1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 /* 53 * For bio-based dm. 54 * One of these is allocated per bio. 55 */ 56 struct dm_io { 57 struct mapped_device *md; 58 int error; 59 atomic_t io_count; 60 struct bio *bio; 61 unsigned long start_time; 62 spinlock_t endio_lock; 63 }; 64 65 /* 66 * For request-based dm. 67 * One of these is allocated per request. 68 */ 69 struct dm_rq_target_io { 70 struct mapped_device *md; 71 struct dm_target *ti; 72 struct request *orig, clone; 73 int error; 74 union map_info info; 75 }; 76 77 /* 78 * For request-based dm - the bio clones we allocate are embedded in these 79 * structs. 80 * 81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 82 * the bioset is created - this means the bio has to come at the end of the 83 * struct. 84 */ 85 struct dm_rq_clone_bio_info { 86 struct bio *orig; 87 struct dm_rq_target_io *tio; 88 struct bio clone; 89 }; 90 91 union map_info *dm_get_mapinfo(struct bio *bio) 92 { 93 if (bio && bio->bi_private) 94 return &((struct dm_target_io *)bio->bi_private)->info; 95 return NULL; 96 } 97 98 union map_info *dm_get_rq_mapinfo(struct request *rq) 99 { 100 if (rq && rq->end_io_data) 101 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 102 return NULL; 103 } 104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 105 106 #define MINOR_ALLOCED ((void *)-1) 107 108 /* 109 * Bits for the md->flags field. 110 */ 111 #define DMF_BLOCK_IO_FOR_SUSPEND 0 112 #define DMF_SUSPENDED 1 113 #define DMF_FROZEN 2 114 #define DMF_FREEING 3 115 #define DMF_DELETING 4 116 #define DMF_NOFLUSH_SUSPENDING 5 117 #define DMF_MERGE_IS_OPTIONAL 6 118 119 /* 120 * Work processed by per-device workqueue. 121 */ 122 struct mapped_device { 123 struct rw_semaphore io_lock; 124 struct mutex suspend_lock; 125 rwlock_t map_lock; 126 atomic_t holders; 127 atomic_t open_count; 128 129 unsigned long flags; 130 131 struct request_queue *queue; 132 unsigned type; 133 /* Protect queue and type against concurrent access. */ 134 struct mutex type_lock; 135 136 struct target_type *immutable_target_type; 137 138 struct gendisk *disk; 139 char name[16]; 140 141 void *interface_ptr; 142 143 /* 144 * A list of ios that arrived while we were suspended. 145 */ 146 atomic_t pending[2]; 147 wait_queue_head_t wait; 148 struct work_struct work; 149 struct bio_list deferred; 150 spinlock_t deferred_lock; 151 152 /* 153 * Processing queue (flush) 154 */ 155 struct workqueue_struct *wq; 156 157 /* 158 * The current mapping. 159 */ 160 struct dm_table *map; 161 162 /* 163 * io objects are allocated from here. 164 */ 165 mempool_t *io_pool; 166 mempool_t *tio_pool; 167 168 struct bio_set *bs; 169 170 /* 171 * Event handling. 172 */ 173 atomic_t event_nr; 174 wait_queue_head_t eventq; 175 atomic_t uevent_seq; 176 struct list_head uevent_list; 177 spinlock_t uevent_lock; /* Protect access to uevent_list */ 178 179 /* 180 * freeze/thaw support require holding onto a super block 181 */ 182 struct super_block *frozen_sb; 183 struct block_device *bdev; 184 185 /* forced geometry settings */ 186 struct hd_geometry geometry; 187 188 /* sysfs handle */ 189 struct kobject kobj; 190 191 /* zero-length flush that will be cloned and submitted to targets */ 192 struct bio flush_bio; 193 }; 194 195 /* 196 * For mempools pre-allocation at the table loading time. 197 */ 198 struct dm_md_mempools { 199 mempool_t *io_pool; 200 mempool_t *tio_pool; 201 struct bio_set *bs; 202 }; 203 204 #define MIN_IOS 256 205 static struct kmem_cache *_io_cache; 206 static struct kmem_cache *_rq_tio_cache; 207 208 /* 209 * Unused now, and needs to be deleted. But since io_pool is overloaded and it's 210 * still used for _io_cache, I'm leaving this for a later cleanup 211 */ 212 static struct kmem_cache *_rq_bio_info_cache; 213 214 static int __init local_init(void) 215 { 216 int r = -ENOMEM; 217 218 /* allocate a slab for the dm_ios */ 219 _io_cache = KMEM_CACHE(dm_io, 0); 220 if (!_io_cache) 221 return r; 222 223 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 224 if (!_rq_tio_cache) 225 goto out_free_io_cache; 226 227 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 228 if (!_rq_bio_info_cache) 229 goto out_free_rq_tio_cache; 230 231 r = dm_uevent_init(); 232 if (r) 233 goto out_free_rq_bio_info_cache; 234 235 _major = major; 236 r = register_blkdev(_major, _name); 237 if (r < 0) 238 goto out_uevent_exit; 239 240 if (!_major) 241 _major = r; 242 243 return 0; 244 245 out_uevent_exit: 246 dm_uevent_exit(); 247 out_free_rq_bio_info_cache: 248 kmem_cache_destroy(_rq_bio_info_cache); 249 out_free_rq_tio_cache: 250 kmem_cache_destroy(_rq_tio_cache); 251 out_free_io_cache: 252 kmem_cache_destroy(_io_cache); 253 254 return r; 255 } 256 257 static void local_exit(void) 258 { 259 kmem_cache_destroy(_rq_bio_info_cache); 260 kmem_cache_destroy(_rq_tio_cache); 261 kmem_cache_destroy(_io_cache); 262 unregister_blkdev(_major, _name); 263 dm_uevent_exit(); 264 265 _major = 0; 266 267 DMINFO("cleaned up"); 268 } 269 270 static int (*_inits[])(void) __initdata = { 271 local_init, 272 dm_target_init, 273 dm_linear_init, 274 dm_stripe_init, 275 dm_io_init, 276 dm_kcopyd_init, 277 dm_interface_init, 278 }; 279 280 static void (*_exits[])(void) = { 281 local_exit, 282 dm_target_exit, 283 dm_linear_exit, 284 dm_stripe_exit, 285 dm_io_exit, 286 dm_kcopyd_exit, 287 dm_interface_exit, 288 }; 289 290 static int __init dm_init(void) 291 { 292 const int count = ARRAY_SIZE(_inits); 293 294 int r, i; 295 296 for (i = 0; i < count; i++) { 297 r = _inits[i](); 298 if (r) 299 goto bad; 300 } 301 302 return 0; 303 304 bad: 305 while (i--) 306 _exits[i](); 307 308 return r; 309 } 310 311 static void __exit dm_exit(void) 312 { 313 int i = ARRAY_SIZE(_exits); 314 315 while (i--) 316 _exits[i](); 317 318 /* 319 * Should be empty by this point. 320 */ 321 idr_remove_all(&_minor_idr); 322 idr_destroy(&_minor_idr); 323 } 324 325 /* 326 * Block device functions 327 */ 328 int dm_deleting_md(struct mapped_device *md) 329 { 330 return test_bit(DMF_DELETING, &md->flags); 331 } 332 333 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 334 { 335 struct mapped_device *md; 336 337 spin_lock(&_minor_lock); 338 339 md = bdev->bd_disk->private_data; 340 if (!md) 341 goto out; 342 343 if (test_bit(DMF_FREEING, &md->flags) || 344 dm_deleting_md(md)) { 345 md = NULL; 346 goto out; 347 } 348 349 dm_get(md); 350 atomic_inc(&md->open_count); 351 352 out: 353 spin_unlock(&_minor_lock); 354 355 return md ? 0 : -ENXIO; 356 } 357 358 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 359 { 360 struct mapped_device *md = disk->private_data; 361 362 spin_lock(&_minor_lock); 363 364 atomic_dec(&md->open_count); 365 dm_put(md); 366 367 spin_unlock(&_minor_lock); 368 369 return 0; 370 } 371 372 int dm_open_count(struct mapped_device *md) 373 { 374 return atomic_read(&md->open_count); 375 } 376 377 /* 378 * Guarantees nothing is using the device before it's deleted. 379 */ 380 int dm_lock_for_deletion(struct mapped_device *md) 381 { 382 int r = 0; 383 384 spin_lock(&_minor_lock); 385 386 if (dm_open_count(md)) 387 r = -EBUSY; 388 else 389 set_bit(DMF_DELETING, &md->flags); 390 391 spin_unlock(&_minor_lock); 392 393 return r; 394 } 395 396 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 397 { 398 struct mapped_device *md = bdev->bd_disk->private_data; 399 400 return dm_get_geometry(md, geo); 401 } 402 403 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 404 unsigned int cmd, unsigned long arg) 405 { 406 struct mapped_device *md = bdev->bd_disk->private_data; 407 struct dm_table *map = dm_get_live_table(md); 408 struct dm_target *tgt; 409 int r = -ENOTTY; 410 411 if (!map || !dm_table_get_size(map)) 412 goto out; 413 414 /* We only support devices that have a single target */ 415 if (dm_table_get_num_targets(map) != 1) 416 goto out; 417 418 tgt = dm_table_get_target(map, 0); 419 420 if (dm_suspended_md(md)) { 421 r = -EAGAIN; 422 goto out; 423 } 424 425 if (tgt->type->ioctl) 426 r = tgt->type->ioctl(tgt, cmd, arg); 427 428 out: 429 dm_table_put(map); 430 431 return r; 432 } 433 434 static struct dm_io *alloc_io(struct mapped_device *md) 435 { 436 return mempool_alloc(md->io_pool, GFP_NOIO); 437 } 438 439 static void free_io(struct mapped_device *md, struct dm_io *io) 440 { 441 mempool_free(io, md->io_pool); 442 } 443 444 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 445 { 446 bio_put(&tio->clone); 447 } 448 449 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 450 gfp_t gfp_mask) 451 { 452 return mempool_alloc(md->tio_pool, gfp_mask); 453 } 454 455 static void free_rq_tio(struct dm_rq_target_io *tio) 456 { 457 mempool_free(tio, tio->md->tio_pool); 458 } 459 460 static int md_in_flight(struct mapped_device *md) 461 { 462 return atomic_read(&md->pending[READ]) + 463 atomic_read(&md->pending[WRITE]); 464 } 465 466 static void start_io_acct(struct dm_io *io) 467 { 468 struct mapped_device *md = io->md; 469 int cpu; 470 int rw = bio_data_dir(io->bio); 471 472 io->start_time = jiffies; 473 474 cpu = part_stat_lock(); 475 part_round_stats(cpu, &dm_disk(md)->part0); 476 part_stat_unlock(); 477 atomic_set(&dm_disk(md)->part0.in_flight[rw], 478 atomic_inc_return(&md->pending[rw])); 479 } 480 481 static void end_io_acct(struct dm_io *io) 482 { 483 struct mapped_device *md = io->md; 484 struct bio *bio = io->bio; 485 unsigned long duration = jiffies - io->start_time; 486 int pending, cpu; 487 int rw = bio_data_dir(bio); 488 489 cpu = part_stat_lock(); 490 part_round_stats(cpu, &dm_disk(md)->part0); 491 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 492 part_stat_unlock(); 493 494 /* 495 * After this is decremented the bio must not be touched if it is 496 * a flush. 497 */ 498 pending = atomic_dec_return(&md->pending[rw]); 499 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 500 pending += atomic_read(&md->pending[rw^0x1]); 501 502 /* nudge anyone waiting on suspend queue */ 503 if (!pending) 504 wake_up(&md->wait); 505 } 506 507 /* 508 * Add the bio to the list of deferred io. 509 */ 510 static void queue_io(struct mapped_device *md, struct bio *bio) 511 { 512 unsigned long flags; 513 514 spin_lock_irqsave(&md->deferred_lock, flags); 515 bio_list_add(&md->deferred, bio); 516 spin_unlock_irqrestore(&md->deferred_lock, flags); 517 queue_work(md->wq, &md->work); 518 } 519 520 /* 521 * Everyone (including functions in this file), should use this 522 * function to access the md->map field, and make sure they call 523 * dm_table_put() when finished. 524 */ 525 struct dm_table *dm_get_live_table(struct mapped_device *md) 526 { 527 struct dm_table *t; 528 unsigned long flags; 529 530 read_lock_irqsave(&md->map_lock, flags); 531 t = md->map; 532 if (t) 533 dm_table_get(t); 534 read_unlock_irqrestore(&md->map_lock, flags); 535 536 return t; 537 } 538 539 /* 540 * Get the geometry associated with a dm device 541 */ 542 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 543 { 544 *geo = md->geometry; 545 546 return 0; 547 } 548 549 /* 550 * Set the geometry of a device. 551 */ 552 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 553 { 554 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 555 556 if (geo->start > sz) { 557 DMWARN("Start sector is beyond the geometry limits."); 558 return -EINVAL; 559 } 560 561 md->geometry = *geo; 562 563 return 0; 564 } 565 566 /*----------------------------------------------------------------- 567 * CRUD START: 568 * A more elegant soln is in the works that uses the queue 569 * merge fn, unfortunately there are a couple of changes to 570 * the block layer that I want to make for this. So in the 571 * interests of getting something for people to use I give 572 * you this clearly demarcated crap. 573 *---------------------------------------------------------------*/ 574 575 static int __noflush_suspending(struct mapped_device *md) 576 { 577 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 578 } 579 580 /* 581 * Decrements the number of outstanding ios that a bio has been 582 * cloned into, completing the original io if necc. 583 */ 584 static void dec_pending(struct dm_io *io, int error) 585 { 586 unsigned long flags; 587 int io_error; 588 struct bio *bio; 589 struct mapped_device *md = io->md; 590 591 /* Push-back supersedes any I/O errors */ 592 if (unlikely(error)) { 593 spin_lock_irqsave(&io->endio_lock, flags); 594 if (!(io->error > 0 && __noflush_suspending(md))) 595 io->error = error; 596 spin_unlock_irqrestore(&io->endio_lock, flags); 597 } 598 599 if (atomic_dec_and_test(&io->io_count)) { 600 if (io->error == DM_ENDIO_REQUEUE) { 601 /* 602 * Target requested pushing back the I/O. 603 */ 604 spin_lock_irqsave(&md->deferred_lock, flags); 605 if (__noflush_suspending(md)) 606 bio_list_add_head(&md->deferred, io->bio); 607 else 608 /* noflush suspend was interrupted. */ 609 io->error = -EIO; 610 spin_unlock_irqrestore(&md->deferred_lock, flags); 611 } 612 613 io_error = io->error; 614 bio = io->bio; 615 end_io_acct(io); 616 free_io(md, io); 617 618 if (io_error == DM_ENDIO_REQUEUE) 619 return; 620 621 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 622 /* 623 * Preflush done for flush with data, reissue 624 * without REQ_FLUSH. 625 */ 626 bio->bi_rw &= ~REQ_FLUSH; 627 queue_io(md, bio); 628 } else { 629 /* done with normal IO or empty flush */ 630 trace_block_bio_complete(md->queue, bio, io_error); 631 bio_endio(bio, io_error); 632 } 633 } 634 } 635 636 static void clone_endio(struct bio *bio, int error) 637 { 638 int r = 0; 639 struct dm_target_io *tio = bio->bi_private; 640 struct dm_io *io = tio->io; 641 struct mapped_device *md = tio->io->md; 642 dm_endio_fn endio = tio->ti->type->end_io; 643 644 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 645 error = -EIO; 646 647 if (endio) { 648 r = endio(tio->ti, bio, error); 649 if (r < 0 || r == DM_ENDIO_REQUEUE) 650 /* 651 * error and requeue request are handled 652 * in dec_pending(). 653 */ 654 error = r; 655 else if (r == DM_ENDIO_INCOMPLETE) 656 /* The target will handle the io */ 657 return; 658 else if (r) { 659 DMWARN("unimplemented target endio return value: %d", r); 660 BUG(); 661 } 662 } 663 664 free_tio(md, tio); 665 dec_pending(io, error); 666 } 667 668 /* 669 * Partial completion handling for request-based dm 670 */ 671 static void end_clone_bio(struct bio *clone, int error) 672 { 673 struct dm_rq_clone_bio_info *info = clone->bi_private; 674 struct dm_rq_target_io *tio = info->tio; 675 struct bio *bio = info->orig; 676 unsigned int nr_bytes = info->orig->bi_size; 677 678 bio_put(clone); 679 680 if (tio->error) 681 /* 682 * An error has already been detected on the request. 683 * Once error occurred, just let clone->end_io() handle 684 * the remainder. 685 */ 686 return; 687 else if (error) { 688 /* 689 * Don't notice the error to the upper layer yet. 690 * The error handling decision is made by the target driver, 691 * when the request is completed. 692 */ 693 tio->error = error; 694 return; 695 } 696 697 /* 698 * I/O for the bio successfully completed. 699 * Notice the data completion to the upper layer. 700 */ 701 702 /* 703 * bios are processed from the head of the list. 704 * So the completing bio should always be rq->bio. 705 * If it's not, something wrong is happening. 706 */ 707 if (tio->orig->bio != bio) 708 DMERR("bio completion is going in the middle of the request"); 709 710 /* 711 * Update the original request. 712 * Do not use blk_end_request() here, because it may complete 713 * the original request before the clone, and break the ordering. 714 */ 715 blk_update_request(tio->orig, 0, nr_bytes); 716 } 717 718 /* 719 * Don't touch any member of the md after calling this function because 720 * the md may be freed in dm_put() at the end of this function. 721 * Or do dm_get() before calling this function and dm_put() later. 722 */ 723 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 724 { 725 atomic_dec(&md->pending[rw]); 726 727 /* nudge anyone waiting on suspend queue */ 728 if (!md_in_flight(md)) 729 wake_up(&md->wait); 730 731 /* 732 * Run this off this callpath, as drivers could invoke end_io while 733 * inside their request_fn (and holding the queue lock). Calling 734 * back into ->request_fn() could deadlock attempting to grab the 735 * queue lock again. 736 */ 737 if (run_queue) 738 blk_run_queue_async(md->queue); 739 740 /* 741 * dm_put() must be at the end of this function. See the comment above 742 */ 743 dm_put(md); 744 } 745 746 static void free_rq_clone(struct request *clone) 747 { 748 struct dm_rq_target_io *tio = clone->end_io_data; 749 750 blk_rq_unprep_clone(clone); 751 free_rq_tio(tio); 752 } 753 754 /* 755 * Complete the clone and the original request. 756 * Must be called without queue lock. 757 */ 758 static void dm_end_request(struct request *clone, int error) 759 { 760 int rw = rq_data_dir(clone); 761 struct dm_rq_target_io *tio = clone->end_io_data; 762 struct mapped_device *md = tio->md; 763 struct request *rq = tio->orig; 764 765 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 766 rq->errors = clone->errors; 767 rq->resid_len = clone->resid_len; 768 769 if (rq->sense) 770 /* 771 * We are using the sense buffer of the original 772 * request. 773 * So setting the length of the sense data is enough. 774 */ 775 rq->sense_len = clone->sense_len; 776 } 777 778 free_rq_clone(clone); 779 blk_end_request_all(rq, error); 780 rq_completed(md, rw, true); 781 } 782 783 static void dm_unprep_request(struct request *rq) 784 { 785 struct request *clone = rq->special; 786 787 rq->special = NULL; 788 rq->cmd_flags &= ~REQ_DONTPREP; 789 790 free_rq_clone(clone); 791 } 792 793 /* 794 * Requeue the original request of a clone. 795 */ 796 void dm_requeue_unmapped_request(struct request *clone) 797 { 798 int rw = rq_data_dir(clone); 799 struct dm_rq_target_io *tio = clone->end_io_data; 800 struct mapped_device *md = tio->md; 801 struct request *rq = tio->orig; 802 struct request_queue *q = rq->q; 803 unsigned long flags; 804 805 dm_unprep_request(rq); 806 807 spin_lock_irqsave(q->queue_lock, flags); 808 blk_requeue_request(q, rq); 809 spin_unlock_irqrestore(q->queue_lock, flags); 810 811 rq_completed(md, rw, 0); 812 } 813 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 814 815 static void __stop_queue(struct request_queue *q) 816 { 817 blk_stop_queue(q); 818 } 819 820 static void stop_queue(struct request_queue *q) 821 { 822 unsigned long flags; 823 824 spin_lock_irqsave(q->queue_lock, flags); 825 __stop_queue(q); 826 spin_unlock_irqrestore(q->queue_lock, flags); 827 } 828 829 static void __start_queue(struct request_queue *q) 830 { 831 if (blk_queue_stopped(q)) 832 blk_start_queue(q); 833 } 834 835 static void start_queue(struct request_queue *q) 836 { 837 unsigned long flags; 838 839 spin_lock_irqsave(q->queue_lock, flags); 840 __start_queue(q); 841 spin_unlock_irqrestore(q->queue_lock, flags); 842 } 843 844 static void dm_done(struct request *clone, int error, bool mapped) 845 { 846 int r = error; 847 struct dm_rq_target_io *tio = clone->end_io_data; 848 dm_request_endio_fn rq_end_io = NULL; 849 850 if (tio->ti) { 851 rq_end_io = tio->ti->type->rq_end_io; 852 853 if (mapped && rq_end_io) 854 r = rq_end_io(tio->ti, clone, error, &tio->info); 855 } 856 857 if (r <= 0) 858 /* The target wants to complete the I/O */ 859 dm_end_request(clone, r); 860 else if (r == DM_ENDIO_INCOMPLETE) 861 /* The target will handle the I/O */ 862 return; 863 else if (r == DM_ENDIO_REQUEUE) 864 /* The target wants to requeue the I/O */ 865 dm_requeue_unmapped_request(clone); 866 else { 867 DMWARN("unimplemented target endio return value: %d", r); 868 BUG(); 869 } 870 } 871 872 /* 873 * Request completion handler for request-based dm 874 */ 875 static void dm_softirq_done(struct request *rq) 876 { 877 bool mapped = true; 878 struct request *clone = rq->completion_data; 879 struct dm_rq_target_io *tio = clone->end_io_data; 880 881 if (rq->cmd_flags & REQ_FAILED) 882 mapped = false; 883 884 dm_done(clone, tio->error, mapped); 885 } 886 887 /* 888 * Complete the clone and the original request with the error status 889 * through softirq context. 890 */ 891 static void dm_complete_request(struct request *clone, int error) 892 { 893 struct dm_rq_target_io *tio = clone->end_io_data; 894 struct request *rq = tio->orig; 895 896 tio->error = error; 897 rq->completion_data = clone; 898 blk_complete_request(rq); 899 } 900 901 /* 902 * Complete the not-mapped clone and the original request with the error status 903 * through softirq context. 904 * Target's rq_end_io() function isn't called. 905 * This may be used when the target's map_rq() function fails. 906 */ 907 void dm_kill_unmapped_request(struct request *clone, int error) 908 { 909 struct dm_rq_target_io *tio = clone->end_io_data; 910 struct request *rq = tio->orig; 911 912 rq->cmd_flags |= REQ_FAILED; 913 dm_complete_request(clone, error); 914 } 915 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 916 917 /* 918 * Called with the queue lock held 919 */ 920 static void end_clone_request(struct request *clone, int error) 921 { 922 /* 923 * For just cleaning up the information of the queue in which 924 * the clone was dispatched. 925 * The clone is *NOT* freed actually here because it is alloced from 926 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 927 */ 928 __blk_put_request(clone->q, clone); 929 930 /* 931 * Actual request completion is done in a softirq context which doesn't 932 * hold the queue lock. Otherwise, deadlock could occur because: 933 * - another request may be submitted by the upper level driver 934 * of the stacking during the completion 935 * - the submission which requires queue lock may be done 936 * against this queue 937 */ 938 dm_complete_request(clone, error); 939 } 940 941 /* 942 * Return maximum size of I/O possible at the supplied sector up to the current 943 * target boundary. 944 */ 945 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 946 { 947 sector_t target_offset = dm_target_offset(ti, sector); 948 949 return ti->len - target_offset; 950 } 951 952 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 953 { 954 sector_t len = max_io_len_target_boundary(sector, ti); 955 sector_t offset, max_len; 956 957 /* 958 * Does the target need to split even further? 959 */ 960 if (ti->max_io_len) { 961 offset = dm_target_offset(ti, sector); 962 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 963 max_len = sector_div(offset, ti->max_io_len); 964 else 965 max_len = offset & (ti->max_io_len - 1); 966 max_len = ti->max_io_len - max_len; 967 968 if (len > max_len) 969 len = max_len; 970 } 971 972 return len; 973 } 974 975 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 976 { 977 if (len > UINT_MAX) { 978 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 979 (unsigned long long)len, UINT_MAX); 980 ti->error = "Maximum size of target IO is too large"; 981 return -EINVAL; 982 } 983 984 ti->max_io_len = (uint32_t) len; 985 986 return 0; 987 } 988 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 989 990 static void __map_bio(struct dm_target *ti, struct dm_target_io *tio) 991 { 992 int r; 993 sector_t sector; 994 struct mapped_device *md; 995 struct bio *clone = &tio->clone; 996 997 clone->bi_end_io = clone_endio; 998 clone->bi_private = tio; 999 1000 /* 1001 * Map the clone. If r == 0 we don't need to do 1002 * anything, the target has assumed ownership of 1003 * this io. 1004 */ 1005 atomic_inc(&tio->io->io_count); 1006 sector = clone->bi_sector; 1007 r = ti->type->map(ti, clone); 1008 if (r == DM_MAPIO_REMAPPED) { 1009 /* the bio has been remapped so dispatch it */ 1010 1011 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1012 tio->io->bio->bi_bdev->bd_dev, sector); 1013 1014 generic_make_request(clone); 1015 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1016 /* error the io and bail out, or requeue it if needed */ 1017 md = tio->io->md; 1018 dec_pending(tio->io, r); 1019 free_tio(md, tio); 1020 } else if (r) { 1021 DMWARN("unimplemented target map return value: %d", r); 1022 BUG(); 1023 } 1024 } 1025 1026 struct clone_info { 1027 struct mapped_device *md; 1028 struct dm_table *map; 1029 struct bio *bio; 1030 struct dm_io *io; 1031 sector_t sector; 1032 sector_t sector_count; 1033 unsigned short idx; 1034 }; 1035 1036 /* 1037 * Creates a little bio that just does part of a bvec. 1038 */ 1039 static void split_bvec(struct dm_target_io *tio, struct bio *bio, 1040 sector_t sector, unsigned short idx, unsigned int offset, 1041 unsigned int len, struct bio_set *bs) 1042 { 1043 struct bio *clone = &tio->clone; 1044 struct bio_vec *bv = bio->bi_io_vec + idx; 1045 1046 *clone->bi_io_vec = *bv; 1047 1048 clone->bi_sector = sector; 1049 clone->bi_bdev = bio->bi_bdev; 1050 clone->bi_rw = bio->bi_rw; 1051 clone->bi_vcnt = 1; 1052 clone->bi_size = to_bytes(len); 1053 clone->bi_io_vec->bv_offset = offset; 1054 clone->bi_io_vec->bv_len = clone->bi_size; 1055 clone->bi_flags |= 1 << BIO_CLONED; 1056 1057 if (bio_integrity(bio)) { 1058 bio_integrity_clone(clone, bio, GFP_NOIO); 1059 bio_integrity_trim(clone, 1060 bio_sector_offset(bio, idx, offset), len); 1061 } 1062 } 1063 1064 /* 1065 * Creates a bio that consists of range of complete bvecs. 1066 */ 1067 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1068 sector_t sector, unsigned short idx, 1069 unsigned short bv_count, unsigned int len, 1070 struct bio_set *bs) 1071 { 1072 struct bio *clone = &tio->clone; 1073 1074 __bio_clone(clone, bio); 1075 clone->bi_sector = sector; 1076 clone->bi_idx = idx; 1077 clone->bi_vcnt = idx + bv_count; 1078 clone->bi_size = to_bytes(len); 1079 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 1080 1081 if (bio_integrity(bio)) { 1082 bio_integrity_clone(clone, bio, GFP_NOIO); 1083 1084 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1085 bio_integrity_trim(clone, 1086 bio_sector_offset(bio, idx, 0), len); 1087 } 1088 } 1089 1090 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1091 struct dm_target *ti, int nr_iovecs) 1092 { 1093 struct dm_target_io *tio; 1094 struct bio *clone; 1095 1096 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs); 1097 tio = container_of(clone, struct dm_target_io, clone); 1098 1099 tio->io = ci->io; 1100 tio->ti = ti; 1101 memset(&tio->info, 0, sizeof(tio->info)); 1102 tio->target_request_nr = 0; 1103 1104 return tio; 1105 } 1106 1107 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti, 1108 unsigned request_nr, sector_t len) 1109 { 1110 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs); 1111 struct bio *clone = &tio->clone; 1112 1113 tio->target_request_nr = request_nr; 1114 1115 /* 1116 * Discard requests require the bio's inline iovecs be initialized. 1117 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1118 * and discard, so no need for concern about wasted bvec allocations. 1119 */ 1120 1121 __bio_clone(clone, ci->bio); 1122 if (len) { 1123 clone->bi_sector = ci->sector; 1124 clone->bi_size = to_bytes(len); 1125 } 1126 1127 __map_bio(ti, tio); 1128 } 1129 1130 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti, 1131 unsigned num_requests, sector_t len) 1132 { 1133 unsigned request_nr; 1134 1135 for (request_nr = 0; request_nr < num_requests; request_nr++) 1136 __issue_target_request(ci, ti, request_nr, len); 1137 } 1138 1139 static int __clone_and_map_empty_flush(struct clone_info *ci) 1140 { 1141 unsigned target_nr = 0; 1142 struct dm_target *ti; 1143 1144 BUG_ON(bio_has_data(ci->bio)); 1145 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1146 __issue_target_requests(ci, ti, ti->num_flush_requests, 0); 1147 1148 return 0; 1149 } 1150 1151 /* 1152 * Perform all io with a single clone. 1153 */ 1154 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti) 1155 { 1156 struct bio *bio = ci->bio; 1157 struct dm_target_io *tio; 1158 1159 tio = alloc_tio(ci, ti, bio->bi_max_vecs); 1160 clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx, 1161 ci->sector_count, ci->md->bs); 1162 __map_bio(ti, tio); 1163 ci->sector_count = 0; 1164 } 1165 1166 typedef unsigned (*get_num_requests_fn)(struct dm_target *ti); 1167 1168 static unsigned get_num_discard_requests(struct dm_target *ti) 1169 { 1170 return ti->num_discard_requests; 1171 } 1172 1173 static unsigned get_num_write_same_requests(struct dm_target *ti) 1174 { 1175 return ti->num_write_same_requests; 1176 } 1177 1178 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1179 1180 static bool is_split_required_for_discard(struct dm_target *ti) 1181 { 1182 return ti->split_discard_requests; 1183 } 1184 1185 static int __clone_and_map_changing_extent_only(struct clone_info *ci, 1186 get_num_requests_fn get_num_requests, 1187 is_split_required_fn is_split_required) 1188 { 1189 struct dm_target *ti; 1190 sector_t len; 1191 1192 do { 1193 ti = dm_table_find_target(ci->map, ci->sector); 1194 if (!dm_target_is_valid(ti)) 1195 return -EIO; 1196 1197 /* 1198 * Even though the device advertised support for this type of 1199 * request, that does not mean every target supports it, and 1200 * reconfiguration might also have changed that since the 1201 * check was performed. 1202 */ 1203 if (!get_num_requests || !get_num_requests(ti)) 1204 return -EOPNOTSUPP; 1205 1206 if (is_split_required && !is_split_required(ti)) 1207 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1208 else 1209 len = min(ci->sector_count, max_io_len(ci->sector, ti)); 1210 1211 __issue_target_requests(ci, ti, ti->num_discard_requests, len); 1212 1213 ci->sector += len; 1214 } while (ci->sector_count -= len); 1215 1216 return 0; 1217 } 1218 1219 static int __clone_and_map_discard(struct clone_info *ci) 1220 { 1221 return __clone_and_map_changing_extent_only(ci, get_num_discard_requests, 1222 is_split_required_for_discard); 1223 } 1224 1225 static int __clone_and_map_write_same(struct clone_info *ci) 1226 { 1227 return __clone_and_map_changing_extent_only(ci, get_num_write_same_requests, NULL); 1228 } 1229 1230 static int __clone_and_map(struct clone_info *ci) 1231 { 1232 struct bio *bio = ci->bio; 1233 struct dm_target *ti; 1234 sector_t len = 0, max; 1235 struct dm_target_io *tio; 1236 1237 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1238 return __clone_and_map_discard(ci); 1239 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1240 return __clone_and_map_write_same(ci); 1241 1242 ti = dm_table_find_target(ci->map, ci->sector); 1243 if (!dm_target_is_valid(ti)) 1244 return -EIO; 1245 1246 max = max_io_len(ci->sector, ti); 1247 1248 if (ci->sector_count <= max) { 1249 /* 1250 * Optimise for the simple case where we can do all of 1251 * the remaining io with a single clone. 1252 */ 1253 __clone_and_map_simple(ci, ti); 1254 1255 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1256 /* 1257 * There are some bvecs that don't span targets. 1258 * Do as many of these as possible. 1259 */ 1260 int i; 1261 sector_t remaining = max; 1262 sector_t bv_len; 1263 1264 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1265 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1266 1267 if (bv_len > remaining) 1268 break; 1269 1270 remaining -= bv_len; 1271 len += bv_len; 1272 } 1273 1274 tio = alloc_tio(ci, ti, bio->bi_max_vecs); 1275 clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len, 1276 ci->md->bs); 1277 __map_bio(ti, tio); 1278 1279 ci->sector += len; 1280 ci->sector_count -= len; 1281 ci->idx = i; 1282 1283 } else { 1284 /* 1285 * Handle a bvec that must be split between two or more targets. 1286 */ 1287 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1288 sector_t remaining = to_sector(bv->bv_len); 1289 unsigned int offset = 0; 1290 1291 do { 1292 if (offset) { 1293 ti = dm_table_find_target(ci->map, ci->sector); 1294 if (!dm_target_is_valid(ti)) 1295 return -EIO; 1296 1297 max = max_io_len(ci->sector, ti); 1298 } 1299 1300 len = min(remaining, max); 1301 1302 tio = alloc_tio(ci, ti, 1); 1303 split_bvec(tio, bio, ci->sector, ci->idx, 1304 bv->bv_offset + offset, len, ci->md->bs); 1305 1306 __map_bio(ti, tio); 1307 1308 ci->sector += len; 1309 ci->sector_count -= len; 1310 offset += to_bytes(len); 1311 } while (remaining -= len); 1312 1313 ci->idx++; 1314 } 1315 1316 return 0; 1317 } 1318 1319 /* 1320 * Split the bio into several clones and submit it to targets. 1321 */ 1322 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1323 { 1324 struct clone_info ci; 1325 int error = 0; 1326 1327 ci.map = dm_get_live_table(md); 1328 if (unlikely(!ci.map)) { 1329 bio_io_error(bio); 1330 return; 1331 } 1332 1333 ci.md = md; 1334 ci.io = alloc_io(md); 1335 ci.io->error = 0; 1336 atomic_set(&ci.io->io_count, 1); 1337 ci.io->bio = bio; 1338 ci.io->md = md; 1339 spin_lock_init(&ci.io->endio_lock); 1340 ci.sector = bio->bi_sector; 1341 ci.idx = bio->bi_idx; 1342 1343 start_io_acct(ci.io); 1344 if (bio->bi_rw & REQ_FLUSH) { 1345 ci.bio = &ci.md->flush_bio; 1346 ci.sector_count = 0; 1347 error = __clone_and_map_empty_flush(&ci); 1348 /* dec_pending submits any data associated with flush */ 1349 } else { 1350 ci.bio = bio; 1351 ci.sector_count = bio_sectors(bio); 1352 while (ci.sector_count && !error) 1353 error = __clone_and_map(&ci); 1354 } 1355 1356 /* drop the extra reference count */ 1357 dec_pending(ci.io, error); 1358 dm_table_put(ci.map); 1359 } 1360 /*----------------------------------------------------------------- 1361 * CRUD END 1362 *---------------------------------------------------------------*/ 1363 1364 static int dm_merge_bvec(struct request_queue *q, 1365 struct bvec_merge_data *bvm, 1366 struct bio_vec *biovec) 1367 { 1368 struct mapped_device *md = q->queuedata; 1369 struct dm_table *map = dm_get_live_table(md); 1370 struct dm_target *ti; 1371 sector_t max_sectors; 1372 int max_size = 0; 1373 1374 if (unlikely(!map)) 1375 goto out; 1376 1377 ti = dm_table_find_target(map, bvm->bi_sector); 1378 if (!dm_target_is_valid(ti)) 1379 goto out_table; 1380 1381 /* 1382 * Find maximum amount of I/O that won't need splitting 1383 */ 1384 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1385 (sector_t) BIO_MAX_SECTORS); 1386 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1387 if (max_size < 0) 1388 max_size = 0; 1389 1390 /* 1391 * merge_bvec_fn() returns number of bytes 1392 * it can accept at this offset 1393 * max is precomputed maximal io size 1394 */ 1395 if (max_size && ti->type->merge) 1396 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1397 /* 1398 * If the target doesn't support merge method and some of the devices 1399 * provided their merge_bvec method (we know this by looking at 1400 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1401 * entries. So always set max_size to 0, and the code below allows 1402 * just one page. 1403 */ 1404 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1405 1406 max_size = 0; 1407 1408 out_table: 1409 dm_table_put(map); 1410 1411 out: 1412 /* 1413 * Always allow an entire first page 1414 */ 1415 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1416 max_size = biovec->bv_len; 1417 1418 return max_size; 1419 } 1420 1421 /* 1422 * The request function that just remaps the bio built up by 1423 * dm_merge_bvec. 1424 */ 1425 static void _dm_request(struct request_queue *q, struct bio *bio) 1426 { 1427 int rw = bio_data_dir(bio); 1428 struct mapped_device *md = q->queuedata; 1429 int cpu; 1430 1431 down_read(&md->io_lock); 1432 1433 cpu = part_stat_lock(); 1434 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1435 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1436 part_stat_unlock(); 1437 1438 /* if we're suspended, we have to queue this io for later */ 1439 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1440 up_read(&md->io_lock); 1441 1442 if (bio_rw(bio) != READA) 1443 queue_io(md, bio); 1444 else 1445 bio_io_error(bio); 1446 return; 1447 } 1448 1449 __split_and_process_bio(md, bio); 1450 up_read(&md->io_lock); 1451 return; 1452 } 1453 1454 static int dm_request_based(struct mapped_device *md) 1455 { 1456 return blk_queue_stackable(md->queue); 1457 } 1458 1459 static void dm_request(struct request_queue *q, struct bio *bio) 1460 { 1461 struct mapped_device *md = q->queuedata; 1462 1463 if (dm_request_based(md)) 1464 blk_queue_bio(q, bio); 1465 else 1466 _dm_request(q, bio); 1467 } 1468 1469 void dm_dispatch_request(struct request *rq) 1470 { 1471 int r; 1472 1473 if (blk_queue_io_stat(rq->q)) 1474 rq->cmd_flags |= REQ_IO_STAT; 1475 1476 rq->start_time = jiffies; 1477 r = blk_insert_cloned_request(rq->q, rq); 1478 if (r) 1479 dm_complete_request(rq, r); 1480 } 1481 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1482 1483 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1484 void *data) 1485 { 1486 struct dm_rq_target_io *tio = data; 1487 struct dm_rq_clone_bio_info *info = 1488 container_of(bio, struct dm_rq_clone_bio_info, clone); 1489 1490 info->orig = bio_orig; 1491 info->tio = tio; 1492 bio->bi_end_io = end_clone_bio; 1493 bio->bi_private = info; 1494 1495 return 0; 1496 } 1497 1498 static int setup_clone(struct request *clone, struct request *rq, 1499 struct dm_rq_target_io *tio) 1500 { 1501 int r; 1502 1503 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1504 dm_rq_bio_constructor, tio); 1505 if (r) 1506 return r; 1507 1508 clone->cmd = rq->cmd; 1509 clone->cmd_len = rq->cmd_len; 1510 clone->sense = rq->sense; 1511 clone->buffer = rq->buffer; 1512 clone->end_io = end_clone_request; 1513 clone->end_io_data = tio; 1514 1515 return 0; 1516 } 1517 1518 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1519 gfp_t gfp_mask) 1520 { 1521 struct request *clone; 1522 struct dm_rq_target_io *tio; 1523 1524 tio = alloc_rq_tio(md, gfp_mask); 1525 if (!tio) 1526 return NULL; 1527 1528 tio->md = md; 1529 tio->ti = NULL; 1530 tio->orig = rq; 1531 tio->error = 0; 1532 memset(&tio->info, 0, sizeof(tio->info)); 1533 1534 clone = &tio->clone; 1535 if (setup_clone(clone, rq, tio)) { 1536 /* -ENOMEM */ 1537 free_rq_tio(tio); 1538 return NULL; 1539 } 1540 1541 return clone; 1542 } 1543 1544 /* 1545 * Called with the queue lock held. 1546 */ 1547 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1548 { 1549 struct mapped_device *md = q->queuedata; 1550 struct request *clone; 1551 1552 if (unlikely(rq->special)) { 1553 DMWARN("Already has something in rq->special."); 1554 return BLKPREP_KILL; 1555 } 1556 1557 clone = clone_rq(rq, md, GFP_ATOMIC); 1558 if (!clone) 1559 return BLKPREP_DEFER; 1560 1561 rq->special = clone; 1562 rq->cmd_flags |= REQ_DONTPREP; 1563 1564 return BLKPREP_OK; 1565 } 1566 1567 /* 1568 * Returns: 1569 * 0 : the request has been processed (not requeued) 1570 * !0 : the request has been requeued 1571 */ 1572 static int map_request(struct dm_target *ti, struct request *clone, 1573 struct mapped_device *md) 1574 { 1575 int r, requeued = 0; 1576 struct dm_rq_target_io *tio = clone->end_io_data; 1577 1578 tio->ti = ti; 1579 r = ti->type->map_rq(ti, clone, &tio->info); 1580 switch (r) { 1581 case DM_MAPIO_SUBMITTED: 1582 /* The target has taken the I/O to submit by itself later */ 1583 break; 1584 case DM_MAPIO_REMAPPED: 1585 /* The target has remapped the I/O so dispatch it */ 1586 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1587 blk_rq_pos(tio->orig)); 1588 dm_dispatch_request(clone); 1589 break; 1590 case DM_MAPIO_REQUEUE: 1591 /* The target wants to requeue the I/O */ 1592 dm_requeue_unmapped_request(clone); 1593 requeued = 1; 1594 break; 1595 default: 1596 if (r > 0) { 1597 DMWARN("unimplemented target map return value: %d", r); 1598 BUG(); 1599 } 1600 1601 /* The target wants to complete the I/O */ 1602 dm_kill_unmapped_request(clone, r); 1603 break; 1604 } 1605 1606 return requeued; 1607 } 1608 1609 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1610 { 1611 struct request *clone; 1612 1613 blk_start_request(orig); 1614 clone = orig->special; 1615 atomic_inc(&md->pending[rq_data_dir(clone)]); 1616 1617 /* 1618 * Hold the md reference here for the in-flight I/O. 1619 * We can't rely on the reference count by device opener, 1620 * because the device may be closed during the request completion 1621 * when all bios are completed. 1622 * See the comment in rq_completed() too. 1623 */ 1624 dm_get(md); 1625 1626 return clone; 1627 } 1628 1629 /* 1630 * q->request_fn for request-based dm. 1631 * Called with the queue lock held. 1632 */ 1633 static void dm_request_fn(struct request_queue *q) 1634 { 1635 struct mapped_device *md = q->queuedata; 1636 struct dm_table *map = dm_get_live_table(md); 1637 struct dm_target *ti; 1638 struct request *rq, *clone; 1639 sector_t pos; 1640 1641 /* 1642 * For suspend, check blk_queue_stopped() and increment 1643 * ->pending within a single queue_lock not to increment the 1644 * number of in-flight I/Os after the queue is stopped in 1645 * dm_suspend(). 1646 */ 1647 while (!blk_queue_stopped(q)) { 1648 rq = blk_peek_request(q); 1649 if (!rq) 1650 goto delay_and_out; 1651 1652 /* always use block 0 to find the target for flushes for now */ 1653 pos = 0; 1654 if (!(rq->cmd_flags & REQ_FLUSH)) 1655 pos = blk_rq_pos(rq); 1656 1657 ti = dm_table_find_target(map, pos); 1658 if (!dm_target_is_valid(ti)) { 1659 /* 1660 * Must perform setup, that dm_done() requires, 1661 * before calling dm_kill_unmapped_request 1662 */ 1663 DMERR_LIMIT("request attempted access beyond the end of device"); 1664 clone = dm_start_request(md, rq); 1665 dm_kill_unmapped_request(clone, -EIO); 1666 continue; 1667 } 1668 1669 if (ti->type->busy && ti->type->busy(ti)) 1670 goto delay_and_out; 1671 1672 clone = dm_start_request(md, rq); 1673 1674 spin_unlock(q->queue_lock); 1675 if (map_request(ti, clone, md)) 1676 goto requeued; 1677 1678 BUG_ON(!irqs_disabled()); 1679 spin_lock(q->queue_lock); 1680 } 1681 1682 goto out; 1683 1684 requeued: 1685 BUG_ON(!irqs_disabled()); 1686 spin_lock(q->queue_lock); 1687 1688 delay_and_out: 1689 blk_delay_queue(q, HZ / 10); 1690 out: 1691 dm_table_put(map); 1692 } 1693 1694 int dm_underlying_device_busy(struct request_queue *q) 1695 { 1696 return blk_lld_busy(q); 1697 } 1698 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1699 1700 static int dm_lld_busy(struct request_queue *q) 1701 { 1702 int r; 1703 struct mapped_device *md = q->queuedata; 1704 struct dm_table *map = dm_get_live_table(md); 1705 1706 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1707 r = 1; 1708 else 1709 r = dm_table_any_busy_target(map); 1710 1711 dm_table_put(map); 1712 1713 return r; 1714 } 1715 1716 static int dm_any_congested(void *congested_data, int bdi_bits) 1717 { 1718 int r = bdi_bits; 1719 struct mapped_device *md = congested_data; 1720 struct dm_table *map; 1721 1722 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1723 map = dm_get_live_table(md); 1724 if (map) { 1725 /* 1726 * Request-based dm cares about only own queue for 1727 * the query about congestion status of request_queue 1728 */ 1729 if (dm_request_based(md)) 1730 r = md->queue->backing_dev_info.state & 1731 bdi_bits; 1732 else 1733 r = dm_table_any_congested(map, bdi_bits); 1734 1735 dm_table_put(map); 1736 } 1737 } 1738 1739 return r; 1740 } 1741 1742 /*----------------------------------------------------------------- 1743 * An IDR is used to keep track of allocated minor numbers. 1744 *---------------------------------------------------------------*/ 1745 static void free_minor(int minor) 1746 { 1747 spin_lock(&_minor_lock); 1748 idr_remove(&_minor_idr, minor); 1749 spin_unlock(&_minor_lock); 1750 } 1751 1752 /* 1753 * See if the device with a specific minor # is free. 1754 */ 1755 static int specific_minor(int minor) 1756 { 1757 int r, m; 1758 1759 if (minor >= (1 << MINORBITS)) 1760 return -EINVAL; 1761 1762 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1763 if (!r) 1764 return -ENOMEM; 1765 1766 spin_lock(&_minor_lock); 1767 1768 if (idr_find(&_minor_idr, minor)) { 1769 r = -EBUSY; 1770 goto out; 1771 } 1772 1773 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1774 if (r) 1775 goto out; 1776 1777 if (m != minor) { 1778 idr_remove(&_minor_idr, m); 1779 r = -EBUSY; 1780 goto out; 1781 } 1782 1783 out: 1784 spin_unlock(&_minor_lock); 1785 return r; 1786 } 1787 1788 static int next_free_minor(int *minor) 1789 { 1790 int r, m; 1791 1792 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1793 if (!r) 1794 return -ENOMEM; 1795 1796 spin_lock(&_minor_lock); 1797 1798 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1799 if (r) 1800 goto out; 1801 1802 if (m >= (1 << MINORBITS)) { 1803 idr_remove(&_minor_idr, m); 1804 r = -ENOSPC; 1805 goto out; 1806 } 1807 1808 *minor = m; 1809 1810 out: 1811 spin_unlock(&_minor_lock); 1812 return r; 1813 } 1814 1815 static const struct block_device_operations dm_blk_dops; 1816 1817 static void dm_wq_work(struct work_struct *work); 1818 1819 static void dm_init_md_queue(struct mapped_device *md) 1820 { 1821 /* 1822 * Request-based dm devices cannot be stacked on top of bio-based dm 1823 * devices. The type of this dm device has not been decided yet. 1824 * The type is decided at the first table loading time. 1825 * To prevent problematic device stacking, clear the queue flag 1826 * for request stacking support until then. 1827 * 1828 * This queue is new, so no concurrency on the queue_flags. 1829 */ 1830 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1831 1832 md->queue->queuedata = md; 1833 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1834 md->queue->backing_dev_info.congested_data = md; 1835 blk_queue_make_request(md->queue, dm_request); 1836 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1837 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1838 } 1839 1840 /* 1841 * Allocate and initialise a blank device with a given minor. 1842 */ 1843 static struct mapped_device *alloc_dev(int minor) 1844 { 1845 int r; 1846 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1847 void *old_md; 1848 1849 if (!md) { 1850 DMWARN("unable to allocate device, out of memory."); 1851 return NULL; 1852 } 1853 1854 if (!try_module_get(THIS_MODULE)) 1855 goto bad_module_get; 1856 1857 /* get a minor number for the dev */ 1858 if (minor == DM_ANY_MINOR) 1859 r = next_free_minor(&minor); 1860 else 1861 r = specific_minor(minor); 1862 if (r < 0) 1863 goto bad_minor; 1864 1865 md->type = DM_TYPE_NONE; 1866 init_rwsem(&md->io_lock); 1867 mutex_init(&md->suspend_lock); 1868 mutex_init(&md->type_lock); 1869 spin_lock_init(&md->deferred_lock); 1870 rwlock_init(&md->map_lock); 1871 atomic_set(&md->holders, 1); 1872 atomic_set(&md->open_count, 0); 1873 atomic_set(&md->event_nr, 0); 1874 atomic_set(&md->uevent_seq, 0); 1875 INIT_LIST_HEAD(&md->uevent_list); 1876 spin_lock_init(&md->uevent_lock); 1877 1878 md->queue = blk_alloc_queue(GFP_KERNEL); 1879 if (!md->queue) 1880 goto bad_queue; 1881 1882 dm_init_md_queue(md); 1883 1884 md->disk = alloc_disk(1); 1885 if (!md->disk) 1886 goto bad_disk; 1887 1888 atomic_set(&md->pending[0], 0); 1889 atomic_set(&md->pending[1], 0); 1890 init_waitqueue_head(&md->wait); 1891 INIT_WORK(&md->work, dm_wq_work); 1892 init_waitqueue_head(&md->eventq); 1893 1894 md->disk->major = _major; 1895 md->disk->first_minor = minor; 1896 md->disk->fops = &dm_blk_dops; 1897 md->disk->queue = md->queue; 1898 md->disk->private_data = md; 1899 sprintf(md->disk->disk_name, "dm-%d", minor); 1900 add_disk(md->disk); 1901 format_dev_t(md->name, MKDEV(_major, minor)); 1902 1903 md->wq = alloc_workqueue("kdmflush", 1904 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1905 if (!md->wq) 1906 goto bad_thread; 1907 1908 md->bdev = bdget_disk(md->disk, 0); 1909 if (!md->bdev) 1910 goto bad_bdev; 1911 1912 bio_init(&md->flush_bio); 1913 md->flush_bio.bi_bdev = md->bdev; 1914 md->flush_bio.bi_rw = WRITE_FLUSH; 1915 1916 /* Populate the mapping, nobody knows we exist yet */ 1917 spin_lock(&_minor_lock); 1918 old_md = idr_replace(&_minor_idr, md, minor); 1919 spin_unlock(&_minor_lock); 1920 1921 BUG_ON(old_md != MINOR_ALLOCED); 1922 1923 return md; 1924 1925 bad_bdev: 1926 destroy_workqueue(md->wq); 1927 bad_thread: 1928 del_gendisk(md->disk); 1929 put_disk(md->disk); 1930 bad_disk: 1931 blk_cleanup_queue(md->queue); 1932 bad_queue: 1933 free_minor(minor); 1934 bad_minor: 1935 module_put(THIS_MODULE); 1936 bad_module_get: 1937 kfree(md); 1938 return NULL; 1939 } 1940 1941 static void unlock_fs(struct mapped_device *md); 1942 1943 static void free_dev(struct mapped_device *md) 1944 { 1945 int minor = MINOR(disk_devt(md->disk)); 1946 1947 unlock_fs(md); 1948 bdput(md->bdev); 1949 destroy_workqueue(md->wq); 1950 if (md->tio_pool) 1951 mempool_destroy(md->tio_pool); 1952 if (md->io_pool) 1953 mempool_destroy(md->io_pool); 1954 if (md->bs) 1955 bioset_free(md->bs); 1956 blk_integrity_unregister(md->disk); 1957 del_gendisk(md->disk); 1958 free_minor(minor); 1959 1960 spin_lock(&_minor_lock); 1961 md->disk->private_data = NULL; 1962 spin_unlock(&_minor_lock); 1963 1964 put_disk(md->disk); 1965 blk_cleanup_queue(md->queue); 1966 module_put(THIS_MODULE); 1967 kfree(md); 1968 } 1969 1970 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1971 { 1972 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1973 1974 if (md->io_pool && (md->tio_pool || dm_table_get_type(t) == DM_TYPE_BIO_BASED) && md->bs) { 1975 /* 1976 * The md already has necessary mempools. Reload just the 1977 * bioset because front_pad may have changed because 1978 * a different table was loaded. 1979 */ 1980 bioset_free(md->bs); 1981 md->bs = p->bs; 1982 p->bs = NULL; 1983 goto out; 1984 } 1985 1986 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1987 1988 md->io_pool = p->io_pool; 1989 p->io_pool = NULL; 1990 md->tio_pool = p->tio_pool; 1991 p->tio_pool = NULL; 1992 md->bs = p->bs; 1993 p->bs = NULL; 1994 1995 out: 1996 /* mempool bind completed, now no need any mempools in the table */ 1997 dm_table_free_md_mempools(t); 1998 } 1999 2000 /* 2001 * Bind a table to the device. 2002 */ 2003 static void event_callback(void *context) 2004 { 2005 unsigned long flags; 2006 LIST_HEAD(uevents); 2007 struct mapped_device *md = (struct mapped_device *) context; 2008 2009 spin_lock_irqsave(&md->uevent_lock, flags); 2010 list_splice_init(&md->uevent_list, &uevents); 2011 spin_unlock_irqrestore(&md->uevent_lock, flags); 2012 2013 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2014 2015 atomic_inc(&md->event_nr); 2016 wake_up(&md->eventq); 2017 } 2018 2019 /* 2020 * Protected by md->suspend_lock obtained by dm_swap_table(). 2021 */ 2022 static void __set_size(struct mapped_device *md, sector_t size) 2023 { 2024 set_capacity(md->disk, size); 2025 2026 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2027 } 2028 2029 /* 2030 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2031 * 2032 * If this function returns 0, then the device is either a non-dm 2033 * device without a merge_bvec_fn, or it is a dm device that is 2034 * able to split any bios it receives that are too big. 2035 */ 2036 int dm_queue_merge_is_compulsory(struct request_queue *q) 2037 { 2038 struct mapped_device *dev_md; 2039 2040 if (!q->merge_bvec_fn) 2041 return 0; 2042 2043 if (q->make_request_fn == dm_request) { 2044 dev_md = q->queuedata; 2045 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2046 return 0; 2047 } 2048 2049 return 1; 2050 } 2051 2052 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2053 struct dm_dev *dev, sector_t start, 2054 sector_t len, void *data) 2055 { 2056 struct block_device *bdev = dev->bdev; 2057 struct request_queue *q = bdev_get_queue(bdev); 2058 2059 return dm_queue_merge_is_compulsory(q); 2060 } 2061 2062 /* 2063 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2064 * on the properties of the underlying devices. 2065 */ 2066 static int dm_table_merge_is_optional(struct dm_table *table) 2067 { 2068 unsigned i = 0; 2069 struct dm_target *ti; 2070 2071 while (i < dm_table_get_num_targets(table)) { 2072 ti = dm_table_get_target(table, i++); 2073 2074 if (ti->type->iterate_devices && 2075 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2076 return 0; 2077 } 2078 2079 return 1; 2080 } 2081 2082 /* 2083 * Returns old map, which caller must destroy. 2084 */ 2085 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2086 struct queue_limits *limits) 2087 { 2088 struct dm_table *old_map; 2089 struct request_queue *q = md->queue; 2090 sector_t size; 2091 unsigned long flags; 2092 int merge_is_optional; 2093 2094 size = dm_table_get_size(t); 2095 2096 /* 2097 * Wipe any geometry if the size of the table changed. 2098 */ 2099 if (size != get_capacity(md->disk)) 2100 memset(&md->geometry, 0, sizeof(md->geometry)); 2101 2102 __set_size(md, size); 2103 2104 dm_table_event_callback(t, event_callback, md); 2105 2106 /* 2107 * The queue hasn't been stopped yet, if the old table type wasn't 2108 * for request-based during suspension. So stop it to prevent 2109 * I/O mapping before resume. 2110 * This must be done before setting the queue restrictions, 2111 * because request-based dm may be run just after the setting. 2112 */ 2113 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2114 stop_queue(q); 2115 2116 __bind_mempools(md, t); 2117 2118 merge_is_optional = dm_table_merge_is_optional(t); 2119 2120 write_lock_irqsave(&md->map_lock, flags); 2121 old_map = md->map; 2122 md->map = t; 2123 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2124 2125 dm_table_set_restrictions(t, q, limits); 2126 if (merge_is_optional) 2127 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2128 else 2129 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2130 write_unlock_irqrestore(&md->map_lock, flags); 2131 2132 return old_map; 2133 } 2134 2135 /* 2136 * Returns unbound table for the caller to free. 2137 */ 2138 static struct dm_table *__unbind(struct mapped_device *md) 2139 { 2140 struct dm_table *map = md->map; 2141 unsigned long flags; 2142 2143 if (!map) 2144 return NULL; 2145 2146 dm_table_event_callback(map, NULL, NULL); 2147 write_lock_irqsave(&md->map_lock, flags); 2148 md->map = NULL; 2149 write_unlock_irqrestore(&md->map_lock, flags); 2150 2151 return map; 2152 } 2153 2154 /* 2155 * Constructor for a new device. 2156 */ 2157 int dm_create(int minor, struct mapped_device **result) 2158 { 2159 struct mapped_device *md; 2160 2161 md = alloc_dev(minor); 2162 if (!md) 2163 return -ENXIO; 2164 2165 dm_sysfs_init(md); 2166 2167 *result = md; 2168 return 0; 2169 } 2170 2171 /* 2172 * Functions to manage md->type. 2173 * All are required to hold md->type_lock. 2174 */ 2175 void dm_lock_md_type(struct mapped_device *md) 2176 { 2177 mutex_lock(&md->type_lock); 2178 } 2179 2180 void dm_unlock_md_type(struct mapped_device *md) 2181 { 2182 mutex_unlock(&md->type_lock); 2183 } 2184 2185 void dm_set_md_type(struct mapped_device *md, unsigned type) 2186 { 2187 md->type = type; 2188 } 2189 2190 unsigned dm_get_md_type(struct mapped_device *md) 2191 { 2192 return md->type; 2193 } 2194 2195 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2196 { 2197 return md->immutable_target_type; 2198 } 2199 2200 /* 2201 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2202 */ 2203 static int dm_init_request_based_queue(struct mapped_device *md) 2204 { 2205 struct request_queue *q = NULL; 2206 2207 if (md->queue->elevator) 2208 return 1; 2209 2210 /* Fully initialize the queue */ 2211 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2212 if (!q) 2213 return 0; 2214 2215 md->queue = q; 2216 dm_init_md_queue(md); 2217 blk_queue_softirq_done(md->queue, dm_softirq_done); 2218 blk_queue_prep_rq(md->queue, dm_prep_fn); 2219 blk_queue_lld_busy(md->queue, dm_lld_busy); 2220 2221 elv_register_queue(md->queue); 2222 2223 return 1; 2224 } 2225 2226 /* 2227 * Setup the DM device's queue based on md's type 2228 */ 2229 int dm_setup_md_queue(struct mapped_device *md) 2230 { 2231 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2232 !dm_init_request_based_queue(md)) { 2233 DMWARN("Cannot initialize queue for request-based mapped device"); 2234 return -EINVAL; 2235 } 2236 2237 return 0; 2238 } 2239 2240 static struct mapped_device *dm_find_md(dev_t dev) 2241 { 2242 struct mapped_device *md; 2243 unsigned minor = MINOR(dev); 2244 2245 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2246 return NULL; 2247 2248 spin_lock(&_minor_lock); 2249 2250 md = idr_find(&_minor_idr, minor); 2251 if (md && (md == MINOR_ALLOCED || 2252 (MINOR(disk_devt(dm_disk(md))) != minor) || 2253 dm_deleting_md(md) || 2254 test_bit(DMF_FREEING, &md->flags))) { 2255 md = NULL; 2256 goto out; 2257 } 2258 2259 out: 2260 spin_unlock(&_minor_lock); 2261 2262 return md; 2263 } 2264 2265 struct mapped_device *dm_get_md(dev_t dev) 2266 { 2267 struct mapped_device *md = dm_find_md(dev); 2268 2269 if (md) 2270 dm_get(md); 2271 2272 return md; 2273 } 2274 EXPORT_SYMBOL_GPL(dm_get_md); 2275 2276 void *dm_get_mdptr(struct mapped_device *md) 2277 { 2278 return md->interface_ptr; 2279 } 2280 2281 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2282 { 2283 md->interface_ptr = ptr; 2284 } 2285 2286 void dm_get(struct mapped_device *md) 2287 { 2288 atomic_inc(&md->holders); 2289 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2290 } 2291 2292 const char *dm_device_name(struct mapped_device *md) 2293 { 2294 return md->name; 2295 } 2296 EXPORT_SYMBOL_GPL(dm_device_name); 2297 2298 static void __dm_destroy(struct mapped_device *md, bool wait) 2299 { 2300 struct dm_table *map; 2301 2302 might_sleep(); 2303 2304 spin_lock(&_minor_lock); 2305 map = dm_get_live_table(md); 2306 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2307 set_bit(DMF_FREEING, &md->flags); 2308 spin_unlock(&_minor_lock); 2309 2310 if (!dm_suspended_md(md)) { 2311 dm_table_presuspend_targets(map); 2312 dm_table_postsuspend_targets(map); 2313 } 2314 2315 /* 2316 * Rare, but there may be I/O requests still going to complete, 2317 * for example. Wait for all references to disappear. 2318 * No one should increment the reference count of the mapped_device, 2319 * after the mapped_device state becomes DMF_FREEING. 2320 */ 2321 if (wait) 2322 while (atomic_read(&md->holders)) 2323 msleep(1); 2324 else if (atomic_read(&md->holders)) 2325 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2326 dm_device_name(md), atomic_read(&md->holders)); 2327 2328 dm_sysfs_exit(md); 2329 dm_table_put(map); 2330 dm_table_destroy(__unbind(md)); 2331 free_dev(md); 2332 } 2333 2334 void dm_destroy(struct mapped_device *md) 2335 { 2336 __dm_destroy(md, true); 2337 } 2338 2339 void dm_destroy_immediate(struct mapped_device *md) 2340 { 2341 __dm_destroy(md, false); 2342 } 2343 2344 void dm_put(struct mapped_device *md) 2345 { 2346 atomic_dec(&md->holders); 2347 } 2348 EXPORT_SYMBOL_GPL(dm_put); 2349 2350 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2351 { 2352 int r = 0; 2353 DECLARE_WAITQUEUE(wait, current); 2354 2355 add_wait_queue(&md->wait, &wait); 2356 2357 while (1) { 2358 set_current_state(interruptible); 2359 2360 if (!md_in_flight(md)) 2361 break; 2362 2363 if (interruptible == TASK_INTERRUPTIBLE && 2364 signal_pending(current)) { 2365 r = -EINTR; 2366 break; 2367 } 2368 2369 io_schedule(); 2370 } 2371 set_current_state(TASK_RUNNING); 2372 2373 remove_wait_queue(&md->wait, &wait); 2374 2375 return r; 2376 } 2377 2378 /* 2379 * Process the deferred bios 2380 */ 2381 static void dm_wq_work(struct work_struct *work) 2382 { 2383 struct mapped_device *md = container_of(work, struct mapped_device, 2384 work); 2385 struct bio *c; 2386 2387 down_read(&md->io_lock); 2388 2389 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2390 spin_lock_irq(&md->deferred_lock); 2391 c = bio_list_pop(&md->deferred); 2392 spin_unlock_irq(&md->deferred_lock); 2393 2394 if (!c) 2395 break; 2396 2397 up_read(&md->io_lock); 2398 2399 if (dm_request_based(md)) 2400 generic_make_request(c); 2401 else 2402 __split_and_process_bio(md, c); 2403 2404 down_read(&md->io_lock); 2405 } 2406 2407 up_read(&md->io_lock); 2408 } 2409 2410 static void dm_queue_flush(struct mapped_device *md) 2411 { 2412 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2413 smp_mb__after_clear_bit(); 2414 queue_work(md->wq, &md->work); 2415 } 2416 2417 /* 2418 * Swap in a new table, returning the old one for the caller to destroy. 2419 */ 2420 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2421 { 2422 struct dm_table *live_map, *map = ERR_PTR(-EINVAL); 2423 struct queue_limits limits; 2424 int r; 2425 2426 mutex_lock(&md->suspend_lock); 2427 2428 /* device must be suspended */ 2429 if (!dm_suspended_md(md)) 2430 goto out; 2431 2432 /* 2433 * If the new table has no data devices, retain the existing limits. 2434 * This helps multipath with queue_if_no_path if all paths disappear, 2435 * then new I/O is queued based on these limits, and then some paths 2436 * reappear. 2437 */ 2438 if (dm_table_has_no_data_devices(table)) { 2439 live_map = dm_get_live_table(md); 2440 if (live_map) 2441 limits = md->queue->limits; 2442 dm_table_put(live_map); 2443 } 2444 2445 r = dm_calculate_queue_limits(table, &limits); 2446 if (r) { 2447 map = ERR_PTR(r); 2448 goto out; 2449 } 2450 2451 map = __bind(md, table, &limits); 2452 2453 out: 2454 mutex_unlock(&md->suspend_lock); 2455 return map; 2456 } 2457 2458 /* 2459 * Functions to lock and unlock any filesystem running on the 2460 * device. 2461 */ 2462 static int lock_fs(struct mapped_device *md) 2463 { 2464 int r; 2465 2466 WARN_ON(md->frozen_sb); 2467 2468 md->frozen_sb = freeze_bdev(md->bdev); 2469 if (IS_ERR(md->frozen_sb)) { 2470 r = PTR_ERR(md->frozen_sb); 2471 md->frozen_sb = NULL; 2472 return r; 2473 } 2474 2475 set_bit(DMF_FROZEN, &md->flags); 2476 2477 return 0; 2478 } 2479 2480 static void unlock_fs(struct mapped_device *md) 2481 { 2482 if (!test_bit(DMF_FROZEN, &md->flags)) 2483 return; 2484 2485 thaw_bdev(md->bdev, md->frozen_sb); 2486 md->frozen_sb = NULL; 2487 clear_bit(DMF_FROZEN, &md->flags); 2488 } 2489 2490 /* 2491 * We need to be able to change a mapping table under a mounted 2492 * filesystem. For example we might want to move some data in 2493 * the background. Before the table can be swapped with 2494 * dm_bind_table, dm_suspend must be called to flush any in 2495 * flight bios and ensure that any further io gets deferred. 2496 */ 2497 /* 2498 * Suspend mechanism in request-based dm. 2499 * 2500 * 1. Flush all I/Os by lock_fs() if needed. 2501 * 2. Stop dispatching any I/O by stopping the request_queue. 2502 * 3. Wait for all in-flight I/Os to be completed or requeued. 2503 * 2504 * To abort suspend, start the request_queue. 2505 */ 2506 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2507 { 2508 struct dm_table *map = NULL; 2509 int r = 0; 2510 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2511 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2512 2513 mutex_lock(&md->suspend_lock); 2514 2515 if (dm_suspended_md(md)) { 2516 r = -EINVAL; 2517 goto out_unlock; 2518 } 2519 2520 map = dm_get_live_table(md); 2521 2522 /* 2523 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2524 * This flag is cleared before dm_suspend returns. 2525 */ 2526 if (noflush) 2527 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2528 2529 /* This does not get reverted if there's an error later. */ 2530 dm_table_presuspend_targets(map); 2531 2532 /* 2533 * Flush I/O to the device. 2534 * Any I/O submitted after lock_fs() may not be flushed. 2535 * noflush takes precedence over do_lockfs. 2536 * (lock_fs() flushes I/Os and waits for them to complete.) 2537 */ 2538 if (!noflush && do_lockfs) { 2539 r = lock_fs(md); 2540 if (r) 2541 goto out; 2542 } 2543 2544 /* 2545 * Here we must make sure that no processes are submitting requests 2546 * to target drivers i.e. no one may be executing 2547 * __split_and_process_bio. This is called from dm_request and 2548 * dm_wq_work. 2549 * 2550 * To get all processes out of __split_and_process_bio in dm_request, 2551 * we take the write lock. To prevent any process from reentering 2552 * __split_and_process_bio from dm_request and quiesce the thread 2553 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2554 * flush_workqueue(md->wq). 2555 */ 2556 down_write(&md->io_lock); 2557 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2558 up_write(&md->io_lock); 2559 2560 /* 2561 * Stop md->queue before flushing md->wq in case request-based 2562 * dm defers requests to md->wq from md->queue. 2563 */ 2564 if (dm_request_based(md)) 2565 stop_queue(md->queue); 2566 2567 flush_workqueue(md->wq); 2568 2569 /* 2570 * At this point no more requests are entering target request routines. 2571 * We call dm_wait_for_completion to wait for all existing requests 2572 * to finish. 2573 */ 2574 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2575 2576 down_write(&md->io_lock); 2577 if (noflush) 2578 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2579 up_write(&md->io_lock); 2580 2581 /* were we interrupted ? */ 2582 if (r < 0) { 2583 dm_queue_flush(md); 2584 2585 if (dm_request_based(md)) 2586 start_queue(md->queue); 2587 2588 unlock_fs(md); 2589 goto out; /* pushback list is already flushed, so skip flush */ 2590 } 2591 2592 /* 2593 * If dm_wait_for_completion returned 0, the device is completely 2594 * quiescent now. There is no request-processing activity. All new 2595 * requests are being added to md->deferred list. 2596 */ 2597 2598 set_bit(DMF_SUSPENDED, &md->flags); 2599 2600 dm_table_postsuspend_targets(map); 2601 2602 out: 2603 dm_table_put(map); 2604 2605 out_unlock: 2606 mutex_unlock(&md->suspend_lock); 2607 return r; 2608 } 2609 2610 int dm_resume(struct mapped_device *md) 2611 { 2612 int r = -EINVAL; 2613 struct dm_table *map = NULL; 2614 2615 mutex_lock(&md->suspend_lock); 2616 if (!dm_suspended_md(md)) 2617 goto out; 2618 2619 map = dm_get_live_table(md); 2620 if (!map || !dm_table_get_size(map)) 2621 goto out; 2622 2623 r = dm_table_resume_targets(map); 2624 if (r) 2625 goto out; 2626 2627 dm_queue_flush(md); 2628 2629 /* 2630 * Flushing deferred I/Os must be done after targets are resumed 2631 * so that mapping of targets can work correctly. 2632 * Request-based dm is queueing the deferred I/Os in its request_queue. 2633 */ 2634 if (dm_request_based(md)) 2635 start_queue(md->queue); 2636 2637 unlock_fs(md); 2638 2639 clear_bit(DMF_SUSPENDED, &md->flags); 2640 2641 r = 0; 2642 out: 2643 dm_table_put(map); 2644 mutex_unlock(&md->suspend_lock); 2645 2646 return r; 2647 } 2648 2649 /*----------------------------------------------------------------- 2650 * Event notification. 2651 *---------------------------------------------------------------*/ 2652 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2653 unsigned cookie) 2654 { 2655 char udev_cookie[DM_COOKIE_LENGTH]; 2656 char *envp[] = { udev_cookie, NULL }; 2657 2658 if (!cookie) 2659 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2660 else { 2661 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2662 DM_COOKIE_ENV_VAR_NAME, cookie); 2663 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2664 action, envp); 2665 } 2666 } 2667 2668 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2669 { 2670 return atomic_add_return(1, &md->uevent_seq); 2671 } 2672 2673 uint32_t dm_get_event_nr(struct mapped_device *md) 2674 { 2675 return atomic_read(&md->event_nr); 2676 } 2677 2678 int dm_wait_event(struct mapped_device *md, int event_nr) 2679 { 2680 return wait_event_interruptible(md->eventq, 2681 (event_nr != atomic_read(&md->event_nr))); 2682 } 2683 2684 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2685 { 2686 unsigned long flags; 2687 2688 spin_lock_irqsave(&md->uevent_lock, flags); 2689 list_add(elist, &md->uevent_list); 2690 spin_unlock_irqrestore(&md->uevent_lock, flags); 2691 } 2692 2693 /* 2694 * The gendisk is only valid as long as you have a reference 2695 * count on 'md'. 2696 */ 2697 struct gendisk *dm_disk(struct mapped_device *md) 2698 { 2699 return md->disk; 2700 } 2701 2702 struct kobject *dm_kobject(struct mapped_device *md) 2703 { 2704 return &md->kobj; 2705 } 2706 2707 /* 2708 * struct mapped_device should not be exported outside of dm.c 2709 * so use this check to verify that kobj is part of md structure 2710 */ 2711 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2712 { 2713 struct mapped_device *md; 2714 2715 md = container_of(kobj, struct mapped_device, kobj); 2716 if (&md->kobj != kobj) 2717 return NULL; 2718 2719 if (test_bit(DMF_FREEING, &md->flags) || 2720 dm_deleting_md(md)) 2721 return NULL; 2722 2723 dm_get(md); 2724 return md; 2725 } 2726 2727 int dm_suspended_md(struct mapped_device *md) 2728 { 2729 return test_bit(DMF_SUSPENDED, &md->flags); 2730 } 2731 2732 int dm_suspended(struct dm_target *ti) 2733 { 2734 return dm_suspended_md(dm_table_get_md(ti->table)); 2735 } 2736 EXPORT_SYMBOL_GPL(dm_suspended); 2737 2738 int dm_noflush_suspending(struct dm_target *ti) 2739 { 2740 return __noflush_suspending(dm_table_get_md(ti->table)); 2741 } 2742 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2743 2744 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 2745 { 2746 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2747 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS; 2748 2749 if (!pools) 2750 return NULL; 2751 2752 per_bio_data_size = roundup(per_bio_data_size, __alignof__(struct dm_target_io)); 2753 2754 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2755 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2756 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2757 if (!pools->io_pool) 2758 goto free_pools_and_out; 2759 2760 pools->tio_pool = NULL; 2761 if (type == DM_TYPE_REQUEST_BASED) { 2762 pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2763 if (!pools->tio_pool) 2764 goto free_io_pool_and_out; 2765 } 2766 2767 pools->bs = (type == DM_TYPE_BIO_BASED) ? 2768 bioset_create(pool_size, 2769 per_bio_data_size + offsetof(struct dm_target_io, clone)) : 2770 bioset_create(pool_size, 2771 offsetof(struct dm_rq_clone_bio_info, clone)); 2772 if (!pools->bs) 2773 goto free_tio_pool_and_out; 2774 2775 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2776 goto free_bioset_and_out; 2777 2778 return pools; 2779 2780 free_bioset_and_out: 2781 bioset_free(pools->bs); 2782 2783 free_tio_pool_and_out: 2784 if (pools->tio_pool) 2785 mempool_destroy(pools->tio_pool); 2786 2787 free_io_pool_and_out: 2788 mempool_destroy(pools->io_pool); 2789 2790 free_pools_and_out: 2791 kfree(pools); 2792 2793 return NULL; 2794 } 2795 2796 void dm_free_md_mempools(struct dm_md_mempools *pools) 2797 { 2798 if (!pools) 2799 return; 2800 2801 if (pools->io_pool) 2802 mempool_destroy(pools->io_pool); 2803 2804 if (pools->tio_pool) 2805 mempool_destroy(pools->tio_pool); 2806 2807 if (pools->bs) 2808 bioset_free(pools->bs); 2809 2810 kfree(pools); 2811 } 2812 2813 static const struct block_device_operations dm_blk_dops = { 2814 .open = dm_blk_open, 2815 .release = dm_blk_close, 2816 .ioctl = dm_blk_ioctl, 2817 .getgeo = dm_blk_getgeo, 2818 .owner = THIS_MODULE 2819 }; 2820 2821 EXPORT_SYMBOL(dm_get_mapinfo); 2822 2823 /* 2824 * module hooks 2825 */ 2826 module_init(dm_init); 2827 module_exit(dm_exit); 2828 2829 module_param(major, uint, 0); 2830 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2831 MODULE_DESCRIPTION(DM_NAME " driver"); 2832 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2833 MODULE_LICENSE("GPL"); 2834