_OK;
590 
591 	/* one ref is for submission, the other is for completion */
592 	atomic_set(&io->io_count, 2);
593 	this_cpu_inc(*md->pending_io);
594 	io->orig_bio = bio;
595 	io->md = md;
596 	spin_lock_init(&io->lock);
597 	io->start_time = jiffies;
598 	io->flags = 0;
599 	if (blk_queue_io_stat(md->queue))
600 		dm_io_set_flag(io, DM_IO_BLK_STAT);
601 
602 	if (static_branch_unlikely(&stats_enabled) &&
603 	    unlikely(dm_stats_used(&md->stats)))
604 		dm_stats_record_start(&md->stats, &io->stats_aux);
605 
606 	return io;
607 }
608 
609 static void free_io(struct dm_io *io)
610 {
611 	bio_put(&io->tio.clone);
612 }
613 
614 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
615 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
616 {
617 	struct mapped_device *md = ci->io->md;
618 	struct dm_target_io *tio;
619 	struct bio *clone;
620 
621 	if (!ci->io->tio.io) {
622 		/* the dm_target_io embedded in ci->io is available */
623 		tio = &ci->io->tio;
624 		/* alloc_io() already initialized embedded clone */
625 		clone = &tio->clone;
626 	} else {
627 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
628 					&md->mempools->bs);
629 		if (!clone)
630 			return NULL;
631 
632 		/* REQ_DM_POLL_LIST shouldn't be inherited */
633 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
634 
635 		tio = clone_to_tio(clone);
636 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
637 	}
638 
639 	tio->magic = DM_TIO_MAGIC;
640 	tio->io = ci->io;
641 	tio->ti = ti;
642 	tio->target_bio_nr = target_bio_nr;
643 	tio->len_ptr = len;
644 	tio->old_sector = 0;
645 
646 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
647 	clone->bi_bdev = md->disk->part0;
648 	if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
649 		bio_set_dev(clone, md->disk->part0);
650 
651 	if (len) {
652 		clone->bi_iter.bi_size = to_bytes(*len);
653 		if (bio_integrity(clone))
654 			bio_integrity_trim(clone);
655 	}
656 
657 	return clone;
658 }
659 
660 static void free_tio(struct bio *clone)
661 {
662 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
663 		return;
664 	bio_put(clone);
665 }
666 
667 /*
668  * Add the bio to the list of deferred io.
669  */
670 static void queue_io(struct mapped_device *md, struct bio *bio)
671 {
672 	unsigned long flags;
673 
674 	spin_lock_irqsave(&md->deferred_lock, flags);
675 	bio_list_add(&md->deferred, bio);
676 	spin_unlock_irqrestore(&md->deferred_lock, flags);
677 	queue_work(md->wq, &md->work);
678 }
679 
680 /*
681  * Everyone (including functions in this file), should use this
682  * function to access the md->map field, and make sure they call
683  * dm_put_live_table() when finished.
684  */
685 struct dm_table *dm_get_live_table(struct mapped_device *md,
686 				   int *srcu_idx) __acquires(md->io_barrier)
687 {
688 	*srcu_idx = srcu_read_lock(&md->io_barrier);
689 
690 	return srcu_dereference(md->map, &md->io_barrier);
691 }
692 
693 void dm_put_live_table(struct mapped_device *md,
694 		       int srcu_idx) __releases(md->io_barrier)
695 {
696 	srcu_read_unlock(&md->io_barrier, srcu_idx);
697 }
698 
699 void dm_sync_table(struct mapped_device *md)
700 {
701 	synchronize_srcu(&md->io_barrier);
702 	synchronize_rcu_expedited();
703 }
704 
705 /*
706  * A fast alternative to dm_get_live_table/dm_put_live_table.
707  * The caller must not block between these two functions.
708  */
709 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
710 {
711 	rcu_read_lock();
712 	return rcu_dereference(md->map);
713 }
714 
715 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
716 {
717 	rcu_read_unlock();
718 }
719 
720 static char *_dm_claim_ptr = "I belong to device-mapper";
721 
722 /*
723  * Open a table device so we can use it as a map destination.
724  */
725 static struct table_device *open_table_device(struct mapped_device *md,
726 		dev_t dev, blk_mode_t mode)
727 {
728 	struct table_device *td;
729 	struct file *bdev_file;
730 	struct block_device *bdev;
731 	u64 part_off;
732 	int r;
733 
734 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
735 	if (!td)
736 		return ERR_PTR(-ENOMEM);
737 	refcount_set(&td->count, 1);
738 
739 	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
740 	if (IS_ERR(bdev_file)) {
741 		r = PTR_ERR(bdev_file);
742 		goto out_free_td;
743 	}
744 
745 	bdev = file_bdev(bdev_file);
746 
747 	/*
748 	 * We can be called before the dm disk is added.  In that case we can't
749 	 * register the holder relation here.  It will be done once add_disk was
750 	 * called.
751 	 */
752 	if (md->disk->slave_dir) {
753 		r = bd_link_disk_holder(bdev, md->disk);
754 		if (r)
755 			goto out_blkdev_put;
756 	}
757 
758 	td->dm_dev.mode = mode;
759 	td->dm_dev.bdev = bdev;
760 	td->dm_dev.bdev_file = bdev_file;
761 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
762 						NULL, NULL);
763 	format_dev_t(td->dm_dev.name, dev);
764 	list_add(&td->list, &md->table_devices);
765 	return td;
766 
767 out_blkdev_put:
768 	__fput_sync(bdev_file);
769 out_free_td:
770 	kfree(td);
771 	return ERR_PTR(r);
772 }
773 
774 /*
775  * Close a table device that we've been using.
776  */
777 static void close_table_device(struct table_device *td, struct mapped_device *md)
778 {
779 	if (md->disk->slave_dir)
780 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
781 
782 	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
783 	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
784 		fput(td->dm_dev.bdev_file);
785 	else
786 		__fput_sync(td->dm_dev.bdev_file);
787 
788 	put_dax(td->dm_dev.dax_dev);
789 	list_del(&td->list);
790 	kfree(td);
791 }
792 
793 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
794 					      blk_mode_t mode)
795 {
796 	struct table_device *td;
797 
798 	list_for_each_entry(td, l, list)
799 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
800 			return td;
801 
802 	return NULL;
803 }
804 
805 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
806 			struct dm_dev **result)
807 {
808 	struct table_device *td;
809 
810 	mutex_lock(&md->table_devices_lock);
811 	td = find_table_device(&md->table_devices, dev, mode);
812 	if (!td) {
813 		td = open_table_device(md, dev, mode);
814 		if (IS_ERR(td)) {
815 			mutex_unlock(&md->table_devices_lock);
816 			return PTR_ERR(td);
817 		}
818 	} else {
819 		refcount_inc(&td->count);
820 	}
821 	mutex_unlock(&md->table_devices_lock);
822 
823 	*result = &td->dm_dev;
824 	return 0;
825 }
826 
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 	struct table_device *td = container_of(d, struct table_device, dm_dev);
830 
831 	mutex_lock(&md->table_devices_lock);
832 	if (refcount_dec_and_test(&td->count))
833 		close_table_device(td, md);
834 	mutex_unlock(&md->table_devices_lock);
835 }
836 
837 /*
838  * Get the geometry associated with a dm device
839  */
840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
841 {
842 	*geo = md->geometry;
843 
844 	return 0;
845 }
846 
847 /*
848  * Set the geometry of a device.
849  */
850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
851 {
852 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
853 
854 	if (geo->start > sz) {
855 		DMERR("Start sector is beyond the geometry limits.");
856 		return -EINVAL;
857 	}
858 
859 	md->geometry = *geo;
860 
861 	return 0;
862 }
863 
864 static int __noflush_suspending(struct mapped_device *md)
865 {
866 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867 }
868 
869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
870 {
871 	struct mapped_device *md = io->md;
872 
873 	if (first_stage) {
874 		struct dm_io *next = md->requeue_list;
875 
876 		md->requeue_list = io;
877 		io->next = next;
878 	} else {
879 		bio_list_add_head(&md->deferred, io->orig_bio);
880 	}
881 }
882 
883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
884 {
885 	if (first_stage)
886 		queue_work(md->wq, &md->requeue_work);
887 	else
888 		queue_work(md->wq, &md->work);
889 }
890 
891 /*
892  * Return true if the dm_io's original bio is requeued.
893  * io->status is updated with error if requeue disallowed.
894  */
895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
896 {
897 	struct bio *bio = io->orig_bio;
898 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
899 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
900 				     (bio->bi_opf & REQ_POLLED));
901 	struct mapped_device *md = io->md;
902 	bool requeued = false;
903 
904 	if (handle_requeue || handle_polled_eagain) {
905 		unsigned long flags;
906 
907 		if (bio->bi_opf & REQ_POLLED) {
908 			/*
909 			 * Upper layer won't help us poll split bio
910 			 * (io->orig_bio may only reflect a subset of the
911 			 * pre-split original) so clear REQ_POLLED.
912 			 */
913 			bio_clear_polled(bio);
914 		}
915 
916 		/*
917 		 * Target requested pushing back the I/O or
918 		 * polled IO hit BLK_STS_AGAIN.
919 		 */
920 		spin_lock_irqsave(&md->deferred_lock, flags);
921 		if ((__noflush_suspending(md) &&
922 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
923 		    handle_polled_eagain || first_stage) {
924 			dm_requeue_add_io(io, first_stage);
925 			requeued = true;
926 		} else {
927 			/*
928 			 * noflush suspend was interrupted or this is
929 			 * a write to a zoned target.
930 			 */
931 			io->status = BLK_STS_IOERR;
932 		}
933 		spin_unlock_irqrestore(&md->deferred_lock, flags);
934 	}
935 
936 	if (requeued)
937 		dm_kick_requeue(md, first_stage);
938 
939 	return requeued;
940 }
941 
942 static void __dm_io_complete(struct dm_io *io, bool first_stage)
943 {
944 	struct bio *bio = io->orig_bio;
945 	struct mapped_device *md = io->md;
946 	blk_status_t io_error;
947 	bool requeued;
948 
949 	requeued = dm_handle_requeue(io, first_stage);
950 	if (requeued && first_stage)
951 		return;
952 
953 	io_error = io->status;
954 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955 		dm_end_io_acct(io);
956 	else if (!io_error) {
957 		/*
958 		 * Must handle target that DM_MAPIO_SUBMITTED only to
959 		 * then bio_endio() rather than dm_submit_bio_remap()
960 		 */
961 		__dm_start_io_acct(io);
962 		dm_end_io_acct(io);
963 	}
964 	free_io(io);
965 	smp_wmb();
966 	this_cpu_dec(*md->pending_io);
967 
968 	/* nudge anyone waiting on suspend queue */
969 	if (unlikely(wq_has_sleeper(&md->wait)))
970 		wake_up(&md->wait);
971 
972 	/* Return early if the original bio was requeued */
973 	if (requeued)
974 		return;
975 
976 	if (bio_is_flush_with_data(bio)) {
977 		/*
978 		 * Preflush done for flush with data, reissue
979 		 * without REQ_PREFLUSH.
980 		 */
981 		bio->bi_opf &= ~REQ_PREFLUSH;
982 		queue_io(md, bio);
983 	} else {
984 		/* done with normal IO or empty flush */
985 		if (io_error)
986 			bio->bi_status = io_error;
987 		bio_endio(bio);
988 	}
989 }
990 
991 static void dm_wq_requeue_work(struct work_struct *work)
992 {
993 	struct mapped_device *md = container_of(work, struct mapped_device,
994 						requeue_work);
995 	unsigned long flags;
996 	struct dm_io *io;
997 
998 	/* reuse deferred lock to simplify dm_handle_requeue */
999 	spin_lock_irqsave(&md->deferred_lock, flags);
1000 	io = md->requeue_list;
1001 	md->requeue_list = NULL;
1002 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1003 
1004 	while (io) {
1005 		struct dm_io *next = io->next;
1006 
1007 		dm_io_rewind(io, &md->disk->bio_split);
1008 
1009 		io->next = NULL;
1010 		__dm_io_complete(io, false);
1011 		io = next;
1012 		cond_resched();
1013 	}
1014 }
1015 
1016 /*
1017  * Two staged requeue:
1018  *
1019  * 1) io->orig_bio points to the real original bio, and the part mapped to
1020  *    this io must be requeued, instead of other parts of the original bio.
1021  *
1022  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1023  */
1024 static void dm_io_complete(struct dm_io *io)
1025 {
1026 	bool first_requeue;
1027 
1028 	/*
1029 	 * Only dm_io that has been split needs two stage requeue, otherwise
1030 	 * we may run into long bio clone chain during suspend and OOM could
1031 	 * be triggered.
1032 	 *
1033 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034 	 * also aren't handled via the first stage requeue.
1035 	 */
1036 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037 		first_requeue = true;
1038 	else
1039 		first_requeue = false;
1040 
1041 	__dm_io_complete(io, first_requeue);
1042 }
1043 
1044 /*
1045  * Decrements the number of outstanding ios that a bio has been
1046  * cloned into, completing the original io if necc.
1047  */
1048 static inline void __dm_io_dec_pending(struct dm_io *io)
1049 {
1050 	if (atomic_dec_and_test(&io->io_count))
1051 		dm_io_complete(io);
1052 }
1053 
1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1055 {
1056 	unsigned long flags;
1057 
1058 	/* Push-back supersedes any I/O errors */
1059 	spin_lock_irqsave(&io->lock, flags);
1060 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1061 	      __noflush_suspending(io->md))) {
1062 		io->status = error;
1063 	}
1064 	spin_unlock_irqrestore(&io->lock, flags);
1065 }
1066 
1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1068 {
1069 	if (unlikely(error))
1070 		dm_io_set_error(io, error);
1071 
1072 	__dm_io_dec_pending(io);
1073 }
1074 
1075 /*
1076  * The queue_limits are only valid as long as you have a reference
1077  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1078  */
1079 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1080 {
1081 	return &md->queue->limits;
1082 }
1083 
1084 void disable_discard(struct mapped_device *md)
1085 {
1086 	struct queue_limits *limits = dm_get_queue_limits(md);
1087 
1088 	/* device doesn't really support DISCARD, disable it */
1089 	limits->max_hw_discard_sectors = 0;
1090 }
1091 
1092 void disable_write_zeroes(struct mapped_device *md)
1093 {
1094 	struct queue_limits *limits = dm_get_queue_limits(md);
1095 
1096 	/* device doesn't really support WRITE ZEROES, disable it */
1097 	limits->max_write_zeroes_sectors = 0;
1098 }
1099 
1100 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1101 {
1102 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1103 }
1104 
1105 static void clone_endio(struct bio *bio)
1106 {
1107 	blk_status_t error = bio->bi_status;
1108 	struct dm_target_io *tio = clone_to_tio(bio);
1109 	struct dm_target *ti = tio->ti;
1110 	dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1111 	struct dm_io *io = tio->io;
1112 	struct mapped_device *md = io->md;
1113 
1114 	if (unlikely(error == BLK_STS_TARGET)) {
1115 		if (bio_op(bio) == REQ_OP_DISCARD &&
1116 		    !bdev_max_discard_sectors(bio->bi_bdev))
1117 			disable_discard(md);
1118 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1119 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1120 			disable_write_zeroes(md);
1121 	}
1122 
1123 	if (static_branch_unlikely(&zoned_enabled) &&
1124 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1125 		dm_zone_endio(io, bio);
1126 
1127 	if (endio) {
1128 		int r = endio(ti, bio, &error);
1129 
1130 		switch (r) {
1131 		case DM_ENDIO_REQUEUE:
1132 			if (static_branch_unlikely(&zoned_enabled)) {
1133 				/*
1134 				 * Requeuing writes to a sequential zone of a zoned
1135 				 * target will break the sequential write pattern:
1136 				 * fail such IO.
1137 				 */
1138 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1139 					error = BLK_STS_IOERR;
1140 				else
1141 					error = BLK_STS_DM_REQUEUE;
1142 			} else
1143 				error = BLK_STS_DM_REQUEUE;
1144 			fallthrough;
1145 		case DM_ENDIO_DONE:
1146 			break;
1147 		case DM_ENDIO_INCOMPLETE:
1148 			/* The target will handle the io */
1149 			return;
1150 		default:
1151 			DMCRIT("unimplemented target endio return value: %d", r);
1152 			BUG();
1153 		}
1154 	}
1155 
1156 	if (static_branch_unlikely(&swap_bios_enabled) &&
1157 	    likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1158 		up(&md->swap_bios_semaphore);
1159 
1160 	free_tio(bio);
1161 	dm_io_dec_pending(io, error);
1162 }
1163 
1164 /*
1165  * Return maximum size of I/O possible at the supplied sector up to the current
1166  * target boundary.
1167  */
1168 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1169 						  sector_t target_offset)
1170 {
1171 	return ti->len - target_offset;
1172 }
1173 
1174 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1175 			     unsigned int max_granularity,
1176 			     unsigned int max_sectors)
1177 {
1178 	sector_t target_offset = dm_target_offset(ti, sector);
1179 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1180 
1181 	/*
1182 	 * Does the target need to split IO even further?
1183 	 * - varied (per target) IO splitting is a tenet of DM; this
1184 	 *   explains why stacked chunk_sectors based splitting via
1185 	 *   bio_split_to_limits() isn't possible here.
1186 	 */
1187 	if (!max_granularity)
1188 		return len;
1189 	return min_t(sector_t, len,
1190 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1191 		    blk_boundary_sectors_left(target_offset, max_granularity)));
1192 }
1193 
1194 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1195 {
1196 	return __max_io_len(ti, sector, ti->max_io_len, 0);
1197 }
1198 
1199 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1200 {
1201 	if (len > UINT_MAX) {
1202 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1203 		      (unsigned long long)len, UINT_MAX);
1204 		ti->error = "Maximum size of target IO is too large";
1205 		return -EINVAL;
1206 	}
1207 
1208 	ti->max_io_len = (uint32_t) len;
1209 
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1213 
1214 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1215 						sector_t sector, int *srcu_idx)
1216 	__acquires(md->io_barrier)
1217 {
1218 	struct dm_table *map;
1219 	struct dm_target *ti;
1220 
1221 	map = dm_get_live_table(md, srcu_idx);
1222 	if (!map)
1223 		return NULL;
1224 
1225 	ti = dm_table_find_target(map, sector);
1226 	if (!ti)
1227 		return NULL;
1228 
1229 	return ti;
1230 }
1231 
1232 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1233 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1234 		pfn_t *pfn)
1235 {
1236 	struct mapped_device *md = dax_get_private(dax_dev);
1237 	sector_t sector = pgoff * PAGE_SECTORS;
1238 	struct dm_target *ti;
1239 	long len, ret = -EIO;
1240 	int srcu_idx;
1241 
1242 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1243 
1244 	if (!ti)
1245 		goto out;
1246 	if (!ti->type->direct_access)
1247 		goto out;
1248 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1249 	if (len < 1)
1250 		goto out;
1251 	nr_pages = min(len, nr_pages);
1252 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1253 
1254  out:
1255 	dm_put_live_table(md, srcu_idx);
1256 
1257 	return ret;
1258 }
1259 
1260 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1261 				  size_t nr_pages)
1262 {
1263 	struct mapped_device *md = dax_get_private(dax_dev);
1264 	sector_t sector = pgoff * PAGE_SECTORS;
1265 	struct dm_target *ti;
1266 	int ret = -EIO;
1267 	int srcu_idx;
1268 
1269 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1270 
1271 	if (!ti)
1272 		goto out;
1273 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1274 		/*
1275 		 * ->zero_page_range() is mandatory dax operation. If we are
1276 		 *  here, something is wrong.
1277 		 */
1278 		goto out;
1279 	}
1280 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1281  out:
1282 	dm_put_live_table(md, srcu_idx);
1283 
1284 	return ret;
1285 }
1286 
1287 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1288 		void *addr, size_t bytes, struct iov_iter *i)
1289 {
1290 	struct mapped_device *md = dax_get_private(dax_dev);
1291 	sector_t sector = pgoff * PAGE_SECTORS;
1292 	struct dm_target *ti;
1293 	int srcu_idx;
1294 	long ret = 0;
1295 
1296 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1297 	if (!ti || !ti->type->dax_recovery_write)
1298 		goto out;
1299 
1300 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1301 out:
1302 	dm_put_live_table(md, srcu_idx);
1303 	return ret;
1304 }
1305 
1306 /*
1307  * A target may call dm_accept_partial_bio only from the map routine.  It is
1308  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1309  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1310  * __send_duplicate_bios().
1311  *
1312  * dm_accept_partial_bio informs the dm that the target only wants to process
1313  * additional n_sectors sectors of the bio and the rest of the data should be
1314  * sent in a next bio.
1315  *
1316  * A diagram that explains the arithmetics:
1317  * +--------------------+---------------+-------+
1318  * |         1          |       2       |   3   |
1319  * +--------------------+---------------+-------+
1320  *
1321  * <-------------- *tio->len_ptr --------------->
1322  *                      <----- bio_sectors ----->
1323  *                      <-- n_sectors -->
1324  *
1325  * Region 1 was already iterated over with bio_advance or similar function.
1326  *	(it may be empty if the target doesn't use bio_advance)
1327  * Region 2 is the remaining bio size that the target wants to process.
1328  *	(it may be empty if region 1 is non-empty, although there is no reason
1329  *	 to make it empty)
1330  * The target requires that region 3 is to be sent in the next bio.
1331  *
1332  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1333  * the partially processed part (the sum of regions 1+2) must be the same for all
1334  * copies of the bio.
1335  */
1336 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1337 {
1338 	struct dm_target_io *tio = clone_to_tio(bio);
1339 	struct dm_io *io = tio->io;
1340 	unsigned int bio_sectors = bio_sectors(bio);
1341 
1342 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1343 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1344 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1345 	BUG_ON(bio_sectors > *tio->len_ptr);
1346 	BUG_ON(n_sectors > bio_sectors);
1347 
1348 	*tio->len_ptr -= bio_sectors - n_sectors;
1349 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1350 
1351 	/*
1352 	 * __split_and_process_bio() may have already saved mapped part
1353 	 * for accounting but it is being reduced so update accordingly.
1354 	 */
1355 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1356 	io->sectors = n_sectors;
1357 	io->sector_offset = bio_sectors(io->orig_bio);
1358 }
1359 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1360 
1361 /*
1362  * @clone: clone bio that DM core passed to target's .map function
1363  * @tgt_clone: clone of @clone bio that target needs submitted
1364  *
1365  * Targets should use this interface to submit bios they take
1366  * ownership of when returning DM_MAPIO_SUBMITTED.
1367  *
1368  * Target should also enable ti->accounts_remapped_io
1369  */
1370 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1371 {
1372 	struct dm_target_io *tio = clone_to_tio(clone);
1373 	struct dm_io *io = tio->io;
1374 
1375 	/* establish bio that will get submitted */
1376 	if (!tgt_clone)
1377 		tgt_clone = clone;
1378 
1379 	/*
1380 	 * Account io->origin_bio to DM dev on behalf of target
1381 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1382 	 */
1383 	dm_start_io_acct(io, clone);
1384 
1385 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1386 			      tio->old_sector);
1387 	submit_bio_noacct(tgt_clone);
1388 }
1389 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1390 
1391 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1392 {
1393 	mutex_lock(&md->swap_bios_lock);
1394 	while (latch < md->swap_bios) {
1395 		cond_resched();
1396 		down(&md->swap_bios_semaphore);
1397 		md->swap_bios--;
1398 	}
1399 	while (latch > md->swap_bios) {
1400 		cond_resched();
1401 		up(&md->swap_bios_semaphore);
1402 		md->swap_bios++;
1403 	}
1404 	mutex_unlock(&md->swap_bios_lock);
1405 }
1406 
1407 static void __map_bio(struct bio *clone)
1408 {
1409 	struct dm_target_io *tio = clone_to_tio(clone);
1410 	struct dm_target *ti = tio->ti;
1411 	struct dm_io *io = tio->io;
1412 	struct mapped_device *md = io->md;
1413 	int r;
1414 
1415 	clone->bi_end_io = clone_endio;
1416 
1417 	/*
1418 	 * Map the clone.
1419 	 */
1420 	tio->old_sector = clone->bi_iter.bi_sector;
1421 
1422 	if (static_branch_unlikely(&swap_bios_enabled) &&
1423 	    unlikely(swap_bios_limit(ti, clone))) {
1424 		int latch = get_swap_bios();
1425 
1426 		if (unlikely(latch != md->swap_bios))
1427 			__set_swap_bios_limit(md, latch);
1428 		down(&md->swap_bios_semaphore);
1429 	}
1430 
1431 	if (likely(ti->type->map == linear_map))
1432 		r = linear_map(ti, clone);
1433 	else if (ti->type->map == stripe_map)
1434 		r = stripe_map(ti, clone);
1435 	else
1436 		r = ti->type->map(ti, clone);
1437 
1438 	switch (r) {
1439 	case DM_MAPIO_SUBMITTED:
1440 		/* target has assumed ownership of this io */
1441 		if (!ti->accounts_remapped_io)
1442 			dm_start_io_acct(io, clone);
1443 		break;
1444 	case DM_MAPIO_REMAPPED:
1445 		dm_submit_bio_remap(clone, NULL);
1446 		break;
1447 	case DM_MAPIO_KILL:
1448 	case DM_MAPIO_REQUEUE:
1449 		if (static_branch_unlikely(&swap_bios_enabled) &&
1450 		    unlikely(swap_bios_limit(ti, clone)))
1451 			up(&md->swap_bios_semaphore);
1452 		free_tio(clone);
1453 		if (r == DM_MAPIO_KILL)
1454 			dm_io_dec_pending(io, BLK_STS_IOERR);
1455 		else
1456 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1457 		break;
1458 	default:
1459 		DMCRIT("unimplemented target map return value: %d", r);
1460 		BUG();
1461 	}
1462 }
1463 
1464 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1465 {
1466 	struct dm_io *io = ci->io;
1467 
1468 	if (ci->sector_count > len) {
1469 		/*
1470 		 * Split needed, save the mapped part for accounting.
1471 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1472 		 */
1473 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1474 		io->sectors = len;
1475 		io->sector_offset = bio_sectors(ci->bio);
1476 	}
1477 }
1478 
1479 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1480 				struct dm_target *ti, unsigned int num_bios,
1481 				unsigned *len, gfp_t gfp_flag)
1482 {
1483 	struct bio *bio;
1484 	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1485 
1486 	for (; try < 2; try++) {
1487 		int bio_nr;
1488 
1489 		if (try && num_bios > 1)
1490 			mutex_lock(&ci->io->md->table_devices_lock);
1491 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1492 			bio = alloc_tio(ci, ti, bio_nr, len,
1493 					try ? GFP_NOIO : GFP_NOWAIT);
1494 			if (!bio)
1495 				break;
1496 
1497 			bio_list_add(blist, bio);
1498 		}
1499 		if (try && num_bios > 1)
1500 			mutex_unlock(&ci->io->md->table_devices_lock);
1501 		if (bio_nr == num_bios)
1502 			return;
1503 
1504 		while ((bio = bio_list_pop(blist)))
1505 			free_tio(bio);
1506 	}
1507 }
1508 
1509 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1510 					  unsigned int num_bios, unsigned int *len,
1511 					  gfp_t gfp_flag)
1512 {
1513 	struct bio_list blist = BIO_EMPTY_LIST;
1514 	struct bio *clone;
1515 	unsigned int ret = 0;
1516 
1517 	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1518 		return 0;
1519 
1520 	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1521 	if (len)
1522 		setup_split_accounting(ci, *len);
1523 
1524 	/*
1525 	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1526 	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1527 	 */
1528 	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1529 	while ((clone = bio_list_pop(&blist))) {
1530 		if (num_bios > 1)
1531 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1532 		__map_bio(clone);
1533 		ret += 1;
1534 	}
1535 
1536 	return ret;
1537 }
1538 
1539 static void __send_empty_flush(struct clone_info *ci)
1540 {
1541 	struct dm_table *t = ci->map;
1542 	struct bio flush_bio;
1543 
1544 	/*
1545 	 * Use an on-stack bio for this, it's safe since we don't
1546 	 * need to reference it after submit. It's just used as
1547 	 * the basis for the clone(s).
1548 	 */
1549 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1550 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1551 
1552 	ci->bio = &flush_bio;
1553 	ci->sector_count = 0;
1554 	ci->io->tio.clone.bi_iter.bi_size = 0;
1555 
1556 	if (!t->flush_bypasses_map) {
1557 		for (unsigned int i = 0; i < t->num_targets; i++) {
1558 			unsigned int bios;
1559 			struct dm_target *ti = dm_table_get_target(t, i);
1560 
1561 			if (unlikely(ti->num_flush_bios == 0))
1562 				continue;
1563 
1564 			atomic_add(ti->num_flush_bios, &ci->io->io_count);
1565 			bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1566 						     NULL, GFP_NOWAIT);
1567 			atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1568 		}
1569 	} else {
1570 		/*
1571 		 * Note that there's no need to grab t->devices_lock here
1572 		 * because the targets that support flush optimization don't
1573 		 * modify the list of devices.
1574 		 */
1575 		struct list_head *devices = dm_table_get_devices(t);
1576 		unsigned int len = 0;
1577 		struct dm_dev_internal *dd;
1578 		list_for_each_entry(dd, devices, list) {
1579 			struct bio *clone;
1580 			/*
1581 			 * Note that the structure dm_target_io is not
1582 			 * associated with any target (because the device may be
1583 			 * used by multiple targets), so we set tio->ti = NULL.
1584 			 * We must check for NULL in the I/O processing path, to
1585 			 * avoid NULL pointer dereference.
1586 			 */
1587 			clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1588 			atomic_add(1, &ci->io->io_count);
1589 			bio_set_dev(clone, dd->dm_dev->bdev);
1590 			clone->bi_end_io = clone_endio;
1591 			dm_submit_bio_remap(clone, NULL);
1592 		}
1593 	}
1594 
1595 	/*
1596 	 * alloc_io() takes one extra reference for submission, so the
1597 	 * reference won't reach 0 without the following subtraction
1598 	 */
1599 	atomic_sub(1, &ci->io->io_count);
1600 
1601 	bio_uninit(ci->bio);
1602 }
1603 
1604 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1605 			       unsigned int num_bios, unsigned int max_granularity,
1606 			       unsigned int max_sectors)
1607 {
1608 	unsigned int len, bios;
1609 
1610 	len = min_t(sector_t, ci->sector_count,
1611 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1612 
1613 	atomic_add(num_bios, &ci->io->io_count);
1614 	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1615 	/*
1616 	 * alloc_io() takes one extra reference for submission, so the
1617 	 * reference won't reach 0 without the following (+1) subtraction
1618 	 */
1619 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1620 
1621 	ci->sector += len;
1622 	ci->sector_count -= len;
1623 }
1624 
1625 static bool is_abnormal_io(struct bio *bio)
1626 {
1627 	switch (bio_op(bio)) {
1628 	case REQ_OP_READ:
1629 	case REQ_OP_WRITE:
1630 	case REQ_OP_FLUSH:
1631 		return false;
1632 	case REQ_OP_DISCARD:
1633 	case REQ_OP_SECURE_ERASE:
1634 	case REQ_OP_WRITE_ZEROES:
1635 	case REQ_OP_ZONE_RESET_ALL:
1636 		return true;
1637 	default:
1638 		return false;
1639 	}
1640 }
1641 
1642 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1643 					  struct dm_target *ti)
1644 {
1645 	unsigned int num_bios = 0;
1646 	unsigned int max_granularity = 0;
1647 	unsigned int max_sectors = 0;
1648 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1649 
1650 	switch (bio_op(ci->bio)) {
1651 	case REQ_OP_DISCARD:
1652 		num_bios = ti->num_discard_bios;
1653 		max_sectors = limits->max_discard_sectors;
1654 		if (ti->max_discard_granularity)
1655 			max_granularity = max_sectors;
1656 		break;
1657 	case REQ_OP_SECURE_ERASE:
1658 		num_bios = ti->num_secure_erase_bios;
1659 		max_sectors = limits->max_secure_erase_sectors;
1660 		break;
1661 	case REQ_OP_WRITE_ZEROES:
1662 		num_bios = ti->num_write_zeroes_bios;
1663 		max_sectors = limits->max_write_zeroes_sectors;
1664 		break;
1665 	default:
1666 		break;
1667 	}
1668 
1669 	/*
1670 	 * Even though the device advertised support for this type of
1671 	 * request, that does not mean every target supports it, and
1672 	 * reconfiguration might also have changed that since the
1673 	 * check was performed.
1674 	 */
1675 	if (unlikely(!num_bios))
1676 		return BLK_STS_NOTSUPP;
1677 
1678 	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1679 
1680 	return BLK_STS_OK;
1681 }
1682 
1683 /*
1684  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1685  * associated with this bio, and this bio's bi_private needs to be
1686  * stored in dm_io->data before the reuse.
1687  *
1688  * bio->bi_private is owned by fs or upper layer, so block layer won't
1689  * touch it after splitting. Meantime it won't be changed by anyone after
1690  * bio is submitted. So this reuse is safe.
1691  */
1692 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1693 {
1694 	return (struct dm_io **)&bio->bi_private;
1695 }
1696 
1697 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1698 {
1699 	struct dm_io **head = dm_poll_list_head(bio);
1700 
1701 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1702 		bio->bi_opf |= REQ_DM_POLL_LIST;
1703 		/*
1704 		 * Save .bi_private into dm_io, so that we can reuse
1705 		 * .bi_private as dm_io list head for storing dm_io list
1706 		 */
1707 		io->data = bio->bi_private;
1708 
1709 		/* tell block layer to poll for completion */
1710 		bio->bi_cookie = ~BLK_QC_T_NONE;
1711 
1712 		io->next = NULL;
1713 	} else {
1714 		/*
1715 		 * bio recursed due to split, reuse original poll list,
1716 		 * and save bio->bi_private too.
1717 		 */
1718 		io->data = (*head)->data;
1719 		io->next = *head;
1720 	}
1721 
1722 	*head = io;
1723 }
1724 
1725 /*
1726  * Select the correct strategy for processing a non-flush bio.
1727  */
1728 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1729 {
1730 	struct bio *clone;
1731 	struct dm_target *ti;
1732 	unsigned int len;
1733 
1734 	ti = dm_table_find_target(ci->map, ci->sector);
1735 	if (unlikely(!ti))
1736 		return BLK_STS_IOERR;
1737 
1738 	if (unlikely(ci->is_abnormal_io))
1739 		return __process_abnormal_io(ci, ti);
1740 
1741 	/*
1742 	 * Only support bio polling for normal IO, and the target io is
1743 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1744 	 */
1745 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1746 
1747 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1748 	setup_split_accounting(ci, len);
1749 
1750 	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1751 		if (unlikely(!dm_target_supports_nowait(ti->type)))
1752 			return BLK_STS_NOTSUPP;
1753 
1754 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1755 		if (unlikely(!clone))
1756 			return BLK_STS_AGAIN;
1757 	} else {
1758 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1759 	}
1760 	__map_bio(clone);
1761 
1762 	ci->sector += len;
1763 	ci->sector_count -= len;
1764 
1765 	return BLK_STS_OK;
1766 }
1767 
1768 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1769 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1770 {
1771 	ci->map = map;
1772 	ci->io = io;
1773 	ci->bio = bio;
1774 	ci->is_abnormal_io = is_abnormal;
1775 	ci->submit_as_polled = false;
1776 	ci->sector = bio->bi_iter.bi_sector;
1777 	ci->sector_count = bio_sectors(bio);
1778 
1779 	/* Shouldn't happen but sector_count was being set to 0 so... */
1780 	if (static_branch_unlikely(&zoned_enabled) &&
1781 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1782 		ci->sector_count = 0;
1783 }
1784 
1785 #ifdef CONFIG_BLK_DEV_ZONED
1786 static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1787 					   struct bio *bio)
1788 {
1789 	/*
1790 	 * For mapped device that need zone append emulation, we must
1791 	 * split any large BIO that straddles zone boundaries.
1792 	 */
1793 	return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1794 		!bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1795 }
1796 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1797 {
1798 	return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
1799 }
1800 
1801 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1802 						   struct dm_target *ti)
1803 {
1804 	struct bio_list blist = BIO_EMPTY_LIST;
1805 	struct mapped_device *md = ci->io->md;
1806 	unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1807 	unsigned long *need_reset;
1808 	unsigned int i, nr_zones, nr_reset;
1809 	unsigned int num_bios = 0;
1810 	blk_status_t sts = BLK_STS_OK;
1811 	sector_t sector = ti->begin;
1812 	struct bio *clone;
1813 	int ret;
1814 
1815 	nr_zones = ti->len >> ilog2(zone_sectors);
1816 	need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1817 	if (!need_reset)
1818 		return BLK_STS_RESOURCE;
1819 
1820 	ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1821 				       nr_zones, need_reset);
1822 	if (ret) {
1823 		sts = BLK_STS_IOERR;
1824 		goto free_bitmap;
1825 	}
1826 
1827 	/* If we have no zone to reset, we are done. */
1828 	nr_reset = bitmap_weight(need_reset, nr_zones);
1829 	if (!nr_reset)
1830 		goto free_bitmap;
1831 
1832 	atomic_add(nr_zones, &ci->io->io_count);
1833 
1834 	for (i = 0; i < nr_zones; i++) {
1835 
1836 		if (!test_bit(i, need_reset)) {
1837 			sector += zone_sectors;
1838 			continue;
1839 		}
1840 
1841 		if (bio_list_empty(&blist)) {
1842 			/* This may take a while, so be nice to others */
1843 			if (num_bios)
1844 				cond_resched();
1845 
1846 			/*
1847 			 * We may need to reset thousands of zones, so let's
1848 			 * not go crazy with the clone allocation.
1849 			 */
1850 			alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1851 					    NULL, GFP_NOIO);
1852 		}
1853 
1854 		/* Get a clone and change it to a regular reset operation. */
1855 		clone = bio_list_pop(&blist);
1856 		clone->bi_opf &= ~REQ_OP_MASK;
1857 		clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1858 		clone->bi_iter.bi_sector = sector;
1859 		clone->bi_iter.bi_size = 0;
1860 		__map_bio(clone);
1861 
1862 		sector += zone_sectors;
1863 		num_bios++;
1864 		nr_reset--;
1865 	}
1866 
1867 	WARN_ON_ONCE(!bio_list_empty(&blist));
1868 	atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1869 	ci->sector_count = 0;
1870 
1871 free_bitmap:
1872 	bitmap_free(need_reset);
1873 
1874 	return sts;
1875 }
1876 
1877 static void __send_zone_reset_all_native(struct clone_info *ci,
1878 					 struct dm_target *ti)
1879 {
1880 	unsigned int bios;
1881 
1882 	atomic_add(1, &ci->io->io_count);
1883 	bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO);
1884 	atomic_sub(1 - bios, &ci->io->io_count);
1885 
1886 	ci->sector_count = 0;
1887 }
1888 
1889 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1890 {
1891 	struct dm_table *t = ci->map;
1892 	blk_status_t sts = BLK_STS_OK;
1893 
1894 	for (unsigned int i = 0; i < t->num_targets; i++) {
1895 		struct dm_target *ti = dm_table_get_target(t, i);
1896 
1897 		if (ti->zone_reset_all_supported) {
1898 			__send_zone_reset_all_native(ci, ti);
1899 			continue;
1900 		}
1901 
1902 		sts = __send_zone_reset_all_emulated(ci, ti);
1903 		if (sts != BLK_STS_OK)
1904 			break;
1905 	}
1906 
1907 	/* Release the reference that alloc_io() took for submission. */
1908 	atomic_sub(1, &ci->io->io_count);
1909 
1910 	return sts;
1911 }
1912 
1913 #else
1914 static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1915 					   struct bio *bio)
1916 {
1917 	return false;
1918 }
1919 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1920 {
1921 	return false;
1922 }
1923 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1924 {
1925 	return BLK_STS_NOTSUPP;
1926 }
1927 #endif
1928 
1929 /*
1930  * Entry point to split a bio into clones and submit them to the targets.
1931  */
1932 static void dm_split_and_process_bio(struct mapped_device *md,
1933 				     struct dm_table *map, struct bio *bio)
1934 {
1935 	struct clone_info ci;
1936 	struct dm_io *io;
1937 	blk_status_t error = BLK_STS_OK;
1938 	bool is_abnormal, need_split;
1939 
1940 	is_abnormal = is_abnormal_io(bio);
1941 	if (static_branch_unlikely(&zoned_enabled)) {
1942 		/* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
1943 		need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
1944 			(is_abnormal || dm_zone_bio_needs_split(md, bio));
1945 	} else {
1946 		need_split = is_abnormal;
1947 	}
1948 
1949 	if (unlikely(need_split)) {
1950 		/*
1951 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1952 		 * otherwise associated queue_limits won't be imposed.
1953 		 * Also split the BIO for mapped devices needing zone append
1954 		 * emulation to ensure that the BIO does not cross zone
1955 		 * boundaries.
1956 		 */
1957 		bio = bio_split_to_limits(bio);
1958 		if (!bio)
1959 			return;
1960 	}
1961 
1962 	/*
1963 	 * Use the block layer zone write plugging for mapped devices that
1964 	 * need zone append emulation (e.g. dm-crypt).
1965 	 */
1966 	if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1967 		return;
1968 
1969 	/* Only support nowait for normal IO */
1970 	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1971 		io = alloc_io(md, bio, GFP_NOWAIT);
1972 		if (unlikely(!io)) {
1973 			/* Unable to do anything without dm_io. */
1974 			bio_wouldblock_error(bio);
1975 			return;
1976 		}
1977 	} else {
1978 		io = alloc_io(md, bio, GFP_NOIO);
1979 	}
1980 	init_clone_info(&ci, io, map, bio, is_abnormal);
1981 
1982 	if (bio->bi_opf & REQ_PREFLUSH) {
1983 		__send_empty_flush(&ci);
1984 		/* dm_io_complete submits any data associated with flush */
1985 		goto out;
1986 	}
1987 
1988 	if (static_branch_unlikely(&zoned_enabled) &&
1989 	    (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
1990 		error = __send_zone_reset_all(&ci);
1991 		goto out;
1992 	}
1993 
1994 	error = __split_and_process_bio(&ci);
1995 	if (error || !ci.sector_count)
1996 		goto out;
1997 	/*
1998 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1999 	 * *after* bios already submitted have been completely processed.
2000 	 */
2001 	bio_trim(bio, io->sectors, ci.sector_count);
2002 	trace_block_split(bio, bio->bi_iter.bi_sector);
2003 	bio_inc_remaining(bio);
2004 	submit_bio_noacct(bio);
2005 out:
2006 	/*
2007 	 * Drop the extra reference count for non-POLLED bio, and hold one
2008 	 * reference for POLLED bio, which will be released in dm_poll_bio
2009 	 *
2010 	 * Add every dm_io instance into the dm_io list head which is stored
2011 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
2012 	 */
2013 	if (error || !ci.submit_as_polled) {
2014 		/*
2015 		 * In case of submission failure, the extra reference for
2016 		 * submitting io isn't consumed yet
2017 		 */
2018 		if (error)
2019 			atomic_dec(&io->io_count);
2020 		dm_io_dec_pending(io, error);
2021 	} else
2022 		dm_queue_poll_io(bio, io);
2023 }
2024 
2025 static void dm_submit_bio(struct bio *bio)
2026 {
2027 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2028 	int srcu_idx;
2029 	struct dm_table *map;
2030 
2031 	map = dm_get_live_table(md, &srcu_idx);
2032 
2033 	/* If suspended, or map not yet available, queue this IO for later */
2034 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
2035 	    unlikely(!map)) {
2036 		if (bio->bi_opf & REQ_NOWAIT)
2037 			bio_wouldblock_error(bio);
2038 		else if (bio->bi_opf & REQ_RAHEAD)
2039 			bio_io_error(bio);
2040 		else
2041 			queue_io(md, bio);
2042 		goto out;
2043 	}
2044 
2045 	dm_split_and_process_bio(md, map, bio);
2046 out:
2047 	dm_put_live_table(md, srcu_idx);
2048 }
2049 
2050 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2051 			  unsigned int flags)
2052 {
2053 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2054 
2055 	/* don't poll if the mapped io is done */
2056 	if (atomic_read(&io->io_count) > 1)
2057 		bio_poll(&io->tio.clone, iob, flags);
2058 
2059 	/* bio_poll holds the last reference */
2060 	return atomic_read(&io->io_count) == 1;
2061 }
2062 
2063 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2064 		       unsigned int flags)
2065 {
2066 	struct dm_io **head = dm_poll_list_head(bio);
2067 	struct dm_io *list = *head;
2068 	struct dm_io *tmp = NULL;
2069 	struct dm_io *curr, *next;
2070 
2071 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2072 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2073 		return 0;
2074 
2075 	WARN_ON_ONCE(!list);
2076 
2077 	/*
2078 	 * Restore .bi_private before possibly completing dm_io.
2079 	 *
2080 	 * bio_poll() is only possible once @bio has been completely
2081 	 * submitted via submit_bio_noacct()'s depth-first submission.
2082 	 * So there is no dm_queue_poll_io() race associated with
2083 	 * clearing REQ_DM_POLL_LIST here.
2084 	 */
2085 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
2086 	bio->bi_private = list->data;
2087 
2088 	for (curr = list, next = curr->next; curr; curr = next, next =
2089 			curr ? curr->next : NULL) {
2090 		if (dm_poll_dm_io(curr, iob, flags)) {
2091 			/*
2092 			 * clone_endio() has already occurred, so no
2093 			 * error handling is needed here.
2094 			 */
2095 			__dm_io_dec_pending(curr);
2096 		} else {
2097 			curr->next = tmp;
2098 			tmp = curr;
2099 		}
2100 	}
2101 
2102 	/* Not done? */
2103 	if (tmp) {
2104 		bio->bi_opf |= REQ_DM_POLL_LIST;
2105 		/* Reset bio->bi_private to dm_io list head */
2106 		*head = tmp;
2107 		return 0;
2108 	}
2109 	return 1;
2110 }
2111 
2112 /*
2113  *---------------------------------------------------------------
2114  * An IDR is used to keep track of allocated minor numbers.
2115  *---------------------------------------------------------------
2116  */
2117 static void free_minor(int minor)
2118 {
2119 	spin_lock(&_minor_lock);
2120 	idr_remove(&_minor_idr, minor);
2121 	spin_unlock(&_minor_lock);
2122 }
2123 
2124 /*
2125  * See if the device with a specific minor # is free.
2126  */
2127 static int specific_minor(int minor)
2128 {
2129 	int r;
2130 
2131 	if (minor >= (1 << MINORBITS))
2132 		return -EINVAL;
2133 
2134 	idr_preload(GFP_KERNEL);
2135 	spin_lock(&_minor_lock);
2136 
2137 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2138 
2139 	spin_unlock(&_minor_lock);
2140 	idr_preload_end();
2141 	if (r < 0)
2142 		return r == -ENOSPC ? -EBUSY : r;
2143 	return 0;
2144 }
2145 
2146 static int next_free_minor(int *minor)
2147 {
2148 	int r;
2149 
2150 	idr_preload(GFP_KERNEL);
2151 	spin_lock(&_minor_lock);
2152 
2153 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2154 
2155 	spin_unlock(&_minor_lock);
2156 	idr_preload_end();
2157 	if (r < 0)
2158 		return r;
2159 	*minor = r;
2160 	return 0;
2161 }
2162 
2163 static const struct block_device_operations dm_blk_dops;
2164 static const struct block_device_operations dm_rq_blk_dops;
2165 static const struct dax_operations dm_dax_ops;
2166 
2167 static void dm_wq_work(struct work_struct *work);
2168 
2169 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
2170 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2171 {
2172 	dm_destroy_crypto_profile(q->crypto_profile);
2173 }
2174 
2175 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2176 
2177 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2178 {
2179 }
2180 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2181 
2182 static void cleanup_mapped_device(struct mapped_device *md)
2183 {
2184 	if (md->wq)
2185 		destroy_workqueue(md->wq);
2186 	dm_free_md_mempools(md->mempools);
2187 
2188 	if (md->dax_dev) {
2189 		dax_remove_host(md->disk);
2190 		kill_dax(md->dax_dev);
2191 		put_dax(md->dax_dev);
2192 		md->dax_dev = NULL;
2193 	}
2194 
2195 	if (md->disk) {
2196 		spin_lock(&_minor_lock);
2197 		md->disk->private_data = NULL;
2198 		spin_unlock(&_minor_lock);
2199 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2200 			struct table_device *td;
2201 
2202 			dm_sysfs_exit(md);
2203 			list_for_each_entry(td, &md->table_devices, list) {
2204 				bd_unlink_disk_holder(td->dm_dev.bdev,
2205 						      md->disk);
2206 			}
2207 
2208 			/*
2209 			 * Hold lock to make sure del_gendisk() won't concurrent
2210 			 * with open/close_table_device().
2211 			 */
2212 			mutex_lock(&md->table_devices_lock);
2213 			del_gendisk(md->disk);
2214 			mutex_unlock(&md->table_devices_lock);
2215 		}
2216 		dm_queue_destroy_crypto_profile(md->queue);
2217 		put_disk(md->disk);
2218 	}
2219 
2220 	if (md->pending_io) {
2221 		free_percpu(md->pending_io);
2222 		md->pending_io = NULL;
2223 	}
2224 
2225 	cleanup_srcu_struct(&md->io_barrier);
2226 
2227 	mutex_destroy(&md->suspend_lock);
2228 	mutex_destroy(&md->type_lock);
2229 	mutex_destroy(&md->table_devices_lock);
2230 	mutex_destroy(&md->swap_bios_lock);
2231 
2232 	dm_mq_cleanup_mapped_device(md);
2233 }
2234 
2235 /*
2236  * Allocate and initialise a blank device with a given minor.
2237  */
2238 static struct mapped_device *alloc_dev(int minor)
2239 {
2240 	int r, numa_node_id = dm_get_numa_node();
2241 	struct dax_device *dax_dev;
2242 	struct mapped_device *md;
2243 	void *old_md;
2244 
2245 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2246 	if (!md) {
2247 		DMERR("unable to allocate device, out of memory.");
2248 		return NULL;
2249 	}
2250 
2251 	if (!try_module_get(THIS_MODULE))
2252 		goto bad_module_get;
2253 
2254 	/* get a minor number for the dev */
2255 	if (minor == DM_ANY_MINOR)
2256 		r = next_free_minor(&minor);
2257 	else
2258 		r = specific_minor(minor);
2259 	if (r < 0)
2260 		goto bad_minor;
2261 
2262 	r = init_srcu_struct(&md->io_barrier);
2263 	if (r < 0)
2264 		goto bad_io_barrier;
2265 
2266 	md->numa_node_id = numa_node_id;
2267 	md->init_tio_pdu = false;
2268 	md->type = DM_TYPE_NONE;
2269 	mutex_init(&md->suspend_lock);
2270 	mutex_init(&md->type_lock);
2271 	mutex_init(&md->table_devices_lock);
2272 	spin_lock_init(&md->deferred_lock);
2273 	atomic_set(&md->holders, 1);
2274 	atomic_set(&md->open_count, 0);
2275 	atomic_set(&md->event_nr, 0);
2276 	atomic_set(&md->uevent_seq, 0);
2277 	INIT_LIST_HEAD(&md->uevent_list);
2278 	INIT_LIST_HEAD(&md->table_devices);
2279 	spin_lock_init(&md->uevent_lock);
2280 
2281 	/*
2282 	 * default to bio-based until DM table is loaded and md->type
2283 	 * established. If request-based table is loaded: blk-mq will
2284 	 * override accordingly.
2285 	 */
2286 	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2287 	if (IS_ERR(md->disk))
2288 		goto bad;
2289 	md->queue = md->disk->queue;
2290 
2291 	init_waitqueue_head(&md->wait);
2292 	INIT_WORK(&md->work, dm_wq_work);
2293 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2294 	init_waitqueue_head(&md->eventq);
2295 	init_completion(&md->kobj_holder.completion);
2296 
2297 	md->requeue_list = NULL;
2298 	md->swap_bios = get_swap_bios();
2299 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2300 	mutex_init(&md->swap_bios_lock);
2301 
2302 	md->disk->major = _major;
2303 	md->disk->first_minor = minor;
2304 	md->disk->minors = 1;
2305 	md->disk->flags |= GENHD_FL_NO_PART;
2306 	md->disk->fops = &dm_blk_dops;
2307 	md->disk->private_data = md;
2308 	sprintf(md->disk->disk_name, "dm-%d", minor);
2309 
2310 	dax_dev = alloc_dax(md, &dm_dax_ops);
2311 	if (IS_ERR(dax_dev)) {
2312 		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2313 			goto bad;
2314 	} else {
2315 		set_dax_nocache(dax_dev);
2316 		set_dax_nomc(dax_dev);
2317 		md->dax_dev = dax_dev;
2318 		if (dax_add_host(dax_dev, md->disk))
2319 			goto bad;
2320 	}
2321 
2322 	format_dev_t(md->name, MKDEV(_major, minor));
2323 
2324 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2325 	if (!md->wq)
2326 		goto bad;
2327 
2328 	md->pending_io = alloc_percpu(unsigned long);
2329 	if (!md->pending_io)
2330 		goto bad;
2331 
2332 	r = dm_stats_init(&md->stats);
2333 	if (r < 0)
2334 		goto bad;
2335 
2336 	/* Populate the mapping, nobody knows we exist yet */
2337 	spin_lock(&_minor_lock);
2338 	old_md = idr_replace(&_minor_idr, md, minor);
2339 	spin_unlock(&_minor_lock);
2340 
2341 	BUG_ON(old_md != MINOR_ALLOCED);
2342 
2343 	return md;
2344 
2345 bad:
2346 	cleanup_mapped_device(md);
2347 bad_io_barrier:
2348 	free_minor(minor);
2349 bad_minor:
2350 	module_put(THIS_MODULE);
2351 bad_module_get:
2352 	kvfree(md);
2353 	return NULL;
2354 }
2355 
2356 static void unlock_fs(struct mapped_device *md);
2357 
2358 static void free_dev(struct mapped_device *md)
2359 {
2360 	int minor = MINOR(disk_devt(md->disk));
2361 
2362 	unlock_fs(md);
2363 
2364 	cleanup_mapped_device(md);
2365 
2366 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2367 	dm_stats_cleanup(&md->stats);
2368 	free_minor(minor);
2369 
2370 	module_put(THIS_MODULE);
2371 	kvfree(md);
2372 }
2373 
2374 /*
2375  * Bind a table to the device.
2376  */
2377 static void event_callback(void *context)
2378 {
2379 	unsigned long flags;
2380 	LIST_HEAD(uevents);
2381 	struct mapped_device *md = context;
2382 
2383 	spin_lock_irqsave(&md->uevent_lock, flags);
2384 	list_splice_init(&md->uevent_list, &uevents);
2385 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2386 
2387 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2388 
2389 	atomic_inc(&md->event_nr);
2390 	wake_up(&md->eventq);
2391 	dm_issue_global_event();
2392 }
2393 
2394 /*
2395  * Returns old map, which caller must destroy.
2396  */
2397 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2398 			       struct queue_limits *limits)
2399 {
2400 	struct dm_table *old_map;
2401 	sector_t size;
2402 	int ret;
2403 
2404 	lockdep_assert_held(&md->suspend_lock);
2405 
2406 	size = dm_table_get_size(t);
2407 
2408 	/*
2409 	 * Wipe any geometry if the size of the table changed.
2410 	 */
2411 	if (size != dm_get_size(md))
2412 		memset(&md->geometry, 0, sizeof(md->geometry));
2413 
2414 	set_capacity(md->disk, size);
2415 
2416 	dm_table_event_callback(t, event_callback, md);
2417 
2418 	if (dm_table_request_based(t)) {
2419 		/*
2420 		 * Leverage the fact that request-based DM targets are
2421 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2422 		 */
2423 		md->immutable_target = dm_table_get_immutable_target(t);
2424 
2425 		/*
2426 		 * There is no need to reload with request-based dm because the
2427 		 * size of front_pad doesn't change.
2428 		 *
2429 		 * Note for future: If you are to reload bioset, prep-ed
2430 		 * requests in the queue may refer to bio from the old bioset,
2431 		 * so you must walk through the queue to unprep.
2432 		 */
2433 		if (!md->mempools) {
2434 			md->mempools = t->mempools;
2435 			t->mempools = NULL;
2436 		}
2437 	} else {
2438 		/*
2439 		 * The md may already have mempools that need changing.
2440 		 * If so, reload bioset because front_pad may have changed
2441 		 * because a different table was loaded.
2442 		 */
2443 		dm_free_md_mempools(md->mempools);
2444 		md->mempools = t->mempools;
2445 		t->mempools = NULL;
2446 	}
2447 
2448 	ret = dm_table_set_restrictions(t, md->queue, limits);
2449 	if (ret) {
2450 		old_map = ERR_PTR(ret);
2451 		goto out;
2452 	}
2453 
2454 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2455 	rcu_assign_pointer(md->map, (void *)t);
2456 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2457 
2458 	if (old_map)
2459 		dm_sync_table(md);
2460 out:
2461 	return old_map;
2462 }
2463 
2464 /*
2465  * Returns unbound table for the caller to free.
2466  */
2467 static struct dm_table *__unbind(struct mapped_device *md)
2468 {
2469 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2470 
2471 	if (!map)
2472 		return NULL;
2473 
2474 	dm_table_event_callback(map, NULL, NULL);
2475 	RCU_INIT_POINTER(md->map, NULL);
2476 	dm_sync_table(md);
2477 
2478 	return map;
2479 }
2480 
2481 /*
2482  * Constructor for a new device.
2483  */
2484 int dm_create(int minor, struct mapped_device **result)
2485 {
2486 	struct mapped_device *md;
2487 
2488 	md = alloc_dev(minor);
2489 	if (!md)
2490 		return -ENXIO;
2491 
2492 	dm_ima_reset_data(md);
2493 
2494 	*result = md;
2495 	return 0;
2496 }
2497 
2498 /*
2499  * Functions to manage md->type.
2500  * All are required to hold md->type_lock.
2501  */
2502 void dm_lock_md_type(struct mapped_device *md)
2503 {
2504 	mutex_lock(&md->type_lock);
2505 }
2506 
2507 void dm_unlock_md_type(struct mapped_device *md)
2508 {
2509 	mutex_unlock(&md->type_lock);
2510 }
2511 
2512 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2513 {
2514 	BUG_ON(!mutex_is_locked(&md->type_lock));
2515 	md->type = type;
2516 }
2517 
2518 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2519 {
2520 	return md->type;
2521 }
2522 
2523 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2524 {
2525 	return md->immutable_target_type;
2526 }
2527 
2528 /*
2529  * Setup the DM device's queue based on md's type
2530  */
2531 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2532 {
2533 	enum dm_queue_mode type = dm_table_get_type(t);
2534 	struct queue_limits limits;
2535 	struct table_device *td;
2536 	int r;
2537 
2538 	WARN_ON_ONCE(type == DM_TYPE_NONE);
2539 
2540 	if (type == DM_TYPE_REQUEST_BASED) {
2541 		md->disk->fops = &dm_rq_blk_dops;
2542 		r = dm_mq_init_request_queue(md, t);
2543 		if (r) {
2544 			DMERR("Cannot initialize queue for request-based dm mapped device");
2545 			return r;
2546 		}
2547 	}
2548 
2549 	r = dm_calculate_queue_limits(t, &limits);
2550 	if (r) {
2551 		DMERR("Cannot calculate initial queue limits");
2552 		return r;
2553 	}
2554 	r = dm_table_set_restrictions(t, md->queue, &limits);
2555 	if (r)
2556 		return r;
2557 
2558 	/*
2559 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2560 	 * with open_table_device() and close_table_device().
2561 	 */
2562 	mutex_lock(&md->table_devices_lock);
2563 	r = add_disk(md->disk);
2564 	mutex_unlock(&md->table_devices_lock);
2565 	if (r)
2566 		return r;
2567 
2568 	/*
2569 	 * Register the holder relationship for devices added before the disk
2570 	 * was live.
2571 	 */
2572 	list_for_each_entry(td, &md->table_devices, list) {
2573 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2574 		if (r)
2575 			goto out_undo_holders;
2576 	}
2577 
2578 	r = dm_sysfs_init(md);
2579 	if (r)
2580 		goto out_undo_holders;
2581 
2582 	md->type = type;
2583 	return 0;
2584 
2585 out_undo_holders:
2586 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2587 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2588 	mutex_lock(&md->table_devices_lock);
2589 	del_gendisk(md->disk);
2590 	mutex_unlock(&md->table_devices_lock);
2591 	return r;
2592 }
2593 
2594 struct mapped_device *dm_get_md(dev_t dev)
2595 {
2596 	struct mapped_device *md;
2597 	unsigned int minor = MINOR(dev);
2598 
2599 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2600 		return NULL;
2601 
2602 	spin_lock(&_minor_lock);
2603 
2604 	md = idr_find(&_minor_idr, minor);
2605 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2606 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2607 		md = NULL;
2608 		goto out;
2609 	}
2610 	dm_get(md);
2611 out:
2612 	spin_unlock(&_minor_lock);
2613 
2614 	return md;
2615 }
2616 EXPORT_SYMBOL_GPL(dm_get_md);
2617 
2618 void *dm_get_mdptr(struct mapped_device *md)
2619 {
2620 	return md->interface_ptr;
2621 }
2622 
2623 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2624 {
2625 	md->interface_ptr = ptr;
2626 }
2627 
2628 void dm_get(struct mapped_device *md)
2629 {
2630 	atomic_inc(&md->holders);
2631 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2632 }
2633 
2634 int dm_hold(struct mapped_device *md)
2635 {
2636 	spin_lock(&_minor_lock);
2637 	if (test_bit(DMF_FREEING, &md->flags)) {
2638 		spin_unlock(&_minor_lock);
2639 		return -EBUSY;
2640 	}
2641 	dm_get(md);
2642 	spin_unlock(&_minor_lock);
2643 	return 0;
2644 }
2645 EXPORT_SYMBOL_GPL(dm_hold);
2646 
2647 const char *dm_device_name(struct mapped_device *md)
2648 {
2649 	return md->name;
2650 }
2651 EXPORT_SYMBOL_GPL(dm_device_name);
2652 
2653 static void __dm_destroy(struct mapped_device *md, bool wait)
2654 {
2655 	struct dm_table *map;
2656 	int srcu_idx;
2657 
2658 	might_sleep();
2659 
2660 	spin_lock(&_minor_lock);
2661 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2662 	set_bit(DMF_FREEING, &md->flags);
2663 	spin_unlock(&_minor_lock);
2664 
2665 	blk_mark_disk_dead(md->disk);
2666 
2667 	/*
2668 	 * Take suspend_lock so that presuspend and postsuspend methods
2669 	 * do not race with internal suspend.
2670 	 */
2671 	mutex_lock(&md->suspend_lock);
2672 	map = dm_get_live_table(md, &srcu_idx);
2673 	if (!dm_suspended_md(md)) {
2674 		dm_table_presuspend_targets(map);
2675 		set_bit(DMF_SUSPENDED, &md->flags);
2676 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2677 		dm_table_postsuspend_targets(map);
2678 	}
2679 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2680 	dm_put_live_table(md, srcu_idx);
2681 	mutex_unlock(&md->suspend_lock);
2682 
2683 	/*
2684 	 * Rare, but there may be I/O requests still going to complete,
2685 	 * for example.  Wait for all references to disappear.
2686 	 * No one should increment the reference count of the mapped_device,
2687 	 * after the mapped_device state becomes DMF_FREEING.
2688 	 */
2689 	if (wait)
2690 		while (atomic_read(&md->holders))
2691 			fsleep(1000);
2692 	else if (atomic_read(&md->holders))
2693 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2694 		       dm_device_name(md), atomic_read(&md->holders));
2695 
2696 	dm_table_destroy(__unbind(md));
2697 	free_dev(md);
2698 }
2699 
2700 void dm_destroy(struct mapped_device *md)
2701 {
2702 	__dm_destroy(md, true);
2703 }
2704 
2705 void dm_destroy_immediate(struct mapped_device *md)
2706 {
2707 	__dm_destroy(md, false);
2708 }
2709 
2710 void dm_put(struct mapped_device *md)
2711 {
2712 	atomic_dec(&md->holders);
2713 }
2714 EXPORT_SYMBOL_GPL(dm_put);
2715 
2716 static bool dm_in_flight_bios(struct mapped_device *md)
2717 {
2718 	int cpu;
2719 	unsigned long sum = 0;
2720 
2721 	for_each_possible_cpu(cpu)
2722 		sum += *per_cpu_ptr(md->pending_io, cpu);
2723 
2724 	return sum != 0;
2725 }
2726 
2727 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2728 {
2729 	int r = 0;
2730 	DEFINE_WAIT(wait);
2731 
2732 	while (true) {
2733 		prepare_to_wait(&md->wait, &wait, task_state);
2734 
2735 		if (!dm_in_flight_bios(md))
2736 			break;
2737 
2738 		if (signal_pending_state(task_state, current)) {
2739 			r = -EINTR;
2740 			break;
2741 		}
2742 
2743 		io_schedule();
2744 	}
2745 	finish_wait(&md->wait, &wait);
2746 
2747 	smp_rmb();
2748 
2749 	return r;
2750 }
2751 
2752 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2753 {
2754 	int r = 0;
2755 
2756 	if (!queue_is_mq(md->queue))
2757 		return dm_wait_for_bios_completion(md, task_state);
2758 
2759 	while (true) {
2760 		if (!blk_mq_queue_inflight(md->queue))
2761 			break;
2762 
2763 		if (signal_pending_state(task_state, current)) {
2764 			r = -EINTR;
2765 			break;
2766 		}
2767 
2768 		fsleep(5000);
2769 	}
2770 
2771 	return r;
2772 }
2773 
2774 /*
2775  * Process the deferred bios
2776  */
2777 static void dm_wq_work(struct work_struct *work)
2778 {
2779 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2780 	struct bio *bio;
2781 
2782 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2783 		spin_lock_irq(&md->deferred_lock);
2784 		bio = bio_list_pop(&md->deferred);
2785 		spin_unlock_irq(&md->deferred_lock);
2786 
2787 		if (!bio)
2788 			break;
2789 
2790 		submit_bio_noacct(bio);
2791 		cond_resched();
2792 	}
2793 }
2794 
2795 static void dm_queue_flush(struct mapped_device *md)
2796 {
2797 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2798 	smp_mb__after_atomic();
2799 	queue_work(md->wq, &md->work);
2800 }
2801 
2802 /*
2803  * Swap in a new table, returning the old one for the caller to destroy.
2804  */
2805 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2806 {
2807 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2808 	struct queue_limits limits;
2809 	int r;
2810 
2811 	mutex_lock(&md->suspend_lock);
2812 
2813 	/* device must be suspended */
2814 	if (!dm_suspended_md(md))
2815 		goto out;
2816 
2817 	/*
2818 	 * If the new table has no data devices, retain the existing limits.
2819 	 * This helps multipath with queue_if_no_path if all paths disappear,
2820 	 * then new I/O is queued based on these limits, and then some paths
2821 	 * reappear.
2822 	 */
2823 	if (dm_table_has_no_data_devices(table)) {
2824 		live_map = dm_get_live_table_fast(md);
2825 		if (live_map)
2826 			limits = md->queue->limits;
2827 		dm_put_live_table_fast(md);
2828 	}
2829 
2830 	if (!live_map) {
2831 		r = dm_calculate_queue_limits(table, &limits);
2832 		if (r) {
2833 			map = ERR_PTR(r);
2834 			goto out;
2835 		}
2836 	}
2837 
2838 	map = __bind(md, table, &limits);
2839 	dm_issue_global_event();
2840 
2841 out:
2842 	mutex_unlock(&md->suspend_lock);
2843 	return map;
2844 }
2845 
2846 /*
2847  * Functions to lock and unlock any filesystem running on the
2848  * device.
2849  */
2850 static int lock_fs(struct mapped_device *md)
2851 {
2852 	int r;
2853 
2854 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2855 
2856 	r = bdev_freeze(md->disk->part0);
2857 	if (!r)
2858 		set_bit(DMF_FROZEN, &md->flags);
2859 	return r;
2860 }
2861 
2862 static void unlock_fs(struct mapped_device *md)
2863 {
2864 	if (!test_bit(DMF_FROZEN, &md->flags))
2865 		return;
2866 	bdev_thaw(md->disk->part0);
2867 	clear_bit(DMF_FROZEN, &md->flags);
2868 }
2869 
2870 /*
2871  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2872  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2873  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2874  *
2875  * If __dm_suspend returns 0, the device is completely quiescent
2876  * now. There is no request-processing activity. All new requests
2877  * are being added to md->deferred list.
2878  */
2879 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2880 			unsigned int suspend_flags, unsigned int task_state,
2881 			int dmf_suspended_flag)
2882 {
2883 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2884 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2885 	int r;
2886 
2887 	lockdep_assert_held(&md->suspend_lock);
2888 
2889 	/*
2890 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2891 	 * This flag is cleared before dm_suspend returns.
2892 	 */
2893 	if (noflush)
2894 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2895 	else
2896 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2897 
2898 	/*
2899 	 * This gets reverted if there's an error later and the targets
2900 	 * provide the .presuspend_undo hook.
2901 	 */
2902 	dm_table_presuspend_targets(map);
2903 
2904 	/*
2905 	 * Flush I/O to the device.
2906 	 * Any I/O submitted after lock_fs() may not be flushed.
2907 	 * noflush takes precedence over do_lockfs.
2908 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2909 	 */
2910 	if (!noflush && do_lockfs) {
2911 		r = lock_fs(md);
2912 		if (r) {
2913 			dm_table_presuspend_undo_targets(map);
2914 			return r;
2915 		}
2916 	}
2917 
2918 	/*
2919 	 * Here we must make sure that no processes are submitting requests
2920 	 * to target drivers i.e. no one may be executing
2921 	 * dm_split_and_process_bio from dm_submit_bio.
2922 	 *
2923 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2924 	 * we take the write lock. To prevent any process from reentering
2925 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2926 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2927 	 * flush_workqueue(md->wq).
2928 	 */
2929 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2930 	if (map)
2931 		synchronize_srcu(&md->io_barrier);
2932 
2933 	/*
2934 	 * Stop md->queue before flushing md->wq in case request-based
2935 	 * dm defers requests to md->wq from md->queue.
2936 	 */
2937 	if (dm_request_based(md))
2938 		dm_stop_queue(md->queue);
2939 
2940 	flush_workqueue(md->wq);
2941 
2942 	/*
2943 	 * At this point no more requests are entering target request routines.
2944 	 * We call dm_wait_for_completion to wait for all existing requests
2945 	 * to finish.
2946 	 */
2947 	r = dm_wait_for_completion(md, task_state);
2948 	if (!r)
2949 		set_bit(dmf_suspended_flag, &md->flags);
2950 
2951 	if (noflush)
2952 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2953 	if (map)
2954 		synchronize_srcu(&md->io_barrier);
2955 
2956 	/* were we interrupted ? */
2957 	if (r < 0) {
2958 		dm_queue_flush(md);
2959 
2960 		if (dm_request_based(md))
2961 			dm_start_queue(md->queue);
2962 
2963 		unlock_fs(md);
2964 		dm_table_presuspend_undo_targets(map);
2965 		/* pushback list is already flushed, so skip flush */
2966 	}
2967 
2968 	return r;
2969 }
2970 
2971 /*
2972  * We need to be able to change a mapping table under a mounted
2973  * filesystem.  For example we might want to move some data in
2974  * the background.  Before the table can be swapped with
2975  * dm_bind_table, dm_suspend must be called to flush any in
2976  * flight bios and ensure that any further io gets deferred.
2977  */
2978 /*
2979  * Suspend mechanism in request-based dm.
2980  *
2981  * 1. Flush all I/Os by lock_fs() if needed.
2982  * 2. Stop dispatching any I/O by stopping the request_queue.
2983  * 3. Wait for all in-flight I/Os to be completed or requeued.
2984  *
2985  * To abort suspend, start the request_queue.
2986  */
2987 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2988 {
2989 	struct dm_table *map = NULL;
2990 	int r = 0;
2991 
2992 retry:
2993 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2994 
2995 	if (dm_suspended_md(md)) {
2996 		r = -EINVAL;
2997 		goto out_unlock;
2998 	}
2999 
3000 	if (dm_suspended_internally_md(md)) {
3001 		/* already internally suspended, wait for internal resume */
3002 		mutex_unlock(&md->suspend_lock);
3003 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3004 		if (r)
3005 			return r;
3006 		goto retry;
3007 	}
3008 
3009 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3010 	if (!map) {
3011 		/* avoid deadlock with fs/namespace.c:do_mount() */
3012 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3013 	}
3014 
3015 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3016 	if (r)
3017 		goto out_unlock;
3018 
3019 	set_bit(DMF_POST_SUSPENDING, &md->flags);
3020 	dm_table_postsuspend_targets(map);
3021 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3022 
3023 out_unlock:
3024 	mutex_unlock(&md->suspend_lock);
3025 	return r;
3026 }
3027 
3028 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3029 {
3030 	if (map) {
3031 		int r = dm_table_resume_targets(map);
3032 
3033 		if (r)
3034 			return r;
3035 	}
3036 
3037 	dm_queue_flush(md);
3038 
3039 	/*
3040 	 * Flushing deferred I/Os must be done after targets are resumed
3041 	 * so that mapping of targets can work correctly.
3042 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3043 	 */
3044 	if (dm_request_based(md))
3045 		dm_start_queue(md->queue);
3046 
3047 	unlock_fs(md);
3048 
3049 	return 0;
3050 }
3051 
3052 int dm_resume(struct mapped_device *md)
3053 {
3054 	int r;
3055 	struct dm_table *map = NULL;
3056 
3057 retry:
3058 	r = -EINVAL;
3059 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3060 
3061 	if (!dm_suspended_md(md))
3062 		goto out;
3063 
3064 	if (dm_suspended_internally_md(md)) {
3065 		/* already internally suspended, wait for internal resume */
3066 		mutex_unlock(&md->suspend_lock);
3067 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3068 		if (r)
3069 			return r;
3070 		goto retry;
3071 	}
3072 
3073 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3074 	if (!map || !dm_table_get_size(map))
3075 		goto out;
3076 
3077 	r = __dm_resume(md, map);
3078 	if (r)
3079 		goto out;
3080 
3081 	clear_bit(DMF_SUSPENDED, &md->flags);
3082 out:
3083 	mutex_unlock(&md->suspend_lock);
3084 
3085 	return r;
3086 }
3087 
3088 /*
3089  * Internal suspend/resume works like userspace-driven suspend. It waits
3090  * until all bios finish and prevents issuing new bios to the target drivers.
3091  * It may be used only from the kernel.
3092  */
3093 
3094 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3095 {
3096 	struct dm_table *map = NULL;
3097 
3098 	lockdep_assert_held(&md->suspend_lock);
3099 
3100 	if (md->internal_suspend_count++)
3101 		return; /* nested internal suspend */
3102 
3103 	if (dm_suspended_md(md)) {
3104 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3105 		return; /* nest suspend */
3106 	}
3107 
3108 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3109 
3110 	/*
3111 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3112 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3113 	 * would require changing .presuspend to return an error -- avoid this
3114 	 * until there is a need for more elaborate variants of internal suspend.
3115 	 */
3116 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3117 			    DMF_SUSPENDED_INTERNALLY);
3118 
3119 	set_bit(DMF_POST_SUSPENDING, &md->flags);
3120 	dm_table_postsuspend_targets(map);
3121 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3122 }
3123 
3124 static void __dm_internal_resume(struct mapped_device *md)
3125 {
3126 	int r;
3127 	struct dm_table *map;
3128 
3129 	BUG_ON(!md->internal_suspend_count);
3130 
3131 	if (--md->internal_suspend_count)
3132 		return; /* resume from nested internal suspend */
3133 
3134 	if (dm_suspended_md(md))
3135 		goto done; /* resume from nested suspend */
3136 
3137 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3138 	r = __dm_resume(md, map);
3139 	if (r) {
3140 		/*
3141 		 * If a preresume method of some target failed, we are in a
3142 		 * tricky situation. We can't return an error to the caller. We
3143 		 * can't fake success because then the "resume" and
3144 		 * "postsuspend" methods would not be paired correctly, and it
3145 		 * would break various targets, for example it would cause list
3146 		 * corruption in the "origin" target.
3147 		 *
3148 		 * So, we fake normal suspend here, to make sure that the
3149 		 * "resume" and "postsuspend" methods will be paired correctly.
3150 		 */
3151 		DMERR("Preresume method failed: %d", r);
3152 		set_bit(DMF_SUSPENDED, &md->flags);
3153 	}
3154 done:
3155 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3156 	smp_mb__after_atomic();
3157 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3158 }
3159 
3160 void dm_internal_suspend_noflush(struct mapped_device *md)
3161 {
3162 	mutex_lock(&md->suspend_lock);
3163 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3164 	mutex_unlock(&md->suspend_lock);
3165 }
3166 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3167 
3168 void dm_internal_resume(struct mapped_device *md)
3169 {
3170 	mutex_lock(&md->suspend_lock);
3171 	__dm_internal_resume(md);
3172 	mutex_unlock(&md->suspend_lock);
3173 }
3174 EXPORT_SYMBOL_GPL(dm_internal_resume);
3175 
3176 /*
3177  * Fast variants of internal suspend/resume hold md->suspend_lock,
3178  * which prevents interaction with userspace-driven suspend.
3179  */
3180 
3181 void dm_internal_suspend_fast(struct mapped_device *md)
3182 {
3183 	mutex_lock(&md->suspend_lock);
3184 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3185 		return;
3186 
3187 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3188 	synchronize_srcu(&md->io_barrier);
3189 	flush_workqueue(md->wq);
3190 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3191 }
3192 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3193 
3194 void dm_internal_resume_fast(struct mapped_device *md)
3195 {
3196 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3197 		goto done;
3198 
3199 	dm_queue_flush(md);
3200 
3201 done:
3202 	mutex_unlock(&md->suspend_lock);
3203 }
3204 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3205 
3206 /*
3207  *---------------------------------------------------------------
3208  * Event notification.
3209  *---------------------------------------------------------------
3210  */
3211 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3212 		      unsigned int cookie, bool need_resize_uevent)
3213 {
3214 	int r;
3215 	unsigned int noio_flag;
3216 	char udev_cookie[DM_COOKIE_LENGTH];
3217 	char *envp[3] = { NULL, NULL, NULL };
3218 	char **envpp = envp;
3219 	if (cookie) {
3220 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3221 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3222 		*envpp++ = udev_cookie;
3223 	}
3224 	if (need_resize_uevent) {
3225 		*envpp++ = "RESIZE=1";
3226 	}
3227 
3228 	noio_flag = memalloc_noio_save();
3229 
3230 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3231 
3232 	memalloc_noio_restore(noio_flag);
3233 
3234 	return r;
3235 }
3236 
3237 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3238 {
3239 	return atomic_add_return(1, &md->uevent_seq);
3240 }
3241 
3242 uint32_t dm_get_event_nr(struct mapped_device *md)
3243 {
3244 	return atomic_read(&md->event_nr);
3245 }
3246 
3247 int dm_wait_event(struct mapped_device *md, int event_nr)
3248 {
3249 	return wait_event_interruptible(md->eventq,
3250 			(event_nr != atomic_read(&md->event_nr)));
3251 }
3252 
3253 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3254 {
3255 	unsigned long flags;
3256 
3257 	spin_lock_irqsave(&md->uevent_lock, flags);
3258 	list_add(elist, &md->uevent_list);
3259 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3260 }
3261 
3262 /*
3263  * The gendisk is only valid as long as you have a reference
3264  * count on 'md'.
3265  */
3266 struct gendisk *dm_disk(struct mapped_device *md)
3267 {
3268 	return md->disk;
3269 }
3270 EXPORT_SYMBOL_GPL(dm_disk);
3271 
3272 struct kobject *dm_kobject(struct mapped_device *md)
3273 {
3274 	return &md->kobj_holder.kobj;
3275 }
3276 
3277 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3278 {
3279 	struct mapped_device *md;
3280 
3281 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3282 
3283 	spin_lock(&_minor_lock);
3284 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3285 		md = NULL;
3286 		goto out;
3287 	}
3288 	dm_get(md);
3289 out:
3290 	spin_unlock(&_minor_lock);
3291 
3292 	return md;
3293 }
3294 
3295 int dm_suspended_md(struct mapped_device *md)
3296 {
3297 	return test_bit(DMF_SUSPENDED, &md->flags);
3298 }
3299 
3300 static int dm_post_suspending_md(struct mapped_device *md)
3301 {
3302 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3303 }
3304 
3305 int dm_suspended_internally_md(struct mapped_device *md)
3306 {
3307 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3308 }
3309 
3310 int dm_test_deferred_remove_flag(struct mapped_device *md)
3311 {
3312 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3313 }
3314 
3315 int dm_suspended(struct dm_target *ti)
3316 {
3317 	return dm_suspended_md(ti->table->md);
3318 }
3319 EXPORT_SYMBOL_GPL(dm_suspended);
3320 
3321 int dm_post_suspending(struct dm_target *ti)
3322 {
3323 	return dm_post_suspending_md(ti->table->md);
3324 }
3325 EXPORT_SYMBOL_GPL(dm_post_suspending);
3326 
3327 int dm_noflush_suspending(struct dm_target *ti)
3328 {
3329 	return __noflush_suspending(ti->table->md);
3330 }
3331 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3332 
3333 void dm_free_md_mempools(struct dm_md_mempools *pools)
3334 {
3335 	if (!pools)
3336 		return;
3337 
3338 	bioset_exit(&pools->bs);
3339 	bioset_exit(&pools->io_bs);
3340 
3341 	kfree(pools);
3342 }
3343 
3344 struct dm_pr {
3345 	u64	old_key;
3346 	u64	new_key;
3347 	u32	flags;
3348 	bool	abort;
3349 	bool	fail_early;
3350 	int	ret;
3351 	enum pr_type type;
3352 	struct pr_keys *read_keys;
3353 	struct pr_held_reservation *rsv;
3354 };
3355 
3356 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3357 		      struct dm_pr *pr)
3358 {
3359 	struct mapped_device *md = bdev->bd_disk->private_data;
3360 	struct dm_table *table;
3361 	struct dm_target *ti;
3362 	int ret = -ENOTTY, srcu_idx;
3363 
3364 	table = dm_get_live_table(md, &srcu_idx);
3365 	if (!table || !dm_table_get_size(table))
3366 		goto out;
3367 
3368 	/* We only support devices that have a single target */
3369 	if (table->num_targets != 1)
3370 		goto out;
3371 	ti = dm_table_get_target(table, 0);
3372 
3373 	if (dm_suspended_md(md)) {
3374 		ret = -EAGAIN;
3375 		goto out;
3376 	}
3377 
3378 	ret = -EINVAL;
3379 	if (!ti->type->iterate_devices)
3380 		goto out;
3381 
3382 	ti->type->iterate_devices(ti, fn, pr);
3383 	ret = 0;
3384 out:
3385 	dm_put_live_table(md, srcu_idx);
3386 	return ret;
3387 }
3388 
3389 /*
3390  * For register / unregister we need to manually call out to every path.
3391  */
3392 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3393 			    sector_t start, sector_t len, void *data)
3394 {
3395 	struct dm_pr *pr = data;
3396 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3397 	int ret;
3398 
3399 	if (!ops || !ops->pr_register) {
3400 		pr->ret = -EOPNOTSUPP;
3401 		return -1;
3402 	}
3403 
3404 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3405 	if (!ret)
3406 		return 0;
3407 
3408 	if (!pr->ret)
3409 		pr->ret = ret;
3410 
3411 	if (pr->fail_early)
3412 		return -1;
3413 
3414 	return 0;
3415 }
3416 
3417 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3418 			  u32 flags)
3419 {
3420 	struct dm_pr pr = {
3421 		.old_key	= old_key,
3422 		.new_key	= new_key,
3423 		.flags		= flags,
3424 		.fail_early	= true,
3425 		.ret		= 0,
3426 	};
3427 	int ret;
3428 
3429 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3430 	if (ret) {
3431 		/* Didn't even get to register a path */
3432 		return ret;
3433 	}
3434 
3435 	if (!pr.ret)
3436 		return 0;
3437 	ret = pr.ret;
3438 
3439 	if (!new_key)
3440 		return ret;
3441 
3442 	/* unregister all paths if we failed to register any path */
3443 	pr.old_key = new_key;
3444 	pr.new_key = 0;
3445 	pr.flags = 0;
3446 	pr.fail_early = false;
3447 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3448 	return ret;
3449 }
3450 
3451 
3452 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3453 			   sector_t start, sector_t len, void *data)
3454 {
3455 	struct dm_pr *pr = data;
3456 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3457 
3458 	if (!ops || !ops->pr_reserve) {
3459 		pr->ret = -EOPNOTSUPP;
3460 		return -1;
3461 	}
3462 
3463 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3464 	if (!pr->ret)
3465 		return -1;
3466 
3467 	return 0;
3468 }
3469 
3470 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3471 			 u32 flags)
3472 {
3473 	struct dm_pr pr = {
3474 		.old_key	= key,
3475 		.flags		= flags,
3476 		.type		= type,
3477 		.fail_early	= false,
3478 		.ret		= 0,
3479 	};
3480 	int ret;
3481 
3482 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3483 	if (ret)
3484 		return ret;
3485 
3486 	return pr.ret;
3487 }
3488 
3489 /*
3490  * If there is a non-All Registrants type of reservation, the release must be
3491  * sent down the holding path. For the cases where there is no reservation or
3492  * the path is not the holder the device will also return success, so we must
3493  * try each path to make sure we got the correct path.
3494  */
3495 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3496 			   sector_t start, sector_t len, void *data)
3497 {
3498 	struct dm_pr *pr = data;
3499 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3500 
3501 	if (!ops || !ops->pr_release) {
3502 		pr->ret = -EOPNOTSUPP;
3503 		return -1;
3504 	}
3505 
3506 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3507 	if (pr->ret)
3508 		return -1;
3509 
3510 	return 0;
3511 }
3512 
3513 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3514 {
3515 	struct dm_pr pr = {
3516 		.old_key	= key,
3517 		.type		= type,
3518 		.fail_early	= false,
3519 	};
3520 	int ret;
3521 
3522 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3523 	if (ret)
3524 		return ret;
3525 
3526 	return pr.ret;
3527 }
3528 
3529 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3530 			   sector_t start, sector_t len, void *data)
3531 {
3532 	struct dm_pr *pr = data;
3533 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3534 
3535 	if (!ops || !ops->pr_preempt) {
3536 		pr->ret = -EOPNOTSUPP;
3537 		return -1;
3538 	}
3539 
3540 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3541 				  pr->abort);
3542 	if (!pr->ret)
3543 		return -1;
3544 
3545 	return 0;
3546 }
3547 
3548 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3549 			 enum pr_type type, bool abort)
3550 {
3551 	struct dm_pr pr = {
3552 		.new_key	= new_key,
3553 		.old_key	= old_key,
3554 		.type		= type,
3555 		.fail_early	= false,
3556 	};
3557 	int ret;
3558 
3559 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3560 	if (ret)
3561 		return ret;
3562 
3563 	return pr.ret;
3564 }
3565 
3566 static int dm_pr_clear(struct block_device *bdev, u64 key)
3567 {
3568 	struct mapped_device *md = bdev->bd_disk->private_data;
3569 	const struct pr_ops *ops;
3570 	int r, srcu_idx;
3571 
3572 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3573 	if (r < 0)
3574 		goto out;
3575 
3576 	ops = bdev->bd_disk->fops->pr_ops;
3577 	if (ops && ops->pr_clear)
3578 		r = ops->pr_clear(bdev, key);
3579 	else
3580 		r = -EOPNOTSUPP;
3581 out:
3582 	dm_unprepare_ioctl(md, srcu_idx);
3583 	return r;
3584 }
3585 
3586 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3587 			     sector_t start, sector_t len, void *data)
3588 {
3589 	struct dm_pr *pr = data;
3590 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3591 
3592 	if (!ops || !ops->pr_read_keys) {
3593 		pr->ret = -EOPNOTSUPP;
3594 		return -1;
3595 	}
3596 
3597 	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3598 	if (!pr->ret)
3599 		return -1;
3600 
3601 	return 0;
3602 }
3603 
3604 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3605 {
3606 	struct dm_pr pr = {
3607 		.read_keys = keys,
3608 	};
3609 	int ret;
3610 
3611 	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3612 	if (ret)
3613 		return ret;
3614 
3615 	return pr.ret;
3616 }
3617 
3618 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3619 				    sector_t start, sector_t len, void *data)
3620 {
3621 	struct dm_pr *pr = data;
3622 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3623 
3624 	if (!ops || !ops->pr_read_reservation) {
3625 		pr->ret = -EOPNOTSUPP;
3626 		return -1;
3627 	}
3628 
3629 	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3630 	if (!pr->ret)
3631 		return -1;
3632 
3633 	return 0;
3634 }
3635 
3636 static int dm_pr_read_reservation(struct block_device *bdev,
3637 				  struct pr_held_reservation *rsv)
3638 {
3639 	struct dm_pr pr = {
3640 		.rsv = rsv,
3641 	};
3642 	int ret;
3643 
3644 	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3645 	if (ret)
3646 		return ret;
3647 
3648 	return pr.ret;
3649 }
3650 
3651 static const struct pr_ops dm_pr_ops = {
3652 	.pr_register	= dm_pr_register,
3653 	.pr_reserve	= dm_pr_reserve,
3654 	.pr_release	= dm_pr_release,
3655 	.pr_preempt	= dm_pr_preempt,
3656 	.pr_clear	= dm_pr_clear,
3657 	.pr_read_keys	= dm_pr_read_keys,
3658 	.pr_read_reservation = dm_pr_read_reservation,
3659 };
3660 
3661 static const struct block_device_operations dm_blk_dops = {
3662 	.submit_bio = dm_submit_bio,
3663 	.poll_bio = dm_poll_bio,
3664 	.open = dm_blk_open,
3665 	.release = dm_blk_close,
3666 	.ioctl = dm_blk_ioctl,
3667 	.getgeo = dm_blk_getgeo,
3668 	.report_zones = dm_blk_report_zones,
3669 	.pr_ops = &dm_pr_ops,
3670 	.owner = THIS_MODULE
3671 };
3672 
3673 static const struct block_device_operations dm_rq_blk_dops = {
3674 	.open = dm_blk_open,
3675 	.release = dm_blk_close,
3676 	.ioctl = dm_blk_ioctl,
3677 	.getgeo = dm_blk_getgeo,
3678 	.pr_ops = &dm_pr_ops,
3679 	.owner = THIS_MODULE
3680 };
3681 
3682 static const struct dax_operations dm_dax_ops = {
3683 	.direct_access = dm_dax_direct_access,
3684 	.zero_page_range = dm_dax_zero_page_range,
3685 	.recovery_write = dm_dax_recovery_write,
3686 };
3687 
3688 /*
3689  * module hooks
3690  */
3691 module_init(dm_init);
3692 module_exit(dm_exit);
3693 
3694 module_param(major, uint, 0);
3695 MODULE_PARM_DESC(major, "The major number of the device mapper");
3696 
3697 module_param(reserved_bio_based_ios, uint, 0644);
3698 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3699 
3700 module_param(dm_numa_node, int, 0644);
3701 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3702 
3703 module_param(swap_bios, int, 0644);
3704 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3705 
3706 MODULE_DESCRIPTION(DM_NAME " driver");
3707 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3708 MODULE_LICENSE("GPL");
3709