xref: /linux/drivers/md/dm.c (revision 4232da23d75d173195c6766729e51947b64f83cd)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4   * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5   *
6   * This file is released under the GPL.
7   */
8  
9  #include "dm-core.h"
10  #include "dm-rq.h"
11  #include "dm-uevent.h"
12  #include "dm-ima.h"
13  
14  #include <linux/init.h>
15  #include <linux/module.h>
16  #include <linux/mutex.h>
17  #include <linux/sched/mm.h>
18  #include <linux/sched/signal.h>
19  #include <linux/blkpg.h>
20  #include <linux/bio.h>
21  #include <linux/mempool.h>
22  #include <linux/dax.h>
23  #include <linux/slab.h>
24  #include <linux/idr.h>
25  #include <linux/uio.h>
26  #include <linux/hdreg.h>
27  #include <linux/delay.h>
28  #include <linux/wait.h>
29  #include <linux/pr.h>
30  #include <linux/refcount.h>
31  #include <linux/part_stat.h>
32  #include <linux/blk-crypto.h>
33  #include <linux/blk-crypto-profile.h>
34  
35  #define DM_MSG_PREFIX "core"
36  
37  /*
38   * Cookies are numeric values sent with CHANGE and REMOVE
39   * uevents while resuming, removing or renaming the device.
40   */
41  #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42  #define DM_COOKIE_LENGTH 24
43  
44  /*
45   * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46   * dm_io into one list, and reuse bio->bi_private as the list head. Before
47   * ending this fs bio, we will recover its ->bi_private.
48   */
49  #define REQ_DM_POLL_LIST	REQ_DRV
50  
51  static const char *_name = DM_NAME;
52  
53  static unsigned int major;
54  static unsigned int _major;
55  
56  static DEFINE_IDR(_minor_idr);
57  
58  static DEFINE_SPINLOCK(_minor_lock);
59  
60  static void do_deferred_remove(struct work_struct *w);
61  
62  static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63  
64  static struct workqueue_struct *deferred_remove_workqueue;
65  
66  atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67  DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68  
69  void dm_issue_global_event(void)
70  {
71  	atomic_inc(&dm_global_event_nr);
72  	wake_up(&dm_global_eventq);
73  }
74  
75  DEFINE_STATIC_KEY_FALSE(stats_enabled);
76  DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77  DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78  
79  /*
80   * One of these is allocated (on-stack) per original bio.
81   */
82  struct clone_info {
83  	struct dm_table *map;
84  	struct bio *bio;
85  	struct dm_io *io;
86  	sector_t sector;
87  	unsigned int sector_count;
88  	bool is_abnormal_io:1;
89  	bool submit_as_polled:1;
90  };
91  
92  static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93  {
94  	return container_of(clone, struct dm_target_io, clone);
95  }
96  
97  void *dm_per_bio_data(struct bio *bio, size_t data_size)
98  {
99  	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100  		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101  	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102  }
103  EXPORT_SYMBOL_GPL(dm_per_bio_data);
104  
105  struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106  {
107  	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108  
109  	if (io->magic == DM_IO_MAGIC)
110  		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111  	BUG_ON(io->magic != DM_TIO_MAGIC);
112  	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113  }
114  EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115  
116  unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117  {
118  	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119  }
120  EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121  
122  #define MINOR_ALLOCED ((void *)-1)
123  
124  #define DM_NUMA_NODE NUMA_NO_NODE
125  static int dm_numa_node = DM_NUMA_NODE;
126  
127  #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128  static int swap_bios = DEFAULT_SWAP_BIOS;
129  static int get_swap_bios(void)
130  {
131  	int latch = READ_ONCE(swap_bios);
132  
133  	if (unlikely(latch <= 0))
134  		latch = DEFAULT_SWAP_BIOS;
135  	return latch;
136  }
137  
138  struct table_device {
139  	struct list_head list;
140  	refcount_t count;
141  	struct dm_dev dm_dev;
142  };
143  
144  /*
145   * Bio-based DM's mempools' reserved IOs set by the user.
146   */
147  #define RESERVED_BIO_BASED_IOS		16
148  static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149  
150  static int __dm_get_module_param_int(int *module_param, int min, int max)
151  {
152  	int param = READ_ONCE(*module_param);
153  	int modified_param = 0;
154  	bool modified = true;
155  
156  	if (param < min)
157  		modified_param = min;
158  	else if (param > max)
159  		modified_param = max;
160  	else
161  		modified = false;
162  
163  	if (modified) {
164  		(void)cmpxchg(module_param, param, modified_param);
165  		param = modified_param;
166  	}
167  
168  	return param;
169  }
170  
171  unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172  {
173  	unsigned int param = READ_ONCE(*module_param);
174  	unsigned int modified_param = 0;
175  
176  	if (!param)
177  		modified_param = def;
178  	else if (param > max)
179  		modified_param = max;
180  
181  	if (modified_param) {
182  		(void)cmpxchg(module_param, param, modified_param);
183  		param = modified_param;
184  	}
185  
186  	return param;
187  }
188  
189  unsigned int dm_get_reserved_bio_based_ios(void)
190  {
191  	return __dm_get_module_param(&reserved_bio_based_ios,
192  				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193  }
194  EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195  
196  static unsigned int dm_get_numa_node(void)
197  {
198  	return __dm_get_module_param_int(&dm_numa_node,
199  					 DM_NUMA_NODE, num_online_nodes() - 1);
200  }
201  
202  static int __init local_init(void)
203  {
204  	int r;
205  
206  	r = dm_uevent_init();
207  	if (r)
208  		return r;
209  
210  	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211  	if (!deferred_remove_workqueue) {
212  		r = -ENOMEM;
213  		goto out_uevent_exit;
214  	}
215  
216  	_major = major;
217  	r = register_blkdev(_major, _name);
218  	if (r < 0)
219  		goto out_free_workqueue;
220  
221  	if (!_major)
222  		_major = r;
223  
224  	return 0;
225  
226  out_free_workqueue:
227  	destroy_workqueue(deferred_remove_workqueue);
228  out_uevent_exit:
229  	dm_uevent_exit();
230  
231  	return r;
232  }
233  
234  static void local_exit(void)
235  {
236  	destroy_workqueue(deferred_remove_workqueue);
237  
238  	unregister_blkdev(_major, _name);
239  	dm_uevent_exit();
240  
241  	_major = 0;
242  
243  	DMINFO("cleaned up");
244  }
245  
246  static int (*_inits[])(void) __initdata = {
247  	local_init,
248  	dm_target_init,
249  	dm_linear_init,
250  	dm_stripe_init,
251  	dm_io_init,
252  	dm_kcopyd_init,
253  	dm_interface_init,
254  	dm_statistics_init,
255  };
256  
257  static void (*_exits[])(void) = {
258  	local_exit,
259  	dm_target_exit,
260  	dm_linear_exit,
261  	dm_stripe_exit,
262  	dm_io_exit,
263  	dm_kcopyd_exit,
264  	dm_interface_exit,
265  	dm_statistics_exit,
266  };
267  
268  static int __init dm_init(void)
269  {
270  	const int count = ARRAY_SIZE(_inits);
271  	int r, i;
272  
273  #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274  	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275  	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276  #endif
277  
278  	for (i = 0; i < count; i++) {
279  		r = _inits[i]();
280  		if (r)
281  			goto bad;
282  	}
283  
284  	return 0;
285  bad:
286  	while (i--)
287  		_exits[i]();
288  
289  	return r;
290  }
291  
292  static void __exit dm_exit(void)
293  {
294  	int i = ARRAY_SIZE(_exits);
295  
296  	while (i--)
297  		_exits[i]();
298  
299  	/*
300  	 * Should be empty by this point.
301  	 */
302  	idr_destroy(&_minor_idr);
303  }
304  
305  /*
306   * Block device functions
307   */
308  int dm_deleting_md(struct mapped_device *md)
309  {
310  	return test_bit(DMF_DELETING, &md->flags);
311  }
312  
313  static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
314  {
315  	struct mapped_device *md;
316  
317  	spin_lock(&_minor_lock);
318  
319  	md = disk->private_data;
320  	if (!md)
321  		goto out;
322  
323  	if (test_bit(DMF_FREEING, &md->flags) ||
324  	    dm_deleting_md(md)) {
325  		md = NULL;
326  		goto out;
327  	}
328  
329  	dm_get(md);
330  	atomic_inc(&md->open_count);
331  out:
332  	spin_unlock(&_minor_lock);
333  
334  	return md ? 0 : -ENXIO;
335  }
336  
337  static void dm_blk_close(struct gendisk *disk)
338  {
339  	struct mapped_device *md;
340  
341  	spin_lock(&_minor_lock);
342  
343  	md = disk->private_data;
344  	if (WARN_ON(!md))
345  		goto out;
346  
347  	if (atomic_dec_and_test(&md->open_count) &&
348  	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349  		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350  
351  	dm_put(md);
352  out:
353  	spin_unlock(&_minor_lock);
354  }
355  
356  int dm_open_count(struct mapped_device *md)
357  {
358  	return atomic_read(&md->open_count);
359  }
360  
361  /*
362   * Guarantees nothing is using the device before it's deleted.
363   */
364  int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365  {
366  	int r = 0;
367  
368  	spin_lock(&_minor_lock);
369  
370  	if (dm_open_count(md)) {
371  		r = -EBUSY;
372  		if (mark_deferred)
373  			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374  	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375  		r = -EEXIST;
376  	else
377  		set_bit(DMF_DELETING, &md->flags);
378  
379  	spin_unlock(&_minor_lock);
380  
381  	return r;
382  }
383  
384  int dm_cancel_deferred_remove(struct mapped_device *md)
385  {
386  	int r = 0;
387  
388  	spin_lock(&_minor_lock);
389  
390  	if (test_bit(DMF_DELETING, &md->flags))
391  		r = -EBUSY;
392  	else
393  		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394  
395  	spin_unlock(&_minor_lock);
396  
397  	return r;
398  }
399  
400  static void do_deferred_remove(struct work_struct *w)
401  {
402  	dm_deferred_remove();
403  }
404  
405  static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406  {
407  	struct mapped_device *md = bdev->bd_disk->private_data;
408  
409  	return dm_get_geometry(md, geo);
410  }
411  
412  static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413  			    struct block_device **bdev)
414  {
415  	struct dm_target *ti;
416  	struct dm_table *map;
417  	int r;
418  
419  retry:
420  	r = -ENOTTY;
421  	map = dm_get_live_table(md, srcu_idx);
422  	if (!map || !dm_table_get_size(map))
423  		return r;
424  
425  	/* We only support devices that have a single target */
426  	if (map->num_targets != 1)
427  		return r;
428  
429  	ti = dm_table_get_target(map, 0);
430  	if (!ti->type->prepare_ioctl)
431  		return r;
432  
433  	if (dm_suspended_md(md))
434  		return -EAGAIN;
435  
436  	r = ti->type->prepare_ioctl(ti, bdev);
437  	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438  		dm_put_live_table(md, *srcu_idx);
439  		fsleep(10000);
440  		goto retry;
441  	}
442  
443  	return r;
444  }
445  
446  static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447  {
448  	dm_put_live_table(md, srcu_idx);
449  }
450  
451  static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452  			unsigned int cmd, unsigned long arg)
453  {
454  	struct mapped_device *md = bdev->bd_disk->private_data;
455  	int r, srcu_idx;
456  
457  	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458  	if (r < 0)
459  		goto out;
460  
461  	if (r > 0) {
462  		/*
463  		 * Target determined this ioctl is being issued against a
464  		 * subset of the parent bdev; require extra privileges.
465  		 */
466  		if (!capable(CAP_SYS_RAWIO)) {
467  			DMDEBUG_LIMIT(
468  	"%s: sending ioctl %x to DM device without required privilege.",
469  				current->comm, cmd);
470  			r = -ENOIOCTLCMD;
471  			goto out;
472  		}
473  	}
474  
475  	if (!bdev->bd_disk->fops->ioctl)
476  		r = -ENOTTY;
477  	else
478  		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479  out:
480  	dm_unprepare_ioctl(md, srcu_idx);
481  	return r;
482  }
483  
484  u64 dm_start_time_ns_from_clone(struct bio *bio)
485  {
486  	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487  }
488  EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489  
490  static inline bool bio_is_flush_with_data(struct bio *bio)
491  {
492  	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493  }
494  
495  static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
496  {
497  	/*
498  	 * If REQ_PREFLUSH set, don't account payload, it will be
499  	 * submitted (and accounted) after this flush completes.
500  	 */
501  	if (bio_is_flush_with_data(bio))
502  		return 0;
503  	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
504  		return io->sectors;
505  	return bio_sectors(bio);
506  }
507  
508  static void dm_io_acct(struct dm_io *io, bool end)
509  {
510  	struct bio *bio = io->orig_bio;
511  
512  	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
513  		if (!end)
514  			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
515  					   io->start_time);
516  		else
517  			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518  					 dm_io_sectors(io, bio),
519  					 io->start_time);
520  	}
521  
522  	if (static_branch_unlikely(&stats_enabled) &&
523  	    unlikely(dm_stats_used(&io->md->stats))) {
524  		sector_t sector;
525  
526  		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527  			sector = bio_end_sector(bio) - io->sector_offset;
528  		else
529  			sector = bio->bi_iter.bi_sector;
530  
531  		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532  				    sector, dm_io_sectors(io, bio),
533  				    end, io->start_time, &io->stats_aux);
534  	}
535  }
536  
537  static void __dm_start_io_acct(struct dm_io *io)
538  {
539  	dm_io_acct(io, false);
540  }
541  
542  static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
543  {
544  	/*
545  	 * Ensure IO accounting is only ever started once.
546  	 */
547  	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
548  		return;
549  
550  	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551  	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552  		dm_io_set_flag(io, DM_IO_ACCOUNTED);
553  	} else {
554  		unsigned long flags;
555  		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556  		spin_lock_irqsave(&io->lock, flags);
557  		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558  			spin_unlock_irqrestore(&io->lock, flags);
559  			return;
560  		}
561  		dm_io_set_flag(io, DM_IO_ACCOUNTED);
562  		spin_unlock_irqrestore(&io->lock, flags);
563  	}
564  
565  	__dm_start_io_acct(io);
566  }
567  
568  static void dm_end_io_acct(struct dm_io *io)
569  {
570  	dm_io_acct(io, true);
571  }
572  
573  static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
574  {
575  	struct dm_io *io;
576  	struct dm_target_io *tio;
577  	struct bio *clone;
578  
579  	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
580  	if (unlikely(!clone))
581  		return NULL;
582  	tio = clone_to_tio(clone);
583  	tio->flags = 0;
584  	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
585  	tio->io = NULL;
586  
587  	io = container_of(tio, struct dm_io, tio);
588  	io->magic = DM_IO_MAGIC;
589  	io->status = BLK_STS_OK;
590  
591  	/* one ref is for submission, the other is for completion */
592  	atomic_set(&io->io_count, 2);
593  	this_cpu_inc(*md->pending_io);
594  	io->orig_bio = bio;
595  	io->md = md;
596  	spin_lock_init(&io->lock);
597  	io->start_time = jiffies;
598  	io->flags = 0;
599  	if (blk_queue_io_stat(md->queue))
600  		dm_io_set_flag(io, DM_IO_BLK_STAT);
601  
602  	if (static_branch_unlikely(&stats_enabled) &&
603  	    unlikely(dm_stats_used(&md->stats)))
604  		dm_stats_record_start(&md->stats, &io->stats_aux);
605  
606  	return io;
607  }
608  
609  static void free_io(struct dm_io *io)
610  {
611  	bio_put(&io->tio.clone);
612  }
613  
614  static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
615  			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
616  {
617  	struct mapped_device *md = ci->io->md;
618  	struct dm_target_io *tio;
619  	struct bio *clone;
620  
621  	if (!ci->io->tio.io) {
622  		/* the dm_target_io embedded in ci->io is available */
623  		tio = &ci->io->tio;
624  		/* alloc_io() already initialized embedded clone */
625  		clone = &tio->clone;
626  	} else {
627  		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
628  					&md->mempools->bs);
629  		if (!clone)
630  			return NULL;
631  
632  		/* REQ_DM_POLL_LIST shouldn't be inherited */
633  		clone->bi_opf &= ~REQ_DM_POLL_LIST;
634  
635  		tio = clone_to_tio(clone);
636  		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
637  	}
638  
639  	tio->magic = DM_TIO_MAGIC;
640  	tio->io = ci->io;
641  	tio->ti = ti;
642  	tio->target_bio_nr = target_bio_nr;
643  	tio->len_ptr = len;
644  	tio->old_sector = 0;
645  
646  	/* Set default bdev, but target must bio_set_dev() before issuing IO */
647  	clone->bi_bdev = md->disk->part0;
648  	if (unlikely(ti->needs_bio_set_dev))
649  		bio_set_dev(clone, md->disk->part0);
650  
651  	if (len) {
652  		clone->bi_iter.bi_size = to_bytes(*len);
653  		if (bio_integrity(clone))
654  			bio_integrity_trim(clone);
655  	}
656  
657  	return clone;
658  }
659  
660  static void free_tio(struct bio *clone)
661  {
662  	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
663  		return;
664  	bio_put(clone);
665  }
666  
667  /*
668   * Add the bio to the list of deferred io.
669   */
670  static void queue_io(struct mapped_device *md, struct bio *bio)
671  {
672  	unsigned long flags;
673  
674  	spin_lock_irqsave(&md->deferred_lock, flags);
675  	bio_list_add(&md->deferred, bio);
676  	spin_unlock_irqrestore(&md->deferred_lock, flags);
677  	queue_work(md->wq, &md->work);
678  }
679  
680  /*
681   * Everyone (including functions in this file), should use this
682   * function to access the md->map field, and make sure they call
683   * dm_put_live_table() when finished.
684   */
685  struct dm_table *dm_get_live_table(struct mapped_device *md,
686  				   int *srcu_idx) __acquires(md->io_barrier)
687  {
688  	*srcu_idx = srcu_read_lock(&md->io_barrier);
689  
690  	return srcu_dereference(md->map, &md->io_barrier);
691  }
692  
693  void dm_put_live_table(struct mapped_device *md,
694  		       int srcu_idx) __releases(md->io_barrier)
695  {
696  	srcu_read_unlock(&md->io_barrier, srcu_idx);
697  }
698  
699  void dm_sync_table(struct mapped_device *md)
700  {
701  	synchronize_srcu(&md->io_barrier);
702  	synchronize_rcu_expedited();
703  }
704  
705  /*
706   * A fast alternative to dm_get_live_table/dm_put_live_table.
707   * The caller must not block between these two functions.
708   */
709  static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
710  {
711  	rcu_read_lock();
712  	return rcu_dereference(md->map);
713  }
714  
715  static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
716  {
717  	rcu_read_unlock();
718  }
719  
720  static char *_dm_claim_ptr = "I belong to device-mapper";
721  
722  /*
723   * Open a table device so we can use it as a map destination.
724   */
725  static struct table_device *open_table_device(struct mapped_device *md,
726  		dev_t dev, blk_mode_t mode)
727  {
728  	struct table_device *td;
729  	struct file *bdev_file;
730  	struct block_device *bdev;
731  	u64 part_off;
732  	int r;
733  
734  	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
735  	if (!td)
736  		return ERR_PTR(-ENOMEM);
737  	refcount_set(&td->count, 1);
738  
739  	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
740  	if (IS_ERR(bdev_file)) {
741  		r = PTR_ERR(bdev_file);
742  		goto out_free_td;
743  	}
744  
745  	bdev = file_bdev(bdev_file);
746  
747  	/*
748  	 * We can be called before the dm disk is added.  In that case we can't
749  	 * register the holder relation here.  It will be done once add_disk was
750  	 * called.
751  	 */
752  	if (md->disk->slave_dir) {
753  		r = bd_link_disk_holder(bdev, md->disk);
754  		if (r)
755  			goto out_blkdev_put;
756  	}
757  
758  	td->dm_dev.mode = mode;
759  	td->dm_dev.bdev = bdev;
760  	td->dm_dev.bdev_file = bdev_file;
761  	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
762  						NULL, NULL);
763  	format_dev_t(td->dm_dev.name, dev);
764  	list_add(&td->list, &md->table_devices);
765  	return td;
766  
767  out_blkdev_put:
768  	__fput_sync(bdev_file);
769  out_free_td:
770  	kfree(td);
771  	return ERR_PTR(r);
772  }
773  
774  /*
775   * Close a table device that we've been using.
776   */
777  static void close_table_device(struct table_device *td, struct mapped_device *md)
778  {
779  	if (md->disk->slave_dir)
780  		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
781  
782  	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
783  	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
784  		fput(td->dm_dev.bdev_file);
785  	else
786  		__fput_sync(td->dm_dev.bdev_file);
787  
788  	put_dax(td->dm_dev.dax_dev);
789  	list_del(&td->list);
790  	kfree(td);
791  }
792  
793  static struct table_device *find_table_device(struct list_head *l, dev_t dev,
794  					      blk_mode_t mode)
795  {
796  	struct table_device *td;
797  
798  	list_for_each_entry(td, l, list)
799  		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
800  			return td;
801  
802  	return NULL;
803  }
804  
805  int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
806  			struct dm_dev **result)
807  {
808  	struct table_device *td;
809  
810  	mutex_lock(&md->table_devices_lock);
811  	td = find_table_device(&md->table_devices, dev, mode);
812  	if (!td) {
813  		td = open_table_device(md, dev, mode);
814  		if (IS_ERR(td)) {
815  			mutex_unlock(&md->table_devices_lock);
816  			return PTR_ERR(td);
817  		}
818  	} else {
819  		refcount_inc(&td->count);
820  	}
821  	mutex_unlock(&md->table_devices_lock);
822  
823  	*result = &td->dm_dev;
824  	return 0;
825  }
826  
827  void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828  {
829  	struct table_device *td = container_of(d, struct table_device, dm_dev);
830  
831  	mutex_lock(&md->table_devices_lock);
832  	if (refcount_dec_and_test(&td->count))
833  		close_table_device(td, md);
834  	mutex_unlock(&md->table_devices_lock);
835  }
836  
837  /*
838   * Get the geometry associated with a dm device
839   */
840  int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
841  {
842  	*geo = md->geometry;
843  
844  	return 0;
845  }
846  
847  /*
848   * Set the geometry of a device.
849   */
850  int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
851  {
852  	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
853  
854  	if (geo->start > sz) {
855  		DMERR("Start sector is beyond the geometry limits.");
856  		return -EINVAL;
857  	}
858  
859  	md->geometry = *geo;
860  
861  	return 0;
862  }
863  
864  static int __noflush_suspending(struct mapped_device *md)
865  {
866  	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867  }
868  
869  static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
870  {
871  	struct mapped_device *md = io->md;
872  
873  	if (first_stage) {
874  		struct dm_io *next = md->requeue_list;
875  
876  		md->requeue_list = io;
877  		io->next = next;
878  	} else {
879  		bio_list_add_head(&md->deferred, io->orig_bio);
880  	}
881  }
882  
883  static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
884  {
885  	if (first_stage)
886  		queue_work(md->wq, &md->requeue_work);
887  	else
888  		queue_work(md->wq, &md->work);
889  }
890  
891  /*
892   * Return true if the dm_io's original bio is requeued.
893   * io->status is updated with error if requeue disallowed.
894   */
895  static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
896  {
897  	struct bio *bio = io->orig_bio;
898  	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
899  	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
900  				     (bio->bi_opf & REQ_POLLED));
901  	struct mapped_device *md = io->md;
902  	bool requeued = false;
903  
904  	if (handle_requeue || handle_polled_eagain) {
905  		unsigned long flags;
906  
907  		if (bio->bi_opf & REQ_POLLED) {
908  			/*
909  			 * Upper layer won't help us poll split bio
910  			 * (io->orig_bio may only reflect a subset of the
911  			 * pre-split original) so clear REQ_POLLED.
912  			 */
913  			bio_clear_polled(bio);
914  		}
915  
916  		/*
917  		 * Target requested pushing back the I/O or
918  		 * polled IO hit BLK_STS_AGAIN.
919  		 */
920  		spin_lock_irqsave(&md->deferred_lock, flags);
921  		if ((__noflush_suspending(md) &&
922  		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
923  		    handle_polled_eagain || first_stage) {
924  			dm_requeue_add_io(io, first_stage);
925  			requeued = true;
926  		} else {
927  			/*
928  			 * noflush suspend was interrupted or this is
929  			 * a write to a zoned target.
930  			 */
931  			io->status = BLK_STS_IOERR;
932  		}
933  		spin_unlock_irqrestore(&md->deferred_lock, flags);
934  	}
935  
936  	if (requeued)
937  		dm_kick_requeue(md, first_stage);
938  
939  	return requeued;
940  }
941  
942  static void __dm_io_complete(struct dm_io *io, bool first_stage)
943  {
944  	struct bio *bio = io->orig_bio;
945  	struct mapped_device *md = io->md;
946  	blk_status_t io_error;
947  	bool requeued;
948  
949  	requeued = dm_handle_requeue(io, first_stage);
950  	if (requeued && first_stage)
951  		return;
952  
953  	io_error = io->status;
954  	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955  		dm_end_io_acct(io);
956  	else if (!io_error) {
957  		/*
958  		 * Must handle target that DM_MAPIO_SUBMITTED only to
959  		 * then bio_endio() rather than dm_submit_bio_remap()
960  		 */
961  		__dm_start_io_acct(io);
962  		dm_end_io_acct(io);
963  	}
964  	free_io(io);
965  	smp_wmb();
966  	this_cpu_dec(*md->pending_io);
967  
968  	/* nudge anyone waiting on suspend queue */
969  	if (unlikely(wq_has_sleeper(&md->wait)))
970  		wake_up(&md->wait);
971  
972  	/* Return early if the original bio was requeued */
973  	if (requeued)
974  		return;
975  
976  	if (bio_is_flush_with_data(bio)) {
977  		/*
978  		 * Preflush done for flush with data, reissue
979  		 * without REQ_PREFLUSH.
980  		 */
981  		bio->bi_opf &= ~REQ_PREFLUSH;
982  		queue_io(md, bio);
983  	} else {
984  		/* done with normal IO or empty flush */
985  		if (io_error)
986  			bio->bi_status = io_error;
987  		bio_endio(bio);
988  	}
989  }
990  
991  static void dm_wq_requeue_work(struct work_struct *work)
992  {
993  	struct mapped_device *md = container_of(work, struct mapped_device,
994  						requeue_work);
995  	unsigned long flags;
996  	struct dm_io *io;
997  
998  	/* reuse deferred lock to simplify dm_handle_requeue */
999  	spin_lock_irqsave(&md->deferred_lock, flags);
1000  	io = md->requeue_list;
1001  	md->requeue_list = NULL;
1002  	spin_unlock_irqrestore(&md->deferred_lock, flags);
1003  
1004  	while (io) {
1005  		struct dm_io *next = io->next;
1006  
1007  		dm_io_rewind(io, &md->disk->bio_split);
1008  
1009  		io->next = NULL;
1010  		__dm_io_complete(io, false);
1011  		io = next;
1012  		cond_resched();
1013  	}
1014  }
1015  
1016  /*
1017   * Two staged requeue:
1018   *
1019   * 1) io->orig_bio points to the real original bio, and the part mapped to
1020   *    this io must be requeued, instead of other parts of the original bio.
1021   *
1022   * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1023   */
1024  static void dm_io_complete(struct dm_io *io)
1025  {
1026  	bool first_requeue;
1027  
1028  	/*
1029  	 * Only dm_io that has been split needs two stage requeue, otherwise
1030  	 * we may run into long bio clone chain during suspend and OOM could
1031  	 * be triggered.
1032  	 *
1033  	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034  	 * also aren't handled via the first stage requeue.
1035  	 */
1036  	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037  		first_requeue = true;
1038  	else
1039  		first_requeue = false;
1040  
1041  	__dm_io_complete(io, first_requeue);
1042  }
1043  
1044  /*
1045   * Decrements the number of outstanding ios that a bio has been
1046   * cloned into, completing the original io if necc.
1047   */
1048  static inline void __dm_io_dec_pending(struct dm_io *io)
1049  {
1050  	if (atomic_dec_and_test(&io->io_count))
1051  		dm_io_complete(io);
1052  }
1053  
1054  static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1055  {
1056  	unsigned long flags;
1057  
1058  	/* Push-back supersedes any I/O errors */
1059  	spin_lock_irqsave(&io->lock, flags);
1060  	if (!(io->status == BLK_STS_DM_REQUEUE &&
1061  	      __noflush_suspending(io->md))) {
1062  		io->status = error;
1063  	}
1064  	spin_unlock_irqrestore(&io->lock, flags);
1065  }
1066  
1067  static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1068  {
1069  	if (unlikely(error))
1070  		dm_io_set_error(io, error);
1071  
1072  	__dm_io_dec_pending(io);
1073  }
1074  
1075  /*
1076   * The queue_limits are only valid as long as you have a reference
1077   * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1078   */
1079  static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1080  {
1081  	return &md->queue->limits;
1082  }
1083  
1084  void disable_discard(struct mapped_device *md)
1085  {
1086  	struct queue_limits *limits = dm_get_queue_limits(md);
1087  
1088  	/* device doesn't really support DISCARD, disable it */
1089  	limits->max_discard_sectors = 0;
1090  }
1091  
1092  void disable_write_zeroes(struct mapped_device *md)
1093  {
1094  	struct queue_limits *limits = dm_get_queue_limits(md);
1095  
1096  	/* device doesn't really support WRITE ZEROES, disable it */
1097  	limits->max_write_zeroes_sectors = 0;
1098  }
1099  
1100  static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1101  {
1102  	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1103  }
1104  
1105  static void clone_endio(struct bio *bio)
1106  {
1107  	blk_status_t error = bio->bi_status;
1108  	struct dm_target_io *tio = clone_to_tio(bio);
1109  	struct dm_target *ti = tio->ti;
1110  	dm_endio_fn endio = ti->type->end_io;
1111  	struct dm_io *io = tio->io;
1112  	struct mapped_device *md = io->md;
1113  
1114  	if (unlikely(error == BLK_STS_TARGET)) {
1115  		if (bio_op(bio) == REQ_OP_DISCARD &&
1116  		    !bdev_max_discard_sectors(bio->bi_bdev))
1117  			disable_discard(md);
1118  		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1119  			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1120  			disable_write_zeroes(md);
1121  	}
1122  
1123  	if (static_branch_unlikely(&zoned_enabled) &&
1124  	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1125  		dm_zone_endio(io, bio);
1126  
1127  	if (endio) {
1128  		int r = endio(ti, bio, &error);
1129  
1130  		switch (r) {
1131  		case DM_ENDIO_REQUEUE:
1132  			if (static_branch_unlikely(&zoned_enabled)) {
1133  				/*
1134  				 * Requeuing writes to a sequential zone of a zoned
1135  				 * target will break the sequential write pattern:
1136  				 * fail such IO.
1137  				 */
1138  				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1139  					error = BLK_STS_IOERR;
1140  				else
1141  					error = BLK_STS_DM_REQUEUE;
1142  			} else
1143  				error = BLK_STS_DM_REQUEUE;
1144  			fallthrough;
1145  		case DM_ENDIO_DONE:
1146  			break;
1147  		case DM_ENDIO_INCOMPLETE:
1148  			/* The target will handle the io */
1149  			return;
1150  		default:
1151  			DMCRIT("unimplemented target endio return value: %d", r);
1152  			BUG();
1153  		}
1154  	}
1155  
1156  	if (static_branch_unlikely(&swap_bios_enabled) &&
1157  	    unlikely(swap_bios_limit(ti, bio)))
1158  		up(&md->swap_bios_semaphore);
1159  
1160  	free_tio(bio);
1161  	dm_io_dec_pending(io, error);
1162  }
1163  
1164  /*
1165   * Return maximum size of I/O possible at the supplied sector up to the current
1166   * target boundary.
1167   */
1168  static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1169  						  sector_t target_offset)
1170  {
1171  	return ti->len - target_offset;
1172  }
1173  
1174  static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1175  			     unsigned int max_granularity,
1176  			     unsigned int max_sectors)
1177  {
1178  	sector_t target_offset = dm_target_offset(ti, sector);
1179  	sector_t len = max_io_len_target_boundary(ti, target_offset);
1180  
1181  	/*
1182  	 * Does the target need to split IO even further?
1183  	 * - varied (per target) IO splitting is a tenet of DM; this
1184  	 *   explains why stacked chunk_sectors based splitting via
1185  	 *   bio_split_to_limits() isn't possible here.
1186  	 */
1187  	if (!max_granularity)
1188  		return len;
1189  	return min_t(sector_t, len,
1190  		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1191  		    blk_chunk_sectors_left(target_offset, max_granularity)));
1192  }
1193  
1194  static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1195  {
1196  	return __max_io_len(ti, sector, ti->max_io_len, 0);
1197  }
1198  
1199  int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1200  {
1201  	if (len > UINT_MAX) {
1202  		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1203  		      (unsigned long long)len, UINT_MAX);
1204  		ti->error = "Maximum size of target IO is too large";
1205  		return -EINVAL;
1206  	}
1207  
1208  	ti->max_io_len = (uint32_t) len;
1209  
1210  	return 0;
1211  }
1212  EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1213  
1214  static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1215  						sector_t sector, int *srcu_idx)
1216  	__acquires(md->io_barrier)
1217  {
1218  	struct dm_table *map;
1219  	struct dm_target *ti;
1220  
1221  	map = dm_get_live_table(md, srcu_idx);
1222  	if (!map)
1223  		return NULL;
1224  
1225  	ti = dm_table_find_target(map, sector);
1226  	if (!ti)
1227  		return NULL;
1228  
1229  	return ti;
1230  }
1231  
1232  static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1233  		long nr_pages, enum dax_access_mode mode, void **kaddr,
1234  		pfn_t *pfn)
1235  {
1236  	struct mapped_device *md = dax_get_private(dax_dev);
1237  	sector_t sector = pgoff * PAGE_SECTORS;
1238  	struct dm_target *ti;
1239  	long len, ret = -EIO;
1240  	int srcu_idx;
1241  
1242  	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1243  
1244  	if (!ti)
1245  		goto out;
1246  	if (!ti->type->direct_access)
1247  		goto out;
1248  	len = max_io_len(ti, sector) / PAGE_SECTORS;
1249  	if (len < 1)
1250  		goto out;
1251  	nr_pages = min(len, nr_pages);
1252  	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1253  
1254   out:
1255  	dm_put_live_table(md, srcu_idx);
1256  
1257  	return ret;
1258  }
1259  
1260  static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1261  				  size_t nr_pages)
1262  {
1263  	struct mapped_device *md = dax_get_private(dax_dev);
1264  	sector_t sector = pgoff * PAGE_SECTORS;
1265  	struct dm_target *ti;
1266  	int ret = -EIO;
1267  	int srcu_idx;
1268  
1269  	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1270  
1271  	if (!ti)
1272  		goto out;
1273  	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1274  		/*
1275  		 * ->zero_page_range() is mandatory dax operation. If we are
1276  		 *  here, something is wrong.
1277  		 */
1278  		goto out;
1279  	}
1280  	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1281   out:
1282  	dm_put_live_table(md, srcu_idx);
1283  
1284  	return ret;
1285  }
1286  
1287  static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1288  		void *addr, size_t bytes, struct iov_iter *i)
1289  {
1290  	struct mapped_device *md = dax_get_private(dax_dev);
1291  	sector_t sector = pgoff * PAGE_SECTORS;
1292  	struct dm_target *ti;
1293  	int srcu_idx;
1294  	long ret = 0;
1295  
1296  	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1297  	if (!ti || !ti->type->dax_recovery_write)
1298  		goto out;
1299  
1300  	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1301  out:
1302  	dm_put_live_table(md, srcu_idx);
1303  	return ret;
1304  }
1305  
1306  /*
1307   * A target may call dm_accept_partial_bio only from the map routine.  It is
1308   * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1309   * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1310   * __send_duplicate_bios().
1311   *
1312   * dm_accept_partial_bio informs the dm that the target only wants to process
1313   * additional n_sectors sectors of the bio and the rest of the data should be
1314   * sent in a next bio.
1315   *
1316   * A diagram that explains the arithmetics:
1317   * +--------------------+---------------+-------+
1318   * |         1          |       2       |   3   |
1319   * +--------------------+---------------+-------+
1320   *
1321   * <-------------- *tio->len_ptr --------------->
1322   *                      <----- bio_sectors ----->
1323   *                      <-- n_sectors -->
1324   *
1325   * Region 1 was already iterated over with bio_advance or similar function.
1326   *	(it may be empty if the target doesn't use bio_advance)
1327   * Region 2 is the remaining bio size that the target wants to process.
1328   *	(it may be empty if region 1 is non-empty, although there is no reason
1329   *	 to make it empty)
1330   * The target requires that region 3 is to be sent in the next bio.
1331   *
1332   * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1333   * the partially processed part (the sum of regions 1+2) must be the same for all
1334   * copies of the bio.
1335   */
1336  void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1337  {
1338  	struct dm_target_io *tio = clone_to_tio(bio);
1339  	struct dm_io *io = tio->io;
1340  	unsigned int bio_sectors = bio_sectors(bio);
1341  
1342  	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1343  	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1344  	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1345  	BUG_ON(bio_sectors > *tio->len_ptr);
1346  	BUG_ON(n_sectors > bio_sectors);
1347  
1348  	*tio->len_ptr -= bio_sectors - n_sectors;
1349  	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1350  
1351  	/*
1352  	 * __split_and_process_bio() may have already saved mapped part
1353  	 * for accounting but it is being reduced so update accordingly.
1354  	 */
1355  	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1356  	io->sectors = n_sectors;
1357  	io->sector_offset = bio_sectors(io->orig_bio);
1358  }
1359  EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1360  
1361  /*
1362   * @clone: clone bio that DM core passed to target's .map function
1363   * @tgt_clone: clone of @clone bio that target needs submitted
1364   *
1365   * Targets should use this interface to submit bios they take
1366   * ownership of when returning DM_MAPIO_SUBMITTED.
1367   *
1368   * Target should also enable ti->accounts_remapped_io
1369   */
1370  void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1371  {
1372  	struct dm_target_io *tio = clone_to_tio(clone);
1373  	struct dm_io *io = tio->io;
1374  
1375  	/* establish bio that will get submitted */
1376  	if (!tgt_clone)
1377  		tgt_clone = clone;
1378  
1379  	/*
1380  	 * Account io->origin_bio to DM dev on behalf of target
1381  	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1382  	 */
1383  	dm_start_io_acct(io, clone);
1384  
1385  	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1386  			      tio->old_sector);
1387  	submit_bio_noacct(tgt_clone);
1388  }
1389  EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1390  
1391  static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1392  {
1393  	mutex_lock(&md->swap_bios_lock);
1394  	while (latch < md->swap_bios) {
1395  		cond_resched();
1396  		down(&md->swap_bios_semaphore);
1397  		md->swap_bios--;
1398  	}
1399  	while (latch > md->swap_bios) {
1400  		cond_resched();
1401  		up(&md->swap_bios_semaphore);
1402  		md->swap_bios++;
1403  	}
1404  	mutex_unlock(&md->swap_bios_lock);
1405  }
1406  
1407  static void __map_bio(struct bio *clone)
1408  {
1409  	struct dm_target_io *tio = clone_to_tio(clone);
1410  	struct dm_target *ti = tio->ti;
1411  	struct dm_io *io = tio->io;
1412  	struct mapped_device *md = io->md;
1413  	int r;
1414  
1415  	clone->bi_end_io = clone_endio;
1416  
1417  	/*
1418  	 * Map the clone.
1419  	 */
1420  	tio->old_sector = clone->bi_iter.bi_sector;
1421  
1422  	if (static_branch_unlikely(&swap_bios_enabled) &&
1423  	    unlikely(swap_bios_limit(ti, clone))) {
1424  		int latch = get_swap_bios();
1425  
1426  		if (unlikely(latch != md->swap_bios))
1427  			__set_swap_bios_limit(md, latch);
1428  		down(&md->swap_bios_semaphore);
1429  	}
1430  
1431  	if (static_branch_unlikely(&zoned_enabled)) {
1432  		/*
1433  		 * Check if the IO needs a special mapping due to zone append
1434  		 * emulation on zoned target. In this case, dm_zone_map_bio()
1435  		 * calls the target map operation.
1436  		 */
1437  		if (unlikely(dm_emulate_zone_append(md)))
1438  			r = dm_zone_map_bio(tio);
1439  		else
1440  			goto do_map;
1441  	} else {
1442  do_map:
1443  		if (likely(ti->type->map == linear_map))
1444  			r = linear_map(ti, clone);
1445  		else if (ti->type->map == stripe_map)
1446  			r = stripe_map(ti, clone);
1447  		else
1448  			r = ti->type->map(ti, clone);
1449  	}
1450  
1451  	switch (r) {
1452  	case DM_MAPIO_SUBMITTED:
1453  		/* target has assumed ownership of this io */
1454  		if (!ti->accounts_remapped_io)
1455  			dm_start_io_acct(io, clone);
1456  		break;
1457  	case DM_MAPIO_REMAPPED:
1458  		dm_submit_bio_remap(clone, NULL);
1459  		break;
1460  	case DM_MAPIO_KILL:
1461  	case DM_MAPIO_REQUEUE:
1462  		if (static_branch_unlikely(&swap_bios_enabled) &&
1463  		    unlikely(swap_bios_limit(ti, clone)))
1464  			up(&md->swap_bios_semaphore);
1465  		free_tio(clone);
1466  		if (r == DM_MAPIO_KILL)
1467  			dm_io_dec_pending(io, BLK_STS_IOERR);
1468  		else
1469  			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1470  		break;
1471  	default:
1472  		DMCRIT("unimplemented target map return value: %d", r);
1473  		BUG();
1474  	}
1475  }
1476  
1477  static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1478  {
1479  	struct dm_io *io = ci->io;
1480  
1481  	if (ci->sector_count > len) {
1482  		/*
1483  		 * Split needed, save the mapped part for accounting.
1484  		 * NOTE: dm_accept_partial_bio() will update accordingly.
1485  		 */
1486  		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1487  		io->sectors = len;
1488  		io->sector_offset = bio_sectors(ci->bio);
1489  	}
1490  }
1491  
1492  static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1493  				struct dm_target *ti, unsigned int num_bios,
1494  				unsigned *len, gfp_t gfp_flag)
1495  {
1496  	struct bio *bio;
1497  	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1498  
1499  	for (; try < 2; try++) {
1500  		int bio_nr;
1501  
1502  		if (try && num_bios > 1)
1503  			mutex_lock(&ci->io->md->table_devices_lock);
1504  		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1505  			bio = alloc_tio(ci, ti, bio_nr, len,
1506  					try ? GFP_NOIO : GFP_NOWAIT);
1507  			if (!bio)
1508  				break;
1509  
1510  			bio_list_add(blist, bio);
1511  		}
1512  		if (try && num_bios > 1)
1513  			mutex_unlock(&ci->io->md->table_devices_lock);
1514  		if (bio_nr == num_bios)
1515  			return;
1516  
1517  		while ((bio = bio_list_pop(blist)))
1518  			free_tio(bio);
1519  	}
1520  }
1521  
1522  static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1523  					  unsigned int num_bios, unsigned int *len,
1524  					  gfp_t gfp_flag)
1525  {
1526  	struct bio_list blist = BIO_EMPTY_LIST;
1527  	struct bio *clone;
1528  	unsigned int ret = 0;
1529  
1530  	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1531  		return 0;
1532  
1533  	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1534  	if (len)
1535  		setup_split_accounting(ci, *len);
1536  
1537  	/*
1538  	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1539  	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1540  	 */
1541  	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1542  	while ((clone = bio_list_pop(&blist))) {
1543  		if (num_bios > 1)
1544  			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1545  		__map_bio(clone);
1546  		ret += 1;
1547  	}
1548  
1549  	return ret;
1550  }
1551  
1552  static void __send_empty_flush(struct clone_info *ci)
1553  {
1554  	struct dm_table *t = ci->map;
1555  	struct bio flush_bio;
1556  
1557  	/*
1558  	 * Use an on-stack bio for this, it's safe since we don't
1559  	 * need to reference it after submit. It's just used as
1560  	 * the basis for the clone(s).
1561  	 */
1562  	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1563  		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1564  
1565  	ci->bio = &flush_bio;
1566  	ci->sector_count = 0;
1567  	ci->io->tio.clone.bi_iter.bi_size = 0;
1568  
1569  	for (unsigned int i = 0; i < t->num_targets; i++) {
1570  		unsigned int bios;
1571  		struct dm_target *ti = dm_table_get_target(t, i);
1572  
1573  		if (unlikely(ti->num_flush_bios == 0))
1574  			continue;
1575  
1576  		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1577  		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1578  					     NULL, GFP_NOWAIT);
1579  		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1580  	}
1581  
1582  	/*
1583  	 * alloc_io() takes one extra reference for submission, so the
1584  	 * reference won't reach 0 without the following subtraction
1585  	 */
1586  	atomic_sub(1, &ci->io->io_count);
1587  
1588  	bio_uninit(ci->bio);
1589  }
1590  
1591  static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1592  			       unsigned int num_bios, unsigned int max_granularity,
1593  			       unsigned int max_sectors)
1594  {
1595  	unsigned int len, bios;
1596  
1597  	len = min_t(sector_t, ci->sector_count,
1598  		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1599  
1600  	atomic_add(num_bios, &ci->io->io_count);
1601  	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1602  	/*
1603  	 * alloc_io() takes one extra reference for submission, so the
1604  	 * reference won't reach 0 without the following (+1) subtraction
1605  	 */
1606  	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1607  
1608  	ci->sector += len;
1609  	ci->sector_count -= len;
1610  }
1611  
1612  static bool is_abnormal_io(struct bio *bio)
1613  {
1614  	enum req_op op = bio_op(bio);
1615  
1616  	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1617  		switch (op) {
1618  		case REQ_OP_DISCARD:
1619  		case REQ_OP_SECURE_ERASE:
1620  		case REQ_OP_WRITE_ZEROES:
1621  			return true;
1622  		default:
1623  			break;
1624  		}
1625  	}
1626  
1627  	return false;
1628  }
1629  
1630  static blk_status_t __process_abnormal_io(struct clone_info *ci,
1631  					  struct dm_target *ti)
1632  {
1633  	unsigned int num_bios = 0;
1634  	unsigned int max_granularity = 0;
1635  	unsigned int max_sectors = 0;
1636  	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1637  
1638  	switch (bio_op(ci->bio)) {
1639  	case REQ_OP_DISCARD:
1640  		num_bios = ti->num_discard_bios;
1641  		max_sectors = limits->max_discard_sectors;
1642  		if (ti->max_discard_granularity)
1643  			max_granularity = max_sectors;
1644  		break;
1645  	case REQ_OP_SECURE_ERASE:
1646  		num_bios = ti->num_secure_erase_bios;
1647  		max_sectors = limits->max_secure_erase_sectors;
1648  		if (ti->max_secure_erase_granularity)
1649  			max_granularity = max_sectors;
1650  		break;
1651  	case REQ_OP_WRITE_ZEROES:
1652  		num_bios = ti->num_write_zeroes_bios;
1653  		max_sectors = limits->max_write_zeroes_sectors;
1654  		if (ti->max_write_zeroes_granularity)
1655  			max_granularity = max_sectors;
1656  		break;
1657  	default:
1658  		break;
1659  	}
1660  
1661  	/*
1662  	 * Even though the device advertised support for this type of
1663  	 * request, that does not mean every target supports it, and
1664  	 * reconfiguration might also have changed that since the
1665  	 * check was performed.
1666  	 */
1667  	if (unlikely(!num_bios))
1668  		return BLK_STS_NOTSUPP;
1669  
1670  	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1671  
1672  	return BLK_STS_OK;
1673  }
1674  
1675  /*
1676   * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1677   * associated with this bio, and this bio's bi_private needs to be
1678   * stored in dm_io->data before the reuse.
1679   *
1680   * bio->bi_private is owned by fs or upper layer, so block layer won't
1681   * touch it after splitting. Meantime it won't be changed by anyone after
1682   * bio is submitted. So this reuse is safe.
1683   */
1684  static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1685  {
1686  	return (struct dm_io **)&bio->bi_private;
1687  }
1688  
1689  static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1690  {
1691  	struct dm_io **head = dm_poll_list_head(bio);
1692  
1693  	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1694  		bio->bi_opf |= REQ_DM_POLL_LIST;
1695  		/*
1696  		 * Save .bi_private into dm_io, so that we can reuse
1697  		 * .bi_private as dm_io list head for storing dm_io list
1698  		 */
1699  		io->data = bio->bi_private;
1700  
1701  		/* tell block layer to poll for completion */
1702  		bio->bi_cookie = ~BLK_QC_T_NONE;
1703  
1704  		io->next = NULL;
1705  	} else {
1706  		/*
1707  		 * bio recursed due to split, reuse original poll list,
1708  		 * and save bio->bi_private too.
1709  		 */
1710  		io->data = (*head)->data;
1711  		io->next = *head;
1712  	}
1713  
1714  	*head = io;
1715  }
1716  
1717  /*
1718   * Select the correct strategy for processing a non-flush bio.
1719   */
1720  static blk_status_t __split_and_process_bio(struct clone_info *ci)
1721  {
1722  	struct bio *clone;
1723  	struct dm_target *ti;
1724  	unsigned int len;
1725  
1726  	ti = dm_table_find_target(ci->map, ci->sector);
1727  	if (unlikely(!ti))
1728  		return BLK_STS_IOERR;
1729  
1730  	if (unlikely(ci->is_abnormal_io))
1731  		return __process_abnormal_io(ci, ti);
1732  
1733  	/*
1734  	 * Only support bio polling for normal IO, and the target io is
1735  	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1736  	 */
1737  	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1738  
1739  	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1740  	setup_split_accounting(ci, len);
1741  
1742  	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1743  		if (unlikely(!dm_target_supports_nowait(ti->type)))
1744  			return BLK_STS_NOTSUPP;
1745  
1746  		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1747  		if (unlikely(!clone))
1748  			return BLK_STS_AGAIN;
1749  	} else {
1750  		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1751  	}
1752  	__map_bio(clone);
1753  
1754  	ci->sector += len;
1755  	ci->sector_count -= len;
1756  
1757  	return BLK_STS_OK;
1758  }
1759  
1760  static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1761  			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1762  {
1763  	ci->map = map;
1764  	ci->io = io;
1765  	ci->bio = bio;
1766  	ci->is_abnormal_io = is_abnormal;
1767  	ci->submit_as_polled = false;
1768  	ci->sector = bio->bi_iter.bi_sector;
1769  	ci->sector_count = bio_sectors(bio);
1770  
1771  	/* Shouldn't happen but sector_count was being set to 0 so... */
1772  	if (static_branch_unlikely(&zoned_enabled) &&
1773  	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1774  		ci->sector_count = 0;
1775  }
1776  
1777  /*
1778   * Entry point to split a bio into clones and submit them to the targets.
1779   */
1780  static void dm_split_and_process_bio(struct mapped_device *md,
1781  				     struct dm_table *map, struct bio *bio)
1782  {
1783  	struct clone_info ci;
1784  	struct dm_io *io;
1785  	blk_status_t error = BLK_STS_OK;
1786  	bool is_abnormal;
1787  
1788  	is_abnormal = is_abnormal_io(bio);
1789  	if (unlikely(is_abnormal)) {
1790  		/*
1791  		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1792  		 * otherwise associated queue_limits won't be imposed.
1793  		 */
1794  		bio = bio_split_to_limits(bio);
1795  		if (!bio)
1796  			return;
1797  	}
1798  
1799  	/* Only support nowait for normal IO */
1800  	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1801  		io = alloc_io(md, bio, GFP_NOWAIT);
1802  		if (unlikely(!io)) {
1803  			/* Unable to do anything without dm_io. */
1804  			bio_wouldblock_error(bio);
1805  			return;
1806  		}
1807  	} else {
1808  		io = alloc_io(md, bio, GFP_NOIO);
1809  	}
1810  	init_clone_info(&ci, io, map, bio, is_abnormal);
1811  
1812  	if (bio->bi_opf & REQ_PREFLUSH) {
1813  		__send_empty_flush(&ci);
1814  		/* dm_io_complete submits any data associated with flush */
1815  		goto out;
1816  	}
1817  
1818  	error = __split_and_process_bio(&ci);
1819  	if (error || !ci.sector_count)
1820  		goto out;
1821  	/*
1822  	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1823  	 * *after* bios already submitted have been completely processed.
1824  	 */
1825  	bio_trim(bio, io->sectors, ci.sector_count);
1826  	trace_block_split(bio, bio->bi_iter.bi_sector);
1827  	bio_inc_remaining(bio);
1828  	submit_bio_noacct(bio);
1829  out:
1830  	/*
1831  	 * Drop the extra reference count for non-POLLED bio, and hold one
1832  	 * reference for POLLED bio, which will be released in dm_poll_bio
1833  	 *
1834  	 * Add every dm_io instance into the dm_io list head which is stored
1835  	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1836  	 */
1837  	if (error || !ci.submit_as_polled) {
1838  		/*
1839  		 * In case of submission failure, the extra reference for
1840  		 * submitting io isn't consumed yet
1841  		 */
1842  		if (error)
1843  			atomic_dec(&io->io_count);
1844  		dm_io_dec_pending(io, error);
1845  	} else
1846  		dm_queue_poll_io(bio, io);
1847  }
1848  
1849  static void dm_submit_bio(struct bio *bio)
1850  {
1851  	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1852  	int srcu_idx;
1853  	struct dm_table *map;
1854  
1855  	map = dm_get_live_table(md, &srcu_idx);
1856  
1857  	/* If suspended, or map not yet available, queue this IO for later */
1858  	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1859  	    unlikely(!map)) {
1860  		if (bio->bi_opf & REQ_NOWAIT)
1861  			bio_wouldblock_error(bio);
1862  		else if (bio->bi_opf & REQ_RAHEAD)
1863  			bio_io_error(bio);
1864  		else
1865  			queue_io(md, bio);
1866  		goto out;
1867  	}
1868  
1869  	dm_split_and_process_bio(md, map, bio);
1870  out:
1871  	dm_put_live_table(md, srcu_idx);
1872  }
1873  
1874  static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1875  			  unsigned int flags)
1876  {
1877  	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1878  
1879  	/* don't poll if the mapped io is done */
1880  	if (atomic_read(&io->io_count) > 1)
1881  		bio_poll(&io->tio.clone, iob, flags);
1882  
1883  	/* bio_poll holds the last reference */
1884  	return atomic_read(&io->io_count) == 1;
1885  }
1886  
1887  static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1888  		       unsigned int flags)
1889  {
1890  	struct dm_io **head = dm_poll_list_head(bio);
1891  	struct dm_io *list = *head;
1892  	struct dm_io *tmp = NULL;
1893  	struct dm_io *curr, *next;
1894  
1895  	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1896  	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1897  		return 0;
1898  
1899  	WARN_ON_ONCE(!list);
1900  
1901  	/*
1902  	 * Restore .bi_private before possibly completing dm_io.
1903  	 *
1904  	 * bio_poll() is only possible once @bio has been completely
1905  	 * submitted via submit_bio_noacct()'s depth-first submission.
1906  	 * So there is no dm_queue_poll_io() race associated with
1907  	 * clearing REQ_DM_POLL_LIST here.
1908  	 */
1909  	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1910  	bio->bi_private = list->data;
1911  
1912  	for (curr = list, next = curr->next; curr; curr = next, next =
1913  			curr ? curr->next : NULL) {
1914  		if (dm_poll_dm_io(curr, iob, flags)) {
1915  			/*
1916  			 * clone_endio() has already occurred, so no
1917  			 * error handling is needed here.
1918  			 */
1919  			__dm_io_dec_pending(curr);
1920  		} else {
1921  			curr->next = tmp;
1922  			tmp = curr;
1923  		}
1924  	}
1925  
1926  	/* Not done? */
1927  	if (tmp) {
1928  		bio->bi_opf |= REQ_DM_POLL_LIST;
1929  		/* Reset bio->bi_private to dm_io list head */
1930  		*head = tmp;
1931  		return 0;
1932  	}
1933  	return 1;
1934  }
1935  
1936  /*
1937   *---------------------------------------------------------------
1938   * An IDR is used to keep track of allocated minor numbers.
1939   *---------------------------------------------------------------
1940   */
1941  static void free_minor(int minor)
1942  {
1943  	spin_lock(&_minor_lock);
1944  	idr_remove(&_minor_idr, minor);
1945  	spin_unlock(&_minor_lock);
1946  }
1947  
1948  /*
1949   * See if the device with a specific minor # is free.
1950   */
1951  static int specific_minor(int minor)
1952  {
1953  	int r;
1954  
1955  	if (minor >= (1 << MINORBITS))
1956  		return -EINVAL;
1957  
1958  	idr_preload(GFP_KERNEL);
1959  	spin_lock(&_minor_lock);
1960  
1961  	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1962  
1963  	spin_unlock(&_minor_lock);
1964  	idr_preload_end();
1965  	if (r < 0)
1966  		return r == -ENOSPC ? -EBUSY : r;
1967  	return 0;
1968  }
1969  
1970  static int next_free_minor(int *minor)
1971  {
1972  	int r;
1973  
1974  	idr_preload(GFP_KERNEL);
1975  	spin_lock(&_minor_lock);
1976  
1977  	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1978  
1979  	spin_unlock(&_minor_lock);
1980  	idr_preload_end();
1981  	if (r < 0)
1982  		return r;
1983  	*minor = r;
1984  	return 0;
1985  }
1986  
1987  static const struct block_device_operations dm_blk_dops;
1988  static const struct block_device_operations dm_rq_blk_dops;
1989  static const struct dax_operations dm_dax_ops;
1990  
1991  static void dm_wq_work(struct work_struct *work);
1992  
1993  #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1994  static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1995  {
1996  	dm_destroy_crypto_profile(q->crypto_profile);
1997  }
1998  
1999  #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2000  
2001  static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2002  {
2003  }
2004  #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2005  
2006  static void cleanup_mapped_device(struct mapped_device *md)
2007  {
2008  	if (md->wq)
2009  		destroy_workqueue(md->wq);
2010  	dm_free_md_mempools(md->mempools);
2011  
2012  	if (md->dax_dev) {
2013  		dax_remove_host(md->disk);
2014  		kill_dax(md->dax_dev);
2015  		put_dax(md->dax_dev);
2016  		md->dax_dev = NULL;
2017  	}
2018  
2019  	dm_cleanup_zoned_dev(md);
2020  	if (md->disk) {
2021  		spin_lock(&_minor_lock);
2022  		md->disk->private_data = NULL;
2023  		spin_unlock(&_minor_lock);
2024  		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2025  			struct table_device *td;
2026  
2027  			dm_sysfs_exit(md);
2028  			list_for_each_entry(td, &md->table_devices, list) {
2029  				bd_unlink_disk_holder(td->dm_dev.bdev,
2030  						      md->disk);
2031  			}
2032  
2033  			/*
2034  			 * Hold lock to make sure del_gendisk() won't concurrent
2035  			 * with open/close_table_device().
2036  			 */
2037  			mutex_lock(&md->table_devices_lock);
2038  			del_gendisk(md->disk);
2039  			mutex_unlock(&md->table_devices_lock);
2040  		}
2041  		dm_queue_destroy_crypto_profile(md->queue);
2042  		put_disk(md->disk);
2043  	}
2044  
2045  	if (md->pending_io) {
2046  		free_percpu(md->pending_io);
2047  		md->pending_io = NULL;
2048  	}
2049  
2050  	cleanup_srcu_struct(&md->io_barrier);
2051  
2052  	mutex_destroy(&md->suspend_lock);
2053  	mutex_destroy(&md->type_lock);
2054  	mutex_destroy(&md->table_devices_lock);
2055  	mutex_destroy(&md->swap_bios_lock);
2056  
2057  	dm_mq_cleanup_mapped_device(md);
2058  }
2059  
2060  /*
2061   * Allocate and initialise a blank device with a given minor.
2062   */
2063  static struct mapped_device *alloc_dev(int minor)
2064  {
2065  	int r, numa_node_id = dm_get_numa_node();
2066  	struct dax_device *dax_dev;
2067  	struct mapped_device *md;
2068  	void *old_md;
2069  
2070  	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2071  	if (!md) {
2072  		DMERR("unable to allocate device, out of memory.");
2073  		return NULL;
2074  	}
2075  
2076  	if (!try_module_get(THIS_MODULE))
2077  		goto bad_module_get;
2078  
2079  	/* get a minor number for the dev */
2080  	if (minor == DM_ANY_MINOR)
2081  		r = next_free_minor(&minor);
2082  	else
2083  		r = specific_minor(minor);
2084  	if (r < 0)
2085  		goto bad_minor;
2086  
2087  	r = init_srcu_struct(&md->io_barrier);
2088  	if (r < 0)
2089  		goto bad_io_barrier;
2090  
2091  	md->numa_node_id = numa_node_id;
2092  	md->init_tio_pdu = false;
2093  	md->type = DM_TYPE_NONE;
2094  	mutex_init(&md->suspend_lock);
2095  	mutex_init(&md->type_lock);
2096  	mutex_init(&md->table_devices_lock);
2097  	spin_lock_init(&md->deferred_lock);
2098  	atomic_set(&md->holders, 1);
2099  	atomic_set(&md->open_count, 0);
2100  	atomic_set(&md->event_nr, 0);
2101  	atomic_set(&md->uevent_seq, 0);
2102  	INIT_LIST_HEAD(&md->uevent_list);
2103  	INIT_LIST_HEAD(&md->table_devices);
2104  	spin_lock_init(&md->uevent_lock);
2105  
2106  	/*
2107  	 * default to bio-based until DM table is loaded and md->type
2108  	 * established. If request-based table is loaded: blk-mq will
2109  	 * override accordingly.
2110  	 */
2111  	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2112  	if (IS_ERR(md->disk))
2113  		goto bad;
2114  	md->queue = md->disk->queue;
2115  
2116  	init_waitqueue_head(&md->wait);
2117  	INIT_WORK(&md->work, dm_wq_work);
2118  	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2119  	init_waitqueue_head(&md->eventq);
2120  	init_completion(&md->kobj_holder.completion);
2121  
2122  	md->requeue_list = NULL;
2123  	md->swap_bios = get_swap_bios();
2124  	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2125  	mutex_init(&md->swap_bios_lock);
2126  
2127  	md->disk->major = _major;
2128  	md->disk->first_minor = minor;
2129  	md->disk->minors = 1;
2130  	md->disk->flags |= GENHD_FL_NO_PART;
2131  	md->disk->fops = &dm_blk_dops;
2132  	md->disk->private_data = md;
2133  	sprintf(md->disk->disk_name, "dm-%d", minor);
2134  
2135  	dax_dev = alloc_dax(md, &dm_dax_ops);
2136  	if (IS_ERR(dax_dev)) {
2137  		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2138  			goto bad;
2139  	} else {
2140  		set_dax_nocache(dax_dev);
2141  		set_dax_nomc(dax_dev);
2142  		md->dax_dev = dax_dev;
2143  		if (dax_add_host(dax_dev, md->disk))
2144  			goto bad;
2145  	}
2146  
2147  	format_dev_t(md->name, MKDEV(_major, minor));
2148  
2149  	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2150  	if (!md->wq)
2151  		goto bad;
2152  
2153  	md->pending_io = alloc_percpu(unsigned long);
2154  	if (!md->pending_io)
2155  		goto bad;
2156  
2157  	r = dm_stats_init(&md->stats);
2158  	if (r < 0)
2159  		goto bad;
2160  
2161  	/* Populate the mapping, nobody knows we exist yet */
2162  	spin_lock(&_minor_lock);
2163  	old_md = idr_replace(&_minor_idr, md, minor);
2164  	spin_unlock(&_minor_lock);
2165  
2166  	BUG_ON(old_md != MINOR_ALLOCED);
2167  
2168  	return md;
2169  
2170  bad:
2171  	cleanup_mapped_device(md);
2172  bad_io_barrier:
2173  	free_minor(minor);
2174  bad_minor:
2175  	module_put(THIS_MODULE);
2176  bad_module_get:
2177  	kvfree(md);
2178  	return NULL;
2179  }
2180  
2181  static void unlock_fs(struct mapped_device *md);
2182  
2183  static void free_dev(struct mapped_device *md)
2184  {
2185  	int minor = MINOR(disk_devt(md->disk));
2186  
2187  	unlock_fs(md);
2188  
2189  	cleanup_mapped_device(md);
2190  
2191  	WARN_ON_ONCE(!list_empty(&md->table_devices));
2192  	dm_stats_cleanup(&md->stats);
2193  	free_minor(minor);
2194  
2195  	module_put(THIS_MODULE);
2196  	kvfree(md);
2197  }
2198  
2199  /*
2200   * Bind a table to the device.
2201   */
2202  static void event_callback(void *context)
2203  {
2204  	unsigned long flags;
2205  	LIST_HEAD(uevents);
2206  	struct mapped_device *md = context;
2207  
2208  	spin_lock_irqsave(&md->uevent_lock, flags);
2209  	list_splice_init(&md->uevent_list, &uevents);
2210  	spin_unlock_irqrestore(&md->uevent_lock, flags);
2211  
2212  	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2213  
2214  	atomic_inc(&md->event_nr);
2215  	wake_up(&md->eventq);
2216  	dm_issue_global_event();
2217  }
2218  
2219  /*
2220   * Returns old map, which caller must destroy.
2221   */
2222  static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2223  			       struct queue_limits *limits)
2224  {
2225  	struct dm_table *old_map;
2226  	sector_t size;
2227  	int ret;
2228  
2229  	lockdep_assert_held(&md->suspend_lock);
2230  
2231  	size = dm_table_get_size(t);
2232  
2233  	/*
2234  	 * Wipe any geometry if the size of the table changed.
2235  	 */
2236  	if (size != dm_get_size(md))
2237  		memset(&md->geometry, 0, sizeof(md->geometry));
2238  
2239  	set_capacity(md->disk, size);
2240  
2241  	dm_table_event_callback(t, event_callback, md);
2242  
2243  	if (dm_table_request_based(t)) {
2244  		/*
2245  		 * Leverage the fact that request-based DM targets are
2246  		 * immutable singletons - used to optimize dm_mq_queue_rq.
2247  		 */
2248  		md->immutable_target = dm_table_get_immutable_target(t);
2249  
2250  		/*
2251  		 * There is no need to reload with request-based dm because the
2252  		 * size of front_pad doesn't change.
2253  		 *
2254  		 * Note for future: If you are to reload bioset, prep-ed
2255  		 * requests in the queue may refer to bio from the old bioset,
2256  		 * so you must walk through the queue to unprep.
2257  		 */
2258  		if (!md->mempools) {
2259  			md->mempools = t->mempools;
2260  			t->mempools = NULL;
2261  		}
2262  	} else {
2263  		/*
2264  		 * The md may already have mempools that need changing.
2265  		 * If so, reload bioset because front_pad may have changed
2266  		 * because a different table was loaded.
2267  		 */
2268  		dm_free_md_mempools(md->mempools);
2269  		md->mempools = t->mempools;
2270  		t->mempools = NULL;
2271  	}
2272  
2273  	ret = dm_table_set_restrictions(t, md->queue, limits);
2274  	if (ret) {
2275  		old_map = ERR_PTR(ret);
2276  		goto out;
2277  	}
2278  
2279  	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2280  	rcu_assign_pointer(md->map, (void *)t);
2281  	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2282  
2283  	if (old_map)
2284  		dm_sync_table(md);
2285  out:
2286  	return old_map;
2287  }
2288  
2289  /*
2290   * Returns unbound table for the caller to free.
2291   */
2292  static struct dm_table *__unbind(struct mapped_device *md)
2293  {
2294  	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2295  
2296  	if (!map)
2297  		return NULL;
2298  
2299  	dm_table_event_callback(map, NULL, NULL);
2300  	RCU_INIT_POINTER(md->map, NULL);
2301  	dm_sync_table(md);
2302  
2303  	return map;
2304  }
2305  
2306  /*
2307   * Constructor for a new device.
2308   */
2309  int dm_create(int minor, struct mapped_device **result)
2310  {
2311  	struct mapped_device *md;
2312  
2313  	md = alloc_dev(minor);
2314  	if (!md)
2315  		return -ENXIO;
2316  
2317  	dm_ima_reset_data(md);
2318  
2319  	*result = md;
2320  	return 0;
2321  }
2322  
2323  /*
2324   * Functions to manage md->type.
2325   * All are required to hold md->type_lock.
2326   */
2327  void dm_lock_md_type(struct mapped_device *md)
2328  {
2329  	mutex_lock(&md->type_lock);
2330  }
2331  
2332  void dm_unlock_md_type(struct mapped_device *md)
2333  {
2334  	mutex_unlock(&md->type_lock);
2335  }
2336  
2337  void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2338  {
2339  	BUG_ON(!mutex_is_locked(&md->type_lock));
2340  	md->type = type;
2341  }
2342  
2343  enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2344  {
2345  	return md->type;
2346  }
2347  
2348  struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2349  {
2350  	return md->immutable_target_type;
2351  }
2352  
2353  /*
2354   * Setup the DM device's queue based on md's type
2355   */
2356  int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2357  {
2358  	enum dm_queue_mode type = dm_table_get_type(t);
2359  	struct queue_limits limits;
2360  	struct table_device *td;
2361  	int r;
2362  
2363  	switch (type) {
2364  	case DM_TYPE_REQUEST_BASED:
2365  		md->disk->fops = &dm_rq_blk_dops;
2366  		r = dm_mq_init_request_queue(md, t);
2367  		if (r) {
2368  			DMERR("Cannot initialize queue for request-based dm mapped device");
2369  			return r;
2370  		}
2371  		break;
2372  	case DM_TYPE_BIO_BASED:
2373  	case DM_TYPE_DAX_BIO_BASED:
2374  		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2375  		break;
2376  	case DM_TYPE_NONE:
2377  		WARN_ON_ONCE(true);
2378  		break;
2379  	}
2380  
2381  	r = dm_calculate_queue_limits(t, &limits);
2382  	if (r) {
2383  		DMERR("Cannot calculate initial queue limits");
2384  		return r;
2385  	}
2386  	r = dm_table_set_restrictions(t, md->queue, &limits);
2387  	if (r)
2388  		return r;
2389  
2390  	/*
2391  	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2392  	 * with open_table_device() and close_table_device().
2393  	 */
2394  	mutex_lock(&md->table_devices_lock);
2395  	r = add_disk(md->disk);
2396  	mutex_unlock(&md->table_devices_lock);
2397  	if (r)
2398  		return r;
2399  
2400  	/*
2401  	 * Register the holder relationship for devices added before the disk
2402  	 * was live.
2403  	 */
2404  	list_for_each_entry(td, &md->table_devices, list) {
2405  		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2406  		if (r)
2407  			goto out_undo_holders;
2408  	}
2409  
2410  	r = dm_sysfs_init(md);
2411  	if (r)
2412  		goto out_undo_holders;
2413  
2414  	md->type = type;
2415  	return 0;
2416  
2417  out_undo_holders:
2418  	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2419  		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2420  	mutex_lock(&md->table_devices_lock);
2421  	del_gendisk(md->disk);
2422  	mutex_unlock(&md->table_devices_lock);
2423  	return r;
2424  }
2425  
2426  struct mapped_device *dm_get_md(dev_t dev)
2427  {
2428  	struct mapped_device *md;
2429  	unsigned int minor = MINOR(dev);
2430  
2431  	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2432  		return NULL;
2433  
2434  	spin_lock(&_minor_lock);
2435  
2436  	md = idr_find(&_minor_idr, minor);
2437  	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2438  	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2439  		md = NULL;
2440  		goto out;
2441  	}
2442  	dm_get(md);
2443  out:
2444  	spin_unlock(&_minor_lock);
2445  
2446  	return md;
2447  }
2448  EXPORT_SYMBOL_GPL(dm_get_md);
2449  
2450  void *dm_get_mdptr(struct mapped_device *md)
2451  {
2452  	return md->interface_ptr;
2453  }
2454  
2455  void dm_set_mdptr(struct mapped_device *md, void *ptr)
2456  {
2457  	md->interface_ptr = ptr;
2458  }
2459  
2460  void dm_get(struct mapped_device *md)
2461  {
2462  	atomic_inc(&md->holders);
2463  	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2464  }
2465  
2466  int dm_hold(struct mapped_device *md)
2467  {
2468  	spin_lock(&_minor_lock);
2469  	if (test_bit(DMF_FREEING, &md->flags)) {
2470  		spin_unlock(&_minor_lock);
2471  		return -EBUSY;
2472  	}
2473  	dm_get(md);
2474  	spin_unlock(&_minor_lock);
2475  	return 0;
2476  }
2477  EXPORT_SYMBOL_GPL(dm_hold);
2478  
2479  const char *dm_device_name(struct mapped_device *md)
2480  {
2481  	return md->name;
2482  }
2483  EXPORT_SYMBOL_GPL(dm_device_name);
2484  
2485  static void __dm_destroy(struct mapped_device *md, bool wait)
2486  {
2487  	struct dm_table *map;
2488  	int srcu_idx;
2489  
2490  	might_sleep();
2491  
2492  	spin_lock(&_minor_lock);
2493  	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2494  	set_bit(DMF_FREEING, &md->flags);
2495  	spin_unlock(&_minor_lock);
2496  
2497  	blk_mark_disk_dead(md->disk);
2498  
2499  	/*
2500  	 * Take suspend_lock so that presuspend and postsuspend methods
2501  	 * do not race with internal suspend.
2502  	 */
2503  	mutex_lock(&md->suspend_lock);
2504  	map = dm_get_live_table(md, &srcu_idx);
2505  	if (!dm_suspended_md(md)) {
2506  		dm_table_presuspend_targets(map);
2507  		set_bit(DMF_SUSPENDED, &md->flags);
2508  		set_bit(DMF_POST_SUSPENDING, &md->flags);
2509  		dm_table_postsuspend_targets(map);
2510  	}
2511  	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2512  	dm_put_live_table(md, srcu_idx);
2513  	mutex_unlock(&md->suspend_lock);
2514  
2515  	/*
2516  	 * Rare, but there may be I/O requests still going to complete,
2517  	 * for example.  Wait for all references to disappear.
2518  	 * No one should increment the reference count of the mapped_device,
2519  	 * after the mapped_device state becomes DMF_FREEING.
2520  	 */
2521  	if (wait)
2522  		while (atomic_read(&md->holders))
2523  			fsleep(1000);
2524  	else if (atomic_read(&md->holders))
2525  		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2526  		       dm_device_name(md), atomic_read(&md->holders));
2527  
2528  	dm_table_destroy(__unbind(md));
2529  	free_dev(md);
2530  }
2531  
2532  void dm_destroy(struct mapped_device *md)
2533  {
2534  	__dm_destroy(md, true);
2535  }
2536  
2537  void dm_destroy_immediate(struct mapped_device *md)
2538  {
2539  	__dm_destroy(md, false);
2540  }
2541  
2542  void dm_put(struct mapped_device *md)
2543  {
2544  	atomic_dec(&md->holders);
2545  }
2546  EXPORT_SYMBOL_GPL(dm_put);
2547  
2548  static bool dm_in_flight_bios(struct mapped_device *md)
2549  {
2550  	int cpu;
2551  	unsigned long sum = 0;
2552  
2553  	for_each_possible_cpu(cpu)
2554  		sum += *per_cpu_ptr(md->pending_io, cpu);
2555  
2556  	return sum != 0;
2557  }
2558  
2559  static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2560  {
2561  	int r = 0;
2562  	DEFINE_WAIT(wait);
2563  
2564  	while (true) {
2565  		prepare_to_wait(&md->wait, &wait, task_state);
2566  
2567  		if (!dm_in_flight_bios(md))
2568  			break;
2569  
2570  		if (signal_pending_state(task_state, current)) {
2571  			r = -EINTR;
2572  			break;
2573  		}
2574  
2575  		io_schedule();
2576  	}
2577  	finish_wait(&md->wait, &wait);
2578  
2579  	smp_rmb();
2580  
2581  	return r;
2582  }
2583  
2584  static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2585  {
2586  	int r = 0;
2587  
2588  	if (!queue_is_mq(md->queue))
2589  		return dm_wait_for_bios_completion(md, task_state);
2590  
2591  	while (true) {
2592  		if (!blk_mq_queue_inflight(md->queue))
2593  			break;
2594  
2595  		if (signal_pending_state(task_state, current)) {
2596  			r = -EINTR;
2597  			break;
2598  		}
2599  
2600  		fsleep(5000);
2601  	}
2602  
2603  	return r;
2604  }
2605  
2606  /*
2607   * Process the deferred bios
2608   */
2609  static void dm_wq_work(struct work_struct *work)
2610  {
2611  	struct mapped_device *md = container_of(work, struct mapped_device, work);
2612  	struct bio *bio;
2613  
2614  	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2615  		spin_lock_irq(&md->deferred_lock);
2616  		bio = bio_list_pop(&md->deferred);
2617  		spin_unlock_irq(&md->deferred_lock);
2618  
2619  		if (!bio)
2620  			break;
2621  
2622  		submit_bio_noacct(bio);
2623  		cond_resched();
2624  	}
2625  }
2626  
2627  static void dm_queue_flush(struct mapped_device *md)
2628  {
2629  	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2630  	smp_mb__after_atomic();
2631  	queue_work(md->wq, &md->work);
2632  }
2633  
2634  /*
2635   * Swap in a new table, returning the old one for the caller to destroy.
2636   */
2637  struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2638  {
2639  	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2640  	struct queue_limits limits;
2641  	int r;
2642  
2643  	mutex_lock(&md->suspend_lock);
2644  
2645  	/* device must be suspended */
2646  	if (!dm_suspended_md(md))
2647  		goto out;
2648  
2649  	/*
2650  	 * If the new table has no data devices, retain the existing limits.
2651  	 * This helps multipath with queue_if_no_path if all paths disappear,
2652  	 * then new I/O is queued based on these limits, and then some paths
2653  	 * reappear.
2654  	 */
2655  	if (dm_table_has_no_data_devices(table)) {
2656  		live_map = dm_get_live_table_fast(md);
2657  		if (live_map)
2658  			limits = md->queue->limits;
2659  		dm_put_live_table_fast(md);
2660  	}
2661  
2662  	if (!live_map) {
2663  		r = dm_calculate_queue_limits(table, &limits);
2664  		if (r) {
2665  			map = ERR_PTR(r);
2666  			goto out;
2667  		}
2668  	}
2669  
2670  	map = __bind(md, table, &limits);
2671  	dm_issue_global_event();
2672  
2673  out:
2674  	mutex_unlock(&md->suspend_lock);
2675  	return map;
2676  }
2677  
2678  /*
2679   * Functions to lock and unlock any filesystem running on the
2680   * device.
2681   */
2682  static int lock_fs(struct mapped_device *md)
2683  {
2684  	int r;
2685  
2686  	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2687  
2688  	r = bdev_freeze(md->disk->part0);
2689  	if (!r)
2690  		set_bit(DMF_FROZEN, &md->flags);
2691  	return r;
2692  }
2693  
2694  static void unlock_fs(struct mapped_device *md)
2695  {
2696  	if (!test_bit(DMF_FROZEN, &md->flags))
2697  		return;
2698  	bdev_thaw(md->disk->part0);
2699  	clear_bit(DMF_FROZEN, &md->flags);
2700  }
2701  
2702  /*
2703   * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2704   * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2705   * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2706   *
2707   * If __dm_suspend returns 0, the device is completely quiescent
2708   * now. There is no request-processing activity. All new requests
2709   * are being added to md->deferred list.
2710   */
2711  static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2712  			unsigned int suspend_flags, unsigned int task_state,
2713  			int dmf_suspended_flag)
2714  {
2715  	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2716  	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2717  	int r;
2718  
2719  	lockdep_assert_held(&md->suspend_lock);
2720  
2721  	/*
2722  	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2723  	 * This flag is cleared before dm_suspend returns.
2724  	 */
2725  	if (noflush)
2726  		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2727  	else
2728  		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2729  
2730  	/*
2731  	 * This gets reverted if there's an error later and the targets
2732  	 * provide the .presuspend_undo hook.
2733  	 */
2734  	dm_table_presuspend_targets(map);
2735  
2736  	/*
2737  	 * Flush I/O to the device.
2738  	 * Any I/O submitted after lock_fs() may not be flushed.
2739  	 * noflush takes precedence over do_lockfs.
2740  	 * (lock_fs() flushes I/Os and waits for them to complete.)
2741  	 */
2742  	if (!noflush && do_lockfs) {
2743  		r = lock_fs(md);
2744  		if (r) {
2745  			dm_table_presuspend_undo_targets(map);
2746  			return r;
2747  		}
2748  	}
2749  
2750  	/*
2751  	 * Here we must make sure that no processes are submitting requests
2752  	 * to target drivers i.e. no one may be executing
2753  	 * dm_split_and_process_bio from dm_submit_bio.
2754  	 *
2755  	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2756  	 * we take the write lock. To prevent any process from reentering
2757  	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2758  	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2759  	 * flush_workqueue(md->wq).
2760  	 */
2761  	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2762  	if (map)
2763  		synchronize_srcu(&md->io_barrier);
2764  
2765  	/*
2766  	 * Stop md->queue before flushing md->wq in case request-based
2767  	 * dm defers requests to md->wq from md->queue.
2768  	 */
2769  	if (dm_request_based(md))
2770  		dm_stop_queue(md->queue);
2771  
2772  	flush_workqueue(md->wq);
2773  
2774  	/*
2775  	 * At this point no more requests are entering target request routines.
2776  	 * We call dm_wait_for_completion to wait for all existing requests
2777  	 * to finish.
2778  	 */
2779  	r = dm_wait_for_completion(md, task_state);
2780  	if (!r)
2781  		set_bit(dmf_suspended_flag, &md->flags);
2782  
2783  	if (noflush)
2784  		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2785  	if (map)
2786  		synchronize_srcu(&md->io_barrier);
2787  
2788  	/* were we interrupted ? */
2789  	if (r < 0) {
2790  		dm_queue_flush(md);
2791  
2792  		if (dm_request_based(md))
2793  			dm_start_queue(md->queue);
2794  
2795  		unlock_fs(md);
2796  		dm_table_presuspend_undo_targets(map);
2797  		/* pushback list is already flushed, so skip flush */
2798  	}
2799  
2800  	return r;
2801  }
2802  
2803  /*
2804   * We need to be able to change a mapping table under a mounted
2805   * filesystem.  For example we might want to move some data in
2806   * the background.  Before the table can be swapped with
2807   * dm_bind_table, dm_suspend must be called to flush any in
2808   * flight bios and ensure that any further io gets deferred.
2809   */
2810  /*
2811   * Suspend mechanism in request-based dm.
2812   *
2813   * 1. Flush all I/Os by lock_fs() if needed.
2814   * 2. Stop dispatching any I/O by stopping the request_queue.
2815   * 3. Wait for all in-flight I/Os to be completed or requeued.
2816   *
2817   * To abort suspend, start the request_queue.
2818   */
2819  int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2820  {
2821  	struct dm_table *map = NULL;
2822  	int r = 0;
2823  
2824  retry:
2825  	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2826  
2827  	if (dm_suspended_md(md)) {
2828  		r = -EINVAL;
2829  		goto out_unlock;
2830  	}
2831  
2832  	if (dm_suspended_internally_md(md)) {
2833  		/* already internally suspended, wait for internal resume */
2834  		mutex_unlock(&md->suspend_lock);
2835  		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2836  		if (r)
2837  			return r;
2838  		goto retry;
2839  	}
2840  
2841  	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2842  	if (!map) {
2843  		/* avoid deadlock with fs/namespace.c:do_mount() */
2844  		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2845  	}
2846  
2847  	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2848  	if (r)
2849  		goto out_unlock;
2850  
2851  	set_bit(DMF_POST_SUSPENDING, &md->flags);
2852  	dm_table_postsuspend_targets(map);
2853  	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2854  
2855  out_unlock:
2856  	mutex_unlock(&md->suspend_lock);
2857  	return r;
2858  }
2859  
2860  static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2861  {
2862  	if (map) {
2863  		int r = dm_table_resume_targets(map);
2864  
2865  		if (r)
2866  			return r;
2867  	}
2868  
2869  	dm_queue_flush(md);
2870  
2871  	/*
2872  	 * Flushing deferred I/Os must be done after targets are resumed
2873  	 * so that mapping of targets can work correctly.
2874  	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2875  	 */
2876  	if (dm_request_based(md))
2877  		dm_start_queue(md->queue);
2878  
2879  	unlock_fs(md);
2880  
2881  	return 0;
2882  }
2883  
2884  int dm_resume(struct mapped_device *md)
2885  {
2886  	int r;
2887  	struct dm_table *map = NULL;
2888  
2889  retry:
2890  	r = -EINVAL;
2891  	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2892  
2893  	if (!dm_suspended_md(md))
2894  		goto out;
2895  
2896  	if (dm_suspended_internally_md(md)) {
2897  		/* already internally suspended, wait for internal resume */
2898  		mutex_unlock(&md->suspend_lock);
2899  		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2900  		if (r)
2901  			return r;
2902  		goto retry;
2903  	}
2904  
2905  	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2906  	if (!map || !dm_table_get_size(map))
2907  		goto out;
2908  
2909  	r = __dm_resume(md, map);
2910  	if (r)
2911  		goto out;
2912  
2913  	clear_bit(DMF_SUSPENDED, &md->flags);
2914  out:
2915  	mutex_unlock(&md->suspend_lock);
2916  
2917  	return r;
2918  }
2919  
2920  /*
2921   * Internal suspend/resume works like userspace-driven suspend. It waits
2922   * until all bios finish and prevents issuing new bios to the target drivers.
2923   * It may be used only from the kernel.
2924   */
2925  
2926  static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2927  {
2928  	struct dm_table *map = NULL;
2929  
2930  	lockdep_assert_held(&md->suspend_lock);
2931  
2932  	if (md->internal_suspend_count++)
2933  		return; /* nested internal suspend */
2934  
2935  	if (dm_suspended_md(md)) {
2936  		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2937  		return; /* nest suspend */
2938  	}
2939  
2940  	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2941  
2942  	/*
2943  	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2944  	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2945  	 * would require changing .presuspend to return an error -- avoid this
2946  	 * until there is a need for more elaborate variants of internal suspend.
2947  	 */
2948  	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2949  			    DMF_SUSPENDED_INTERNALLY);
2950  
2951  	set_bit(DMF_POST_SUSPENDING, &md->flags);
2952  	dm_table_postsuspend_targets(map);
2953  	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2954  }
2955  
2956  static void __dm_internal_resume(struct mapped_device *md)
2957  {
2958  	int r;
2959  	struct dm_table *map;
2960  
2961  	BUG_ON(!md->internal_suspend_count);
2962  
2963  	if (--md->internal_suspend_count)
2964  		return; /* resume from nested internal suspend */
2965  
2966  	if (dm_suspended_md(md))
2967  		goto done; /* resume from nested suspend */
2968  
2969  	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2970  	r = __dm_resume(md, map);
2971  	if (r) {
2972  		/*
2973  		 * If a preresume method of some target failed, we are in a
2974  		 * tricky situation. We can't return an error to the caller. We
2975  		 * can't fake success because then the "resume" and
2976  		 * "postsuspend" methods would not be paired correctly, and it
2977  		 * would break various targets, for example it would cause list
2978  		 * corruption in the "origin" target.
2979  		 *
2980  		 * So, we fake normal suspend here, to make sure that the
2981  		 * "resume" and "postsuspend" methods will be paired correctly.
2982  		 */
2983  		DMERR("Preresume method failed: %d", r);
2984  		set_bit(DMF_SUSPENDED, &md->flags);
2985  	}
2986  done:
2987  	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2988  	smp_mb__after_atomic();
2989  	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2990  }
2991  
2992  void dm_internal_suspend_noflush(struct mapped_device *md)
2993  {
2994  	mutex_lock(&md->suspend_lock);
2995  	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2996  	mutex_unlock(&md->suspend_lock);
2997  }
2998  EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2999  
3000  void dm_internal_resume(struct mapped_device *md)
3001  {
3002  	mutex_lock(&md->suspend_lock);
3003  	__dm_internal_resume(md);
3004  	mutex_unlock(&md->suspend_lock);
3005  }
3006  EXPORT_SYMBOL_GPL(dm_internal_resume);
3007  
3008  /*
3009   * Fast variants of internal suspend/resume hold md->suspend_lock,
3010   * which prevents interaction with userspace-driven suspend.
3011   */
3012  
3013  void dm_internal_suspend_fast(struct mapped_device *md)
3014  {
3015  	mutex_lock(&md->suspend_lock);
3016  	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3017  		return;
3018  
3019  	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3020  	synchronize_srcu(&md->io_barrier);
3021  	flush_workqueue(md->wq);
3022  	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3023  }
3024  EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3025  
3026  void dm_internal_resume_fast(struct mapped_device *md)
3027  {
3028  	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3029  		goto done;
3030  
3031  	dm_queue_flush(md);
3032  
3033  done:
3034  	mutex_unlock(&md->suspend_lock);
3035  }
3036  EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3037  
3038  /*
3039   *---------------------------------------------------------------
3040   * Event notification.
3041   *---------------------------------------------------------------
3042   */
3043  int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3044  		      unsigned int cookie, bool need_resize_uevent)
3045  {
3046  	int r;
3047  	unsigned int noio_flag;
3048  	char udev_cookie[DM_COOKIE_LENGTH];
3049  	char *envp[3] = { NULL, NULL, NULL };
3050  	char **envpp = envp;
3051  	if (cookie) {
3052  		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3053  			 DM_COOKIE_ENV_VAR_NAME, cookie);
3054  		*envpp++ = udev_cookie;
3055  	}
3056  	if (need_resize_uevent) {
3057  		*envpp++ = "RESIZE=1";
3058  	}
3059  
3060  	noio_flag = memalloc_noio_save();
3061  
3062  	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3063  
3064  	memalloc_noio_restore(noio_flag);
3065  
3066  	return r;
3067  }
3068  
3069  uint32_t dm_next_uevent_seq(struct mapped_device *md)
3070  {
3071  	return atomic_add_return(1, &md->uevent_seq);
3072  }
3073  
3074  uint32_t dm_get_event_nr(struct mapped_device *md)
3075  {
3076  	return atomic_read(&md->event_nr);
3077  }
3078  
3079  int dm_wait_event(struct mapped_device *md, int event_nr)
3080  {
3081  	return wait_event_interruptible(md->eventq,
3082  			(event_nr != atomic_read(&md->event_nr)));
3083  }
3084  
3085  void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3086  {
3087  	unsigned long flags;
3088  
3089  	spin_lock_irqsave(&md->uevent_lock, flags);
3090  	list_add(elist, &md->uevent_list);
3091  	spin_unlock_irqrestore(&md->uevent_lock, flags);
3092  }
3093  
3094  /*
3095   * The gendisk is only valid as long as you have a reference
3096   * count on 'md'.
3097   */
3098  struct gendisk *dm_disk(struct mapped_device *md)
3099  {
3100  	return md->disk;
3101  }
3102  EXPORT_SYMBOL_GPL(dm_disk);
3103  
3104  struct kobject *dm_kobject(struct mapped_device *md)
3105  {
3106  	return &md->kobj_holder.kobj;
3107  }
3108  
3109  struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3110  {
3111  	struct mapped_device *md;
3112  
3113  	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3114  
3115  	spin_lock(&_minor_lock);
3116  	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3117  		md = NULL;
3118  		goto out;
3119  	}
3120  	dm_get(md);
3121  out:
3122  	spin_unlock(&_minor_lock);
3123  
3124  	return md;
3125  }
3126  
3127  int dm_suspended_md(struct mapped_device *md)
3128  {
3129  	return test_bit(DMF_SUSPENDED, &md->flags);
3130  }
3131  
3132  static int dm_post_suspending_md(struct mapped_device *md)
3133  {
3134  	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3135  }
3136  
3137  int dm_suspended_internally_md(struct mapped_device *md)
3138  {
3139  	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3140  }
3141  
3142  int dm_test_deferred_remove_flag(struct mapped_device *md)
3143  {
3144  	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3145  }
3146  
3147  int dm_suspended(struct dm_target *ti)
3148  {
3149  	return dm_suspended_md(ti->table->md);
3150  }
3151  EXPORT_SYMBOL_GPL(dm_suspended);
3152  
3153  int dm_post_suspending(struct dm_target *ti)
3154  {
3155  	return dm_post_suspending_md(ti->table->md);
3156  }
3157  EXPORT_SYMBOL_GPL(dm_post_suspending);
3158  
3159  int dm_noflush_suspending(struct dm_target *ti)
3160  {
3161  	return __noflush_suspending(ti->table->md);
3162  }
3163  EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3164  
3165  void dm_free_md_mempools(struct dm_md_mempools *pools)
3166  {
3167  	if (!pools)
3168  		return;
3169  
3170  	bioset_exit(&pools->bs);
3171  	bioset_exit(&pools->io_bs);
3172  
3173  	kfree(pools);
3174  }
3175  
3176  struct dm_pr {
3177  	u64	old_key;
3178  	u64	new_key;
3179  	u32	flags;
3180  	bool	abort;
3181  	bool	fail_early;
3182  	int	ret;
3183  	enum pr_type type;
3184  	struct pr_keys *read_keys;
3185  	struct pr_held_reservation *rsv;
3186  };
3187  
3188  static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3189  		      struct dm_pr *pr)
3190  {
3191  	struct mapped_device *md = bdev->bd_disk->private_data;
3192  	struct dm_table *table;
3193  	struct dm_target *ti;
3194  	int ret = -ENOTTY, srcu_idx;
3195  
3196  	table = dm_get_live_table(md, &srcu_idx);
3197  	if (!table || !dm_table_get_size(table))
3198  		goto out;
3199  
3200  	/* We only support devices that have a single target */
3201  	if (table->num_targets != 1)
3202  		goto out;
3203  	ti = dm_table_get_target(table, 0);
3204  
3205  	if (dm_suspended_md(md)) {
3206  		ret = -EAGAIN;
3207  		goto out;
3208  	}
3209  
3210  	ret = -EINVAL;
3211  	if (!ti->type->iterate_devices)
3212  		goto out;
3213  
3214  	ti->type->iterate_devices(ti, fn, pr);
3215  	ret = 0;
3216  out:
3217  	dm_put_live_table(md, srcu_idx);
3218  	return ret;
3219  }
3220  
3221  /*
3222   * For register / unregister we need to manually call out to every path.
3223   */
3224  static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3225  			    sector_t start, sector_t len, void *data)
3226  {
3227  	struct dm_pr *pr = data;
3228  	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3229  	int ret;
3230  
3231  	if (!ops || !ops->pr_register) {
3232  		pr->ret = -EOPNOTSUPP;
3233  		return -1;
3234  	}
3235  
3236  	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3237  	if (!ret)
3238  		return 0;
3239  
3240  	if (!pr->ret)
3241  		pr->ret = ret;
3242  
3243  	if (pr->fail_early)
3244  		return -1;
3245  
3246  	return 0;
3247  }
3248  
3249  static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3250  			  u32 flags)
3251  {
3252  	struct dm_pr pr = {
3253  		.old_key	= old_key,
3254  		.new_key	= new_key,
3255  		.flags		= flags,
3256  		.fail_early	= true,
3257  		.ret		= 0,
3258  	};
3259  	int ret;
3260  
3261  	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3262  	if (ret) {
3263  		/* Didn't even get to register a path */
3264  		return ret;
3265  	}
3266  
3267  	if (!pr.ret)
3268  		return 0;
3269  	ret = pr.ret;
3270  
3271  	if (!new_key)
3272  		return ret;
3273  
3274  	/* unregister all paths if we failed to register any path */
3275  	pr.old_key = new_key;
3276  	pr.new_key = 0;
3277  	pr.flags = 0;
3278  	pr.fail_early = false;
3279  	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3280  	return ret;
3281  }
3282  
3283  
3284  static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3285  			   sector_t start, sector_t len, void *data)
3286  {
3287  	struct dm_pr *pr = data;
3288  	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3289  
3290  	if (!ops || !ops->pr_reserve) {
3291  		pr->ret = -EOPNOTSUPP;
3292  		return -1;
3293  	}
3294  
3295  	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3296  	if (!pr->ret)
3297  		return -1;
3298  
3299  	return 0;
3300  }
3301  
3302  static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3303  			 u32 flags)
3304  {
3305  	struct dm_pr pr = {
3306  		.old_key	= key,
3307  		.flags		= flags,
3308  		.type		= type,
3309  		.fail_early	= false,
3310  		.ret		= 0,
3311  	};
3312  	int ret;
3313  
3314  	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3315  	if (ret)
3316  		return ret;
3317  
3318  	return pr.ret;
3319  }
3320  
3321  /*
3322   * If there is a non-All Registrants type of reservation, the release must be
3323   * sent down the holding path. For the cases where there is no reservation or
3324   * the path is not the holder the device will also return success, so we must
3325   * try each path to make sure we got the correct path.
3326   */
3327  static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3328  			   sector_t start, sector_t len, void *data)
3329  {
3330  	struct dm_pr *pr = data;
3331  	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3332  
3333  	if (!ops || !ops->pr_release) {
3334  		pr->ret = -EOPNOTSUPP;
3335  		return -1;
3336  	}
3337  
3338  	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3339  	if (pr->ret)
3340  		return -1;
3341  
3342  	return 0;
3343  }
3344  
3345  static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3346  {
3347  	struct dm_pr pr = {
3348  		.old_key	= key,
3349  		.type		= type,
3350  		.fail_early	= false,
3351  	};
3352  	int ret;
3353  
3354  	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3355  	if (ret)
3356  		return ret;
3357  
3358  	return pr.ret;
3359  }
3360  
3361  static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3362  			   sector_t start, sector_t len, void *data)
3363  {
3364  	struct dm_pr *pr = data;
3365  	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3366  
3367  	if (!ops || !ops->pr_preempt) {
3368  		pr->ret = -EOPNOTSUPP;
3369  		return -1;
3370  	}
3371  
3372  	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3373  				  pr->abort);
3374  	if (!pr->ret)
3375  		return -1;
3376  
3377  	return 0;
3378  }
3379  
3380  static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3381  			 enum pr_type type, bool abort)
3382  {
3383  	struct dm_pr pr = {
3384  		.new_key	= new_key,
3385  		.old_key	= old_key,
3386  		.type		= type,
3387  		.fail_early	= false,
3388  	};
3389  	int ret;
3390  
3391  	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3392  	if (ret)
3393  		return ret;
3394  
3395  	return pr.ret;
3396  }
3397  
3398  static int dm_pr_clear(struct block_device *bdev, u64 key)
3399  {
3400  	struct mapped_device *md = bdev->bd_disk->private_data;
3401  	const struct pr_ops *ops;
3402  	int r, srcu_idx;
3403  
3404  	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3405  	if (r < 0)
3406  		goto out;
3407  
3408  	ops = bdev->bd_disk->fops->pr_ops;
3409  	if (ops && ops->pr_clear)
3410  		r = ops->pr_clear(bdev, key);
3411  	else
3412  		r = -EOPNOTSUPP;
3413  out:
3414  	dm_unprepare_ioctl(md, srcu_idx);
3415  	return r;
3416  }
3417  
3418  static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3419  			     sector_t start, sector_t len, void *data)
3420  {
3421  	struct dm_pr *pr = data;
3422  	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3423  
3424  	if (!ops || !ops->pr_read_keys) {
3425  		pr->ret = -EOPNOTSUPP;
3426  		return -1;
3427  	}
3428  
3429  	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3430  	if (!pr->ret)
3431  		return -1;
3432  
3433  	return 0;
3434  }
3435  
3436  static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3437  {
3438  	struct dm_pr pr = {
3439  		.read_keys = keys,
3440  	};
3441  	int ret;
3442  
3443  	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3444  	if (ret)
3445  		return ret;
3446  
3447  	return pr.ret;
3448  }
3449  
3450  static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3451  				    sector_t start, sector_t len, void *data)
3452  {
3453  	struct dm_pr *pr = data;
3454  	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3455  
3456  	if (!ops || !ops->pr_read_reservation) {
3457  		pr->ret = -EOPNOTSUPP;
3458  		return -1;
3459  	}
3460  
3461  	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3462  	if (!pr->ret)
3463  		return -1;
3464  
3465  	return 0;
3466  }
3467  
3468  static int dm_pr_read_reservation(struct block_device *bdev,
3469  				  struct pr_held_reservation *rsv)
3470  {
3471  	struct dm_pr pr = {
3472  		.rsv = rsv,
3473  	};
3474  	int ret;
3475  
3476  	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3477  	if (ret)
3478  		return ret;
3479  
3480  	return pr.ret;
3481  }
3482  
3483  static const struct pr_ops dm_pr_ops = {
3484  	.pr_register	= dm_pr_register,
3485  	.pr_reserve	= dm_pr_reserve,
3486  	.pr_release	= dm_pr_release,
3487  	.pr_preempt	= dm_pr_preempt,
3488  	.pr_clear	= dm_pr_clear,
3489  	.pr_read_keys	= dm_pr_read_keys,
3490  	.pr_read_reservation = dm_pr_read_reservation,
3491  };
3492  
3493  static const struct block_device_operations dm_blk_dops = {
3494  	.submit_bio = dm_submit_bio,
3495  	.poll_bio = dm_poll_bio,
3496  	.open = dm_blk_open,
3497  	.release = dm_blk_close,
3498  	.ioctl = dm_blk_ioctl,
3499  	.getgeo = dm_blk_getgeo,
3500  	.report_zones = dm_blk_report_zones,
3501  	.pr_ops = &dm_pr_ops,
3502  	.owner = THIS_MODULE
3503  };
3504  
3505  static const struct block_device_operations dm_rq_blk_dops = {
3506  	.open = dm_blk_open,
3507  	.release = dm_blk_close,
3508  	.ioctl = dm_blk_ioctl,
3509  	.getgeo = dm_blk_getgeo,
3510  	.pr_ops = &dm_pr_ops,
3511  	.owner = THIS_MODULE
3512  };
3513  
3514  static const struct dax_operations dm_dax_ops = {
3515  	.direct_access = dm_dax_direct_access,
3516  	.zero_page_range = dm_dax_zero_page_range,
3517  	.recovery_write = dm_dax_recovery_write,
3518  };
3519  
3520  /*
3521   * module hooks
3522   */
3523  module_init(dm_init);
3524  module_exit(dm_exit);
3525  
3526  module_param(major, uint, 0);
3527  MODULE_PARM_DESC(major, "The major number of the device mapper");
3528  
3529  module_param(reserved_bio_based_ios, uint, 0644);
3530  MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3531  
3532  module_param(dm_numa_node, int, 0644);
3533  MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3534  
3535  module_param(swap_bios, int, 0644);
3536  MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3537  
3538  MODULE_DESCRIPTION(DM_NAME " driver");
3539  MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3540  MODULE_LICENSE("GPL");
3541