xref: /linux/drivers/md/dm.c (revision 49a695ba723224875df50e327bd7b0b65dd9a56b)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set *bs;
152 	struct bio_set *io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163 
164 /*
165  * Bio-based DM's mempools' reserved IOs set by the user.
166  */
167 #define RESERVED_BIO_BASED_IOS		16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 	int param = READ_ONCE(*module_param);
173 	int modified_param = 0;
174 	bool modified = true;
175 
176 	if (param < min)
177 		modified_param = min;
178 	else if (param > max)
179 		modified_param = max;
180 	else
181 		modified = false;
182 
183 	if (modified) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned __dm_get_module_param(unsigned *module_param,
192 			       unsigned def, unsigned max)
193 {
194 	unsigned param = READ_ONCE(*module_param);
195 	unsigned modified_param = 0;
196 
197 	if (!param)
198 		modified_param = def;
199 	else if (param > max)
200 		modified_param = max;
201 
202 	if (modified_param) {
203 		(void)cmpxchg(module_param, param, modified_param);
204 		param = modified_param;
205 	}
206 
207 	return param;
208 }
209 
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 	return __dm_get_module_param(&reserved_bio_based_ios,
213 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 
217 static unsigned dm_get_numa_node(void)
218 {
219 	return __dm_get_module_param_int(&dm_numa_node,
220 					 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222 
223 static int __init local_init(void)
224 {
225 	int r = -ENOMEM;
226 
227 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 	if (!_rq_tio_cache)
229 		return r;
230 
231 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 				      __alignof__(struct request), 0, NULL);
233 	if (!_rq_cache)
234 		goto out_free_rq_tio_cache;
235 
236 	r = dm_uevent_init();
237 	if (r)
238 		goto out_free_rq_cache;
239 
240 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 	if (!deferred_remove_workqueue) {
242 		r = -ENOMEM;
243 		goto out_uevent_exit;
244 	}
245 
246 	_major = major;
247 	r = register_blkdev(_major, _name);
248 	if (r < 0)
249 		goto out_free_workqueue;
250 
251 	if (!_major)
252 		_major = r;
253 
254 	return 0;
255 
256 out_free_workqueue:
257 	destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 	dm_uevent_exit();
260 out_free_rq_cache:
261 	kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 	kmem_cache_destroy(_rq_tio_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	flush_scheduled_work();
271 	destroy_workqueue(deferred_remove_workqueue);
272 
273 	kmem_cache_destroy(_rq_cache);
274 	kmem_cache_destroy(_rq_tio_cache);
275 	unregister_blkdev(_major, _name);
276 	dm_uevent_exit();
277 
278 	_major = 0;
279 
280 	DMINFO("cleaned up");
281 }
282 
283 static int (*_inits[])(void) __initdata = {
284 	local_init,
285 	dm_target_init,
286 	dm_linear_init,
287 	dm_stripe_init,
288 	dm_io_init,
289 	dm_kcopyd_init,
290 	dm_interface_init,
291 	dm_statistics_init,
292 };
293 
294 static void (*_exits[])(void) = {
295 	local_exit,
296 	dm_target_exit,
297 	dm_linear_exit,
298 	dm_stripe_exit,
299 	dm_io_exit,
300 	dm_kcopyd_exit,
301 	dm_interface_exit,
302 	dm_statistics_exit,
303 };
304 
305 static int __init dm_init(void)
306 {
307 	const int count = ARRAY_SIZE(_inits);
308 
309 	int r, i;
310 
311 	for (i = 0; i < count; i++) {
312 		r = _inits[i]();
313 		if (r)
314 			goto bad;
315 	}
316 
317 	return 0;
318 
319       bad:
320 	while (i--)
321 		_exits[i]();
322 
323 	return r;
324 }
325 
326 static void __exit dm_exit(void)
327 {
328 	int i = ARRAY_SIZE(_exits);
329 
330 	while (i--)
331 		_exits[i]();
332 
333 	/*
334 	 * Should be empty by this point.
335 	 */
336 	idr_destroy(&_minor_idr);
337 }
338 
339 /*
340  * Block device functions
341  */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 	return test_bit(DMF_DELETING, &md->flags);
345 }
346 
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 	struct mapped_device *md;
350 
351 	spin_lock(&_minor_lock);
352 
353 	md = bdev->bd_disk->private_data;
354 	if (!md)
355 		goto out;
356 
357 	if (test_bit(DMF_FREEING, &md->flags) ||
358 	    dm_deleting_md(md)) {
359 		md = NULL;
360 		goto out;
361 	}
362 
363 	dm_get(md);
364 	atomic_inc(&md->open_count);
365 out:
366 	spin_unlock(&_minor_lock);
367 
368 	return md ? 0 : -ENXIO;
369 }
370 
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 	struct mapped_device *md;
374 
375 	spin_lock(&_minor_lock);
376 
377 	md = disk->private_data;
378 	if (WARN_ON(!md))
379 		goto out;
380 
381 	if (atomic_dec_and_test(&md->open_count) &&
382 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
384 
385 	dm_put(md);
386 out:
387 	spin_unlock(&_minor_lock);
388 }
389 
390 int dm_open_count(struct mapped_device *md)
391 {
392 	return atomic_read(&md->open_count);
393 }
394 
395 /*
396  * Guarantees nothing is using the device before it's deleted.
397  */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 	int r = 0;
401 
402 	spin_lock(&_minor_lock);
403 
404 	if (dm_open_count(md)) {
405 		r = -EBUSY;
406 		if (mark_deferred)
407 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 		r = -EEXIST;
410 	else
411 		set_bit(DMF_DELETING, &md->flags);
412 
413 	spin_unlock(&_minor_lock);
414 
415 	return r;
416 }
417 
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 	int r = 0;
421 
422 	spin_lock(&_minor_lock);
423 
424 	if (test_bit(DMF_DELETING, &md->flags))
425 		r = -EBUSY;
426 	else
427 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428 
429 	spin_unlock(&_minor_lock);
430 
431 	return r;
432 }
433 
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 	dm_deferred_remove();
437 }
438 
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 	return get_capacity(md->disk);
442 }
443 
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 	return md->queue;
447 }
448 
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 	return &md->stats;
452 }
453 
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 
458 	return dm_get_geometry(md, geo);
459 }
460 
461 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
462 			    struct block_device **bdev)
463 	__acquires(md->io_barrier)
464 {
465 	struct dm_target *tgt;
466 	struct dm_table *map;
467 	int r;
468 
469 retry:
470 	r = -ENOTTY;
471 	map = dm_get_live_table(md, srcu_idx);
472 	if (!map || !dm_table_get_size(map))
473 		return r;
474 
475 	/* We only support devices that have a single target */
476 	if (dm_table_get_num_targets(map) != 1)
477 		return r;
478 
479 	tgt = dm_table_get_target(map, 0);
480 	if (!tgt->type->prepare_ioctl)
481 		return r;
482 
483 	if (dm_suspended_md(md))
484 		return -EAGAIN;
485 
486 	r = tgt->type->prepare_ioctl(tgt, bdev);
487 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
488 		dm_put_live_table(md, *srcu_idx);
489 		msleep(10);
490 		goto retry;
491 	}
492 
493 	return r;
494 }
495 
496 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
497 	__releases(md->io_barrier)
498 {
499 	dm_put_live_table(md, srcu_idx);
500 }
501 
502 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
503 			unsigned int cmd, unsigned long arg)
504 {
505 	struct mapped_device *md = bdev->bd_disk->private_data;
506 	int r, srcu_idx;
507 
508 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
509 	if (r < 0)
510 		goto out;
511 
512 	if (r > 0) {
513 		/*
514 		 * Target determined this ioctl is being issued against a
515 		 * subset of the parent bdev; require extra privileges.
516 		 */
517 		if (!capable(CAP_SYS_RAWIO)) {
518 			DMWARN_LIMIT(
519 	"%s: sending ioctl %x to DM device without required privilege.",
520 				current->comm, cmd);
521 			r = -ENOIOCTLCMD;
522 			goto out;
523 		}
524 	}
525 
526 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
527 out:
528 	dm_unprepare_ioctl(md, srcu_idx);
529 	return r;
530 }
531 
532 static void start_io_acct(struct dm_io *io);
533 
534 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
535 {
536 	struct dm_io *io;
537 	struct dm_target_io *tio;
538 	struct bio *clone;
539 
540 	clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
541 	if (!clone)
542 		return NULL;
543 
544 	tio = container_of(clone, struct dm_target_io, clone);
545 	tio->inside_dm_io = true;
546 	tio->io = NULL;
547 
548 	io = container_of(tio, struct dm_io, tio);
549 	io->magic = DM_IO_MAGIC;
550 	io->status = 0;
551 	atomic_set(&io->io_count, 1);
552 	io->orig_bio = bio;
553 	io->md = md;
554 	spin_lock_init(&io->endio_lock);
555 
556 	start_io_acct(io);
557 
558 	return io;
559 }
560 
561 static void free_io(struct mapped_device *md, struct dm_io *io)
562 {
563 	bio_put(&io->tio.clone);
564 }
565 
566 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
567 				      unsigned target_bio_nr, gfp_t gfp_mask)
568 {
569 	struct dm_target_io *tio;
570 
571 	if (!ci->io->tio.io) {
572 		/* the dm_target_io embedded in ci->io is available */
573 		tio = &ci->io->tio;
574 	} else {
575 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
576 		if (!clone)
577 			return NULL;
578 
579 		tio = container_of(clone, struct dm_target_io, clone);
580 		tio->inside_dm_io = false;
581 	}
582 
583 	tio->magic = DM_TIO_MAGIC;
584 	tio->io = ci->io;
585 	tio->ti = ti;
586 	tio->target_bio_nr = target_bio_nr;
587 
588 	return tio;
589 }
590 
591 static void free_tio(struct dm_target_io *tio)
592 {
593 	if (tio->inside_dm_io)
594 		return;
595 	bio_put(&tio->clone);
596 }
597 
598 int md_in_flight(struct mapped_device *md)
599 {
600 	return atomic_read(&md->pending[READ]) +
601 	       atomic_read(&md->pending[WRITE]);
602 }
603 
604 static void start_io_acct(struct dm_io *io)
605 {
606 	struct mapped_device *md = io->md;
607 	struct bio *bio = io->orig_bio;
608 	int rw = bio_data_dir(bio);
609 
610 	io->start_time = jiffies;
611 
612 	generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
613 
614 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
615 		   atomic_inc_return(&md->pending[rw]));
616 
617 	if (unlikely(dm_stats_used(&md->stats)))
618 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
619 				    bio->bi_iter.bi_sector, bio_sectors(bio),
620 				    false, 0, &io->stats_aux);
621 }
622 
623 static void end_io_acct(struct dm_io *io)
624 {
625 	struct mapped_device *md = io->md;
626 	struct bio *bio = io->orig_bio;
627 	unsigned long duration = jiffies - io->start_time;
628 	int pending;
629 	int rw = bio_data_dir(bio);
630 
631 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
632 
633 	if (unlikely(dm_stats_used(&md->stats)))
634 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
635 				    bio->bi_iter.bi_sector, bio_sectors(bio),
636 				    true, duration, &io->stats_aux);
637 
638 	/*
639 	 * After this is decremented the bio must not be touched if it is
640 	 * a flush.
641 	 */
642 	pending = atomic_dec_return(&md->pending[rw]);
643 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
644 	pending += atomic_read(&md->pending[rw^0x1]);
645 
646 	/* nudge anyone waiting on suspend queue */
647 	if (!pending)
648 		wake_up(&md->wait);
649 }
650 
651 /*
652  * Add the bio to the list of deferred io.
653  */
654 static void queue_io(struct mapped_device *md, struct bio *bio)
655 {
656 	unsigned long flags;
657 
658 	spin_lock_irqsave(&md->deferred_lock, flags);
659 	bio_list_add(&md->deferred, bio);
660 	spin_unlock_irqrestore(&md->deferred_lock, flags);
661 	queue_work(md->wq, &md->work);
662 }
663 
664 /*
665  * Everyone (including functions in this file), should use this
666  * function to access the md->map field, and make sure they call
667  * dm_put_live_table() when finished.
668  */
669 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
670 {
671 	*srcu_idx = srcu_read_lock(&md->io_barrier);
672 
673 	return srcu_dereference(md->map, &md->io_barrier);
674 }
675 
676 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
677 {
678 	srcu_read_unlock(&md->io_barrier, srcu_idx);
679 }
680 
681 void dm_sync_table(struct mapped_device *md)
682 {
683 	synchronize_srcu(&md->io_barrier);
684 	synchronize_rcu_expedited();
685 }
686 
687 /*
688  * A fast alternative to dm_get_live_table/dm_put_live_table.
689  * The caller must not block between these two functions.
690  */
691 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
692 {
693 	rcu_read_lock();
694 	return rcu_dereference(md->map);
695 }
696 
697 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
698 {
699 	rcu_read_unlock();
700 }
701 
702 static char *_dm_claim_ptr = "I belong to device-mapper";
703 
704 /*
705  * Open a table device so we can use it as a map destination.
706  */
707 static int open_table_device(struct table_device *td, dev_t dev,
708 			     struct mapped_device *md)
709 {
710 	struct block_device *bdev;
711 
712 	int r;
713 
714 	BUG_ON(td->dm_dev.bdev);
715 
716 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
717 	if (IS_ERR(bdev))
718 		return PTR_ERR(bdev);
719 
720 	r = bd_link_disk_holder(bdev, dm_disk(md));
721 	if (r) {
722 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
723 		return r;
724 	}
725 
726 	td->dm_dev.bdev = bdev;
727 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
728 	return 0;
729 }
730 
731 /*
732  * Close a table device that we've been using.
733  */
734 static void close_table_device(struct table_device *td, struct mapped_device *md)
735 {
736 	if (!td->dm_dev.bdev)
737 		return;
738 
739 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
740 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
741 	put_dax(td->dm_dev.dax_dev);
742 	td->dm_dev.bdev = NULL;
743 	td->dm_dev.dax_dev = NULL;
744 }
745 
746 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
747 					      fmode_t mode) {
748 	struct table_device *td;
749 
750 	list_for_each_entry(td, l, list)
751 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
752 			return td;
753 
754 	return NULL;
755 }
756 
757 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
758 			struct dm_dev **result) {
759 	int r;
760 	struct table_device *td;
761 
762 	mutex_lock(&md->table_devices_lock);
763 	td = find_table_device(&md->table_devices, dev, mode);
764 	if (!td) {
765 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
766 		if (!td) {
767 			mutex_unlock(&md->table_devices_lock);
768 			return -ENOMEM;
769 		}
770 
771 		td->dm_dev.mode = mode;
772 		td->dm_dev.bdev = NULL;
773 
774 		if ((r = open_table_device(td, dev, md))) {
775 			mutex_unlock(&md->table_devices_lock);
776 			kfree(td);
777 			return r;
778 		}
779 
780 		format_dev_t(td->dm_dev.name, dev);
781 
782 		refcount_set(&td->count, 1);
783 		list_add(&td->list, &md->table_devices);
784 	} else {
785 		refcount_inc(&td->count);
786 	}
787 	mutex_unlock(&md->table_devices_lock);
788 
789 	*result = &td->dm_dev;
790 	return 0;
791 }
792 EXPORT_SYMBOL_GPL(dm_get_table_device);
793 
794 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
795 {
796 	struct table_device *td = container_of(d, struct table_device, dm_dev);
797 
798 	mutex_lock(&md->table_devices_lock);
799 	if (refcount_dec_and_test(&td->count)) {
800 		close_table_device(td, md);
801 		list_del(&td->list);
802 		kfree(td);
803 	}
804 	mutex_unlock(&md->table_devices_lock);
805 }
806 EXPORT_SYMBOL(dm_put_table_device);
807 
808 static void free_table_devices(struct list_head *devices)
809 {
810 	struct list_head *tmp, *next;
811 
812 	list_for_each_safe(tmp, next, devices) {
813 		struct table_device *td = list_entry(tmp, struct table_device, list);
814 
815 		DMWARN("dm_destroy: %s still exists with %d references",
816 		       td->dm_dev.name, refcount_read(&td->count));
817 		kfree(td);
818 	}
819 }
820 
821 /*
822  * Get the geometry associated with a dm device
823  */
824 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
825 {
826 	*geo = md->geometry;
827 
828 	return 0;
829 }
830 
831 /*
832  * Set the geometry of a device.
833  */
834 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
835 {
836 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
837 
838 	if (geo->start > sz) {
839 		DMWARN("Start sector is beyond the geometry limits.");
840 		return -EINVAL;
841 	}
842 
843 	md->geometry = *geo;
844 
845 	return 0;
846 }
847 
848 static int __noflush_suspending(struct mapped_device *md)
849 {
850 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
851 }
852 
853 /*
854  * Decrements the number of outstanding ios that a bio has been
855  * cloned into, completing the original io if necc.
856  */
857 static void dec_pending(struct dm_io *io, blk_status_t error)
858 {
859 	unsigned long flags;
860 	blk_status_t io_error;
861 	struct bio *bio;
862 	struct mapped_device *md = io->md;
863 
864 	/* Push-back supersedes any I/O errors */
865 	if (unlikely(error)) {
866 		spin_lock_irqsave(&io->endio_lock, flags);
867 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
868 			io->status = error;
869 		spin_unlock_irqrestore(&io->endio_lock, flags);
870 	}
871 
872 	if (atomic_dec_and_test(&io->io_count)) {
873 		if (io->status == BLK_STS_DM_REQUEUE) {
874 			/*
875 			 * Target requested pushing back the I/O.
876 			 */
877 			spin_lock_irqsave(&md->deferred_lock, flags);
878 			if (__noflush_suspending(md))
879 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
880 				bio_list_add_head(&md->deferred, io->orig_bio);
881 			else
882 				/* noflush suspend was interrupted. */
883 				io->status = BLK_STS_IOERR;
884 			spin_unlock_irqrestore(&md->deferred_lock, flags);
885 		}
886 
887 		io_error = io->status;
888 		bio = io->orig_bio;
889 		end_io_acct(io);
890 		free_io(md, io);
891 
892 		if (io_error == BLK_STS_DM_REQUEUE)
893 			return;
894 
895 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
896 			/*
897 			 * Preflush done for flush with data, reissue
898 			 * without REQ_PREFLUSH.
899 			 */
900 			bio->bi_opf &= ~REQ_PREFLUSH;
901 			queue_io(md, bio);
902 		} else {
903 			/* done with normal IO or empty flush */
904 			if (io_error)
905 				bio->bi_status = io_error;
906 			bio_endio(bio);
907 		}
908 	}
909 }
910 
911 void disable_write_same(struct mapped_device *md)
912 {
913 	struct queue_limits *limits = dm_get_queue_limits(md);
914 
915 	/* device doesn't really support WRITE SAME, disable it */
916 	limits->max_write_same_sectors = 0;
917 }
918 
919 void disable_write_zeroes(struct mapped_device *md)
920 {
921 	struct queue_limits *limits = dm_get_queue_limits(md);
922 
923 	/* device doesn't really support WRITE ZEROES, disable it */
924 	limits->max_write_zeroes_sectors = 0;
925 }
926 
927 static void clone_endio(struct bio *bio)
928 {
929 	blk_status_t error = bio->bi_status;
930 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
931 	struct dm_io *io = tio->io;
932 	struct mapped_device *md = tio->io->md;
933 	dm_endio_fn endio = tio->ti->type->end_io;
934 
935 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
936 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
937 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
938 			disable_write_same(md);
939 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
940 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
941 			disable_write_zeroes(md);
942 	}
943 
944 	if (endio) {
945 		int r = endio(tio->ti, bio, &error);
946 		switch (r) {
947 		case DM_ENDIO_REQUEUE:
948 			error = BLK_STS_DM_REQUEUE;
949 			/*FALLTHRU*/
950 		case DM_ENDIO_DONE:
951 			break;
952 		case DM_ENDIO_INCOMPLETE:
953 			/* The target will handle the io */
954 			return;
955 		default:
956 			DMWARN("unimplemented target endio return value: %d", r);
957 			BUG();
958 		}
959 	}
960 
961 	free_tio(tio);
962 	dec_pending(io, error);
963 }
964 
965 /*
966  * Return maximum size of I/O possible at the supplied sector up to the current
967  * target boundary.
968  */
969 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
970 {
971 	sector_t target_offset = dm_target_offset(ti, sector);
972 
973 	return ti->len - target_offset;
974 }
975 
976 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
977 {
978 	sector_t len = max_io_len_target_boundary(sector, ti);
979 	sector_t offset, max_len;
980 
981 	/*
982 	 * Does the target need to split even further?
983 	 */
984 	if (ti->max_io_len) {
985 		offset = dm_target_offset(ti, sector);
986 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
987 			max_len = sector_div(offset, ti->max_io_len);
988 		else
989 			max_len = offset & (ti->max_io_len - 1);
990 		max_len = ti->max_io_len - max_len;
991 
992 		if (len > max_len)
993 			len = max_len;
994 	}
995 
996 	return len;
997 }
998 
999 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1000 {
1001 	if (len > UINT_MAX) {
1002 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1003 		      (unsigned long long)len, UINT_MAX);
1004 		ti->error = "Maximum size of target IO is too large";
1005 		return -EINVAL;
1006 	}
1007 
1008 	/*
1009 	 * BIO based queue uses its own splitting. When multipage bvecs
1010 	 * is switched on, size of the incoming bio may be too big to
1011 	 * be handled in some targets, such as crypt.
1012 	 *
1013 	 * When these targets are ready for the big bio, we can remove
1014 	 * the limit.
1015 	 */
1016 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1017 
1018 	return 0;
1019 }
1020 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1021 
1022 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1023 		sector_t sector, int *srcu_idx)
1024 {
1025 	struct dm_table *map;
1026 	struct dm_target *ti;
1027 
1028 	map = dm_get_live_table(md, srcu_idx);
1029 	if (!map)
1030 		return NULL;
1031 
1032 	ti = dm_table_find_target(map, sector);
1033 	if (!dm_target_is_valid(ti))
1034 		return NULL;
1035 
1036 	return ti;
1037 }
1038 
1039 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1040 		long nr_pages, void **kaddr, pfn_t *pfn)
1041 {
1042 	struct mapped_device *md = dax_get_private(dax_dev);
1043 	sector_t sector = pgoff * PAGE_SECTORS;
1044 	struct dm_target *ti;
1045 	long len, ret = -EIO;
1046 	int srcu_idx;
1047 
1048 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1049 
1050 	if (!ti)
1051 		goto out;
1052 	if (!ti->type->direct_access)
1053 		goto out;
1054 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1055 	if (len < 1)
1056 		goto out;
1057 	nr_pages = min(len, nr_pages);
1058 	if (ti->type->direct_access)
1059 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1060 
1061  out:
1062 	dm_put_live_table(md, srcu_idx);
1063 
1064 	return ret;
1065 }
1066 
1067 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1068 		void *addr, size_t bytes, struct iov_iter *i)
1069 {
1070 	struct mapped_device *md = dax_get_private(dax_dev);
1071 	sector_t sector = pgoff * PAGE_SECTORS;
1072 	struct dm_target *ti;
1073 	long ret = 0;
1074 	int srcu_idx;
1075 
1076 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1077 
1078 	if (!ti)
1079 		goto out;
1080 	if (!ti->type->dax_copy_from_iter) {
1081 		ret = copy_from_iter(addr, bytes, i);
1082 		goto out;
1083 	}
1084 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1085  out:
1086 	dm_put_live_table(md, srcu_idx);
1087 
1088 	return ret;
1089 }
1090 
1091 /*
1092  * A target may call dm_accept_partial_bio only from the map routine.  It is
1093  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1094  *
1095  * dm_accept_partial_bio informs the dm that the target only wants to process
1096  * additional n_sectors sectors of the bio and the rest of the data should be
1097  * sent in a next bio.
1098  *
1099  * A diagram that explains the arithmetics:
1100  * +--------------------+---------------+-------+
1101  * |         1          |       2       |   3   |
1102  * +--------------------+---------------+-------+
1103  *
1104  * <-------------- *tio->len_ptr --------------->
1105  *                      <------- bi_size ------->
1106  *                      <-- n_sectors -->
1107  *
1108  * Region 1 was already iterated over with bio_advance or similar function.
1109  *	(it may be empty if the target doesn't use bio_advance)
1110  * Region 2 is the remaining bio size that the target wants to process.
1111  *	(it may be empty if region 1 is non-empty, although there is no reason
1112  *	 to make it empty)
1113  * The target requires that region 3 is to be sent in the next bio.
1114  *
1115  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1116  * the partially processed part (the sum of regions 1+2) must be the same for all
1117  * copies of the bio.
1118  */
1119 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1120 {
1121 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1122 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1123 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1124 	BUG_ON(bi_size > *tio->len_ptr);
1125 	BUG_ON(n_sectors > bi_size);
1126 	*tio->len_ptr -= bi_size - n_sectors;
1127 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1128 }
1129 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1130 
1131 /*
1132  * The zone descriptors obtained with a zone report indicate
1133  * zone positions within the target device. The zone descriptors
1134  * must be remapped to match their position within the dm device.
1135  * A target may call dm_remap_zone_report after completion of a
1136  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1137  * from the target device mapping to the dm device.
1138  */
1139 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1140 {
1141 #ifdef CONFIG_BLK_DEV_ZONED
1142 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1143 	struct bio *report_bio = tio->io->orig_bio;
1144 	struct blk_zone_report_hdr *hdr = NULL;
1145 	struct blk_zone *zone;
1146 	unsigned int nr_rep = 0;
1147 	unsigned int ofst;
1148 	struct bio_vec bvec;
1149 	struct bvec_iter iter;
1150 	void *addr;
1151 
1152 	if (bio->bi_status)
1153 		return;
1154 
1155 	/*
1156 	 * Remap the start sector of the reported zones. For sequential zones,
1157 	 * also remap the write pointer position.
1158 	 */
1159 	bio_for_each_segment(bvec, report_bio, iter) {
1160 		addr = kmap_atomic(bvec.bv_page);
1161 
1162 		/* Remember the report header in the first page */
1163 		if (!hdr) {
1164 			hdr = addr;
1165 			ofst = sizeof(struct blk_zone_report_hdr);
1166 		} else
1167 			ofst = 0;
1168 
1169 		/* Set zones start sector */
1170 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1171 			zone = addr + ofst;
1172 			if (zone->start >= start + ti->len) {
1173 				hdr->nr_zones = 0;
1174 				break;
1175 			}
1176 			zone->start = zone->start + ti->begin - start;
1177 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1178 				if (zone->cond == BLK_ZONE_COND_FULL)
1179 					zone->wp = zone->start + zone->len;
1180 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1181 					zone->wp = zone->start;
1182 				else
1183 					zone->wp = zone->wp + ti->begin - start;
1184 			}
1185 			ofst += sizeof(struct blk_zone);
1186 			hdr->nr_zones--;
1187 			nr_rep++;
1188 		}
1189 
1190 		if (addr != hdr)
1191 			kunmap_atomic(addr);
1192 
1193 		if (!hdr->nr_zones)
1194 			break;
1195 	}
1196 
1197 	if (hdr) {
1198 		hdr->nr_zones = nr_rep;
1199 		kunmap_atomic(hdr);
1200 	}
1201 
1202 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1203 
1204 #else /* !CONFIG_BLK_DEV_ZONED */
1205 	bio->bi_status = BLK_STS_NOTSUPP;
1206 #endif
1207 }
1208 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1209 
1210 static blk_qc_t __map_bio(struct dm_target_io *tio)
1211 {
1212 	int r;
1213 	sector_t sector;
1214 	struct bio *clone = &tio->clone;
1215 	struct dm_io *io = tio->io;
1216 	struct mapped_device *md = io->md;
1217 	struct dm_target *ti = tio->ti;
1218 	blk_qc_t ret = BLK_QC_T_NONE;
1219 
1220 	clone->bi_end_io = clone_endio;
1221 
1222 	/*
1223 	 * Map the clone.  If r == 0 we don't need to do
1224 	 * anything, the target has assumed ownership of
1225 	 * this io.
1226 	 */
1227 	atomic_inc(&io->io_count);
1228 	sector = clone->bi_iter.bi_sector;
1229 
1230 	r = ti->type->map(ti, clone);
1231 	switch (r) {
1232 	case DM_MAPIO_SUBMITTED:
1233 		break;
1234 	case DM_MAPIO_REMAPPED:
1235 		/* the bio has been remapped so dispatch it */
1236 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1237 				      bio_dev(io->orig_bio), sector);
1238 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1239 			ret = direct_make_request(clone);
1240 		else
1241 			ret = generic_make_request(clone);
1242 		break;
1243 	case DM_MAPIO_KILL:
1244 		free_tio(tio);
1245 		dec_pending(io, BLK_STS_IOERR);
1246 		break;
1247 	case DM_MAPIO_REQUEUE:
1248 		free_tio(tio);
1249 		dec_pending(io, BLK_STS_DM_REQUEUE);
1250 		break;
1251 	default:
1252 		DMWARN("unimplemented target map return value: %d", r);
1253 		BUG();
1254 	}
1255 
1256 	return ret;
1257 }
1258 
1259 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1260 {
1261 	bio->bi_iter.bi_sector = sector;
1262 	bio->bi_iter.bi_size = to_bytes(len);
1263 }
1264 
1265 /*
1266  * Creates a bio that consists of range of complete bvecs.
1267  */
1268 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1269 		     sector_t sector, unsigned len)
1270 {
1271 	struct bio *clone = &tio->clone;
1272 
1273 	__bio_clone_fast(clone, bio);
1274 
1275 	if (unlikely(bio_integrity(bio) != NULL)) {
1276 		int r;
1277 
1278 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1279 			     !dm_target_passes_integrity(tio->ti->type))) {
1280 			DMWARN("%s: the target %s doesn't support integrity data.",
1281 				dm_device_name(tio->io->md),
1282 				tio->ti->type->name);
1283 			return -EIO;
1284 		}
1285 
1286 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1287 		if (r < 0)
1288 			return r;
1289 	}
1290 
1291 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1292 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1293 	clone->bi_iter.bi_size = to_bytes(len);
1294 
1295 	if (unlikely(bio_integrity(bio) != NULL))
1296 		bio_integrity_trim(clone);
1297 
1298 	return 0;
1299 }
1300 
1301 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1302 				struct dm_target *ti, unsigned num_bios)
1303 {
1304 	struct dm_target_io *tio;
1305 	int try;
1306 
1307 	if (!num_bios)
1308 		return;
1309 
1310 	if (num_bios == 1) {
1311 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1312 		bio_list_add(blist, &tio->clone);
1313 		return;
1314 	}
1315 
1316 	for (try = 0; try < 2; try++) {
1317 		int bio_nr;
1318 		struct bio *bio;
1319 
1320 		if (try)
1321 			mutex_lock(&ci->io->md->table_devices_lock);
1322 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1323 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1324 			if (!tio)
1325 				break;
1326 
1327 			bio_list_add(blist, &tio->clone);
1328 		}
1329 		if (try)
1330 			mutex_unlock(&ci->io->md->table_devices_lock);
1331 		if (bio_nr == num_bios)
1332 			return;
1333 
1334 		while ((bio = bio_list_pop(blist))) {
1335 			tio = container_of(bio, struct dm_target_io, clone);
1336 			free_tio(tio);
1337 		}
1338 	}
1339 }
1340 
1341 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1342 					   struct dm_target_io *tio, unsigned *len)
1343 {
1344 	struct bio *clone = &tio->clone;
1345 
1346 	tio->len_ptr = len;
1347 
1348 	__bio_clone_fast(clone, ci->bio);
1349 	if (len)
1350 		bio_setup_sector(clone, ci->sector, *len);
1351 
1352 	return __map_bio(tio);
1353 }
1354 
1355 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1356 				  unsigned num_bios, unsigned *len)
1357 {
1358 	struct bio_list blist = BIO_EMPTY_LIST;
1359 	struct bio *bio;
1360 	struct dm_target_io *tio;
1361 
1362 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1363 
1364 	while ((bio = bio_list_pop(&blist))) {
1365 		tio = container_of(bio, struct dm_target_io, clone);
1366 		(void) __clone_and_map_simple_bio(ci, tio, len);
1367 	}
1368 }
1369 
1370 static int __send_empty_flush(struct clone_info *ci)
1371 {
1372 	unsigned target_nr = 0;
1373 	struct dm_target *ti;
1374 
1375 	BUG_ON(bio_has_data(ci->bio));
1376 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1377 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1378 
1379 	return 0;
1380 }
1381 
1382 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1383 				    sector_t sector, unsigned *len)
1384 {
1385 	struct bio *bio = ci->bio;
1386 	struct dm_target_io *tio;
1387 	int r;
1388 
1389 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1390 	tio->len_ptr = len;
1391 	r = clone_bio(tio, bio, sector, *len);
1392 	if (r < 0) {
1393 		free_tio(tio);
1394 		return r;
1395 	}
1396 	(void) __map_bio(tio);
1397 
1398 	return 0;
1399 }
1400 
1401 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1402 
1403 static unsigned get_num_discard_bios(struct dm_target *ti)
1404 {
1405 	return ti->num_discard_bios;
1406 }
1407 
1408 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1409 {
1410 	return ti->num_secure_erase_bios;
1411 }
1412 
1413 static unsigned get_num_write_same_bios(struct dm_target *ti)
1414 {
1415 	return ti->num_write_same_bios;
1416 }
1417 
1418 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1419 {
1420 	return ti->num_write_zeroes_bios;
1421 }
1422 
1423 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1424 
1425 static bool is_split_required_for_discard(struct dm_target *ti)
1426 {
1427 	return ti->split_discard_bios;
1428 }
1429 
1430 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1431 				       get_num_bios_fn get_num_bios,
1432 				       is_split_required_fn is_split_required)
1433 {
1434 	unsigned len;
1435 	unsigned num_bios;
1436 
1437 	/*
1438 	 * Even though the device advertised support for this type of
1439 	 * request, that does not mean every target supports it, and
1440 	 * reconfiguration might also have changed that since the
1441 	 * check was performed.
1442 	 */
1443 	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1444 	if (!num_bios)
1445 		return -EOPNOTSUPP;
1446 
1447 	if (is_split_required && !is_split_required(ti))
1448 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1449 	else
1450 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1451 
1452 	__send_duplicate_bios(ci, ti, num_bios, &len);
1453 
1454 	ci->sector += len;
1455 	ci->sector_count -= len;
1456 
1457 	return 0;
1458 }
1459 
1460 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1461 {
1462 	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1463 					   is_split_required_for_discard);
1464 }
1465 
1466 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1467 {
1468 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1469 }
1470 
1471 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1472 {
1473 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1474 }
1475 
1476 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1477 {
1478 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1479 }
1480 
1481 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1482 				  int *result)
1483 {
1484 	struct bio *bio = ci->bio;
1485 
1486 	if (bio_op(bio) == REQ_OP_DISCARD)
1487 		*result = __send_discard(ci, ti);
1488 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1489 		*result = __send_secure_erase(ci, ti);
1490 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1491 		*result = __send_write_same(ci, ti);
1492 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1493 		*result = __send_write_zeroes(ci, ti);
1494 	else
1495 		return false;
1496 
1497 	return true;
1498 }
1499 
1500 /*
1501  * Select the correct strategy for processing a non-flush bio.
1502  */
1503 static int __split_and_process_non_flush(struct clone_info *ci)
1504 {
1505 	struct bio *bio = ci->bio;
1506 	struct dm_target *ti;
1507 	unsigned len;
1508 	int r;
1509 
1510 	ti = dm_table_find_target(ci->map, ci->sector);
1511 	if (!dm_target_is_valid(ti))
1512 		return -EIO;
1513 
1514 	if (unlikely(__process_abnormal_io(ci, ti, &r)))
1515 		return r;
1516 
1517 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1518 		len = ci->sector_count;
1519 	else
1520 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1521 			    ci->sector_count);
1522 
1523 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1524 	if (r < 0)
1525 		return r;
1526 
1527 	ci->sector += len;
1528 	ci->sector_count -= len;
1529 
1530 	return 0;
1531 }
1532 
1533 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1534 			    struct dm_table *map, struct bio *bio)
1535 {
1536 	ci->map = map;
1537 	ci->io = alloc_io(md, bio);
1538 	ci->sector = bio->bi_iter.bi_sector;
1539 }
1540 
1541 /*
1542  * Entry point to split a bio into clones and submit them to the targets.
1543  */
1544 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1545 					struct dm_table *map, struct bio *bio)
1546 {
1547 	struct clone_info ci;
1548 	blk_qc_t ret = BLK_QC_T_NONE;
1549 	int error = 0;
1550 
1551 	if (unlikely(!map)) {
1552 		bio_io_error(bio);
1553 		return ret;
1554 	}
1555 
1556 	init_clone_info(&ci, md, map, bio);
1557 
1558 	if (bio->bi_opf & REQ_PREFLUSH) {
1559 		ci.bio = &ci.io->md->flush_bio;
1560 		ci.sector_count = 0;
1561 		error = __send_empty_flush(&ci);
1562 		/* dec_pending submits any data associated with flush */
1563 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1564 		ci.bio = bio;
1565 		ci.sector_count = 0;
1566 		error = __split_and_process_non_flush(&ci);
1567 	} else {
1568 		ci.bio = bio;
1569 		ci.sector_count = bio_sectors(bio);
1570 		while (ci.sector_count && !error) {
1571 			error = __split_and_process_non_flush(&ci);
1572 			if (current->bio_list && ci.sector_count && !error) {
1573 				/*
1574 				 * Remainder must be passed to generic_make_request()
1575 				 * so that it gets handled *after* bios already submitted
1576 				 * have been completely processed.
1577 				 * We take a clone of the original to store in
1578 				 * ci.io->orig_bio to be used by end_io_acct() and
1579 				 * for dec_pending to use for completion handling.
1580 				 * As this path is not used for REQ_OP_ZONE_REPORT,
1581 				 * the usage of io->orig_bio in dm_remap_zone_report()
1582 				 * won't be affected by this reassignment.
1583 				 */
1584 				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1585 								 md->queue->bio_split);
1586 				ci.io->orig_bio = b;
1587 				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1588 				bio_chain(b, bio);
1589 				ret = generic_make_request(bio);
1590 				break;
1591 			}
1592 		}
1593 	}
1594 
1595 	/* drop the extra reference count */
1596 	dec_pending(ci.io, errno_to_blk_status(error));
1597 	return ret;
1598 }
1599 
1600 /*
1601  * Optimized variant of __split_and_process_bio that leverages the
1602  * fact that targets that use it do _not_ have a need to split bios.
1603  */
1604 static blk_qc_t __process_bio(struct mapped_device *md,
1605 			      struct dm_table *map, struct bio *bio)
1606 {
1607 	struct clone_info ci;
1608 	blk_qc_t ret = BLK_QC_T_NONE;
1609 	int error = 0;
1610 
1611 	if (unlikely(!map)) {
1612 		bio_io_error(bio);
1613 		return ret;
1614 	}
1615 
1616 	init_clone_info(&ci, md, map, bio);
1617 
1618 	if (bio->bi_opf & REQ_PREFLUSH) {
1619 		ci.bio = &ci.io->md->flush_bio;
1620 		ci.sector_count = 0;
1621 		error = __send_empty_flush(&ci);
1622 		/* dec_pending submits any data associated with flush */
1623 	} else {
1624 		struct dm_target *ti = md->immutable_target;
1625 		struct dm_target_io *tio;
1626 
1627 		/*
1628 		 * Defend against IO still getting in during teardown
1629 		 * - as was seen for a time with nvme-fcloop
1630 		 */
1631 		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1632 			error = -EIO;
1633 			goto out;
1634 		}
1635 
1636 		ci.bio = bio;
1637 		ci.sector_count = bio_sectors(bio);
1638 		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1639 			goto out;
1640 
1641 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1642 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1643 	}
1644 out:
1645 	/* drop the extra reference count */
1646 	dec_pending(ci.io, errno_to_blk_status(error));
1647 	return ret;
1648 }
1649 
1650 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1651 
1652 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1653 				  process_bio_fn process_bio)
1654 {
1655 	struct mapped_device *md = q->queuedata;
1656 	blk_qc_t ret = BLK_QC_T_NONE;
1657 	int srcu_idx;
1658 	struct dm_table *map;
1659 
1660 	map = dm_get_live_table(md, &srcu_idx);
1661 
1662 	/* if we're suspended, we have to queue this io for later */
1663 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1664 		dm_put_live_table(md, srcu_idx);
1665 
1666 		if (!(bio->bi_opf & REQ_RAHEAD))
1667 			queue_io(md, bio);
1668 		else
1669 			bio_io_error(bio);
1670 		return ret;
1671 	}
1672 
1673 	ret = process_bio(md, map, bio);
1674 
1675 	dm_put_live_table(md, srcu_idx);
1676 	return ret;
1677 }
1678 
1679 /*
1680  * The request function that remaps the bio to one target and
1681  * splits off any remainder.
1682  */
1683 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1684 {
1685 	return __dm_make_request(q, bio, __split_and_process_bio);
1686 }
1687 
1688 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1689 {
1690 	return __dm_make_request(q, bio, __process_bio);
1691 }
1692 
1693 static int dm_any_congested(void *congested_data, int bdi_bits)
1694 {
1695 	int r = bdi_bits;
1696 	struct mapped_device *md = congested_data;
1697 	struct dm_table *map;
1698 
1699 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1700 		if (dm_request_based(md)) {
1701 			/*
1702 			 * With request-based DM we only need to check the
1703 			 * top-level queue for congestion.
1704 			 */
1705 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1706 		} else {
1707 			map = dm_get_live_table_fast(md);
1708 			if (map)
1709 				r = dm_table_any_congested(map, bdi_bits);
1710 			dm_put_live_table_fast(md);
1711 		}
1712 	}
1713 
1714 	return r;
1715 }
1716 
1717 /*-----------------------------------------------------------------
1718  * An IDR is used to keep track of allocated minor numbers.
1719  *---------------------------------------------------------------*/
1720 static void free_minor(int minor)
1721 {
1722 	spin_lock(&_minor_lock);
1723 	idr_remove(&_minor_idr, minor);
1724 	spin_unlock(&_minor_lock);
1725 }
1726 
1727 /*
1728  * See if the device with a specific minor # is free.
1729  */
1730 static int specific_minor(int minor)
1731 {
1732 	int r;
1733 
1734 	if (minor >= (1 << MINORBITS))
1735 		return -EINVAL;
1736 
1737 	idr_preload(GFP_KERNEL);
1738 	spin_lock(&_minor_lock);
1739 
1740 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1741 
1742 	spin_unlock(&_minor_lock);
1743 	idr_preload_end();
1744 	if (r < 0)
1745 		return r == -ENOSPC ? -EBUSY : r;
1746 	return 0;
1747 }
1748 
1749 static int next_free_minor(int *minor)
1750 {
1751 	int r;
1752 
1753 	idr_preload(GFP_KERNEL);
1754 	spin_lock(&_minor_lock);
1755 
1756 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1757 
1758 	spin_unlock(&_minor_lock);
1759 	idr_preload_end();
1760 	if (r < 0)
1761 		return r;
1762 	*minor = r;
1763 	return 0;
1764 }
1765 
1766 static const struct block_device_operations dm_blk_dops;
1767 static const struct dax_operations dm_dax_ops;
1768 
1769 static void dm_wq_work(struct work_struct *work);
1770 
1771 static void dm_init_normal_md_queue(struct mapped_device *md)
1772 {
1773 	md->use_blk_mq = false;
1774 
1775 	/*
1776 	 * Initialize aspects of queue that aren't relevant for blk-mq
1777 	 */
1778 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1779 }
1780 
1781 static void cleanup_mapped_device(struct mapped_device *md)
1782 {
1783 	if (md->wq)
1784 		destroy_workqueue(md->wq);
1785 	if (md->kworker_task)
1786 		kthread_stop(md->kworker_task);
1787 	if (md->bs)
1788 		bioset_free(md->bs);
1789 	if (md->io_bs)
1790 		bioset_free(md->io_bs);
1791 
1792 	if (md->dax_dev) {
1793 		kill_dax(md->dax_dev);
1794 		put_dax(md->dax_dev);
1795 		md->dax_dev = NULL;
1796 	}
1797 
1798 	if (md->disk) {
1799 		spin_lock(&_minor_lock);
1800 		md->disk->private_data = NULL;
1801 		spin_unlock(&_minor_lock);
1802 		del_gendisk(md->disk);
1803 		put_disk(md->disk);
1804 	}
1805 
1806 	if (md->queue)
1807 		blk_cleanup_queue(md->queue);
1808 
1809 	cleanup_srcu_struct(&md->io_barrier);
1810 
1811 	if (md->bdev) {
1812 		bdput(md->bdev);
1813 		md->bdev = NULL;
1814 	}
1815 
1816 	mutex_destroy(&md->suspend_lock);
1817 	mutex_destroy(&md->type_lock);
1818 	mutex_destroy(&md->table_devices_lock);
1819 
1820 	dm_mq_cleanup_mapped_device(md);
1821 }
1822 
1823 /*
1824  * Allocate and initialise a blank device with a given minor.
1825  */
1826 static struct mapped_device *alloc_dev(int minor)
1827 {
1828 	int r, numa_node_id = dm_get_numa_node();
1829 	struct dax_device *dax_dev;
1830 	struct mapped_device *md;
1831 	void *old_md;
1832 
1833 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1834 	if (!md) {
1835 		DMWARN("unable to allocate device, out of memory.");
1836 		return NULL;
1837 	}
1838 
1839 	if (!try_module_get(THIS_MODULE))
1840 		goto bad_module_get;
1841 
1842 	/* get a minor number for the dev */
1843 	if (minor == DM_ANY_MINOR)
1844 		r = next_free_minor(&minor);
1845 	else
1846 		r = specific_minor(minor);
1847 	if (r < 0)
1848 		goto bad_minor;
1849 
1850 	r = init_srcu_struct(&md->io_barrier);
1851 	if (r < 0)
1852 		goto bad_io_barrier;
1853 
1854 	md->numa_node_id = numa_node_id;
1855 	md->use_blk_mq = dm_use_blk_mq_default();
1856 	md->init_tio_pdu = false;
1857 	md->type = DM_TYPE_NONE;
1858 	mutex_init(&md->suspend_lock);
1859 	mutex_init(&md->type_lock);
1860 	mutex_init(&md->table_devices_lock);
1861 	spin_lock_init(&md->deferred_lock);
1862 	atomic_set(&md->holders, 1);
1863 	atomic_set(&md->open_count, 0);
1864 	atomic_set(&md->event_nr, 0);
1865 	atomic_set(&md->uevent_seq, 0);
1866 	INIT_LIST_HEAD(&md->uevent_list);
1867 	INIT_LIST_HEAD(&md->table_devices);
1868 	spin_lock_init(&md->uevent_lock);
1869 
1870 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1871 	if (!md->queue)
1872 		goto bad;
1873 	md->queue->queuedata = md;
1874 	md->queue->backing_dev_info->congested_data = md;
1875 
1876 	md->disk = alloc_disk_node(1, md->numa_node_id);
1877 	if (!md->disk)
1878 		goto bad;
1879 
1880 	atomic_set(&md->pending[0], 0);
1881 	atomic_set(&md->pending[1], 0);
1882 	init_waitqueue_head(&md->wait);
1883 	INIT_WORK(&md->work, dm_wq_work);
1884 	init_waitqueue_head(&md->eventq);
1885 	init_completion(&md->kobj_holder.completion);
1886 	md->kworker_task = NULL;
1887 
1888 	md->disk->major = _major;
1889 	md->disk->first_minor = minor;
1890 	md->disk->fops = &dm_blk_dops;
1891 	md->disk->queue = md->queue;
1892 	md->disk->private_data = md;
1893 	sprintf(md->disk->disk_name, "dm-%d", minor);
1894 
1895 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1896 	if (!dax_dev)
1897 		goto bad;
1898 	md->dax_dev = dax_dev;
1899 
1900 	add_disk_no_queue_reg(md->disk);
1901 	format_dev_t(md->name, MKDEV(_major, minor));
1902 
1903 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1904 	if (!md->wq)
1905 		goto bad;
1906 
1907 	md->bdev = bdget_disk(md->disk, 0);
1908 	if (!md->bdev)
1909 		goto bad;
1910 
1911 	bio_init(&md->flush_bio, NULL, 0);
1912 	bio_set_dev(&md->flush_bio, md->bdev);
1913 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1914 
1915 	dm_stats_init(&md->stats);
1916 
1917 	/* Populate the mapping, nobody knows we exist yet */
1918 	spin_lock(&_minor_lock);
1919 	old_md = idr_replace(&_minor_idr, md, minor);
1920 	spin_unlock(&_minor_lock);
1921 
1922 	BUG_ON(old_md != MINOR_ALLOCED);
1923 
1924 	return md;
1925 
1926 bad:
1927 	cleanup_mapped_device(md);
1928 bad_io_barrier:
1929 	free_minor(minor);
1930 bad_minor:
1931 	module_put(THIS_MODULE);
1932 bad_module_get:
1933 	kvfree(md);
1934 	return NULL;
1935 }
1936 
1937 static void unlock_fs(struct mapped_device *md);
1938 
1939 static void free_dev(struct mapped_device *md)
1940 {
1941 	int minor = MINOR(disk_devt(md->disk));
1942 
1943 	unlock_fs(md);
1944 
1945 	cleanup_mapped_device(md);
1946 
1947 	free_table_devices(&md->table_devices);
1948 	dm_stats_cleanup(&md->stats);
1949 	free_minor(minor);
1950 
1951 	module_put(THIS_MODULE);
1952 	kvfree(md);
1953 }
1954 
1955 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1956 {
1957 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1958 
1959 	if (dm_table_bio_based(t)) {
1960 		/*
1961 		 * The md may already have mempools that need changing.
1962 		 * If so, reload bioset because front_pad may have changed
1963 		 * because a different table was loaded.
1964 		 */
1965 		if (md->bs) {
1966 			bioset_free(md->bs);
1967 			md->bs = NULL;
1968 		}
1969 		if (md->io_bs) {
1970 			bioset_free(md->io_bs);
1971 			md->io_bs = NULL;
1972 		}
1973 
1974 	} else if (md->bs) {
1975 		/*
1976 		 * There's no need to reload with request-based dm
1977 		 * because the size of front_pad doesn't change.
1978 		 * Note for future: If you are to reload bioset,
1979 		 * prep-ed requests in the queue may refer
1980 		 * to bio from the old bioset, so you must walk
1981 		 * through the queue to unprep.
1982 		 */
1983 		goto out;
1984 	}
1985 
1986 	BUG_ON(!p || md->bs || md->io_bs);
1987 
1988 	md->bs = p->bs;
1989 	p->bs = NULL;
1990 	md->io_bs = p->io_bs;
1991 	p->io_bs = NULL;
1992 out:
1993 	/* mempool bind completed, no longer need any mempools in the table */
1994 	dm_table_free_md_mempools(t);
1995 }
1996 
1997 /*
1998  * Bind a table to the device.
1999  */
2000 static void event_callback(void *context)
2001 {
2002 	unsigned long flags;
2003 	LIST_HEAD(uevents);
2004 	struct mapped_device *md = (struct mapped_device *) context;
2005 
2006 	spin_lock_irqsave(&md->uevent_lock, flags);
2007 	list_splice_init(&md->uevent_list, &uevents);
2008 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2009 
2010 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2011 
2012 	atomic_inc(&md->event_nr);
2013 	wake_up(&md->eventq);
2014 	dm_issue_global_event();
2015 }
2016 
2017 /*
2018  * Protected by md->suspend_lock obtained by dm_swap_table().
2019  */
2020 static void __set_size(struct mapped_device *md, sector_t size)
2021 {
2022 	lockdep_assert_held(&md->suspend_lock);
2023 
2024 	set_capacity(md->disk, size);
2025 
2026 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2027 }
2028 
2029 /*
2030  * Returns old map, which caller must destroy.
2031  */
2032 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2033 			       struct queue_limits *limits)
2034 {
2035 	struct dm_table *old_map;
2036 	struct request_queue *q = md->queue;
2037 	bool request_based = dm_table_request_based(t);
2038 	sector_t size;
2039 
2040 	lockdep_assert_held(&md->suspend_lock);
2041 
2042 	size = dm_table_get_size(t);
2043 
2044 	/*
2045 	 * Wipe any geometry if the size of the table changed.
2046 	 */
2047 	if (size != dm_get_size(md))
2048 		memset(&md->geometry, 0, sizeof(md->geometry));
2049 
2050 	__set_size(md, size);
2051 
2052 	dm_table_event_callback(t, event_callback, md);
2053 
2054 	/*
2055 	 * The queue hasn't been stopped yet, if the old table type wasn't
2056 	 * for request-based during suspension.  So stop it to prevent
2057 	 * I/O mapping before resume.
2058 	 * This must be done before setting the queue restrictions,
2059 	 * because request-based dm may be run just after the setting.
2060 	 */
2061 	if (request_based)
2062 		dm_stop_queue(q);
2063 
2064 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2065 		/*
2066 		 * Leverage the fact that request-based DM targets and
2067 		 * NVMe bio based targets are immutable singletons
2068 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2069 		 *   and __process_bio.
2070 		 */
2071 		md->immutable_target = dm_table_get_immutable_target(t);
2072 	}
2073 
2074 	__bind_mempools(md, t);
2075 
2076 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2077 	rcu_assign_pointer(md->map, (void *)t);
2078 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2079 
2080 	dm_table_set_restrictions(t, q, limits);
2081 	if (old_map)
2082 		dm_sync_table(md);
2083 
2084 	return old_map;
2085 }
2086 
2087 /*
2088  * Returns unbound table for the caller to free.
2089  */
2090 static struct dm_table *__unbind(struct mapped_device *md)
2091 {
2092 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2093 
2094 	if (!map)
2095 		return NULL;
2096 
2097 	dm_table_event_callback(map, NULL, NULL);
2098 	RCU_INIT_POINTER(md->map, NULL);
2099 	dm_sync_table(md);
2100 
2101 	return map;
2102 }
2103 
2104 /*
2105  * Constructor for a new device.
2106  */
2107 int dm_create(int minor, struct mapped_device **result)
2108 {
2109 	int r;
2110 	struct mapped_device *md;
2111 
2112 	md = alloc_dev(minor);
2113 	if (!md)
2114 		return -ENXIO;
2115 
2116 	r = dm_sysfs_init(md);
2117 	if (r) {
2118 		free_dev(md);
2119 		return r;
2120 	}
2121 
2122 	*result = md;
2123 	return 0;
2124 }
2125 
2126 /*
2127  * Functions to manage md->type.
2128  * All are required to hold md->type_lock.
2129  */
2130 void dm_lock_md_type(struct mapped_device *md)
2131 {
2132 	mutex_lock(&md->type_lock);
2133 }
2134 
2135 void dm_unlock_md_type(struct mapped_device *md)
2136 {
2137 	mutex_unlock(&md->type_lock);
2138 }
2139 
2140 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2141 {
2142 	BUG_ON(!mutex_is_locked(&md->type_lock));
2143 	md->type = type;
2144 }
2145 
2146 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2147 {
2148 	return md->type;
2149 }
2150 
2151 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2152 {
2153 	return md->immutable_target_type;
2154 }
2155 
2156 /*
2157  * The queue_limits are only valid as long as you have a reference
2158  * count on 'md'.
2159  */
2160 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2161 {
2162 	BUG_ON(!atomic_read(&md->holders));
2163 	return &md->queue->limits;
2164 }
2165 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2166 
2167 /*
2168  * Setup the DM device's queue based on md's type
2169  */
2170 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2171 {
2172 	int r;
2173 	struct queue_limits limits;
2174 	enum dm_queue_mode type = dm_get_md_type(md);
2175 
2176 	switch (type) {
2177 	case DM_TYPE_REQUEST_BASED:
2178 		dm_init_normal_md_queue(md);
2179 		r = dm_old_init_request_queue(md, t);
2180 		if (r) {
2181 			DMERR("Cannot initialize queue for request-based mapped device");
2182 			return r;
2183 		}
2184 		break;
2185 	case DM_TYPE_MQ_REQUEST_BASED:
2186 		r = dm_mq_init_request_queue(md, t);
2187 		if (r) {
2188 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2189 			return r;
2190 		}
2191 		break;
2192 	case DM_TYPE_BIO_BASED:
2193 	case DM_TYPE_DAX_BIO_BASED:
2194 		dm_init_normal_md_queue(md);
2195 		blk_queue_make_request(md->queue, dm_make_request);
2196 		break;
2197 	case DM_TYPE_NVME_BIO_BASED:
2198 		dm_init_normal_md_queue(md);
2199 		blk_queue_make_request(md->queue, dm_make_request_nvme);
2200 		break;
2201 	case DM_TYPE_NONE:
2202 		WARN_ON_ONCE(true);
2203 		break;
2204 	}
2205 
2206 	r = dm_calculate_queue_limits(t, &limits);
2207 	if (r) {
2208 		DMERR("Cannot calculate initial queue limits");
2209 		return r;
2210 	}
2211 	dm_table_set_restrictions(t, md->queue, &limits);
2212 	blk_register_queue(md->disk);
2213 
2214 	return 0;
2215 }
2216 
2217 struct mapped_device *dm_get_md(dev_t dev)
2218 {
2219 	struct mapped_device *md;
2220 	unsigned minor = MINOR(dev);
2221 
2222 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2223 		return NULL;
2224 
2225 	spin_lock(&_minor_lock);
2226 
2227 	md = idr_find(&_minor_idr, minor);
2228 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2229 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2230 		md = NULL;
2231 		goto out;
2232 	}
2233 	dm_get(md);
2234 out:
2235 	spin_unlock(&_minor_lock);
2236 
2237 	return md;
2238 }
2239 EXPORT_SYMBOL_GPL(dm_get_md);
2240 
2241 void *dm_get_mdptr(struct mapped_device *md)
2242 {
2243 	return md->interface_ptr;
2244 }
2245 
2246 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2247 {
2248 	md->interface_ptr = ptr;
2249 }
2250 
2251 void dm_get(struct mapped_device *md)
2252 {
2253 	atomic_inc(&md->holders);
2254 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2255 }
2256 
2257 int dm_hold(struct mapped_device *md)
2258 {
2259 	spin_lock(&_minor_lock);
2260 	if (test_bit(DMF_FREEING, &md->flags)) {
2261 		spin_unlock(&_minor_lock);
2262 		return -EBUSY;
2263 	}
2264 	dm_get(md);
2265 	spin_unlock(&_minor_lock);
2266 	return 0;
2267 }
2268 EXPORT_SYMBOL_GPL(dm_hold);
2269 
2270 const char *dm_device_name(struct mapped_device *md)
2271 {
2272 	return md->name;
2273 }
2274 EXPORT_SYMBOL_GPL(dm_device_name);
2275 
2276 static void __dm_destroy(struct mapped_device *md, bool wait)
2277 {
2278 	struct dm_table *map;
2279 	int srcu_idx;
2280 
2281 	might_sleep();
2282 
2283 	spin_lock(&_minor_lock);
2284 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2285 	set_bit(DMF_FREEING, &md->flags);
2286 	spin_unlock(&_minor_lock);
2287 
2288 	blk_set_queue_dying(md->queue);
2289 
2290 	if (dm_request_based(md) && md->kworker_task)
2291 		kthread_flush_worker(&md->kworker);
2292 
2293 	/*
2294 	 * Take suspend_lock so that presuspend and postsuspend methods
2295 	 * do not race with internal suspend.
2296 	 */
2297 	mutex_lock(&md->suspend_lock);
2298 	map = dm_get_live_table(md, &srcu_idx);
2299 	if (!dm_suspended_md(md)) {
2300 		dm_table_presuspend_targets(map);
2301 		dm_table_postsuspend_targets(map);
2302 	}
2303 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2304 	dm_put_live_table(md, srcu_idx);
2305 	mutex_unlock(&md->suspend_lock);
2306 
2307 	/*
2308 	 * Rare, but there may be I/O requests still going to complete,
2309 	 * for example.  Wait for all references to disappear.
2310 	 * No one should increment the reference count of the mapped_device,
2311 	 * after the mapped_device state becomes DMF_FREEING.
2312 	 */
2313 	if (wait)
2314 		while (atomic_read(&md->holders))
2315 			msleep(1);
2316 	else if (atomic_read(&md->holders))
2317 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2318 		       dm_device_name(md), atomic_read(&md->holders));
2319 
2320 	dm_sysfs_exit(md);
2321 	dm_table_destroy(__unbind(md));
2322 	free_dev(md);
2323 }
2324 
2325 void dm_destroy(struct mapped_device *md)
2326 {
2327 	__dm_destroy(md, true);
2328 }
2329 
2330 void dm_destroy_immediate(struct mapped_device *md)
2331 {
2332 	__dm_destroy(md, false);
2333 }
2334 
2335 void dm_put(struct mapped_device *md)
2336 {
2337 	atomic_dec(&md->holders);
2338 }
2339 EXPORT_SYMBOL_GPL(dm_put);
2340 
2341 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2342 {
2343 	int r = 0;
2344 	DEFINE_WAIT(wait);
2345 
2346 	while (1) {
2347 		prepare_to_wait(&md->wait, &wait, task_state);
2348 
2349 		if (!md_in_flight(md))
2350 			break;
2351 
2352 		if (signal_pending_state(task_state, current)) {
2353 			r = -EINTR;
2354 			break;
2355 		}
2356 
2357 		io_schedule();
2358 	}
2359 	finish_wait(&md->wait, &wait);
2360 
2361 	return r;
2362 }
2363 
2364 /*
2365  * Process the deferred bios
2366  */
2367 static void dm_wq_work(struct work_struct *work)
2368 {
2369 	struct mapped_device *md = container_of(work, struct mapped_device,
2370 						work);
2371 	struct bio *c;
2372 	int srcu_idx;
2373 	struct dm_table *map;
2374 
2375 	map = dm_get_live_table(md, &srcu_idx);
2376 
2377 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2378 		spin_lock_irq(&md->deferred_lock);
2379 		c = bio_list_pop(&md->deferred);
2380 		spin_unlock_irq(&md->deferred_lock);
2381 
2382 		if (!c)
2383 			break;
2384 
2385 		if (dm_request_based(md))
2386 			generic_make_request(c);
2387 		else
2388 			__split_and_process_bio(md, map, c);
2389 	}
2390 
2391 	dm_put_live_table(md, srcu_idx);
2392 }
2393 
2394 static void dm_queue_flush(struct mapped_device *md)
2395 {
2396 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2397 	smp_mb__after_atomic();
2398 	queue_work(md->wq, &md->work);
2399 }
2400 
2401 /*
2402  * Swap in a new table, returning the old one for the caller to destroy.
2403  */
2404 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2405 {
2406 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2407 	struct queue_limits limits;
2408 	int r;
2409 
2410 	mutex_lock(&md->suspend_lock);
2411 
2412 	/* device must be suspended */
2413 	if (!dm_suspended_md(md))
2414 		goto out;
2415 
2416 	/*
2417 	 * If the new table has no data devices, retain the existing limits.
2418 	 * This helps multipath with queue_if_no_path if all paths disappear,
2419 	 * then new I/O is queued based on these limits, and then some paths
2420 	 * reappear.
2421 	 */
2422 	if (dm_table_has_no_data_devices(table)) {
2423 		live_map = dm_get_live_table_fast(md);
2424 		if (live_map)
2425 			limits = md->queue->limits;
2426 		dm_put_live_table_fast(md);
2427 	}
2428 
2429 	if (!live_map) {
2430 		r = dm_calculate_queue_limits(table, &limits);
2431 		if (r) {
2432 			map = ERR_PTR(r);
2433 			goto out;
2434 		}
2435 	}
2436 
2437 	map = __bind(md, table, &limits);
2438 	dm_issue_global_event();
2439 
2440 out:
2441 	mutex_unlock(&md->suspend_lock);
2442 	return map;
2443 }
2444 
2445 /*
2446  * Functions to lock and unlock any filesystem running on the
2447  * device.
2448  */
2449 static int lock_fs(struct mapped_device *md)
2450 {
2451 	int r;
2452 
2453 	WARN_ON(md->frozen_sb);
2454 
2455 	md->frozen_sb = freeze_bdev(md->bdev);
2456 	if (IS_ERR(md->frozen_sb)) {
2457 		r = PTR_ERR(md->frozen_sb);
2458 		md->frozen_sb = NULL;
2459 		return r;
2460 	}
2461 
2462 	set_bit(DMF_FROZEN, &md->flags);
2463 
2464 	return 0;
2465 }
2466 
2467 static void unlock_fs(struct mapped_device *md)
2468 {
2469 	if (!test_bit(DMF_FROZEN, &md->flags))
2470 		return;
2471 
2472 	thaw_bdev(md->bdev, md->frozen_sb);
2473 	md->frozen_sb = NULL;
2474 	clear_bit(DMF_FROZEN, &md->flags);
2475 }
2476 
2477 /*
2478  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2479  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2480  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2481  *
2482  * If __dm_suspend returns 0, the device is completely quiescent
2483  * now. There is no request-processing activity. All new requests
2484  * are being added to md->deferred list.
2485  */
2486 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2487 			unsigned suspend_flags, long task_state,
2488 			int dmf_suspended_flag)
2489 {
2490 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2491 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2492 	int r;
2493 
2494 	lockdep_assert_held(&md->suspend_lock);
2495 
2496 	/*
2497 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2498 	 * This flag is cleared before dm_suspend returns.
2499 	 */
2500 	if (noflush)
2501 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2502 	else
2503 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2504 
2505 	/*
2506 	 * This gets reverted if there's an error later and the targets
2507 	 * provide the .presuspend_undo hook.
2508 	 */
2509 	dm_table_presuspend_targets(map);
2510 
2511 	/*
2512 	 * Flush I/O to the device.
2513 	 * Any I/O submitted after lock_fs() may not be flushed.
2514 	 * noflush takes precedence over do_lockfs.
2515 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2516 	 */
2517 	if (!noflush && do_lockfs) {
2518 		r = lock_fs(md);
2519 		if (r) {
2520 			dm_table_presuspend_undo_targets(map);
2521 			return r;
2522 		}
2523 	}
2524 
2525 	/*
2526 	 * Here we must make sure that no processes are submitting requests
2527 	 * to target drivers i.e. no one may be executing
2528 	 * __split_and_process_bio. This is called from dm_request and
2529 	 * dm_wq_work.
2530 	 *
2531 	 * To get all processes out of __split_and_process_bio in dm_request,
2532 	 * we take the write lock. To prevent any process from reentering
2533 	 * __split_and_process_bio from dm_request and quiesce the thread
2534 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2535 	 * flush_workqueue(md->wq).
2536 	 */
2537 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2538 	if (map)
2539 		synchronize_srcu(&md->io_barrier);
2540 
2541 	/*
2542 	 * Stop md->queue before flushing md->wq in case request-based
2543 	 * dm defers requests to md->wq from md->queue.
2544 	 */
2545 	if (dm_request_based(md)) {
2546 		dm_stop_queue(md->queue);
2547 		if (md->kworker_task)
2548 			kthread_flush_worker(&md->kworker);
2549 	}
2550 
2551 	flush_workqueue(md->wq);
2552 
2553 	/*
2554 	 * At this point no more requests are entering target request routines.
2555 	 * We call dm_wait_for_completion to wait for all existing requests
2556 	 * to finish.
2557 	 */
2558 	r = dm_wait_for_completion(md, task_state);
2559 	if (!r)
2560 		set_bit(dmf_suspended_flag, &md->flags);
2561 
2562 	if (noflush)
2563 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2564 	if (map)
2565 		synchronize_srcu(&md->io_barrier);
2566 
2567 	/* were we interrupted ? */
2568 	if (r < 0) {
2569 		dm_queue_flush(md);
2570 
2571 		if (dm_request_based(md))
2572 			dm_start_queue(md->queue);
2573 
2574 		unlock_fs(md);
2575 		dm_table_presuspend_undo_targets(map);
2576 		/* pushback list is already flushed, so skip flush */
2577 	}
2578 
2579 	return r;
2580 }
2581 
2582 /*
2583  * We need to be able to change a mapping table under a mounted
2584  * filesystem.  For example we might want to move some data in
2585  * the background.  Before the table can be swapped with
2586  * dm_bind_table, dm_suspend must be called to flush any in
2587  * flight bios and ensure that any further io gets deferred.
2588  */
2589 /*
2590  * Suspend mechanism in request-based dm.
2591  *
2592  * 1. Flush all I/Os by lock_fs() if needed.
2593  * 2. Stop dispatching any I/O by stopping the request_queue.
2594  * 3. Wait for all in-flight I/Os to be completed or requeued.
2595  *
2596  * To abort suspend, start the request_queue.
2597  */
2598 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2599 {
2600 	struct dm_table *map = NULL;
2601 	int r = 0;
2602 
2603 retry:
2604 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2605 
2606 	if (dm_suspended_md(md)) {
2607 		r = -EINVAL;
2608 		goto out_unlock;
2609 	}
2610 
2611 	if (dm_suspended_internally_md(md)) {
2612 		/* already internally suspended, wait for internal resume */
2613 		mutex_unlock(&md->suspend_lock);
2614 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2615 		if (r)
2616 			return r;
2617 		goto retry;
2618 	}
2619 
2620 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2621 
2622 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2623 	if (r)
2624 		goto out_unlock;
2625 
2626 	dm_table_postsuspend_targets(map);
2627 
2628 out_unlock:
2629 	mutex_unlock(&md->suspend_lock);
2630 	return r;
2631 }
2632 
2633 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2634 {
2635 	if (map) {
2636 		int r = dm_table_resume_targets(map);
2637 		if (r)
2638 			return r;
2639 	}
2640 
2641 	dm_queue_flush(md);
2642 
2643 	/*
2644 	 * Flushing deferred I/Os must be done after targets are resumed
2645 	 * so that mapping of targets can work correctly.
2646 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2647 	 */
2648 	if (dm_request_based(md))
2649 		dm_start_queue(md->queue);
2650 
2651 	unlock_fs(md);
2652 
2653 	return 0;
2654 }
2655 
2656 int dm_resume(struct mapped_device *md)
2657 {
2658 	int r;
2659 	struct dm_table *map = NULL;
2660 
2661 retry:
2662 	r = -EINVAL;
2663 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2664 
2665 	if (!dm_suspended_md(md))
2666 		goto out;
2667 
2668 	if (dm_suspended_internally_md(md)) {
2669 		/* already internally suspended, wait for internal resume */
2670 		mutex_unlock(&md->suspend_lock);
2671 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2672 		if (r)
2673 			return r;
2674 		goto retry;
2675 	}
2676 
2677 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2678 	if (!map || !dm_table_get_size(map))
2679 		goto out;
2680 
2681 	r = __dm_resume(md, map);
2682 	if (r)
2683 		goto out;
2684 
2685 	clear_bit(DMF_SUSPENDED, &md->flags);
2686 out:
2687 	mutex_unlock(&md->suspend_lock);
2688 
2689 	return r;
2690 }
2691 
2692 /*
2693  * Internal suspend/resume works like userspace-driven suspend. It waits
2694  * until all bios finish and prevents issuing new bios to the target drivers.
2695  * It may be used only from the kernel.
2696  */
2697 
2698 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2699 {
2700 	struct dm_table *map = NULL;
2701 
2702 	lockdep_assert_held(&md->suspend_lock);
2703 
2704 	if (md->internal_suspend_count++)
2705 		return; /* nested internal suspend */
2706 
2707 	if (dm_suspended_md(md)) {
2708 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2709 		return; /* nest suspend */
2710 	}
2711 
2712 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2713 
2714 	/*
2715 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2716 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2717 	 * would require changing .presuspend to return an error -- avoid this
2718 	 * until there is a need for more elaborate variants of internal suspend.
2719 	 */
2720 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2721 			    DMF_SUSPENDED_INTERNALLY);
2722 
2723 	dm_table_postsuspend_targets(map);
2724 }
2725 
2726 static void __dm_internal_resume(struct mapped_device *md)
2727 {
2728 	BUG_ON(!md->internal_suspend_count);
2729 
2730 	if (--md->internal_suspend_count)
2731 		return; /* resume from nested internal suspend */
2732 
2733 	if (dm_suspended_md(md))
2734 		goto done; /* resume from nested suspend */
2735 
2736 	/*
2737 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2738 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2739 	 */
2740 	(void) __dm_resume(md, NULL);
2741 
2742 done:
2743 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2744 	smp_mb__after_atomic();
2745 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2746 }
2747 
2748 void dm_internal_suspend_noflush(struct mapped_device *md)
2749 {
2750 	mutex_lock(&md->suspend_lock);
2751 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2752 	mutex_unlock(&md->suspend_lock);
2753 }
2754 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2755 
2756 void dm_internal_resume(struct mapped_device *md)
2757 {
2758 	mutex_lock(&md->suspend_lock);
2759 	__dm_internal_resume(md);
2760 	mutex_unlock(&md->suspend_lock);
2761 }
2762 EXPORT_SYMBOL_GPL(dm_internal_resume);
2763 
2764 /*
2765  * Fast variants of internal suspend/resume hold md->suspend_lock,
2766  * which prevents interaction with userspace-driven suspend.
2767  */
2768 
2769 void dm_internal_suspend_fast(struct mapped_device *md)
2770 {
2771 	mutex_lock(&md->suspend_lock);
2772 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2773 		return;
2774 
2775 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2776 	synchronize_srcu(&md->io_barrier);
2777 	flush_workqueue(md->wq);
2778 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2779 }
2780 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2781 
2782 void dm_internal_resume_fast(struct mapped_device *md)
2783 {
2784 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2785 		goto done;
2786 
2787 	dm_queue_flush(md);
2788 
2789 done:
2790 	mutex_unlock(&md->suspend_lock);
2791 }
2792 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2793 
2794 /*-----------------------------------------------------------------
2795  * Event notification.
2796  *---------------------------------------------------------------*/
2797 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2798 		       unsigned cookie)
2799 {
2800 	char udev_cookie[DM_COOKIE_LENGTH];
2801 	char *envp[] = { udev_cookie, NULL };
2802 
2803 	if (!cookie)
2804 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2805 	else {
2806 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2807 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2808 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2809 					  action, envp);
2810 	}
2811 }
2812 
2813 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2814 {
2815 	return atomic_add_return(1, &md->uevent_seq);
2816 }
2817 
2818 uint32_t dm_get_event_nr(struct mapped_device *md)
2819 {
2820 	return atomic_read(&md->event_nr);
2821 }
2822 
2823 int dm_wait_event(struct mapped_device *md, int event_nr)
2824 {
2825 	return wait_event_interruptible(md->eventq,
2826 			(event_nr != atomic_read(&md->event_nr)));
2827 }
2828 
2829 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2830 {
2831 	unsigned long flags;
2832 
2833 	spin_lock_irqsave(&md->uevent_lock, flags);
2834 	list_add(elist, &md->uevent_list);
2835 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2836 }
2837 
2838 /*
2839  * The gendisk is only valid as long as you have a reference
2840  * count on 'md'.
2841  */
2842 struct gendisk *dm_disk(struct mapped_device *md)
2843 {
2844 	return md->disk;
2845 }
2846 EXPORT_SYMBOL_GPL(dm_disk);
2847 
2848 struct kobject *dm_kobject(struct mapped_device *md)
2849 {
2850 	return &md->kobj_holder.kobj;
2851 }
2852 
2853 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2854 {
2855 	struct mapped_device *md;
2856 
2857 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2858 
2859 	spin_lock(&_minor_lock);
2860 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2861 		md = NULL;
2862 		goto out;
2863 	}
2864 	dm_get(md);
2865 out:
2866 	spin_unlock(&_minor_lock);
2867 
2868 	return md;
2869 }
2870 
2871 int dm_suspended_md(struct mapped_device *md)
2872 {
2873 	return test_bit(DMF_SUSPENDED, &md->flags);
2874 }
2875 
2876 int dm_suspended_internally_md(struct mapped_device *md)
2877 {
2878 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2879 }
2880 
2881 int dm_test_deferred_remove_flag(struct mapped_device *md)
2882 {
2883 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2884 }
2885 
2886 int dm_suspended(struct dm_target *ti)
2887 {
2888 	return dm_suspended_md(dm_table_get_md(ti->table));
2889 }
2890 EXPORT_SYMBOL_GPL(dm_suspended);
2891 
2892 int dm_noflush_suspending(struct dm_target *ti)
2893 {
2894 	return __noflush_suspending(dm_table_get_md(ti->table));
2895 }
2896 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2897 
2898 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2899 					    unsigned integrity, unsigned per_io_data_size,
2900 					    unsigned min_pool_size)
2901 {
2902 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2903 	unsigned int pool_size = 0;
2904 	unsigned int front_pad, io_front_pad;
2905 
2906 	if (!pools)
2907 		return NULL;
2908 
2909 	switch (type) {
2910 	case DM_TYPE_BIO_BASED:
2911 	case DM_TYPE_DAX_BIO_BASED:
2912 	case DM_TYPE_NVME_BIO_BASED:
2913 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2914 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2915 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2916 		pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2917 		if (!pools->io_bs)
2918 			goto out;
2919 		if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2920 			goto out;
2921 		break;
2922 	case DM_TYPE_REQUEST_BASED:
2923 	case DM_TYPE_MQ_REQUEST_BASED:
2924 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2925 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2926 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2927 		break;
2928 	default:
2929 		BUG();
2930 	}
2931 
2932 	pools->bs = bioset_create(pool_size, front_pad, 0);
2933 	if (!pools->bs)
2934 		goto out;
2935 
2936 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2937 		goto out;
2938 
2939 	return pools;
2940 
2941 out:
2942 	dm_free_md_mempools(pools);
2943 
2944 	return NULL;
2945 }
2946 
2947 void dm_free_md_mempools(struct dm_md_mempools *pools)
2948 {
2949 	if (!pools)
2950 		return;
2951 
2952 	if (pools->bs)
2953 		bioset_free(pools->bs);
2954 	if (pools->io_bs)
2955 		bioset_free(pools->io_bs);
2956 
2957 	kfree(pools);
2958 }
2959 
2960 struct dm_pr {
2961 	u64	old_key;
2962 	u64	new_key;
2963 	u32	flags;
2964 	bool	fail_early;
2965 };
2966 
2967 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2968 		      void *data)
2969 {
2970 	struct mapped_device *md = bdev->bd_disk->private_data;
2971 	struct dm_table *table;
2972 	struct dm_target *ti;
2973 	int ret = -ENOTTY, srcu_idx;
2974 
2975 	table = dm_get_live_table(md, &srcu_idx);
2976 	if (!table || !dm_table_get_size(table))
2977 		goto out;
2978 
2979 	/* We only support devices that have a single target */
2980 	if (dm_table_get_num_targets(table) != 1)
2981 		goto out;
2982 	ti = dm_table_get_target(table, 0);
2983 
2984 	ret = -EINVAL;
2985 	if (!ti->type->iterate_devices)
2986 		goto out;
2987 
2988 	ret = ti->type->iterate_devices(ti, fn, data);
2989 out:
2990 	dm_put_live_table(md, srcu_idx);
2991 	return ret;
2992 }
2993 
2994 /*
2995  * For register / unregister we need to manually call out to every path.
2996  */
2997 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2998 			    sector_t start, sector_t len, void *data)
2999 {
3000 	struct dm_pr *pr = data;
3001 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3002 
3003 	if (!ops || !ops->pr_register)
3004 		return -EOPNOTSUPP;
3005 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3006 }
3007 
3008 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3009 			  u32 flags)
3010 {
3011 	struct dm_pr pr = {
3012 		.old_key	= old_key,
3013 		.new_key	= new_key,
3014 		.flags		= flags,
3015 		.fail_early	= true,
3016 	};
3017 	int ret;
3018 
3019 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3020 	if (ret && new_key) {
3021 		/* unregister all paths if we failed to register any path */
3022 		pr.old_key = new_key;
3023 		pr.new_key = 0;
3024 		pr.flags = 0;
3025 		pr.fail_early = false;
3026 		dm_call_pr(bdev, __dm_pr_register, &pr);
3027 	}
3028 
3029 	return ret;
3030 }
3031 
3032 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3033 			 u32 flags)
3034 {
3035 	struct mapped_device *md = bdev->bd_disk->private_data;
3036 	const struct pr_ops *ops;
3037 	int r, srcu_idx;
3038 
3039 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3040 	if (r < 0)
3041 		goto out;
3042 
3043 	ops = bdev->bd_disk->fops->pr_ops;
3044 	if (ops && ops->pr_reserve)
3045 		r = ops->pr_reserve(bdev, key, type, flags);
3046 	else
3047 		r = -EOPNOTSUPP;
3048 out:
3049 	dm_unprepare_ioctl(md, srcu_idx);
3050 	return r;
3051 }
3052 
3053 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3054 {
3055 	struct mapped_device *md = bdev->bd_disk->private_data;
3056 	const struct pr_ops *ops;
3057 	int r, srcu_idx;
3058 
3059 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3060 	if (r < 0)
3061 		goto out;
3062 
3063 	ops = bdev->bd_disk->fops->pr_ops;
3064 	if (ops && ops->pr_release)
3065 		r = ops->pr_release(bdev, key, type);
3066 	else
3067 		r = -EOPNOTSUPP;
3068 out:
3069 	dm_unprepare_ioctl(md, srcu_idx);
3070 	return r;
3071 }
3072 
3073 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3074 			 enum pr_type type, bool abort)
3075 {
3076 	struct mapped_device *md = bdev->bd_disk->private_data;
3077 	const struct pr_ops *ops;
3078 	int r, srcu_idx;
3079 
3080 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3081 	if (r < 0)
3082 		goto out;
3083 
3084 	ops = bdev->bd_disk->fops->pr_ops;
3085 	if (ops && ops->pr_preempt)
3086 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3087 	else
3088 		r = -EOPNOTSUPP;
3089 out:
3090 	dm_unprepare_ioctl(md, srcu_idx);
3091 	return r;
3092 }
3093 
3094 static int dm_pr_clear(struct block_device *bdev, u64 key)
3095 {
3096 	struct mapped_device *md = bdev->bd_disk->private_data;
3097 	const struct pr_ops *ops;
3098 	int r, srcu_idx;
3099 
3100 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3101 	if (r < 0)
3102 		goto out;
3103 
3104 	ops = bdev->bd_disk->fops->pr_ops;
3105 	if (ops && ops->pr_clear)
3106 		r = ops->pr_clear(bdev, key);
3107 	else
3108 		r = -EOPNOTSUPP;
3109 out:
3110 	dm_unprepare_ioctl(md, srcu_idx);
3111 	return r;
3112 }
3113 
3114 static const struct pr_ops dm_pr_ops = {
3115 	.pr_register	= dm_pr_register,
3116 	.pr_reserve	= dm_pr_reserve,
3117 	.pr_release	= dm_pr_release,
3118 	.pr_preempt	= dm_pr_preempt,
3119 	.pr_clear	= dm_pr_clear,
3120 };
3121 
3122 static const struct block_device_operations dm_blk_dops = {
3123 	.open = dm_blk_open,
3124 	.release = dm_blk_close,
3125 	.ioctl = dm_blk_ioctl,
3126 	.getgeo = dm_blk_getgeo,
3127 	.pr_ops = &dm_pr_ops,
3128 	.owner = THIS_MODULE
3129 };
3130 
3131 static const struct dax_operations dm_dax_ops = {
3132 	.direct_access = dm_dax_direct_access,
3133 	.copy_from_iter = dm_dax_copy_from_iter,
3134 };
3135 
3136 /*
3137  * module hooks
3138  */
3139 module_init(dm_init);
3140 module_exit(dm_exit);
3141 
3142 module_param(major, uint, 0);
3143 MODULE_PARM_DESC(major, "The major number of the device mapper");
3144 
3145 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3146 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3147 
3148 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3149 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3150 
3151 MODULE_DESCRIPTION(DM_NAME " driver");
3152 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3153 MODULE_LICENSE("GPL");
3154