xref: /linux/drivers/md/dm.c (revision 4c62e9764ab403d42f9b8871b1241fe7812f19d4)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For request-based dm.
67  * One of these is allocated per request.
68  */
69 struct dm_rq_target_io {
70 	struct mapped_device *md;
71 	struct dm_target *ti;
72 	struct request *orig, clone;
73 	int error;
74 	union map_info info;
75 };
76 
77 /*
78  * For request-based dm - the bio clones we allocate are embedded in these
79  * structs.
80  *
81  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82  * the bioset is created - this means the bio has to come at the end of the
83  * struct.
84  */
85 struct dm_rq_clone_bio_info {
86 	struct bio *orig;
87 	struct dm_rq_target_io *tio;
88 	struct bio clone;
89 };
90 
91 union map_info *dm_get_mapinfo(struct bio *bio)
92 {
93 	if (bio && bio->bi_private)
94 		return &((struct dm_target_io *)bio->bi_private)->info;
95 	return NULL;
96 }
97 
98 union map_info *dm_get_rq_mapinfo(struct request *rq)
99 {
100 	if (rq && rq->end_io_data)
101 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
102 	return NULL;
103 }
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
105 
106 #define MINOR_ALLOCED ((void *)-1)
107 
108 /*
109  * Bits for the md->flags field.
110  */
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
113 #define DMF_FROZEN 2
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
118 
119 /*
120  * Work processed by per-device workqueue.
121  */
122 struct mapped_device {
123 	struct rw_semaphore io_lock;
124 	struct mutex suspend_lock;
125 	rwlock_t map_lock;
126 	atomic_t holders;
127 	atomic_t open_count;
128 
129 	unsigned long flags;
130 
131 	struct request_queue *queue;
132 	unsigned type;
133 	/* Protect queue and type against concurrent access. */
134 	struct mutex type_lock;
135 
136 	struct target_type *immutable_target_type;
137 
138 	struct gendisk *disk;
139 	char name[16];
140 
141 	void *interface_ptr;
142 
143 	/*
144 	 * A list of ios that arrived while we were suspended.
145 	 */
146 	atomic_t pending[2];
147 	wait_queue_head_t wait;
148 	struct work_struct work;
149 	struct bio_list deferred;
150 	spinlock_t deferred_lock;
151 
152 	/*
153 	 * Processing queue (flush)
154 	 */
155 	struct workqueue_struct *wq;
156 
157 	/*
158 	 * The current mapping.
159 	 */
160 	struct dm_table *map;
161 
162 	/*
163 	 * io objects are allocated from here.
164 	 */
165 	mempool_t *io_pool;
166 	mempool_t *tio_pool;
167 
168 	struct bio_set *bs;
169 
170 	/*
171 	 * Event handling.
172 	 */
173 	atomic_t event_nr;
174 	wait_queue_head_t eventq;
175 	atomic_t uevent_seq;
176 	struct list_head uevent_list;
177 	spinlock_t uevent_lock; /* Protect access to uevent_list */
178 
179 	/*
180 	 * freeze/thaw support require holding onto a super block
181 	 */
182 	struct super_block *frozen_sb;
183 	struct block_device *bdev;
184 
185 	/* forced geometry settings */
186 	struct hd_geometry geometry;
187 
188 	/* sysfs handle */
189 	struct kobject kobj;
190 
191 	/* zero-length flush that will be cloned and submitted to targets */
192 	struct bio flush_bio;
193 };
194 
195 /*
196  * For mempools pre-allocation at the table loading time.
197  */
198 struct dm_md_mempools {
199 	mempool_t *io_pool;
200 	mempool_t *tio_pool;
201 	struct bio_set *bs;
202 };
203 
204 #define MIN_IOS 256
205 static struct kmem_cache *_io_cache;
206 static struct kmem_cache *_rq_tio_cache;
207 
208 /*
209  * Unused now, and needs to be deleted. But since io_pool is overloaded and it's
210  * still used for _io_cache, I'm leaving this for a later cleanup
211  */
212 static struct kmem_cache *_rq_bio_info_cache;
213 
214 static int __init local_init(void)
215 {
216 	int r = -ENOMEM;
217 
218 	/* allocate a slab for the dm_ios */
219 	_io_cache = KMEM_CACHE(dm_io, 0);
220 	if (!_io_cache)
221 		return r;
222 
223 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
224 	if (!_rq_tio_cache)
225 		goto out_free_io_cache;
226 
227 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
228 	if (!_rq_bio_info_cache)
229 		goto out_free_rq_tio_cache;
230 
231 	r = dm_uevent_init();
232 	if (r)
233 		goto out_free_rq_bio_info_cache;
234 
235 	_major = major;
236 	r = register_blkdev(_major, _name);
237 	if (r < 0)
238 		goto out_uevent_exit;
239 
240 	if (!_major)
241 		_major = r;
242 
243 	return 0;
244 
245 out_uevent_exit:
246 	dm_uevent_exit();
247 out_free_rq_bio_info_cache:
248 	kmem_cache_destroy(_rq_bio_info_cache);
249 out_free_rq_tio_cache:
250 	kmem_cache_destroy(_rq_tio_cache);
251 out_free_io_cache:
252 	kmem_cache_destroy(_io_cache);
253 
254 	return r;
255 }
256 
257 static void local_exit(void)
258 {
259 	kmem_cache_destroy(_rq_bio_info_cache);
260 	kmem_cache_destroy(_rq_tio_cache);
261 	kmem_cache_destroy(_io_cache);
262 	unregister_blkdev(_major, _name);
263 	dm_uevent_exit();
264 
265 	_major = 0;
266 
267 	DMINFO("cleaned up");
268 }
269 
270 static int (*_inits[])(void) __initdata = {
271 	local_init,
272 	dm_target_init,
273 	dm_linear_init,
274 	dm_stripe_init,
275 	dm_io_init,
276 	dm_kcopyd_init,
277 	dm_interface_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 };
289 
290 static int __init dm_init(void)
291 {
292 	const int count = ARRAY_SIZE(_inits);
293 
294 	int r, i;
295 
296 	for (i = 0; i < count; i++) {
297 		r = _inits[i]();
298 		if (r)
299 			goto bad;
300 	}
301 
302 	return 0;
303 
304       bad:
305 	while (i--)
306 		_exits[i]();
307 
308 	return r;
309 }
310 
311 static void __exit dm_exit(void)
312 {
313 	int i = ARRAY_SIZE(_exits);
314 
315 	while (i--)
316 		_exits[i]();
317 
318 	/*
319 	 * Should be empty by this point.
320 	 */
321 	idr_remove_all(&_minor_idr);
322 	idr_destroy(&_minor_idr);
323 }
324 
325 /*
326  * Block device functions
327  */
328 int dm_deleting_md(struct mapped_device *md)
329 {
330 	return test_bit(DMF_DELETING, &md->flags);
331 }
332 
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
334 {
335 	struct mapped_device *md;
336 
337 	spin_lock(&_minor_lock);
338 
339 	md = bdev->bd_disk->private_data;
340 	if (!md)
341 		goto out;
342 
343 	if (test_bit(DMF_FREEING, &md->flags) ||
344 	    dm_deleting_md(md)) {
345 		md = NULL;
346 		goto out;
347 	}
348 
349 	dm_get(md);
350 	atomic_inc(&md->open_count);
351 
352 out:
353 	spin_unlock(&_minor_lock);
354 
355 	return md ? 0 : -ENXIO;
356 }
357 
358 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
359 {
360 	struct mapped_device *md = disk->private_data;
361 
362 	spin_lock(&_minor_lock);
363 
364 	atomic_dec(&md->open_count);
365 	dm_put(md);
366 
367 	spin_unlock(&_minor_lock);
368 
369 	return 0;
370 }
371 
372 int dm_open_count(struct mapped_device *md)
373 {
374 	return atomic_read(&md->open_count);
375 }
376 
377 /*
378  * Guarantees nothing is using the device before it's deleted.
379  */
380 int dm_lock_for_deletion(struct mapped_device *md)
381 {
382 	int r = 0;
383 
384 	spin_lock(&_minor_lock);
385 
386 	if (dm_open_count(md))
387 		r = -EBUSY;
388 	else
389 		set_bit(DMF_DELETING, &md->flags);
390 
391 	spin_unlock(&_minor_lock);
392 
393 	return r;
394 }
395 
396 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
397 {
398 	struct mapped_device *md = bdev->bd_disk->private_data;
399 
400 	return dm_get_geometry(md, geo);
401 }
402 
403 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
404 			unsigned int cmd, unsigned long arg)
405 {
406 	struct mapped_device *md = bdev->bd_disk->private_data;
407 	struct dm_table *map = dm_get_live_table(md);
408 	struct dm_target *tgt;
409 	int r = -ENOTTY;
410 
411 	if (!map || !dm_table_get_size(map))
412 		goto out;
413 
414 	/* We only support devices that have a single target */
415 	if (dm_table_get_num_targets(map) != 1)
416 		goto out;
417 
418 	tgt = dm_table_get_target(map, 0);
419 
420 	if (dm_suspended_md(md)) {
421 		r = -EAGAIN;
422 		goto out;
423 	}
424 
425 	if (tgt->type->ioctl)
426 		r = tgt->type->ioctl(tgt, cmd, arg);
427 
428 out:
429 	dm_table_put(map);
430 
431 	return r;
432 }
433 
434 static struct dm_io *alloc_io(struct mapped_device *md)
435 {
436 	return mempool_alloc(md->io_pool, GFP_NOIO);
437 }
438 
439 static void free_io(struct mapped_device *md, struct dm_io *io)
440 {
441 	mempool_free(io, md->io_pool);
442 }
443 
444 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
445 {
446 	bio_put(&tio->clone);
447 }
448 
449 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
450 					    gfp_t gfp_mask)
451 {
452 	return mempool_alloc(md->tio_pool, gfp_mask);
453 }
454 
455 static void free_rq_tio(struct dm_rq_target_io *tio)
456 {
457 	mempool_free(tio, tio->md->tio_pool);
458 }
459 
460 static int md_in_flight(struct mapped_device *md)
461 {
462 	return atomic_read(&md->pending[READ]) +
463 	       atomic_read(&md->pending[WRITE]);
464 }
465 
466 static void start_io_acct(struct dm_io *io)
467 {
468 	struct mapped_device *md = io->md;
469 	int cpu;
470 	int rw = bio_data_dir(io->bio);
471 
472 	io->start_time = jiffies;
473 
474 	cpu = part_stat_lock();
475 	part_round_stats(cpu, &dm_disk(md)->part0);
476 	part_stat_unlock();
477 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
478 		atomic_inc_return(&md->pending[rw]));
479 }
480 
481 static void end_io_acct(struct dm_io *io)
482 {
483 	struct mapped_device *md = io->md;
484 	struct bio *bio = io->bio;
485 	unsigned long duration = jiffies - io->start_time;
486 	int pending, cpu;
487 	int rw = bio_data_dir(bio);
488 
489 	cpu = part_stat_lock();
490 	part_round_stats(cpu, &dm_disk(md)->part0);
491 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
492 	part_stat_unlock();
493 
494 	/*
495 	 * After this is decremented the bio must not be touched if it is
496 	 * a flush.
497 	 */
498 	pending = atomic_dec_return(&md->pending[rw]);
499 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
500 	pending += atomic_read(&md->pending[rw^0x1]);
501 
502 	/* nudge anyone waiting on suspend queue */
503 	if (!pending)
504 		wake_up(&md->wait);
505 }
506 
507 /*
508  * Add the bio to the list of deferred io.
509  */
510 static void queue_io(struct mapped_device *md, struct bio *bio)
511 {
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&md->deferred_lock, flags);
515 	bio_list_add(&md->deferred, bio);
516 	spin_unlock_irqrestore(&md->deferred_lock, flags);
517 	queue_work(md->wq, &md->work);
518 }
519 
520 /*
521  * Everyone (including functions in this file), should use this
522  * function to access the md->map field, and make sure they call
523  * dm_table_put() when finished.
524  */
525 struct dm_table *dm_get_live_table(struct mapped_device *md)
526 {
527 	struct dm_table *t;
528 	unsigned long flags;
529 
530 	read_lock_irqsave(&md->map_lock, flags);
531 	t = md->map;
532 	if (t)
533 		dm_table_get(t);
534 	read_unlock_irqrestore(&md->map_lock, flags);
535 
536 	return t;
537 }
538 
539 /*
540  * Get the geometry associated with a dm device
541  */
542 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
543 {
544 	*geo = md->geometry;
545 
546 	return 0;
547 }
548 
549 /*
550  * Set the geometry of a device.
551  */
552 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
553 {
554 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
555 
556 	if (geo->start > sz) {
557 		DMWARN("Start sector is beyond the geometry limits.");
558 		return -EINVAL;
559 	}
560 
561 	md->geometry = *geo;
562 
563 	return 0;
564 }
565 
566 /*-----------------------------------------------------------------
567  * CRUD START:
568  *   A more elegant soln is in the works that uses the queue
569  *   merge fn, unfortunately there are a couple of changes to
570  *   the block layer that I want to make for this.  So in the
571  *   interests of getting something for people to use I give
572  *   you this clearly demarcated crap.
573  *---------------------------------------------------------------*/
574 
575 static int __noflush_suspending(struct mapped_device *md)
576 {
577 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
578 }
579 
580 /*
581  * Decrements the number of outstanding ios that a bio has been
582  * cloned into, completing the original io if necc.
583  */
584 static void dec_pending(struct dm_io *io, int error)
585 {
586 	unsigned long flags;
587 	int io_error;
588 	struct bio *bio;
589 	struct mapped_device *md = io->md;
590 
591 	/* Push-back supersedes any I/O errors */
592 	if (unlikely(error)) {
593 		spin_lock_irqsave(&io->endio_lock, flags);
594 		if (!(io->error > 0 && __noflush_suspending(md)))
595 			io->error = error;
596 		spin_unlock_irqrestore(&io->endio_lock, flags);
597 	}
598 
599 	if (atomic_dec_and_test(&io->io_count)) {
600 		if (io->error == DM_ENDIO_REQUEUE) {
601 			/*
602 			 * Target requested pushing back the I/O.
603 			 */
604 			spin_lock_irqsave(&md->deferred_lock, flags);
605 			if (__noflush_suspending(md))
606 				bio_list_add_head(&md->deferred, io->bio);
607 			else
608 				/* noflush suspend was interrupted. */
609 				io->error = -EIO;
610 			spin_unlock_irqrestore(&md->deferred_lock, flags);
611 		}
612 
613 		io_error = io->error;
614 		bio = io->bio;
615 		end_io_acct(io);
616 		free_io(md, io);
617 
618 		if (io_error == DM_ENDIO_REQUEUE)
619 			return;
620 
621 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
622 			/*
623 			 * Preflush done for flush with data, reissue
624 			 * without REQ_FLUSH.
625 			 */
626 			bio->bi_rw &= ~REQ_FLUSH;
627 			queue_io(md, bio);
628 		} else {
629 			/* done with normal IO or empty flush */
630 			trace_block_bio_complete(md->queue, bio, io_error);
631 			bio_endio(bio, io_error);
632 		}
633 	}
634 }
635 
636 static void clone_endio(struct bio *bio, int error)
637 {
638 	int r = 0;
639 	struct dm_target_io *tio = bio->bi_private;
640 	struct dm_io *io = tio->io;
641 	struct mapped_device *md = tio->io->md;
642 	dm_endio_fn endio = tio->ti->type->end_io;
643 
644 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
645 		error = -EIO;
646 
647 	if (endio) {
648 		r = endio(tio->ti, bio, error);
649 		if (r < 0 || r == DM_ENDIO_REQUEUE)
650 			/*
651 			 * error and requeue request are handled
652 			 * in dec_pending().
653 			 */
654 			error = r;
655 		else if (r == DM_ENDIO_INCOMPLETE)
656 			/* The target will handle the io */
657 			return;
658 		else if (r) {
659 			DMWARN("unimplemented target endio return value: %d", r);
660 			BUG();
661 		}
662 	}
663 
664 	free_tio(md, tio);
665 	dec_pending(io, error);
666 }
667 
668 /*
669  * Partial completion handling for request-based dm
670  */
671 static void end_clone_bio(struct bio *clone, int error)
672 {
673 	struct dm_rq_clone_bio_info *info = clone->bi_private;
674 	struct dm_rq_target_io *tio = info->tio;
675 	struct bio *bio = info->orig;
676 	unsigned int nr_bytes = info->orig->bi_size;
677 
678 	bio_put(clone);
679 
680 	if (tio->error)
681 		/*
682 		 * An error has already been detected on the request.
683 		 * Once error occurred, just let clone->end_io() handle
684 		 * the remainder.
685 		 */
686 		return;
687 	else if (error) {
688 		/*
689 		 * Don't notice the error to the upper layer yet.
690 		 * The error handling decision is made by the target driver,
691 		 * when the request is completed.
692 		 */
693 		tio->error = error;
694 		return;
695 	}
696 
697 	/*
698 	 * I/O for the bio successfully completed.
699 	 * Notice the data completion to the upper layer.
700 	 */
701 
702 	/*
703 	 * bios are processed from the head of the list.
704 	 * So the completing bio should always be rq->bio.
705 	 * If it's not, something wrong is happening.
706 	 */
707 	if (tio->orig->bio != bio)
708 		DMERR("bio completion is going in the middle of the request");
709 
710 	/*
711 	 * Update the original request.
712 	 * Do not use blk_end_request() here, because it may complete
713 	 * the original request before the clone, and break the ordering.
714 	 */
715 	blk_update_request(tio->orig, 0, nr_bytes);
716 }
717 
718 /*
719  * Don't touch any member of the md after calling this function because
720  * the md may be freed in dm_put() at the end of this function.
721  * Or do dm_get() before calling this function and dm_put() later.
722  */
723 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
724 {
725 	atomic_dec(&md->pending[rw]);
726 
727 	/* nudge anyone waiting on suspend queue */
728 	if (!md_in_flight(md))
729 		wake_up(&md->wait);
730 
731 	/*
732 	 * Run this off this callpath, as drivers could invoke end_io while
733 	 * inside their request_fn (and holding the queue lock). Calling
734 	 * back into ->request_fn() could deadlock attempting to grab the
735 	 * queue lock again.
736 	 */
737 	if (run_queue)
738 		blk_run_queue_async(md->queue);
739 
740 	/*
741 	 * dm_put() must be at the end of this function. See the comment above
742 	 */
743 	dm_put(md);
744 }
745 
746 static void free_rq_clone(struct request *clone)
747 {
748 	struct dm_rq_target_io *tio = clone->end_io_data;
749 
750 	blk_rq_unprep_clone(clone);
751 	free_rq_tio(tio);
752 }
753 
754 /*
755  * Complete the clone and the original request.
756  * Must be called without queue lock.
757  */
758 static void dm_end_request(struct request *clone, int error)
759 {
760 	int rw = rq_data_dir(clone);
761 	struct dm_rq_target_io *tio = clone->end_io_data;
762 	struct mapped_device *md = tio->md;
763 	struct request *rq = tio->orig;
764 
765 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
766 		rq->errors = clone->errors;
767 		rq->resid_len = clone->resid_len;
768 
769 		if (rq->sense)
770 			/*
771 			 * We are using the sense buffer of the original
772 			 * request.
773 			 * So setting the length of the sense data is enough.
774 			 */
775 			rq->sense_len = clone->sense_len;
776 	}
777 
778 	free_rq_clone(clone);
779 	blk_end_request_all(rq, error);
780 	rq_completed(md, rw, true);
781 }
782 
783 static void dm_unprep_request(struct request *rq)
784 {
785 	struct request *clone = rq->special;
786 
787 	rq->special = NULL;
788 	rq->cmd_flags &= ~REQ_DONTPREP;
789 
790 	free_rq_clone(clone);
791 }
792 
793 /*
794  * Requeue the original request of a clone.
795  */
796 void dm_requeue_unmapped_request(struct request *clone)
797 {
798 	int rw = rq_data_dir(clone);
799 	struct dm_rq_target_io *tio = clone->end_io_data;
800 	struct mapped_device *md = tio->md;
801 	struct request *rq = tio->orig;
802 	struct request_queue *q = rq->q;
803 	unsigned long flags;
804 
805 	dm_unprep_request(rq);
806 
807 	spin_lock_irqsave(q->queue_lock, flags);
808 	blk_requeue_request(q, rq);
809 	spin_unlock_irqrestore(q->queue_lock, flags);
810 
811 	rq_completed(md, rw, 0);
812 }
813 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
814 
815 static void __stop_queue(struct request_queue *q)
816 {
817 	blk_stop_queue(q);
818 }
819 
820 static void stop_queue(struct request_queue *q)
821 {
822 	unsigned long flags;
823 
824 	spin_lock_irqsave(q->queue_lock, flags);
825 	__stop_queue(q);
826 	spin_unlock_irqrestore(q->queue_lock, flags);
827 }
828 
829 static void __start_queue(struct request_queue *q)
830 {
831 	if (blk_queue_stopped(q))
832 		blk_start_queue(q);
833 }
834 
835 static void start_queue(struct request_queue *q)
836 {
837 	unsigned long flags;
838 
839 	spin_lock_irqsave(q->queue_lock, flags);
840 	__start_queue(q);
841 	spin_unlock_irqrestore(q->queue_lock, flags);
842 }
843 
844 static void dm_done(struct request *clone, int error, bool mapped)
845 {
846 	int r = error;
847 	struct dm_rq_target_io *tio = clone->end_io_data;
848 	dm_request_endio_fn rq_end_io = NULL;
849 
850 	if (tio->ti) {
851 		rq_end_io = tio->ti->type->rq_end_io;
852 
853 		if (mapped && rq_end_io)
854 			r = rq_end_io(tio->ti, clone, error, &tio->info);
855 	}
856 
857 	if (r <= 0)
858 		/* The target wants to complete the I/O */
859 		dm_end_request(clone, r);
860 	else if (r == DM_ENDIO_INCOMPLETE)
861 		/* The target will handle the I/O */
862 		return;
863 	else if (r == DM_ENDIO_REQUEUE)
864 		/* The target wants to requeue the I/O */
865 		dm_requeue_unmapped_request(clone);
866 	else {
867 		DMWARN("unimplemented target endio return value: %d", r);
868 		BUG();
869 	}
870 }
871 
872 /*
873  * Request completion handler for request-based dm
874  */
875 static void dm_softirq_done(struct request *rq)
876 {
877 	bool mapped = true;
878 	struct request *clone = rq->completion_data;
879 	struct dm_rq_target_io *tio = clone->end_io_data;
880 
881 	if (rq->cmd_flags & REQ_FAILED)
882 		mapped = false;
883 
884 	dm_done(clone, tio->error, mapped);
885 }
886 
887 /*
888  * Complete the clone and the original request with the error status
889  * through softirq context.
890  */
891 static void dm_complete_request(struct request *clone, int error)
892 {
893 	struct dm_rq_target_io *tio = clone->end_io_data;
894 	struct request *rq = tio->orig;
895 
896 	tio->error = error;
897 	rq->completion_data = clone;
898 	blk_complete_request(rq);
899 }
900 
901 /*
902  * Complete the not-mapped clone and the original request with the error status
903  * through softirq context.
904  * Target's rq_end_io() function isn't called.
905  * This may be used when the target's map_rq() function fails.
906  */
907 void dm_kill_unmapped_request(struct request *clone, int error)
908 {
909 	struct dm_rq_target_io *tio = clone->end_io_data;
910 	struct request *rq = tio->orig;
911 
912 	rq->cmd_flags |= REQ_FAILED;
913 	dm_complete_request(clone, error);
914 }
915 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
916 
917 /*
918  * Called with the queue lock held
919  */
920 static void end_clone_request(struct request *clone, int error)
921 {
922 	/*
923 	 * For just cleaning up the information of the queue in which
924 	 * the clone was dispatched.
925 	 * The clone is *NOT* freed actually here because it is alloced from
926 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
927 	 */
928 	__blk_put_request(clone->q, clone);
929 
930 	/*
931 	 * Actual request completion is done in a softirq context which doesn't
932 	 * hold the queue lock.  Otherwise, deadlock could occur because:
933 	 *     - another request may be submitted by the upper level driver
934 	 *       of the stacking during the completion
935 	 *     - the submission which requires queue lock may be done
936 	 *       against this queue
937 	 */
938 	dm_complete_request(clone, error);
939 }
940 
941 /*
942  * Return maximum size of I/O possible at the supplied sector up to the current
943  * target boundary.
944  */
945 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
946 {
947 	sector_t target_offset = dm_target_offset(ti, sector);
948 
949 	return ti->len - target_offset;
950 }
951 
952 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
953 {
954 	sector_t len = max_io_len_target_boundary(sector, ti);
955 	sector_t offset, max_len;
956 
957 	/*
958 	 * Does the target need to split even further?
959 	 */
960 	if (ti->max_io_len) {
961 		offset = dm_target_offset(ti, sector);
962 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
963 			max_len = sector_div(offset, ti->max_io_len);
964 		else
965 			max_len = offset & (ti->max_io_len - 1);
966 		max_len = ti->max_io_len - max_len;
967 
968 		if (len > max_len)
969 			len = max_len;
970 	}
971 
972 	return len;
973 }
974 
975 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
976 {
977 	if (len > UINT_MAX) {
978 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
979 		      (unsigned long long)len, UINT_MAX);
980 		ti->error = "Maximum size of target IO is too large";
981 		return -EINVAL;
982 	}
983 
984 	ti->max_io_len = (uint32_t) len;
985 
986 	return 0;
987 }
988 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
989 
990 static void __map_bio(struct dm_target *ti, struct dm_target_io *tio)
991 {
992 	int r;
993 	sector_t sector;
994 	struct mapped_device *md;
995 	struct bio *clone = &tio->clone;
996 
997 	clone->bi_end_io = clone_endio;
998 	clone->bi_private = tio;
999 
1000 	/*
1001 	 * Map the clone.  If r == 0 we don't need to do
1002 	 * anything, the target has assumed ownership of
1003 	 * this io.
1004 	 */
1005 	atomic_inc(&tio->io->io_count);
1006 	sector = clone->bi_sector;
1007 	r = ti->type->map(ti, clone);
1008 	if (r == DM_MAPIO_REMAPPED) {
1009 		/* the bio has been remapped so dispatch it */
1010 
1011 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1012 				      tio->io->bio->bi_bdev->bd_dev, sector);
1013 
1014 		generic_make_request(clone);
1015 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1016 		/* error the io and bail out, or requeue it if needed */
1017 		md = tio->io->md;
1018 		dec_pending(tio->io, r);
1019 		free_tio(md, tio);
1020 	} else if (r) {
1021 		DMWARN("unimplemented target map return value: %d", r);
1022 		BUG();
1023 	}
1024 }
1025 
1026 struct clone_info {
1027 	struct mapped_device *md;
1028 	struct dm_table *map;
1029 	struct bio *bio;
1030 	struct dm_io *io;
1031 	sector_t sector;
1032 	sector_t sector_count;
1033 	unsigned short idx;
1034 };
1035 
1036 /*
1037  * Creates a little bio that just does part of a bvec.
1038  */
1039 static void split_bvec(struct dm_target_io *tio, struct bio *bio,
1040 		       sector_t sector, unsigned short idx, unsigned int offset,
1041 		       unsigned int len, struct bio_set *bs)
1042 {
1043 	struct bio *clone = &tio->clone;
1044 	struct bio_vec *bv = bio->bi_io_vec + idx;
1045 
1046 	*clone->bi_io_vec = *bv;
1047 
1048 	clone->bi_sector = sector;
1049 	clone->bi_bdev = bio->bi_bdev;
1050 	clone->bi_rw = bio->bi_rw;
1051 	clone->bi_vcnt = 1;
1052 	clone->bi_size = to_bytes(len);
1053 	clone->bi_io_vec->bv_offset = offset;
1054 	clone->bi_io_vec->bv_len = clone->bi_size;
1055 	clone->bi_flags |= 1 << BIO_CLONED;
1056 
1057 	if (bio_integrity(bio)) {
1058 		bio_integrity_clone(clone, bio, GFP_NOIO);
1059 		bio_integrity_trim(clone,
1060 				   bio_sector_offset(bio, idx, offset), len);
1061 	}
1062 }
1063 
1064 /*
1065  * Creates a bio that consists of range of complete bvecs.
1066  */
1067 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1068 		      sector_t sector, unsigned short idx,
1069 		      unsigned short bv_count, unsigned int len,
1070 		      struct bio_set *bs)
1071 {
1072 	struct bio *clone = &tio->clone;
1073 
1074 	__bio_clone(clone, bio);
1075 	clone->bi_sector = sector;
1076 	clone->bi_idx = idx;
1077 	clone->bi_vcnt = idx + bv_count;
1078 	clone->bi_size = to_bytes(len);
1079 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1080 
1081 	if (bio_integrity(bio)) {
1082 		bio_integrity_clone(clone, bio, GFP_NOIO);
1083 
1084 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1085 			bio_integrity_trim(clone,
1086 					   bio_sector_offset(bio, idx, 0), len);
1087 	}
1088 }
1089 
1090 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1091 				      struct dm_target *ti, int nr_iovecs)
1092 {
1093 	struct dm_target_io *tio;
1094 	struct bio *clone;
1095 
1096 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1097 	tio = container_of(clone, struct dm_target_io, clone);
1098 
1099 	tio->io = ci->io;
1100 	tio->ti = ti;
1101 	memset(&tio->info, 0, sizeof(tio->info));
1102 	tio->target_request_nr = 0;
1103 
1104 	return tio;
1105 }
1106 
1107 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1108 				   unsigned request_nr, sector_t len)
1109 {
1110 	struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs);
1111 	struct bio *clone = &tio->clone;
1112 
1113 	tio->target_request_nr = request_nr;
1114 
1115 	/*
1116 	 * Discard requests require the bio's inline iovecs be initialized.
1117 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1118 	 * and discard, so no need for concern about wasted bvec allocations.
1119 	 */
1120 
1121 	 __bio_clone(clone, ci->bio);
1122 	if (len) {
1123 		clone->bi_sector = ci->sector;
1124 		clone->bi_size = to_bytes(len);
1125 	}
1126 
1127 	__map_bio(ti, tio);
1128 }
1129 
1130 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1131 				    unsigned num_requests, sector_t len)
1132 {
1133 	unsigned request_nr;
1134 
1135 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1136 		__issue_target_request(ci, ti, request_nr, len);
1137 }
1138 
1139 static int __clone_and_map_empty_flush(struct clone_info *ci)
1140 {
1141 	unsigned target_nr = 0;
1142 	struct dm_target *ti;
1143 
1144 	BUG_ON(bio_has_data(ci->bio));
1145 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1146 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1147 
1148 	return 0;
1149 }
1150 
1151 /*
1152  * Perform all io with a single clone.
1153  */
1154 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1155 {
1156 	struct bio *bio = ci->bio;
1157 	struct dm_target_io *tio;
1158 
1159 	tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1160 	clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx,
1161 		  ci->sector_count, ci->md->bs);
1162 	__map_bio(ti, tio);
1163 	ci->sector_count = 0;
1164 }
1165 
1166 typedef unsigned (*get_num_requests_fn)(struct dm_target *ti);
1167 
1168 static unsigned get_num_discard_requests(struct dm_target *ti)
1169 {
1170 	return ti->num_discard_requests;
1171 }
1172 
1173 static unsigned get_num_write_same_requests(struct dm_target *ti)
1174 {
1175 	return ti->num_write_same_requests;
1176 }
1177 
1178 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1179 
1180 static bool is_split_required_for_discard(struct dm_target *ti)
1181 {
1182 	return ti->split_discard_requests;
1183 }
1184 
1185 static int __clone_and_map_changing_extent_only(struct clone_info *ci,
1186 						get_num_requests_fn get_num_requests,
1187 						is_split_required_fn is_split_required)
1188 {
1189 	struct dm_target *ti;
1190 	sector_t len;
1191 
1192 	do {
1193 		ti = dm_table_find_target(ci->map, ci->sector);
1194 		if (!dm_target_is_valid(ti))
1195 			return -EIO;
1196 
1197 		/*
1198 		 * Even though the device advertised support for this type of
1199 		 * request, that does not mean every target supports it, and
1200 		 * reconfiguration might also have changed that since the
1201 		 * check was performed.
1202 		 */
1203 		if (!get_num_requests || !get_num_requests(ti))
1204 			return -EOPNOTSUPP;
1205 
1206 		if (is_split_required && !is_split_required(ti))
1207 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1208 		else
1209 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1210 
1211 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1212 
1213 		ci->sector += len;
1214 	} while (ci->sector_count -= len);
1215 
1216 	return 0;
1217 }
1218 
1219 static int __clone_and_map_discard(struct clone_info *ci)
1220 {
1221 	return __clone_and_map_changing_extent_only(ci, get_num_discard_requests,
1222 						    is_split_required_for_discard);
1223 }
1224 
1225 static int __clone_and_map_write_same(struct clone_info *ci)
1226 {
1227 	return __clone_and_map_changing_extent_only(ci, get_num_write_same_requests, NULL);
1228 }
1229 
1230 static int __clone_and_map(struct clone_info *ci)
1231 {
1232 	struct bio *bio = ci->bio;
1233 	struct dm_target *ti;
1234 	sector_t len = 0, max;
1235 	struct dm_target_io *tio;
1236 
1237 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1238 		return __clone_and_map_discard(ci);
1239 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1240 		return __clone_and_map_write_same(ci);
1241 
1242 	ti = dm_table_find_target(ci->map, ci->sector);
1243 	if (!dm_target_is_valid(ti))
1244 		return -EIO;
1245 
1246 	max = max_io_len(ci->sector, ti);
1247 
1248 	if (ci->sector_count <= max) {
1249 		/*
1250 		 * Optimise for the simple case where we can do all of
1251 		 * the remaining io with a single clone.
1252 		 */
1253 		__clone_and_map_simple(ci, ti);
1254 
1255 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1256 		/*
1257 		 * There are some bvecs that don't span targets.
1258 		 * Do as many of these as possible.
1259 		 */
1260 		int i;
1261 		sector_t remaining = max;
1262 		sector_t bv_len;
1263 
1264 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1265 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1266 
1267 			if (bv_len > remaining)
1268 				break;
1269 
1270 			remaining -= bv_len;
1271 			len += bv_len;
1272 		}
1273 
1274 		tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1275 		clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len,
1276 			  ci->md->bs);
1277 		__map_bio(ti, tio);
1278 
1279 		ci->sector += len;
1280 		ci->sector_count -= len;
1281 		ci->idx = i;
1282 
1283 	} else {
1284 		/*
1285 		 * Handle a bvec that must be split between two or more targets.
1286 		 */
1287 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1288 		sector_t remaining = to_sector(bv->bv_len);
1289 		unsigned int offset = 0;
1290 
1291 		do {
1292 			if (offset) {
1293 				ti = dm_table_find_target(ci->map, ci->sector);
1294 				if (!dm_target_is_valid(ti))
1295 					return -EIO;
1296 
1297 				max = max_io_len(ci->sector, ti);
1298 			}
1299 
1300 			len = min(remaining, max);
1301 
1302 			tio = alloc_tio(ci, ti, 1);
1303 			split_bvec(tio, bio, ci->sector, ci->idx,
1304 				   bv->bv_offset + offset, len, ci->md->bs);
1305 
1306 			__map_bio(ti, tio);
1307 
1308 			ci->sector += len;
1309 			ci->sector_count -= len;
1310 			offset += to_bytes(len);
1311 		} while (remaining -= len);
1312 
1313 		ci->idx++;
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 /*
1320  * Split the bio into several clones and submit it to targets.
1321  */
1322 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1323 {
1324 	struct clone_info ci;
1325 	int error = 0;
1326 
1327 	ci.map = dm_get_live_table(md);
1328 	if (unlikely(!ci.map)) {
1329 		bio_io_error(bio);
1330 		return;
1331 	}
1332 
1333 	ci.md = md;
1334 	ci.io = alloc_io(md);
1335 	ci.io->error = 0;
1336 	atomic_set(&ci.io->io_count, 1);
1337 	ci.io->bio = bio;
1338 	ci.io->md = md;
1339 	spin_lock_init(&ci.io->endio_lock);
1340 	ci.sector = bio->bi_sector;
1341 	ci.idx = bio->bi_idx;
1342 
1343 	start_io_acct(ci.io);
1344 	if (bio->bi_rw & REQ_FLUSH) {
1345 		ci.bio = &ci.md->flush_bio;
1346 		ci.sector_count = 0;
1347 		error = __clone_and_map_empty_flush(&ci);
1348 		/* dec_pending submits any data associated with flush */
1349 	} else {
1350 		ci.bio = bio;
1351 		ci.sector_count = bio_sectors(bio);
1352 		while (ci.sector_count && !error)
1353 			error = __clone_and_map(&ci);
1354 	}
1355 
1356 	/* drop the extra reference count */
1357 	dec_pending(ci.io, error);
1358 	dm_table_put(ci.map);
1359 }
1360 /*-----------------------------------------------------------------
1361  * CRUD END
1362  *---------------------------------------------------------------*/
1363 
1364 static int dm_merge_bvec(struct request_queue *q,
1365 			 struct bvec_merge_data *bvm,
1366 			 struct bio_vec *biovec)
1367 {
1368 	struct mapped_device *md = q->queuedata;
1369 	struct dm_table *map = dm_get_live_table(md);
1370 	struct dm_target *ti;
1371 	sector_t max_sectors;
1372 	int max_size = 0;
1373 
1374 	if (unlikely(!map))
1375 		goto out;
1376 
1377 	ti = dm_table_find_target(map, bvm->bi_sector);
1378 	if (!dm_target_is_valid(ti))
1379 		goto out_table;
1380 
1381 	/*
1382 	 * Find maximum amount of I/O that won't need splitting
1383 	 */
1384 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1385 			  (sector_t) BIO_MAX_SECTORS);
1386 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1387 	if (max_size < 0)
1388 		max_size = 0;
1389 
1390 	/*
1391 	 * merge_bvec_fn() returns number of bytes
1392 	 * it can accept at this offset
1393 	 * max is precomputed maximal io size
1394 	 */
1395 	if (max_size && ti->type->merge)
1396 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1397 	/*
1398 	 * If the target doesn't support merge method and some of the devices
1399 	 * provided their merge_bvec method (we know this by looking at
1400 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1401 	 * entries.  So always set max_size to 0, and the code below allows
1402 	 * just one page.
1403 	 */
1404 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1405 
1406 		max_size = 0;
1407 
1408 out_table:
1409 	dm_table_put(map);
1410 
1411 out:
1412 	/*
1413 	 * Always allow an entire first page
1414 	 */
1415 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1416 		max_size = biovec->bv_len;
1417 
1418 	return max_size;
1419 }
1420 
1421 /*
1422  * The request function that just remaps the bio built up by
1423  * dm_merge_bvec.
1424  */
1425 static void _dm_request(struct request_queue *q, struct bio *bio)
1426 {
1427 	int rw = bio_data_dir(bio);
1428 	struct mapped_device *md = q->queuedata;
1429 	int cpu;
1430 
1431 	down_read(&md->io_lock);
1432 
1433 	cpu = part_stat_lock();
1434 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1435 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1436 	part_stat_unlock();
1437 
1438 	/* if we're suspended, we have to queue this io for later */
1439 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1440 		up_read(&md->io_lock);
1441 
1442 		if (bio_rw(bio) != READA)
1443 			queue_io(md, bio);
1444 		else
1445 			bio_io_error(bio);
1446 		return;
1447 	}
1448 
1449 	__split_and_process_bio(md, bio);
1450 	up_read(&md->io_lock);
1451 	return;
1452 }
1453 
1454 static int dm_request_based(struct mapped_device *md)
1455 {
1456 	return blk_queue_stackable(md->queue);
1457 }
1458 
1459 static void dm_request(struct request_queue *q, struct bio *bio)
1460 {
1461 	struct mapped_device *md = q->queuedata;
1462 
1463 	if (dm_request_based(md))
1464 		blk_queue_bio(q, bio);
1465 	else
1466 		_dm_request(q, bio);
1467 }
1468 
1469 void dm_dispatch_request(struct request *rq)
1470 {
1471 	int r;
1472 
1473 	if (blk_queue_io_stat(rq->q))
1474 		rq->cmd_flags |= REQ_IO_STAT;
1475 
1476 	rq->start_time = jiffies;
1477 	r = blk_insert_cloned_request(rq->q, rq);
1478 	if (r)
1479 		dm_complete_request(rq, r);
1480 }
1481 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1482 
1483 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1484 				 void *data)
1485 {
1486 	struct dm_rq_target_io *tio = data;
1487 	struct dm_rq_clone_bio_info *info =
1488 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1489 
1490 	info->orig = bio_orig;
1491 	info->tio = tio;
1492 	bio->bi_end_io = end_clone_bio;
1493 	bio->bi_private = info;
1494 
1495 	return 0;
1496 }
1497 
1498 static int setup_clone(struct request *clone, struct request *rq,
1499 		       struct dm_rq_target_io *tio)
1500 {
1501 	int r;
1502 
1503 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1504 			      dm_rq_bio_constructor, tio);
1505 	if (r)
1506 		return r;
1507 
1508 	clone->cmd = rq->cmd;
1509 	clone->cmd_len = rq->cmd_len;
1510 	clone->sense = rq->sense;
1511 	clone->buffer = rq->buffer;
1512 	clone->end_io = end_clone_request;
1513 	clone->end_io_data = tio;
1514 
1515 	return 0;
1516 }
1517 
1518 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1519 				gfp_t gfp_mask)
1520 {
1521 	struct request *clone;
1522 	struct dm_rq_target_io *tio;
1523 
1524 	tio = alloc_rq_tio(md, gfp_mask);
1525 	if (!tio)
1526 		return NULL;
1527 
1528 	tio->md = md;
1529 	tio->ti = NULL;
1530 	tio->orig = rq;
1531 	tio->error = 0;
1532 	memset(&tio->info, 0, sizeof(tio->info));
1533 
1534 	clone = &tio->clone;
1535 	if (setup_clone(clone, rq, tio)) {
1536 		/* -ENOMEM */
1537 		free_rq_tio(tio);
1538 		return NULL;
1539 	}
1540 
1541 	return clone;
1542 }
1543 
1544 /*
1545  * Called with the queue lock held.
1546  */
1547 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1548 {
1549 	struct mapped_device *md = q->queuedata;
1550 	struct request *clone;
1551 
1552 	if (unlikely(rq->special)) {
1553 		DMWARN("Already has something in rq->special.");
1554 		return BLKPREP_KILL;
1555 	}
1556 
1557 	clone = clone_rq(rq, md, GFP_ATOMIC);
1558 	if (!clone)
1559 		return BLKPREP_DEFER;
1560 
1561 	rq->special = clone;
1562 	rq->cmd_flags |= REQ_DONTPREP;
1563 
1564 	return BLKPREP_OK;
1565 }
1566 
1567 /*
1568  * Returns:
1569  * 0  : the request has been processed (not requeued)
1570  * !0 : the request has been requeued
1571  */
1572 static int map_request(struct dm_target *ti, struct request *clone,
1573 		       struct mapped_device *md)
1574 {
1575 	int r, requeued = 0;
1576 	struct dm_rq_target_io *tio = clone->end_io_data;
1577 
1578 	tio->ti = ti;
1579 	r = ti->type->map_rq(ti, clone, &tio->info);
1580 	switch (r) {
1581 	case DM_MAPIO_SUBMITTED:
1582 		/* The target has taken the I/O to submit by itself later */
1583 		break;
1584 	case DM_MAPIO_REMAPPED:
1585 		/* The target has remapped the I/O so dispatch it */
1586 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1587 				     blk_rq_pos(tio->orig));
1588 		dm_dispatch_request(clone);
1589 		break;
1590 	case DM_MAPIO_REQUEUE:
1591 		/* The target wants to requeue the I/O */
1592 		dm_requeue_unmapped_request(clone);
1593 		requeued = 1;
1594 		break;
1595 	default:
1596 		if (r > 0) {
1597 			DMWARN("unimplemented target map return value: %d", r);
1598 			BUG();
1599 		}
1600 
1601 		/* The target wants to complete the I/O */
1602 		dm_kill_unmapped_request(clone, r);
1603 		break;
1604 	}
1605 
1606 	return requeued;
1607 }
1608 
1609 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1610 {
1611 	struct request *clone;
1612 
1613 	blk_start_request(orig);
1614 	clone = orig->special;
1615 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1616 
1617 	/*
1618 	 * Hold the md reference here for the in-flight I/O.
1619 	 * We can't rely on the reference count by device opener,
1620 	 * because the device may be closed during the request completion
1621 	 * when all bios are completed.
1622 	 * See the comment in rq_completed() too.
1623 	 */
1624 	dm_get(md);
1625 
1626 	return clone;
1627 }
1628 
1629 /*
1630  * q->request_fn for request-based dm.
1631  * Called with the queue lock held.
1632  */
1633 static void dm_request_fn(struct request_queue *q)
1634 {
1635 	struct mapped_device *md = q->queuedata;
1636 	struct dm_table *map = dm_get_live_table(md);
1637 	struct dm_target *ti;
1638 	struct request *rq, *clone;
1639 	sector_t pos;
1640 
1641 	/*
1642 	 * For suspend, check blk_queue_stopped() and increment
1643 	 * ->pending within a single queue_lock not to increment the
1644 	 * number of in-flight I/Os after the queue is stopped in
1645 	 * dm_suspend().
1646 	 */
1647 	while (!blk_queue_stopped(q)) {
1648 		rq = blk_peek_request(q);
1649 		if (!rq)
1650 			goto delay_and_out;
1651 
1652 		/* always use block 0 to find the target for flushes for now */
1653 		pos = 0;
1654 		if (!(rq->cmd_flags & REQ_FLUSH))
1655 			pos = blk_rq_pos(rq);
1656 
1657 		ti = dm_table_find_target(map, pos);
1658 		if (!dm_target_is_valid(ti)) {
1659 			/*
1660 			 * Must perform setup, that dm_done() requires,
1661 			 * before calling dm_kill_unmapped_request
1662 			 */
1663 			DMERR_LIMIT("request attempted access beyond the end of device");
1664 			clone = dm_start_request(md, rq);
1665 			dm_kill_unmapped_request(clone, -EIO);
1666 			continue;
1667 		}
1668 
1669 		if (ti->type->busy && ti->type->busy(ti))
1670 			goto delay_and_out;
1671 
1672 		clone = dm_start_request(md, rq);
1673 
1674 		spin_unlock(q->queue_lock);
1675 		if (map_request(ti, clone, md))
1676 			goto requeued;
1677 
1678 		BUG_ON(!irqs_disabled());
1679 		spin_lock(q->queue_lock);
1680 	}
1681 
1682 	goto out;
1683 
1684 requeued:
1685 	BUG_ON(!irqs_disabled());
1686 	spin_lock(q->queue_lock);
1687 
1688 delay_and_out:
1689 	blk_delay_queue(q, HZ / 10);
1690 out:
1691 	dm_table_put(map);
1692 }
1693 
1694 int dm_underlying_device_busy(struct request_queue *q)
1695 {
1696 	return blk_lld_busy(q);
1697 }
1698 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1699 
1700 static int dm_lld_busy(struct request_queue *q)
1701 {
1702 	int r;
1703 	struct mapped_device *md = q->queuedata;
1704 	struct dm_table *map = dm_get_live_table(md);
1705 
1706 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1707 		r = 1;
1708 	else
1709 		r = dm_table_any_busy_target(map);
1710 
1711 	dm_table_put(map);
1712 
1713 	return r;
1714 }
1715 
1716 static int dm_any_congested(void *congested_data, int bdi_bits)
1717 {
1718 	int r = bdi_bits;
1719 	struct mapped_device *md = congested_data;
1720 	struct dm_table *map;
1721 
1722 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1723 		map = dm_get_live_table(md);
1724 		if (map) {
1725 			/*
1726 			 * Request-based dm cares about only own queue for
1727 			 * the query about congestion status of request_queue
1728 			 */
1729 			if (dm_request_based(md))
1730 				r = md->queue->backing_dev_info.state &
1731 				    bdi_bits;
1732 			else
1733 				r = dm_table_any_congested(map, bdi_bits);
1734 
1735 			dm_table_put(map);
1736 		}
1737 	}
1738 
1739 	return r;
1740 }
1741 
1742 /*-----------------------------------------------------------------
1743  * An IDR is used to keep track of allocated minor numbers.
1744  *---------------------------------------------------------------*/
1745 static void free_minor(int minor)
1746 {
1747 	spin_lock(&_minor_lock);
1748 	idr_remove(&_minor_idr, minor);
1749 	spin_unlock(&_minor_lock);
1750 }
1751 
1752 /*
1753  * See if the device with a specific minor # is free.
1754  */
1755 static int specific_minor(int minor)
1756 {
1757 	int r, m;
1758 
1759 	if (minor >= (1 << MINORBITS))
1760 		return -EINVAL;
1761 
1762 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1763 	if (!r)
1764 		return -ENOMEM;
1765 
1766 	spin_lock(&_minor_lock);
1767 
1768 	if (idr_find(&_minor_idr, minor)) {
1769 		r = -EBUSY;
1770 		goto out;
1771 	}
1772 
1773 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1774 	if (r)
1775 		goto out;
1776 
1777 	if (m != minor) {
1778 		idr_remove(&_minor_idr, m);
1779 		r = -EBUSY;
1780 		goto out;
1781 	}
1782 
1783 out:
1784 	spin_unlock(&_minor_lock);
1785 	return r;
1786 }
1787 
1788 static int next_free_minor(int *minor)
1789 {
1790 	int r, m;
1791 
1792 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1793 	if (!r)
1794 		return -ENOMEM;
1795 
1796 	spin_lock(&_minor_lock);
1797 
1798 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1799 	if (r)
1800 		goto out;
1801 
1802 	if (m >= (1 << MINORBITS)) {
1803 		idr_remove(&_minor_idr, m);
1804 		r = -ENOSPC;
1805 		goto out;
1806 	}
1807 
1808 	*minor = m;
1809 
1810 out:
1811 	spin_unlock(&_minor_lock);
1812 	return r;
1813 }
1814 
1815 static const struct block_device_operations dm_blk_dops;
1816 
1817 static void dm_wq_work(struct work_struct *work);
1818 
1819 static void dm_init_md_queue(struct mapped_device *md)
1820 {
1821 	/*
1822 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1823 	 * devices.  The type of this dm device has not been decided yet.
1824 	 * The type is decided at the first table loading time.
1825 	 * To prevent problematic device stacking, clear the queue flag
1826 	 * for request stacking support until then.
1827 	 *
1828 	 * This queue is new, so no concurrency on the queue_flags.
1829 	 */
1830 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1831 
1832 	md->queue->queuedata = md;
1833 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1834 	md->queue->backing_dev_info.congested_data = md;
1835 	blk_queue_make_request(md->queue, dm_request);
1836 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1837 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1838 }
1839 
1840 /*
1841  * Allocate and initialise a blank device with a given minor.
1842  */
1843 static struct mapped_device *alloc_dev(int minor)
1844 {
1845 	int r;
1846 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1847 	void *old_md;
1848 
1849 	if (!md) {
1850 		DMWARN("unable to allocate device, out of memory.");
1851 		return NULL;
1852 	}
1853 
1854 	if (!try_module_get(THIS_MODULE))
1855 		goto bad_module_get;
1856 
1857 	/* get a minor number for the dev */
1858 	if (minor == DM_ANY_MINOR)
1859 		r = next_free_minor(&minor);
1860 	else
1861 		r = specific_minor(minor);
1862 	if (r < 0)
1863 		goto bad_minor;
1864 
1865 	md->type = DM_TYPE_NONE;
1866 	init_rwsem(&md->io_lock);
1867 	mutex_init(&md->suspend_lock);
1868 	mutex_init(&md->type_lock);
1869 	spin_lock_init(&md->deferred_lock);
1870 	rwlock_init(&md->map_lock);
1871 	atomic_set(&md->holders, 1);
1872 	atomic_set(&md->open_count, 0);
1873 	atomic_set(&md->event_nr, 0);
1874 	atomic_set(&md->uevent_seq, 0);
1875 	INIT_LIST_HEAD(&md->uevent_list);
1876 	spin_lock_init(&md->uevent_lock);
1877 
1878 	md->queue = blk_alloc_queue(GFP_KERNEL);
1879 	if (!md->queue)
1880 		goto bad_queue;
1881 
1882 	dm_init_md_queue(md);
1883 
1884 	md->disk = alloc_disk(1);
1885 	if (!md->disk)
1886 		goto bad_disk;
1887 
1888 	atomic_set(&md->pending[0], 0);
1889 	atomic_set(&md->pending[1], 0);
1890 	init_waitqueue_head(&md->wait);
1891 	INIT_WORK(&md->work, dm_wq_work);
1892 	init_waitqueue_head(&md->eventq);
1893 
1894 	md->disk->major = _major;
1895 	md->disk->first_minor = minor;
1896 	md->disk->fops = &dm_blk_dops;
1897 	md->disk->queue = md->queue;
1898 	md->disk->private_data = md;
1899 	sprintf(md->disk->disk_name, "dm-%d", minor);
1900 	add_disk(md->disk);
1901 	format_dev_t(md->name, MKDEV(_major, minor));
1902 
1903 	md->wq = alloc_workqueue("kdmflush",
1904 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1905 	if (!md->wq)
1906 		goto bad_thread;
1907 
1908 	md->bdev = bdget_disk(md->disk, 0);
1909 	if (!md->bdev)
1910 		goto bad_bdev;
1911 
1912 	bio_init(&md->flush_bio);
1913 	md->flush_bio.bi_bdev = md->bdev;
1914 	md->flush_bio.bi_rw = WRITE_FLUSH;
1915 
1916 	/* Populate the mapping, nobody knows we exist yet */
1917 	spin_lock(&_minor_lock);
1918 	old_md = idr_replace(&_minor_idr, md, minor);
1919 	spin_unlock(&_minor_lock);
1920 
1921 	BUG_ON(old_md != MINOR_ALLOCED);
1922 
1923 	return md;
1924 
1925 bad_bdev:
1926 	destroy_workqueue(md->wq);
1927 bad_thread:
1928 	del_gendisk(md->disk);
1929 	put_disk(md->disk);
1930 bad_disk:
1931 	blk_cleanup_queue(md->queue);
1932 bad_queue:
1933 	free_minor(minor);
1934 bad_minor:
1935 	module_put(THIS_MODULE);
1936 bad_module_get:
1937 	kfree(md);
1938 	return NULL;
1939 }
1940 
1941 static void unlock_fs(struct mapped_device *md);
1942 
1943 static void free_dev(struct mapped_device *md)
1944 {
1945 	int minor = MINOR(disk_devt(md->disk));
1946 
1947 	unlock_fs(md);
1948 	bdput(md->bdev);
1949 	destroy_workqueue(md->wq);
1950 	if (md->tio_pool)
1951 		mempool_destroy(md->tio_pool);
1952 	if (md->io_pool)
1953 		mempool_destroy(md->io_pool);
1954 	if (md->bs)
1955 		bioset_free(md->bs);
1956 	blk_integrity_unregister(md->disk);
1957 	del_gendisk(md->disk);
1958 	free_minor(minor);
1959 
1960 	spin_lock(&_minor_lock);
1961 	md->disk->private_data = NULL;
1962 	spin_unlock(&_minor_lock);
1963 
1964 	put_disk(md->disk);
1965 	blk_cleanup_queue(md->queue);
1966 	module_put(THIS_MODULE);
1967 	kfree(md);
1968 }
1969 
1970 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1971 {
1972 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1973 
1974 	if (md->io_pool && (md->tio_pool || dm_table_get_type(t) == DM_TYPE_BIO_BASED) && md->bs) {
1975 		/*
1976 		 * The md already has necessary mempools. Reload just the
1977 		 * bioset because front_pad may have changed because
1978 		 * a different table was loaded.
1979 		 */
1980 		bioset_free(md->bs);
1981 		md->bs = p->bs;
1982 		p->bs = NULL;
1983 		goto out;
1984 	}
1985 
1986 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1987 
1988 	md->io_pool = p->io_pool;
1989 	p->io_pool = NULL;
1990 	md->tio_pool = p->tio_pool;
1991 	p->tio_pool = NULL;
1992 	md->bs = p->bs;
1993 	p->bs = NULL;
1994 
1995 out:
1996 	/* mempool bind completed, now no need any mempools in the table */
1997 	dm_table_free_md_mempools(t);
1998 }
1999 
2000 /*
2001  * Bind a table to the device.
2002  */
2003 static void event_callback(void *context)
2004 {
2005 	unsigned long flags;
2006 	LIST_HEAD(uevents);
2007 	struct mapped_device *md = (struct mapped_device *) context;
2008 
2009 	spin_lock_irqsave(&md->uevent_lock, flags);
2010 	list_splice_init(&md->uevent_list, &uevents);
2011 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2012 
2013 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2014 
2015 	atomic_inc(&md->event_nr);
2016 	wake_up(&md->eventq);
2017 }
2018 
2019 /*
2020  * Protected by md->suspend_lock obtained by dm_swap_table().
2021  */
2022 static void __set_size(struct mapped_device *md, sector_t size)
2023 {
2024 	set_capacity(md->disk, size);
2025 
2026 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2027 }
2028 
2029 /*
2030  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2031  *
2032  * If this function returns 0, then the device is either a non-dm
2033  * device without a merge_bvec_fn, or it is a dm device that is
2034  * able to split any bios it receives that are too big.
2035  */
2036 int dm_queue_merge_is_compulsory(struct request_queue *q)
2037 {
2038 	struct mapped_device *dev_md;
2039 
2040 	if (!q->merge_bvec_fn)
2041 		return 0;
2042 
2043 	if (q->make_request_fn == dm_request) {
2044 		dev_md = q->queuedata;
2045 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2046 			return 0;
2047 	}
2048 
2049 	return 1;
2050 }
2051 
2052 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2053 					 struct dm_dev *dev, sector_t start,
2054 					 sector_t len, void *data)
2055 {
2056 	struct block_device *bdev = dev->bdev;
2057 	struct request_queue *q = bdev_get_queue(bdev);
2058 
2059 	return dm_queue_merge_is_compulsory(q);
2060 }
2061 
2062 /*
2063  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2064  * on the properties of the underlying devices.
2065  */
2066 static int dm_table_merge_is_optional(struct dm_table *table)
2067 {
2068 	unsigned i = 0;
2069 	struct dm_target *ti;
2070 
2071 	while (i < dm_table_get_num_targets(table)) {
2072 		ti = dm_table_get_target(table, i++);
2073 
2074 		if (ti->type->iterate_devices &&
2075 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2076 			return 0;
2077 	}
2078 
2079 	return 1;
2080 }
2081 
2082 /*
2083  * Returns old map, which caller must destroy.
2084  */
2085 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2086 			       struct queue_limits *limits)
2087 {
2088 	struct dm_table *old_map;
2089 	struct request_queue *q = md->queue;
2090 	sector_t size;
2091 	unsigned long flags;
2092 	int merge_is_optional;
2093 
2094 	size = dm_table_get_size(t);
2095 
2096 	/*
2097 	 * Wipe any geometry if the size of the table changed.
2098 	 */
2099 	if (size != get_capacity(md->disk))
2100 		memset(&md->geometry, 0, sizeof(md->geometry));
2101 
2102 	__set_size(md, size);
2103 
2104 	dm_table_event_callback(t, event_callback, md);
2105 
2106 	/*
2107 	 * The queue hasn't been stopped yet, if the old table type wasn't
2108 	 * for request-based during suspension.  So stop it to prevent
2109 	 * I/O mapping before resume.
2110 	 * This must be done before setting the queue restrictions,
2111 	 * because request-based dm may be run just after the setting.
2112 	 */
2113 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2114 		stop_queue(q);
2115 
2116 	__bind_mempools(md, t);
2117 
2118 	merge_is_optional = dm_table_merge_is_optional(t);
2119 
2120 	write_lock_irqsave(&md->map_lock, flags);
2121 	old_map = md->map;
2122 	md->map = t;
2123 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2124 
2125 	dm_table_set_restrictions(t, q, limits);
2126 	if (merge_is_optional)
2127 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2128 	else
2129 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2130 	write_unlock_irqrestore(&md->map_lock, flags);
2131 
2132 	return old_map;
2133 }
2134 
2135 /*
2136  * Returns unbound table for the caller to free.
2137  */
2138 static struct dm_table *__unbind(struct mapped_device *md)
2139 {
2140 	struct dm_table *map = md->map;
2141 	unsigned long flags;
2142 
2143 	if (!map)
2144 		return NULL;
2145 
2146 	dm_table_event_callback(map, NULL, NULL);
2147 	write_lock_irqsave(&md->map_lock, flags);
2148 	md->map = NULL;
2149 	write_unlock_irqrestore(&md->map_lock, flags);
2150 
2151 	return map;
2152 }
2153 
2154 /*
2155  * Constructor for a new device.
2156  */
2157 int dm_create(int minor, struct mapped_device **result)
2158 {
2159 	struct mapped_device *md;
2160 
2161 	md = alloc_dev(minor);
2162 	if (!md)
2163 		return -ENXIO;
2164 
2165 	dm_sysfs_init(md);
2166 
2167 	*result = md;
2168 	return 0;
2169 }
2170 
2171 /*
2172  * Functions to manage md->type.
2173  * All are required to hold md->type_lock.
2174  */
2175 void dm_lock_md_type(struct mapped_device *md)
2176 {
2177 	mutex_lock(&md->type_lock);
2178 }
2179 
2180 void dm_unlock_md_type(struct mapped_device *md)
2181 {
2182 	mutex_unlock(&md->type_lock);
2183 }
2184 
2185 void dm_set_md_type(struct mapped_device *md, unsigned type)
2186 {
2187 	md->type = type;
2188 }
2189 
2190 unsigned dm_get_md_type(struct mapped_device *md)
2191 {
2192 	return md->type;
2193 }
2194 
2195 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2196 {
2197 	return md->immutable_target_type;
2198 }
2199 
2200 /*
2201  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2202  */
2203 static int dm_init_request_based_queue(struct mapped_device *md)
2204 {
2205 	struct request_queue *q = NULL;
2206 
2207 	if (md->queue->elevator)
2208 		return 1;
2209 
2210 	/* Fully initialize the queue */
2211 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2212 	if (!q)
2213 		return 0;
2214 
2215 	md->queue = q;
2216 	dm_init_md_queue(md);
2217 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2218 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2219 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2220 
2221 	elv_register_queue(md->queue);
2222 
2223 	return 1;
2224 }
2225 
2226 /*
2227  * Setup the DM device's queue based on md's type
2228  */
2229 int dm_setup_md_queue(struct mapped_device *md)
2230 {
2231 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2232 	    !dm_init_request_based_queue(md)) {
2233 		DMWARN("Cannot initialize queue for request-based mapped device");
2234 		return -EINVAL;
2235 	}
2236 
2237 	return 0;
2238 }
2239 
2240 static struct mapped_device *dm_find_md(dev_t dev)
2241 {
2242 	struct mapped_device *md;
2243 	unsigned minor = MINOR(dev);
2244 
2245 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2246 		return NULL;
2247 
2248 	spin_lock(&_minor_lock);
2249 
2250 	md = idr_find(&_minor_idr, minor);
2251 	if (md && (md == MINOR_ALLOCED ||
2252 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2253 		   dm_deleting_md(md) ||
2254 		   test_bit(DMF_FREEING, &md->flags))) {
2255 		md = NULL;
2256 		goto out;
2257 	}
2258 
2259 out:
2260 	spin_unlock(&_minor_lock);
2261 
2262 	return md;
2263 }
2264 
2265 struct mapped_device *dm_get_md(dev_t dev)
2266 {
2267 	struct mapped_device *md = dm_find_md(dev);
2268 
2269 	if (md)
2270 		dm_get(md);
2271 
2272 	return md;
2273 }
2274 EXPORT_SYMBOL_GPL(dm_get_md);
2275 
2276 void *dm_get_mdptr(struct mapped_device *md)
2277 {
2278 	return md->interface_ptr;
2279 }
2280 
2281 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2282 {
2283 	md->interface_ptr = ptr;
2284 }
2285 
2286 void dm_get(struct mapped_device *md)
2287 {
2288 	atomic_inc(&md->holders);
2289 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2290 }
2291 
2292 const char *dm_device_name(struct mapped_device *md)
2293 {
2294 	return md->name;
2295 }
2296 EXPORT_SYMBOL_GPL(dm_device_name);
2297 
2298 static void __dm_destroy(struct mapped_device *md, bool wait)
2299 {
2300 	struct dm_table *map;
2301 
2302 	might_sleep();
2303 
2304 	spin_lock(&_minor_lock);
2305 	map = dm_get_live_table(md);
2306 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2307 	set_bit(DMF_FREEING, &md->flags);
2308 	spin_unlock(&_minor_lock);
2309 
2310 	if (!dm_suspended_md(md)) {
2311 		dm_table_presuspend_targets(map);
2312 		dm_table_postsuspend_targets(map);
2313 	}
2314 
2315 	/*
2316 	 * Rare, but there may be I/O requests still going to complete,
2317 	 * for example.  Wait for all references to disappear.
2318 	 * No one should increment the reference count of the mapped_device,
2319 	 * after the mapped_device state becomes DMF_FREEING.
2320 	 */
2321 	if (wait)
2322 		while (atomic_read(&md->holders))
2323 			msleep(1);
2324 	else if (atomic_read(&md->holders))
2325 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2326 		       dm_device_name(md), atomic_read(&md->holders));
2327 
2328 	dm_sysfs_exit(md);
2329 	dm_table_put(map);
2330 	dm_table_destroy(__unbind(md));
2331 	free_dev(md);
2332 }
2333 
2334 void dm_destroy(struct mapped_device *md)
2335 {
2336 	__dm_destroy(md, true);
2337 }
2338 
2339 void dm_destroy_immediate(struct mapped_device *md)
2340 {
2341 	__dm_destroy(md, false);
2342 }
2343 
2344 void dm_put(struct mapped_device *md)
2345 {
2346 	atomic_dec(&md->holders);
2347 }
2348 EXPORT_SYMBOL_GPL(dm_put);
2349 
2350 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2351 {
2352 	int r = 0;
2353 	DECLARE_WAITQUEUE(wait, current);
2354 
2355 	add_wait_queue(&md->wait, &wait);
2356 
2357 	while (1) {
2358 		set_current_state(interruptible);
2359 
2360 		if (!md_in_flight(md))
2361 			break;
2362 
2363 		if (interruptible == TASK_INTERRUPTIBLE &&
2364 		    signal_pending(current)) {
2365 			r = -EINTR;
2366 			break;
2367 		}
2368 
2369 		io_schedule();
2370 	}
2371 	set_current_state(TASK_RUNNING);
2372 
2373 	remove_wait_queue(&md->wait, &wait);
2374 
2375 	return r;
2376 }
2377 
2378 /*
2379  * Process the deferred bios
2380  */
2381 static void dm_wq_work(struct work_struct *work)
2382 {
2383 	struct mapped_device *md = container_of(work, struct mapped_device,
2384 						work);
2385 	struct bio *c;
2386 
2387 	down_read(&md->io_lock);
2388 
2389 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2390 		spin_lock_irq(&md->deferred_lock);
2391 		c = bio_list_pop(&md->deferred);
2392 		spin_unlock_irq(&md->deferred_lock);
2393 
2394 		if (!c)
2395 			break;
2396 
2397 		up_read(&md->io_lock);
2398 
2399 		if (dm_request_based(md))
2400 			generic_make_request(c);
2401 		else
2402 			__split_and_process_bio(md, c);
2403 
2404 		down_read(&md->io_lock);
2405 	}
2406 
2407 	up_read(&md->io_lock);
2408 }
2409 
2410 static void dm_queue_flush(struct mapped_device *md)
2411 {
2412 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2413 	smp_mb__after_clear_bit();
2414 	queue_work(md->wq, &md->work);
2415 }
2416 
2417 /*
2418  * Swap in a new table, returning the old one for the caller to destroy.
2419  */
2420 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2421 {
2422 	struct dm_table *live_map, *map = ERR_PTR(-EINVAL);
2423 	struct queue_limits limits;
2424 	int r;
2425 
2426 	mutex_lock(&md->suspend_lock);
2427 
2428 	/* device must be suspended */
2429 	if (!dm_suspended_md(md))
2430 		goto out;
2431 
2432 	/*
2433 	 * If the new table has no data devices, retain the existing limits.
2434 	 * This helps multipath with queue_if_no_path if all paths disappear,
2435 	 * then new I/O is queued based on these limits, and then some paths
2436 	 * reappear.
2437 	 */
2438 	if (dm_table_has_no_data_devices(table)) {
2439 		live_map = dm_get_live_table(md);
2440 		if (live_map)
2441 			limits = md->queue->limits;
2442 		dm_table_put(live_map);
2443 	}
2444 
2445 	r = dm_calculate_queue_limits(table, &limits);
2446 	if (r) {
2447 		map = ERR_PTR(r);
2448 		goto out;
2449 	}
2450 
2451 	map = __bind(md, table, &limits);
2452 
2453 out:
2454 	mutex_unlock(&md->suspend_lock);
2455 	return map;
2456 }
2457 
2458 /*
2459  * Functions to lock and unlock any filesystem running on the
2460  * device.
2461  */
2462 static int lock_fs(struct mapped_device *md)
2463 {
2464 	int r;
2465 
2466 	WARN_ON(md->frozen_sb);
2467 
2468 	md->frozen_sb = freeze_bdev(md->bdev);
2469 	if (IS_ERR(md->frozen_sb)) {
2470 		r = PTR_ERR(md->frozen_sb);
2471 		md->frozen_sb = NULL;
2472 		return r;
2473 	}
2474 
2475 	set_bit(DMF_FROZEN, &md->flags);
2476 
2477 	return 0;
2478 }
2479 
2480 static void unlock_fs(struct mapped_device *md)
2481 {
2482 	if (!test_bit(DMF_FROZEN, &md->flags))
2483 		return;
2484 
2485 	thaw_bdev(md->bdev, md->frozen_sb);
2486 	md->frozen_sb = NULL;
2487 	clear_bit(DMF_FROZEN, &md->flags);
2488 }
2489 
2490 /*
2491  * We need to be able to change a mapping table under a mounted
2492  * filesystem.  For example we might want to move some data in
2493  * the background.  Before the table can be swapped with
2494  * dm_bind_table, dm_suspend must be called to flush any in
2495  * flight bios and ensure that any further io gets deferred.
2496  */
2497 /*
2498  * Suspend mechanism in request-based dm.
2499  *
2500  * 1. Flush all I/Os by lock_fs() if needed.
2501  * 2. Stop dispatching any I/O by stopping the request_queue.
2502  * 3. Wait for all in-flight I/Os to be completed or requeued.
2503  *
2504  * To abort suspend, start the request_queue.
2505  */
2506 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2507 {
2508 	struct dm_table *map = NULL;
2509 	int r = 0;
2510 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2511 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2512 
2513 	mutex_lock(&md->suspend_lock);
2514 
2515 	if (dm_suspended_md(md)) {
2516 		r = -EINVAL;
2517 		goto out_unlock;
2518 	}
2519 
2520 	map = dm_get_live_table(md);
2521 
2522 	/*
2523 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2524 	 * This flag is cleared before dm_suspend returns.
2525 	 */
2526 	if (noflush)
2527 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2528 
2529 	/* This does not get reverted if there's an error later. */
2530 	dm_table_presuspend_targets(map);
2531 
2532 	/*
2533 	 * Flush I/O to the device.
2534 	 * Any I/O submitted after lock_fs() may not be flushed.
2535 	 * noflush takes precedence over do_lockfs.
2536 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2537 	 */
2538 	if (!noflush && do_lockfs) {
2539 		r = lock_fs(md);
2540 		if (r)
2541 			goto out;
2542 	}
2543 
2544 	/*
2545 	 * Here we must make sure that no processes are submitting requests
2546 	 * to target drivers i.e. no one may be executing
2547 	 * __split_and_process_bio. This is called from dm_request and
2548 	 * dm_wq_work.
2549 	 *
2550 	 * To get all processes out of __split_and_process_bio in dm_request,
2551 	 * we take the write lock. To prevent any process from reentering
2552 	 * __split_and_process_bio from dm_request and quiesce the thread
2553 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2554 	 * flush_workqueue(md->wq).
2555 	 */
2556 	down_write(&md->io_lock);
2557 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2558 	up_write(&md->io_lock);
2559 
2560 	/*
2561 	 * Stop md->queue before flushing md->wq in case request-based
2562 	 * dm defers requests to md->wq from md->queue.
2563 	 */
2564 	if (dm_request_based(md))
2565 		stop_queue(md->queue);
2566 
2567 	flush_workqueue(md->wq);
2568 
2569 	/*
2570 	 * At this point no more requests are entering target request routines.
2571 	 * We call dm_wait_for_completion to wait for all existing requests
2572 	 * to finish.
2573 	 */
2574 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2575 
2576 	down_write(&md->io_lock);
2577 	if (noflush)
2578 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2579 	up_write(&md->io_lock);
2580 
2581 	/* were we interrupted ? */
2582 	if (r < 0) {
2583 		dm_queue_flush(md);
2584 
2585 		if (dm_request_based(md))
2586 			start_queue(md->queue);
2587 
2588 		unlock_fs(md);
2589 		goto out; /* pushback list is already flushed, so skip flush */
2590 	}
2591 
2592 	/*
2593 	 * If dm_wait_for_completion returned 0, the device is completely
2594 	 * quiescent now. There is no request-processing activity. All new
2595 	 * requests are being added to md->deferred list.
2596 	 */
2597 
2598 	set_bit(DMF_SUSPENDED, &md->flags);
2599 
2600 	dm_table_postsuspend_targets(map);
2601 
2602 out:
2603 	dm_table_put(map);
2604 
2605 out_unlock:
2606 	mutex_unlock(&md->suspend_lock);
2607 	return r;
2608 }
2609 
2610 int dm_resume(struct mapped_device *md)
2611 {
2612 	int r = -EINVAL;
2613 	struct dm_table *map = NULL;
2614 
2615 	mutex_lock(&md->suspend_lock);
2616 	if (!dm_suspended_md(md))
2617 		goto out;
2618 
2619 	map = dm_get_live_table(md);
2620 	if (!map || !dm_table_get_size(map))
2621 		goto out;
2622 
2623 	r = dm_table_resume_targets(map);
2624 	if (r)
2625 		goto out;
2626 
2627 	dm_queue_flush(md);
2628 
2629 	/*
2630 	 * Flushing deferred I/Os must be done after targets are resumed
2631 	 * so that mapping of targets can work correctly.
2632 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2633 	 */
2634 	if (dm_request_based(md))
2635 		start_queue(md->queue);
2636 
2637 	unlock_fs(md);
2638 
2639 	clear_bit(DMF_SUSPENDED, &md->flags);
2640 
2641 	r = 0;
2642 out:
2643 	dm_table_put(map);
2644 	mutex_unlock(&md->suspend_lock);
2645 
2646 	return r;
2647 }
2648 
2649 /*-----------------------------------------------------------------
2650  * Event notification.
2651  *---------------------------------------------------------------*/
2652 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2653 		       unsigned cookie)
2654 {
2655 	char udev_cookie[DM_COOKIE_LENGTH];
2656 	char *envp[] = { udev_cookie, NULL };
2657 
2658 	if (!cookie)
2659 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2660 	else {
2661 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2662 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2663 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2664 					  action, envp);
2665 	}
2666 }
2667 
2668 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2669 {
2670 	return atomic_add_return(1, &md->uevent_seq);
2671 }
2672 
2673 uint32_t dm_get_event_nr(struct mapped_device *md)
2674 {
2675 	return atomic_read(&md->event_nr);
2676 }
2677 
2678 int dm_wait_event(struct mapped_device *md, int event_nr)
2679 {
2680 	return wait_event_interruptible(md->eventq,
2681 			(event_nr != atomic_read(&md->event_nr)));
2682 }
2683 
2684 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2685 {
2686 	unsigned long flags;
2687 
2688 	spin_lock_irqsave(&md->uevent_lock, flags);
2689 	list_add(elist, &md->uevent_list);
2690 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2691 }
2692 
2693 /*
2694  * The gendisk is only valid as long as you have a reference
2695  * count on 'md'.
2696  */
2697 struct gendisk *dm_disk(struct mapped_device *md)
2698 {
2699 	return md->disk;
2700 }
2701 
2702 struct kobject *dm_kobject(struct mapped_device *md)
2703 {
2704 	return &md->kobj;
2705 }
2706 
2707 /*
2708  * struct mapped_device should not be exported outside of dm.c
2709  * so use this check to verify that kobj is part of md structure
2710  */
2711 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2712 {
2713 	struct mapped_device *md;
2714 
2715 	md = container_of(kobj, struct mapped_device, kobj);
2716 	if (&md->kobj != kobj)
2717 		return NULL;
2718 
2719 	if (test_bit(DMF_FREEING, &md->flags) ||
2720 	    dm_deleting_md(md))
2721 		return NULL;
2722 
2723 	dm_get(md);
2724 	return md;
2725 }
2726 
2727 int dm_suspended_md(struct mapped_device *md)
2728 {
2729 	return test_bit(DMF_SUSPENDED, &md->flags);
2730 }
2731 
2732 int dm_suspended(struct dm_target *ti)
2733 {
2734 	return dm_suspended_md(dm_table_get_md(ti->table));
2735 }
2736 EXPORT_SYMBOL_GPL(dm_suspended);
2737 
2738 int dm_noflush_suspending(struct dm_target *ti)
2739 {
2740 	return __noflush_suspending(dm_table_get_md(ti->table));
2741 }
2742 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2743 
2744 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2745 {
2746 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2747 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2748 
2749 	if (!pools)
2750 		return NULL;
2751 
2752 	per_bio_data_size = roundup(per_bio_data_size, __alignof__(struct dm_target_io));
2753 
2754 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2755 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2756 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2757 	if (!pools->io_pool)
2758 		goto free_pools_and_out;
2759 
2760 	pools->tio_pool = NULL;
2761 	if (type == DM_TYPE_REQUEST_BASED) {
2762 		pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2763 		if (!pools->tio_pool)
2764 			goto free_io_pool_and_out;
2765 	}
2766 
2767 	pools->bs = (type == DM_TYPE_BIO_BASED) ?
2768 		bioset_create(pool_size,
2769 			      per_bio_data_size + offsetof(struct dm_target_io, clone)) :
2770 		bioset_create(pool_size,
2771 			      offsetof(struct dm_rq_clone_bio_info, clone));
2772 	if (!pools->bs)
2773 		goto free_tio_pool_and_out;
2774 
2775 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2776 		goto free_bioset_and_out;
2777 
2778 	return pools;
2779 
2780 free_bioset_and_out:
2781 	bioset_free(pools->bs);
2782 
2783 free_tio_pool_and_out:
2784 	if (pools->tio_pool)
2785 		mempool_destroy(pools->tio_pool);
2786 
2787 free_io_pool_and_out:
2788 	mempool_destroy(pools->io_pool);
2789 
2790 free_pools_and_out:
2791 	kfree(pools);
2792 
2793 	return NULL;
2794 }
2795 
2796 void dm_free_md_mempools(struct dm_md_mempools *pools)
2797 {
2798 	if (!pools)
2799 		return;
2800 
2801 	if (pools->io_pool)
2802 		mempool_destroy(pools->io_pool);
2803 
2804 	if (pools->tio_pool)
2805 		mempool_destroy(pools->tio_pool);
2806 
2807 	if (pools->bs)
2808 		bioset_free(pools->bs);
2809 
2810 	kfree(pools);
2811 }
2812 
2813 static const struct block_device_operations dm_blk_dops = {
2814 	.open = dm_blk_open,
2815 	.release = dm_blk_close,
2816 	.ioctl = dm_blk_ioctl,
2817 	.getgeo = dm_blk_getgeo,
2818 	.owner = THIS_MODULE
2819 };
2820 
2821 EXPORT_SYMBOL(dm_get_mapinfo);
2822 
2823 /*
2824  * module hooks
2825  */
2826 module_init(dm_init);
2827 module_exit(dm_exit);
2828 
2829 module_param(major, uint, 0);
2830 MODULE_PARM_DESC(major, "The major number of the device mapper");
2831 MODULE_DESCRIPTION(DM_NAME " driver");
2832 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2833 MODULE_LICENSE("GPL");
2834